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ABSTRACT

APPLICATION OF SIMULTANEOUS CONFIDENCE BANDS IN

STATISTICAL INFERENCE FOR HETEROSCEDASTIC, HIGH

DIMENSIONAL AND FUNCTIONAL DATA

By

Qiongxia Song

This dissertation studies simultaneous confidence bands for heteroscedastic, high di-

mensional and functional data with their applications in statistical inference.

Nonparametric simultaneous confidence bands are a powerful tool of global infer-

ence for functions. Chapter 1 provides a bird’s eye view of the state—of-the—art and

challenges for constructing such confidence bands, a brief introduction to later chap-

ters. An introduction to the nonlinear spline smoothing and local linear smoothing

is also provided in chapter 1.

In Chapter 2, asymptotically exact and conservative confidence bands are obtained

for possibly heteroscedastic variance function, using piecewise constant and piecewise

linear spline estimation, respectively. The variance estimation possesses oracle ef-

ficiency and the widths of the confidence bands are of optimal order. Simulation

experiments provide strong evidence that corroborates the asymptotic theory while

the computing is extremely fast. Also, in simulation, the proposed confidence bands

is compared with some other testing heteroscedasticity methods. As illustration of

the applicability of the methods, the linear spline band has been applied to test for

heteroscedasticity in a fossil data and in the motorcycle data.

Chapter 3 provides the method for constructing simultaneous confidence bands

for nonlinear additive autoregressive models (NAAR), which have found wide use in

recent years to reduce dimension in nonparametric smoothing of time series. Under

weak conditions of smoothness and mixing, we propose spline-backfitted spline (SBS)

estimators of the component functions for nonlinear additive autoregressive model



that is both computationally expedient for analyzing high dimensional large time se—

ries data, and theoretically reliable as the estimator is oracally efficient and comes

with asymptotically simultaneous confidence band. Simulation evidence strongly cor-

roborates with the asymptotic theory.

Chapter 4 focuses on constructing confidence bands for densely spaced functional

data. We illustrate the use of local linear smoothing to construct simultaneous con—

fidence bands for the mean function. Our approach works under mild conditions for

the case of densely spaced observations and differs from sparse and irregular longi-

tudinal data. Simulation experiments provide strong evidence that corroborates the

asymptotic theory. The confidence band procedure is illustrated by analyzing the

near infrared spectroscopy data.
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Chapter 1

Introduction to confidence bands

1.1 Status and challenges

Nonparametric regression has gained much attention since it relaxes the usual as-

sumption of linearity and enables one to explore the data more flexibly. Many of the

properties of nonparametric regression estimators have been thoroughly investigated.

However, as Eubank and Speckman [13] pointed out, techniques for constructing in-

terval estimates to accompany the regression function estimators have been slow to

develop, even in the case of independent and identically distributed (IID) observa-

tions.

Consider the nonparametric regression model

Y,=m(X,-)+e,-, i=1,2,---,n. (1.1)

A natural definition for asymptotic exact (conservative) 100(1 —a)% confidence bands

for an unknown function m(:i:) over interval [a, b] consists of an estimator rh(x) of

m(:r), lower and upper confidence limit (In,L($) and ln,U($)) at every 2: E [a, b],

1



such that,

"Emmi? {m(:r) e [m(:z:) — sz (11:),rh(:1:) +1”), (23)] ,Vx 6 [a,b]} = 1— a,

I
17153)1513}? {m (:13) e [m (:r) — 1”,]; (x) ,m (x) + In), (29] ,Vx e [a, b]

Confidence bands are closely related to confidence intervals, which represent the

uncertainty in an estimate of a single numerical value. While, confidence bands

arise whenever a statistical analysis focuses on estimating a function or constructing

interval estimates. A confidence band is used in statistical analysis to represent the

uncertainty in an estimate of a curve or function based on limited or noisy data.

For instance, with the simultaneous confidence bands, we can test whether m is of

certain parametric form: H0 : m = me, where 6 E 9 and 9 is a parameter space.

For example, we can test whether m = c with c a constant or we can test whether

m(:c) = 60 + 31:1: with (60, 61) linear regression estimate. If so, then we accept at

level 1 — a the null hypothesis that m is constant or linear. Otherwise H0 is rejected.

Construction simultaneous confidence bands has been developed slowly since it is

difficult to establish asymptotic sample distribution theory for nonparametric re-

gression estimates. In the last two decades, many statisticians have worked on

the theory and applications of nonparametric simultaneous confidence bands, see

[7, 13, 16, 22, 23, 25, 74, 75, 87, 89].

All these methods are local polynomial smoothing based. Confidence bands of

kernel type estimators are computationally intensive since a least square estimation

has to be done at every point. In contrast, it is enough to solve only one least square

to get the polynomial spline estimator. Recently, some research has been done to

provide confidence bands results using polynomial spline smoothing. See, Wang and

Yang [70] and Wang and Yang [72]. For the application, see Wang et. a1. [30]. In

this thesis, I tackle this difficult problem in many scenarios, using polynomial spline

2



smoothing mainly. In this introductory chapter, I state, without proof, those basic

facts about our target models. We construct confidence bands for all these models

with statistical inference.

1.2 Nonparametric smoothing

Smoothing techniquas make an important class of tools for identifying the true signal

hidden in highly noisy data. They offer the art of nonlinear curve/surface estimation

by relaxing the linear assumption in regression and have very broad applications in

many areas. I give a brief introduction to the smoothing techniques used in our

research and analysis, namely regression splines and kernel smoothers.

Regression spline smoothing is a projection method for fitting splines. Let {X2°, Yi}?=1

be a strictly stationary process. Assume that Xi, 1 S i S n are supported on a com-

pact interval [a,b]. Polynomial splines begin by choosing a set of knots, and a set

of basis functions spanning a set of piecewise polynomials satisfying continuity and

smoothness constraints.

Let a =t1—k = = t0 <t1< < tN+1 = = tN+k = b beasequence

of equally spaced knots, dividing [a,b] into (N + 1) subintervals of length h = (b —

a)/(N + 1). The j-th B-spline of order k for the knot sequence T denoted by B ',k is
J

recursively defined by the de Boor [10], i.e.

= (u -' tlej,k—1(“) _ (u - tj+lej+1,k—1(“)
  

BiW) J—ijSN

9’ tj+k—1 - tj tj+k — tj+1

for k > 1, with

1 t- < u < t -
— +1.

Bj,1(u) = ‘7 ’7

0 otherwise,

N

We denote by C(p-2)[a, b] the linear space spanned by {Bip (2:7) }J-1—k’ whose

3



elements are C(pT2)[a,b] functions that are polynomials of degree p — 1 on each

subinterval. We denote by

C(p) [a, b] = {mlthe p-th order derivative of m is continuous 0n[a, b]}.

The polynomial spline estimator for regression model (1.1) is

7int) = argmin {Yz' - 9(Xz')}2, k > 0

g(.)eG(k_2)IaibI 2521

Locally linear smoothing is used for the last chapter to develop the confidence

bands for functional data. This smoother combines the strict local nature of the

data and the smooth weights of kernel smoothers. Kernel smoothers are expensive

to compute (0(n2) for the whole sequence), but are visually smooth if the kernel is

smooth.

A local linear approximation is

M1303 0 + 5(32' — I)

The local approximation can be fitted by locally weighted least squares. A weight

function and bandwidth are defined as kernel regression. In the case of local linear

regression, coefficient estimates 6 and b are chosen to minimize

11

(6,6) =argmin {yi—a—b(:rZ-—:r)}2Kh (xi—2:)

i=1

with Kh (u) = IIIK (7%), h = hn —r 0, as n —> 00. When (XTWX) is invertible,

one has the explicit representation

a = 63‘ (XTWX)_1XTWY

4



in which Y = (Y1, . . . ,Yn)T, eg; 2 (1, 0), and the design matrix X is

1 (5171—33)

1 (am—3:) n><2

and W =diag{K (51515)};1.

1.3 Variance function bands

The importance of being able to detect heteroscedasticity in regression is widely

recognized because of efficient inference for the regression function requires that het—

eroscedasticity is taken into account. In many applications of regression models the

usual assumptions of homoscedastic disturbances cannot be guaranteed a priori. Al-

though the problem of testing hypothesis regarding the regression function has been

discussed by many researchers much less attention has been paid to the problem of

testing hypotheses regarding the variance structure in a nonparametric regression

model. By constructing confidence bands for variance function, we provide a simple

consistent test for heteroscedasticity in a nonparametric regression set-up.

In the second chapter, we propose polynomial spline confidence bands for het-

eroscedastic variance function in a nonparametric regression model, and the result is

the only existing confidence band result for variance functions. The greatest advan-

tages of polynomial spline estimation are its simplicity of implementation and fast

computation. It is desirable from a theoretical as well as a practical point of view to

have confidence bands for polynomial spline estimators.

We assume that observations {(Xi, Yi) ”1:1 and unobserved errors {52]le are

i.i.d. copies of (X, Y, s) satisfying the regression model (1.1) where the error 5 is

5



conditional noise, with E (5 |X ) E 0, E (82 IX) E 02 (X). We constructed a si-

multaneous confidence band for 02 (:12) over [a, b]. In addition, the proposed variance

estimator is asymptotically as efficient as the infeasible estimator, i.e., the asymp-

totic mean squared error is as small as if the conditional mean function m (:c) is given

(equivalently, as if the unobservable error e is actually observed).

We applied our result on a motorcycle data. The result shows that with a p—

value as small as 0.008, one rejects the null hypotheses that the conditional variance

function of the data is a constant as no horizontal line can be squeezed into the

99.2% variance function confidence band. The details of the theoretic results and

applications are the content of the chapter two.

1.4 SBS estimate and NAAR models bands

Non— and semiparametric smoothing has been proven to be useful for analyzing com-

plex time series data due to the flexibility to “let the data speak for themselves”. One

unavoidable issue in high dimensional smoothing is the “curse of dimensionality”, i.e.,

the poor convergence rate of nonparametric estimation of multivariate functions. Ad-

ditive regression models has been found wide use in recent years to reduce dimension

in nonparametric smoothing of time serials.

A nonlinear additive autoregressive model (NAAR) is of the form

d

Yi = m (Xi) +8i’ m (121, ...,SL‘d) = C+ 2 m7 ((137), (1.2)

7:1

72.

where the sequence (IQ, xi} 1 is a length n realization of a (d + 1)-dimensional
z:

strictly stationary process, the d-variate functions m (.) and a (-) are the mean and

standard deviation of the response Yz' conditional on the predictor vector X,- =

{Xi1,...,Xz-d}T, and E(€,- [Xi) = 0,E(522 [Xi) = a2 0‘2] In the context of

6



NAAR, each predictor X”, 1 S 'y g d can be observed lagged values of Y2" such as

X237 = Yi-w or of a different times series.

Inference of model (1.2) centers on the estimation and testing of {m/y (-)},C;___1.

The two-step estimators for model (1.2) possess oracle efficiency. If all compo-

d

nents {m - } and the constant c were known and removed from the re—

fl( ) fl=1flaé7 n

sponses, one could estimate m7 () from the univariate data {IQ-,7, XIV} __ in which

n n _

{Yi'llzél are latent oracle responses to the 'y-th covariate {Xi7}i=1’

d

Yiy=m7(Xz')+5i=Yi_C— Z mfi(Xifi),lsiSn,IS’YSd-

fi=1fl757

For the NAAR time series models, however, none of the existing methods pro-

vide any simultaneous confidence band for may (). To address this need, we propose

an all new spline+spline oracally efficient estimator that is theoretically superior as

it comes with an asymptotically simultaneous confidence band for my (), and also

computationally more expedient than any existing estimators due to the use of spline

instead of kernel in all steps.

1.5 Functional data bands

Traditional statistical methods fail often as we deal with functional data. Indeed, if

for instance we consider a sample of finely discretized curves, two crucial statistical

problems appear. The first comes from the ratio between the size of the sample and

the number of variables (each real variable corresponding to one discretized point).

The second, is due to the existence of strong correlations between the variables and

becomes an ill-conditioned problem in the context of multivariate linear model. So,

there is a real necessity to develop statistical methods/models in order to take into

account the functional structure of this kind of data.



Functional data with different design are increasingly common in modern data

analysis. A simultaneous confidence band for this data set has been more and more

in need. A functional data set has the form {X,- ij} ,1 S 2' S n,1 S j S N, in

h

j 7

which N observations are taken for each subject, with X,-j and Y,j the jt

th

predictor

and response variables, respectively, for the 2’ subject. In this paper we only deal

with the equally spaced design. Without loss of generality, the predictor X,j takes

values {1/N,2/N,...,N/N} for the ith subject, 2' = 1,2,...,n. For the ith subject,

its sample path {j/N, Yij} is the noisy realization of a continuous time stochastic

process €,-(:c) in the sense that I’,,- = 5,- (j/N) + a (j/N) 6,, ,with errors 5,-j satisfying

E (5,3) = 0, E9322]. = 1, and {€,-(x),:z: E X} are iid copies ofa process {£(rr),:c E X}

which is L2, i.e., EfX €2($)da: < +oo.

For the standard process {€(x),:r E X}, one defines the mean function m(a:) =

E{€(:z:)} and the covariance function G (mal) = cov {€(x),§(:r’)}. Let sequences

{Ak}z<_)__1,{wk(x)}z:1 be the eigenvalues and eigenfunctions of G (x,x’) respec-

tively, in which A1 2 A2 2 2 0,2211% < oo, {’t/Jk}zO=1 form an orthonor-

mal basis of L2 (X) and G (1r,:c’) = 220:1 Aktpk(a:)z/2k (x’), which implies that

fa (35,3!) pk (1") dx’ = Amp/C(23).

The process {{,-(:c), :1: E X } allows the Karhunen-Loeve L2 representation

62-(10) = m) + 2:, max).

where the random coefficients §,k are uncorrelated with mean 0 and variances 1, and

the functions ¢k = ,/,\k2pk. In what follows, we assume that ’\k = 0, for k > K,

where K. is a positive integer or +00, thus G(:c,:r’) = Zz=1¢k($)¢k (513’) and the

data generating process is now written as

n,- = m (j/N) + 22:, em (gr/N) + 0 cm 5.,- (1.3)

8



The sequences {Ak}g=1 , {¢k(:r)}z___1 and the random coefficients ail; exist mathe-

matically but are unknown and unobservable.

Two distinct types of functional data have been studied: sparse longitudinal data

(1 S j S N,- and N,’s are iid copies of an integer valued positive random variable)

and dense functional data (N,- —> 00 as n —» 00). For the dense functional data,

strong uniform convergence rates are developed for local-linear smooth estimators,

but without uniform confidence bands. The fact that simultaneous confidence band

has not been established for functional data analysis is certainly not due to lack

of interesting applications, but to the greater technical difficulty to formulate such

bands for functional data and establish their theoretical properties. In this thesis, we

present simultaneous confidence bands for m(:r) in dense longitudinal data given in

(1.3) via local linear smoothing approach.



Chapter 2

Spline confidence bands for

variance function

2.1 Introduction

Quantification of local variability of regression data is an indispensable ingredient for

many scientific investigations. The most intuitive measure of such is the conditional

variance function, whose estimation has been the subject of Miiller and Stadtmiiller

[50], Hall and Carroll [20], Ruppert et. al. [61] and Fan and Yao [15], which em-

ployed kernel type smoothing methods for the nonparametric variance function. Sim-

ilar smoothing methods have also been used to estimate noise-to—signal ratio in Yao

and Tong [83] with applications to time series volatility estimation. These existing

works estimate the conditional variance function via kernel smoothing of the squares

of residuals from an initial kernel smoothing of the regression data. Such two-stage

smoothing technique has also been used in estimating homoscedastic variance in Hall

and Marron [21]. More recently, a new approach to variance estimation based on dif-

ferencing has been proposed, which can successfully handle serially correlated errors,

see Dahl and Levine [9] and Brown and Levine [4].

10



What has been lacking is uniform confidence band for the whole variance curve

over an entire bounded range, and explicit formula for the estimated variance function.

The former is useful for making inference on the shape of the variance function, such

as testing of homoscedasticity, while the latter is appealing to practitioners without

much statistics expertise but wish to implement nonparametric procedures. Uniform

confidence bands have been constructed for conditional mean function in Hall and

Titterington [26], Hardle [23], Xia [75], Claeskens and Van Keilegom [7], and for

probability density function in Bickel and Rosenblatt [1]. All these and other related

works such as Mack and Silverman [46], are based on kernel smoothing and make use

of the “Hungarian embedding” type results such as in Rosenblatt [59] and Tusnady

[69]. More recently, Zhao et. a1. [89], Wang and Yang [70] constructed confidence

bands for conditional mean function using polynomial spline method with explicit

formulae for both the estimated conditional mean function and the confidence band.

In particular, Wang and Yang [70] allows for heteroscedastic and nonnormal errors,

and is useful for testing hypothesis on the shape of regression curve.

In this chapter, we propose polynomial spline confidence bands for heteroscedastic

variance function in a nonparametric regression model. The greatest advantages of

polynomial spline estimation are its simplicity of implementation and fast computa-

tion, see for instance, Stone [67] and Huang [28] for the basic theory of polynomial

spline smoothing, and Xue and Yang [76] for computing speed comparison of spline

vs. kernel smoothing. Hence, it is desirable from a theoretical as well as a practical

point of view to have confidence bands for polynomial spline estimators.

We assume that observations { (X,-, Y,) [1:1 and unobserved errors {s,-}?=1 are

i.i.d. copies of (X, Y, 5) satisfying the regression model

Y=m(X)+€, (2-1)

11



where the error 5 is conditional noise, with E (5 |X ) E 0, E (E2 [X ) _=_ 02 (X), see

Assumption (A4) in Section 2.2 for details. The conditional mean and conditional

variance functions m(:r) and 02 (2:), defined on interval [a, b], need not be of any

known form.

Our goal is to construct a simultaneous confidence band for 02 (1:) over [a,b].

In addition, the proposed variance estimator is asymptotically as efficient as the

infeasible estimator, i.e., the asymptotic mean squared error is as small as if the

conditional mean function m (2:) is given (equivalently, as if the unobservable error

e is actually observed). As an example, consider the motor cycle data, Figure 2.4

shows that with a p-value as small as 0.008, one rejects the null hypotheses that the

conditional variance function of the data is a constant as no horizontal line can be

squeezed into the 99.2% variance function confidence band. For other methods of

testing the heteroscedasticity or the lack-of-fit of regression function, see Dette and

Munk [11] and Bissantz et. a1. [2], and Section 2.5 for simulation comparison of our

method with that of Dette and Munk [11].

The chapter is based on a published work Song and Yang [63], and the chapter is

organized as follows. In Section 2.2, we state our main results on variance confidence

bands using constant/linear splines. In Section 2.3 we investigate the error structure

of spline variance estimators leading to insights of proof. We give the actual steps

to implement the confidence band in Section 2.4, and in Section 2.5, we report sim-

ulation results and applications to a fossil data and the well known motorcycle data.

Appendix contains all the technical proofs needed for the main results.

2.2 Main results

An asymptotic exact and conservative 100 (1 — a) % confidence band for the unknown

02 (1r) over the interval [a, b] consists of an estimator 62 (5c) of a2 (2:), lower and upper

12



confidence limits 62 (2:) — ln,L (2:), 62 (2:) + ln,U (2:) at every x E [a, b] such that

nli_)m@P{o2(x)€ [62(2:2:)—l,,L(2:,) 02:2(2:)+an(2:2:)],V2:E[a,b]} = l—a,

ggiggP{02($)€[62(x)—l,,’L(2:),62 (x)+l,,,U(2:)],V$E[a,b]} 2 1—0.

respectively.

If the mean function m(2:) were known, one could compute the errors 5,- =

Y,- — m (X,) ,1 S 2' S n and make use of the fact that E (8,2 ]X,- = 2:) .=_ 02 (2:) to

carry out polynomial spline regression of the data {(X,, Z,-) lfl=1t in which Z,- = 5,2

are the squared errors. Specifically, one could define the “infeasible estimator” of

_ 2?: Zi-g X,) 2,in960%: 2),”), 1f ( l
the variance function as 5,2,2 (2:) = argmin

which Gggz2) —G(pg2) [a, b] is the space of functions that are piecewise polyno-

mials of degree (p2 —— 12) on interval [a, b], defined precisely below, for some positive

integer p2.

To mimic the above unattainable spline smoother, we define

. n . 2

p1,p2(>=?;gr31213 Zi=1{Zz’,p1—9(Xi)} , (2.2)

gEGN22 [a,b]

,2 . .' . . .
where Z,2,191 52',p1 are the squares of resrduals 5,4,1 obtained from spline regressron,

a,“ = y,- — mm (X,), 1 g i g n, (2.3)

for some positive integer p1, in which

mp1 (2:)—-— argmin 2:27.;1 {1",- — g (X,) }2 . (2.4)

gEG(pl12)[a, b]
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To introduce spline functions, for the two steps V = 1, 2, we divide the finite interval

[a,b] into (NI/+1) subintervals Jj = [tj,tj+1) , j = 0, ....,Nu—1, JNV = [tNV’ b] .

A sequence of equally-spaced interior knots {tj} _ V1, are given as

t0=a<t1<---<tNV<b=tNV+1,tj=a+jhu,j=0,1,...,N1/+1,

in which hy = (b — a) / (NV +1) is the distance between neighboring knots. We

denote by G56:_2) = 0]];5—2) [a, b] the space of functions that are polynomials of

degree (191/ — 1) on each Jj and have continuous (pu - 2)th derivative. For example,

GN11, denotes the space of functions that are constant on each Jj’ and G9,,” the space

of functions that are linear on each Jj and continuous on [a, b].

In what follows, II'IIoo denotes the supremum norm of a function w on [a, b], i.e.

llwlloO = squ€[a,b] [w (23)], and the moduli of continuity of a continuous function 21)

on [a,b] is denoted by w (w, hy) = maxx,2:’€[a,b],|x—2:’[Shy [21) (2:) — w (55’) I. That

limOw (w, hy) = 0 follows from the uniform continuity of w on compact [a, b].

VCur approach is to construct the error bound function In (2:) around the spline

estimators (“7,244,2 (2:). The technical assumptions we need are as follows:

(A1) The regression function m (-) E G(p1) [a, b].

(A2) The density function f () of X is continuous and positive on the interval [a, b] .

(A3) The subinterval length hV ~ n—l/(ZPV‘H), i. e., the number of interior knots

NV N nl/(ZPV+1),V 21,2

(A4) The joint distribution F (23,5) of random variables (X, 8) satisfies:

(a) There exists a positive value 1} > 1/p2 and a finite positive M” such that

sup E (lel4+277 IX = 2:) < MU:

2:6[a,b]

14



(b) The error is conditional noise: E(e|X = :c) E 0, E (e2 [X = cc) E o2 (2:)

with E (e4 [X = 2:) E p4 (2:) which is a positive function on [a, b] with bounded

variation. The variance function 02 () E C(p2) [a,b] and has a positive lower

bound on [a, b].

Assumptions (A1)-(A4) are adapted from [70] for sample {(X,,Z,-)}?=1. In

particular, Assumption (A4) (a) implies that var (52 |X = 2:) E p4 (cc) — o4 (2:)

is the conditional variance of Z = 52, denoted as v% (2:). We denote also pa: =

min (p1,p2) ,p* = max (101,122) ,N* = min (N1,N2),N* = max (N1,N2). The idea

of allowing different degrees of smoothness for m and 0 comes from one referee.

To properly define the confidence bands, we denote for any 2: E [a, b], define its

location and relative position indices ju (2:) ,ru (2:) as

J}, (:c) = my (:5) = min {[(2: — a)/hy],N1/}, n, (2:) = {2: —— t3.1/(1,} my. (2.5)

tint/(33) _<_ (I) <

0 g ry(2:) < 1,‘v’x 6 [a,b), and TV (b) = 1. We denote by II¢II2

Since any 2: is between two consecutive knots, it is clear that

tjnu($)+1’

the theoretical L2 norm of a function 45 on [a, b], i.e. "dug = E {d2 (X)} :2

fcl,’ ¢2 (2:) f (2:) c122, and the empirical L2 norm as ”(Min = n“1 2311 ¢2 (Xi) , Cor-

responding inner products are defined by

b

(¢.se)=/a ¢(x)<p(x)f(e)dx=E{¢(X)90(X)},

(<15. ‘Pln = 771 2:21 <f> (Xi) 90 (Xi)

for any L2-integrable functions ¢, (p on [a, b]. Clearly E (qb, ‘Pln = ((p, (,0).

Algebra shows that the space 0%5—2) can be spanned linearly by the B-spline

basis introduced below or the truncated power basis introduced in Section 2.4, see [10].

Hence the same estimator mp1 (25) can be expressed as a linear combination of either

15



of the two bases. While the truncated power basis is convenient for implementation,

it is easier to work with the B—spline basis for theoretical analysis. The B-spline basis

of Gag/1), the space of piecewise constant splines, are indicator functions of intervals

Jj, bj,1(2:) = Ij (2:) = [J], (2:) ,0 S j 3 NV. The B-spline basis of G0 u’ the space of

Nb

j:

piecewise linear splines, are {bj,2 (2a)} 1 , where

1‘ " tj+1 .
bj,2 (2:) = K (T) , J = —1,0, ...,NV, for K(u) = (1— |u|)+.

NV (Pu—2)
(x)}j=1—pu for GNVDefine the rescaled B-spline basis {B -

8m e) E bm (e naming—1, 1-... g.- s N...

Obviously all the rescaled basis functions will have theoretical norm 1.

N1
. . we

i=1-P1

To express the estimator mp1 (2:) based on the basis {Blipl (2:)}

introduce the following vectors in R": Y = (Y1, ..., Yn)T ,

T .
B,,,,1(X)={3,1,1(X1),...,B,,p1(xn)} , g = 1 — p1,...,N1,

and let the design matrix for spline regression be

then the estimator mm (2:) in (2.4) is expressed as

A _ T —1 T

mp1(2:) — {Bl—p1,p1($)""’BN1,p1($)} (Bpprl) BP1Y

= Z ”\j.p1Bj,p1($)’

2=1-P1

16



. A T

where the coefficients {A1_p1,p1,...,/\N1 p1} are solutions of the following least

squares problem

N 2

.. . T n 1

{A1“Plvp1""’)‘N1,P1} = alrvgmin Zizl Y,— 2: ”2491333191 (X,) ,

or equivalently, of the normal equation

((3 B > l” i N1jip , ‘I, . . ( jip ): _

_ N

= (n 1 2:; 323101 (Xi) mph—191‘

It is straightforward that <Bj,p1i 8]" p1> E 0, [j _ jII 2 191, thus the inner product

matrix on the left side of the normal equation is diagonal for the constant B spline

basis (p1 = 1), and tridiagonal for the linear B spline basis (p1 = 2). According

to Lemma 2.2, it is approximated by its deterministic version, whose inverse has an

explicit formula given in [70].

For p2 = 2, define the inverse of inner product matrix as S with its 2 x 2 diagonal

submatrices {'3ij 5 j S N2}

  

3332-1 3331'

(2.6)

The widths of the confidence bands depend on the variance function:

2

2 ij($) ”Z ('U)f(‘U) dt) 2 N2 Bj, 2 (:13) Bl, 2(2)) Sjj’sll’vjl

'Un,1( = nub ”2 , ”71,2 (17):: Z I ’n a

2(r),1 2 j,j’,l,l’=—1

(2.7)
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with j (:27) defined in (2.5), and s”, in (2.6), and

(vjl)N2 = E = {log (2)) 83-3 (1)) 31,2 (11) f (v) dv}N2
' -/___ . . '

1,] — 1 ],J’=—1

Under all assumptions, applying [70] to the unobserved sample {(Xi, Zi) 21:1,

an asymptotic 100 (1 — a) ‘70 exact confidence band for 02 (:3) over [a, b] is

5% (2:) iW (x) {2 log (N2 +1)}1/2 dn (a) ,

and

- —1 2

where vn,1 (1:) is given in (2.7) and replaceable by i)Z (:r) { f (x)nh1} /

 

log (1 — a) }+log log (N2 + 1) + log 47r2 2 ], (2.8)dn=l—{210g (N2 +1)}—1[log{-

and an asymptotic 100 (1 — a) % conservative confidence band for o2 (I) over [a, b] is

5% (:r) d: ”71,2 (x) {210g (N2 +1) — 210g a}1/2,

where U712 (:16) is as in (2.7), replaceable by “0,1,2 (1:) in (2.16).

We state our main results in the next theorems.

Theorem 2.1. Under Assumptions (A1)-(A4), as n —> 00, the spline estimator

612,1,p2 of 02 is asymptotically as efiicient as ”infeasible estimator”, i.e.

.2 ~ _ -2 ~2 _ — 2 +1
“01,1432 — OPQiioo — $31be 0p1,p2 (a3) — 0192 (1'), — op (n P1/( P1 )).

Theorem 2.1 and the aforementioned properties of 612,1,p2, imply the following:

Theorem 2.2. Under Assumptions (A 1)-(A4), an asymptotic 100 (1 — a) ‘70 exact or

18



conservative confidence band for 02 (:13) over the interval [a, b] for p2 = 1 or 2 is

1(1):)i m (3:) {210g (N2 +1)}1/2dn(a),
2

1

(332(1) i um (:5) {210g (N2 +1) — 2 loga}1/2,

respectively. That is,

711190013 {02 (3:) e 57in (:r) i ”71,1 (:13) {210g (N2 +1)}1/2 dn (0) ,Va: 6 [a,b]}

=1— 0:,

1/2

gggP {0'2 (1:) 6 632 (:r) :l: Un,2 (:13) {210g (Iv—Zia} ,‘v’x 6 [a,b]}

21—0.

The proof of Theorem 2.1 and therefore also of Theorem 2.2, depend on Proposi-

tions 2.1, 2.2 and 2.3 in the next section, and the proofs of the propositions are given

in the Appendix.

2.3 Error decomposition

In this section, we break the estimation error 612,2,“ (2:) — 512,2 (2:) into three parts,

so we can deal with the convergence rate for each part in the proof. To understand

_2)

this decomposition, we begin by discussing the spline space C(pl introduced in

Chapter 1 and the representation of the linear spline estimators mp1 (1:) in (2.4) and

5,2,2,“ (1:) in (2.2).

We write Y as the sum of a signal vector m and a noise vector E

Y: m+E,

m = {m (X1),...,m(Xn)}T’

19



E ={el,...,en}T.

. . . —2

PrOJecting the response Y onto the linear space 0.),“ ) spanned by

N1
{Bj,p1 (X) }j=1—p1’ one gets

. . . T

= Proj Y: Proj m+ Proj E.

dim-2) 65521—2) Gym—2)

Correspondingly in the space 0031-2), one has

Th191 (33) = 771191 (5’3) + E101(5'7) ’

T ._

mp1(:c) = [{Bj,p1($)}:-:11_p1] (Bngpl) lBglm’

T _

5p, (11:) = [{Bj3p1(a:)}j_:11_p1] (Bfi‘prl) 132,13 (2.9)

T - T
- . _ 2 2 _ ~2 2

Regarding variance, we define Z — {51, ..., an} , Zp1 — {€1,131 , ..., €71,191} , then

T ._

5,2,2 (2:): [(3331,2 (x)}::21_p2] (352392) 13,222,

r _

532m (x): [{Bj,p2(x)}:-V=21_p2] (3523102) IB$2ZP1'

Taking difference,

6,292,191 (:16) — 5,2,2 (1:)

T -— -

[{Bj,p2(a:)}::11_p2] (3,1523%) 1131352 (zpl—z)

20



T _

= “831102 (”lg-21-102] (3523”) 113%“

Then one writes

(33%,, (:13) — 5,2,2 (:17) = 1,02,),1 (:17) + ”192,291 (x) + 111,024,1 (1:) , (2.10)

in which

[102,101 = [192,191 (1‘)

T _

= [{.,,,,..)};.2,_,,) (3528202) <>
”192,191 = ”192,191 (x)

T

_.

= [{Bj,p2($)
}:1_p2] (B1721???) 13%; (111,p1,...,

11n,p1)T

T

T _

[{BM,2 (1)}:1_p2] (Bgzspz) 131% (1111,p1,...,111,,,p1)r

- 2 - - -

1..., = {m (Xi) — mp. (29)} + 8%, (Xi) + 2 {m (a) — m. (We. (Xi)

111,4,1 = 2 {m (X,) — mm (X,)} 5,.

2.4 Implementation

In this section, we describe procedures to implement the confidence bands in Theorem

2.2. Our codes are written in XploRe for convenience in order to use kernel smoothing,

see Hardle et. al. [24].
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Given any sample {(Xi,Y.,-)}?=1 from model (2.1), we use min (X1, ...,Xn) and

max (X1, ...,Xn) respectively as the endpoints of interval [a, b]. Motivated by the

comment of one referee, we select the number of interior knots NV using a BIC criteria.

For knot location, we use equally space knots. According to Assumption (A3), the

optimal order of NV is nl/ (27)”+1). Thus we propose selecting the ”optimal” NV,

denoted by N3”, from [0.5mm min(5N7~V, Tb)], with NW = n1/ (21011“) and Tb =

n/4 — 1 to ensure that the total number of parameters in the least square estimation

is less than n/4.

To be spec1fic let Qn-— (1 + Nn) be the total number of parameters. Then Nopt

is the one minimizing the BIC value

ngt = argmin BIC(Nn)

Nn€[0.5Nr1/, mIII(5Nr1/,Tb)]

where BIC = log(MSE) + qn log (n) /n, with MSE = 22:10? — 17,-}2/n.The least

squares problem in (2.4) can be solved via the truncated power basis {1, x, ..., xp1 _1 ,

(x — t .)p1-1 ' = 1 N In other wordsJ + ,] ,..., 1 .

F11
—1

mp1(“ =2: Vk‘Ek +Z71‘p1 (":- ill:1 ’

k=0

T

where the coefficients {’yo,...,”ypl_1,&1,p1,...,”bepl} are solutions to the fol-

lowing least squares problem

, . T

{70’ “'7 7N1,p1}

pl1

= argmin 272:1 Y — Z 7kX2k——J:'yjpi1(X— If)? 1
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The variance estimators 612,14? (3:) are computed likewise.

When constructing the confidence bands, one needs to evaluate the functions

v2”? (1‘) in (2.7) differently for the exact and conservative bands, and the descrip-

tion is separated into two subsections. For both cases, one estimates the unknown

functions f (2:) and v% (2:) and then plugs in these estimates, as in [70]. This is anal-

ogous to using 7 :l: 1.96 x sn/fi instead of 7 :l: 1.96 x o/Jn as a large sample

95% confidence interval for a normal population mean a, where the sample standard

deviation sn is a plugin substitute for the unknown population standard deviation 0.

... 2

Let K (11.) = 15 (I — U2) I {Iul S 1} /16 be the quadric kernel, sn =the sample

standard deviation of (Xi)?:1 and

 

A __ _1 n _1 ~ Xi-zr

f(:1:) _ n Zi=1h2mtJK (hmtf), (2.11)

(4701/10 (%)1/5 11—1/5
'12 rot,f 3”,

with h2 rot,f the rule-of—thumb bandwidth in Silverman [62].

A_ __ . T _ .2 2

Define :p2 = {:i,p2’1 S i S n} , 5i,p2 = {Zi,p1 — 01,1432 (Xi)} , and

T

1 ,..., 1

X= X0!) = ,

X1 —£L’ ,..., Xn —1'

X' — a: n

W: W (21:) = diag K 2 ,

h2 rot,o i=1

where h2 rot,o is the rule-of-thumb bandwidth of Fan and Gijbels [14] based on data

n .

(X., Ei,p2)i=1‘ Define the following estimators of v22 (2:),

 

Z

- —1 _
11%“ (as) = ( 1, 0 ) (xwa) xTwapZ. (2.12)
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The following uniform consistency results are provided in [1] and [14]

A

max su {)2 :1: —v2 a: su x _ :1: =0 . .

p,$€[:b][z,p,() Z()[+x6[:b][f() f() ,.(1) (213)

2.4.1 Implementing the exact band

The function ”71,1 (:13) is approximated by the following, with f (2:) and 22,1 (2:) de-

fined in (2.11) and (2.12), j (:13) defined in (2.5)

. - ._ _ —1 2

vn,1(:r) = vZ,1 (:r) f 1/2 (:13) n 1/2h2 / .

Then (2.13) and (2.8) imply that as n -—> 00, the band below is asymptotically exact

6%,1(I):tvn,1(sr){2log(N2 +1)}1/2¢,,. (2.14)

2.4.2 Implementing the conservative band

The band below is asymptotically conservative

.2 - __ 1 /2
02,2 (:12) :i: Un,2 (at) {210g (N2 +1) 2 log a} , (2.15)

where the function ”71,2 (:r) in (2.7) for the linear band is estimated consistently by

. -1/2

m(x) = {AT (as) L,,(,.)A (2)}1/2 (22,2 (x) {g1 (as) nh2} , (2.16)

with 3'2 (2:) defined in (2.5), and f(a:) and 222 2 (2:) defined in (2.11) and (2.12), A (2:)

and Lj defined as follows:

A (z) = Chm—1 {1 - T2 (13)} ,

Cj2($)7"2 (1‘)
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I. j=0,...,N2-—1

lj+2,j+1 lj+2,j+2

The terms lik’ |i — k] S 1 are defined through the following matrix inversion

  

( 1 fi/4 0 )

\/2/4 1 1/4

1/4 1

MN2+2 1/4

1/4 1 (5/4

K0 «274 1 /(N2+2)><(N2+2)

(lik)(—1\1l2+2)x(N2+2) 1

and computed via (2.18), (2.19), and (2.20) given below, which are needed for (2.17).

Letting

  z1=2+‘/§ z2=2_‘/§, 9=EZ=(2—\/§)2=7—41/§, (2.18)

and applying matrix theory from Gantmacher and Krein [19] and Zhang [84], we have

the following

l11 = lN2+2,N2+2

8.2%(1— 6N2+1) — 21(1 — 0N2)

8.2%(1— 9N2+1) — 2z1(1— 6N2) + (1— 0N2_1) /8,
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’2' i: {821 (1 — 9N2+2“i) — (1 — 6N2+1‘i)} {821 (1 — 024) — (1 - (914)}

’ (21 —— 2.2) {642% (1 —- 9N2+1) —-— 1621 (1 — (9N2) + (1 - 9N2—1)}

(2.19)

 

for2SiSN2+1and

l12 = lN2+1,N2+2

(ax/2) 21 (1 — 0N2) — (1 — 6N2—1)/8

82% (1 — 9N2+1) — 221 (1 — (9N2) + 8 (1 — 6N2—1)/8,

z {8.21 (1 — 0N2+1—i) - (1 — 9N2-i)} {821 (1 — ei‘l) — (1 — (ii—2)}

i’i-H: 421(z1— 22) {647% (1 — 6N2+1) — 1621 (1— 9N2) + (1— 6N2—1)}

(2.20)

 

for 2 S i S N2. By the symmetry of the matrix MN2+2, the lower diagonal entries

are 1141,, = 1,3241, W = 1, ..., N2 +1. See [70] for details.

2.4.3 Implementing the bootstrap band

In this subsection, we use wild bootstrap for improved performance following the

- - ‘. _ «2 _ .2 .
suggestion of one referee. We define the reSIduals 52,191,}? — Eiapl 0911132 (X,),

where E23131 are defined in (2.3), and denote a predetermined integer by n3, whose

default value is 500. The steps to compute bootstrap band, similar to Yang [77], are

described in the following.

Step 1, Let {afik}1SkSnB’ 1 S i S n be i.i.d. samples of the following discrete

distribution 5i,k = :l:1 with probability 1/2, it is easily verified that E(6z',k) = 0,

Var (62,16) 2 1.

Step 2, For any 1 S k S n3, define the k-th wild bootstrap sample 5:2

Wm =
n

.2 . *_ . . . __ .2 .
0p1,p2(Xz)+€i,p1,p252,ka1 S i S n.Tak1ng Ep1,k — {Ei’p1,k}z~=1 , we apply linear

26



spline on Ep1,k to get the spline estimate

T
.2 _ , N1 T *1 T

”p1,p2,k($) ‘ [{Bval (1)}j:1—-p1[ (BPIBPI) BPIEPLk (2'21)

Step 3, The wild bootstrap (1— a) pointwise confidence interval for function value

02 (T) at one point T is [big/20:), 32U,a/2(£IJ)[ , where Elia/29‘) and 3%],01/2($) are

the lower and upper 100(a/2)% quantiles of the set 61211,p2,k(x)1S/€STIB obtained

from (2.21) for each of the bootstrap sample generated in Step 2.

Step 4, According to [70], the uniform confidence band is wider than the point-

 

wise confidence interval by an inflation factor of 21—3042 \/2 {log(N2 + 1) — log(a/2)}

when localized at any point T, hence we define the wild bootstrap (1 — a) confidence

band for the function 02(2)) over [a,b] as [3%,a/2(I),3%j,a/2(SC):[ ,T E [a, b] where

aria/2(2) =

(31221102 (x) + (320/2013) - 6%1,p2<x>) 2111.,)2 \/2 {log(N2 + 1) — logo/2)},

 

{Ian/2(3) =

612,1,” (T) + (3%],0/2(T) — 5%1,p2($)) 21—30/2 \/2 {log(N2 + 1) — log(a/2)}.

 

As one referee pointed out, instead of resampling at each point T and then in-

flate by a universal factor Kn, it is also possible to resample the maximal deviation

distribution, as was done in Neumann and Kreiss [54], and obtain bootstrap lower

and upper 100(a/2)% quantiles of SUPTE[a,b] (7ng (T) — 02 (T) ”71%? (T). Our ap—

proach, however, has the advantage of adaptivity since the confidence band is locally

calibrated at each point T, without the constraint of symmetry.
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2.5 Examples

2.5.1 Simulation example

To illustrate the finite-sample behavior of our confidence bands, we simulate data

from model (2.1), with X ~ U[—1/2,1/2], and

m (T) = sin (27rT) , a (T) = 00-33%, elT ~ N1{0,o2 (T)}. (2.22)

The noise levels are 00 = 0.2, 0.5, while sample sizes are taken to be n = 100, 200, 500.

Confidence level 1 — a = 0.99, 0.95. For c = 100 and c = 5, Tables 2.1 and 2.2 contain

the coverage probabilities as the percentage of coverage of the true curve a (T) at all

data points {Xi}?=1 by the confidence bands in (2.14), (2.15) and using bootstrap

method, over 500 replications of sample size n. Following the suggestion of one referee,

we have included variance functions 02 (T) that are strongly heteroscedastic (c = 5)

and nearly homoscedastic (c = 100).

In all cases, the performance of constant band is worse than the linear band in

terms of coverage, while the bootstrap band has the best coverage. In all cases the

coverage improves with sample sizes increasing, showing a positive confirmation of

Theorem 2.2. The bootstrap band achieves reasonable coverage rate for moderate

sample size as low as 100, while for the nearly homoscedastic case of c = 100, the

asymptotic linear band has good coverage for sample size as low as n = 200. For

the strongly heteroscedastic case c = 5, it seems that the bootstrap band is the only

satisfactory one. We therefore recommend using the bootstrap band for analyzing

real data.

The graphs in Figures 2.1 and 2.2 are created based on two samples of size 100

and 500 respectively, for c = 100 and 5 respectively, each with three types of symbols:

center thin solid line (true curve), center dotted line (the estimated curve), upper and
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lower thick solid line (bootstrap confidence band). In all figures, the confidence bands

for n = 500 are thinner and fit better than those for n = 100.

We next compare by simulation the testing of heteroscedasticity based on the

proposed bootstrap confidence band to the results of [11] for the following three

models

m(T) = 1 + sin(T), 0(T) = oexp(c.T) (monotone, model I)

m(T) = 1 + T, 0(T) = o {1 + csin(10T)}2 (high frequency, model 11) (2.23)

m(T) = 1 + T, 0(T) = 0(1 + CT)2 (unimodal, model III)

for c = 0, 0.5, 1.0 and o2 = 0.25 with standard normal errors. The design points X

were generated uniformly from [0,1] and the sample sizes were n = 50, 100, 200.

Table 2.3 shows the relative proportion of rejections for the various situations using

both our method and the results from [11], Table 1, p. 700 (in brackets). Our

method performs poorly when heteroscedasticity is weak (c = 0.5) for models I and

III, so the type II error is larger than [11]. For strongly heteroscedastic model (c =

1), however, our method achieves higher rejection power for models II and III, and

comparable rejection power for model I, so the type II error is either comparable to

[11] or lower. For homoscedastic model (c = 0), our rejection rate is always lower,

hence the bootstrap confidence band based test has smaller type I error than [11].

Based on the above simulation, our method is better than [11] at detecting strong

heteroscedasticity and retaining homoscedasticity, while [11] is better than ours at

discovering weak heteroscedasticity.

2.5.2 Fossil data and motorcycle data

In this subsection we apply the bootstrap band to two real data sets, both of which

have sample size below 200.
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Table 2.1: Coverage probabilities for c = 100 from 500 replications.

 

 

 

 

 

 

 

00 n 1 — a Constant Band Linear Band Bootstrap Band

0.99 0.882 0.886 0.944

100 0.95 0.806 0.858 0.858

0.99 0.940 0.970 0.996

0.2 200 0.95 0.874 0.958 0.968

0.99 0.984 0.994 1

500 0.95 0.942 0.992 0.984

0.99 0.764 0.892 0.956

100 0.95 0.690 0.870 0.886

0.99 0.896 0.970 0.992

0.5 200 0.95 0.830 0.962 0.960

0.99 0.974 0.996 0.998

500 0.95 0.926 0.994 0.984     
 

The fossil data reflects global climate millions of years ago through ratios of stron-

tium isotopes found in fossil shells. These were studied by Chaudhuri and Marron[5]

to detect the structure via kernel smoothing. The corresponding penalized spline fit

was provided in Ruppert et. al. [60]. In this section we test the heteroscedasticity of

the fossil data variance. The null hypothesis is H0 : 02 (T) = 03 > 0. The response Y

is the strontium isotopes ratio after linear transformation, Y = 0.70715+ratio*10—5,

since all the values are very close to 0.707, while the predictor X is the fossil shell

age in million years.

In Figure 2.3, the center dotted line is the linear spline fit 632 (T) for the variance

function 02 (T). The upper/lower thick solid lines represent bootstrap confidence

band. The constant horizontal line between the upper/lower thick lines represents

the average of the minimum of the upper line and the maximum of the lower line,

which indicates if one can fit a constant line into the confidence band. Since the

variance band of high confidence level 100(1 — 0.20)% contains the fitted constant

line entirely, we have failed to reject the null hypothesis of homoscedasticity with

p—value 0.20.
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Table 2.2: Coverage probabilities for c = 5 from 500 replications.

 

 

 

 

 

00 n 1 — a Constant Band Linear Band Bootstrap Band

0.99 0.824 0.858 0.944

100 0.95 0.764 0.834 0.874

0.99 0.912 0.896 0.986

0.2 200 0.95 0.832 0.884 0.954

0.99 0.978 0.970 1

500 0.95 0.916 0.964 0.992

0.99 0.886 0.856 0.946

100 0.95 0.648 0.828 0.878

0.99 0.916 0.918 0.992

0.5 200 0.95 0.688 0.904 0.958

0.99 0.958 0.966 1

500 0.95 0.726 0.964 0.986

 

 

     
 

A second data used to illustrate our technique is the well-known motorcycle data.

The X-values denote time (in milliseconds) after a simulated impact with motorcycles.

The response variable Y is the head acceleration of a PTMO (post mortem human

test object).

In Figure 2.4, the center dotted line is the linear spline fit 632 (T) for 02 (T).

The upper/lower thick solid lines represent bootstrap confidence band. The constant

line between the upper/lower thick lines represents the average of the minimum of

the upper line and the maximum of the lower line. Since the variance band of an

extremely high confidence level 100(1 — 0.008)% does not contain the fitted constant

line entirely, we reject the null hypothesis of homoscedasticity with p-value S 0.008.

In both Figures 2.3 and 2.4, there exists an exact correspondence of high (“7% 2 (T)

value in the upper plot to greater width of the confidence band for the conditional

mean function in the lower plot, throughout the entire data range.

31



Table 2.3: Simulated rejection probabilities of test homoscedasticity from 500 repli-

cations.

 

n=50 n=100 n=200
 

2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%
 

model I
 

0.5

1.0

0.004 0.004 0.012

(0.038) (0.056) (0.101)

0.014 0.020 0.030

(0.055) (0.084) (0.132)

0.038 0.058 0.110

(0.095) (0.148) (0.223)

0 0 0.002

(0.028) (0.057) (0.093)

0.002 0.006 0.018

(0.064) (0.097) (0.151)

0.024 0.072 0.254

(0.153) (0.215) (0.313)

0

(0.037)

0

(0.086)

0.150

(0.249)

0

(0.059)

0.004

(0.134)

0.362

(0.337)

0

(0.105)

0.034

(0.200)

0.690

(0.458)
 

model II
 

0.5

1.0

0.004 0.004 0.012

(0.031) (0.053) (0.100)

0.082 0.106 0.158

(0.197) (0.276) (0.390)

0.316 0.422 0.612

(0.272) (0.365) (0.481)  

0 0 0.002

(0.026) (0.049) (0.089)

0.296 0.484 0.766

(0.333) (0.433) (0.568)

0.356 0.512 0.734

(0.477) (0.557) (0.674)  

0

(0.032)

0.694

(0.527)

0.656

(0.693)

0

(0.056)

0.918

(0.637)

0.884

(0.790)

0

(0.100)

0.992

(0.761)

0.984

(0.884)
 

model III
 

0.5

1.0  
0.004 0.004 0.012

(0.034) (0.054) (0.097)

0.02 0.034 0.066

(0.073) (0.113) (0.185)

0.078 0.112 0.216

(0.136) (0.198) (0.291)  
0 0 0.002

(0.028) (0.053) (0.100)

0.010 0.030 0.110

(0.105) (0.158) (0.233)

0.122 0.312 0.642

(0.221) (0.304) (0.412)  
0

(0.031)

0.032

(0.175)

0.668

(0.378)

0

(0.053)

0.142

(0.239)

0.984

(0.476)

0

(0.094)

0.394

(0.342)

0.978

(0.598)
 

2.6 Appendix

The goals of this Appendix are to prove Propositions 2.1, 2.2 and 2.3. These clearly

establish Theorem 2.1 and Theorem 2.2. In what follows, we denote by ||€|| the

Euclidean norm and by [5 I the largest absolute value of the elements of any vector 6.

We use c, C to denote positive constants in the generic sense.

The following result is based on Theorem 3.2 and Propositions 3.1, 3.2 of [70], see

also [28] and Leadbetter et. al. [38].

Lemma 2.1. Under Assumptions (AU-(A4), there eTists a constant 0171 > 0,p1 2 1
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such that for any m E C(p1) [a,b] and the function mp1 (T) given in (2 9),

g Cpl inf Ilg — mu,>0 = 0,. (51:1) . (2.24)
[[2401 (1’) ‘ m (9” 960(191’00

Moreover, for the function Epl (T) given in (2 9),

  

5p, (1:)“0O = 0,, (711171 M) . (2.25)

According to Lemma 2.1, the bias term mp1 (T) — m (T) is uniformly of order

0p(h11)1) = Op (n_p1/(2p1+1)), while the noise term Epl (T) is uniformly of

order Op (hi1)1 flag?) = Op (n-pl/(291+1)\/Efi).

The following lemma on uniform convergence of the empirical inner product to

the theoretical counterparts is from Lemma 3.1 of [70].

Lemma 2.2. Under Assumptions (A2) and (A3), as n —> oo,

 

 

') 1 —

91,92€G(p1-2)
”91“2 “92ll2

_—_ 0p (\/n—1h1—110g(n))
,

(2.26)

The next result on the empirical inner product matrix is based on Lemma B2 of

[70] and Lemma A5 of [76].

Lemma 2.3. Under Assumptions (A2) and (A3), there eTist constants c(f), C (f) >

0 independent ofn but dependent on f, such that as n —> 00, with probability approach-

ing 1, for allé E RNV+pV,V = 1,2

c0910 3 (n-lBguspV)‘1:[sC(f)ls. (2.27)
 

—1

usual? 3 {fin—11321310..) {SCUHKIIQ- (2.28)
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Using the above three results, we establish two additional technical lemmas to be

used in proving Propositions 2.1, 2.2 and 2.3.

Lemma 2.4. Under Assumptions {A2} and (A3), as n —+ 00,

(191-205;-.. IR}W)TE[a,b]

33. ((3,,,,,1)}=o(h.1/2). jzn’féjxp,{<8j,pwl>.}
j=1—Pu

= 01; (till/2 + \/n_1h,71 log n) . (2.30)

   

 

Proof. For each T 6 [a,b], at most pl, of the 8.71191! (T)’s are nonzero, (2.29) follows

directly from the definition of {B -

u

T } , and the sim le fact that

12 .

“bjpull2>ch/,1—PVSJSNV-

The same definition and fact also imply that

23)) x (31/2)_0(1,2)

As all {Bj191/ (513)}j:‘1—pu are standardized, the definition and rate of Amp” in

(2.26) imply the second half of (2.30).

Lemma 2.5. Under Assumptions (A2) and (A3), as n —> 00,

N2 N1 _1 2

Z Z {Tl 2:1,lej2p2()(Z)Esz1p1 (XZ)}

i=1-P2 k=1—P1

: 0p (n5/2(2p*+1)-1/2(2p*+1)4) , (2.31)
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while for any continuous function r defined on [a, b],

N1

2 [n—1::=13,,, (X.) T (X1) 412

i=1-P1

s llallgo (1111?... (N1 +p1)n—1. (232)

Proof.

N2 N1 2

B z 2: [...-123.,max-18.32.19»)
i=1—P2 k=1-P1

N2 N1

= Z Z n‘ZZB{B)p2(X-PBk,p,(X.-)Zo2(x.)}
j=1—p2k=1—p1 i=1

S ”—1maX(N1+PlaN2+PZ)N*—1N*

2 2 2
X max E 3' (X1) Bk (X1) 0 (X1) .

lk—J|SP1 { 3,121 ,p1 }

With the definition of Bjp1 (T):— bjapl (T) ”bj,p1“2_lv 1—p1 Sj S N1, we have

2 2 2

Ik-mjélléplE 3,1,, (X1) Bk).1 (X1) 0 09)}

< 6(0) f()\/h1h22_C(f0)

— C(f)h1h2 vh1h2

 

Thus (2.31) follows from

N2 N1 1
2

E. Z Z {n 2i=1 Bj1p2()(7:)€ZBk,pl (XZ)}

3:1—192 k=1—p1

S n_1ma.x(N1 +P1,N2 +p2)N*—1N* x C(f,a)

0 (n5/2(2p*+1)—1/2(2p*+1)—1).

é
”
;

D
—
l
)

D
"

[
\
3
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To prove (2.32), we argue that

N1
_1 n 2

Z [" Zilej,p1(Xi)T(Xi)5i]

J=1-p1

N1

_ —1 2 2 2

— '2 n B{B,-,,1(X1)r(X1)a (X1>}

3:1—171

N1

Hangonrnion‘l Z B{Bj,p1 (X1)‘-’-}

i=1-P1

Mango Ilrugo (N1 +101) n"1

|
/
\

The next three propositions show the asymptotical property of the three terms,

[192,191, IIp2,p1 and IIIp2,p1 in (2.10), decomposed from section 2.3, then estab—

lish Theorem 2.1.

Proposition 2.1. Under Assumptions {AU-(A4), HIp2’p1lloo = supxqa b] le2,p1 (11:)l,

as n —+ 00, is of order

0p(h§p110gn) = 01, (n—2p1/(2p1+1)10gn) = 0p (n-p2/(2p2+1)) ,

Proof. By Cauchy-Schwarz inequality,

’Ii,p1|<2{m(Xi) —mp1(X-)}2 +2Ep1(X

thus maacz._1 II-p1| is bounded by

2:

~ 2 ~ 2

S 2 llm‘mpllloo+ “51’1”“; '

36

2{Wm (Xi) — mm M2 + {mil W}



It follows that

HIPIBBHOO

= sup ’{ij (13)}1Y2 (BT2131,2) 113T (I,- ,1gign)T’,

TE[a,b] ’ 2 ]=1—p2 192 ml

which, as for each T E [a, b],Bjp2 (T) 75 O for at. most p2 values of j, is bounded by

N2

7’2 max Bin”)=1—p2 ("-13T23P2)_1X"_IBT2(lIi,B1l’15"5 ")Tl 

Using (2.29) in Lemma 2.4 and (3.41) in Lemma 3.10, the above is bounded by

—1 2

p2C(f)h2 / ><C(f) ><

max?=1 lliipl l, we have

 

T

n‘lBT201.,-p1|v 1 < i < n) l . THen, using the bound on

”Ipl’pzlloo

s C(f)h§1/2 >< {Hm — mpluio+|lép1)l:o}Xj=IT1§§Xp2{<Bj,p2,1>n}

which, applying (2.24) and (2.25) in Lemma 2.1, and (2.26), (2.30) in Lemma 2.4, is

bounded by

—1 2 2 2 12 _ _
Op{h2 / x (h1p1+h1pllogn) x (122/ +\/n 1122110gn)}

2
= 0p (hlpl log n) .

 

Proposition 2.2. Under Assumptions {AU-{A4}, as n —-> 00,

”[1 H = sup III ml49 p ,1)P2 1 00 “[a,b] 2 1

_ 0p(n3/<2p*+1)—3/2) (—p2/<2p2+1))-01?
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Proof. By definition

[Ip1,p2(l‘)

= {mam (x) , ...,BN2m (2:)} (Bp23p2)_ sz (111p1,..,11n,p1)T

= I{Bl-P2P2(I)"BN2,P2 (I)}("lBPzBP2)1

N

xn{—lzi=1 ijp2(X05131 (X08III}j =21——p2

Applying (3.41) in Lemma 3.10, |11p1,p2($)', with probability approaching 1, is

bounded by

C ”{Bl—mipz (I) , BN2,” (17))“ C(f)

—1 n .. N2

{" Zi=1BJ3p2 (X05101 (Xi) 5i}j:1_p2 H,X

  

applying (2.29) in Lemma 2.4,

N2 ll
—1 2 _ n ~

SUP .11p1,p2($)l S CU) hg / “{n 122-:133'492 (X05191 (Xi) 5i}j=1-P2 ITE[a,b]

Next, one can write for any 1 — p2 S j 5 N2,

"—122; 31,102 (Xi) 3’1 (Xi) Ii

= 22:1 BM. (xi {Bl—m (Xi)MN BB}

x (n—13$IBPI)—ln 113311;;

{IIIII Znz=1 BJP2(”5inP1 (Xi)}l:11-P1

xn("IBTBp1)—1n—1B$1E,
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hence, sup II T is bounded by
TE[a,b] p1,p2

 

N1

—1/2 N2
C(f) 112 Z 5233',p2(Xilfz'B/wl (Xi)

j=1—p2 ni= 1

—11
xJC;BT131,1) n-1B$1E

c —1/2 N2
(f) hg 2 £2733j,(p2Xi)€in,p1 (Xi)

j=1—p2 ni= 1

1

T11 T

k=1—p1

 

2

 

 

N1 2

|
/
\

k=1—p1

 

   
 

N N 2
”1/2 2 1 1 n

= 0 (W12 2 2 g 2333' Xilgima (Xi)
j=1—p2 k=1—p1 i=1

-—1

1 T 1 T

 

   
by Cauchy—Schwarz inequality.

Note that with probability approaching 1,

2

—1 T *1 -1 T
(n Bplnpl) n BplEll

T —1 T
n BPlE}

2 1 —-1 n 2
= C (f) 2 {n Zi=1 Bjapl (Xi) 5i}

k=1-p1

= 0,; {(N1 +p1) n_1} = 0p(N1n—1)

  

|
/
\

Q

C
:

"
R
a

P
M

2
:
3
"

w
F
-
J

5
3
'
s

{
1
1
V

according to (2.32) of Lemma 2.5 with function r (T) E 1. Meanwhile, according to
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(2.31) in Lemma 2.5 we have,

sup IIIp1,p2(T)l

T€[a,b]

2 0p (h21/2 X n5/2(2p*+1)—1/2(2p*+1)—1 x m)

_ Op(n1/2<2p2+1) x n5/2<2p*+1>—1/2(2p*+1)—1 x n1/2(2p1+1>,,—1/2)

= op (n3/(2p*+1)—3/2) _

Proposition 2.3. Under Assumptions (A 1)-(A4), as n —> 00,

“”1132491 “00 = $2165“ IIUpz,p1 (1?)!

0p (n3/(2p*+1)-1) = 0p (n—P21/(2P2+1)) .

Proof.

”11111112 (~11)

1 T
= {Bl_p2’p2($),...,BN2,p2(13)} (331,213,?)

T T

i3”(1111p1N,2111n,p1)

—1
_ 1 T

1 Tl

~,—,— :1 3,1,2 (X) {m (Xi) — mp1 (X.)}e.
2:

N2 1 T ’1

{2:13.3P2(W{m1 9P1(Xi)}51}
2:1

—1

N2

i=1-P2

N2

i=1-P2
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+

N2 1 T “I

n

1 -

{g :1 39,192 (Xi) (9171 (Xi) - mp1 (Xi)}5i}

2:

N2 1 T ‘1

= 2 {83-2172 (x)}j=1—p2 (an2Bp2)

{$231192 (Xi) {m(Xi) - 9P1 (Xi) } 52'}

N2

i=1-P2

N2

i=1-P2

N2 1 T ‘1

+ 2 {81432 (I)}j=1_p2 (531723192)

1 " N1

; :1 33.102 (Xi) 5131;,“ (xi)

1,:

k=1—p1

N2—1
1 T 1 T '

(EBpiBPI) ng1(gp1-m)}. '
J=1—P2

in which the spline function gpl E C(pT‘I) satisfies II m — gpl “00$ Chpl, and

gPi = {9101 (X1) , "-19:01 (Xn)}T-

With probability approaching 1, according to (2.29) in Lemma 2.4, the first term

in the above is bounded by

 

N2 1 T ‘1

2 {Bl-p2,p2 (x)}j=1—p2 (RBPZBp?)

 

n
N2

{% Z Bj,p2 (Xi) {m (Xi) — 9P1 (Xi) } 51'}

i=1 j=1-p2

1 " N2
S CU) ’12—1/2 {a Z BM (X1) {m (X1) - 9m (19)}52'}

2:1

j=1—p2
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By (2.32) in Lemma 2.5 with 7‘ (x) = m (2:) — 9P1 (:13), the above has order

-1 2 2 __ ‘ N1 2

Op (122 /\/||0||gollm—gpllloo(N1+p1)n 1) =0p(N2./N1/n)

 

For the second term

—1

 
2{Bl—P2,P2(x)”(BN2,p2(;1{x)}(31923102)

1 7’ N1

{; Z Bj,p2 (Xi) *3in,“ 0%)}

-—1
1 T 1 T

ng1BP1) £3191 (gpl—m)}

k=1—p1

N2

 j=1-P2

C1(/f2) {n12—Z Bj3,202(XDEinpl 0(1)}

—1
(1BT131,1) 1.1137791 (gp1 —m)}

N1

|
/
\

k=1-p1

N2

  i=1—P2
 

|
/
\ C(f) N2 N1 2

1/2 2 {% 233102 z')5in,p1 (1%)}

h2 j=1—p2 2:1 k=1—p1

—1

6—BT13101) -71;Bp1(gp1—m)H.

H

  

The order of

 

N2 N1 2

2 {£23 val-Ema}
j=1_p2 k=1—p1

*

is Op (n5/Z(2p*+1)-1/2(2p +1)—1) according to (2.31) in Lemma 2.5. And with
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probability approaching 1, (3.42) of Lemma 3.10 implies that

  
(”ABIFTI’iBPIY1 ”—1351 (gm ‘ m) H

3 CU) “Tl-1351 (3P1 ‘ mlll’

while lln—lBgl (gpl — m) H is bounded by

 

N1 1 n 2

Z {5 Z Bj,p1 (Xi) l9p1 — ml 09)}

j=1-p1 z=1

 

N1
2

1 n

s “gm —mlloo , 2 {521323191 mo}
1 2‘:J=1—p

 

N1

=0p(h11’1) 2 “fix {<Bj,p1’1>n}2’. =1—

J=1—P1J p1

 

which is of order Up {121191 x ‘/N1 x (hi/2 + \/n_1hl_llogn)} = 01901114) by

(2.30) in Lemma 2.4. Combining them, the order of the second term is

Op(h1—1/2 X n5/2(2p*+1)—1/2(2p*+1)——1 x #191)

= 01, (n5/2(2P*+1)—1/2(2p*+1)—3/2)

= 0p(n3/2(2p*+1)—1)_

Putting the first and second term together, we have established that

raw <x>l=0p (n3/2<2p*+1>-1)-
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Figure 2.1: For data generated from model (2.22) (with 00 = .5, c = 100) of different

sample size n and confidence level 1 — 0, plots of confidence bands for variance (thick

solid), the linear spline estimator 6g 2 (cc) (dotted), and the true function 02 (m)

(solid). The bands are computed from bootstrap method.
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Figure 2.2: For data generated from model (2.22) (with 00 = .5, c = 5) of different

sample size n and confidence level 1 — (1, plots of confidence bands for variance (thick

solid), the linear spline estimator (“7% 2 (3:) (dotted), and the true function a2 (:15)

(solid). The bands are computed from bootstrap method.
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variance confidence band, p—value=0.20
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Figure 2.3: For the fossil data, plots of variance confidence bands (thick solid) com-

puted by bootstrap method, the linear spline estimator 6% 2 (2:) (dotted) and a con-

stant variance function that fits in the confidence band (solid). The lower picture is

the data scatter plot and the confidence band for mean (thin solid).
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variance confidence band, p—value=0.008
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Figure 2.4: For the motorcycle data, plots of variance confidence bands (thick solid)

computed by bootstrap method, the linear spline estimator 6% 2 (x) (dotted) and a

constant variance function that fits in the confidence band (solid). The lower picture

is the data scatter plot and the confidence band for mean (thin solid).
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Chapter 3

Oracally efficient spline smoothing

of NAAR models with

simultaneous confidence bands

3. 1 Introduction

Non- and semiparametric smoothing has been proven to be useful for analyzing com-

plex time series data due to the flexibility to “let the data speak for themselves”. One

unavoidable issue in high dimensional smoothing is the “curse of dimensionality”, i.e.,

the poor convergence rate of nonparametric estimation of multivariate functions. Ad-

ditive regression model of Hastie and Tibshirani [26] has been adapted by Chen and

Tsay [6] to autoregression and found wide use in recent years to reduce dimension in

nonparametric smoothing of time series. A nonlinear additive autoregressive model

(NAAR) is of the form

(1

Y2- =m(Xi)+5.l-, m(x1,...,:rd) =c+ 2 m», (3:7), (3.1)

7:1
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T n

where the sequence {lg-,Xz- }

2

:1 is a length n realization of a (d + 1)-dimensional

strictly stationary process, the d-variate functions m (-) and a (-) are the mean and

standard deviation of the response Y,- conditional on the predictor vector Xi =

{X,-1,...,X,-d}T, and E(s,- |x,) = 0,E(e§|x,) = 02(xi). In the context of

NAAR, each predictor Xz-7,1 _<_ 7 _<_ d can be observed lagged values of Y2" such as

Xiy = Yi—fy’ or of a different times series. The component functions {mry()}g=1

are subjected to the identifiability condition Emry (X,- ) E O, 1 S 'y S d.

Inference of model (3.1) centers on the estimation and testing of {my (-.)}g=1

The marginal integration method of Tjostheim and Auestad [68] and Linton and

Nielsen [43] came with asymptotic distribution, which was extended in Sperlich,

Tjostheim and Yang [65] to include second order interactions. Other related works in-

clude Fan and Li [17], Yang, Park, Xue and Hardle [78] and Lu, Lundervold, Tjostheim

and Yao [44]. The backfitting idea promoted by [26] was made rigorous in a more

complicated form of smooth backfitting by Mammen, Linton and Nielsen [47] and

popularized by Nielsen and Sperlich [55] . These kernel based methods are extremely

computational intensive, limiting their use for high dimension d, see Martins-Filho

and Yang [48] for numerical comparison of these methods. Spline method of Stone

[66] had been extended in parallel to NAAR models in Huang and Yang [29], which

are fast and easy to implement but lack of limiting distribution. For applications of

additive model in medical and environmental research, see Liang et al [41], Roca—

Pardinas, Cadarso-Suarez and Gonzalez-Manteiga [57] and Roca—Pardifias, Cadarso—

Suarez, Tahoces and Lado [58].

The two-step estimators of Linton [42] for model (3.1) possess oracle efficiency

and are theoretically superior to the aforementioned estimators of {772/7 (-)}idy=1. If

d

all com onents {m - } and the constant c were known and removed from

p 3‘) flame
n

the responses, one could estimate m7 () from the univariate data {la-,7, X17}. 1 in
Z:
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n n

which {Yiry} 1 are latent oracle responses to the 7—th covariate {Xi7}- 1,

Z: Z:

d

Yi'y =m7 (X737) +Ez' =Yi—C-fl Zfi¢ m5 (Xm) ,1 Sigml SySd. (3.2)

=L 7

d

fi=Lfi¢7
,. n

initial kernel estimates, create a pseudo univariate data Y”, Xi'y}- 1, and estab-
7,:

The key idea of [42] is to replace the true {mfl ()} and 0 above by some

lish the asymptotic equivalence of kernel/local polynomial estimators of my () using

either unobservable {127,X2-7}:=1 or {72-7, Xi'y}:=1- Recently, faster oracally ef-

ficient estimators have been developed for NAAR time series data by Horowitz and

Marnmen [27], Wang and Yang [71], making use of orthogonal series/spline initial

estimates. The second step estimation is done by kernel method, with pointwise

asymptotic distribution. For the sake of discussion, we call the two-step estimator of

[42] kernel+kernel, of [27] orthogonal series+kernel and of [71] spline+kernel.

For the NAAR time series models, however, none of the existing methods pro-

vide any simultaneous confidence band for my (-.) To address this need, we propose

an all new spline+spline oracally efficient estimator that is theoretically superior as

it comes with an asymptotically simultaneous confidence band for my (-), and also

computationally more expedient than any existing estimators due to the use of spline

instead of kernel in all steps. The asymptotically simultaneous confidence band is

that of an univariate regression function in Wang and Yang [72], and is most con-

venient for inference in the global shape of function m7 (). Such confidence band

methodology has been applied to compare the dependence of corn, soybean and wheat

crop yields on wetness index under various conditions, see Huang, Wang, Yang and

Kravchenko [30]. The spline+spline method is asymptotically oracally efficient as the

spline+kernel method of [71], but can be hundreds of times faster in terms of com-

puting, see the comparison in Table 3.2. We see little hope of further reducing the
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computing burden for model (3.1) over the proposed spline+spline method and still

retaining the simultaneous confidence band and oracle efficiency. It seems that the

only alternative worth exploring is to use penalized spline instead of B spline smooth-

ing in the second step. For theoretical properties of penalized spline smoothing, see

Kauermann, Krivobokova and Fahrmeir [36] and Krivobokova and Kauermann [37].

The chapter is based on a published work Song and Yang [64]. The rest of the

chapter is organized as follows. Section 3.2 describes the spline-backfitted spline

(SBS) estimators and presents the main theoretical results. Section 3.3 illustrates the

idea of proof via decomposition of error. Simulation results are showed in Section 3.4.

Most of the technical proofs are in the Appendix.

3.2 The SBS estimator

In this section, we describe the spline-backfitted spline estimation procedure. For

convenience, we denote vectors as x = ($1, ..., crd) and take [I - I] as the usual Euclidean

norm on Rd, i.e., ”x“ = 1(Zd=1$%’ and I] - [[00 the sup norm, i.e., IIXIIoo =

SUPIS’YSd [x7|. In what follows, denote Y = (Y1, ..., Yn)T the response vector and

(X1, ..., Xn)T the design matrix. We denote by 1k the k-vector with all elements 1,

and Ikx k the k x k identity matrix. Throughout this chapter, we denote the space

of the second order smooth functions as 0(2) [0, 1] = {m lm” E C [0, 1] }.

While X7 may be distributed on (—00, oo), estimation ofm is carried out only on

compact intervals, and without loss of generality, we take all intervals to be [0, 1] , 1 S

'7 S d. Let 0 = to < t1 < < tN+1 = 1 be a sequence of equally spaced

knots, dividing [0,1] into (N + 1) subintervals of length h = hn = 1/(N + 1) with

1/5
a preselected integer N ~ n given in Assumption (A5), and let 0 = t6 < t’f <

.. < 15R“, +1 = 1 be another sequence of equally-spaced knots, dividing [0,1] into

(N* + 1) subintervals of length H = Hn = (N* + 1).1 where N* ~ n2/5logn is
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another preselected integer, see Assumption (A5). Next, we define the constant spline

basis IJul: for step one and the linear spline basis bJ for step two de Boor ([10], page

89) as follows,

10($)EI,0<CC<1

1 J*Hg:c<(J*+1)H, * *

0 otherwise,

bJ(a:) = K64] ),1SJSN+1,K(u)=(1—[u|)+.

We denote by G7 the linear space spanned by {bJ (17)}923 = {1, bJ (2:7)}9211,

whose elements are called linear splines, piecewise linear functions of 237 which are con-

tinuous on [0, 1] and linear on each subinterval [tJ, tJ+1] ,0 S J S N. We denote by

N+1

071,7 C R” the corresponding subspace of R” spanned by {1, {bJ (Xi?) }:—1}J—-1 .

Similarly, define the {1+ dN*}-dimensional space 0* of additive constant spline

. d,N* .
functions as the space spanned by {1, IJ4: (3:7) }7=1,J*=1’ and the corresponding

11 d,N*

..-... n {n {an(m
with probability approaching one, the dimension of 071,7 becomes N + 2, and the

astlCR". Asn——>oo,

dimension of 0,"; becomes 1 + dN*.

The function m (x) has a multivariate additive regression spline (MARS) estimator

rh (x) = fizn (x), the unique element of 0*, so the vector {fit (X1) , ...,fir (Xn)}T E

G; best approximates the response vector Y. For spline regression, we introduce the

following weights,

17
W- = 1(0_<_X2-7£1),1§i§n,137§d, (3.3)

1 S i S n, (3.4)W; = 1(0 3 X,- g 1) = ngle-y,
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w* = diag(wf,...,w;;),

and impose on additive component functions the identifiability condition

Em,(X,-,)W?":0,1<ny<d (3.5)

Define next a weighted spline estimator of m as

d N*

_)—argmin: {Y,— X,)}2 W,-’"= ;\0 + Z: 2 AJ*71,“ (,x7) (3.6)

960* 7=1J*=1

where (ABA/1,1, ..., S‘lV“ d) is the solution of the weighted least squares problem

{16,13,1,...,1;V*,d}T

d N* 2

= Y,-—)\ —- ,\ I x- W-*.

Pilot estimator of each component function is

3137): Z 19*,7 IJ*(1'7) —n_1:211J*(X'W)W-* , 137361617)

J*=1

which satisfies the empirical analog of (3.5): 1),—1 2:1:1 7717 (X,7) W; ——0, 1 |
/
\

7 S (1. These pilot estimators are used to define pseudo-responses 17,7, V1 S 'y S

d, which approximate the “oracle” responses Y,-,7 in (3.2). Specifically, we define

‘ _ . d ~ . _ — _ —1 - -
Y,7 — Y,- — c — Zfi=1fl757 mfi (X23) , where c — Yn — n zy=1Y,-,wh1ch IS a

fi-consistent estimator of c by central limit theorem for strongly mixing sequences.

Correspondingly, we denote vectors

- . . T T
Y», = {Y1,,...,Ym] ,Y7 = {Y1,,...,Ym} . (3.8)
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We define the spline-backfitted spline (SBS) estimator of my (SE/7) as 722,333 (27)

based on { Y,.,,X,,,}n=1, which attempts to mimic the would-be spline estimator

22

m7S (:07) of my ($7) based on {Y,7,X,7},_1 if the unobservable “oracle” re-

22

sponses Y- , were available. To be precise, for 0 S x S 1,
27 ,=1 7

n
. . . 2
m'y,SBS (any) = argmin Z {Yi’Y — 97 (X,,./)} Wi’Y’

92607 2:1

2727,8(357) = grgexrg:Z{i/,,— g,(xX,.,)}2W,-,. (3.9)

7

Before presenting the main results, we state the following assumptions.

(A1) The additive component functions m7 (3:7) 6 C(2) [0, 1] ,V7 = 1, ..., d

(A2) There exist positive constants K0 and A0 such that a(n) < KOee_)l0n holds

for all n, with the a-mizing coefficients for {Z,- = (Xi’5M}_ defined as

a(k)= sup [P (BflC)—P(B)P(C)], 1:21.

BEo{Zs,sSt},CEa{Zs,s>t+k}

(3.10)

(A3) The noise 5, satisfies E (5, IX,- )-— 0, E (2 [X,- ) = o2 (X,),E (lg-[2+6 IX, )<

M, for some 6 > 1/2 and a finite positive M5 and a (x) is continuous on [0, 1]d,

0<chinf ,do(x) S sup ]da(x) S CU < 00. Consequently, for

xE[0,1 x€[0,1

'y = 1, ..., (1,027 (3:7) = E {02 (X) [X7 = 3:7} satisfies also

co S infx7€[0,1]‘77 (3:7) S sup$7€[0,1] any (237) S C0.

(A4) The density function f (x) of X is continuous and 0 < cf S inf 1],, f (x)

xE[0,

S supx€[0,1]df(x) S of < 00.

(A5) The number of interior knots in estimation step one N* ~ n2/5 log n, i.e.,
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cN*n2/510gn S N* S CN*n2/510gn for some positive constants CN*’ CN*'

1/5
The number of interior knots in estimation step two N ~ 22 .

Remark. 1. The smoothness Assumption (A1) is nearly minimal. (A2)-(A4)

are typical in the nonparametric literature, for instance, Fan and Gijbels [14]. For

(A5), the optimal order of N in the second step ensures bias and variance trade-

off. Theorem 3.4 on the oracle efficiency of 722,533 ($7) remains true if N* is of

the more general form n2/5N’, where the sequence N’ satisfies log(n)/N’ = 0(1),

n’gN’ —» 0 for any 6 > 0, see Proposition A.1., A2 and Lemma A.1., A2 for the

proof of Theorem 3.4 in Appendix.

Remark. 2. Assumptions (A1)-(A4) are satisfied by many commonly used time

series models, such as those in Chen and Tsay [6].

Theorem 3.4. Under Assumptions (A1) to (A5), as n —> 00, the SBS estimator

m a: and the oracle smootherfii :5 given in 3.9 satisfy
7,SBS ’7 7,8 ’7

sup [7227,3135 (x7) — 772,75 (1:7)] = Op (n—2/5 (log n)_1) .

11:76[0,1]

Theorem 3.4 provides that the maximal deviation of 7227,3133 (11:7) from 2727’s ($7)

over [0,1] is of the order Op (n—Z/E’ (log n)_1) = op (n’2/5 (log n)1/2), which is

needed for the maximal deviation of 722,335 ($7) from my (2:7) over [0, 1] and the

maximal deviation of 2727’s (2:7) from m (1:7) to have the same asymptotic distri-

bution, of order n—2/5(log n)1/2. The estimator 1727,3133 ($7) is therefore asymp-

totically oracally efficient, i.e., it is asymptotically equivalent to the oracle smoother

2727’s (x7) and in particular, the next theorem follows. The simultaneous confidence

band given in (3.11) has width of order n72/5(log n)”2 at any point :57 6 [0,1], con-

sistent with published works on nonparametric simultaneous confidence bands such

as Xia [75], Claeskens and Van Keilegom [7].
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Theorem 3.5. Under Assumptions (AU-(A5), for any p 6 (0,1) , as n —» 00, an

asymptotic 100 (1 -— p) % simultaneous confidence band for m7 (m7) is

mmses (an) n 2&7 (2,) {MT (an) at,» (1‘7) log (Lg—1) f7 (no

nh}1/2 [1 — {210g (N +1)}_1 [log (p/4) + glog {4n log (N +1)}]] , (3.11)

where [77 (x7) and f7 (11:7) are some consistent estimators of 07 (11:7) and f7 (x7),

313:7): min{[$7/h] 1N} ,6 ($7) = {1‘7 - tj(x,,) } /h,

and

A($v)= Cj(n:,)_1{1-5(='3~7)} C]: \/§ j=0,N+1 ,

cj($7)6(:c7) 1 1SjSN

l- . l- .
J+1,]+1 ]+1,]+2 ,OSjSN,

lj+2,j+1 lj+2,j+2

where terms {lik}li—k|<1 are the entries of the inverse of the (N +2) x (N + 2)

  

matrixMN+2,

(1 72/4 0 )

fi/4 1 1/4

1/4 1

MN+2= 1/4

1/4 1 fi/4

(0 75/4 1 )

We refer the proof of the theorem to Wang and Yang [72].
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3.3 Decomposition

In this section, we provide insight on the proof of Theorem 3.4. Recalling the notaion

of W,” and W,,, defined in (3.4), (3.3), for any functions ¢,<p on [0,1]d, define the

empirical inner product, empirical norm and empirical mean restricted on [0,1]d

as MAME,” = "7‘1 Z?=1¢(Xz') r09) W5", “25”?” = n’1 23:1 <22 (Xi) W,*,

Efiqb = n—1 Zil=1 45 (X,) W2?k = (1, 55);,” respectively. In addition, if functions d), «p

are L2[0,1]d—integrable, define the theoretical inner product and its corresponding

theoretical L2 norm as (a, (p); = E {gs (x,) (p (x,) W,*} , ll¢ll§2 = E {(22 (x,) W,*}.

A function (f) is called theoretically centered (empirically centered) if E¢W,* = 0

(Efiqfi = 0). The additive component function m7 and its pilot estimator m, defined

in (3.7) are therefore theoretically centered (empirically centered). In the second

step, for any functions <13, (,0 on [0,1], for any 1 S '7 S d, similarly define (q‘), 90>qu =

n—1 23:, (:5 (X17) «n (X.- ) w,,, Inna”, = 5122:, n2 (x,,) w,,, Enn¢ =

72—1 231:1 (1) (X20) W,,, = (1, (Mann respectively. In addition, if functions 45, (p are

L2 [0, 1]-integrable, define the theoretical inner product and its corresponding theoreti-

cal L2 norm as <¢n§0)2,7 = E {4’ (Xi )‘P (Xi'y) Wi'y} a ”ME, = E {4’2 (Xi’y) Wi'y}'

The function space 07 introduced in Section 3.2 is expressed more conveniently

for asymptotic analysis via the following standardized B spline basis

 

b (.2:

BJn'Y (x7) = IIZJ||;:,0 S J S N + 1. (3.12)

. . . d,N* . . .
leerSe, 0* 1s spanned by {1, B3,, ,7 (2:7)} 1 J* 1 , in which the new theoretl-

) ’Y: ’ :

cally centered and standardized B spline basis are

by: (5’37)

83*,(1‘7) =—’—7———,1 S’ySd,1 S J* SN*, (3.13)

’ =2

bJ*,7   lg
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in which

b}*,7 (33,7) :1J... +1” (1:7)— Cfl ’71J*,7(a:7), (314)

CJ*,'7 =’<1[J*7'>2

Simple linear algebra shows that

d N*

m(—_—x) i0+ Z Z I\J*VBJ*H(x),xe[0,1]d (3.15)

7=1J*=1

where (X0, 31,1, ..., 5‘N* d) are solutions of the following least squares problem

{30,11,1,...,:\N*,d}T

d N* 2

= argmin Z{Y,-— A0—: 2 AJ*7B*J...(X,,)} Wi*.(3.16)

Rd(N*)+1z' 1 7=1J*=1

Define for any n—dimensional vector A = {Az- ”:1, the spline function constructed

from the projection of A on the inner product space (Gn, (a 92,") as PnA (x) =

A * A o o A A A -

A0 + Eff/=1 ZIJV*=1 AJ*:’YB;*,7 (x7) , w1th coeffiCIents (AO’A1,1"”’AN*,d) given

in (3.16) with Yi’s replaced by Ai’s. The multivariate function PnA (x) has empiri-

cally centered components Pn,7A (1:7), 7 = 1, ..., d

J*=1

The estimators Th (x) ,m, ($7) in (3.15) and (3.7) are rewritten as fit (x) = PnY (x) ,

iii/7 (x7) = Pn,7Y (:37). For linear operators Pn, Pnfl, 'y = 1,...,d, using the

relation Y = m + E, where the signal and noise vectors are m = {m (Xi) }?=1 ,E =
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{5i}?=1’ one has the following decomposition for ”y = 1, ..., d

m (x) = Th (x) + E (x), Th7 (x7) = my (x7) + 57 (x7) , (3.18)

in which the noiseless spline smoothers and the variance spline components are

m (X) = an (X) ,Thly (1277) = Pn,rym (IE7) ,
0
m

A

N
v

II

T

Additionally, we can write §(x) = 5*TB* (x), 5* = {56,d’f,1,...,&}‘v*,d} =

—1

(B*TW*B*) B*TW*E, where vector B* (x) and matrix B* are defined as

B* (x) = {1,3111 (31),...,B}"V*,d (1,1)}, 3* = {3* (X1),...,B* (xn)}T.

(3.20)

Clearly 5* equals to

—1

T

0 3* ,B*

dN* < J* ’7 J*I’7,>2,n 13,737,561)

ISJ* ,J*,SN*

1
“fl 231:1 Wit-‘2’

1 .

lsvsd

1

where 019 is a p—vector with all elements 0.

The second step spline smoothing is interpreted similarly. For notational sim-

plicity, take 7 = 1 and denote Xi,-1 = (Xi2,...,Xz-d)T for 1 S i S n, and x_1 =

(2:2, ...,xd)T. Denote 83*,_1 (x_1) = (83*,2 (3:2) , ..., B3*,d (15(1))T, and so m_1 (x_1),

Th_1(x_1), Th_1 (x_1) and E_1(x_1). Define B(:c1) = {80,1(331),...,BN+1,1(:1:1)},
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. T -1 T -
B = {B (X11) , ...,B (Xln)}T,thenm1,SBS ($1) = B (331) (W3) Bfi—wvl,

T -1 T ..
7711’s (:51) = B (3:1) (B—n‘fl) —Bn——WY1, where Y1 and Y1 are defined in (3.8).

Making use of the definition of 6 and the decomposition (3.18), the difference

between the smoothed backfitted estimator Th1,SBS (x1) and the smoothed “oracle”

estimator 7721’s (131) , both given above, is

 

BTWB) ’1 BT

n

TIl1,s(5’31)_ TA”1,SBS (5’31) = B (x1)( W (Y1 _ Y1)

T -1 T

- .....(B WE) (1......3...)
n n

 

‘1'), and \I'v are the following vectors

n T T N+1

_1 -

‘I’b = {" ZBJ,1(X2'1)W; {m_1(xi,-1) —m_1(Xz’,-l) }1d—1} (321)

i=1 J=1

n N+1

—1 *~ T
‘I’v = {71. Z BJ,1(X7:1)WZ- €_1 (Xi,_1) ld—I , (3.22)

i=1 J=1

here we need the fact that W; Wi’Y = W23“.

According to Propositions 3.1 and 3.2 in Appendix, both of these two terms have

order 0;; (h1/2n_2/5 (log n)_1) = 0p (71—1/2 (log n)_1).

3.4 Simulation example

In this section, we carry out simulation experiments to illustrate the finite-sample be-

havior of SBS estimators. The programming codes are available in R, see http://www.r-

project.org.

The number of interior knots N* and N for the spline estimation are calculated
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as N* = min ([c11n2/5 logn] + CH +1, [(n/2 —1)d-1]), and N = [C21n1/5] +

on + 1, in which [a] denotes the integer part of a. Tuning constants Cll = 5, 021 =

3, on = em = I worked well, and we used them by default. The additional constraint

that N* S (n/2 — 1) d_1 ensures that the number of terms in the linear least squares

problem (3.16), 1 + dN*, is no greater than n/Z.

Alternatively, one can use BIC to choose the number of knots. To be specific, in

the second step, let qn = (1 + Nn) be the total number of parameters. Then Nopt

is the one minimizing the BIC value. BIC = log(MSE) + qn log (n) /n, with MSE =

21:1{1/2- — 37,-}2/71. For computing speed consideration, we have not experimented

with this option in this chapter.

Consider the following nonlinear additive heteroscedastic model

Yt = Ed: sin (27rXt’y) + Q, 5t lid N (0,02 (Xt)) , (3.23)

721

—1 2

in which Xt = {Xt1,...,Xtd}T is generated as Xt,’ = (I) {(1 — a2) / ZW} -

1/2, 1 S '7 S d where the Zm’s follow a vector autoregression (VAR) equation

—1
2 ~ N 0,1—a2 2 ,z =aZ_ +e,e ~N(0,E),2StSn,

I d t t1 t t

2 = (1_p)Idxd+p1d1§’ a=0.3, 0<p<1,

—1

with stationary distribution Zt = (Zt1,...,th)T ~ N (0d, (1 — a2) )3). Hence

X n_ is a sequence of geometrically strong mixing random variables with marginal
t t—l

distribution U [—0.5, 0.5]. The standard deviation function is

_ 1 5‘exp(zi=1lXtTI/d)

0(Xt) — 00g . 5 +exp (251:1 lXt’rl/d),
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which ensures that our design is heteroscedastic.

The SBS estimator #17533 (:07) and the oracle smoother 7717’s (:57) are com-

pared in terms of coverage probabilities of confidence bands for sample sizes n =

100,500,1000, with confidence level 1 — p = 0.95. Table 3.1 contains the coverage

probabilities as the percentage of complete coverage of the first true curve sin(27rx)

at all data points {th}?:1 by the confidence bands in (3.11), over 500 replications

of sample size n, for d = 4, 10 and p = 0, 0.3. The results are satisfactory as the em-

pirical probabilities rapidly become greater than the nominal probability of 0.95 as n

becomes large. To show that the SBS estimator m'ySBS ($7) is as efficient as the

Table 3.1: Coverage frequencies from 500 replications.

 

 

 

 

 

r n = 100 n = 500 n = 1000

0 0.86 0.972 0.966

d = 4 .3 0.876 0.956 0.964

0 .0848 0.974 0.97

d = 10 .3 0.842 0.962 0.966    
 

oracle smoother films (10,), we define the empirical relative efficiency of m7,SBS (:57)

with respect to 7727’s (1:7) as

(0<Xt7S1)

Z?=1{m%SBS(Xt7)m”721(XW} (oth~,31)

 

8H7 =

.
1/2

221:1 {mus (Xi?) "‘7 (Xt7)}21 l
) (3.24)

  

Theorem 3.4 indicates that the effry should be close to 1 for all ’y = 1, ..., d. Figure

3.1 and 3.2 provide the kernel density estimators of the above empirical efficiencies

computed over the 500 replications. Again, these plots show that the empirical dis-

tribution of e37 does rapidly converge to the point mass at 1 as n becomes larger.

Finally, Figure 3.3 and 3.4 show typical examples of the SBS estimator with the confi-
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dence bands in (3.11) and the corresponding empirical relative efficiencies. The plots

in these two figures illustrate graphically the summarized results on confidence band

coverage and on the empirical relative efficiency.

Lastly, we provide the computing time of model (3.23) with dimension d = 10

from 100 replications on an ordinary PC with Intel(R) Quad CPU 2.4 GHz processor

and 3.0 GB RAM. The average time run by R in seconds to generate one sample of

size n and compute the SBS estimator and spline backfitted spline (SPBK) estimator

of [71] has been reported in Table 3.2. As expected, the computing time of SBS is

hundreds time faster than SPBK and this advantage widens with increasing sample

size.

Table 3.2: Comparison of computing time of Model (3.23).

 

Method 72. = 100 n = 500 n = 1000

SPBK 0.09 7.8 54

SBS 0.007 .064 0.32

Ratio 12.88 121.88 168.75

 

 

 

    

3.5 Appendix

Throughout this section, an >> bn means nl—i+moo bn/an = 0, and an ~ bn means

nimoo bn/an = c, where c is a nonzero constant. Whenever we write ~ 1 for some

quantity that depends on 0 S J* S N* or 0 S J S N + 1 it means it holds for all

possible J* or J values as n —-> oo.

A.1. Propositions

Recall from section 3.2 that “‘1’me = SUPO<J<N+1 I {‘Ilb}{lv=+01 |. In this sec-

tion, we show that the bias term ”‘I'blloo of (3.21) and the noise term \Ilv given in

(3.22) are uniformly of order Op (h1/2n_2/5 (log n)‘1).
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Proposition 3.1. Under Assumptions (A1) to (A2), and (A4) to (A5)

“‘1'me = 019(h1/2 (n_1/2 + H)) = 01; (h1/2n—2/5 (logn)_1).

Lemma 3.1. Under Assumption (A1), there exists 9 (x) = C+EEIY=197 (3:7) 6 0*,

such that for fit defined in (3.19),

*

= 019(n—1/2 +H).

2,n

d

Th - 9 + 2 (1,97 (X7)>2,n

7:1   

Proof. By the result on page 149 of [10], there exists a constant Coo > 0 and spline

functions 97 E 0*, such that “97 — m7|loo S Coo ”leHOOH, 7 = 1,2, ...,d. Thus

llg — mnoo _<_ 247:1”97 — MM,» s 000 29,21 llmslloo H and um - mug,” s

”9 - mllin S 000 Zg=1llm7lloo H. Noting that ”fit — gllin < ”Th - mllin +

* d I
“9 - mll2,n S 2000 27:1 “mfyhoo H, one has

 

 

   

lam (stml s [M (W... —<1,m~,<x7>>;,n + |<1’m7 (x7)>3,nl

s CoollmgllooH+0p (72—1/2). (3.25)

So

(1 *

Tit-9+ X (1,97 (X7)>2,n

7:1 2,n

d

S llm-QHEJML Z l<1v97 (X7)>2,nl

=1

g 300. i ”mill... H + 0,.(n—1/2) = a, (..,—U2 + H).



Proof of Proposition 3.1. Clearly that “‘I’blloo S R1 + R2 + R3, where

  

 

N+1 _1 n d * *

R1: SUP n X Z BJ,1(X2'1)W2' <1,97 (Xi7)>2n ’

J=0 t=17=2 ,

N _.

R2 =Sljfgn IZQBJMi1)Wi*7{9 (Xi7)—m7(xi'l')}(’

— i=17=2

R3 = [XI-1E} ”—1: EngJ,“Xi1)Wz'*

J=0 i—17—2 

 X {7712 (X27) ‘ 97 (xiv) + (1’97 (Xi7)>;n} '

According to (3.25) R1 = Op{h1/2 (H + n—1/2)}. For R2, using the result on

page 149 of [10], one has R2 S Cooh1/2H. To deal with R3, let B32” (x7) =

a:

B3,,” (x7) — <1, BJ*,7 (X7)>2,n’ for 1 S J* S N*, 1 S 7 S d, then m(x) —

a:

g(x) + 236:1 (1,97 (1(7));n = &* + 261:1 £1};—_1 {13*HB3: (x7). Denote

d

next wJJ*,_1 (XI): {wJJ*,’7 (Xl)},y___2 ,quJ*,_1= quJ*,7 7:2, where

tau...” (x1) = 1_3J,1(X,1)B},.,,y (X17) Wf, ”WJ,J*,7 = Bow...” (x,). (3.26)

Thus,

T T

71,: BJ,1(Xi1)W{“771{-1 (sz1)T — 9_1 (X11) + En9_1 (X233) }1d—1

n

i=1 J*=-1
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1v* 1/2

2

= OP h1/2{ Z ((13%?) }

   

J*=1

d *

7:1 2

Thus, by lemma 3.1

R3 = 019(111/2 (n_1/2 + H)) . (3.27)

Combining (3.25) and (3.27), one establishes Proposition 3.1.

Define an auxiliary entity

5-1— NZ a1*,-1 BJ* ,-1 (x1) (3'28)

J*=1

- - d - . . . . . .
where aJ*,_1 = {aJ*,7}7=2 and aft” IS glven In (3.21). Definitions (3.17) imply

that E_1 (:c_1) defined in (3.19) is the empirical centering of 533 (x_1), i.e.

n

g__1(x1)=5_1(-)_$1—121E1(Xi_)1 (329)

Proposition 3.2. Under Assumptions (A2) to (A5), one has

||\Ilvlloo = 0p (Hh1/2) = 019 (h1/2n_2/5(logn)fll) .

According to (3.29), we can write \Ilv = @182) — W9), in which

N 1 N+1

+

1n_2 T

{‘11)} )}J-O = g: BJ,(X121)W21W-I5_1(Xi’_1) 1d—l ’

_ 3,2'’=1 J20

(3.30)
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N+1 T

{W£2)}J_O= B—-nW*§*_1(X1)T1d_1. (3.31)

where E:*1 (X_1) is given in (3.28). By (3.26), (3.21) and (3.28), we have

1" Ni: T
n_ 2 Z 3J*,_1wJ,J*,_1(x_1) . (3.32)

”will =
0° l=1 J*=1

OSJSN+1
 

Proposition 3.2 follows from Lemmas 3.2 and 3.3.

Lemma 3.2. Under Assumptions (A2) to (A5), fill/£1) in (3.30) satisfies

11$,”
  

= Op {h1/2N* (logn)2 /n}.

lOO

Proof. Based on (3.28), ”n—1 23:15: (Xi_1)T ld—lwi*
  

is bounded by

00

}.

&3*,7| S {N* (5*T§*) }1/2 = 019 (N*n—1/210gn) .

  
 

N*

(d—l) sup a** sup 3* * Wf"

QSVSCI J*=1 J ’7' 1<J*<N* 71%: J ,’Y(X37) 2

                   

Further, by (3.35),

sup sup

QS’YSdISJ*-<_N*  

n_1 Zn: 133...,7 (Xh) w;

i=1

S An,1= 0p (n_1/210gn),

 

SO

= 010 {N*(1ogn)2/n} . (3.33)l n "* X- T1 W*
"ZRM 2-1) d—l 2'
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By

n

sup n_1 2: BJ,1(Xi1)Wz'*

OSJSN—l-l i=1

OSJSEIiV+1(<1’BJ’1>2an _ <1’BJ’1>2) + OSJSEICI)V+1<1’BJ’1>2

Op(log n/\/r_z) + Op (hl/z) = 0p (hl/Q) .

Thus with (3.33) the lemma follows immediately.

Lemma 3.3. Under Assumptions (A2) to (A5), we have @182) = Op (Hh1/2) .

OO   

 

Lemma 3.3 follows from Lemmas 3.14 and 3.15.

A.2. Preliminaries

We first give the Bernstein’s inequality for geometrically 7—mixing sequence, which

is used often in many of our proofs.

Lemma 3.4. [Theorem 1.4, page 31 of Bosq [3]] Let {Ebt E Z} be a zero mean real

valued a-mixing process, Sn = 222:1 52-. Suppose that there exists c > 0 such that

fori = 1, ...,n, k = 3,4, ...,E léilk S ckhzklEifié2 < +00, then for each n > 1, integer

q E [1,n/2], each s > 0 and k 2 3

2 n 2k/(2k+1)

P(lSn| 2: ne) S a1.exp(—Fmg£;—5—cg) + a2 (k) a ([2133]) ,

2

2

wherea- is the a—mizin coe cient in 3.10 anda =2fl+2 1+ 5 ,() 9 1373 { ) 1 q ( 25m22+5c5)

5m2k/(2k+1)

a2(k)=11n 1+ k e , with m7- = maxlSiSn ||g,-||r, r 2 2. 

Lemma 3.5. Under Assumptions (A4) and (A5), one has:

(2') |
 

2

b3*,7ll2 ~ H, where 53*,7 is given in (3.14).
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(ii) for any 7 =1,2,...,d,

E{BJ* (X,-7)BJ*, (X,7)W,*}~1,

for J*’ —J* g 1, and
  

E {BM (xiv) BJ’a (xiv) W27} N 1’

for |J’ — J. g 1. In addition,

E ~ Hl—k,
13*...(X,-7)BJ*, (X27)W-*k

ElBJv (Xi7)BJ’n (Xi?) Walk “'hlk

  

for k 2 1, where B3,, 7 and BJ,7 are defined in (3.13) and (3.12).

Lemma 3.6. Under Assumptions (A4) and (A5), there exist constants C0 > CO > 0

such that for any a* = (a6,a’i‘,1,...,a*N*,1,ai2,, aN* 2, a*1d,. ,a*N* d)’

*2

c0 a62+ 2: (732,7 S (16+ 2 a;*,783*,7 <00 a02+ Z aft”

J*a7 J*)7 2 J*37

(3.34)

Lemma 3.7. Under Assumptions (A2), (A4) and (A6), one has

* *

A 1 = sup 1 B* ... 1 B* ... l (3.35)

n’ ISJ*SN*,7 < J ”>2”< J ”>2
 

= Op (71—1/2 log n) ,

7O



A712 (3.36)

= sup
8* ,B* > _ <B* ,B* >

1<J*,J’*<N*,"y < J*,’)’ J/*,,7 2,n J*n, J/*,7, 2

= Op (n—1/2H_1/210gn),

An,3 (3.37)

* at

B** 13*! I> _<B** 18*! l>

< J ’7 “’7 2,n J ’7 “’7 2

  

= sup

1s1*.J’*sN*mév’

= Op (n_1/2logn).

  

Lemma 3.8. Under Assumptions (A2), (A4) and (A6), one has

 

An = sup

l<91’92)§,n_(91’92)§l_ ( logn

91,9260. 191115119211; p

Denote next by V as the theoretical inner product of the B spline basis

{1,B"'},,.,7 ($7) , J* = 1, ...,N*,'y = 1, ...,d}, i.e.

T
1 0 ...

V: M =1: (3.39)

0 * 3* 3* /

dN J*,7’ J*’,7’ 2 137.731.

1gJ,J’gN*

Let S be the inverse matrix of V, i.e.,

T T ’1 T T
1 ON ON 1 ON ON

_ —l__ _

S—V — 0N V11 V12 ’ 0N S11 S12 - (3'40)

0N V21 V22 0N 521 322

Lemma 3.9. Under Assumptions (A4) and (A5), for V, S defined in (3.39), (3.40),

there exist constants CV > CV > 0 and CS > 63 > 0 such that CVIdN*+1 S V g

CVIdN*+1a CsIdN*+1 ‘5 S S CSIdN*+1°
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We refer the proofs of Lemmas 3.5 to 3.9 to Lemmas A.2, A.4, A.7, A.8 and A.9

in [71].

Lemma 3.10. Under Assumptions (A2) and {A3}, there exist constants c(f),

C (f) > 0 independent of n, such that as n —> 00, with probability approaching 1,

—1

GBTWB) c g

—1

c(f)||<l|2 s (TGBTWB) CsC(f)IIC||2,V<€RN+2- (3.42)

C(f)|C| S C(fHCI, (3-41)

  

The lemma and its proof is based on Lemma 8.2 of Wang and Yang [70].

Lemma 3.11. Under Assumptions (A4) to (A5), for ,qu J* 1 given in (3.26)

sup sup I: O{(hH)1/2}.

ongN+11gJ*gN*  ”wJ,J*,_1

Proof. For '7 = 2, ...,d, J = 0, ...,N +1, J* = 1, ..., N*, by the boundedness of the

hawxmwm (2%)}:

[01.../0)BJ1(211)BJ* Wu»,)lfu1,...)..du1.dud

(If/0 .../O IBJ,1(u1)B:'}*,7(u7)ldu1...dud

= Cf(lle.1|2|lb3*,.ll1‘1/1/1 Iwun (..,.aim

= (lle,1Hz|b332)vH{: f0 le,“1)’J*+1 (“7)duld“7+

(libilllzlbanll) ———.;—;—-//W11.)(WM
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where cJ*,7 = <1,IJ*’7>2.

sup sup //b 1(111)I * (u )duldu7=0{hH},

0ngN+11gJ*gN* J’ J ’7 7

and the proof of the lemma is then completed by (i) of Lemma 3.5.

Lemma 3.12. Under Assumptions (A2), {A4) and (A5), one has

 

 

 

n
_1 {

.

sup sup n w :1: (X ) — ,u } 0p (log n/Jn) ,

OSJSN+115J*3N* I; J", '1 l “’J.J*-1 00

(3.43)

1/2
sup w :1: = Op (hH) , (3.44)

0<J<N+11<J*<N* -1: J", 00 ( )

    

where wJ,J*,_1 (X1) and rin’J*,_1 are given in (3.26).

Proof. For simplicity, denote may,” (Xi) = wJ,J*,7 (X1) — . Then

2 .
E {“13”},ka (Xl)} = Ew3,J*,'Y (X1) — H3J,J*,'y’ whlle

qu,J*.7

Ewifla (X1) = E (BJ,1(X11)WI*B;*,7 (X17))2

_ 1 1

(IIbJ11II2IIb3fl7II2) 2/0 .../0 (bJ,1(U1))2 (b§*,7 (13))2

f (11.1, ...,ud)du1...dud,

2
2 ~ 2 2 =1: _

EwJ,J*,7 (X1) 1 and EwJ,J*,7 (XI) >> qu,J*,7. Hence E {qu’Jm’7 (Xl)} _

Emir“,7 (X1) — 113,J J* ,7 2 0* for n sufficiently large and some positive constant

T v

c*, When r 2 3, the r-th moment E ILUJ,J*,,7 (Xl)I lS

 

J*n

T/l‘”/01bJ,1(u1)TIbJ*,7
()U’YIT f(U1,.-.,’ud)du1...dud.

(|IbJIII21’I)0
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It is clear that E IBJ,1(X11)W1*B;* 7

to Lemma 3.11, one has IEwJ1J*1’Y (XDIT = IEBJ’1(X”)WI*B}*’7 (X17)

(X17)Ir ~ h(1_r/2)H1_T/2. According

~

 

7. r

(hH)T/2, thus E IwJ,J*’7 (X1)I >> I . In addition, for any J and J*,

 “Wm

E * X r< _——C (T—Z) 1E * X 2
IwJ7J*i7( l)I _ (hH)1/2 T. - leaJ*)7( l)l ,

so there exists 0... = ch_1/2H—1/2 such that

’

r _ 2

Elwifln (X1)I SC: 2T!EI”3J*.7 (X1)I

which implias that {with-IL? (Xl)}::1 satisfies the Cramér’s condition. By the

Bernstein’s inequality, for r = 3

1 n

P ngEJM (X1) 2 p”

2 6/7

S a1 exp — 2qpn + a2 (3) a (ILI)

25m2 + 5c*pn (I + 1

with m% ~ h_1, m3 = maxlSZ-Sn IIw*J,J*,’y (XZ)II3 _<_ {CO (2h’1)2}1/3 and

 

  
logn n p2 5mg/7

p =p—,a =2—+2 1+ n ,a (3 =11n 1+ .

n x/nh 1 q ( 25mg + 5c*pn 2 ) Pn

Since 53*Pn = 0(1), by taking q such that [6%] 2 cologn, q 2 cln/logn for

constants c0,cl, one has a1 = 0(n/q) = O(log n), a2 (3) = 0 (n2). Assumption

(A2) yields that

 

a (la: 1D6/7 s 072—63000”.

74



Thus, for n large enough,

PM;

By (3.45), there exists large enough value p > 0 such that for any J*,

{
which implies that

 

x/n——h
  

2

(){lpplogn}
Sm‘ch logn + Cn2—6AOCO/7.

(3-45)

§
|
H

n

;%*7()Xz

 

)>p(nh)_1/210gn}<n—10,1<J*<N*,

 

  

00 n

1 . logn
P sup sup n w ... (X1) 2p

”2:31 {ongN+11gJ*gN* [:21 J", ’ Vnh

 

|
/
\

M
8

M
E

M
2
.

“
U

A

.
3 .1

.

M
:

E

K
.

K-
‘x

-

1
.
3 3 I
V

b
I
—
d

a
s

3
“

3

W

00

3 Z 1\I(N”‘)n—10 < oo

n=1

Thus, Borel—Cantelli Lemma entails that

 

n

—1 :1:
sup sup n w ... (X1) :01) logn/Vnh . (3.46)

ongN+11gJ*gN* 1:21 W ’7 ( )

Then,

1 n

-' *

sup sup n w ... (XI) :01; logn/Vnh.

ongN+11gJ*gN* 1:21 W "1 00 ( )
    

As a result of Lemma 3.11 and (3.43), (3.44) holds.

The next lemma provides the size of a*Ta* ,where 5* is defined by (3.21).
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Lemma 3.13. Under Assumptions (A2) to (A5), 5* satisfies

5*T5*—— £5.” + E Z 51327—0-13{N* (log n)2 /n}. (3.47)

J*=—17=1 ’

Proof. According to (3.20) and (3.21), 5*TB*TW*B*5* = 5*T (B*TW*E).

Thus

1

W*B*~* *2 = ~*T

H a ”2,n a <B* B

* 5*: 5*T (n_1B*TW*E).

fl” J*,7> 2,72

(3.48)

By (3.38), “B*5*|I;,2n is bounded below in probability by (1 — An) “B*5*”;2. AC-

cording to (3.34), one has

*2

.. 2 ~ 2 ~ 2
||W*B*a*“; = a3 + Z a;*flB;*fl 2 c0 a5 + Z a}, . (3.49)

J*a’l’ 2 J*,’)’

Meanwhile one can Show that a"‘T (n_1B*TW*E) is bounded above by

 

J*a

2 2 1/2

~*2 ~=I=2 1 'n. 1 n =1: *

i=1 1*,7 i=1

(3.50)

Combining (3.48), (3.49) and (3.50), the squared norm 5*Té* is bounded by

2
2 n

002(1_An)2{%i:::152} + Z {iZBE’kfl (X17) W553}

J*,7 i=1

Truncating e as in Lemma 3.15, Bernstein inequality entails that
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"—1 23:1 52' + maxng*gN*,7=1,...,d ”-12?=1BJ*,7 (X23) ”Vigil =

Op (log n/fi) . Thus (3.47) holds since An is of order 019(1) by lemma 3.8.

A.3. Proof of Lemma 3.3 We denote

T
v*— 0 odN,

*

*

o B* ,B* — B* ,B* ,dN* < J*a J*’,’7’>2,n < J*n J*’,7’>2 157’7'3‘11
1gJ*,J*’£N*

then 5* in (3.21) can be rewritten as

1 *T ’1 1 T -1 1 T
5*: (5B W*B*) (;B* W*E) = (V +V*) (53* W*E) . (3.51)

. - . . .. - T

Now define a = {a0,a1’1,...,aN,1,a1,2, ...,aN,2} as

a = v—1 (n—lB*Tw*E) = s (n*1B*Tw*E) , (3.52)

(2) -
and define a theoretical version of ‘11,, 1n (3.32) as

-(2, ” A” T
‘11?) = 71—1 Z Z &3*,_1wJ,J*,_1 (Xi) . (3.53)

Lemma 3.14. Under Assumptions (A2) to (A5),

ll*'(’2)—*'(’2)lloo = 0,, {h1/2 (log n)2 /nH}.

Proof. By (3.51) and (3.52), one has V 5* = (V+V*) 5*, which implies that

v*a* = V (51* —5*). Using (3.36) and (3.37), one obtains that

IIV me)“; = “Wu; s 0,,(n—1/2H—110g.) 15*“;-
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According to Lemma 3.13, “5*”; 2 Op (n‘1/2N*1/2 log n), so one has

||v (a*—5*) H; 3 Op {(log n)2 n—1N*3/2}.

By Lemma 3.9, H (a*—a*) H; = Op {(log n)2 n—1N*3/2}. Lemma 3.13 implies

 
  

llé*|l§ _<_ “(e—awn; + “5*”; = op (10gn\/—N*/n) . (3.54)

Additionally,

(2) “ (2)” ~* A* 1

‘11 —‘I’ = sup a _ a __ U.) X .

l v v (X3 OSJSN'l'l J21 ( J*’-1 J*i-l) n lz-Zl J’J*,-1 ( I)

So

' sim—t?) l s x/N_*op {(—1n——°g")2)0), ((hH)1/2)

00
H  

 

h1/2lon2

= Op{ 1ng ) }

Lemma 3.15. Under Assumptions (A2) to (A5), for @927; (3.53), one has

   
  

     

n
.. 2) _1 &*T * *

I 00 OSJSN+1 12:1(X2 )JélaJ-1 J -1 z- 2

= 0p(h1/2H) .

Proof. Note that all)? is bounded by Q1 + Q2, where

00

Q1: sup (1** #w

0<J<N+1 2: J-1 JJ*1
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N* n

~ T —1
Q2 = sup a* ... n E {w * (x.) _ ”w }

OsjsN+1 J*=1 J ,-1 2:1 J,J ,-1 Z J,J*,_1
. (3.55)

 

By Cauchy-Schwartz inequality, (3.54), Lemma 3.12, and Assumptions (A5),

 

Q2 = 029 (10swN*/n) W01) (Pi—i=7) = Op { (10%)3}. (3.56)

Define next

I71,7 = sup n_1 2 Z

OSJSNH 15i5n1<J*,J*’<N*

(Xi )Wz'lfiz' 7

 

s B

“wJ.J*,7 J*+N*,J*'+1 J*’,1

F20 = sup n—1 2 Z

OSJSN“ 1$iSn1<J*,J*’<N*

3(Xi )szEz'
 qu,J*,78J*+N*,J*I+N*BJ*',7

then it is clear that

Q1 3 (d— 1) ( sup Fla + sup F2”).

ZSvsd 2Svsd

Next we will show that Fm -.—.- 0p(h1/2H). Let Dn = n90 (Tic; < 90 < g), where

6 is the same as in Assumption (A3). Define

52:0 = 511057;] S Dn), EZD = 52-1 (Isl-l > Dn), 6:21) = 527:1) — E (sap |Xi),

T T

Uiv'l' : ”an/S21 {BT,1(X211)’ - - - ’B]:N* (Xi1)} Wi1€;D.

Denote the truncation of'Fln, as F107 = ln_1 2:;1 Uifll' Next we Show that
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D
IFL’Y — F11?” -_- Op(h1/2H). Note that lFlw'Y -— Fl,’7l 5 Al,’)’ + 112,7, where

A = —
1,7 7121 Z ”wJ,J*,7SJ+N+1,J’+1

2_1<J*J*’<N*

33*; 1(Xz'1lwz'1E (55D lxz') ,
 

n

1 >1:
= — 2 i E : B X W

AM n, l“"J,J*,78J+N+1,J’+1 J="’,1(7’11) 151D

2=11§J*,J*'§N*

T

Let ijfi = {qu,1,7’ ' " "qu,N*,'y} 3 then

N*

J*’=1

A1,7= Mg]7_321{n123”!“W11)W115(5;D|Xi)}

2:1

N* N* n 2 1/2

< 03 Z “wakfl Z {'71: ZBJ*,(1(Xi1)Wi1E(5»¢—D lxz)} °

J=1 J=1 i=1

By Assumption (A3), IE (55D IXz-N = IE (5:1) IXi)| S M5D;(1+6) and Lemma

3.4 entails that sup I% 21:1 BJ1(Xz-1)Wz-1‘ = Op (log n/JH). Therefore

Jn ’

— 1+5
Alf) S Man( )

x sup HwJ 8* ...

OSJSN‘H. J*Z:12‘]’J*”Y J;=1{n 1:: J 1(XM}

= 0p{N*D;(1+6)h1/2log2 n/n} = op (h1/2H) ,
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where the last step follows from the choice of Dn. Meanwhile

2+6

2%”P(ls l>D) < §_El€nl2+6_ 0° E(E'5"| IX")
” n) - D2+6 — D2+6

n=1 n=1 n=1 n

:—2+—_6 <’°°
71:711D

 

since 6 > 1/2. By Borel-Cantelli Lemma, one has with probability 1,

—1 ... . . ,_.+ _

n 2 2, #wJ,J*,7SJ*+N*,J*’+IBJ*',1(X”)W21”2',D _ 0’

z=11§J*,J* gN*

for large n. Therefore, one has

D _ 1 2
(FL, — le 3 A1,, + A2,, _ 0,, (h / H)

. Next we will show that F£7 = 0;; (h1/2H). Note that the variance of U,” 18

T * 1|: T *

pwJ,7321 var {Bl,l(Xi1)’ - - - , B1,N* (Xil)} Wilgz'l) 821“WJ,,7'

T

By Assumption (A3), ch11 S var ({Bf1(X,-1),~ BlN* (X,1)} W“) S

03V11a var (Um) ~ 11$J,7321V11321#wJ,.,Ve,D = 113’;J,,S21MwJ,,Ve,D: Where

1/2

V€,D = var {EZD IX, }. Let my = {“ngpqu} , then

‘3ch {“7}2 Vs,D 3 var (U2) S 0503 {"7l2 Ve,D

Simple calculation leads to that

Elm-”)2 {C0K7DnH—1/2}2r!E|U,-,2) <+oo,
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where the last step follows from the choice of Dn. Meanwhile

 

2+6

00 1305 |>D) < {BE—kw: 00 E(E|€nl IX")

2+6 ’

n=1 D71

since 6 > 1 /2. By Borel-Cantelli Lemma, one has with probability 1,

TL

_1
=1: , , + _

n E Z ””J,J*,78J*+N*,J*'+IBJ*’,1(X21)W218i’D_0’

z=11§J*,J*'§N*

for large n. Therefore, one has

D _ 1 2
|er7 — PM) 3 A1,, + A2,, _ op (h / H)

. Next we will show that F113, = Op (hl/zH). Note that the variance of U,-,,y is

T * * T *

pan’SQl var {Bl,l(Xi1)’ - . - ’BI,N* (291)} Wilei,D S2lquq'

T

By Assumption (A3), ch11 5 var ({BI,1(X,-1),... ’81,N* (X,1)} W,- ) S

2 T _ T

CaV11,Var(Ui,7) ~ qu,,521V11521MwJ’,Ve,D - PanS21l‘wJfll/5D1Where

1/2

Ve,D = var {EZD IX,- }. Let [£7 = {ngflpwJfl} , then

0503 {w}2 v5.5 s w.) s 0303 {..,}2 Van-

Simple calculation leads to that

7‘ _1/2 T—2 ' 2

ElUml g{c0,e,DnH } nElUml <+oo,
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n

for r 2 3, so {Ui 7}, satisfies the Cramér’s condition with Cramér’s constant
1 2:

Cal: = Coffi'yDnH_1/2. Hence by the Bernstein’s inequality,

  

1 n (19% n 6/7
P n“ U- 2p 5a exp — +a 3 a([ J) ,

_ 1/3

where m% ~ {ma}2 VE’D, m3 3 {c{na}3H 1/2DnV€,D} , pn = ph1/2H,

 

6/7
2 5m

a1 == 22 + 2 (1+ p" ), (12(3) 2 lln (1 + ——pn3— . Similar arguments

  

q 25m§+5c*pn

2 2 5

as in Lemma 3.12 yield that as n —> oo, 2qpn ~ (1%? = pn g 2 —>

25m2+5c*pn 00(log n) / Dn

+oo. For c0, p large enough,

1 n

P a 2 U,” > ph1/2H S clognexp {—02p2 log n} + C'nz_6*‘060/7 S n_3,

i=1

for n large enough. Hence

00 D 1/2 = 00 _1_ n , 1/2 00 —3
P(|W1,7)2ph H) ZP ”EU, th H 3 Zn <oo.

n==1

ThuS, Borel-Cantelli Lemma entails that F97 = 0;; (h1/2H) Noting the fact that

|FL, — F1137) = 0,0 (h1/2H), one has that F1” = 0,, (h1/2H). Similarly F2,7 =

01) (h1/2H). Thus

Q1 3 (d — 1) ( sup F17 + sup F2”) = Op(h1/2H) , (3.57)

2svsd ’ 2:73d

and one has Q1 = Op (hl/zH). The result follows from (3.55) and (3.56).
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Eff of the 1-st estimator, d=4
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Eff of the 1-st estimator, d=4
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Figure 3.1: Plots of the efficiency of SBS estimator ma,SBS corresponding to oracle

smoother 1710’s for d = 4 and p = 0 (upper panel), p = .3 (lower panel) of ma (cm)

in (3.24), for a = 1 (thick curve for n = 1000, thin curve for n = 500, and solid curve

for n = 100).
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Eff of the 1-st estimator, d=10
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Eff of the 1-st estimator, d=10
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Figure 3.2: Plots of the efficiency of SBS estimator ma,SBS corresponding to oracle

smoother 7710’s for d = 10 and p = 0 (upper panel), p = .3 (lower panel) of ma (mg)

in (3.24), for a = 1 (thick curve for n = 1000, thin curve for n = 500, and solid curve

for n = 100).
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95% confidence band, n-100, d=4
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Figure 3.3: For p = 0, plots of the oracle smoother maS (dotted curve), SBS esti-

mator maSBS (solid curve) and the 95% confidence bands (upper and lower dashed

curves) of the function components ma (spa) in (3.9) with a—— 1 (thin solid curve).
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95Vo confldence band, nil-100, d-1O
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Figure 3.4: For p = .3, plots of the oracle smoother 7710’s (dotted curve), SBS

estimator 7720,3138 (solid curve) and the 95% confidence bands (upper and lower

dashed curves) of the function components ma(:1:a) in (3.9) with a = 1 (thin solid

curve).
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Chapter 4

A simultaneous confidence band

for dense longitudinal regression

4.1 Introduction

Traditional statistical methods fail often as we deal with functional data. Indeed, if

for instance we consider a sample of finely discretized curves, two crucial statistical

problems appear. The first comes from the ratio between the size of the sample and

the number of variables (each real variable corresponding to one discretized point).

The second, is due to the existence of strong correlations between the variables and

becomes an ill-conditioned problem in the context of multivariate linear model. So,

there is a real necessity to develop statistical methods/models in order to take into

account the functional structure of this kind of data.

Functional data with different design are increasingly common in modern data

analysis. A functional data set has the form {X,j,1’,j}, 1 S i _<_ n,1 S j S N,, in

which N,- observations are taken for ith subject, with X,,- and Yz’j the jth predictor

th
and response variables, respectively, for the 2' subject. In this chapter we only

deal with the equally spaced design. For simplicity, we only consider the case N1 =
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N2 = = Nn = N. Without loss of generality, the predictor X,j takes values

{1/N, 2/N,.. .N,/N} for the ith subject, 2' = 1, 2, ...,n. For the ith subject, its sample

path {j/N, j}Y, is the noisy realization of a continuous time stochastic process €,’(:L‘)

in the sense that

Yz’j = 52‘ (j/N) + 0 (370/761,,

with errors 8,-j satisfying E (23,-j) = 0, E<€22j) = 1, and {€,-(:c), a: E X} are iid copies

of a process {f(:r),z E X} which is L2, i.e., EfX 52(x)dx < +oo.

For the standard process {£(x),a: E X}, one defines the mean function m(x) =

E{£(13)} and the covariance function G (11:,27’) = cov {{(x),{f(:r’)}. Let sequences

{Ak},c::1, {212k($)}g:1 be the eigenvalues and eigenfunctions of G (55,:c’) respec—

tively, in which A1 2 A2 2 Z 0 with 22:1)‘k < 00, {$1,321, form an or-

thonormal basis of L2 (X) and G (:13, a:’)= 2,3:1Akwk(:r)1,/Jk (1’), which implies

that [G (x,a:’) 11),, (33’) dx’ = Akz/zk(:r).

The process {€,-(:I:), :1: E X } allows the Karhunen-Loeve L2 representation

err) = m(x) + 2:, aim/em,

where the random coefficients 5,-k are uncorrelated with mean 0 and variances 1, and

the functions (13,, = i/Akwk' In what follows, we assume that A], = 0, for k > K,

where n is a positive integer or +00, thus G(:r,:c’) = 2g=1 ¢k($)¢k (:c’) and the

data generating process is now written as

it, = m (j/N) + 22:,em (j/N) + 0 (2711715., (4.1)

The sequences {Mgr/21:1 , {¢k(x)}z=1 and the random coefficients 5,), exist mathe-

matically but are unknown and unobservable.

Two distinct types of functional data have been studied. Yao, Miiller and Wang
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[80, 81], Yao [82] and Ma, Yang and Carroll [45] studied sparse longitudinal data

for which 1 _<_ j S N,- and N,’s are iid copies of an integer valued positive ran-

dom variable. While Li and Hsing [39, 40] concern dense functional data. For the

dense functional data, strong uniform convergence rates are developed for local-linear

smooth estimators, but no uniform confidence bands have been given. The fact that

simultaneous confidence band has not been established for functional data analysis

is certainly not due to lack of interesting applications, but to the greater technical

difficulty to formulate such bands for functional data and establish their theoretical

properties.

In this chapter, we present simultaneous confidence bands for m(x) in dense lon-

gitudinal data given in (4.1) via local linear smoothing approach.

The chapter is a joint work with Yang, L., Liu, R. and Shao, Q. We organize

our chapter as follows. In Section 4.2 we state our main results on confidence bands

constructed from local linear smoothing. In Section 4.3 we provide further insights

into the error structure of local linear estimators. Section 4.4 describes the actual

steps to implement the confidence bands. Section 4.5 reports findings of a simulation

study. An empirical example in Section 4.6 illustrates how to use the proposed spline

estimator with confidence band for inference. Proofs of technical lemmas are in the

Appendix.

4.2 Main results

. 1 r 1/7‘
For any Lebesgue measurable function a on [0, 1], denote “(f)“r = {ID |d>(:r)l dz} ,

1 g r < 00 and llqblloo = SprE[O 1] |q§(a:)|, and for a continuous function a on [0,1]

denote the modulus of continuity as

w (M) = maxx,x’e[0,1tlx-x’|36 11"“ ‘ ,5 (13,)"
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For any 6 E (O,1], we denote by CO’fi [0,1] the space of order 5 Holder continuous

function on [0,1], i.e.,

ecu—as x’

001510.11: as: 1in = sup ] Q, )l < +oo .
x¢x',x,x’€[0,1] l1? — 33,]

in which ||qb||0fi is called the Co’fl-norm of 45. Clearly, C013 [0, 1] C C [0, 1] and if (I) E

0013 [0,1], then w(¢,6) S ll¢llofi (Sfi. For any vector C = ((1, ...,CS) E R3, denote

the norm “cur = (151" +---+I<sl">1/",1 s r < +oo, ucuoo = max(lC1| . 14.1).

We are using the local linear estimation in this paper.

The technical assumptions we need are as follows:

(A1) The regression function m, E C [0,1] .

(A2) The standard deviation function o(:r) E C015 [0, 1]. For any k = 1,2, . ..K.,

(5,, (at) E Cotfl [0,1] for 3 6 [0,1] and minz€[0,1] G(;z:,:1:) > 0 ,

(A3) As n —+ 00, Nn_1/4 (logn)"1 —> 00 and N = 0 (n6) for some 0 > 5/8. The

bandwidth h satisfies Nh (logn)_1 —+ 00, nh4 —» 0 as n —» 00.

(A4) The number It of nonzero eigenvalues is finite. The variables (.5,-k)oo,1rtk=1 and

00,00 , _ _ Z:

(23,-j), 1 , 1 are independent. In addition, max1<k<nEI£1k|n1 < +oo for
z: ,3: _ _

some 771 > 4 while E|811|772 < +00, for some 172 > 4 + 20 with 0 being the

constant in Assumption (A3).

(A5) The kernel Kh(a:) is a second order smooth function and satisfies the following

conditions: Kh(:1:) = %K (E), where K() is a density function with bounded

support [—1, 1] and symmetric about 0 unless special conditions are indicated.

It is Lipschitz continuous.

Denote by C (2:) ,a: 6 [0,1] a standardized Gaussian process such that EC (2:) E
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0, EC2 (2:) 5 1,3: 6 [0, 1] with covariance function

EC (x)( (33’) = G (33,:13’) {G(:c,x) G (x’,x’)}—1/2 ,x,:c’ 6 [0,1]

and define the 100 (1 — a)th percentile of the absolute maxima distribution of C (:13),

for all a: E [0,1],

P ] sup |((:I:)|SQ1_O,] =1—a,VaE(O,1). L

xE[0,1]

Denote by Z1—a/2 the 100 (1 — a/2)th percentile of the standard normal distribution.

Define also the following ”infeasible estimator” of function m f]

m(x) =E(a:) "—12,—61 ,1: e][,0 1]. (4.2)

The term ”infeasible” refers to the fact that m(x) is computed from unknown quantity

€,-(:r),:r 6 [0,1], while "m(x) would be the natural estimator of m(x) if all the iid

random curves £,(:c), a: E [0, 1] were observed, a view taken in Ferraty and Vieu [18].

We propose to estimate the mean function m(x) by solving the local linear least

square

 n N . 2 .

(&,b)=argminzz{Yij—a—b(-IJV—x)} K}, ({V—x)

with K}, (u) = ,liK (fi), h=hn -—»0, asn—+oo. For anyxE [0,1],

. . T T '1 T
m(x)=a=e0 (x WX) x WY (4.3)

_ _ TY
inwhichY=<1f,1,...,1/_,N)Y, «‘12:, Y,,, 1gjgN,eg=(1,0),and
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the design matrix X is

1 (7%] —:1:)

X = ' , (4.4)

1 (71% —a:) Nx2

and W =diag{{Kh (j/N — :13) /N}§V=1}.

We now state our main results in the following theorems.

Theorem 4.1. Under Assumptions (AU-(AU, for Va E (0,1) ,as n —+ 00, the ”in-

feasible estimator” fi(a¢) converges at the J77 rate

P{SquE[O,1]"1/2lm($l — m(~r)lG(:r,:r)_1/2 s Ql—a} —> 1— a,

P{n1/2 |m(a:) — m(:1:)|G(:lc,:1:)_1/2 S Zl—a/Z} —> 1— a,\7’:c 6 [0,1],

while the local linear estimator m is asymptotically equivalent to m

SprE[O,1]n1/2 [m(x) — m(x)| = 0p (1) .

Corollary 4.1. Under Assumptions (AU-(A4), as n —+ 00, an asymptotic 100 (1 — a) ‘70

exact confidence band for m(x),:c 6 [0,1] is

m(x) a: G (x,:c)1/2 Q1_an_1/2,Va 6 (0,1)

while an asymptotic 100 (1 — a) % pointwise confidence interval for m(x),2: 6 [0,1],

is m(x) :l: G (:c,:1:)1/2 Zl—a/Zn—1/2°
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4.3 Decomposition

In this section, we break the estimation error m(x) —m(:c) into a bias term and a noise

term. To understand this decomposition, we begin by discussing the representation of

the local linear estimator m(x) in (4.3). We obtain the following crucial decomposition

m(x) = m(x) + 5(1) + Em, (4.5)

with

m(x) = e (XTWX)_1XTWm

“
I

”
a
”
V

II

(
b

T
0

g" (XTWX) _1 XTWe

T
0{(2:) = e (XTWX)—1XTW£, (4.6)

in which m = (m (l/N) , . . . m (N/N))T is the signal vector,

T

e = (0(1/N) E.,1,...,o(N/N) 5.,N) ,qu = 72‘1 231:1 5ij’1 3 j S Nis the noise

vector and g = (Zg=1€.,k¢k(1/Nl ,..., 22:1 5.,k‘l’k (N/N))T are the eigenfunc-

tion vectors, where E k = n_12?=1§ik,1 S k S n.

The next three propositions concerns m(x), Etc) and E (:13) given in (4.5).

Proposition 4.1. Under Assumptions (A1) and (A3), as n ——> 00

1/2 ~ _ G _1/2 _
Spr€[0,1] n |m(x) m(x)] (133:) - 0(1).

Proposition 4.2. Under Assumptions (A2)-{A4}, as n —> oo

supr[O,1]n1/2 m(x) — m(x) —E(:c) = 0,00), (4.7)
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and there is a version Z(:c) ofC (.75) such that

supxem,” n1/2 [6(1) — Em] = op (1), (4.8)

hence for any a 6 (0,1)

P{supxe[o,1]n1/21m<x>—m(x)lG<x,x>‘l/2sol—a} a 1-0,

P {supxe [0,1] M ]E<x)| G (16,2?)‘1/2 s Ql—a} —» 1— a. (4.9)

Proposition 4.3. Under Assumptions {A2j-(A4), as n —> oo

supxdo,” n1/2 |E(a:)| G(a:,:c)_1/2 = 0,, (1) .

The Appendix contains proofs for the above three propositions. Combining these

propositions with the decomposition of m(x) as given in (4.5), we can easily get

Theorem 4.1.

4.4 Implementation

In this section, we describe procedures to implement the confidence bands and in-

,n

tervals given in Corollary 4.1. Given any data set (j/N, Y”) _ 1 , 1 from model
J: ,2:

(4.1), the local linear estimator m(x) is obtained by (4.3). When constructing the

confidence bands, one needs to evaluate 100 (1 — a)th percentile Q1 —a by estimating

the unknown functions G (:c, 2:).

The pilot estimator of covariance function G (13,113,) is C (x, 93’) = a (x, x’) such

{a (and) ,hl (13,13’) ,132 ($,a:/)} = argmin :13,=1

a,b1,b2 ‘7

that
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(04.3., — a — b1(j/N — x) — b2 (j’/N — x’) }2 K,, (j/N — as) Kh (j’/N — 12’),

where

ojj, = n—IZ?=1{Yz-j — mp (j/N)} {YU- — mp (j’/N)},

for 1 gj,j’gN.

Therefore. as n —+ 00,

m(x) j: C (1:, 101/2 Q1_an_1/2 (4.10)

and m(x) i C (1:, 1101/2 Z1_a/2n-1/2 have asymptotic confidence level 1 — a.

4.5 Simulation

We carried out some simulations to illustrate the finite sample behavior of the pro-

posed confidence bands defined in Section 2. We generated data from model

. 2 . . .

Yij = m(J/N) +Zk=15ik¢k (J/N) +0€ij,1 S J S N, 1 S 2 S 71, (4-11)

with gik ~ Normal(0,1),k = 1,2, 5 ~ Normal(0,1), for 1 S i S n, and m(x) =

sin {27r (x — 1/2)}. We take orthonormal functions ¢1(a:) = —2 cos {7r (:1: — 1/2)} and

¢2(a:) = sin {7r (:1: — 1/2)} to be the eigenfunctions, thus A1 = 2, A2 = 1/2. Different

noise levels a = 0.5,1 were used to interpret the result, and the number of subjects

n was taken to be 50, 100, 200 and 500. We used N = [7108 log n] to determine the

number of grid for each subject.

Table 4.1 shows the coverage frequencies from 200 replications for the confidence

levels 1 — a = 0.95 and 0.99. As we expected, the coverage rates go to the nominal

ones as the sample sizes increase.
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Table 4.1: Coverage frequencies from 200 replications.

 

 

 

 

 

 

 

 

 

o n 1—a=.95 1-a=.99

.5 50 0.9 0.97

100 0.91 0.995

200 0.94 0.99

500 0.94 0.99

1 50 0.855 0.95

100 0.905 0.96

200 0.89 0.975

500 0.865 0.97   
 

4.6 Empirical example

In this section, we have applied the confidence band procedure of Section 4.4 to the

data are recorded on a Tecator Infrared Food and Feed Analyzer working in the wave-

length range 850 - 1050 nm by the Near Infrared Transmission (NIT) principle. Each

sample contains finely chopped pure meat with different moisture, fat and protein

contents. In this study, we used 240 meat samples with each consisting of a 100 chan-

nel spectrum of absorbance and the contents of moisture (water), fat and protein.

Figure 4.3 shows this data set with the confidence band for the mean. We can clearly

see that there is no linear or quadratic pattern for the Tecator mean.

4.7 Appendix

Throughout this section, C means some nonzero constant in this whole section.

4.7. 1 Preliminaries

We first state some results are used in the proofs of Lemma 4.2.

Lemma 4.1. [Theorem 2. 6.7 of [8]] Suppose that {751 S i g n are iid with E(fl) =

0,E(£%) = 1 and H(:23) > 0 (a: Z 0) is an increasing continuous function such
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that xflz—lHCc) is increasing for some 7 > 0 and :chlogHCc) is decreasing with

EH (K1]) < 00. Then there eaist constants C1,Cg,a > 0 which depend only on the

distribution ofél such that for any {snail satisfying H—1 (n) < an < C1 (nlogn)1/2

_ t

and St - 21:15i

P ' S—Wt <0 H “1.{lgggnlt ()l>$n}_ 2n{ (axn)}

4.7.2 Proof of Theorem

-1

PROOF OF PROPOSITION 4.1. m(x) = 6% (XTWX) XTWm. The dispersion

matrix

xwa = diag (1, h) DNJ diag (1, h),

where

DN _ 5N,O (:c) SN,1 (9:)

’17 —

5N,1 (2:) SN,2 (2:)

where sNJ (x) = N—1 29;, Kh (j/N — :13) {(j/N — 2:) /h}1 ,z = 0,1,2. Denote

”0,1500 me (K)
D3; =

#1,;e (K) #23; (K)

where

fix/h elK (v) do :1: e [0,h)

“Lac (K) = fl] le (v) do a: E [h, 1 — h]

f(11—$)/h le (v) do a: E (1 — h, 1]

Dnfl; 2 D3; + U (h)

@wa)”1 = diag(1,h_1) {0171+ U(h)} diag (1,114)
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Without loss of generality, let :1: E [h, 1 — h], one has

m(x) — m(x) = g (XTWX)-1XTW {m — m (2:) X60 — m, (:c) X61}

6% diag (1, h—l) {D171 + U (h)}

diag (1, h_1) XTW {m —— m (x) XeO — m, (11:)Xe1}

diag (1, h_1) XTW {m — m (x) XeO — m, (:13)Xe1}

( N—lzfilKho/N-x) \

><m{ <j/N>— m(x)>—m’<x o/N-a}

N—IZN_1KhJ/N-x){(J/N—$)/h}

\x{m(jm/N)— (2:)—m’(x> o/N—x)})

/ N—lzl‘;K}. (j/N—x) )

x{%m”(:c)(j/N—as)2+u(h2)}

Nj-‘L—lzKh<o/N—va/N—a/h}

XEm”(x)(j/N—x)2+u(h2)} )

1m,,(x)h2N-12N= Kh<j/N—z>1{<j/N—x>/h}2+u(>

2 H121;Khv/N—scno/N—x)/h}3+u<1)

1 II 2 ”2,2: (K) + “(1)
= 5m (x) h ' .

”3,3: (K) + u (1)

  

  

Combining the above two big equations, we have

m(x) — m(x)

0 ( H }2 ua<K>+u<1>
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1 II 2T- —1 —1
= Em (a:)h 60 d1ag(1,h )Dx

= U022).

Lemma 4.2. Under Assumptions (A2)-{A4), there exist iid standard normal random

#2 (K)+U(1) +U(h3)

#3 (K)+u(1)

variables Zik,§inj,z-:vl S i S n,1 Sj S N,1 S k S re and some 6 E (0,1/2) such

that as n —> 00

max 5,1: — Zeke] +
1<k<n

lg.,j — 2,3,5] 2 Gas. (nfi—l) (4.12)max

1£jSN

- - ‘ _ —1 ' _ —1 .. -
in which Z.,k,{ — n 221:1 Zikg’ 2.0-,5 -— n 274:1 Z235) 1 S j S N, 1 S k S

Ii.

PROOF. Aaccording to Assumption (A4), E léiklnl < +00, 771 > 4, E lazy-‘02 <

+oo,172 > 4 + 20, so there exists some 6 E (0,1/2) such that 711 > 2/6, 772 >

(2 + 0) /fi. Let H(a‘) = $711,337; = nfi in Lemma 4.1, then

 

for some 71 > 1. Applying Borel-Cantelli Lemma, one finds iid variables Zik,£ ~

N(0, 1) such that

max max

lSkSnlStSn
2211527: ‘ Z:=1 Zz'k,€ ] = 035- ("fil '

 

Likewise, if one lets H(:17) = $772,337; 2 nfl in Lemma 4.1, then

 " = *772 1”723: -72—9
H(a;rn) a n 0(n )

for some 72 > 1. Applying Borel-Cantelli Lemma and Lemma 4.1, one finds iid
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variables Z215 ~ N (0, 1) such that

 

 

>nfi}SC

t t

21:1 527' " Zi=1ZiJl€
max P{ max

1SjSN 1StSn  

which entails that max1<j<NP{lZ?___1 162-]- — 2:21 Zij,e] > nfi} S Cn1—7725

and

P {133% lzil=1 513' — Zil=1zijfil > "5}

Z {Iii—.1521 _ 221:1 Zijfil > ”3}
P

ISJSN

< C'n1_772fl x N S Cn1_7725+6 S Cn-72,

|
/
\

in which '72 > 1 as described before. Thus Borel—Cantelli Lemma implies that

lsmjast lzilzl 527' ‘ 2212131335] = 0a.s. (n5) .

Putting together all the above proves (4.12).

Denote

~ —1 ~

g (:13) = 63‘ (xwa) xng = 22:19: (at) ,

~ _ —1
where 5k (:13) = {keg(xwa) xTthk and 4),, = (ek (1/N) , . . . , ek (N/N))T.

Let 5k (:13) be the solution to the least square problem

N

argmin 2 {wk (j/N) — a — b (M — a}? Kh o/N — x),

j=1

.., —1 ~ _ ~

_ T T T _ _we have ek (as) _ e0 (x wx) x W¢k and 2km _ ZWMek (3:), k _ 1, . . . , n,

similar to the definition offh(:1:) and £k(:c) in (4.6). Also denote (km) = Z.,k,{¢k (:13) ,

100



. , K and define

”1/2{Z;=1¢i(xf}mzkfl1C

nl/zG’ (:1:,:c)"1/2 219:1Ck (cc) (4.13)

PROOF OF PROPOSITION 4.2: Note first fact that 7. k 5 are independent N (0, n_1)

variables implies that max 7 = O n—l/2 . By Assumption A2 ,
15kg; .,k,§ 1)

45k (a?) E co’fl [0, 1] . Similar to Proposition 4.1, one has

1SkShzl|Q5
,muffle)-

The definition of 6(a) in (4.13), together with definition of m(x) in (4.2), the strong

approximation in (4.12), the above bound on max1<k<n I-Z: k E] entail that

While,

|
/
\

|
/
\

|
/
\

sup lace) — m (e) — Em]
:c€[0,1]

13%,. likl ,3ng live (1‘) - «31. (all...

Cas (lee! + In - me!) 1.2

op (Ml/2122 + 725—4112)

op(n—1/2) .

sup [m(x) — m (x) — Zeal
:cE[0, 1]

1SkSnlE

0p (nBTI) = op(n"1/2) .
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Now for any :1: E [0,1], Z(ac) is Gaussian with EZ(:c) E 0, E? (1‘) '2' 1,2: E [0,1] and

covariance E6017)? (:c’) equal to

n1/2G(ac,:c)_1/2 721/20 ($1, I!) -1/2

X 00" “22:1 2.1%th 1 {22:17-,k.€¢k(x'>}l

= G (:c,:c)‘1/2 G (:c’,:c’)—1/2 G (:c,:c') ,V:c,:c’ E [0,1],

so £ {2(a) ,2: E [0,1]} = .C {C (1:) ,:c E [0, 1]} Proposition 4.2 is proved.

PROOF OF PROPOSITION 4.3

Proof. We use C,- to denote a constant in the context. Since G (:c, :c) is bounded, we

only need to consider sup '5 :c . Notice that
:cE[0,1]

E(:c) = e3" (XTWX)_1XTWe

egdiag(1,h_1) {D;1+ U(h)}diag (1,h_1)XTWe

= QN,h($){Co + U(h)}, (4-14)

where QN,h(x) = N-1 Z§V=1Kh(j/N -— 103,12 We discretize the interval [0,1]

and partition it into N* = V N/I13 subintervals {1k} of equal length. Let ask be the

center of 119' For :1: E Ik,

IQN,h($ll S IQN,h($) - QN,h($k)| + IQN,h($k)|

N

= lower)! + N‘1 Z MK}. (j/N — x) — K}, (j/N — xk)}€,,jl

j=1

= IQN,h(ack)I +op{(nNh)‘1/2}. (4.15)

The above is obtained because the kernel function K() is Lipchitz continuous. Ac-
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cording to (4.14) and (4.15), we obtain

 

~ —1/2
sup |e(:c)| S max Q (:1: )l + o (n ). (4.16)

:cE[0,1] lsksN* N’h 1” p

In the following, we will show that

-—1/2
max :10 . I = o n . 4.171_<_kSN* QN,h( 1,) p( l ( )

 

Define Rj,h($) = N—lKh (j/N — :c) 2.0-,5, where 24,5 is defined in Lemma A.2.

According to Lemma A.2, {Z-Jfi’l S j S N} are independent and identically dis-

tributed as N(O, 1/n). Then

N N

Z P(]Z_,j,5]5j_1/2) 3 Z E|Z_,j,5|4j2 < oo.

i=1 j=1

Based on the Borel—Cantelli Lemma, it is straightforward to show that with proba-

bility 1, for large enough j, |Z.,j,€| S j-1/2.

In the following, we only focus on large enough N such that IZ.,j,el S N_1/2

and define

R- =N K N— Z - I - . 4.18
Jih(x) h(]/ 1') 'iJaE {qu,€SBN} ( )

It is straightforward to show that {Rj,h($k)11 S j S N} are independent bounded

random variables with mean 0. Notice that le,h(xk)l S 01 / (N3/2h) and

N

Z amen}? _<_ 02/(nNh)-
j=1
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Therefore, according to the Bernstein’s inequality,

N 1 2 3/2
PL: le,h($k)] Zn) szexp [717 /(Oz/(nNh)+C1n/(N h)}].

'=1

 

In particular, if n = \/log N/(nNh), P (29,:1 le,h($k)] 2 17) ——> 0 under the

Assumption (A3), which implies that

 

N

Z |Rj,h(:ck)l = op{¢10g N/(nNh)}

j=1

Hence,

N

Z RN,h($k)

i=1

= Op(nfi—1) + 0p {\/log N/(nNh)} = op(n_1/2).

N

IQN,h($k)l S N_1ZKh(j/N_$k)(§.,j—Z.,jl

i=1

+

   
 

This completes the proof.
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95% confidence band, n=100
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Figure 4.1: For data generated from model (4.11) (with 00 = .5) of different sample

size n and confidence level 95%, plots of confidence bands for mean (dashed lines),

the local linear estimator m (:c) (dotted line), and the true function m (:15) (thick solid

line).

105



99% confidence band, n=100
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Figure 4.2: For data generated from model (4.11) (with 00 = 1) of different sample

size n and confidence level 99%, plots of confidence bands for mean (dashed lines),

the local linear estimator m (:c) (dotted line), and the true function m (:c) (thick solid

line).
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Figure 4.3: The upper plot shows the Tecator data with the 95% confidence band

(dashed thick lines) for the mean estimate (thick solid line). The lower plot is the

confidence band (thin dashed lines) for the mean estimate (thick solid line) in a

different scale.



Chapter 5

Summary Of thesis contribution

The main contributions of this thesis are the follows: the construction of simultaneous

confidence bands for heteroscedastic, high dimensional and functional data.

Construction of simultaneous confidence bands has been develOped slowly since

it is difficult to establish asymptotic sample distribution theory for nonparametric

regression estimates. In the last two decades, many statisticians have worked on the

theory and applications of nonparametric simultaneous confidence bands. For the

first time, we constructed confidence bands for variance function, nonlinear additive

models and dense functional data.

Among all the nonparametric smoothing methods, polynomial spline smoothing

has the advantage of fast computation and simple implementation, see for instance,

Stone [67] and Huang [28] for the basic theory Of polynomial spline smoothing, and

Xue and Yang [76] for computing speed comparison of spline vs kernel smoothing. We

used polynomial spline smoothing to do the nonparametric regression in the chapter

2 and chapter 3 of the thesis.

The importance of being able to detect heteroscedasticity in regression is widely

recognized because of efficient inference for the regression function requires that het-

eroscedasticity is taken into account. In chapter 2, we proposed polynomial spline

108



confidence bands for heteroscedastic variance function in a nonparametric regression

model. It is desirable from a theoretical as well as a practical point of view to have

confidence bands for polynomial spline estimators.

In chapter 3, we proposed an all new spline+spline oracally efficient estimator.

For the NAAR time series models, none of any existing methods provide simultaneous

confidence band for the additive components. To address this need, we proposed an all

new spline+spline oracally efficient estimator that is theoretically superior as it comes

with an asymptotically simultaneous confidence band for the additive component, and

also computationally more expedient than any existing estimators due to the use of

spline instead of kernel in all steps. The spline+spline method is asymptotically

oracally efficient as the spline+kernel method of [71], but can be hundreds of times

faster in terms of computing, see the comparison in Table 3.2.

Locally linear smoothing is used in chapter 4 to develop the confidence bands of

mean function for dense functional data. This smoother combines the strict local

nature of the data and the smooth weights of kernel smoothers. Kernel smoothers

are expensive to compute (0(n2) for the whole sequence), but are visually smooth

if the kernel is smooth. The confidence bands for dense functional data by locally

linear smoothing is very easy to use for practitioners.
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