

'

5
7
.
1
7
1
5
0

‘
0

5
1
0

>
5
1
5

5
5
5
0

0
0
5
5
0

5
.

5
0
7
5
.
1
7
1
:

5
1
5
.

.
5
5
0
0
1
.
5
5

7
1
7
.

5
1
9
.

0
5
1
.
0
0
7

.
5

«
.
0
7

1
5

‘
0
7

.
5

.

‘
1
’
.

V
0
0
”
I
“
.

.
0

7
7
.

0
1
0

fi
”
.
.
.

.
0
.
5
”
»
.

5
.
9
9
0
"

:
5
'
0

P
r
‘
.
”
7

‘
0
L
’
0
1
J
m
m
0
5
1
5
0

5
”
.
“

7
5
“

0
7
.

1
K

0
'
5
1
‘
.
O
I

.
.
5
0
0
5

.
0

5
5
0
0

0
1

5
.
5

1
.
0
u
0
5
0

I
,

1
1
1
1
5
-
.
,
.
5
0
5
.
|
0
|
0
05
5
0
.
.
5
!

0
.
"
0
,
0
l
~
5
.
h
5
3
5
.
1
3
‘
5
5
”
»

5
V
.
_

5
1

H
1
7
?
E
m
”

1
.
0
.
,
0
.

5
0

.
0

5
-

5
.
1
5
5
5
5
5
5
5
5
5
5
5
5
.
5
!
a
5
0
5
|
.
1
1
5

5
1
.
.
.
.
.
1
0
.
A
P
.
5
a
U
U
1
5
”
.
:
2
.
0
1
m
i
“
.

.
K
v
a
m
h
n
b
u
m
m
w
m

5
5
0
5
5
1
u
1
1
0
1
0
5
5
5
0
0
0
-

o
.

.
1
3
"
.

“5
55

17
".
5

0
0”
.
5

W
W
W
"
;

1
A
0
“
.

50
.5

..
- “
0
0
0
5
5
0
5
5
1
0
0
0
0
7
9
0

0
5
5
h
5
0
5
1
1
1
r
5
5
1
5

5
‘
55
5
m

5
J
5
.

5
.
0
5
“
5
0
.
5
0
5
.
5
5
“
W
5
5
“
?

1
5
5
1
1
0
5
5
?
”

5
5

0
5
:
.

5
.
5
.
.
.
5
5
5
5
1
.
"
_
.

.
1
.
5

.
1
5
0
5
.
5
.

1
8
%
“
v
a
5
.
5
5
1
%
.

5
1
.
5
“
"
!

“
M
I

5
”
»

5
5
.
”

5
.
5
5
”
.

5
1
7
.
5
.
»
m
u
5
n
0
5
5
5
r
5
3
L
U
1
5
5
J
5
5
3
5
5
5
W
0
5
5
5
1
u
l
fl
5

M
n
»
?

1
7
;
”
?
L
i
m
fi
h
v
fl
f
m
m
t
n
z
.

.
.
W
fl
m
c
m
f
u 1
h
u
m
}

1.
.

1
4
7
5
1
,
,

.
“
H
5
0
1
"
.

0
5

6
5

m
a
n
“
5
5
“
N
J
-
0
0
5
7
55
5
.
4
0

1
0

1
|
-
5
‘
$
.
0
1

1
0
0
5
5
0
1
5
0
3
0

0
5
.

I
Q
0
1
-
.

0
£
1
4
.
1
1
.
-
5
5
1

1
5
5

5
5
0

T
o
r
i
.

5
«
1
0
0
5
‘
5
”
k
i
n
g
”

5

.
.
5
—
7
5
0
5
5

5
0
0

I
n
s
-
1
5
.
5
w
!
“

\

1
5
.
4
1
1
4
5
5
1
5
.
1
5
5
.

1
5
5
5
.
1
1
1
”
5
1
.
5
1
5
.
5
1
5
.
1
5
5
.
“

0
7
0
0

3
‘
5
7

7
7
0
0
.
0
5
.
0
5
.
0
5

.
0

I

7
1
5
5
|
A

5

5
1

.
5

0
1

1
5

.
.

1

.
.

,
.

1
7

7
1
.

5
.
7

.
.
.

.
1
.

.
.

1
.

.
.
.

1
.
1
.
(
r

0
5
5

5
5
0
7
.

5
1
.

5
.

..
.
.

.
.

.
.
.

5
5
'
.

9
1
5
|

0
5

0
.
5
5

1
|

5
.
1
5
5

7
‘

.
5
5
1
5

.
5
0
.
.
.
.

5
7
5
.
0
0

0
.
5

.
1
5
0
1
.

1
.

.
.

.
5

.
_

1
1

.
7

7
.

_
5

.
1

.
5
5

5
5

.
1

.
0

A
.

5
5
5
0
I
I

0
.
;

.
5

5
0
5
.
5
.
1
0
0
0

o
1
5
0
0
|

0
‘
5
0
\

.
5

.
0
5
1
.

0
1
0

7

.
1

1
1
.
1

.
.

.
.

.
1

.
.

.
5

.
.

5
5

I
1

.
5

7
5

.
.

.
1

.
.

5
.

.
.

1
1
.
.

.
.

_
.

.
.

.
.

.
5
7

5
.

5
5

5
5
.
1
0
,
1
5
5
1
.
5
5
5
5
1
5
1
.
.
J
5

.
.
.
.
.
.
.
5
'
5
5
.
.

0
‘
0
0
.

0
.
I
d

I
'
l
7
l
I
I
'
1
f
l
i
t
.
0
'
1
0

5
1

I
1
5

5
5

1
5
.
5

0
1
o

5
.
1

0
.

5
5
0
I
1

5
.

1
r
.
‘
0

0
.

.
0
.

.
1

7
0
.

.
.
.

.
.

.
.

0
1

.
5

5
.
5

5
.

.
0
0
.
5
.

5
5
0
I
1
0
7
3
|
0
7
5
i
0
1
1
5

1
5
.
1
0
7
‘
o
7
S
L

5
0

5
5
1
7
.
0
5
.
0
0

1
.

1
7
1
.
1
1
0
.
7
0
5
.
5
5
1
;

1
7
.

7
.
.

0
1
1

1
1
.
5

.
1

.
.

5
.
5

5
5

.
1
5
.

.

0
1
.
?

\
1
7
0
‘

1
1
0
5

5
5

.
.
0

I
9
.
"
.

,
.
.
|
0
1
5
5
5
0
.
.
.
5
.
5

1
.
.
.
.
5
0
.

.
.

1
1
.
1
5

5
1

.
.
.
.

1
.
.
.

.
.
1
:
5
5

5
5
.
5
5
5
5
5
1

.
5
1
5

.
0
.

I
5

1
1

£
7
.
5
0

0
7

1
5
5
1
0
.
5

1
.

5
.
5
3
7
7
0
0
0
.

5
0
5
5

1
7
7

5
5
0
0
0
3
0
1

.
.
v
.

5
1

0
.
1

.

7
‘
.

.
7
5
.

7
.
5

.
0

I
.
J

,
1

I
1

5
.

.
O

.
1

9
:
1
7
.
0
0
0
‘
9
5
1
9
0
1
‘
0
5
0
1
5
1
1
0
0
7
2
1
5
9
1
1
1
:
5
9
0
1
}
.
5
0
5

0
7
.
9
1
5
5
1
5
5
.
7
0

1
r
0
1

5
1
1
5
.

.
.
I
5
0n
1
»
;
5
1

5
5
.

.
1

0
.
1

.
1

5
.

.
7
|

.
.

‘
0
‘
1
}
.

.
.

.

1
5
5
0
1
5
,
0
0

0
0
5

5
.
5
5

.
.
1
1
1
5
1

5
.
5
1
1
7
5
5
0

7
7
1
.
5
5
.
.
.
.

0
.
,
0
—

1
.

0
5

5
5
1

1
7
0
9

1
.
0
.
0
.
5

5
.
0
8
0
5
I
5
5
W
R
1

.
5
0

5
.

5
5

5
5
0
1
.
5
.
.
.
.

5
.
5
5
0

5
5
0
.
5
5
.
.
.
I
.

0
5

5
0
1
.

.
0
7

5
.
0

5
5
5
5
0
0

5
5
1
5
1
5

7
5
0
5
;
.
.
.

5
.

:
-

.
5
'
,
.
.

5
.
1

5
;
.
1
u
u
w
.
.
1
5
5
.
h
0
1
5
.
5
.
1

.
.
5
.

0
5
.
1

5
1

,

0
5
1
.
5
0
5
.
0
0
5
.
1
-

.
o
f

0
7
0
5
1
.

5
0
0
5
5
5
0
5

0
’
7

5
.
0
1

.
7
1
1

1
5
.
5
.

‘
1
5

0
0
.
5
.
1
0
.
1
.
5
.

5
'
1
‘
0
0
A

0
0
.

0
5
0
0
.

0
0
>
5
5
5
.

1
0
5

0
I
.
\
5

5
I
:

7
5
1
0
1
1
0
0
1
0
1
0
0
1
.
0
0
0
7
5
5
|

5
.
0
5
0
.
0
5
.

.

1
1
5
.
0
1

.
5
.

7
1
1

1
.

r
0
5

5
5

5
.
5

5
5
0
7
.
0
.
0
1
.

1
.

.
1

5
.
1
0
.

.
5
5
5

5
I
.

0
.
5
0
0
0
L
5
.
.
.

0
5
0
5
1
7
V
1
0
5
fl
5

.
1

.

.
7
1
.
.
.
7
1
.
1
.
3
.

.
.

.
1

.1
5

5
7

5
.

5
.
5
5
.
5
5
5
5
}

.
.
.
1
0
.
‘
7
1
.
1
0
5
7
0

.
.
I
5
1
5
0
7

.0
1
5
.
5
5
.
5
0
5
1
0
.
.
5
.
.
5
0
5
5
.
.
.

1
3
0
1
5
0

“
0
0
.
3

1
5
1
5
7
5
5
5
1
5

.
5

5
|
.
.
.
1
1
5
0
5

.
1

.
7
|
|
.
7
1
5
5

0
5

1
5
5
1
5
5
7
1
5
5
7
5
.
.

1
0

1
7
1
5
5
.
0

1
.
1
7
7
7

5
5
.
5
5
.
5
5

1
5
5
.

.

0
.
1
.
1
5
.
5

.
1
1
5
.
0
.

1
0
.
1
7
7
5
0
5

5
5

5
0
1
5
.
5
.

7
1
.
.
.
:

0
1
5
1
5
.
1
.

.

.
,

0
5
.
\

7
1
.
1
5
1
7
0
5
.

1
5
1
.
1
5
5
5
.
.
.

0
.
7
7
.
5
5
.
1
1
.
5
0
6
5
1
5

.
5
5

5
0
0
.
0
1
.

.
.
5

.
5
1
5
7

1
5
.

.
1
.
.

1
7
.

D
5

.
5
0

5
5
5

1
5
5
1
7
9
0
0
.
.

5
5
5

5
‘

.
7
0
.

.
7
5
5
0
5
.
0
.
5
1
5
5
1

0
‘
7

.
.

.
.
1
0

1
0
1

7
1
7
.
0
.
.
.
.

.
5
5
.

7
1

7
1

.
7
|

0
.
.

..
.

0
7
A

.
5
1
0
1
5
5
5
.
1
5
0
.
.

1
5
5
.

5
.
1

.
1
7
‘
5
5
0
5
5
1
1
1
r
0
0
1
’
5

5
5
0
5

.
5

5
.

0
.
.
.
-
0
0
0
0

5
.
5
1
5

[
5
7
.
5
0
.
5
5
0
.
5
1
5
]

.
.

0
5
-
0

1
.

5
O

.
0
5

0
.

5
.
5
0
5
5

1
.
5
.

.
1

.
.

.
1
7

1
r

.
.

.
.

1
.

(
1
1
.
.
5
|

5
.
.

5
0
.
I

1
5
0
0
0
0
1
0
1
5
1

1
‘
0
1
.

5
5
.
0
.
1

.
0
.

.
1
1
1
5
.

1
7
1
7
1
2
.
1
5

5
5

.
.

.
.

1
.

5
.

.
.

.
.
1
5
.

1
.

.
1

,
,

.
5

.
5
0

.
5
0
1
1
5
.
5
1
3
0
5

5
5
5
.
1
1
.
.

1
4
'

”
1
5
5
.
5
5
,

.
7
.
7

7
:
5
5
1

0
5
5

.
.
5
1
.
5
1
1
\

:
I
C
Q
I
I
I
I
I
I
5
5
1
0
3
1
8
5
1
1
5
7
1
’
7
0
3
I
‘

1
1
0
1
9
1
5
.
.
.
.
1
1
1
1
1
7
1
7
5
1
5
5
7
1
.
1
7
9
1

.
,

1
.

1
.

5
.
.

5
!
.

.
.

.
.

.
5
1

1
o

.
.
.

.
1

..
5.

.
1
.
I

5
.

5
.

.
.
5
.
.

1
o

1
"
,
.
.
.

1
15

.5
1
.
5
.
5
1
1
5
1
5
1
:

.
0

5
1
5

5
9

5
1
5
5
0
5
1
5
5
.

.
0
1
0

5
.

.
.

.
1
.

.
.
.

1
.

5
.

.
,

1
.

,
.

.
.

5
5
1
.

.
.
7
5

0
5
.

I
.

5
.
.

.
1
1

1
5
0
5
5

.
2
:
9
5
.
1
1
0
.

1
0
"
.
.
.

5
5
.
0

.
.
1

.

5
5
.
5
5

5
5
.
1
1
5

1
.

0
.
1
.
5
.
.

1
1
.
1
1

1
.
1
.
1
.
5
1
5
5

5
5

.
5
5
5
.
.
.

5
.
.
»
.
.
I
1
5
p
5
f
.

1.

I
.

5
7
5
5

.
5
5
0
5

0
0
.
5
9
1
5
0
5
1
0
.
5
.
1
0
'
0
1
r
fl
5

.
1
5
.
5

7
5
.
5
0
.
.
.
.

[
$
1
0
.
1
1

1
5
»
.

7
1
0

5
5
0

1
1
5
7
7
7

7
5
5
1
5
7
5
5
1
.
.
0
5
‘
I
.
0
5
5
,
1

.

'
0
1

5
5
5
5
5
.
5
.
.
.
5
1
5
5
5
5
5
f 1

5
5
.
.
5

0
'
I
5
0
1
1

1‘!

.
.

.
.
.

‘
.

.
.

I
5

1
5
5

.
.

5
5

1
5
.
5
5
.
5
0
.
0
5
1

5
5
.
5
.
0
5
.

.
.
1
.
.
.
.
.

1
0
.

5
1

b
5

0
0
5
5
5
0
5
5
5
3

A
5
1

1
,
.

7
5
5

0
0
1
0
.
5

0
.
1
5

5
0
0

o
5

6
4
0
5
1
.

5
0
5

5
,

.
,
5

1
.

.
5
5
.
I
0
5

5
7
0
9
7
1
0
5
5
2
0
1
1
5
,

1
5
5

1
5

1
.
0
5
1
5
5
5
0
0
5

5
1
5
5
0
1
5
5
1
.

5
0
1

1
5
5

.
,
.

0
1

5
5
0

1
.
1
7
7
1

.
5
I
5
.

5
.
3
|

.
1.

.

.
5
5
1
5
5
5
7
1
5
5
1
.
0
5
5
5
5
0
0
_
1
.
5
1
0
.
1
1
0

1
0
.
5
.

7
n
5
0
I
1
5
1
5
0
.
5
.
.
.
.
5
9
1
.

7
0
4

0
5
4
3
4
0
5
9
1
1
0

.
5
5

5
0
0
0
1
1
.
0
5
0
’
1
5
5
5
5
.

1
5
I

5
1
7
5

5
5

’
9

0
0
.
7
5
0
7
7

.
5
5
3
0

1
1
5
5
.
5
1
5
.
»

.
.
1
5
1
5
.
0
3
0
1
1
0
:
1
7

1
0

5
5
.
5
5

.
5
.

5
5
0
7
1
0
1

.
1

5
5
5
5
5
3
.

.
5
5
1
0
5
5
5
1
1
.
1
7
5

1
.
7
0
5
5

.
.
.
-

.
0
5
.
5
1
I
5
.

.
0
0
0
0

0
.
1
0
1
5

1
.
0
5
7

1
1
5
5
0
7
5
5
5
5
.
.

1
0

5
.
1
5
5
c
m

0
.
.

0
5
.
1

1
5
7
5
t
:

0
.

I
0

.
1

.
I

1
.
5
1
'

O
5
I
-
1
.

1
1

.
.

‘
.

1
’
1
0

5
.

.
.

a
.

.
.
.
5

5
.

o
,

0
0

.
1

1
0
5
5
,

.
1

0
5

.
5
.

0
5
5
0
5
1
5
5
0
0
5
5
5
0
.
0
1
3
5
5
5
0
1
0
5
.
‘

5
.
5
5

.
.
5

1
1
5

.
0
.
.
5
5

0
0

u
5
1
.
1
5
.
0
5
5
.
5
0

[
0
.
5
0

.
.
5

5
.

1
.

.
1
5
1
.

5.
1

1
.
0

1
.

5
0
5
0
0
1
7
1
0

0
0
5
5
.
.
.
.
.
.
5
.
1
0
1
.
5
0
5
.
5
5
7
0
.
.
5
.
-
5
1
.
5
5
5
1

1
4
5
0
1
5
5
0
5
5
1
5
5
"
.
0
1
5

5
5
1

1
.
5
.

.
1
.
5
1
0
1
1
5
0
?

5
1
0
5
0
.
5
1
5
5
.
“
?
1

5
5

5
0
7
5
.
0
5
.
1
5
.
5
5
0
.
5
.

5
0

1
.
5
5

5
.
.
.
.

5

7
0
0
.
.
.
.

1
6
.
5
0
.
0
5
:

1
0
5
5
5
,
1
1

1
1
.
5
0
5
5
7
0
1

5
7
1
1
1
.
5
(
“
!

7
1
H
0
.
1
|
5
1
0
.
5
7
1
5

7
1
5

5
7
1
.
0
.
1
.
.

.
5

5
5
5
5
5
5
5
5
1
5
5
5
3
5
.
3
5
1
7
1
1
1
1
5
1
.
1
5
1
}

0
0
:
1
5
.
1
.
5

1
5
1

5
1
5
1
5
5
1
5
5
.

5
5
.

{
1
5
1
5
5
0
1
3
0
1
1
5
5
0
7
5
.
5
5
0

.
5
5
0
1
.
1
0
;
.
1
5
1
"
:

,
1

5
0
,
1
5
1
5
7

0
1

1
.

.

5
1
5
5
0
0
5
6
0
0
3
1
0
1
;

1
5
.
1
.
0
.
3
1
0
0
J
0
7
7
7
5
5
5
5
0
1
7
.
1
.
5
0
1
7
2
3
:

5
I

5
5

0
‘
1
5
1

5
A
u
.

.
5
.
-
5
0
0
5
0
.
0
.
H
0
.
9
.
1
|
.
1
5

0
0
1
1
1
.
5
0
.
5
0
0
.
5

5
4
0

.
7
5
0
.
0
5
‘
1
‘
0
.

.
5
1
‘
0
5
5
.

\
9
1
-
7
1
.

.
A
1
0
0

0
0
5

«
.

1
9
1
0
0
5
0
5
1
1
H
I
.
2
0
1
0
“
.
.
7
7
1
0
7
.
5
.

1
.
9
.
.

0
.
0

5
0
.
5
0
.
0
5
5
0
.
5
1
0
1
7
.
.
5
0

.
.

5
3
.
8
.
5
.
5

5
.
1
1
5
.
.

0
0
‘
.
.
.

0
5
0
“

0
‘
1

K
1
5
7
0
0
5
1
0
7
.

.
5
|
.
I
.

1
5
0
1
1
1
0
7
9
7
1
5
1
?
!

5
7
.
5
7
1
9
5
5
?
?
?
.
.
1
5
1
0
.
0
7
.
u
5
|
5
1
.
1
1
5
1
.
5
1
5
.
0
1
5

0
.

.
1

0
0

.
5
v
l
5
r
5
|
1
5
-
1
0
1
5

5
.
.
5

.
0

.
5
.

5
1

1
.
5

.
5
.

5
5
1
1
1
5
.
7
5
.
.
.
1
1
.
1
1
5
.
5
5
.
5
0
.
.
.

5
.
5

0
1
0
1
5
.
’
0
0

7
0
5

.
5
.

O
1
.

1
1

5
1
.

5
1

0
0

5
5

1
5

0
0
1
.

1
0
9
0
1
0
5
5

0
1
‘

0
5

.
1
.
.
0
5
5
5
5
.

5
5
9
5
1
1
1
0
.
»
.
5
.
.

.
7

1
.

.
1
.

.

5
o

1
.

5
0
.
7
1
1
5
1
1
5
5
5
4
‘
9
0
r
7
1
5
.
r
5
v

1
1
5
.

.
0
5
0
.
0
0
9
.
1
0
0
.
0
1
7
7
0
1
5
5
4
5

5
5
5
v
.

.
.
5
3
.
.
0
5
5
0
|

5
0
.
0
0
7
1

5
5
.
0
1
5
5
5
5
0
5
I
3
0
5
1
5
o
.

.
.
1
1
0
1
.

5
5

5
0
.

5
1
.
5
.
.
.

0
0
5
5
1
0

.
5
1
0
0
7
0
9
5
1
0
1
|

0
1
5
5
.

.
5
.
1
1
5
1
.
5
.
5
.
7
5
5
0
4
1
5
.

7
1
.
5
5
.
.

.
.
.
. .
5
5

5
“
0
.
1
-
5

1
3
5
W
”
.
.
.

.
.
5
5
.
1
5
'
5
1
7
1
1
1
.
0
1
.
.
.

5
9
:

0
H
0
1
0
5
5
.
1
1
.
u
5
5
.
.
5
1

5
1
0
1
1
.
.
.
.

‘
5
1
.
.
.
.
T
0

(
n
o
.

1
.
.
.
.
.
.
u
1
t
7
0
1
9
5
5
5
.
5
5
.
.
1
1
1

5
1
1
.
.
7
5
0
.

5
5

.
I

5
7
7
5

1
1

1
0
5
5
0
1

5
.

5
1

.
,

.
5
.
I

.
7
.
7

5
0
.
5
.

1
.
5
5
.

5
7
5
.
5
.
.
5
0
5
1
5
1
0

1
1
!

.
1
7
1
0
.
1
1

o
.

5
5
1
5
1
0
0
9
5
0
5
0
.
5
0
1
.
0
1
o
1
.
1
7
7

0
5
.

.
5

.
.

.
.

.
I
5

.
1

,
5

1
0
1
1
7
1
1
1
1
1
5
5
0

5
.
'
0
1
.
7
.
5
0

5
5
0
l
l

5
9
0

0
0
7
.
0
7
.
0
5
7
.
5
5
5
5
.
0
0
.
1
\
|
o
.
.
.
0
0
0
0
-
,
0
1
-
0
5
.
1
0
.
1
5
.
1
‘

1
.

.
5

.
.
5

7
1
1
.
.

5
.

0
5
.

5
.

.
5
.
9
7

1
.
0
0

.
5

1

.
5
5
.
0
5
0
.

5
5
0
5
1
5
5
0
1
0
1
5
1
.

5
.

I
.

5
5

{
5
‘
0
0
0
0
0

5
0
,
7

0
0

.
5
5
!
,

5
"
1
5
0
1
5
|
\
0

5
0
5 5
3
9
5
5
7
5
5
5
9
7
6
\
.

.
5
55
0
0
0
0
1
5
0
(
I
I
I
l
0
“
7

I
,

5

fl
|
1
0
5
1
1
0
7
0
$
0
i
f
v
b
1
0
|
$
1
1
j
u
0
1
m
5

5
0
5
0
7
7
1
5
5
0

.
5
.
.

1
1

1
5
5
.
0
1
.

1
5
5
0
0
0

5
5

1
.
1
7
1
0
1
5
5
5
5
0
1
1
9
1
7
1
!
0
.

.
'
1
u
i
t
h
l
5
5
I
£
I
1
0
.
\
3

0
5
5
1
0
1
0
4
5
1

0
1
0
1
0

.
1
5
0
0

1
1

1
1
5
0
1
5
1
.
1
.
.
0
1
5
1
0
5
5
5
5
0
5
0
5
5
1
5
5
0
.

5
5
1
1
1
.

1
1
.
1
.
.

1
1
.
5
5
1
1
1
.
1

.
1
7
1
1
.
.

:
1
1

5
5
0
9
1
0
.
1
5

.
1
1
1

1
.

1
1
1
l
1
.
0

7
,
.

I
i
h
u
V
C
I
:

(
0
0
0
:
:
1
5
5
1
5
5
.
1
3
r
5
1
.
1
5
.
5
.
u
5
5
i
1
1
5
n
1
1

0
0
‘

K
.

5
0
5

0
7
5

.
.
.
-
(
I
9
5
5
!

5
0
5
5
0
5
0
0
9
1
0
0
5
7
.
.
.
1
1
9
.
0
0

5
5
5
1
5
9
5
1
.
.
)

“
1
1
5
5
0
0
7
5
1
9
1
5
1
5
.
5
5
2
5
.

5
0

.
.
1

5
5
0
0

0
.
5
“

5
5
5
0
3
0
.

I
I

.
5

3
5
.
1
5
0
1
7
0
1
:
5
:
E
I
3
1
I
’
1
7
5
V
9
1
I
H
‘
I
V
0
:

7
5
I

I
5
5
7
.
)

5
0
1
5
1
5
5
5
5
1
.
.

1

1
A
A

1
0
1
5
.
1
5
5
7
‘
.

I
1
0
0
5
1
)
:
0
”

.
1

.
0
5

5
5
5
"
I
0
1
7

5
0
3
5
5
7
.
I
.

0
.

5
5
.
0
7
5
.

1
.
5
7
0
5
5

.
5

1
0
5
0
1
5
0
5
5

5
0
1
0
.
1
5
5

5
1
.
5
9
5
1

0
'
0
1

1
5
5
0

.
.
1

1
5
0
5
1
-
11
4
0
3
5
5
.
0
3
1

[
5
.
5
0
1
0
5
.

5
0
U
.
9
.
3
.
5
5
7
0
5
0

0
0

0
.

.
“
0
‘
0
5
'
5
1
0
.

0
5
1
0
5
.
.
.
.

a
7
.
.
.
!
I
.
‘
.
.

O
.
I
.
'
1

1
0
.
5
.

5
.
7
3
0
.
1
'

,
1
.
0
0
5
1

0
6
7

:
0

:
0
0
“

0
5
1
0
1
5
1
0
5
0
5
5
0
5

.
‘
0
5

5
0
.
:

1
1
7
1
0
0
.
0

0
.
1
5
.

.
5
5
5
5
5
5
.
0
7

1
5
5
7
0
.
0
.
.
.

5
7

0
5
5
7
7
0
0
0

5
.
5
0
1
0
.

5
5

.
.
1
5
‘
1
5
1
0
$
.
5
0
.
5
m
1

.
.

.
.

1
5
5

0
5
5

5
5
.
5

A
.

5
7
.
7
1
7
0
7
1
»

0
.

.
5
1
7
5
0
5
.
.
.
0
5
1
1
0

.
.
.
5
5
3
0
5
5
0
5
5
5
5
H
5
n
5
n
1
0
7
0
1
0
5
5
0
5

9
5
.
7
1
.

5
1
1
5
5
.
.
.
1

.
5
.
.
5
.
.
.
.
.
.
1
:
5
.
5
.

5
3
.
5
0
.
1

.
.
.
o
1
r
.
0

.
0
0

.
1
5
0

7
t

.
0
.
,
‘
0

7
1
5
0
0

.
.
1
4
5
0
5
0
1
5
5
5
5

5
5
7
5
5
.
.

5
5
1
3
5
9
.
1
2
.
.
.
0
5
5

1
5
1

0
5
.

5
.
5
5
.

.
5

.
5

1
I
.
.
.
o

5.
5
7
5

1
.
7
.
5
1

1
5
0
3
5
5
5

7
5
5
5
?
.

.
5
5
.
.
.

.
.

1
5

7
5
0
5
5
5
7

0
5
5
0
0
5
5
1
1
.
5
5
.
7
1
5
.
5
0
.
1
0
5
:

.
0

5
7
0

5
5
5

5
5
0
7
0
5
5
5
1

1
9
5
0
0

1
5
5
1
0
1
0
1
5
.

.
3
.

5
.
0
1
0
1
“
.

.
5
5
5

5
.
.
0
0
3
1
1
0
0
5
0
1
,

,

.
.

.
0

.
I

,
.

5
.

.
3
1
0
5
1
5
0
3
5
5
1
1
7

7
0
1
0
5
5
5
5
0
0
1
.

5
‘

1
0
0
1
1
5
0
7
5
1
0
5
3

5
1
0
1
‘
!
0
5
0
1
1
1
1
0
5
0
0
0
0

1
5

5
5
.

'
0
1

5
.
.

.
0
»
5
0
1
1
1
1
|
5
I
.
¢
.
5
.
5

5
»
.

5
1

5
.

0
5
5

1

K
.
.
5
9
0

I
.

1
.

5
5

1
.

1
.

1
.
1

.
.

.
.
.
.

N
5
1

'
.

.
.

1.
..
.

.
'
1

.
.

.
.

.
,

.
1

1
1

.
0

0
0
5

5
7
1
1
5
5
.
0
0
K
5
0
7
0
7
0
0

5
.
0
5
.
1
5
.
.
.

7
1
.
3
1
5
5
1
0

1
7
.

1
1
7
.
.
0
0
5

.
5
.
5
r
1
1
. .
0
7

5
7
7
5
1
5
1
5
5
0

5
(
0
5
.
5
1
0
3
1

7
0
5
'

0
.
1
5
1
5
5
5
5
1
0
5
1
5
3
5
7

5
.
5
5
5

5
5
1
.
5
0
5
7

5
7
1
1
5
5
5
0
.
1
.
5
5
0
5
.
5
.
1
0
1
0
0
5
.
5
.
0
1
0
5
1
5
.
.
.
.
5
5
.
!

.
.

.
I
f
.

.
.

.
.

_
5

1
.

5
,
0

,
1

.
1

.
.

5
I
)

5
L
.

.
.
5

5
5
1
5
1
1
5
5
5
1

1
.
0
5

.
.
1
5
5
1
0

5
5
.
.

5
5
5
1

1
:
1
5
5

7
5
5
1
1
1
1
1
7
1
,

0
9
5
1
0
1
.
0
5
1
0
0
5
5
0
h
5
5
5
1
5

1
5
.

I
t

.
5
0

1
0
.

1
1

.
.

.
.

.
5
1

1
.

.
.

.
.
0

.
.

7
3
.
0
5
.
5
5
1
1
“
?

1
5
.
.
u
§
.
.
5
5

7
1
1
1
5

.
5
5
7
5
.

5
5
.
5
.
5
7
5
'
:

1
.
7
1
5
.
1
0
0
.

5
5
.

5
5
5

.
.
.
P

.
0
5
0
“

9
1
3
7

0
5
1
-
0
5
5
1
5
0
5
0
1
0

1
.

5
.
5
.
1
0
1
0
.

.

.
I
I
.

7
.
1
5
5
0
.

1
5
.
1
0
0
5
1

5
1
5
5
.

.
.
5

.
5
5
5
7
.
1
5
5
5
1
1
3
1
5
1
3
.
.
.

5
.
.

5
.
1
.
6
0
.
1
5
.

0
5
5
:

1
5
1
.
5
5
5
.
0
5
.
1
1
1
.

.1
5
.

.
5
5
5
5
.
.
.

.
5
.

0
2
0
5

.

1
5
:
1
!

0
5
0
1
5
:
5
0

5
5
.
1
5
5
1
1
1
1
‘
.
5
5
5
0
5
.
1
5
1
'
1
0

.
5

0
5
5

0
7
.
5

.
5
0
5
0
.
.
1
1
1
0
5
.

0
5
.
5
5
5
.
.
.
0
0
?

5
5
5
5
5
0
5

1
p
1
5
5

.
0

5

1

5
5
0
0
0
7
0
1
7
7
1

5
5
.
5
5
5

1
(
1
1

5
0
0
1
1
5
0
5
5

5
1
.
.
I
.
5
5
5
1
1
5
'
.

7
5

.
0
5
0
5
.

1
0
5

5
0
0
1
5
.
-

,
'
0
1
0
5
5
3
3
0
7
1
7
5
0
0
6
.
.
.

5
0
7
0
5
5
1
5
0
1
7
5
7
5

0
0
0
.

1
.
1
1
0
.
5
1
0
.
9
5
7
5
.

5
.

5
5
.

1
5
5
.
1
1
7
6

0
0
5
5
0
5
5
.
0
5
2
5
.
.
.
,
5
.

.
.

5
5
7
f
.

5
5
5

1
5
.
5
5
.
5
1
0
1

‘
7
.

5
0
5
1
5
5

1
5
5
1
5
7
5
0
7
0
1
5
5
.
.

5
:
1
0
5
.

‘
1

.
1

‘
1
0

5
0
O
5

5
0
.
.
"
0
.

5
0
1
5
“
.
.
.
0
"
.
0
0
"
v
*
0
u
o
7
5
.
2
0
1
1
0

5
.

1
1
1
0
m
0
.
.
n
.
.
5
5
o
.
.
5
1
.

.
.

5

.
1
5
5

5
.

.
5

1
5
1
1
5
1
.
.
.
.
5
5
1
5
0

5
.
5
5

1
.
0
5
.
5
7
7
:
2

7
7
4
1
5
5
9
0
0
0
0
0
5
3
.
5
3
1
3
0
0
0

0
.
0

.
5
5
.
.
.
0
5
1
3
.
5
0
5

5
1

0

1
.
0

.
.
1
(
I

5
5
0
5

7
5
5

0
5
1
5
0
5
1
7
0
1
5
0
1
7
.
5
1
3
5

0
.
0
0
5
5
1
1

0
0
.

.
7

5
.

.
5

0
0
K
.
.
.

5
0

.
1

7
0
.

5

5
:
1
1
.
5
5
.
0
!
”
.
5
0
‘
5

5
.
5
5
.
0
0

I
.

5
_

5
.

0
5
1
.
5
5
5
.
0
0
1
-
5
0
0

.
5
0
1
0
0
1
0
0

5
0
5
5

1
0
0

5
5
5

.
0
7

.

l

0
0

5
1

0
7
1
5
5
.

1
0
5
5
0
0
0

5
.
0
1
5
.

5
5
1
5
.
5
0
.
1
5

7
5
0
1
0
5
0
6
5
5
m
5
r
0
0
-
“
1

0
”
0
‘
5
,

’
5
0

5
1
0
.
0
0
5
.
0
0
0
‘
“
5
5
0
.
0
0
1

0
0

0

.
1

.
.

.
o
.

2
1
.

.
1

l
.

1
1
5

.
.

.
.

.
.

1
5
5

5
1
1
5
0
5
5
5

.
5
1
H
”

.
5

0
0
5
1
.
0
7
5

,
.

.
7
1
.
5
.
5
.
5
.
)

5
5
0
1
.
0
1
1
5
0
0
0
5
5
3
.

.
.
5

5
5
0

.
I

1
0

1
.

5
0

.
5

.
1

.
1
‘
5

.
4

.
1

.
.

1
5
0

1
.

1
.

.
.

.
5

.
1

0
.

.
I

.
5

.
1
5
0
1
.
0
1
2
3
1
1
1
5
5
5
5
5
7
9
5
.

.
.

0
.
1
0
0

7
0
.
1
1
0
.
.
.

0
5
7
.
5
0
‘
7
0
'
5
1
’
.
»

5
5
7
9

.
0
‘

.
0

7
.

.
.

5
.

5
1

.
t

5
1

.
5
1
.

1
1
.
.
1
3
5
:

1
0
0
5
.
1
7
5

.
7
0
7
5
5
0
1
5
5
5

.
.

.
.
5

1
.

1
.

.

1
.

5
1
5
1
1
.

1
.
5
5
5
0
1
1
0
7
5
|
5
1
n
50
“
0
7
7
5
0
0
5

5
5
0
0

0
0
0
5

1
7
9
0
0
5
0
0
0
.
.
.

0
0
5
.

1
7
5
5
5
5
5
1
‘
5
1
1
5
0
1
5
0
0
5
.
.
5
0
.

,
n
n
i
n
w
m
u
o
0
.
.
0
0
5
0
“
:
5
H
0
.
.
.

0
5
.
0
5
0
:

1
5
0
0
0
0
1
0
0
7
.
.
.
.
.
1
0
7
m
5
5
1
5
1
1
R
w
0
5
5
F
U
N
»
.
5
1

,
5
.

1
7
.
1
5
5
7
1
5
.
.
.
0
5
5
0
5
5
‘
:

5
.

0
7
'

a
5

‘
5
'
1
1
'
0
5
0
1
.
'
1
5
.
5
0

0
|

5
0
5
1
5
3
5

1
5

1

5
;
.
.
.
1
5
1
5
1
5
u
1
5
5
r
.
L
.
7
0
«
5
5
r
u
5
n
1
1
¢
.
5

1
1
5
.
5
7
8
.
1
1
.
7
1
»

5
5
.
5
5
.
5
.
5
5
.
“

m
1
5
9
5
.
0
1
.
5
5
.

.
5
5
1
1

5
0
1
.
5
5
5

|
5

5
1

5
5
5
1
5
5
0
0
5

1
5
0
0
9
.
.
.
5

1
5
5

5
5
5

5
1
0
1
5
5
5

5
5
.
1
7
3
7

5
0
1
.
9
5
5
5
.
)

0
5
5
0
0
,
5
0
5
.

0
.
5
5
.
1
5
0
5
5
0
5
0
5
1
.

5
0
5
5
0
5
5
5
0
?

0
7
0
4
0

.
1

5
.
.

.
0
5

.
0
0
0
0
1
5
1
5
1
5
1
.

.
.

.
.

0
5
:
1
5
5
.
.
3
0
1
5
!

.
5
.
,
»
0
u
5
1
n
5
5
1
5
.

0
1
-
1
5

5
5
.
1
5
0
5
0
5
.
.
.
1
.
0
5
.
5
.
1

.
.

1
0
9
0
5
5
0
5
0
5
5
5
5

1
.

5
.
1
.
0
5
.
5
.
.
5
“
5
5

1
1
0
1
0
5
1
7

.
7
5
5
1
.

5
H
5

5
£
1
7
5

5
0
1
0
5
1
1
.
5
1
5

5
5

0
1
0
5
0
0
5

5
0
\
.
|
0
5
1
1
1
7
‘
.

5
5
0

0
0
5
5

.
5

1
0
.
0

1
0
0
0
0
5
0
5
0
1
5
5
:

0
5
5
5
5
5
1
1
0
0
0

5
7
5
.
.

.
5
.

0
1
0
1
0
.

5
5
7
0
1
3
.
1
5
.
0
0
0
5
:
0
‘

0
0

5
0
7
5

.
1
1
0
0

0
5
0
1
5
.
5
.
0
5
.

5
.

.
5
1
0
5

I
.
.
.

0
7
5

.
5

5
4
7

.
1
.

..
7
7
7
1
1
1
0
.
.
1
5
1
5
1
1
.
1

.
.
5
.

.
5
0
.
»

.
5
.

.
.

f
u
l
5
1
5
9
5
5
5
1
5
.
.
5
.
.
7
5
1
7
5
.
.
5
7

l
5
5
1
:
0
.

.
5
1
'

0
5
-
0
5
0
1

5
0
5
0
1

n
o
.
’
5
5

7
_

0
5
0
.
1
5
.

1
0

5
o
.
.
5
“
—

5
5
0
0
|
0
1
5

O
1
0
‘
5

0
0
0
5
(
0
,
0
0
5
.
7
9

1
0
.
0
1
.

_
5
.
1
0
1
5
5
-

.
0
0
9
1
‘
0
0

0
5
|
0
1

1
5
.
5
5
5
7
0
0
0
0
1
1
0
0
0
1
‘
5
0
0
0
0

7
0
5
5
0
0
5

0
0
0
0
.

1
.

1
.
7
0
0

5
0
.
0
0
0
0
'

0
0
0
0
5

.
0

1
7

5
0
1
0
1

.
.
5
1
1
1
5
7
5
1
.
1
0
.
5
1
5
5
1
.
.
.
.
1
0
5
0
0
5
‘
1
.

1
I
5
0
.

5
.
I

o
.

0
5
.

.
.
5
5
’
0
H
1
7
1
.
.
0
7
0
0
0
5
.
5
5
5
M
A
1

”
‘
1
0
“

I
5
.
0
5
0
0
»
.

.
.
l
1
0
1
0
w
5
.
.
|
~
m
u
.
5

.
5

5
.
1
1
5
5

5
.
5
.
5
.
.
1
5
0
5
7
0
5
1
0
5
2
”
!

.
1
»
.
2
5
5
0
1
5
0
0
1
,
5
5
0
5
0
7
5
7
:

.
0

1
0
5

1
1
5
1
1
1
1
1
5
0
7
7

5
7
.
0
.
5
5

5
1
5
5
5
.
0
5

,
5

.
5
0
|
!

1
7
‘

1
5
5
.
7

1
.

7
1
1
5

5
1
.
5
.

5
0

.
5
1
0
0
5
0
0
5
5
5
0
1
5
‘
5
7
0
5

.
5
5
5
.
.
.

7
0
5
.
5
5

1
1
.

5
5

.
.
0
.

5
.
5
5
.
0
.
5
0
1

1
1

1
1.

5
5

1
7

5
1
5
0
.
0
1
0
.
5
5
.
0
1
1
.
.
.
5
.
7
5

1
0
1
.
.

.
.
1
5
.
5

5
5
5
5
5
5
1
0
1
.
0
5
1
I

1
0
5
.
1
5
0
.
.
.

.
5

5
5

1
1
5
5
0
1
5
5
5
0

.
.

1
5
5
.
1
1
0
.
1
5
.
5
5
.
.
.
5
.
7
1
.
0
.
5
)
1
7
1
5
5

5
.
5
5
.

.
1
5
1
7
.

5
.
5
5
0
5

5
0
.
0
0
5
.
1
5
1
.
0
1
.
.
0
»
.
.
1
3
5
5
5
.
0
5
5
»
~
5
1
0
fl
.
€
r
5
5
1
m
1
.
7
1
1
7
1
.
¢
0
5
5
5
5
5
5
5
5

5
\
5
7
0
1
1
w
a
n
t
o
n
.

7
.

«
1
0
.
5
5

1
0
1
7
1
1
1
1
5
.
.
5
0

.
5
1
1
5

1
5
7
1
5
.
5

1
0
5
0
.
0
1
.

.
1
0
|
1
5

5
7
0

5
0
1
.
1
.

.
.

5
.
0
0
5
1
1
.
2
1
0
0
4
1
.
.
.

5
1
1
“
.
,

7
5
5
.
1

5
.
0
5
0
5
5
.

.
1
0
5
,
5

1
.

5
1
5
0
1
5
5
,
1
0
5
1
.

1
.
5
.
.

'
5

5
.
5
5
1
.
0
0
5
1

1
5
5

5
5
!
»
.
.
5
0
5

.
5
.

7
5
.
0
5
5
5
5
0

5
0
1
5
5
.

7
5

.
.

0
1
1
5
.
5
0
5

0
5
.
5
5
.

0

1
$
5
0
0
1
5

1
.
1
1
1
5
1
,
1
0
.

.
.
.
5

,
.

7
0
.
5
5
7
1
7

1
5

.
5

5
5
1
5
.

.
5
1
1
0

2
5
.
0
5
5
.
5
1
.
1
1
5

.
5
0
0

.
.
.
0
.
1
5
.
5
0
.
1
1

1
1
5
5
.
.
0
1
5
.
5
5
5
.
2
1
.
0
1

.
-

5
.
5
5
5
0
5
5
5
0
1
u
1
5
0
5
1
7
1
5
.

1
5
5
5
1
5
1
1
5
5
5
0
{
1
.
5
0
1
8
1
5
1
5
5
8
2
1
7
4
1
5
-

5
,
5
5
5
5
1
.
5
5

0
5
.

5
5

5
.
5
5
5

5
.
0
7
5
5
9
5
1
.
5
5
.
0
0

r
.

.
5

5
5
1
1
1
1
1
5
0
5
.
.
.

5
7
7
0
1
5
0
1
0

1
.
5

0
.
5

o
.
0

5
5
7

5
I

5
.

5
5
0
5
.
7
7
.
1
0
.
0
5

5
0
0
7
,
7
1
0

.
1
5
1
0
0
5
0
5
0
.
5
5
0
1
.

0
1
5
.

5
6

5
1
5

5
5
1

0
5
1
0
7

5
1
5
5

5
.
0

0
.
7
7

.
0
0
0
0

0
5

1
5
1
.

o
5

.
5
.

5
5

.
5
0

5
0
7
0

5
0
1
‘
1

5
.
7
.
.
.

0
.
0
1
5

.
.
5
5
.
:

5
1
5

.
1
7
5

5
5
5
1
5
5

0
0
1
.
5
5
5
5

5
1
5
5
.
0

5
5
1
1
5
0
5
1
0
.
7
7
n
5
0
L
1
«
5
1
5
0
6
7
7
1
0
5
5

5
.
5
.
8
0
5
1
1
5
,
0
5
0
.
o
'
.
1
1
0
5
0
7
1
5
3
5
5

1
. .
1
0
.
.

0
0
1
0
5
5
5
5
0
0
5
0
0
5
.
.
.

0
5
0
0
6
0
5
5
.
“
5 .
0
3
1
'
0
5
5
1
5
0
u
o
1
7
0
5
q
r
5
f

5
.
5
.
.
5
-
.
0
5
5
0

5
5

.
0
0
.
.
”
.
.
.
5
0
0
.
.
7
f

0
A
‘
1
5
»

7
5

.
.

a
n

.
0
0
0

.
5

.
5
1
.
5
5
5
5
7
5
5

5
.
1

0
.
0
7
1
0
7
1
0
1
5
1
1
1
5
5
5
0

1
0
1
5
1
1
0
1
7
5
7
1

5
5
.

5
.
0

1
0
5
5
7
2
1
1
4
5
7
1
1
1

.
I
”

1
5
1
1
0
5
1
5
5
7
0
1

0
0
5
5
.
5
1
1
5
‘
.
.
5
.
5 .
1
7
.

5
5
5
7
5
9
1
.
5
0
0

1
1
0
5
.
7
1

1
.

“
M
1

1
1
.
.
.
.

1
.
7
1

.
5
5

0
0
5

5
5
5
.
5
0
5
5
.
1
0
0
!

5
5
1
5
.

.5
5.

.
1
5
.
5
0
.
1
9
1
1
.
.
.

.
.
.
5
5
.
5
5

{
5
1
.
5
.
5
5
5
5

5
5
5

.
.
5
,

5
5
.
2

5
7
0

5
1
.
5
7

«
0
5
.
5
0
1
5

7
1
5
.
1
5

5
0
5
1
.

5
0
1
5
5
5
1
1
.
.
5
1

5
.
5

5
5

.
.
5
.
0
.
.
5
5
5

|
,
5
0
1
I
~
0
0
5
.

5
1

5
5
0
.
5
5
5
.
1
.
0
5
2
.

5
0
.
1
0
1
5
5

5
.
1
.

.
0
.

.
.
1
0

.
0

0
5
5

1
0
7

0
1

.
0
1
0

0
.
0
.
7
.
0
5
0
0
:

7
0
5
5
5
7
1
5
0
.

7
5
5
7
5
0
5
.
.

.
1
7
0
5

1
7
0
1
0
5
5
5
0
0
0
1
1
0
.
.
.

0
0
5
9
'
1
5
.
9
0
0
0
'
5
0

.
1
5
.
0
.
1

5
.
5
5

7
.
7
.
5
5
5
'
”
”
3
5
0
0
“
.

5
5
0
0
5

5
5
.
0
.
7
0
u
0
5
5
1
’
1
1
0
5
5
.
.
.

5
5
7
3
1
5
5
.
1
.

.
7
0
.
5
5
.
1
4
0
1
.
.
.

9
1
0
.
0

6
5
5
1
0
1
0
.
.
.
.
5
.
.

.
5
5
.
.

5
5
5
0
5
5
5
1
5
.

5
1
5
5
0
5
0
0
0

1
5
5
7
0
5
5
0
0
)
0
5
5
5
1
1
5

1
7
5
7
1
5
0
0
“

.
7
5
3
“
»
.
T
i
m

"
5
.
5
0
5
5
5
1
0

5
5
7

5
5
5

0
5
0
5
5
5
5
5
7
0
5
1

.

.
,

5
.
1
0
0
.
0
0
1

7
1
.

.
5
0
1
7
-

.
1
1
5

-
5
5
5
0
0
0
0
0
.

.
7

,
,
,

1
0
.
0
5
5
0
5
0
"
7
1
0
0
0
9
0
5
0
1
.
- 0
n
1
5
“

0
0
5

Q
5
,

1
0
1
5
5
0
1
7
5
0
1
5
1
.

5
9
5

0
g
.

.
1

5
.

.
7
.
1
5
1
.
5
5
5
.
0
3
5
3
.

7
0
.
t

5
0
3
5
5
5
1
7
5
1
7
5
5
0
.
1
5
1
0

5
5

.
5
,
7

5
.

5
0
5
1
5

.
5
5
5
0
7
!

5
1
0
5
0
5
5
0
5
5

.
5
5
o

5
.
0
1

5
1
4
5
0
1

0
0
5
5
0
5
0
1
0
1

5
5

‘
0
7
“
.
0
0
.
0
.
3
5
0
3
!

5
1
5
0
4
5
5

5
v
"
)
.

3
5
5
0
5
5
3
1
5
0
0
5
»
.

5
0
1
7
3
0
3
0
0
0
5
0
0
5
.
»

5
5
0
0
.

.1
.
1
0

5
1
‘
5

5
.
1
1
0
5
5
0
5
0
5
.

L
.
.
.
.
5
5
5
1
5
0
5
5
0
5
7
3
|

5
.
0
.
5

5
0
.

5
5
.
2
.
5
.
8
:

.
5
5
N
I
.
.
.

5
0
—
5
0
1
»
.

.
5
.0
.
1
1
5
»
0
5
.
5
0
\
5
7
1
1
.
1

0
5
1

5
.
0
.

.
1
5

5
5
5

.
1
5
0
5
1
.
a

.
5
1

5
.
5
5
.
5
A
5
7
1
0
!

5
.
7
.
.
7

5
0
.
5
1
.
5
1
.
1
3
5

5
.
5
1
1
5
5
7
5
5
1
5
1
5
5
9
7
1
!
!
!

3
0
5
5
5
0
5
5
5
1
5
”
5
3
.
5
1
.
?

1
.
5
5
.
5
0
5
5
N
5
a
u
1
5
5
1
n
1

5
.

5
5

5
.
5
.
1
.
3
5
5
5
.
5
1
5
.
5
5
1
.
0
5
8
.
7
5
5
"
.
.
.

.
1
.

0
5
5
7
0
5
5
0
1

.
5

.
5

5
3
1
7
5
5
.
1
5
5
.
.

1
5
‘
.

7
5
.
0
0
.
1
0
3
1

1
7
0
.
.
5
1
9
0
5
5
5
0
.
0
.
1
.
0
1
0
3
,
1
5
5
.
5
0
.
-

1
5
1
5
.
0
5
5
.
0
0
5
0

5
5

»
1
.
0
1
0
7
0
5
5
0
5
0
1
0
5
7
9
7

0
5
0
0
5
5

.
1
5
.
.
5
5
0
.
5
0
.

5
.
1

0
5
0
0
5
7
f
!

.
.
5
0
1
0
0
0
1
0
0
“

5
1
7
5
3
1
5
5
0
1
5

1
5

.
“
I
o
n
a

0
1
.
1
0
5

.
.

5
0
5

.
1

.
1
1
.
.
.

5
1

1
5
5
0
,
0
5
0
.
4
1
1
1
”

.
0

.
5
0

1
5
0
4
5
0
.
0
.
1
7
5
5
5
5
5
9
5
5
5

0
1
0
1
5
0
5
1

1
5
5
5
0
.
0
7
5
1
1
0
5
0
0
5
0
5
5

.
0
0
.

5
0

5
7
0
.
.
5

5
.
5
1
5
.
5
0
7
.
1
5
5
.
5
l
5
5
.

.
.
5
.
5
5
0
1
u
*
-
.
.
0
5
1
5
5
A
_
5
5
7
~
5
0
5
1
5
5
5
.
.
5
.
-
0
1
.
1
0

0
.
3
5
.
5
5
1
0
”

m
5
.
- 5
5
1
1

0
5
0
0

$
1
5
.
0
5

5
.
5
5
}
!
4
&
1

.
.
1
1
.
.

.
1
.
.
.
1
.
.
5
0
5
1
.
5
0
1
.

5
5
1
.
5
.

1
1
1
5
0
0
1
5
1
5

5
.
5
7
5
0

1
.
5
1
5
5
5
1
1
5

1
.
.
5
5
.
5
5
5
0
5
0
5
0
1
0
1

5
.
.
-
A
H
1
5
2
5
3
1
1
0
0
1
0

.
1

5
1
.
5
5
5
‘
1
5
5
1
7
1
1
5
5
-
3
5
0
0
1
1
1
5
.

1
5

1
‘
5
3

5
1
5
1
7
5
1
5
0
0
5
5
1
0
.
(
.
.
.
-
{
0
0
5
5
7
1
5
5
9
5
1
5
1
5
u
5
n
5
0
u
5

.
R
9
0
-
5
5
W
5
1
9
5
5
5
.
.
u
«
M
5
.

.
5

.
.

1
.
5
9
0
1

7
7
0
1
5

.
5

5
5
1
1
5
1
0
3
1
5
5
.
£
¢
.
5
.
5
l
.
.
5 7
1
.
7
1
,
. 5
.
7
0
1

5
5
0
.
1
5
5
0
.
.
0
7
.
5
8
5
7
.
5
5
5
2
5
i
5
1
5
6
5
5
4
5
0
5
5
5
1
5
5
1

5
4
’

1
5
5
0
7
9

.
0
5
1
5
.

V
5
5
5
5

1
5
.
1
0
1
1

.
5
5

.
.

1
.
7
7
1
7

.
0
5
0
.

5
5
5
I
I

0
1
1
1
5
7
5
5
.
5
5
5

.
1

.
.
5

1
5
.
5
.

2
7
1
5
5
0
0
0
0
5
5
1
5
.

0
1
1
.
.
.
5
0
.
.

.
I
?

.
1
1
5
7
]
1
5

0
0
5
1
5
5
0
5
1
0
5
7
5
0
.
7
1
1
5
5
1
7
1

5
5
5
0
5
0
0
5
1
5

.
5
7
5
5

.
.
.
.
5
.
5
5
1
0

0
5
5
.
5
.
5
.
|
5
|
0
7
9
5
1
€
5
1
(
7
1
5
5
u
0
0
5
5
5
5
5
|
A
!

.
7
0
.

1
5
.

2
0
.
5
0
.
0
0
5
.
3
5
1
5
.
.
.

5
5
5
5
5

0
7
5
0
5
7
9
7
5
7

.
5
5
.
.

.
5
1
1
.

.
.

5
1
.
5
5
0
0
5
5
0
7
5
5
5
5
5
0
5

0
5
0
0
5
0
9
5
0
9
5
5
7
1
5
5
5
5
5
.
5
0
q
u

.
5
5
1
0
g

’
5
5
.
.
.

I
5

.
.

7
1
2
5
.
5
5
0
0
'
5
h
o
o
u
5
5
1

1
5
0
.
3
5
5
.
1
5
0
0
.
.
.
.

5
5
0
.
0
.
5

5
0

5
5
5
.

7
1
.

0
1
5
1
5
1
7
0

1
E

1
‘
1
,
0
5
.
5
I
I
o
v
'

0
.
5
.

0
:
0
0
5

5
0
1

7
5
0
.
0
.

.
1

1
t

5
5
0
1
5
“
5
0
7
2
0
1
.
0
2
1
5
C
5
5
-
0
fi
o
5

.
.
o
I
A
Q
A
Q
H
M
‘
A
I

.
0
0
0
0
!
K
‘
s
-
C

”
”
0
.
0
0
1
0
.
0
.
“

0
0
.
2
0
.
0
0
.
0
5
0
‘
“
0
¢
5
0
5
0
5
1
0
5
5
5
l
5
.
0
0
.
0
1
‘
0
0
0
'
g

5
.

5
.
0
.

0
0
5
5
5
.
0

I
.

1
.
5
1

.
1

1
1

.
.

.
5

.
.
1
.
.
.

5
5
'
1
9

1
5
0
5
.
.
5
1
0
5

0
.
5
5
1
1
5
5
0
0
0
5
9
1
1
.
.
.

5
5
5
h

1
0
4
5
5
1
1
5
5
0
1
5
0
.1
5
.
1
,
.
5
.

.
5

I
0
0
0

1
.

1
.
.

.
0
.
5
5
0
5
0
5
6
.

I
.

3:

3
1
1

3

t

’1

i

Q

E
O

I

.35

i-

'.

5
5
.
5
1
7
7
1
5
0
5
0
5
1
1
7
7
5
0
1
0
1

0
0
3
0
5
1
7
0
7
7
0
7
5
5
.
5
1
1
0
-

9
3
.
1
5
.
0
5
.
1
5
5
.

0
0
0
0
M

0
"

5
I

‘
5
.
“
"
v
5
m
0
1
0

5
‘
“
0
0
5
"
u
9
1
5
5
0
1
.
0
"
:
0
,
1
0
1
.
7

.
5
1
0
0
-

7
0
1
5

9
5
7
0
0
7
5
5
1
:

0
5
0

0
5
0
'
.
-

”
o
n
“
.

:
1

.
5
5
5

5
0
5
5
1
.
.

5
0
1
1
.
3
5

5
1
.

0
5
.
5
1
5
5
5
'
5
7
‘
1

.
0

.
5
.
-

5
1
.
5
0
0
.

5
0
5
5
5
‘
5
-
7

.
0
.
5
.
3
1
.
5
5
.
7
1
1
5
.
5
,
5
5
0
.
0
7
5
5

0
.
5
5
5
5
1
.

1
.
1
1
5
0
5
.
0
.
5
5
7
0

1
1
1
1
1
0
.
1
5
5
.

5
0
1
7
5

5
2
7
5
1
.

.
.

5
1
.

.
1

1
1
.
0
.
5
.

5
1
a

1
7
0
.

0
0
0

5
5
0
1
0
0
0
0
0
5
3

0
5
5

0
7
0
;
.

$
1
5

' 0
.
5
7
5
1

5
.
0
5
.
1
.

0
. .
.
.
‘
o
-
7
.
.
|
0
0

‘
0

0
5
1
5
0
1
7
1
5
1
0
1
5
0
.
5
1
5
9
5
0
.
0
7
5
0
0
7
1
5
1
5
5

7
.

.
0

.
1
1
0
.
7
5

1
5
0
1
-
r

.
5
.
.
0
.
.
0
5
1
A
~
.
5
.
5
.
5
5
.
5

.
1
.
1
0
0
5
0
0
.
.
.

0
7
.

0
1
.
5
1
5
5

.
0

.
.

.
.

1

1
.
1
.
0

.
1
7
1
0
.

.
‘
5
5
5

5
5
0
1
.
5
5

5
1
1
1
0
0
5
1
0
0

N

0
0
5
1
0
-
!

£
1
1
0
9
5

1
.
7
.
.

.
1
1

0
.
0
0

0
.
5
0

.

7
0
1
5
i
0

.
0
1

.
0
1
1
1
,

5
1
.
0
0
5
1
7
1
5
5
7
0
1
5
.

0

”
5
0
5
—
5
5
1

5
3
‘
0
0

$
9
9
1
1
0
1

.
0
.
-
7
N
5
5
1
0
.

3
0
%

0
5
0
0
.
5
»
0
5

1
1
%
»

..
5
.
5
3
5
5
5
5
5
“
.

..
..
..

3
5
5
1
1
1
.
5
1{
$
1
1
5
.
1

1 .
0

0
0
1

.
0

5
.
1
1
7
.

0
9
0
5

5
‘
1
.
5
0
0
0
0
5
5
.

1
0
5
0
1
0
1
5
.
.

0
1

.
1
0
,

.
5

.
0
5
0
0
1
.
0
0
0
7
5
0
‘
5

5
5
0
0
0

5
1
0
0
5
5
5
1
0
7

1
0
5
‘

7
.
1
0
5
.
.
.
7
‘
0
‘

.
5
.
0

0
O

5
.
5
5
0
.
,
0
5
7
h
1
h
5
5
1
.
‘

0
5
0
1
1
0
0
.

1
|
.

0
5
0
5
5
1
5
5
5
5
7
7
1

5
5
.
1
8
1
7
.
.
1
5
1
5
0
0
.
0
?
.
0
0
.
5
.
5
0
5
.
3
1
2
!

5

0
.
1
3
1
0
:

5
.
.
.
‘

1
.

0
.
0
0

0
0
-
0
.
0

1
7

”
A
I
—
0
.
3
1
0
1
0
4
0
1
0
5
5
1
d
v
o
‘
5
fl
5
0
0
0

‘0.

0

0
3
0
0
3
9
0
0
0

0
5
0
1
‘
5
0
.
5
.
1
0
0
1
.
1
0
“

0
7
1

0
.

5
,

5
‘
5
0

0
5
0
5
0
l
5
:

5
,

.
1

.
.

7
7
0

.
1

.
5

¥
J
u
5

“
5
5
0
1
0
1
3
0
5
!

I
5
.
0
7
1
5
3
7

1
1
.
0
0
5
5
!

1
,

‘
1

5
5
7

5
.

1
,
0

1
0
1

.
1

I
5

0
0

5
5
1
0
1

5
0

1
0

a
.

5
0
1
.
»
:
5
0
1
0
1
1
5

5
5
|
5
1
K
5
5
1
0
5
5

A
.

.
0
0
0

.
5
.
0
3

1
:
1
7

5
0
5
(
1
5
l
w
3
3
0
.
‘

5
5

1
5
7
5
7
0
.

5
1

5
0
.

.
.
.
.

.
0

.
.
1

.
.
1

1
.

.
1

.
I
.

0
7
.

5
0
7
1
.

5
.
5

1
I
t
.

5
.
0

1
6
.
0
.
5

5
0
1
9
4
1
1
7
0
5
1
3
1
1
.
.
.
-

5
.

1
5
7
5
1
0
.

1
‘
5
5

8
.
5
5
5

.
0
.
.

5
5
1
5
5
5
0
5
5
7
6
5
1
5

.
.
0
5
0
7

1
5
.
1
5
.
1
1
1
0

.
.

.
.
C

.
5
0
5
7
.

1
.

5
0
1

0
.
5

I
5

.
.

.
1
”
.

5
.
5
5

5
0
5
0
5
:
.
.
.I
I
I
:

5
5

.
1

.
7
.

0
0
"
.
.
.
0
1
5

.
5
5

1
0
0
.

.
1
5
5
1
.
5
.
1
.
5
1
1
l

7
5
0

0
7
’
5
0
“
!
“

5
.
5
0
0
5
O

0
5
5
5
”
?
“
0
1
.
5
5
0
5
5

5
5
5
5
0
5
5
.
0
0
0

0
0
1
1
1
0
5
6
5
0
.
!
!
!

0
.

0
7
.
.
0
5
7
7
7
1
1
0
.
.

1
.
5
1
5
7
0
0
1
.
0
.
1
.
5
.
5
0
1
.

0
1
.

.
1
5
5
7
0
.
0
1
1
5
1
5
5
5
5
1
5
1
6
5
5

.
.
5
5
7
5

0
5

.
7
9
.

5
.
1

5
fi

5

1
5
.

5
7
.
3
5
1
1
0
.

1
.

9
1
5
7
0
7
.
1
0

0
1
5
.
0
0

5
0
5
0
1
.
0
5
o
1
1
5
I
0

5
0
3
5
0
0
1
5
5
5
.
.
.
-
,
1

.
.

1
.
7

.
1

.
.

5
.
7
.
5
.
5
1
5

5
5
0
1
0
7
0
5
0
:

1
7

1
7
|

1
.
5
7
1
0
0
1
0

5
.
1
0
5
1
7
1
5
.
5
0
3
:

0
0
7
1
5

1
3
.
1
5
.

.
0
0
5
5
5
5
7
0
3
5
0
1
0
.

1
5
0
,
0
5
5
.
.

0
0
5
§
0
3

5
:
0
7
.

5
5
0
0
5
5
0
0
5
”
;

5
5
0
5
0
0
0
0
2
0
5
7

5
A
5

0
7

0
1

.
5
1
7
.
.
.

7
.
1

.
.
1
1
‘
0
.
3
:
.
.
.

1
.
5
.
3
:
.

0
5

5
1
5
5

0
.
55
0
5
1
5
5
.
5
5

I
1
0
5
1
7
5
3
.
!

.
5
7
5
0

1
0
.

5
7
.
7
1
.
.
.

,
.

5
_

.
.

0
&
5

I
»
.

.
.

3
0
.
0
5
0
5
1
0

.
5
.

0
1

,
1
0
4

l
e
‘
l

‘
5

,
1
.
9

1
1
5
0
5
5
1
1
0
1
9

7
1
1
5
0
1
0
7
1

0
5
.
7
.
0
7
.
1
0
0
0
0
.
0
0
0
1
5

0
5
0
0
0
7

0
5
7
0
5

.
1
7
9
5
.

,
0
0
0
5
'

.
1
0
5
|

5
.

0
1
00
0
5
‘
.

5
0
0
0
.
5
K
'
0
0
5
.
0
0
0
0
5
0
.

.
0
0
5

5
0
5

.
1
5
5
5
5
0

5
7

1
1

‘
x
5
5

.
0

.
1
0

,
5

.
5

1
1
.
1

I
.
.
.

1
.
5
1
5
5
.
.
.

5
.
0

5
5
0
5
5
;

5
1
-
7
5
-
5
3
5
0
:

0
0
0

.
5

2
5
0
5
0
-
9
7
0
5

0
i
n
;

0
1

.
.
7
1
{
W
V
-
5
0
5
0
.

l
5

.
5
5
5
o
o
5
1
0
1

0
9
.
0
5

9
1
5
.

0
.

7
1
7
0
5
1
.
5
0
1
1
1

7
0
.
1

.
0
0
7

5
0
7
1
5
0
0
5
.
.
»
5
0
5

5
5

1
.
o
.

.
.

1
0

.
.

.
5
5
0
0

.
5
1
1
I
.

.
5
,

7
.
5
.

7
5
‘
.
.
.

5
5
0
0
5
.
0
0
.

5
5
0
.
5
5

1
.
1
5
.
9
.
5
.
5
5
8
0
0
0
5
1
1
5

0
0
5
7
5

1
5

7
0
5
L
5
5
1
.

5
1
.
5
5
5
0
5

.
.
5
5
5
1
1
5
5
5
1
u
0
.
»
5
5
.
.
5
5
5

5
5
5
0
5
5
0
1
.
.
5

5
1
.
0

.
.
.
.
7
1
1
.
|
.
5
.
1
.

1
5
.
5
1
5
'
I

1
.
8
.
.
»

.
5
1

7
1
5
5
1
0
0
5
1
.

7
.

.
1
1
5
5
5
5
5
5
5
5
.

0
1
0
1
1
.5
1
1
1
.
1
7
“
5

5
5
5
5
1
5
5
0
5
5
1
5
5
5

0
5
.
5
1
1
5
1
1
0
5
L
1
0
0

.
5
5
5
5
‘

1
5
5
0
5
0
5
.
5
1
1

1
5
4
4
.
2
5
7
5

0
1
.
5
1
.
5
5
.
3
9
5

11
1
.
1
5

5
9
5

7
0
0
0

9
7
.

5
0
1
‘
5

0
0
5
0
0
1
0

.
0
5
.
.
.

0
1
5
0
1
0
0
5
5
5
0
0
0
0
.

0
.
5
5
1

0
0
0

I
.

0
.
7

1
.

.
1

.
1

1
.
0
0
3
:
5
0
4
1
;

0
K

1
0

a
.

0
1

_
.

5
1
0

5
0
0
5
0
-
5

5
o

5
0
0

5
0
7
0
0
5

.
r
1
0

.
0

5
.

5
5

(
9
1
.
0
5
1
3
:

1
0
0
-
1
5
5
0

w
a
n
t
-
0
5
“
.
5
N
.
5
5
1
.

5
0
5
5
0

0
5
.
0
7
5
0
0
7

5
.
0
5
0
5
0
5
.
5
?
”
(
0
5
3
0
7
6
L
1
0
5
'
0
m
W
2
g
5
5
5
5
r
r

5
.
5
0
1
0
5

.
1
1

0
1

1
5
.
5
5
5
1
7

.
3
1
1
.
5
5
.
.

5
5
0

5
5

0
5
9
1
5
1
5
5
0
0

5
7
1
3
9
1
1
1
7
1
5
1
1

0
7

7
n
o
.
.

5
1
5

5
5

“
“
5
3
5
.

5
0
|
.
”

5
’
1
.

5
0
.
5
5
1
1
5
.

5
5
I

1
0
9
5
5
5
5
1
7

.
.
.
-
5

o
.
1

.
5
.
3
.
5
.
1
1
1
1
.
.
.5
0
1

5
5
5
u
0
1
1
1
m
5
1
5
5
1

.
0
.
5
.
7
.
0
5
1
.
5
5
5
.
5
0
1
9
0
.
5
0
.
.
1
5
_
«
5
1
1
1
5
.
t
1
5
1
1
1
‘

5
M
0
1
~
.
.
7
1
5
5
.
5
0
7
n
u
5
.
1
5

.,
1

5
.1

0
7
5

5
5
5
5
.
5
5
.
7
1
5
5

.
1
5
.

1
1
5
.
5
1

0
5

.
5

.
1

1
5
5
7
1

7
5

1
5
0
.
5
0
0
5

.
.
.

5
1

1
7
5
0
0

0
7
1
5
.
5
5

.
5
.
.
5

.
5
5
1
0

1
.

_
.
1
5
1
5
:

1
5

.
.

5
5

5
5

1
1
1
5
.
0
2
1
.
.
.
.

5
7
.
0
5
1
7
1
0
0
5
.
5
I
|
1
0
0

.
.
0
.
.

.
0
0
5
.
5
0
0
,
.
l
.
5
5
1
0
5
1
5
0
0
0
0
7
”
?
.
L

.
0
5
“
?

5
.
5
1
.
1
1
5
5
.
o
|
0
.
0
1
”
r
7
“
u
1
‘
.
5
5
7
w
h
5
5
W
0
»
k
u
fl
i
I
b
k
g
o
d
!

.
6

£
5
3
.
1
9
,
“

1

1
.
l
5
»
5
9
|
7
.
7

0
7
.
1
.
1
1
.

1
1
5
.
5
0
5

5
5
4
7

7
0
5
0
5
0
7
‘
7
0
‘

0
5
%
.

1
0
5

1
.

1
0

1
.
1
.
.
.

3
0
7
0
1
0
7
5
1
0
5
1

7
5
‘
0
0
1
1
5
.
0
0
~
0
7
7

l
.
0
0

1
.
.
0
5
1
1
5

1
0
5
.
1
0
.
0
5
8
.
1
0
1
0
0
1
.
0
7
.

5
.
5
.

0
.
7

1
0
0
0
0
9
0
0
9
5
0

5
0
5
.
.

5
5
1
P
H
0

.
1
5
0
.
I

5
5
5
J

1
1
.
5
1
.
0
1
5
.
0
5

.
5
‘
5
5

6
4
5
1
.
.

u
.
1
1
1
5
1
5
.

1
5

1
5

1
.
1
5
5
5
.
1
7

5
.
0
.

,
0
1
.
0
1
0
5
5

5
.
.
.
.
i
n
“

.
5
0
.
7
5
5
0
1
0
1
5
5
1

5
.
.
.

5
.
5
3
7
1
1
7
%
.

5
.
5
7
4
0
5
0
n
n
0
0
5
5
5
;

0
.
9
3
5
5
1
5
5
.
.

.
1
5
0
55
0
'

0
5

5
.

.
J

1
0
.

I
.

1
0
5
0
.

5
0
,
1
0
7
.
4
1
.

1
5

5
5

.
5
0
'
0
0
.
.
.

7
1
.
5
.
5

7
7
5

1
.
1
1
5
.

‘
5
5
:
.
.
.

5
1

.
1
1
5
5
1

0
5

1
.

9
7

”
1
1
7
5
p

7
-
5
5
.

5
5
1
1
5
5
5
5

5
7
5
1
0
0
5
5
5
1
}

5
.

5
5
0
5
1
5
3

1
0
5
‘
0
1
1

1
5
0
0
5
0
I
0
5
0
0
0
.
1
0
5
.
5
5
5
.
1
5
0
1
5
1
0
7
0
0
5
5
5
0
0
0
0
0
’
0
0
0
5
0

3
.
0
5

.
0

0
0
1

5
.
5
5
5
.
0
0
0
I

.
.

a
f
o
.

7
.
0
0
.
0
I
H
1
‘
L
0
.
”
”
0
9
.

‘
0

1
.

1
0

C

.
5

.
5
w
O
n
u
w
5
1
.
o

5
.
0
5
‘

5
1
5
0
.
5
1

0
1
1

0
‘

5
.
1
.
7
1
1
0

0
0
3
‘
1
5

0
.
.

o
.
—

.
5
5
7

I

0
.
0
0
0
.

5
0
.
5
1
5
0

,
5
7
5
5
5
I
‘
,
I
o
.
0
0
1
1
0
0
.
7
1

5
0

.
.

5
1
0
1
h
0
I
0
u
5
H
H
7
.
5
0
0
0
L
5
1

0
7
5
1
.
0
0
5
0
5
5
‘
5
6
1
5
0
7
5
1
5
1
5
.
0
1
0
.

7
.

.
0

5
5

1
5
0
1

I
5
5
.
0
1
1
.
0
1
-
1
5
5
.

.
.
5

.
7
5
.
.
I
.

.
.
5
H
M
1
9
1
1
N
5
4
.
5
1
0
u
.
0
w
.
.
|

1
.

5

|
.5

‘
C
o
‘
.
5
0
5
5
u
5
5
.
m
&
.
1
5
0
0
1
.
1

5
5
.
0
5
.

.
.
5
7
5

:
1

,
.
5
1
»

5
5

1
5

.
1
5
1
5
5
1
5
5
1
1

5
5
5
5
5
0
5
5
0
5
1
5
1

5
.
5
5
.

1
5
3
5
1
.
5
.
1
0
5
5
.

.
5
.
.
1
5
5
0
5
1
1
1
M
5
J
1
m
5
f
5
1
0
5
6

1
5
1
.
5
3
5
u
1
5
\
7
¥
+
0

1
.

“
5
9
0
1
9

1
.
3
5
5
1
!

1
.
.

5
5
.
1
1
-
.
.
.

.
.
5
.
.
I
.

5
1
1

1
5
C

.
0

5
5
5
1
0
0
0
5
1
1
.
:
1
3
5
0
1
1
5
0

.
5
.
-
0
5
.
5
5
.
1
5
.
0
0
5

.
0
5

5
5
a

,
._

1
5
0
5
5
‘

.
5
5
.
.
.
.

7
1
.
.

5
.
5
5
5
.
.
.
1
9
0
.
7
0
7
‘

1
1
1
5
1

.
5
5
5

.
1
'
5
5
0
0
5
I
5
5
5
K
.
5
0
0
5
1
.
0
0
5
1

5
5
.
1
5

J
5
0
0

.
.
7
5

.
3
1
5
0

5
5
5
7
0

1
5

I
.

0
5
5
0
1
5
0
0
5
5
5
1
0
5
.
5
1
1
7
1
7
.
”

0
0
5
0
5
9
0
7
9
5
5
5
5
0
0
.

0
.
0
5
9
.
0
1
0

.
r
5
0
0
|

0
0

0
5
0
5
0
4
0
1
5
0
1
7
0

.
0
5

{
5
1
5
1
5
5
5
0
.

5
5
A
5
1
‘
!

1
5
.
5
0
.

5
.

5
.
5
0
5
5
5

.
0

1
5
.
1
7
.
.
5
5

0
5
5
.
5
1
0
.
5
8
8
.
5
1
5
c
5
5
5
0
5
5
1
1
fi
t
f
1
1
5
9
5
.
7
7
0
.
7
0
.
1
5
5
w
?
!
;
.

5
.
.
.
.
5
7
.
5
8
7
5
0
7
1
1
5
1
5
5
3
5
5

11
7
.
“
.
.
.
5
0
“
.
“
5
”

5
5
0
0
1
.
0
7
5
1
,

2
5

0
0
5
0
5
0

.
1
1
5
7
1
5

.
5
0
5
7
9
0
5

5
.
5
1
.
0
5

.
5
5
.

5
5
0
0
5

5
5

5
5
5

5
0
0
1
5

0
0
1
.
5
5
0
5
3
5
1
0
1
5
0
0
0
0

.
7
0
1
5
"
.
0
0
9
0
1
1
5
5
5
0
0
0
7
0
.
0
5
0
5
.

£
7
5
.

.
I
‘
.

5
0
,
1
1
3
1
.
-

5
5
5
7
0
5
5
5
0
5

5
5
5

.
5
L
7
Y
’
7
0
0
h
w
1
5
7
0
7
f
1
r
u
0
‘
1
1
q
9
1
0
‘
1
1
1
p
.
1
4
5
7
u
u
5
5
1
5
5
1
5
0
m
m

.
.
0
1
1

1
1
0
5
0
3
9
0
r
|
1
|
.

7
.
5
1
5
1
0
5
5
5

5
5
0
5
.
1

.
1

v
I
0
5
0
5
0
7
5
5

5
0

5
‘
0
0

5
9

a
0
0
5
9
5
1
1
1
1
7
0
1
1
1

1
1
1
1
1

1
1

I
1

.
7
1
.

1
9
0
.
0
5

1
5
5
.
5
.
5
5
.
5
5
.
1
1
5
.
5
1
2
.
.
.

5
.
.
.
.

..
.
5
1

1
9
.
?
!

1
1
.
5
1
0
0
1
1
5
1
5
5
0
5
5
5
5
.
0
»
!

5
0
5

1
.
.

5
.
0
8
5
1
1
1

0
0

1
5
.
5
5

1
1
1

0
5
5
1
.
5
5
.
5
.
0
5
.
1
0
0
1
1
'

0
0
1
.
0
5
5

5
0
'
.

5
0
1
.
1

5
0
1
1
0
-
0

.
.

5
.
.
-
‘
0
0

.
5

5
0
5
0
5
0
1
.

5
1
5
0
1
7
5
1
0
0
.
5
0
1
5
5
1
5
0
5
1
0
.

5
5
.
5
.

5
0
.

5
5
0
5
5
5
1
1
5
5
.
1
3

5
5
5
9

5
.
.
.
.
.

5
5
.
5
5
1
0
5
7
1
5
1
1
5
1
0
5
1
:

5
5
1
”
}
.
.
.
7
5

1
1
0

.
5

5
5
5
0
0
0
5

5
1
.
0
5

,
1

5
0
1
0
0
0

‘
5
.
.
.

0
5
7
0
0
9
5
1
5
7
0
0

0
‘
0
0

0
0
3
%
5
5
5
.
“
?
1

1
.
0
.
5
.
Q

0
5
5
5
.
.
.
.
5

5
.

5
.
1
.
.
I
"
.

1
1
7
.

1
1
1
5
5
7
5

5
a
f
o
u
l
-
”
5
1
.
5
5
5
5
N
5
1
0
5
0
r
0
‘
5
5
o

1
.
0
5
5
5
1
5
5
.

5
5
.
5
5
!
“
0
I
h
5

1
0
5
0
7
1
00
0
5

0
‘
1

1
5
0
.
0
.
.

.
5
0
0
5
1
.
.

7
1
0
5

.
0
0

2
0
7
5
|
.

.
1
0
3
’

.
0
5
1
7

1
0
0
!

.
0
1
5
7

0
1
5
.
5

5
0
9
1
1
5

.
0
5
3
0
3
5
3
1
1
.
5
.
|
1

1
1

1
0

0
0
.
1
5

.
.

5
.
5
5
0
3
5
0
1
1
0
5
1
1
5
5
0

0
5
7
1
!

7
9
5
.
0
5
1

0
0
0
0
5
0

0
1
0

5
7

.
0
.
I
:

1
0
A
.
5
5
7
1
:
“

5
5
0
0
5
0
1
1
1
7

5
0
“
,

5
h

1
5
0
‘
1
5
0
0
‘
,

0
5
7
0
.
1
1
5
.

1
0

.
.

.

I
.

1
0
.
5
7
5
5
0
.
0
5
7
7
5
5
7
5
5
5
5
1
5
1
‘
5
5
5
.
I
.
0
7
u
m
5
5
.
5
.
u
!

5
5
.
1
7
5
5
5

..
5
.
1
5
5
0
1
5
n
n
m
5
1
0
1
1
1
5
'
5
1
.
-

1
9

1
.

1
0
0
5
0
0
0
7

0
0

I
0
0

I
1
.
3
9
.
7
0
.
3
0
.
7
0
7
0
0
1
0
7
0
0
0
1
5
'
7
U

a
0

.
.
0
5
5
5
5
o
M
-
1
0

5
0
7

.
5

5
‘
1
)

0
7

fl
0

1
.

5
0
0
-
5
h
u
4
0
0
1
5
3
5
-
0
0

5
1
1
.
0
5
5
1
5
0
5
5
fl
0
1
1
4
0
1
0
.

7
1
1
0
1
.
0
9

5
1
9
.
0
0

5
5

7
1

5
0
0
5
.
5
7
7
5
1
0
“
;

5
7

.
0
.
1
0
5
0
5
0
0
0
.
o
u

I
I

”
n
u
—
5
0
5
0
0
5
.
-
0
7
5
N
1
|
5
1
M
0
~
m

0
9
‘

5
0
5
5

h
c
u

1
0

.
5

5
0
0

5
.

.
.
5
0
.
5
5
.
0
0
,
A

>
0
0

1
.
0
0

5
0
-
0
5
0
.

1
1
.
.
.

5
1
5

5
0
5
5
.
0
5
.
0
9
0
.

5
5

i
K
‘
K
5
0
5
0
5
L

5
.
5
5
0

.
1
0
0

a
.

5
5
1
5
.

7
0
5

5
5
5
5
.
.
.
.

5
5
0
5
.
5
5
5

1
.
5
5
5
.
.
.

v
:

.
5
5
1
1
.
.
.

1
5

$
.
5
5

7
.
5
1
.

5
4
0
5
3
5
5
1
5
0

5
.
1
.
1
.
5
1
1
9
F
1
1
1
1
5
5
1
5
.
5
1
5
1
5
.
1
5
7

.
-

1
0
5
9
0
1
7
5
5
5
0
0
1
1
.
.
-
0
5
5
5
:
5
1
9
1

0
.
1
5
»

0
"
,
.
1

5
.
.
.
.
5
1
7

5
7
0
5
5
.
5
1
5
I
5
5
1
'
w
t
5
5
n
.

.
1
0
5
1
0
5
0

0
.
1

5
5
.
5

5
.
5
5
.
0
.
5
6
6
5
5
7
.

7
5
,
5
5
5
.

1
0
.
5
I

5
7
5
5
5
0
5
1
5
0
5
0
1
1
.
1
0
1
5
1
1
1
1
0
.

1
1
.
0
5

.
”
u

1
0
0
0
5
5
1
7
1

5
7
.
1
0
1
1
5
5

3
.

5
.
0
.
)
.
.
.

5
1
0

.
.
.
L
.
0
5
0
1
.

5
1
0
7
1
.
5
.
1
1
5
5

5
5

0
.
0
7
1

1
.

.
5
5
5

5
1

”
£
7

1
0
0
.

I
v

5
1
.
0
.
7

5
,
7
1
"
.
.
.
0
0
0
7
5
5
.

1
.
5
{
5
0
5
7
7
'
u
5
u
1
7
8

.
5
0
1
.
.
.
-

5
.
1
.
5
1
.
.
.

.
5
I

.
.
.
.
.
.
0
1
.
5
5
1

.
5
“
Q
5
.
.
.

7
.
.
.
.
0
5
0
1
7
5
5
1
5
3
7
5
5
0
1
1
5
5
.

o
.
5
1
5
1
1
5
.
1
1
5
.
.

5
.
1
5
.

,
1
:

3
1
5
1
0
1
.
5
0

1
.
5
0

5
5
7
9
2
0
5
-
0
5
5

5
.
5
0
5
.
1
0
5
5
»

5
0

.
.
5
.
5
.
3
‘
5
5
:

1
5
0
5
5
,

5
1
5
1
.
5
1
.
1
5
1
0
5
0
5
5
0
0
5
5
0
0
5
7
4
1

[
1
3
1
1
0
5
5
0
1
1
5
1

1
0
1
.
1
5
.
5
7
0
7
0
5
0
5
5
1
0
5

0
5
-
1
5
5

0
.

5
‘

1
0

I
t
.

0
7
1
5
0

1
0

0
5
.
.

0
1
‘
5
7
5
H
0
0
‘
fi
fl
0
5
5
5
1
5

.
1
.
5
5
5
0
5
0
5
5
5

4
1
0
5

.
1
5
5
0

.
0

1
0

A
1
.
»

5
:
.

5
.

5
1
5
.
.

5
0
1
1
5

«
7
7
5
0
1
5
5
5
1
1
1
0
0
5
-

1
5
.
0
0
0
0
1
5
8
5
5
0
0
3
0
9
0

1
0
5
0

I
5

L
o
w
-
5
.
0
1
5
0
“
.
.
.
5
‘

1
5
5
3
7

1
0
5
7
5
0
5
7
0
7

0
7
0
5
.
0
1
5
5
5
5
-
1
5
1
5

5
1
1
5
5
0
7
5
1
1
‘
5
0
1
5
5
1
5

5
5
5
5
1
0
.
0
\
5

.
0
4
%
:

.
5
5
.
:

5
5
.
0
1
W
5
5
0

1
5
.
.

1
7
5
0

0
5
5

5
5
0
.
1
1

.
‘

1
5
7
1
9
1
5
5
1
1
1
0
5
5

.
0
1
0
5
6
.

5
5

1
5
0
1

1
5
0
5

0
5
.
1
0
7

5
3
4
5
0
0
.
1
0
5

.
5

r
l
1

.
0
5
"

5
0
5
0
1
0
5

5
.

.
1

.
.

5
.

1

0
0
.

.
0
‘

0
1
7

0
0
0
%
.
5
9
5
;
:

‘
7
‘
.

“
5
0
.
3
5
%
?

.5
11
m1
11
11
1n
u.
..
5

..
1.

..
1.

..
..

5.
.5

5.
..

.5
5.

.5
..

.5
..

..
1.

..
1.

.
.5
1.
..

.
.
1
;

..
1
,
5
5
1
,
5
5
1
,
;

55
.1

..
.
.
.
1
5{
1
.
1
.
5
1
1
1
5
1
4
5
.
.
.
.
.
.
r
w
.
.
1
.
.
fi

15
11

..
.“

.
.
1
1
1
.
.
.
“
1
5
.
5
.
1
.

5
.
.

_
1
&
7
.
.
.
r
1
1
_
.
.
5
.
5
.
1
1
1
.
1
fl
1
u
.
5
w
5
5
5

5.
11

15
55

.“
5
5
.
1
1
.
1
2
.

2
.
5
.
1
.
5
.
.
.
.
”
5
5
1
.
.
.
;
2
r
.
.
.
5
.
.
.
.
.

1
..

.
.
5
.
.
.
.
.
.
5
1
5

.
.
1
.

.
1

1
7
5
.
.
.
.
.
.
3
.
1
.
.
.
_
_
.
1
.
1
u
.
n
. .
.
.
”
1
.
5
.
1
5
.
.
.

5
5
.
5
5
.
.
.
.

.
1

1.
.

.
,

.
.

.
.
.
.
1

..
.

.
5
1
7
3
.

1
.

“1
.1

1.
1.

s
a
r
a
1
5
.
.
.
5
.
1
.
;
.
.
.
.
.

1
.
1
.
5
1
.
1
”
:

n
.

.
.

“
3
.
5
5
.
4
1
.
5
3
.
1
1
.
.
.

1
.
5
1
:
5
.
.
.

5
.
1
5
5
.
3
1
7
»
.
.
.

.
V
.
5
.
.
5
1
.
.
1
.
u
5
.
5
.

..
5.

5
3
5
.
5
1
.
5
5
5
.
5
1
.

5.
15

51
51

51
51

11
15

55
..

..
..

-5
,

.
1

.
5.

.
.
..

.
1

.
r

.
1

.
,

1
.

1
.
1

_.
.
.
.
:

-
1

.5
1.
..
.

.
5
5
5
1
.
5
1
.
5
5
.
5
1
“
.
.
9
2
.
.
5
.
5
.
5
.
5
1
1
3
M
r

£
1
1
1
,
5
1
1
.

.1
.

5
1
5
5
0
1
5
0
5
0

0
5
5
7
‘

.
7
0
5
5
1
5
5
0
,
‘

5
5
5
.
5
.
.
.

N
.
9

.
1
1
.

.
1

5
.

.
5

1
,

.

7
5
.
0
5
1
5
1
9
|

9
.
5

5
0

5
0
0
1

5
0
0
0
1
0
0
‘
1
0

5
5
7
.
7
1
5
.
5
5
5
.
5
0
9
.
5
1
7
.

5
.
5
0

5
5
5
0

5
d
"
.

5
5
5
5
.

.
o
.
.
.
|

0
5
7
.
0

0
0
.
5

0
0
.

.
“
5
1
w
”
?

5
‘
5
0
:

5
5
.

0
5
5

1
5
5
-
5

.

”
0
5
5
3
5
.
5
0
0
.
3
0
.
3
5
5
1
5
5
1
1
0
1
5
5
5
5
1
5
5
:
l
q

5
0
5
1
5
5
5
5
5

3
1
.
7
5
.
0
1
.
5
5
0
.

8
1
.
5
.
1

5
0
5
1
5
.
0

:
7
1
5
A1
.
5
5
5
3
5
1
5
.

.
r
5
0
5

0
.
1
.
5
.
1
5
5
5

1
1
(
5
-

”
l
a
n
d
-
I
I

3
0
.
5
0
.
5
5
N
1
.
J
_
5
5
5
.
.
l
5
0
n
w
5

5
1
J
5
.

0
5
5
0
5
5
5
.
1

.
.

1
5
5
“
0
.
0

5
5
.
5

5
.
0
5
.
5
5
.
.
.
1
o
0
.
,
'
0
5
0
o
0
.

0
1
0
5
-
1
5
5
0
.
.

0
0
.

5
.

0
.
5
0
0
%
»
.
.
.
3
-
1
.
o
.
1
5
1
:
r
5
0
.
0
7
1
—
5
.
W

5
~
'

5
5
.
.
.
.
1
0
”

5
5

a
k
w
fi

C
5
.

5
1
5
1
.
0
.

0
7

.
5

5
‘
5

.
1
.

5
.
5

.
5

0
5
.
5
1
5

5
15
1

‘
5
0

0
"

5
w
.

5
.

.

5
5
0
0
0
0
5
1
5
0
0
5
)
:

0.
0
.
“
A
0
0
1
.
5
5
.
1
0
.
0
L
5
5
.
7
5
0
5
0
5
0
5
.
5
v
m
u
1
0
5
0
5
.
5
5
.
0
5

0
5
0
‘
u
0
0
r
1
0
0
7
0
r
A
5
0
o
5
5

I
5
1
5
»

1
m
1
0
0
5
5
7
0
5
5
0

4
A
.
9
0
0
1
5
5
5
5
0
1
1
0
1
“

0
7
0
3
0

0
.
0
5
5
.
.

1
.
.
]
.
9

5
K
;
0
1
0
1
.
5

1
5
5
1
0
.
0
A
0
.
5
1
.
_
5
9
0
5
5

1
.

5
5

.
5
1

0
5

3
.
1
7
.
5
5

5
1
5

5
.

1
5
:
5
5
5
.
.

5
.

1
7

5

.
.
5

.
1
t
h

0
.
0
5
5
.
0
0
5
.
1
5
7
.
1
1
0

.
5
.

5
5

5
.

5
..
.
5
.
5
1

5
.
.
.
4
5
.
5
5
5
1
5
0
1
3
5
1
5
5
7
2

9
.
5
5
.
0
1
5
5
.

.
5
.

1
0
5

5
5
1
5
.
.
.
.
.
.

5
5
1
1
.
5
5
6
.
.
.

7
1
5
.
0
1
0
.
.
0
7
5
.
.

1

0
E
d
w
u
n
fi
l
t
h
n
fi
J
M

0
.
»
.
H
’
M
u
5
5
m
f
5
5
1
5
5
f

5
5
“
.
.
»

5
1
5
5
m
§
5
m
5
5
5
5
5
1
1
.
"
_
0
5
5
5
5
0
9
7
5
1
5
5
5
.
1
»
1
7
5
.
.
1
.

.
.
1
5
5
5
.

5
..
..

1
I
.

.
5.
.
5
5
.

3
5

5
5
.
5
.

,,
5
5
5
.
.

.
5
5
7
0
.

1
7
5
1
.

This is to certify that the

dissertation entitled

BOOSTING AND ONLINE LEARNING FOR

CLASSIFICATION AND RANKING

presented by

HAMED VALIZADEGAN

has been accepted towards fulfillment

of the requirements for the

Ph.D degree in Computer Science

9

4

/Major Professor’s Signature

09/27/2o\ 0.

Date

MSU is an Affinnative Action/Equal Opportunity Employer

LIBRARY A“

Michigan State

University__
——.——u——,

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K:IProj/Aoo&Pres/CIRC/DateDue.indd

BOOSTING AND ONLINE LEARNING FOR CLASSIFICATION

AND RANKING

By

Hamed Valizadegan

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2010

ABSTRACT

BOOSTING AND ONLINE LEARNING FOR CLASSIFICATION AND

RANKING

By

Hamed Valizadegan

This dissertation utilizes boosting and online learning techniques to address several

real-world problems in ranking and classification. Boosting is an optimization tool that

works in the function space (as opposed to parameter space) and aims to find a model

in batch mode. Typically, boosting iteratively constructs weak hypotheses with respect

to different distributions over a fixed set of training instances and adds them to a final

hypothesis. Online learning is the problem of learning a model when the instances are

provided over trials. In each trial, a new sample is presented to the learner, the learner

predicts its class label and then receives some feedback (partial or complete). The learner

updates its model by utilizing the feedback and then a new trial starts.

We consider several learning problems, including the usage of side information in rank-

ing and classification, learning to rank by optimizing a well-known information retrieval

measure called NDCG, and online classification with partial feedback.

Using side information to improve the performance of learning techniques has been

one research focus of machine learning community for the last decade. In this dissertation,

we utilize the abundance of unlabeled instances to improve the performance of multi-class

classification, and exploit the existence of a base ranker to improve the performance of

learning to rank, both using the boosting technique.

Direct optimization of information retrieval evaluation measures such as NDCG and

MAP has received increasing attention in the recent years. It is a difficult task because these

measures evaluate the retrieval performance based on the ranking list of documents induced

by the ranking function, and therefore they are non-continuous and non-differentiable. To

overcome this difficulty, we propose to optimize the expected value of NDCG and utilize

boosting technique as the optimization tool.

Online classification with partial feedback is recently introduced and has applications

in contextual advertisement and recommender systems. We propose a general framework

for this problem based on exploration vs. exploitation tradeoff technique and introduce

effective approaches to automatically tune the exploration vs. exploitation tradeoff param-

eter.

© Copyright by

HAMED VALIZADEGAN

2010

To my loving parents, Simin Rahimi and Reza Valizadegan, for their

unlimited and unconditional encouragement, support, and love.

ACKNOWLEDGMENTS

During my Ph.D, I have received support from a number of people without whom the

completion of this thesis was not possible.

First of all, I would like to express my deepest gratitude to my thesis advisor, Dr. Rong

Jin, for his unique supervision and guidance. He motivated me to work on a diverse set

of problems in machine learning and provided me with an excellent mathematical and

optimization knowledge support. Under his supervision, I have learned different aspects of

conducting high-quality research and become capable of publishing papers in prestigious

research venues such as NIPS and WW.

For a number of years, I have also worked closely with Dr. Pang-Ning Tan with whom

I published a few papers in data mining. I would like to present my sincere appreciation

for his valuable support during those years. I will never forget his kindness and help.

I would also like to thank my committee members, Dr. Anil K. Jain, Dr. Joyce Chai,

and Dr. Selin Aviyente for their valuable feedback and discussions during my compressive

and thesis exams.

I want also thank the Department of Computer Science and Engineering at Michigan

State University that provides me with the financial support in terms of teaching assistant

for a number of semesters. I would like to particularly thank Dr. Abdol-hossein Esfahnian,

Dr. Eric Tomg and Linda Moore for their amazing attitude in helping graduate students in

the department.

The contextual advertisement group of Yahoo! kindly provided me with an exceptional

work atmosphere during Summer and Fall 2008. I would like to thank everyone in their

group, particularly Dr. Jianchang Mao, the head of contextual and display advertisement

science and Ruofei Zhang, my direct mentor.

It has been a great pleasure to collaborate with Dr. Hang Li, the research manager of

Information Retrieval and Mining Group at Microsoft Research Asia, and Dr. Shijun Wang

vi

from National Institute of Health with whom I co-authored research papers in ranking and

online learning, respectively.

Finally, I should thank the members of LINKS and PREP labs for all the great supports

they have provided me with during my Ph.D. Particularly, I would like to thank Wei Tong,

Fenhjie Li, Yang Zhou, Pavan Mallapragada, and Matthew Gerber.

vii

TABLE OF CONTENTS

LIST OF TABLES xi

LIST OF FIGURES xii

1 Introduction 1

1.1 Classification 2

1.2 Learning to Rank 3

1.2.1 Training set 5

l .2.2 Evaluation 6

1.2.3 Learning 6

1.3 Batch Learning 7

1.3.1 Boosting 8

1.4 Online Learning 11

1.5 Contribution of This Dissertation 13

1.6 Benchmark Data Sets 15

1.6.1 Classification Data Sets 15

1.6.2 Ranking Data Sets 16

2 Semi-Supervised Multi-Class Boosting 18

2.1 Introduction 19

2.2 Related Work 22

2.3 Multi-Class Semi-supervised Learning 23

2.3.1 Problem Definition 23

2.3.2 Assemble Algorithm 23

2.3.3 Design of Objective Function 25

2.3.4 Multi-Class Boosting Algorithm 27

2.4 Experiments 3 1

2.4.1 Experimental Setup 32

2.4.2 Evaluation of Classification Performance 33

2.4.3 Sensitivity to the Combination Parameter C 36

2.4.4 Sensitivity to Base Classifier 36

3 Optimizing NDCG Measure by Boosting 40

3. 1 Introduction 41

3.2 Related Work 43

3.3 Optimizing NDCG Measure 44

3.3.1 Notation 44

3.3.2 AdaRank Algorithm 45

viii

3.3.3 A Probabilistic Framework 46

3.3.4 Objective Function 48

3.3.5 Algorithm 50

3.4 Experiments 54

3.4.1 Experimental setup 55

3.4.2 Results 56

4 Ranking Refinement by Boosting 58

4.1 Introduction 58

4.2 Related Work 61

4.3 Ranking Refinement 62

4.3.1 Problem Definition 62

4.3.2 Encoding Ranking Information 63

4.3.3 Objective Function 64

4.3.4 Boosting Algorithm for Ranking Refinement 69

4.4 Experiments 74

4.4.1 Experimental Setup 74

4.4.2 Results for Relevance Feedback 77

4.4.3 Effect of Base Ranker 78

4.4.4 Effect of Size of Feedback Data 79

4.4.5 Results for Recommender System 79

4.4.6 Time Efficiency of Ranking Refinement 80

5 Online Classification with Bandit Feedback 85

5. 1 Introduction 86

5.2 Related Work 87

5.3 A Potential-based Framework for Classification with Partial Feedback 88

5.3.1 Problem Definition 88

5.3.2 Banditron 90

5.3.3 Potential-based Online Classification for Partial Feedback 90

5.3.4 Exponential Gradient for Online Classification with Partial Feedback 95

5.4 Experiments 97

5.4.1 Experimental results 100

6 Robust Online Classification With Bandit Feedback 102

6. 1 Introduction 102

6.2 Related Work 105

6.3 Balancing between Exploration and Exploitation 106

6.3.1 Preliminary 106

6.3.2 Finding Optimal 7 using [’y‘t aé gt] 3 rt and [9} = gt] 5 pt 108

6.3.3 Finding Optimal 7 using [37¢ aé gt] 3 1 and {Q} = yt] _<_ pt 110

6.3.4 Finding Optimal 7 using [3} 76 gt] 3 rt and {1;} = gt] 3 1 111

6.4 Experiments l 12

6.4.1 Experimental Settings 112

6.4.2 Experimental results 1 l3

ix

7 Conclusion and Future Work 116

7.1 Summary and Conclusions 116

7.1.1 Boosting 116

7.1.2 Online Learning 118

7.2 Future Work 119

7.2.1 Boosting '......................... 119

7.2.2 Online learning 120

APPENDICES 122

A APPENDIX 123

A] Proof of Lemma 1, Chapter 2 123

A2 Proof of Lemma 2, Chapter 2 124

A3 Proof of Theorem 4, Chapter 2 125

A4 Proof of Proposition 2, Chapter 3 126

A5 Proof of Lemma 4, Chapter 3 126

A6 Proof of Theorem 5, Chapter 3 127

A.7 Proof of Theorem 6, Chapter 3 127

A8 Proof of Theorem 7, Chapter 3 128

A9 Proof of Theorem 8, Chapter 4 130

A.10 Proof of Lemma 5, Chapter 4 131

All Proof of Theorem 9, Chapter 4 131

A.12 Proof of Theorem 10, Chapter 4 132

A.13 Proof of Proposition 5, Chapter 5 133

A.14 Proof of Theorem 11, Chapter 5 133

A.15 Proof of Lemma 7, Chapter 5 135

A.16 Proof of Theorem 14, Chapter 6 135

A.17 Proof of Proposition 6, Chapter 6 136

A.18 Proof of Proposition 7, Chapter 6 136

A.19 Proof of Proposition 8, Chapter 6 137

BIBLIOGRAPHY 138

LIST OF TABLES

1.1 Description of the classification data sets used in this dissertation 16

1.2 Description of data sets in Letor 3.0...................... 17

xi

2.1

2.2

2.3

3.1

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

6.1

6.2

LIST OF FIGURES

Performance comparision 35

Sensitivity to parameter 0 37

Sensitivity to the base ranker 39

The experimental results in terms of NDCG for Letor 3.0 data sets 57

Reduction of the objective function Lp using the OHSUMED Data Set . . . 71

NDCG of relevance feedback for different algorithms 81

NDCG of MRR with different base rankers for relevance feedback 82

NDCG ofMR with different numbers of feedback 83

The ranking result for recommender system 84

Running time ofMR for different numbers of movies 84

Performance comparisons of different methods 98

Performance comparisons of different methods with varied 7 99

The error rates of Banditron with different choice of 7 104

The error rates of different methods over trials 114

xii

Chapter 1

Introduction

Learning is the task of constructing a prediction model using training data. A learning task

is defined by an objective function that evaluates the performance of each model in the do-

main. A variety of objective functions for learning are defined for different learning tasks.

These learning tasks differ in I) their type of prediction, H) the type of feedback/labeling

for training data, and III) the way training data are presented to them.

Based on the type of prediction, the learning algorithms can be classified into three

major groups: classification, regression, and learning to rank. A regression model aims

to map an instance to a numerical value. A classification model (classifier) categorizes

instances into predefined classes and a ranking model (ranker) orders a series of items

based on a given request.

Training instances can be presented to the learner in two different ways: batch mode

and online mode. In batch mode, a set of training instances are provided to the learner and

the learner trains a model off-line. The learned model is evaluated based on the prediction

made for unseen test instances. We usually assume the training instances are i.i.d samples

from an unknown distribution and the objective is to learn a statistical model that is able to

make accurate prediction for unseen instances sampled from the same distribution of the

training data. In online mode, the task of learning and making prediction are performed

at the same time; i.e. the learner applies the current model to each received instance, and

then receives the feedback for that instance and consequently updates the model based on

the instance and the feedback. In online mode, we do not have to make the i.i.d assumption

regarding the received instances and the data generator produces instances arbitrarily [l].

The feedback for the training instances can be either partial or full in online mode

and the label for training instances can be either present or absent in batch mode. Each

of these combination results in different learning tasks. When we discuss batch learning

in more details in section 1.3, we cover a brief description of semi-supervised learning,

in which part of training instances are unlabeled; we discuss online learning with partial

feedback in Section 1.4 where the feedback only indicates if the predicted class is correct.

In the following sections, we focus on classification, learning to rank, batch and online

learning to draw the direction of materials in the future chapters of this thesis.

1.1 Classification

Classification is the task of categorizing instances into predefined classes and has found

countless number of applications. In the fully supervised mode, the learning algorithm re-

ceives a set of labeled instances, each represented by a vector of features and a label that

shows its class assignment. The objective of the learning algorithm is to learn a classifier

that is able to make accurate prediction for unseen examples, generated by the same distri-

bution for training instances. The ability of a learner in producing models that perform well

for unseen instances is called generalization ability [2] in the machine learning literature.

Many effective algorithms have been proposed for the task of supervised classification,

such as Support Vector Machines (SVMS) [3], logistic regression [2], and boosting [4].

Classification is one of the oldest machine learning tasks. Nonetheless, it still finds

applications that demands developing new techniques. One of the major challenges we

address in this dissertation is to learn a classification model from partial feedbacks. As

an example, consider the problem of contextual advertisement that chooses advertisements

to display on a web page for a specific user [5]. The contextual advertisement algorithms

are usually based on this assumption that users provide feedback by clicking on relevant

advertisements [5]. However, if none of the displayed advertisements are relevant to the

user’s information needs, they will not be clicked and consequently the algorithm does not

know which advertisements are relevant for the user. We refer to this scenario as partial

feedback as opposed to the case of full feedback where the correct output (i.e., the relevant

advertisement) is provided for each instance. This task demands new online learning algo-

rithms that are able to learn over the trials in the partial feedback setting. In particular, the

online algorithms need to explore the exploration vs. exploitation trade-off techniques that

are primarily developed for multi-armed bandit problem [6].

The performance of a classification algorithm is usually evaluated by the classification

accuracy. For the evaluation of multi-class or multi-label learning, the classification ac-

curacy may not be sufficient, particularly when the number of classes is large or classes

are unbalanced. In those cases, the most commonly measures used for classification are

precision, recall or a combination of these two, such as F1 measure and ROC curve.

1.2 Learning to Rank

Ranking is the task of ordering a list of offerings for a given request. It receives a set of

offerings and a request as input and outputs the list of offerings sorted according to their

relevancy to the request. The performance of a ranking algorithm is evaluated based on

how well it sorts the offering according to their relevancy to the request. Learning to rank

is the task of learning a ranking function that can order the offerings for unseen requests. It

receives a set of requests, each with a sorted list of offerings as the training set and produces

a ranking function to sort offerings for new requests. Learning to rank is a relatively new

area of study in machine learning that has received much attention in recent years because

of its important role in a variety of applications including:

0 Document Retrieval: In document retrieval, the request is a textual query (a set of

keywords) and the offerings are documents. Users provide a set of keywords to the

system and the ranking system should retrieve the most relevant documents to those

keywords.

o Recommender Systems: In recommender systems, the request is a user and the

offerings are the items to be recommended. For example, in movie recommenda-

tion system, a ranking system aims to recommend the most interesting movies to a

particular user based on the history of users and movies information.

o Sentiment Analysis: In sentiment analysis, the request is a text and the offerings are

the attitudes of the author regarding to a particular subject.

9 Computational Biology: In computational biology, a request is a protein and the

offerings are the list of different 3d structures. The objective is to provide a sorted

list of 3d structures for a given protein.

0 Online Advertisement Placement: In online advertisement placement, the request

is a user visiting a web page and the offerings are the advertisements. Online adver-

tisement systems should rank the relevancy of different advertisements to that user

and display the most relevant advertisement on the web page in order to maximize

the number of clicks on the advertisements.

Throughout this thesis, we use the document retrieval terminology (e.g. query for request,

document for offering) when talking about ranking although the material are applicable

to other domains. Since learning to rank is a relatively new problem, we describe it in

more details here. A learning to rank system usually consists of three components that

distinguish it from classification and regression.

1.2.1 Training set

The training set for learning to rank consists of a set of queries. For each query, a list of

documents and their relevancy to the query are provided. The common practice in learning

to rank is to assume the existence of a set of base rankers that can be considered the feature

generators for query-document pairs. PageRank [7], vector space model [8], and statistical

language models [9] such as BM25 are some example base rankers. These base tankers are

basically unsupervised models that measure the relevancy of each document to a query. The

value produced by each base ranker is considered a feature for a query-document pair and

the learning to rank algorithm aims to combine these feature values to produce a ranking

function.

The label information in learning to rank is in form of relevancy judgments that can be

of three different types: relevancy scores, pairwise relevancy information (partial ordering)

and a complete ordering. A relevancy score is a numerical value (e.g. 1,2,..) that shows

the level of relevancy of documents to a given query [10]. Relevancy scores are the most

widely used relevancy information. The pairwise relevancy information is the relative

relevancy between two documents that indicates which document among the two is more

relevant. The pairwise relevancy can often be derived from the implicit feedbacks from

users. For example, in search engines, when a user clicks on one of the ranked documents,

it is safe to infer that the clicked document is more relevant than the documents that are

ranked before the clicked one. This type of click-through feedback provides the relative

relevancy for pairs of documents [11]. A less commonly used relevancy information is a

complete relevancy ordering of documents to a given query [12] in which documents are

ordered in the descending relevancy. Notice that the relevancy scores can be converted to a

pairwise ordering and complete ordering but the Opposite is not true.

1.2.2 Evaluation

The performance of a ranking system is evaluated based on how well it predicts the rele-

vancy of documents to a query. Several evaluation measures are introduced in the literature.

Area under the ROC Curve (AUC), Mean Average Precision (MAP), and Normalized Dis-

counted Cumulative Gain (NDCG) are some of the most-widely used measures. AUC is

based on the Wilcoxon test, a nonparametric statistical test to measure the distributional

difference between two sets of numbers. AUC works only for two levels of relevancy judg-

ments and measures how well a ranking function places the relevant documents on the top

of the irrelevant documents. AUC treats documents similarly regardless of their position in

the ordered list. However, the top retrieved documents are more important because users

only look for the relevant documents at the top of the list (e.g. consider a search engine in

which users only look at the first few pages of retrieved links). Based on this observation,

MAP [13] and NDCG [14] are constructed to put more weight on the documents at the

top of the list. Similar to AUC, MAP only works for binary relevancy judgment. On the

other hand, NDCG is a general evaluation measure that can handle ranking problems with

multiple levels of relevancy judgements.

1.2.3 Learning

Three types of learning to rank algorithms can be found in the literature: Pointwise, pair-

wise and listwise approaches. Pointwise approaches [15-17] can be applied when the

relevancy scores of documents are available. In this case, the relevancy scores are consid-

ered as absolute quantities and a classification or regression technique is applied by treating

the relevancy scores as class labels or numerical values. The pairwise approaches are the

only group of techniques that can handle the pairwise relevancy information. They ap-

ply a classification or regression technique to learn the ordering information of pairs of

documents [18-23]. The third group of algorithms, the listwise approaches, are the most

effective learning to rank techniques that have been studied in the last few years. They are

motivated by this observation that most evaluation metrics of information retrieval measure

the ranking quality for individual queries, not documents. These approaches consider the

ranking list of documents for every query as a training instance [13, 24—29] by optimizing

a listwise loss function. We describe these techniques in more details in Chapter 3.

1.3 Batch Learning

In batch learning, a set of training instances are provided that are generated by an unknown

distribution. The goal is to train a model off-line that is capable of making accurate predic-

tion for unseen instances. As mentioned before, dependent on the type of training instances

and their labels, different learning tasks can be defined. For example, in classification, each

instance is a vector of features and the label is the class assignment. And in the listwise

approach to learning to rank, each instance consists of a query, the list of its documents,

and the relevancy of documents to the query.

Training instances can be either all labeled or partially labeled that results in two dif-

ferent modes of learning: supervised and semi-supervised learning. All training instances

are labeled in supervised learning and plenty of unlabeled instances are provided in case of

semi-supervised learning to help the process of learning. The usage of unlabeled instances

are based on some assumptions about the data generating process such as manifold and

cluster assumption [30—35]. We return to these assumptions in Chapter 2.

In most studies of batch learning, an objective function is designed to measure the

performance of a given model (function) on instances. Different learning algorithms can

be designed by defining different objective function for the same task. For example, in case

of classification, the negative log-likelihood function is used in logistic regression, a hinge

loss leads to support vector machines, and etc. In case of learning to rank, the pointwise

approaches utilize a classification or regression model, i.e. they utilize a classification or

regression loss function. Similarly, pairwise approaches are concluded from designing a

classification or regression model on pair of documents and a listwise learning to rank

algorithm results from utilizing a loss function in the level of query.

Given an objective function (loss function) L(F) to measure the performance of a given

model F, learning translates to the process of finding F that optimizes L(F). A common

approach is to restrict the model to a member of a parametric family F(w) (e.g. a linear

model). This constraint translates the objective function L(F) into an objective function of

parameters 212, i.e. L(w), and consequentially the optimal model is found by optimizing the

objective function with respect to w. In this case, L(w) is called a function in the param-

eter space. A different approach is to directly optimize L over function F. This approach

optimizes the objective function in the function space and is called boosting. Boosting is

the optimization technique we utilize in this thesis for the batch mode algorithms we cover.

1.3.1 Boosting

Boosting [4, 36] is a popular technique with a greedy nature designed to optimize a given

objective function in the Space of functions. This is very important because it allows to

boost the performance of any base function (weak learner) once the problem is written in

the function space. Boosting can be considered as a gradient descent algorithm applied

in the function space [37]; in each step i, it learns a new direction ft and a step size at

to move as much as possible toward the optimum point, which results in a final solution

of Fn = 2L1 aifi. Instead of applying a direct optimization approach such as gradient

descent, bound Optimization strategies [38] may be used; this is because f,- and a,- are

dependent on each other and it is difficult to decide the values for fz- and O, simultaneously.

The bound optimization strategy is often applied to decouple the dependency between f,-

and ai. We use this technique in different parts of this thesis.

First introduced by Schapire [4], boosting was initially designed to convert a weak

learner that performs just slightly better than random guessing into an accurate classifier.

Here, by random guessing, we mean a classifier with less than 50% classification error.

However, as we will Show throughout this dissertation, the meaning of random guessing

can change from one problem to another. In this view, given a set of labeled training exam-

ples (xi, 3],), i = 1..n, a boosting algorithm provides the weak learner with a set of weighted

training examples at each round. The weak learner constructs a model by optimizing its

loss over the weighted training examples. In the new iteration, the boosting algorithm pro-

duces a new set of weighted examples by increasing the weights for the examples that are

misclassified in the previous round. The iterations are repeated till the algorithm converges.

One well-known boosting algorithm is AdaBoost [39], developed based on an expo-

nential loss function for classification. Algorithm 1 shows AdaBoost algorithm. At the

beginning of this algorithm, the booster chooses a uniform weighting over the examples

(Step 3). Given the weights produced by the booster, the weak learner constructs a bi-

nary classifier that minimizes the loss Ct at Step 5. The booster then produces a new set of

weights for the examples in Step 8 by increasing the weights for the examples misclassified

in the previous round of learning (Steps 6 and 7). These steps are repeated for a number of

times. We have the following bound for the misclassification error of the final hypothesis

generated by AdaBoost algorithms:

6 g 2TH;1 et(1— at) (1.1)

where 6t is the classification error for the hypothesis generated in round t. The above result

shows that, under the assumption of weak classifier, the classification error is guaranteed

to be reduced as the iteration proceeds.

Using the Minimax theorem, Freund et a1. [39] showed that there is a mixed strategy

over the space of hypotheses H that produces zero classification error over the training

set if (H, X) is 7-learnable. The progress of a boosting algorithm is measured by how

much the classification error (or a given loss) decreases at each iteration (or over time) and

For 7 > 0, a learning algorithm is 7-leamable if for any distribution Q over training examples X, the

algorithm can return h E H with at most % — 7 classification error

Algorithm 1 AdaBoost Algorithm

1: Input

1. A weak learner, and a set of training examples

2. A set of training examples (x1,y1),...,(:rm,ym) where 1:,- E X and y,- 6

{—1,1}.

2: Initialize F(:r,-) = 0,2' = 1, .., m

3: Initialize 01(2) = 1/m,z‘ = 1, ...,m

4: repeat

5: Find the classifier ft : X —> {—1,1} that minimizes 6t = 2&1 Dt(i)I(y,- 74

ft($i))

6: Compute at = %ln(l—:t—€t)

7 Compute F(a:,-) = F(:c,') + aft(:r,-), i: 1, ..,m

(2.) = Dt(i)exp(20tyift($i))
8: Compute the new weighting Dt+1 t

malization factor.

9: until reach the maximum number of iterations

where Zt is the nor-

defined in the following form:

M(Pt1 Q0) S HtT=16(M(htr Qt)) (12)

where 6 is an increasing function of the loss, M(Pt, Q0) is the suffered loss when the

majority vote Pt is used over H and Q0 is the uniform distribution over X (i.e. M(Pt, Q0)

is the computed loss of weighted majority vote over the original samples), and M(ht, Qt)

is the computed loss at round t (i.e. the loss suffered when a single hypothesis ht is applied

over the weighted samples set Qt).

Beside classification and regression, boosting has been applied to a wide range of ap-

plications including:

o Semi-Supervised Learning: Boosting can be utilized to adapt a supervised learner

to the problem of semi-supervised learning. For example, [40] used binary classifier

as the weak learner and boosted it for the task of semi-supervised classification and

[41] exploited a binary supervised learner as the weak learner and boosted it for

semi-supervised clustering.

10

0 Learning to Rank: Boosting is used to learn a ranking function to order the rel-

evancy of documents for a query. RankBoost [19] and AdaRank [42] are example

applications of boosting to ranking. RankBoost uses pairwise binary classifier and

boost it for ranking and AdaRank adapts AdaBoost to optimize information retrieval

evaluation measures such as Normalized Discounted Cumulative Discount (NDCG)

and Mean Average Precision (MAP).

1.4 Online Learning

Online learning is the task of learning when the examples are provided sequentially (over

the trials). In each trial, the learning algorithm receives a new example, classifies it and

then acquires some sort of feedback. Using this feedback, the online learning algorithm

updates the model in order to better classify the future examples. The feedback provided

to the online algorithm can be either full or partial. In the full feedback setting, after

classifying an instance, the algorithm receives its true class label. One well-known example

of such online learning algorithm is the well-known Perceptron algorithm [43]. In the

partial feedback or "Bandit" setting, the true label is not revealed and the feedback is

limited to whether or not the algorithm classified the instance correctly. Since the difference

between full and partial feedback in the above discussion only makes sense for the case of

multi-class classification, the online classification with partial feedback is called multi-class

bandit learning [5]. The objective of the learner is to generate a sequence of hypotheses that

guarantees a small cumulative loss in the long run when compared to the best hypothesis

in the space of hypothesis; i.e.

T T
1 1 .

5: 2:1: M(Pt. Qt) S ? mgn t§=1:M(P.Qt) + 5(T) (1-3)

11

where 6 is a decreasing function of T and should approaches zero when T approaches

infinity.

The bandit feedback has several real-world applications such as online advertise-

ment [5] and recommender systems [5], as described in the following

0 Online Advertisement: In online advertisement, we often assume that a sponsored

ad is likely to be relevant to the user’s query if it is clicked by the user, and irrelevant

otherwise. In the case when the sponsored ad does not receive a click, the online

advertisement algorithm is unable to locate the advertisements that are relevant to

the given query, leading to the partial user feedback.

0 Recommender Systems: A recommender system recommends some items (e.g.

movies) to the user. The assumption is that if one of the recommended movies are

selected by user, that movie was a correct recommendation. However, if none of the

recommended movies are chosen by the user, the recommender system is not able to

discover the right set of movies for that user.

While the problem of online classification with full feedback is well-studied, online clas-

sification with bandit feedback has received attention only recently [5]. Kakade et a1. [5]

introduced Banditron as an extension to Perceptron [43] to handle the partial feedback set-

ting. Online learning with bandit feedback can be regarded as the problem of multi-armed

bandit [44] when some side information (e.g. the feature vector of instances) is available.

Multi-armed bandit is the generalized version of one-armed bandit game (a traditional slot

machine) in which several levers are provided and the player aims to choose a lever that

maximizes the rewards in the long run. At each stage, the player only knows the reward

for the lever he chooses; the rewards for the remaining levers are unknown to the player.

In a more abstract level, multi-armed bandit problem refers to the problem of choosing an

action from a list of actions to maximize rewards given that the feedback is (bandit) partial.

The algorithms developed for this problem usually utilize the exploitation vs. exploitation

12

tradeoff strategy to handle the challenge arising from partial feedback [45—47].

1.5 Contribution of This Dissertation

We address several important ranking and classification problems in this dissertation. Uti-

lizing side information in ranking and multi-class classification, direct optimization of in-

formation retrieval measures such as NDCG, and online learning in the bandit setting are

the subjects we cover, as summarized here:

0 Semi-supervised Classification: The focus of semi-supervised classification is on

constructing better models by utilizing unlabeled instances when the number of la-

beled instances is small. Several semi-supervised classification algorithms are devel-

oped based on manifold [32—35] and cluster [30, 48, 49] assumptions. Most of these

techniques work for binary problems and converting techniques such as one-versus-

one and one-versus-the-rest are applied to use them for multi-class problems [50].

This converting procedures has several well-known problems including imbalanced

classification and different output scales of different binary classifiers. We utilize

both manifold and cluster assumptions in Chapter 2 and design an objective function

that directly addresses multi-class semi-supervised problem. We solve this objec-

tive function in the function space using boosting technique. Our empirical Study

Shows the superior performance of this boosting algorithm compared to the existing

boosting algorithms for multi-class problems.

0 Ranking by optimizing NDCG: The objective in this problem is to learn a ranking

function by maximizing Normalized Discounted Cumulative Gain (NDCG), the most

frequently used information retrieval evaluation measure for ranking problems with

multi level relevance judgement [10]. This is a difficult problem because NDCG

is a non-differentiable and non-continuous loss function. In order to overcome this

difficulty, we introduce the expected value ofNDCG and solve it in the function space

13

using the boosting technique. The detailed discussion of this boosting algorithm is

provided in Chapter 3.

Ranking Refinement: In some real world applications, there are two complementary

sources of information for ranking, ranking information given by the existing ranking

function (i.e., the base ranker) and that obtained from users feedback. One example

of such applications is relevance feedback, where the two sources of information

are the relevance scores obtained from a ranking function like BM25 [51] and the

relevance judgments obtained by the users. The key challenge in combining the two

sources of information arises from the fact that the ranking information presented

by the base ranker tends to be imperfect and the ranking information obtained from

users’ feedbacks tends to be noisy. We encode these sources of relevancy information

in form of pairwise relevancy and design an objective function to combine them.

We also design a boosting algorithm to solve the resulting objective function. The

detailed discussion is provided in Chapter 4 where we perform extensive experiments

to Show the superiority of our proposed framework to several baselines.

Online Multi-class Learning with Partial Feedback: Unlike online learning with

complete feedback that has been extensively studied [52], the problem of online

multi-class learning with bandit feedback was introduced very recently [5]. Ban-

ditron, the first introduced algorithm for multi-class learning with bandit feedback,

is a direct generalization of Perceptron to the case of partial feedback that uses ex-

ploration vs. exploitation tradeoff strategy to handle partial feedback [5]. Using

potential function and exploration vs. exploitation tradeoff technique, we develop a

general framework in Chapter 5, of which Banditron is a special case. The major

problem with Banditron is that its performance could be sensitive to the parameter

that trades off between exploration and exploitation [53]. We develop an effective

approach in Chapter 6 to reduce this dependency.

l4

1.6 Benchmark Data Sets

Throughout this dissertation, we use two sets of data to study the performance of the pro-

posed methods, one set for multi-class classification and one set for learning to rank, as

described in the following subsections. We use 5 folds cross validation to run all the exper-

iments except for online learning.

1.6.1 Classification Data Sets

Multiple benchmark data sets from UCI data repository [54] and LIBSVM web page [55]

are used in our study. Here is the list and a brief description of these data sets:

MNIST. MNIST is comprised of grey scale images of size 28 x 28 for hand written

digits. It contains 60000 training samples, each represented by 780 features.

Protein. Protein has 17766 samples, represented by 357 features and three classes.

Letter. Letter contains 15000 instances of 26 characters, each represented by 16

features.

optdigits. This data set consist of normalized bitmaps for handwritten digits from 30

people. It contains 3823 instances, each represented by 64 features.

pendigits. This is another collection of images for handwritten digits. It contains

7495 samples, each represented by 16 features.

Nursery. Originally developed to rank applications for nursery school, it has 12960

records, each represented by 8 features belonging to one of 4 classes (we removed

one class that only had two samples).

Isolet. Isolet contains 7797 Spoken alphabet that belong to 26 classes, with each

letter forming its own class. Every spoken alphabet is represented by 617 attributes.

Notice that for some of these data sets, there were two separate sets, one for training and

one for testing. We only used the training set in our experiments. The information related

to these data sets are summarized in Table 1.1.

15

Table 1.1: Description of the classification data sets used in this dissertation

Instances Features Classes

Isolet 7797 617 26

MNIST 60000 784 10

Protein 17766 357 3

Optdigits 3823 64 26

Nursery 12960 8 3

Letter 15000 16 26

Pendigits 7495 16 26
1.6.2 Ranking Data Sets

We use data sets from information retrieval and recommender systems to study the per-

formance of ranking algorithm in our studies. For information retrieval, we use ver-

sion 3.0 of LETOR package provided by Microsoft Research Asia [56]. LETOR Pack-

age includes several benchmark data sets for ranking, along with the state-of-the-art algo-

rithms for learning to rank and tools for evaluation. There are seven data sets provided

in the LETOR package: OHSUMED, Top Distillation 2003 (TD2003), Top Distillation

2004 (TD2004), Homepage Finding 2003 (HP2003), Homepage Finding 2003 (HP2003),

Named Page Finding 2003 (NP2003) and Named Page Finding 2004 (NP2004). There are

106 queries in the OSHUMED data sets, with each query equipped with around 1000 man-

ually judged documents. The relevancy of each document in OHSUMED data set is scored

in three levels: 0 (irrelevant), 1 (possibly) or 2 (definitely). The total number of query-

document relevancy judgments provided in OHSUMED data set is 16140 and there are 45

features used to represent each document-query pair . For TD2003, TD2004, HP2003,

HP2004, NP2003, and NP2004 there are 50, 75, 150, 75 150 and 75 queries, respec-

tively, with about 1000 retrieved documents that are manually judged for each query. This

amounts to a total number of 49058, 74170, 147606, 148657 and 73834 query-document

pairs for TD2003, TD2004, HP2003, HP2004 and NP2003 respectively. For these data

Unlike the classical supervised learning, in Ieaming to rank,the representation of documents depends on

the given query. Hence, features are extracted for each document-query pair, not just for individual documents

16

Table 1.2: Description of data sets in Letor 3.0.

Query document pair Queries Relevancy level Features

OHSUMED 16140 106 3 45

TD2003 49058 50 binary 63

TD2004 74170 75 binary 63

HP2003 147606 150 binary 63

HP2004 74409 75 binary 63

NP2003 148657 150 binary 63

NP2004 73834 75 binary 63
sets, there are 63 features extracted for every query-document pair. A binary relevancy

judgment is provided for every query-document pair. This information is summarized in

Table 1.2.

For every data sets in LETOR, five partitions are provided to conduct the five-fold cross

validation, and each partition is further divided into the training set, testing set, and vali-

dation set. The retrieval results for a number of state-of—the-art learning to rank algorithms

are also provided in the LETOR package. We will describe these algorithms in details in

Chapter 3.

In order to evaluate the performance of the proposed ranking algorithms for Recom-

mender System, we use the MovieLens dataset, available at [57], which is one of the most

popular data sets for the evaluation of information filtering. It contains 100, 000 ratings

ranging from 1 to 5, with l as the best rating and 5 as the worst rating for 1682 movies

given by 943 users. Each movie is represented by 51 binary features: 19 features are de-

rived from the genres of movies and the rest 32 features are derived from the keywords

that are used to describe the content of movies. To extract the content features, we down-

loaded the keywords of each movie from the online movie database IMBD and selected the

keywords that are mostly used by the 1682 movies.

17

Chapter 2

Semi-Supervised Multi-Class Boosting

Most semi-supervised Ieaming algorithms are designed for binary classification. They are

extended to multi-class classification by approaches such as one-against-the-rest. The main

shortcoming of these approaches is that they are unable to exploit the fact that each exam-

ple is only assigned to one class in the case of multi-class Ieaming. Additional problems

with extending semi-supervised binary classifiers to multi-class classification include im-

balanced classification and different output scales of different binary classifiers. Given that

there are well-known multi-class classification techniques such as decision tree and multi-

layer perceptron, the research question is whether it is possible to use these techniques as

weak learner and boost their performance for the task of semi-supervised Ieaming. The

main challenge in designing such boosting algorithms is that the definition of the loss for

unlabeled exampels is not clear. One approach is to generalize the notion of margin for

labeled instances to unlabeled instances. This approach computes the margin for unlabeled

examples by considering their assigned labels at the current iteration of the algorithm.

However, Since the labels computed in the early iterations is likely to be inaccurae, this

strategy produces undesireable results.

Unlike the exising boosting algorithms for semi-supervised Ieaming which are only

based on the classification confidence (margin) of the exampels (i.e. cluster assumption),

18

we utilize both the classification confidence and the similarity among examples (i.e. the

manifold assumptions) to design a loss function for multi—class semi-supervised learning.

We further develop a boosting algorithm for efficient computation. Empirical study with the

multiple benchmark datasets shows that the proposed MCSSB algorithm performs better

than the state-of-the-art boosting algorithms for semi-supervised learning.

2.1 Introduction

Semi-supervised classification combines the hidden structural information in the unlabeled

examples with the explicit classification information of labeled examples to improve the

classification performance. Many semi-supervised Ieaming algorithms have been studied in

the literature. Examples are density based methods [30, 31], graph-based algorithms [32—

35], and boosting techniques [40, 48, 49]. Most of these methods are based on either

manifold assumption [32—35] or cluster assumption [30, 48, 49]. Under the manifold as-

sumption, the data is assumed to reside on a low dimensional manifold within the original

high dimensional space and the class assignment of unlabeled examples can be derived

from a classification function that lives in this low dimensional manifold. Under the cluster

assumption, the examples of the same class tends to be closer to each other than those of

different classes. As a result of this assumption, the decision boundary is expected to pass

through the low density regions. Thus, a given semi-supervised Ieaming is usually speci-

fied by a combination of two terms, with one term related to the classification error on the

training examples and the other term related to how well the model satisfies the assumption

(either manifold or cluster assumption).

While most of semi-supervised classification approaches were originally designed for

two class problems, many real-world applications, such as speech recognition and object

recognition, require multi-class categorization. To adopt a binary (semi-supervised) Ieam-

ing algorithm to problems with more than two classes, a common practice is to divide a

19

multi-class learning problem into a number of independent binary classification problems

using techniques such as one-versus—the-rest, one-versuS-one, and error-correcting output

coding [58]. The main shortcoming with these approaches is that the resulting binary clas-

sification problems are independent. As a result, these approaches are unable to exploit the

fact that each example can only be assigned to one class. This issue was already pointed

out in the study of multi-class boosting [59]. In addition, since every binary classifier is

trained independently, their Outputs may be on different scales, making it difficult to iden-

tify the most likely class assignment based on the classification scores [60]. Though cali-

bration techniques [61] can be used to alleviate this problem in supervised classification, it

is rarely used in semi-supervised Ieaming due to the small number of labeled training ex-

amples. Moreover, techniques like one-versus-the-rest, where the examples of one class are

considered against the examples of all the other classes, could lead to the imbalanced clas-

sification problem. Although a number of techniques have been proposed for supervised

learning in multi-class problems [59, 62, 63], none of them addressed semi-supervised

multi-class learning problems, which is the focus of this chapter.

Given that the supervised multi-class classification is a well-studied subject, an im-

portant research question is whether it is possible to develop a general semi-supervised

framework that is able to improve the accuracy of a given supervised multi-class Ieaming

algorithm by effectively exploring the abundance of unlabeled data. The immediate answer

to this question is boosting technique. The objective of semi-supervised classification is to

learn a hypothesis that makes minimum number of misclassification on the labeled exam-

ples and utilizes the unlabeled data for a better generalization. Given a loss function for the

labeled and unlabeled examples, a boosting algorithms can be defined by reweighting each

instance based on the current value of the loss.

One straightforward approach to define the loss for unlabeled examples is to consider

the classification confidence as the loss for unlabeled instances. The difficulty comes from

the fact that the classification confidence related to the unlabeled examples are unknown.

20

One approach to address this problem is to use the class labels predicted by the current

model as the pseudo-labels for the unlabeled examples and utilize them to obtain the clas-

sification confidence (or margin). Assemble [48], as described in Section 2.3.2, is con-

strucuted based on the idea of pseodu-labels. The problem with utilizing pseudo-labels

to compute the loss for unlabeled examples is that the pseudo-labels assigned in the early

steps of the algorithm is not precise and can lead to undesireable result of the boosting

algorithm. Particularly, this approach does not directly utilize the underlying properies of

data described as a manifold or cluster assumption. Moreover, since all the existing semi-

supervised boosting algorithms are designed for binary classification, they will still suffer

from the aforementioned problems when applied to multi-class problems.

To avoid the above problems, we design a boosting algorithm in this chapter by con-

sidering a multi-class loss function that utilizes both the manifold and cluster assumption;

i.e. it consists of two terms, one releated to the consistency of the predicted labels and

similarity between the examples, and one related to the consistency between the predicted

labels and the true labels of labeled examples. To minimize this loss function, we develop a

semi-supervised boosting framework, termed Multi-Class Semi-Supervised Boosting (MC-

SSB), that is designed for multi-class semi-supervised learning problems. By directly solv-

ing a multi-class problem, we avoid the problems that arise when converting a multi-class

classification problem into a number of binary ones. Moreover, unlike the existing senti-

supervised boosting methods that only assign pseudo-labels to the unlabeled examples with

high classification confidence, the proposed framework decides the pseudo labels for un-

labeled examples based on both the classification confidence and the similarities among

examples. It therefore effectively explores both the manifold assumption and the cluster-

ing assumption for semi-supervised learning. Empirical study with UCI datasets shows the

proposed algorithm performs better than the state-of—the-art algorithms for semi-supervised

learning.

21

2.2 Related Work

Most semi-supervised Ieaming algorithms can be classified into three categories: density

based methods [30, 31], graph-based algorithms [32—35], and boosting techniques [40, 48,

49]. As mentined in Section 2.1, these methods are based on either cluster or manfold

assumption, dependent on how they utilize the unlabeled examples. Denisty-based meth-

ods are usually based on finding a decision boundary that passes through sparse regions

and have the maximum margin to both labeled and unlabeled examples [30, 31, 48, 49].

Cluster-based learners utilize a similarity measure between examples and construct a graph

to propagate the labeling information to the unlabeled instances [32—35].

Semi-supervised learning algorithms can be also categorized into inductive and trans-

ductive learner based on their functionality. A semi-supervised learner is called trans-

ductive if it does not produce a classifier and cannnot operate on the unseen exampels.

Otherwise, it is called inductive. The algorithm we developed in this chapter works in the

inductive mode.

Semi-supervised SVMS (S3VMS) or Transductive SVMS (TSVMS) are the semi-

supervised extensions to Support Vector Machines (SVM). They are essentially density-

based methods and assume that decision boundaries should lie in the sparse regions. Un-

like their name, TSVMS can work in inductive mode. Although finding an exact S3VM

is NP-complete [64], there are many approximate solutions for it [30, 31, 65-67]. Ex-

cept for [67], these methods are designed for binary semi-supervised Ieaming. The main

drawback with [67] is its high computational cost due to the semi-definite programming

formulation.

Graph-based methods are usually transdactive learner that aims to predict the class

labels that are smooth on the graph of unlabeled examples. These algorithms differ in

how they define the smoothness of class labels over a graph. Example graph-based senti-

supervised learning approaches include Mincut [32], Harmonic function [33], local and

global consistency [34], and manifold regularization [35]. Similar to density based meth-

22

ods, most graph—based methods are mainly designed for binary classification.

Semi-supervised boosting methods such as SSMBoost [68] and Assemble [48] are di-

rect extensions of Adaboost [39]. In [49], a local smoothness regularizer is introduced

to improve the reliability of semi-supervised boosting. Unlike the existing approaches

for semi-supervised boosting that solve 2-class problems, we focused on semi-supervised

boosting for multi-class classification.

2.3 Multi-Class Semi-supervised Learning

2.3.1 Problem Definition

Let D = (.731, .., xN) denote the collection of N examples. Assume that the first N1 exam-

ples are labeled by y1,..., le. Each y,- = (yz-1,..., yzm) E {0, +1}m is a binary vector that

indicates the assignment of 2:,- to m different classes, where. yf = +1 when 2:,- is assigned

to the kth class, and yf = 0, otherwise. Since we are dealing with a multi-class problem,

we have 2254 yf = 1, i.e., each example 2:,- is assigned to one and only one class. We

denote by g, = (3211,. . . ,y‘im) e Rm the predicted class labels (or confidence) for exam-

ple mi, and by I? = (Qir,...,3)1-[,)T the predicted class labels for all the examples. Let

S = [Sm-M,-xN be the similarity matrix where Sm- = SJ},- 2 0 is the similarity between 2:,-

and xj. For the convenience of discussion, we set 3,3,; = 0' for any x,- G D, a convention

that is commonly used by many graph-based approaches. Our goal is to compute 37,- for the

unlabeled examples with the assistance of Similarity matrix S and Y = (y;- , . . . , 311-51)?

2.3.2 Assemble Algorithm

Assemble [48], a boosting algorithm for semi-supervsed classification as depicted in Al-

gorithm 2, is construcuted based on the idea of pseodu-labels. At each boosting iteration,

xT is the transpose of matrix(vector) 3:.

23

Algorithm 2 Assemble: Adaptive Semi-Supervised Ensemble Algorithm

1: Input:

0 D = (x1, .., xN): The set of examples; the first N, examples are labeled.

0 s: The number of sampled examples

2: Initialize F(i) = 0,i = 1, ..., |D|

3: Initialize w1(z') = l/Nl,’i = 1, ...,Nl and w1(i) = 0,1 = N1 + 1, ..., IDI

4: repeat

Set y,- = F($i),i = N1 + 1, ..., IDI

Find a multi—class classifier ht that minimizes 6t = 2:131 wt (2)] (y,- 75 ft(a:,-))

Compute at = $11K?)

Compute F(a:,-) = F(a:,-) + (112(2),), 2': 1, .., |D|

wt(i) exp(atz{(yi#ft (1%)»

normalization factor and [(12) outputs 1 if a: is true, and 0 otherwise.

10: until reach the maximum number of iterations

9
9
9
$
?
?
?

Compute the new weighting wt+1(i) = where Zt is the

the boosting algorithm creates a new classifier and redisributes the weights by emphasizing

more on the less-confident instances.

Beside Assemble, several other boosting algorithms have been proposed for senti-

supervised Ieaming based on the idea of using pseudo-labels [49, 68]. They essentially

operate like self-training where the class labels of unlabeled examples are updated itera-

tively: a classifier trained by a small number of labeled examples is initially used to predict

the pseudo-labels for unlabeled examples; a new classifier is then trained by both labeled

and pseudo-labeled examples; the processes of training classifiers and predicting pseudo—

labels are altered iteratively till stopping criterion is reached. The main drawback with this

approach is that it relies solely on the pseudo-labels predicted by the classifiers learned so

far when generating new classifiers. Given the possibility that pseudo-labels predicted in

the first few steps of boosting could be inaccurate, the resulting new classifiers may also

be unreliable. This problem was addressed in [49] by the introduction of a local smooth-

ness regularizer. However, these approaches do not utilize the underlying properies of data

described as a manifold or cluster assumption. In what follows, we design a boosting algo-

rithm for the problem of multi-class semi-supervised classification based on manifold and

cluster assumpption.

24

2.3.3 Design of Objective Function

The goal of semi-supervised Ieaming is to combine labeled and unlabeled examples to

improve the classification performance. Therefore, we design an objective function that

consists of two terms: (a) Fu that measures the inconsistency between the predicted class

labels 17 of unlabeled examples and the similarity matrix S, and (b) F, that measures the

inconsistency between the predicted class labels I’ and true labels Y. Below we discuss

these two terms in detail.

Given two examples 3:,- and xj, we first define the similarity ngj based on their pre-

dicted confidence score 3),- and 373-:

m “l9 exp 3}]? mZ3]- : Z: mexp(yz)Ak, m (JlAk’ = Z b15719? = bTb- (2.1)

where bf = exp(37£°)/ (273:1 exp(3)z’-°’)) and b,- = (b}, . . . , bl”). Note that bf can be inter-

preted as the probability of assigning cc,- to class k, and Zz’fj, the cosine similarity between

b,- and bj, can be interpreted as the probability of assigning 3:,- and :cj to the same class.

We emphasize it is important to use bf, instead of exp(§/f), for computing Z3]. because the

normalization in bf allows us to enforce the requirement that each example is assigned to a

Single class, a key feature of multi-class learning.

Let Z“ = [2sz be the similarity matrix based on the predicted labels. To measure

the inconsistency between this similarity and the similarity matrix S, we define Fu as the

distance between the matrices Z“ and 3 using the Bregman matrix divergence [69], i.e.,

F. = 90(2“) — MS) — tr((Z’“ — S)TV<p(S)). (2.2)

where (,0 : RNXN -—> R is a convex matrix function. By choosing 90(X) =

25

293:1 Xi,j(10g Xi,j — 1) [69], Pa is written as

N
S,-

u = Z (Sijlog-Z——:’: +Zuj——S,-,j) (2.3)

i,j=1

By assuming that 229% Zl‘j z 2211 N]? and log a: z a: — 1, where Nk is the number of

examples assigned to class 1:, we simplify the above expression as Fu~~ 2,j—_1 82-2,j/Zg‘

Since S2Jcould be viewed as a general Similarity measurement, we replace 32-2,j with Sid

and simplify Fu as

N 5,, N s,- ,
Fu z ”2:1 ~55 = ”:21 2k:—-—1———jbkbk (2.4)

Remark I We did not use <p(X) = 293% X.2- [69], which will result in Pa =

2,j—1_(ng Sid): Thisrs because the value of Z"j and S,-Jmay be on different scales

which makes it inappropriate to measure the difference between two matrices directly by

subtracting their corresponding elements.

Similarly, we define the similarity between a labeled example as,- and an unlabeled ex-

ample xj based on their class assignments as follows

m

= Z yfbf. (2.5)
k=1

and the label inconsistency measure Fl between the labeled and unlabeled examples as

follows:

£2=zzjt= zzzmfl. am
i=1j=Zi1,ji=1j=31

We can only consider the sub-matrices related to unlabeled examples when defining Fu.

26

Finally, we linearly combine F1 and Fu to form the objective function:

F = Fu + CF; (2.7)

where C weights the importance of F1. It is set to 10, 000 in our experiments to emphasize

Fl. Given the Objective function F in (2.7), our goal is to find solution I? that minimizes

F.

2.3.4 Multi-Class Boosting Algorithm

In this section, we present a boosting algorithm to solve the optimization problem in (2.7).

Following the general boosting strategy, we incrementally add weak learners to obtain a

better classification model. We denote by Hf the solution that is obtained for 37:“ so far,

and by hf E {0, 1} the prediction made by the incremental weak classifier that needs to

be learned. Then, our goal is to find him = 1,... ,N,k = 1,. . . ,m and a combination

weight a such that the new solution H2’“ = Hf + 01h:c significantly reduces the objective

function F in Equation 2.7. For the convenience of discussion, we use symbol ~ to denote

the quantities (e.g., F) associated with the new solution H.

The key challenge in optimizing F with respect to hf and a is that these two quantities

are coupled with each other and therefore the solution of one variable depends on the solu-

tion of the other. Our strategy to solve the optimization problem is to first upper bound F

with a simple convex function in which the optimal solution for hf can be obtained without

knowing the solution to a. Given the solution to hf, we compute the optimal solution for

a. Below we give details for these two steps.

First, the following lemma allows us to decouple the interaction between a and hf

. . u l

wrthrn Zi,j and Zi,j

The algorithm is quite stable with different values Of C bigger than 1000 according to our experiment.

27

Lemma 1.

1 1+efia+e—60 660—1(m k k k)

:— S + -——- (b- —- T- -)h- (2.8)

2,2,- 32332‘ 3353' 1.2:; . 2’] .

1 1+660+e—6C' e6“ 1 m k k

~ h 45' - (2-9)
1 I Z J 2.]

ZR] 3Zi9j 6 k=1

where

btbt In ,bt k
k_ w k_ k4_fi

Ti,j - m b’F’b’?” ¢,,- _ 2 y,- b’?’ b’? (2.10)

k’=1 I J k’=1 J J

The proof of Lemma 1 can be found in Appendix A.l. Using Lemma 1, we derive an

upper bound for F in the following theorem.

Theorem 1.

N m

~ 1 + exp(6a) + exp(—6a) exp(6a) -— 1 k k k

FgF +—-§——§:§WN%+CA) QM)

3 i=1 k=1

where of and [if are defined asfollows:

N S- -(b’.° _ TIC.) NI

k m z 2,3 k 1 k
oz,- = Z 21‘. r 52' = § Zsi,j¢j,i (2.12)

j=1 m j=1

Theorem 1 can be directly verified by replacing l/Zz'fj and 1/ifj in (2.7) with (2.8)

and (2.9). Note that the bound in Theorem 1 is tight because by setting a = 0, we have

H = H and the inequality in Equation 2.11 is reduced to an equality. The key feature

of the bound in Equation 2.1] is that the optimal solution for hf can be obtained without

knowing the solution for a. This is summarized by the following theorem.

Theorem 2. The optimal solution for hf that minimizes the upper bound of F in Equa-

28

tion 2.11 is

,r I

hk 1 k = arg mink/(a? + C5?)

(2. l 3)

0 otherwise

It is straightforward to verify the result in Theorem 2.

We then proceed to find solution for a given the solution for hf. The following lemma

provides a tighter bound for solving a in F.

Lemma 2.

F — F g (e20 —1)(Au + CA1) + (ta—2" — 1)(B., + 03,) (2.14)

where

A, = 27.521 2 hfbf (2.15)

i,j=—1Ziv.7 k=1

Nl N m

A, = -ZZS,-,j Z -‘Z—;:b§’hfl (2.16)

i=lj=1 k,k’=1j

Bu = 227,3”- 2,127sz (2.17)

’i,j=—1Zivjk=1

NI N

Bl = 5:25,1 :31.bk (2°18)

i=1j=1 J

The proof of Lemma 2 can be found in Appendix B. Using Lemma 2, Theorem 3 gives

the optimal solution for (1.

Theorem 3. The optimal a that minimizes the upper bound ofF in Equation 2.14 is

a — l—Og (Au+CAl) (2.19)

Note that this tighter bound can not be used to derive hf

29

Remark 11: Notice that in order to have this boosting algorithm continue working, the

weak learner needs to produce models better than random guessing in the following sense.

Writing a in the form

1 1 —

a = — log (6) (2.20)
4 e

where

f _ Au + CAl

_ Au + 8,, + C(Al + Bu)

can be interpreted as some kind of classification error. Hence, better than random guessing

implies e S 0.5 in this case.

Algorithm 3 summarizes the proposed boosting algorithm for multi-class semi-

supervised learning. In each iteration, MCSSB produces a weighting on the set of training

examples based on the evaluation of F. Notice that 10,-, the weight for the ith unlabeled

example, is guaranteed to be non-negative. This is because 221:1 of + 06f = 0 and

therefore to, = maxk(af -l- 06;“) _>_ 0; w,- is a measure of the failure of the algorithm on

example 50,-. Using the new weighting on the training examples, MCSSB learns a multi-

class model that minimizes the loss on the weighted training examples, by adopting the

sampling approach as described in the following: MCSSB samples 3 instances by replace-

ment, with probability of each sample proportional to its weight. 3 sampled instances are

passed to the weak learner to obtain a multi-class hypothesis. In our experiments, the num-

ber of sampled examples at each iteration is set as s = max(20, N/5). After creating a

weak classifier at this round, MCSSB adds it to the current classifiers to reduce the value

of the objective function.

For the experments, we ran the algorithm with different numbers of iterations and find

that both the objective function and the classification accuracy remains essentially the same

after 50 iterations. We, therefore, set the number of iterations to be 50 to save the compu-

tational cost.

30

Algorithm 3 MCSSB: Multi-Class Semi-Supervised Boosting Algorithm

1: Input:

0 D: The set of examples; the first N1 examples are labeled.

0 s: the number of sampled examples from (N — N1) unlabeled examples

0 T: the maximum number of iterations

2: Set F(z') = 0,2' = 1, .., |D|

3: repeat

4: Compute of and fill“ for every example as given in Equation 2.12.

5: Assign each unlabeled example 2:, to class k; = arg minjc(oz£c + 0511“) and weight

k’I‘ k’l‘

6: Sample .9 examples using a distribution that is proportional to w,-

. Train a multi-class classifier h(:r) using the 3 samples examples

8: Predict hf for all examples using h(:1:), and compute or using Equation 4.14. Exit

the loop if or g 0.

8: H(:1:) (— H(:z:) + ah(:r)

9: until reach the maximum number of iterations

Theorem 4 Shows that the proposed boosting algorithm reduces the objective function

F exponentially. The proof of this theorem is provided in Appendix A.3.

Theorem 4. The objective function after T iterations, denoted by FT, is bounded as fol-

lows:

T (,/At +oAt— ,/Bt +013“)2

FT 3 Foexp —Z " [Ft—1 “ l (2.21)

t=1

where Au, A), Bu and B1 are defined in Lemma 2.

2.4 Experiments

In this section, we present our empirical study on the classification data sets that were

described in Chapter 7. We refer to the proposed semi-supervised multi-class boosting

algorithm as MCSSB. In this study, we aim to Show that (1) MCSSB can improve the per-

formance of a given multi-class classifier with unlabeled examples, (2) MCSSB is more

effective than the existing semi-supervised boosting algorithms, and (3) MCSSB is robust

31

to the model parameters and the number of labeled examples. It is important to note that it is

not our intention to show that the proposed senri-supervised multi-class boosting algorithm

always outperforms other semi-supervised Ieaming algorithms. Instead, our objective is

to demonstrate that the proposed semi-supervised boosting algorithm is able to effectively

improve the accuracy of different supervised multi-class learning algorithms using the un-

labeled examples. Hence, the empirical study is focused on a comparison with the existing

semi-supervised boosting algorithms, rather than a wide range of semi-supervised learning

algorithms.

2.4.1 Experimental Setup

For each classification data sets, described Section 1.6.1, we split the examples into 5

partitions, with one partition used for training and the others used for testing. In each ex-

periment, we used a small percentage (between 2 to 10 percent) of training instances as

labeled examples and the remainding instances as unlabeled examples. We applied the pro-

posed algorithms and the baselines on the training examples to create a model and applied

it on the test examples and computed the accuracy on the test examples. We repeated each

experiment 10 times and reported the average.

We compare the proposed semi-supervised boosting algorithm to ASSEMBLE, a state-

of-the—art semi-supervised boosting algorithm. The main reason for this choice was be-

cause Assemble utlizes boosting technique and can exploit an existing supervised learning

technique. This makes the comparision fair and easy because it enables us to compare MC-

SSB and Assemble with base classifieres that have different quality. Also notice that As-

semble is a powerful semi—supervised Ieaming technique that was the best semi-supervised

algorithm among 34 participants in NIPSSZOOI workshop competition "Unlabeled Data for

Supervised Learning" [48].

Unlike the general setup introduced in 1.6.1, we used the test set for for mnist data set because of the

huge size of the training set in mnist and the memory problem.

32

A Gaussian kernel is used as the measure for similarity in the standard MCSSB algotihm

with kernel width set to be 15% of the range of the distance between examples for all the

experiments, as suggested in [70]. To verify the importance of using the Similarity measure

in the semi-supervised boosting algorithm and direct formulation of multi-class problem,

we use two other baselines: MCSSB-Uniform that uses similar similarity values for every

pair of examples (i.e. Sij = 1, 2', j = 1, .., N) that can be considered MCSSB with a

bad similarity measure, and MCSSB-Absolute that considers absolute similairy between

an example and itself (i.e. Si,- = 1,2' = 1, .., N) and absolute dissimilarity between two

different examples (i.e. Sij = 1, i, j = 1, .., N & i 75 j). MCSSB-Absolute can be

considered MCSSB that only exploits the advantage of using a direct formulation of the

multi-class problem.

We use decision tree with only two level of nodes, as the base classifier for all the

methods in the standard setting . The combination paremeter C is set to 104 in all experi-

ments. To study the robustness of the proposed methods, we further investigate the effect

of the depth Of decision tree and combination parameter C on the performance of different

methods in Sections 2.4.4 and 2.4.3 respectively.

2.4.2 Evaluation of Classification Performance

Figure 2.1 shows the result of different algorithms when the amount of labeled examples

is changed from 2% to 10%. First, notice that MCSSB significantly improves the accuracy

of decision tree for 5 out of 7 data sets. For data set ’Nursery’, MCSSB performs worse

than the base classifier and for data set ’Letter’, the result of MCSSB is not much different

than the base clasifier. However, for both these cases, MCSSB-Absolute performs quite

good that indicates the direct formulation of multi-class problem is useful and the bad

i.e. 0.15 x (dmax — dmin)’ where dmin and dmax are minimum and maximum distance between

examples

Notice we also used neural network as another base classifier to evaluate the performance of our algo-

rithm. Refer to [50] for the results on several benchmark datasets

33

performance is due to the utilization of a bad similartiy matrix. Note that for several data

sets, the improvement made by the MCSSB is dramatic. For instance, the classification

accuracy of decision tree is improved from 33% to 48% for data set ’Pendigits’, and from

24% to 43% for data set ’Optdigits’ when there is 2% labeled examples; the classification

accuracy of decision tree is improved from 13% to 17% for data set ’Isolet’, and from 46%

to 49% for data set ’Protein’ when there is 8% labeled examples.

Second, when compared to ASSEMBLE, we found that the proposed algorithm sig-

nificantly outperforms ASSEMBLE for all the data sets. More interestingly, Assemble

reduces the performance of the base classifier for most data sets that indicates the usage Of

pseodu-labelss can produce misleading results. The key differences between MCSSB and

ASSEMBLE is that MCSSB is not only specially designed for multi-class classification, it

does not solely rely on the pseudo-labels obtained in the iterations of boosting algorithm.

Thus, the success of MCSSB indicates the importance of designing semi-supervised learn-

ing algorithms for multi-class problems.

Third, to verify that the outstanding performance of MCSSB is related to the direct

formulation of multi-class problem and the usage of similarity measure in the boosting

algorithm, we examine the results of MCSSB-Uniform and MCSSB-Absolute. Because

MCSSB-Uniform does not utilize an appropriate similarity measure, it performs very

poorry that emphasizes our effective approach in utilizing the similarity measure in the

boosting algorithm. On the other hand, MCSSB-Absolute is the second best method after

MCSSB. Because MCSSB-Absolute does not utilize any similary measure among exam-

ples, we believe that this superior performance is due to our approach in direct formulation

of multi-class problem. It is interesting to note that the performance of MCSSB-Absolute

on the ’Nursery’ and ’Letter’ data sets is better than other methods including MCSSB that

indicated the sensitivity of the proposed method to the choice of similarity method.

And finally, notice that as the number of labeled examples increases, the performance

of different methods improves. However MCSSB keeps its superiority for most of the cases

34

MNIST NURSERY

50 —Decision Stump 100 .

+Assemble

40 +MCSSB

5. +MCSSB_Uniform 5

g -e- MCSSB_Absolute g

0

< £— 2

20

1 A w . 1

. 2 0764 0.06 0.08 0.1 .02 0.04 0.06 0.03 0.1

Percentage of labeled examples Percentage of labeled examples

LETTER

PROTEIN

A
c
c
u
r
a
c
y

0.06 0.08 0.1 .020.04

Percentage of labeled examples

PENDIGITS

0.04 0.08

Percentage of labeled examples

0.06 0.1

OPTDIGITS

004 0.06 0.08 0.1

Percentage of labeled examples

ISOLET

0.64 0.06 0.08

Percentage of labeled examples

V

0.1

f

A A

V V

A

V V

06.02 0.04 0.06 0.08 0.1

Percentage of labeled examples

Figure 2.1: The error rates Of different methods with different amount of labeled examples.

35

when compared to both the base classifier and the ASSEMBLE algorithm. We also observe

that overall ASSEMBLE is unable to make improvement over the base classifier regardless

of the number of labeled examples. These results indicate the challenge in developing

boosting algorithms for semi-supervised multi-class Ieaming. Compared to ASSEMBLE

that relies on the classification confidence to decide the pseudo labels for unlabeled ex-

amples, MCSSB is more reliable since it exploits both the classification confidence and

similarities among examples when determining the pseudo labels.

2.4.3 Sensitivity to the Combination Parameter C

Figure 2.2 shows the performance of MCSSB when the combination parameter C changes

from 1 to 1010. It is clear that for large values of C, MCSSB is very stable. Notice the

improvement of MCSSB on the base classifier for dataset ’Protein’ is very marginal for

some values of C. However if you look at Figure 2.1, you will notice that the result of

MCSSB for larger amount of labeled data (as large as 4%) is significant for this data set

and not sensitive to the small changes of parameters C. We conclude that MCSSB is very

robust to the choice of parameter C.

2.4.4 Sensitivity to Base Classifier

In this section, we focus on examining the sensitivity of MCSSB to the complexity of base

classifiers. This will allow us to understand the behavior of the proposed semi-supervised

boosting algorithm for both weak classifiers and strong classifiers. To this end, we use de-

cision tree with varying number of levels as the base classifier. We used decision tree with

only one node (decision stump) up to fully-grown decision trees and plot the performance

result of different methods. Figure 2.3 shows the classification accuracy of Tree, ASSEM-

BLE and MCSSB when we vary the number of levels in decision tree. Notice that in each

case, the maximum number of levels in the plot for each data set is set to the fully grown

tree for that data set. It is not surprising that overall the classification accuracy is improved

36

MNIST NURSERY

40 . 100 .

5" 30' //W—.
5"BMW

(0 (U

6 6
0 O

< ZWZG—EP-a—a—e—a—e—e—HI <2 60W

10 r 40 a

10° 105 101° 10° 105 1010

C C

PROTEIN LETTER

45W
15 '

640- ' : 5:10—
a a

8 8

2 35' : 2 5: —Decision Stump

‘3 a a E a a E E' a a 5' +Assemble

3O 0 +MCSSL

10° 105 10‘° 10° 105 101°

C C

PENDIGITS OPTDIGITS

60 . 5o .

5‘40- M ,>,~
a a

< 2 <

O .

100 185 1010

ISOLET

20 '

§
<

0 .

10° 105 10’°

C

Figure 2.2: The error rates of MCSSB with different C(2% of labeled).

37

with increasing number of levels in decision tree for most data sets. We also Observe that

MCSSB is more effective than ASSEMBLE for decision trees with different complexity

and regardless of quality of the base classifier, ASSEBLE is not able to improve the per-

formance of the supervised classifier by utilizing unlabeled examples. Notice that for some

data sets, e.g. ’Protein’ data set, the performance decreases as the depth of tree increases.

This is because, unlike other data sets, ’Protein’ has only tinee classes and large tree can

lead to overfitting.

38

MNIST

——Tree

2 4

Depth of the Tree

PROTEIN

NURSERY

80 -

70-

6 60 .
E 1

8 l
0 50

< —Tree

40 +Assemble

+MCSSB

3(“'0 1 2 3

Depth of the Tree

LETTER

25 . -

--Tree

20 +Assemble

> 45, +MCSSB

o a, .
E 1 E

6 61
< 40 --Tree <

+Assemble

+MCSSB

35o 2 I: 6 0o i 2 6 4 5

Depth of the Tree Depth of the Tree

PENDIGITS OPTDIGITS

60 . - 50 r

-—Tree

50’ 4o» +Assemble

+MCSSB

64° 63 .
E E
a 30- :3

8 8 2 .

< 20 —Tree <

1 +Assemble 1

+MCSSB
G 1 A r r G

0 1 2 3 4 5 0 1 3

Depth of the Tree Depth of the Tree

ISOLET

20 - .

—Tree

15 +Assemble f

+MCSSB

5‘

E 103

8
<

5 .

1 2

Depth of the Tree

1:“igure 2.3: The error rates of MCSSB with decision tree with different depth as the weak

learner. 2% of training examples are labeled in all the experiments.

39

Chapter 3

Optimizing NDCG Measure by Boosting

Learning to rank is a relatively new field in machine Ieaming. It aims to learn a ranking

function from training examples with relevancy judgements. The learning to rank algo-

rithms are often evaluated using information retrieval measures, such as Normalized Dis-

counted Cumulative Gain (NDCG) [14] and Mean Average Precision (MAP) [13]. Until

recently, most learning to rank algorithms were not able to directly optimize a loss function

related to the IR evaluation measures, such as NDCG and MAP. The main difficulty in di-

rect optimization of these measures is that they are non-continuous and non-differentiable.

In this chapter, we discuss how boosting can be applied to optimize Normalized Discounted

Cumulative Gain (NDCG) which is the most commonly used multi-level evaluation mea-

Sure for Ieaming to rank. We start with a detailed description of AdaRank [42], one of the

first algorithms designed to directly maximize IR measures. We further develop a learning

t0 rank algorithm, termed NDCG_Boost, for optimizing NDCG metric. Unlike AdaRank

that weights all the documents related to each query equally when optimizing the NDCG

measure, NDCG_Boost weights individual documents differently even if they are all re-

lated to the same query, leading to more effective Optimization of the NDCG measure. In

Order to deal with the non-smooth nature of the NDCG measure, in the NDCG_Boost al-

gOIithm, we propose to optimize the expectation of NDCG over the distribution induced

40

by a ranking function. We then present a relaxation strategy that approximates the average

of NDCG value, and an optimization strategy to make the computation efficient. Extensive

experiments Show that the proposed algorithm outperforms state-of-the-art ranking algo-

rithms on several benchmark data sets.

3.1 Introduction

Learning to rank has attracted many machine Ieaming researchers in the last decade because

of its growing importance in the areas like information retrieval (IR) and recommender

systems. Three types of learning to rank algorithms can be found in the literature.

0 Pointwise approaches: AS the simplest form, these approaches [15, 16] treat rank-

ing as a classification or regression problem that learns a ranking function in order to

fit the relevance judgments for given retrieved documents [16, 17]. However classi-

fication and regression may not be the best for the task of ranking. This is because

(i) classification problems are usually associated with unordered class labels where

there is an intrinsic order among the levels of relevance judgments provided by the

user, and (ii) the target variables in regression problems are assumed to be numerical

values while the relevance judgments are only ordinary variables.

0 Pairwise approaches: These approaches are motivated by the fact that the rele-

vancy scores in ranking are relative to each other. This group considers the pairs of

documents as independent variables and learns a classification (regression) model to

correctly order the training pairs [18—23], namely document da is ranked above db if

the relevance score of da is larger than db. One major problem with the pairwise ap-

proaches is that they assume pairs of documents are independent random variables,

which is often violated in real world applications. .

41

o Listwise approaches: The listwise approaches are motivated by this observation that

most evaluation metrics of information retrieval measure the ranking quality for indi-

vidual queries, not documents. These approaches treat the ranking list of documents

for every query as a training instance [13, 24—29], either by direct optimization of an

information retrieval evaluation measure [13, 25, 28, 29] or by optimizing a listwise

loss function [24, 26, 27]. Empirical studies have shown that the listwise approaches

are more effective than both pointwise and listwise approaches because they utilize

the query-document group structure which is a unique and useful characteristic in

ranking.

The main difficulty in optimizing the listwise loss functions is that they are non-

continuous and non-differentiable. This is because these loss functions measure the re-

trieval performance based on the ranking list of documents induced by the ranking function,

and therefore their dependence on ranking functions is implicit. Given that classification

is a well-studied subject in machine Ieaming, the research question is whether it is pos-

sible to design a boosting algorithm that utilizes a classification algorithm to optimize an

information retrieval measure such as NDCG. The easiest way to design such a boosting

algorithm is the approach taken by Xu et al. in the design of AdaRank [42]. In each trial of

a boosting algorithm, AdaRank re-weights the queries based on their NDCG values (com-

Pared to AdaBoost that re-weights the examples based on their confidence in prediction).

As we see in more details in Section 3.3.2, AdaRank treats all the documents related to

each query equally when trying to improve the NDCG metric, which could significantly

liInits the choice of ranking functions for optimizing the NDCG metric. In this chapter, we

introduce a better boosting algorithm for optimizing NDCG metric that weights documents

differently even if they are associated with the same query. In each iteration, the boosting

algorithm provides a weighting as well as binary class assignments for given documents;

the weak learner constructs a binary classifier from the weighted documents that are labeled

\

It is important to distinguish the binary class assignment from the relevance judgments for documents

42

by the boosting algorithm.

3.2 Related Work

We focus on reviewing the listwise approaches that are closely related to the theme of this

chapter. The listwise approaches can be classified into two categories. The first group

of approaches directly optimizes the IR evaluation metrics. Most IR evaluation metrics,

however, depend on the sorted order of documents, and are non-convex in the target rank-

ing function. To avoid the computational difficulty, these approaches either approximate

the metrics with some convex functions or deploy methods (e.g., genetic algorithm [71])

for non-convex optimization. In [25], the authors introduced LambdaRank that addresses

the difficulty in optimizing IR metrics by defining a virtual gradient on each document af-

ter the sorting. While [25] provided a simple test to determine if there exists an implicit

cost function for the virtual gradient, theoretical justification for the relation between the

implicit cost function and the IR evaluation metric is incomplete. This may partially ex-

plain why LambdaRank performs very poor when compared to MCRank [16], a simple

adjustment of classification for ranking (a pointwise approach). The authors of MCRank

paper even claimed that a boosting model for regression produces better results than Lamb-

daRank. Volkovs and Zemel [29] proposed optimizing the expectation of IR measures to

Overcome the sorting problem, similar to the approach taken in this paper. However they

use monte carlo sampling to address the intractable task of computing the expectation in

the permutation space which could be a bad approximation for the queries with large num-

ber of documents. AdaRank [42], as was described earlier in this chapter, uses boosting to

Optimize NDCG, similar to our optimization strategy. However they deploy heuristics to

elubed the IR evaluation metrics in computing the weights of queries and the importance

of weak tankers; i.e. it uses NDCG value of each query in the current iteration as the

Weight for that query in constructing the weak ranker (the documents of each query have

43

similar weight). This is unlike our approach that the contribution of each single document

to the final NDCG score is considered. Moreover, unlike our method, the convergence of

AdaRank is conditional and not guaranteed. Sun et al. [72] reduced the ranking, as mea-

sured by NDCG, to pairwise classification and applied alternating optimization strategy to

address the sorting problem by fixing the rank position in getting the derivative. SVM-

MAP [13] relaxes the MAP metric by incorporating it into the constrains of SVM. Since

SVM-MAP is designed to optimize MAP, it only considers the binary relevancy and cannot

be applied to the data sets that have more than two levels of relevance judgements.

The second group of listwise algorithms defines a listwise loss function as an indirect

way to optimize the IR evaluation metrics. RankCosine [24] uses cosine similarity between

the ranking list and the ground truth as a query level loss function. ListNet [26] adopts the

KL divergence for loss function by defining a probabilistic distribution in the space of

permutation for Ieaming to rank. FRank [22] uses a new loss function called fidelity loss

on the probability framework introduced in ListNet. ListMLE [27] employs the likelihood

loss as the surrogate for the IR evaluation metrics. The main problem with this group of

approaches is that the connection between the listwise loss function and the targeted IR

evaluation metric is unclear, and therefore optimizing the listwise loss function may not

necessme result in the optimization of the IR metrics.

3.3 Optimizing NDCG Measure

3.3.1 Notation

Assume that we have a collection of n queries for training, denoted by Q = {q1, . . . ,qn}.

F0r each query qk, we have a collection of mk documents Dk = {dz-“,7: = 1, . . . ,mk},

Whose relevance to qk is given by a vector rk = (rf, . . . ,rfnk) E ka. We denote by

F(d, q) the ranking function that takes a document-query pair (d, q) and outputs a real

number score, and by jg“ the rank of document (if within the collection ’Dk for query qk.

44

The NDCG value for ranking function F(d, q) is then computed as following:

mk 2i—1

won12;;— (3.1)

log((1 + 32')

where Zk is the normalization factor [14]. NDCG is usually truncated at a particular rank

level (e.g. the first 10 retrieved documents) to emphasize the importance of the first re-

trieved documents.

3.3.2 AdaRank Algorithm

The easiest way to design a boosting algorithm for Optimizing a given IR evaluation mea-

sure is what AdaRank algorithm [42] performs. AdaRank uses an exponential loss function

similar to AdaBoost. However, unlike the loss function of AdaBoost which is constructed

based on the classification margin, AdaRank utilizes information retrieval measures such

as NDCG to construct the exponential loss. To optimize NDCG, for example, AdaRank

uses the following exponential loss function:

Zexp(-£(qr, F))

k=1

Where £(qk, F) is the NDCG value for query h when ranking the documents for query qk

by function F. The steps of AdaRank are given in Algorithm 4. In each iteration, AdaRank

fiI‘lds a weak tanker ft that maximizes quantity m at Step 4, i.e. NDCG weighted by p.

Then, it computes the combination weight for ft and adds it to the current set of classifiers

in Steps 5 and 6 respectively. The authors of AdaRank paper [42] suggest using the ranking

features (e.g. BM25) as the weak ranker. However, a (multi-class) classifier can also be

uSed as the weak tanker. To construct a classifier that maximizes qt, AdaRank distributes

the weight 12,500) to all documents of query k equally, and constructs a classifier based on

the documents that are sampled according to the weights. To redistributes the weights to

45

Algorithm 4 AdaRank Algorithm

1: Input:

0 Q = {q1, . . . ,q"}: The set of queries

0 Dk = {(df,rf),i = 1,...,mk}: The set of documents and their relevancy

scores for query qk.

2: Initialize p1(qk) = 1/n,k = 1, ...,n

3: repeat

Find ft by maximizing weighted NDCG; i.e. 77t = 2:le pt(qk)£(qk, F)

Compute at = 211101233?)

4

5

6: Compute F(df) = 2L1 alfl(df), k = 1, ..,n, 2': 1, ..,mk

- - _ exp(-£(Qk,F))
7 Compute the new werghtrng pt+1(qk) — 22:1 exp(—£(Qk,F))

8: until reach the maximum number of iterations

instanced, AdaRank increases the weights of difficult queries (e.g. those that have small

NDCG) and decreases the weights of easy queries (e.g. those that have large NDCG) at

Step 7.

As it is Obvious from the Steps of AdaRank algorithm, it gives the same weights to the

documents of each query, leading to a suboptimal performance. However, since a pointwise

weak learner (multi-class classifier) is often utilized in a boosting algorithm to maximize

NDCG, it is advantageous to allow every document to contribute differently to the final

NDCG value. Moreover, although NDCG works in query level, not all documents have

Similar contribution in improving the NDCG value at each stage of the algorithm. These

Observations motivated us to develop NDCG_Boost algorithm that considers the contri-

bution of every single document in the iterations of the boosting algorithm to maximize

NDCG.

3-3.3 A Probabilistic Framework

C)ne of the main challenges faced by optimizing the NDCG metric defined in Equation

(3- 1) is that the dependence of document ranks (i.e., jf) on the ranking function F(d, q)

is not explicitly expressed, which makes it computationally challenging. To address this

Problem, we consider the expectation of £(Q, F) over all the possible rankings induced by

46

the ranking function F(d, q), i e

£(Q F) — <1L-1_> (3 2)

’ k=1 k log(1+j,-'°) F

2"”IC -1

:2 E P” 'F")log(1+vr'~(>)

"1

22‘a
l
l
-
4

M
S

I
'
M
:

fi
l
l
-
d

where Smk stands for the group of permutations ofmk documents, and 7rk is an instance of

permutation (or ranking). Notation 7rk(z') stands for the rank position of the ith document

by Wk - To this end, we first utilize the result in the following lemma to approximate the

expectation of 1/ log(1 + 7rk(z')) by the expectation of 7r,“(i).

Lemma 3. For any distribution Pr(7r|F, q), the inequality C(Q,F) _>_ 7:1(Q,F) holds

where

2i —k1

’H(Q, F): i:—HZ]:1}:1(110g ’°(i))p) (3.3)

ProOfi The proof follows from the fact that (a) 1 /:1: is a convex function when :1: > 0 and

therefore (1/ log(1 + 2)) 2 1/(log(1 + 2)); (b) log(1 + :c) is a concave function, and

therefore (log(1 + x)) S log(1 + (27)). Combining these two factors together, we have the

reSUIt stated in the lemma. [:1

Given H(Q, F) provides a lower bound for [3(Q, F), in order to maximize [2(6), F),

we Could alternatively maximize 77(6), F), which is substantially simpler than £(Q, F). In

the next step of simplification, we rewrite 7rk(i) as

73(2) = 1 + 2two) > «kg» (3.4)

47

where I(x) outputs 1 when x is true and zero otherwise. Hence, (nk(i)) is written as

mk mic

Me» = 1+ Zuwka) > «km» -—— 1+ 212mm) > «W» (3.5)

j=1 j=1

As a result, to optimize ’FMQ, F), we only need to define Pr(7rk(i) > wk(j)), i.e., the

marginal distribution for document d? to be ranked before document dz? . In the next section,

we will discuss how to define a probability model for Pr(7rk|F, qk), and derive pairwise

ranking probability Pr(7rk(z') > 7rk(j)) from distribution Pr(7rk|F, qk).

3.3.4 Objective Function

We model Pr(7rk|F, qk) as follows

mk

1

131-(«km f) = k exp 2 Z (F(d§,qk) — F(d§,q"))

Z(F’q) i=1j-«k(j)>vrk(z')

mic

k - k k
= Z(F, qk) exp (;(mk — 27r (Z)+1)F(dz-,q)) (3.6)

where Z(F, qk) is the partition function that ensures the sum of probability is one. Equa-

tion (3.6) models each pair (df, (if) of the ranking list 7r’c by the factor exp(F(df, qk) —

F(d§ , qk)) if dz? is ranked before d? (i.e., nk(d£°) < 7rk(d$-°)) and vice versa. This mod-

cling choice is consistent with the idea of ranking the documents with largest scores first;

intuitively, the more documents in a permutation are in the decreasing order of score, the

bigger the probability of the permutation is. Using Equation (3.6) for Pr(1rk|F, qk), we

have 'H(Q, F) expressed in terms of ranking function F. By maximizing 72(Q, F) over F.

we Could find the optimal solution for ranking function F.

AS indicated by Equation (3.5), we only need to compute the marginal distribution

Pr(7“k(i) > nk(j)). To approximate Pr(1rk(i) > 7rk(j)), we divide the group of permu-

tation Smk into two sets: 050,1.) = {Wklflkm > “ICU” and G’b“(i,j) = {Wklwkm <

48

7rk (j) }. Notice that there is a one-to-one mapping between these two sets; namely for any

ranking wk 6 05(22, j), we could create a corresponding ranking 7rk 6 G§(z', j) by switch-

ing the rankings of document df and d? and vice versa. The following lemma allows us to

bound the marginal distribution Pr(7rk(i) > 7rk(j)). The proof of this lemma is provided

in Appendix A.5.

Lemma 4. IfF(d’-“, qk) > F(dg-c, qk), we have
2

1

1+ exp [2(F<d:-°, qk> — F(dga gm]
Prokm > m» s
 (3.7)

This lemma indicates that we could approximate Pr(7rk(i) > nk(j)) by a simple logis-

tic model. The idea of using logistic model for Pr(7rk (2') > wk(j)) is not new in learning

to rank [20, 22]; however it has been taken for granted and no justification has been pro-

vided in using it for Ieaming to rank. Using the logistic model approximation introduced

in Lemma 4, we now have (14%)) written as

m

k 1

#1 1+ exp [2(F(d§,qk> — F<d§,qk>>]
1+

(3.8)22We»

To simplify our notation, we define Fik = 2F(dz-c, qk), and rewrite the above expression as

mic mic

k' - r7rkz' nk' z 1<vr<z>>—1+§P< ()> (3)) 1+j2=311+exp(Fik_FJk)

Using the above approximation for (wk(i)), we have ”R in Equation (3.3) written as

n 7.21: _

W2, F) m if, 71- 2 ——2—1—. (3.9)

49

where

mk

10'7”)
3.10

AE;1+eXp(Fk—Ff) ()

We define the following proposition to further simplify the objective function:

Proposition 1.

1 > 1 __ Af

log(2 + A?) _ 108(2) 2[log(2)]2

The proof is due to the Taylor expansion of convex function 1/log(2 + x), a: > —1

around a: = 0 noting that A? > 0 (the proof of convexity of 1/log(1 + x) is given in

Lemma 3) and is provided in Appendix A.6. By plugging the result of this proposition

to the objective function in Equation (3.9), the new objective is to minimize the following

quantity:

M(Q, F) 2:712—1162Q’k2' —1)A (3.11)

The Objective function in Equation (3.11) is explicitly related to F via term Af. In the

next section, we aim to derive an algorithm that learns an effective ranking function by

effiCiently minimizing M. It is also important to note that although M is no longer a

Iigol‘ous lower bound for the original objective function 5, our empirical study shows that

this approximation is very effective in identifying the appropriate ranking function from

the training data.

3‘3-5 Algorithm

To minimize M(Q, F) in Equation (3.11), we employ the boosting strategy [38] that iter-

atively updates the solution for F. Let Fik denote the value obtained so far for document

50

(if. T0 improve NDCG, following the idea of Adaboost, we restrict the new ranking value

for document (if, denoted by if, is updated as to the following form:

~

I: k k

2

where a > O is the combination weight and fz-k = f(dz-fiqk) E {0,1} is a binary value.

Note that in the above, we assume the ranking function F(d, q) is updated iteratively with

an addition of binary classification function f(d, g), which leads to efficient computation

as well as effective exploitation of the existing algorithms for data classification. . To

construct a lower bound forM(Q, F), we first handle the expression [1+exp(Fz-k —ij)] —1,

summarized by the following proposition.

Proposition 2.

 1 1 k k k
~ ~ 3 + . - ex a - — . _1 3.13

1 + exp(Fik — Fjl“) 1 + eXP(F2-k _ Ff) 72.][p((f; fz)) j ()

where

ex PIC—F’-It

p(' 9) (3.14)

(1+ exp(Fz-k — F;‘))2

k _

7232' —

The proof of this proposition can be found in Appendix A.4. This proposition separates

the term related to Pi"c from that related to off in Equation (3.11), and shows how the

new Weak ranker (i.e., the binary classification function f(d, q)) will affect the current

ranking function F(d, q). Using the above proposition, we can derive the upper bound for

M (Theorem 5) as well as a closed form solution for a given the solution for F (Theorem 6).

Theorem 5. Given the solution for binary classifier fz-d, the optimal a that minimizes the

51

objectivefunction in Equation (3.1!) is

rk

m _

1 Zk=1Z.-,jk=1—z—2i9£Cj191(f"<f-k)

a=§log 1: (3-15)

m _

22:1 22',jk= 1 2_sz—102kj1(ff> fik)

where 0:9]- 2723-10 79 2).

Remark: Notice that in order to have this boosting algorithm continue the iterations, the

weak learner needs to produce models better than random guessing in the following sense.

Writing a in the following form

a = llog(1—6) (3.16)

where

k

27:-123112—3510:I(ff>fk)
 5:

ZZ=1E$"=1%ll-9,’f(1(f">>f,-’“)+I(ff<f,-k))

, we mean 6 S 0.5 by random guessing.

Theorem 6.

M(Q,F)SM(Q.F)+7(a)+ e———"p(3§)‘lzsz :SZ—‘i’ag.
k=1 i=1j=—1Zk

where 7(a) is only afunction ofa with 7(0) = 0.

The proofs of these theorems are provided in Appendix A6 and Appendix A.7 respec-

tively. Note that the bound provided by Theorem 6 is tight because by setting a = O, the

inequality reduces to equality resulting M(Q, F) = M(Q, F). The importance of this

theorem is that the Optimal solution for ff can be found without knowing the solution for

a.

52

Algorithm 5 NDCG_Boost: A Boosting Algorithm for Maxinrizing NDCG

1; Initialize F(df) = 0 for all documents

2: repeat

3: Compute 6’1-j ——'yzij(j 75 i) for all document pairs of each query. 7:” is given in
,3

Eq (3 14)-

4: Compute the weight for each document as

k
mk 2erk_ 27‘jg

k=Z———— (3.17)

5: Assign each document the following class label yf = sign(wz’-°).

Train a classifier f(x) : Rd —> {0,1} that maximizes the following quantity

nmk

ZZ lwticlfldbyf
(3.18)

1:21 i=1

7: Predict f,- for all documents in {Dk,i = 1, . . . , n}

8: Compute the combination weight a as provided in Equation (3.15).

9: Update the ranking function as Ff +— Ff + eff.

10: until reach the maximum number of iterations

Algorithm 5 summarizes the boosting algorithm in minimizing the objective function

in Equation (3.11). In each iteration, it computes 62- for every pair of documents of query

1:. 19k can be considered a measure of how close the rank position of documents (1" and

k
k . . .

dj are when they are sorted by function F. The algorithms computes wi , a weight for

each document, which is the summary information of document dz? when its position and

relevancy score compared to all other documents of the same query. wf can be positive

or negative. A positive wf indicates that the ranking position of df induced by the current

ranking function F is less than its true rank position, and a negative weight wz’? shows that

ranking position of (if induced by the current F is greater than its true rank position. The

magnitude ofwf shows how much the corresponding document is misplaced in the ranking.

In other words, it shows the importance of correct ranking position of document (If in terms

of the value of NDCG. Using these information, the algorithm finds out the most difficult

Notice that we use F(df) instead of F((1? , qk) to simplify the notation in the algorithm.

53

documents and the relevancy direction of their importance at the current iteration. Using

these information, NDCG_Boost maximizes fit as given by Equation (3.18) which can be

considered as some sort of classification accuracy. It uses sampling strategy in order to

maximize m because most binary classifiers do not support the weighted training set; that

is, it first samples the documents according to wa | and then constructs a binary classifier

with the sampled documents. After learning the new binary model at Step 6, the algorithm

evaluates its success in improving the value of NDCG in Step 7 and 8 and adds it to the

current set of binary models (the mixed strategy over binary models) at Step 9.

The following theorem shows that the proposed boosting algorithm reduces the objec-

tive function M exponentially.

Theorem 7. The objective fimction after T iterations, denoted by MT, is bounded as

follows:

NEWf)?
Mt—1

where (11 and a2 are defined asfollows.

251' r]?n mk _ n ml; 2

=222 ’f,I(f,’-°<f-’“), ”=2:

k=1,3=-1 k=1i,j=1

 1 k 1(fJ’.c > 5.13.19)

The proof is provided in Appendix A.8.

3.4 Experiments

To study the performance of NDCG_Boost we use the latest version (version 3.0) of

LETOR package provided by Microsoft Research Asia [56], which has been described

in Chapter 1. Besides a number of benchmark data data, LETOR package also includes

multiple state-of-the-art baselines and evaluation tools for research on Ieaming to rank.

54

3.4.1 Experimental setup

A number of state-of-the-art Ieaming to rank algorithms are provided in the LETOR pack-

age, including some of the most well-known leaming to rank algorithms from each category

(pointwise, pairwise and listwise). These baselines will be used to study the performance

of NDCG_Boost. Here is the list of these baselines (the details can be found in the LETOR

web page):

Regression: This is a pointwise approach that applies a linear regression to a ranking

problem. It is used as a reference point.

RankSVM: RankSVM is a pairwise approach that applies Support Vector Machine [18]

to the ranking problem.

FRank: FRank is a pairwise approach. It uses a probability model similar to RankNet [20]

for the relative rank position of two documents, with a novel loss function called

Fidelity loss function [22]. TSai et al. [22] showed that FRank performs significantly

better than RankNet.

ListNet: ListNet is a listwise learning to rank algorithm [26]. It uses cross-entropy loss as

its listwise loss function.

AdaRank_NDCG: This is a listwise boosting algorithm that incorporates NDCG in com-

puting the weights for both queries and the combination of weak ranking hypothe-

ses [42].

SVM_MAP: SVM_MAP is a support vector machine with MAP measure as the target

objective function. It is a listwise approach [13].

While the validation set is used in finding the best set of parameters in the baselines in

LETOR, it is not used for NDCG_Boost in our experiments. For NDCG_Boost, we set the

maximum number of iteration to 100 and use decision stump as the weak ranker.

55

3.4.2 Results

Figure 3.1 provides the the average results of five folds for different Ieaming to rank al-

gorithms in terms of NDCG @ each of the first 10 truncation level on the LETOR data

sets. Notice that the performance of algorithms in comparison varies from one data set to

another; however NDCG_Boost performs almost always the best. We would like to point

out a few statistics; On OHSUMED data set, NDCG_Boost performs 0.50 at NDCG@3, a

4% increase in performance, compared to FRANK, the second best algorithm. On TD2003

data set, this value for NDCG_Boost is 0.375 that shows a 10% increase, compared with

RankSVM (0.34), the second best method. On HP2004 data set, NDCG_Boost performs

0.80 at NDCG@3, compared to 0.75 of SVM_MAP, the second best method, which in-

dicates a 6% increase. Moreover, among all the methods in comparison, NDCG_Boost

appears to be the most stable method across all the data sets. For example, FRank, which

performs well in OHSUMED and TD2004 data sets, yields a poor performance on TD2003,

HP2003 and HP 2004. Similarly, AdaRank_NDCG achieves a decent performance on

OHSUMED data set, but fails to deliver accurate ranking results on TD2003, HP2003 and

NP2003. In fact, both AdaRank_NDCG and FRank perform even worse than the sim-

ple Regression approach on TD2003, which further indicates their instability. As another

example, ListNet and RankSVM, which perform well on TD2003 are not competitive to

NDCG_boost on OHSUMED and TD2004 data sets.

NDCG is commonly measured at the first few retrieved documents to emphasize their importance.

56

OHSUMED

T
 1

-+— Regression

----- FRank

-e— ListNet

RankSVM

AdaRankNDCG

 —~— SVM_MAP

+Noce_\eoosr

TDZOO3

0'4 a it é a 10 0'2 e 1i 6
@n

NP2004

i Al 6 e 10 z 4 e a 10

Figure 3.1: The experimental results in terms of NDCG for Letor 3.0 data sets

57

Chapter 4

Ranking Refinement by Boosting

In this chapter, we consider the problem of improving the accuracy of an existing ranking

function with a small set of labeled instances. We are particularly interested in learning

a better ranking function using two complementary sources of information, ranking in-

formation given by the existing ranking function (i.e., the base ranker) and that obtained

from user feedback. We call this problem ranking refinement. Ranking refinement is

very important in information retrieval where feedbacks are gradually collected. The key

challenge in combining the two sources of information arises from the fact that the ranking

information presented by the base ranker tends to be imperfect and the ranking information

obtained from users’ feedbacks tends to be noisy. We develop an objective function based

on the pairwise approach for this problem and utilize the boosting technique to optimize

it. Our empirical study shows that the proposed boosting algorithm is effective for rank-

ing refinement, and furthermore it significantly outperforms the baseline algorithms that

incorporate the outputs from the base ranker as an additional feature.

4.1 Introduction

Most research in learning to rank is conducted in the supervised fashion, in which a ranking

function is learned from a given set of training instances. The drawback with the supervised

58

approach is that they tend to fail when the number of training instances is small. In several

real-world applications, in addition to the labeled training instances, a base ranker is avail-

able that can be used to rank the documents. Then, the research question is how to exploit

the outputs from the base tanker when Ieaming a ranking function from a small number of

labeled instances. We refer to this problem as Ranking Refinement to distinguish it from

supervised learning to rank. Below we show two examples for the application of ranking

refinement:

Relevancefeedback In information retrieval, documents are often ordered by a predefined

relevance ranking function, such as BM25 [51] and Language Model for IR [73],

that assesses the relevancy of documents to a given query. Relevance feedback tech-

niques are proposed to improve the retrieval accuracy by allowing users to provide

relevance judgments for the first a few retrieved documents. The research question

here is how to improve the accuracy of relevance feedback by combining the rank-

ing information from the user feedback as well as the ranking information from the

predefined ranking function. We can cast the relevance feedback problem as a rank

refinement problem by viewing the relevance ranking function as the base ranker and

the documents that are judged by the user as training instances.

Recommender system The goal of a recommender system is to rank the items according

to the interest of an active user (i.e., the test user). Usually, a few rated items are

provided to indicate the preference of the active user. However, on the other hand,

we can rank the items for the active user based on the rating information of the other

users using the collaborative filtering techniques [74]. The research question here is

how to improve the ranking performance by leveraging the two types of information,

i.e. the items rated by the active user and the ranking list generated by the collabora-

tive filtering technique. We cast this problem into theframework of rank refinement

by viewing the collaborative filtering algorithm as the base ranker and the rated items

as training instances.

59

.
,
‘
-
_
l
"

Furthermore, any online learning of ranking functions can be viewed as a ranking re-

finement problem in that the ranking function is updated iteratively with new training ex-

amples collected on the fly.

A straightforward approach toward ranking refinement is to view the scores of the base

ranker as an additional feature, and learn a ranking function from a limited number of

training examples over the augmented features. As will be shown in the experiments, this

is not the best approach for exploiting the information hidden in the base ranking function.

We believe that the most valuable information behind the base ranker is not its scores but

the ranked list of documents it produces. We therefore view the base ranker and the labeled

instances as two complementary sources of information, each produces a different loss to

evaluate the performance of the new ranking function. The key challenge in combining

these two sources of information is that the ranked list generated by the base ranker is

imperfect while the labeled instances tend to be noisy. There are two research questions in

this problem to address:

Balancing between two sources of relevancy information: The first question is how to

balance between two sources of relevancy information; i.e. how to evaluate the effec-

tiveness of a given a ranking function that orders the documents for each query. This

question is directly related to the design of the loss function. The common approach

in machine learning to balance between two sources of losses is to linearly combine

them with a constant. Since the reliability of each source is unknown, finding a good

balance parameter is critical in this case. We propose the multiplication of the losses

related to two sources of information as an effective and parameter free approach to

combine them and show that it satisfies the Parieto Optimality condition [75].

Learning: Given the multiplicative approach for balancing between two different sources

(i.e., the base ranker and the training examples), the second research question is how

Notice the application of cross-validation is not possible here since no reliable source of information, i.e.

the correct ordering of documents, is available in this case

60

to learn a ranking function by effectively combining these sources. Our approach to

answer this question is based on the boosting framework.

Our empirical study with relevance feedback and recommender system show that the

boosting algorithm with multiplicative loss function is effective for ranking refinement, and

significantly outperforms the baseline algorithms that incorporate the outputs from the base

ranker as an additional feature for the documents.

4.2 Related Work

Most learning to rank algorithms are designed for the setting of supervised Ieaming, in

which a ranking function is learned from labeled instances. However, the problem of semi-

supervised ranking, the topic of this chapter, has not been addressed in the literature, to

the best of our knowledge. The algorithm developed in this chapter belongs to pairwise

approach to learning to rank and is closely related to relevance feedback. Therefore, we

describe a short bibliography of these two.

Three well-known pairwise approaches to Ieaming to rank are Ranking-SVM [11, 76],

RankBoost [19], and RankNet [20]. Ranking-SVM minimizes the number of incorrectly

ordered pairs within the maximum margin framework. Several variants [21, 77] are de-

veloped to further enhance the performance of Ranking-SVM. RankBoost learns a ranking

model based on the same consideration, but by means of Boosting. RankNet [20] is a neural

network based approach that uses cross entropy as its loss function.

The relevance feedback techniques [78] are developed to improve the accuracy of the

existing retrieval algorithms. There are two types of relevance feedback. The first type,

termed user relevance feedback, enhances the retrieval accuracy by collecting the user rel-

evance judgments for the documents that are ranked on the top of the list. As pointed out

in the introduction section, the user relevance feedback problem can be treated as a prob-

For the list of different approaches to Ieaming to rank, refer to Chapter 3

61

lem of ranking refinement. As we showed in the empirical study, the proposed algorithm

for ranking refinement significantly outperforms the standard relevance feedback algorithm

(i.e., the Rocchio algorithm) over several datasets. The second type of relevance feedback,

often termed pseudo relevance feedback, does not explicitly collect the user relevance judg-

ments. Instead, it treats the top ranked documents as relevant to the given query, and the

documents ranked at the bottom as irrelevant. These pseudo relevance judgments are used

to improve the existing ranking function. It is well known in information retrieval that

pseudo relevance feedback may result in degradation of retrieval performance given the

high probability of errors in pseudo relevance judgments [78]. This is similar to the noise

of training instances in ranking refinement.

4.3 Ranking Refinement

4.3.1 Problem Definition

Let D = (x1, x2, . . . ,xn) denote the set of instances to be ordered, where each instance

x, 6 Rd is a vector of d dimensions. Let G : Rd —+ IR denote the base ranking function

(base ranker), and g,- = G(x,) denote the ranking score assigned to x,- by the base ranking

function G. Instance x,- is ranked before xj if g,- > 93-. To make our problem general, we

assume the label information collected from user feedback is presented as a set of ordered

pairs, denoted by 0 = {(xik >- xjk)|k = 1,. . . ,m} where each pair x,- >- xj indicates

that instance x,- is ranked before xj. The goal of ranking refinement is to learn a ranking

function F : Rd —> R by exploiting both the labeled pairs in 0 and the ranking information

given by G.

This is because any labeled instances can be converted into ordered pairs while the converse is not true.

62

4.3.2 Encoding Ranking Information

The first important question for ranking refinement is how to encode the ranking informa-

tion provided by the base ranking function G. A straightforward approach is to use the

ranking scores computed by G as an additional feature, and apply the existing algorithms,

such as RankBoost [19] and Ranking-SVM [76], to learn a ranking function from the la-

beled instances. The drawback of this approach is twofold:

0 First, this approach only utilizes the ranking scores of the labeled instances. The

ranking information generated by the base ranker for the unlabeled instances is com-

pletely ignored by this approach. However, base ranker is a rich source of infor—

mation for the unlabeled instances that can be exploited for a better ranking. This

is particularly important when the number of labeled instances collected from the

users’s feedback is considerably small.

0 Second, we believe that the ranking orders generated by the base ranking function

is substantially more reliable than the numerical values of the ranking scores. Sim-

ilar observation is found in the study of meta search whose goal is to combine the

retrieval results of multiple search engines to create a better ranking list [79]. Em-

pirical studies [79] showed that the meta search algorithms based on the document

ranks often outperform the algorithms that directly use the relevance scores.

To address the above problems, we encode the order information generated by the base

ranking function G with matrix W E [0, 1]"x". Each Wz’o’ in the matrix represents the

probability of ranking x,- before xj and is defined as follows

8Xp()\9i)

eXth) + exp(/\9j)

Wz',j (4.1)

In the above, Wm- is defined by a softmax function and the parameter A _>_ 0 represents the

confidence of the base ranking function. To see the effect of A, we consider two extreme

63

C38681

0 A = 0. In this case, we have WM 2 0.5, which indicates that the ordering informa-

tion generated by the base ranker is completely ignored.

0 A = 00. In this case, we have

1 92' > gj

Wi,j = 0.5 92' = gj (4-2)

0 92' < gj

Thus, W is almost a binary matrix, implying that we completely trust the ranking list

generated by the base ranker.

In our experiment, we set A to be inverse to the standard deviation of the ranking scores for

the first 10 retrieved documents.

Similarly, we encode the ordering information inside the set 0 with matrix T as follows:

1—n/2 (x,- >-x-) eo

T1,,- = J (4.3)
77/2 otherwise

where parameter 7] E [0, 1]. TM represents the probability of ranking ranking x,- before

xj in the training data. The parameter 1] reflects the error rate of training data, and is

particularly useful when the labeled instances are derived from implicit user feedback that

is usually noisy. In our experiment, we set 77 = 1 /2.

4.3.3 Objective Function

The goal of ranking refinement is to learn a ranking function F : Rd —> IR from matrix W

and T that produces a more accurate ranking list than the base ranking function G. In par-

ticular, the optimal ranking function F should be consistent with the ranking information

in W and T. To this end, we measure the ranking errors of F with respect to both W and

F, i.e.,

errw = Z Wi,jI(Fj _>_ Fi) (4-4)

errt = Z 7;,jI(Fj 25“,) (4.5)

In the above, we introduce F,- = F()9) and the indicator function [(33) that outputs 1

when the input boolean variable x is true and zero otherwise. There are two problems with

directly using the ranking errors errw and errt as the objective function:

0 First, both error functions are non-smooth functions since the indicator function I(2:)

is non-smooth. It is well-known that optimizing a non-smooth function is computa-

tionally more challenging than optimizing a smooth one [80].

0 Second, with two objectives at hand, the problem is essentially a multi-objective

optinrization problem [75]. Thus, another important question is how to combine

multiple objectives into one single objective.

In what follows, we will address these two questions separately.

Relaxation with Exponential Functions. To address the problem with non-smooth ob-

jective functions, we follow the idea of boosting by replacing the indicator function

I(a: 2 y) With an exponential function exp(:c — y). The resulting new objective functions

are:

n

e/FTw = Z Wi,j exp(Fj — Fi) (4.6)

i3j=1

n

6m = Z Ti,jeXP(Fj—Fi) (4.7)

iij=1

65

Note that since exp(a: — y) 2 1(m 2 y), by minimizing the errors Efi‘w and 67?}, we are

effective in reducing the original ranking errors errw and errt. Another advantage of using

e’fiw and e’Frt comes from the theoretic result of AdaBoost [81], i.e., by rrrinirrrizing the

exponential loss function, the resulting classifier will not only reduce the training errors but

also maximize the classification margin. The enlarged classification margin is the key to

guarantee a low generalization error for testing instances [81].

Remark: It is interesting to examine the effect of the smoothing parameter 77 on the

ranking error e’Frt. By substituting the expression (4.3) for TiJ' in (4.7), we have e’Frt

expressed as follows:

e’Frt=(l—77) Z exp(Fj-Fi)

(xi>-xj)60

+3 2 [exp(Fi — Fj) + exp(Fj - FD]

z‘,j=1

+77 n

z (1"?) 2 +52120”“

(szcjexp)€0 i=1

17

= (1— 77) Z €Xp(Fj - Ft) + mllFllg (4-3)

(xi-Htj)60

where “Fug. is a norm of vector F = (F1, . . . ,Fn) defined as follows:

uan = FT(nl—ee)F

where 1 is the identity matrix and e is a vector of all ones. In the second step, the approxi-

mation follows the Taylor expansion of the exponential function. The second term in (4.8),

i.e., nllFllg/2(1 — 7)), plays a similar role as used by Support Vector Machines (SVM) [3].

In this sense, the parameter 7] essentially regularizes the ranking error err/7t.

66

Combining TWO Objectives. The problem of optimizing multiple objectives is usually

called multi-objective optimization problem [75]. In a multi-objective problem, there is

usually no single solution that can satisfy each objective to its fullest. In this problem, we

are looking for a solution at which no objective can be further reduced without increasing

the value of other objective functions, a condition known as Pareto optimality. The easiest

approach to combine several objective functions that results in a Pareto optimal solution is

to linearly combine them [75]. In our case, there are two error functions, each related to

a different source of relevancy information. A given ranking function can satisfy only one

source of relevancy information for each pair of documents in case of a conflict between

two sources; i.e. decreasing the error related to one source can increase the error related to

another. The linear combination leads to the following optimization problem, i.e.,

11

La = ”Ye/fine + 6771: = Z (”twig + Tm) €XP(Fj — Ft) (4.9)

t',j=1

where parameter 7 is used to weight error e771”. We refer to the approach based on the

above objective function as “Linear Ranking Refinement”, or ILRR, for short. The main

drawback with the linear combination approach is how to decide the value for 7. In our

experiments, we will show that different 7 could result in very different performance in

information retrieval. Since there is no easy way to find the best tradeoff, we consider the

combination of the two errors by their products, i.e.,

n n

= Z Tin” eXP(Fj — Ft) I 2: W233“ eXP(Fj — F,) (4.10)

We refer to the approach as “Multiplicative Ranking Refinement”, or MRR for short.

Now, the question is whether the resulting solution is Pareto efficient [75]. More for-

mally, a solution F = (F1, . . . F") is Pareto optimal for the objectives e’Frw and 67:71; if

67

there does not exist any other solution F’ = (Ff , . . . , F,’,) that is either

1. C/fi‘w(F’) < fiw(F) and 6’7“?”qu S fidF), 01'

2. 5mm) 3 6mm) and 63mm) < new).

In other words, if F is Pareto efficient, it guarantees that no solution is able to further

reduce the two objectives simultaneously than F. Regarding the Pareto efficiency when

rrrinirnizing Lp in (4.10), we have the following theorem:

Theorem 8. The optimal solution F = (F1, . . . , Fn) found by minimizing the objective

fimction Lp is Pareto efficient.

The proof of this theorem can be found in Appendix A9. The main advantage of using

Lp rather than La is that it does not need a weight parameter. This will be revealed in our

empirical studies in that minimization of Lp usually significantly outperforms minimization

of La even when the optimal combination weight 7 is used for La.

In order to compare the properties of the two different approaches for combination,

we examine their first order derivatives. Let 5 denote the parameters used by the ranking

function F(x). Then, the first order derivatives of La and Lp with respect to E are given as

follows:

n

VtLa = 2 (T2,) + Twig) exp<Fj — Ft><ng(xj) — ng(x.->)

2',J'=1

VtLp = L, Z(at,j+b.,j>exp<Fj—F.>(ng(xj>—vtth.-)>

i,j=1

where

am = n 2,) em 3 ') (4.11)

22,321 WM @1ij - F2")

Tm €XP(Fj - Ft“)
b. .

2’] 22j=1TiJeXP(Fj — Ft)

(4.12)

68

Note that both derivative shares similar structures. The key difference between V5La and

Vng is that in Vng, am- and bz‘,j are used to weight the contribution from W and T

for instance pair (xi,xj) when computing the derivative. This is in contrast to VgLa

where the weights for instance pair (xi, x_,-) are 7W“ exp(Fj - F2) and TM exp(Fj - F2).

The main advantage of using ai,j and bi,j is that they are normalized, i.e., 23H “M =

223:1 bz',j = 1, and therefore the contributions from W and T are naturally balanced

when calculating the derivative.

4.3.4 Boosting Algorithm for Ranking Refinement

In this section, we will consider algorithms for Ieaming the ranking function F(x) by

respectively minimizing the objective function Lp. The objective function La is similar

to the objective function used by Rank-Boost [19] except that a weight (Tid- + 7W“) is

used for each instance pair. We thus can simply modify the Rank-Boost algorithm to learn

the optimal ranking function F(x). Hence, in the sequel, we will focus on the boosting

algorithm for minimizing Lp.

To learn the optimal ranking function F(x) by minimizing LP, we follow the greedy

approach of boosting algorithms. Since the training examples are the labeled instance

pairs, a straightforward boosting approach is to iteratively update the weights of instance

pairs and train a new ranking function for the given weighted pairs. This is the strategy

employed in the RankBoost algorithm [19]. However, since the number of instance pairs is

0(n2), this approach could be computationally expensive when the number of instance 71

is large.

To address the above problem, we present a new boosting algorithm that converts the

weights of instance pairs into weights for individual instances. The key idea behind the

new boosting algorithm is to derive an upper bound for the target objective that decouples

functions for pairs of instances into functions for individual instances. It is this decoupling

that makes it possible to infer weights for individual instances from weights for instance

69

Algorithm 6 Boosting algorithm for minirrrizing Lp

1: Input: Wijj and Tio' as two encrypted sources of information

2: repeat

3: Compute 7233' for each instance pair as 'yz-J- = am- + bz',j where am- and bz',j are

defined in (4.11) and (4.12).

Compute the weight for each instance as w,- = 231:1 7231' — 7]",-

Assign each instance the class label y,- = sign(w,-).

6: Train a classifier f(x) : Rd —-) {0,1} that maximizes the following quantity

5
0
.
4
?

m = Z lw’ilf(x’i)yi (4-13)

i=1

7: Predict fz- for all instances in D

27.1._1 72' '5(fi,1)5(f',0): . . . h = 1 1 Z,]—— 1.? J

8 Compute combination werg ts a 2 0g 23:1 7M5(fj11)5(f¢,0)

f(x,) 6(3:, y) outputs 1 if a: = y and zero otherwise.

9: Update the ranking function as F(x) <— F(x) + af(x)

10: until reach the maximum number of iterations

where f,- =

pairs. In addition, the new boosting algorithm is able to derive an appropriate binary class

label for each instance using the computed weights. Using both the weights and the class

assignments of instances, we can train a binary classifier f : Rd —> {0, +1} and update the

overall ranking function by F’(x) = F(x) + af(x) where a is the combination weight.

Note that by converting a ranking problem into a series of binary classification problems,

the new boosting algorithm avoids the high computational cost arising from the large num-

ber of instance pairs.

Algorithm 6 summarizes the overall procedures for the proposed boosting algorithm

minimizing Lp. In each iteration, this algorithm computes '72-,3- for every pair of instances

that measures the uncertainty of ranking instance x,- ahead of xj. Then, it adds up the

uncertainties of comparing instance x.) to all other instances, which results the calculation

of the weight for instance x.) as w,- = 231:1 72-J- - 7332'— The bigger the magnitude of 21),,

the large the uncertainty of F is in ranking xi. So, the algorithm redistributes weights pro-

portional to the uncertainty to at each iteration. It is important to note that to,- can be both

positive and negative. In particular, to, > 0 indicates that the algorithm did not succeed

70

x10

_
\

O
‘
9

0
?

O
b
j
e
c
t
i
v
e
F
u
n
c
t
i
o
n
V
a
l
u
e

O
N

Iteration

Figure 4.1: Reduction of the objective function Lp using the OHSUMED Data Set

in ranking x,- on the top of the ranked list; and to, S 0 indicates the opposite. Hence, the

boosting algorithm derives the class label y, for x,- based on the sign of 10,-: a positive class

for placing instances on the top of the ranked list, and a negative class for placing instances

on the bottom of the list. To summarize the above steps, using the magnitude and sign of

211,-, the algorithm chooses a weighting and a labeling direction for instances. Given a set

of weighted binary class examples, the weak learner trains a classifier that maximizes m

in (4.13), which can be interpreted as a sort of classification accuracy. Since most binary

classifiers are unable to take weights into consideration, the boosting algorithm divides

the training procedure into two steps: in the first step, it samples 3 instances according

to the distribution that is proportional to the weights |w,-|; It then trains a binary classifier

f : Rd -—> {0, +1} using the sampled instances . After Ieaming the new binary classifier

in Step 6, the algorithm evaluates its success in reducing the loss (the value of the objec-

tive function) in Step 7 and 8 and adds it with a proportional weight to the current list of

classifiers at Step 9.

We manually set .9 = max(20,n/5) in our empirical study. A similar strategy is employed in the

AdaBoost algorithm [19] and its effectiveness has been verified in empirical studies.

71

Before providing the justification for Algorithm 6, notice that in order to have this

algorithm continue iterating, the weak learner need to do better than random guessing in

the following sense. Writing a in the following form

a = élog(1—€) (4.14)

6

where

22j=17i,j6(fja 1)6(fi:0)

Eider 7i,j(6(fja1)5(fi10) + 5(fi,1)5(fj,0))

applies that by better than random guessing we mean 6 < 0.5.

 5:

In the remaining of this section, we will provide justification to the prOposed boosting

iterations in Algorithm 6. The main result is summarized in Theorem 9.

Theorem 9. Let fk(x) denote the binary classification function obtained in the kth itera-

tion, and 72",]denote '7,-j learnedtn that iteration. The objectivefunction after T iterations,

denoted by L5, is bounded asfollows:

Tn n

Lg" g 2 Tm- 2 Wm- exp (,/—— ([12 (4.15)

i,j=1 z',j=l k=1

where

m. = Z)nzijétf’ttx.)name-)0)

iJ=1

n

Vt = Z 412,6(fk(xt).0)6(f’°(xj>, 1)
i,j=1

The above theorem essentially shows that by using the proposed algorithm, the objec-

tive function Lp will be reduced exponentially.

The key to proving Theorem 9 is to establish the relationship between the objective

function Lp of two consecutive iterations. This is because by upper bounding the log-ratio

72

between Lp of two consecutive iterations, i.e.,

r, 2 log Lg, — 10g Lg-l, (4.16)

we will have

T T Lt T

_ 0 P 0
LP _ LPH 7: g Lpexp Zr, (4.17)

t=1 LP t=1

For the convenience of presentation, in the following, we only consider two consecutive

iterations without specifying the index of iteration. Instead, we denote the quantities of the

current iteration by symbol"to differentiate the quantities of the previous iteration. In order

to establish an upper bound for the log ratio, we first introduce the following lemma

Lemma 5. Assume F(x) = F(x) +01f(x) where F(x) and F(x) are the rankingfunctions

oftwo consecutive iterations, respectively. f : Rd —> {0, 1} is a binary classifier and oz is

the combination weight. We have thefollowing inequality holdfor any F, f, and (I:

~

L n

108 —p S -2 + Z (ai,j + bi,j) eXp(a(fj - ft)) (4.18)

L” 231:1

where am- and b233- are defined (4.11) and (4.12), respectively.

The proof of Lemma A.10 can be found in Appendix A.10. Using Lerrrrna A.10, we

present the proof of Theorem 9 in Appendix A.11.

Finally, we can show the relationship between the objective function Lp and the quan-

tity m (in (4.13)) that is used to guide the training of binary classifiers in iterations. This

result is summarized in the following theorem:

Theorem 10. Let ”We denote the value ofthe quantity in Equation (4.13) that is maximized

by the binary classifier fk(x) learned in the tth iteration. Assume that lit 2 0 for each

iteration. Then, the objective fimction after T iterations, denoted by L5, is bounded as

73

follows:

12 n T

L; S 2 Tm 2 Wm 8X1) - Z 77: (4.19)

z',j=1 i,j=1 t=1

The proof of the above theorem can be found in Appendix A. 12. Theorem 10 provides

a theoretical justification for Algorithm 6. In particular, by maximizing m, Algorithm 6

effectively reduces the objective function Lp. This is further confirmed by our empirical

study. Figure 4.1 shows an example of reduction in the objective function Lp. We clearly

see that the objective function is reduced exponentially and receives the largest reduction

during the first few iterations.

4.4 Experiments

In this section, we evaluate the proposed algorithm for ranking refinement by two tasks,

i.e., user relevance feedback and recommender system. The objectives of our experiments

are: (1) to compare the proposed algorithm for ranking refinement to the existing ranking

algorithms, (2) to examine the performance of the proposed algorithm for ranking refine-

ment with different numbers of training instances, (3) to examine the effect of different

base rankers on the performance of the proposed algorithm, and (4) to examine the time

efficiency of the proposed algorithm for ranking refinement. We use the Letor data set

for Relevance Feedback experiment and Movies data set for the Recommender System

experiment. The description of these data sets can be found in Section 1.6.2.

4.4.1 Experimental Setup

Algorithms. To examine the effectiveness of the proposed algorithm for ranking refine-

ment, we compared the following ranking algorithms:

Base Ranker: It is the base ranker used in the ranking refinement.

74

Rocchio: This algorithm extends the standard Rocchio algorithm [82] for user relevance

feedback that creates a new query vector by linearly combining the original query

vector and vectors of feedback documents. Given the initial query Q0, the relevant

documents (R1, R2, ..., Rnl) and non-relevant documents (81, 5'2, ..., Snz), the new

query according to Rocchio is computed as:

Q: Q0+a251—e2S—;L (4.20)

Note, in our case, that each document is not represented by a vector of word fre-

quency, but a vector of features that are computed based on its match to the query.

Hence, we don’t have Q0, i.e., the representation vector for query itself. We therefore

set Q0 to be a vector of all zeros. We used the inner product between the new query

and documents as the scores to rank the documents. W‘e vary a and 5 from 1 to 10

and choose the best setting.

SVM: This implements the Ranking-SVM algorithm using the SVM light package. Note

that it is commonly believed that Rank-Boost performs equally well as Ranking

SVM. The experimental results provided in the LETOR collection also confirm this.

Hence, we only compare the proposal algorithm with Ranking-SVM, but not Rank-

Boost.

MRR: This is the Multiplicative Ranking Refinement algorithm that minimizes Lp

in (4.10).

LRR: This is the Linear Ranking Refinement algorithm that minimizes La in (4.9). Since

the performance of LRR depends on the parameter 7, we run LRR with 100 different

values from 0.1 to +10 and choose the best and worst performance. We referred them

to as LRR-Worst and LRR-Best, respectively.

75

For a fair comparison, the output from the base ranker is used as an extra feature when

using SVM (i.e., Ranking-SVM) and Rocchio. Notice that we do not compare the perfor-

mance of the proposed method with different baselines provided in LETOR because the

experiments in LETOR are obtained under a different setting. We will discuss the experi-

mental setup used in this chapter in Section 4.4.1. Similar to Chapter 3, we used NDCG to

evaluate the performance of different methods. NDCG is described in Section 3.3.1.

Evaluation Protocol. For each LETOR data set, we choose the best ranking feature

compared to other features and use it as the base tanker. The best ranker for datasets

OHSUMED, TD2003, TD2004, HP2003, HP2004, NP2003, NP2004 are feature number

11, 46, 46, 46, 46, 6, and 6. We followed the common practice of user relevance feedback

by collecting the relevance judgments for the first 20 retrieved documents; i.e. we sort all

documents of one query based on the base ranker and simulate the user feedbacks by using

the true relevancy of the first 20 documents. These user relevance judgments served as la-

beled instances in ranking refinement. Notice that it is well known that relevance feedback

depends on the quality of feedback documents. If the underlying base ranker does a poor

job in identifying the relevant documents, it is very likely that most of the feedback docu-

ments are irrelevant, leading to a poor performance of the proposed algorithm. We come

back to this problem in Section 4.4.3.

For the experiment with recommender system, the base ranker was created by apply-

ing a collaborative filtering algorithm, more specifically, the Personality Diagnosis algo-

rithm [74], to the user rating data. In particular, 20 users were randomly selected as the

training users, and the remaining 923 users were used for testing. For each test user, 10

rated movies were randomly selected and were used by the collaborative filtering algo-

rithm to identify the 20 training users who share the common interests with the test user.

Note that we did not compare the proposed algorithm to other information filtering algo-

rithms because the focus of this study is to examine the effectiveness and the generality of

76

the proposed approach for ranking refinement.

4.4.2 Results for Relevance Feedback

Figure 4.2 show the ranking results of different algorithms in terms of NDCG for the first

25 ranked documents. First, by comparing the performance of the two variants of ranking

refinement, we observed that the Multiplicative Ranking Refinement (MRR) algorithm is

more effective than the Linear Ranking Refinement (LLR) algorithm. Indeed, MRR per-

forms significantly better than the best case of LRR (i.e., LRR-best) for OHSUMED and

TD2004 datasets. The key difference between MR and LR is that MRR minimizes the

product of the two error functions while LRR minimizes the weighted sum. We believe it is

the normalization scheme brought by MR (see equations in (4.11) and (4.12)) that makes

it performing better than LRR. The performance ofMR is more appreciated given it does

not have a single parameter that needs to be adjusted manually.

Second, comparing to the other three baseline algorithms, i.e., the base ranker, Roc-

chio, Ranking-SVM, we observed that MRR significantly outperforms the base ranker and

Rocchio algorithms in all the cases; it outperforms Ranking-SVM in the first three data

sets and yields similar performance for the remaining four data sets. We also note that the

improvement made by the ranking refinement is more significant for the first a few rank-

ing positions than the other ranking positions, a very desirable property for web search in

which users usually only pay attention to the first a few retrieved results. We thus conclude

that Multiplicative Ranking Refinement is more effective than the baseline algorithms for

user relevance feedback in information retrieval.

Finally, notice that the ranking algorithms show different trend of NDCG on different

data sets. Particularly, NDCG is decreasing for the first three data sets and increasing for

the remaining data sets. The increasing or decreasing trend is directly dependent on the

number of relevant documents and the quality of ranking. If a ranking algorithm performs

a goodjob in retrieving the relevant documents on the top of the list, it is generally expected

77

to have a decreasing trend. This is because it is more likely to see irrelevant documents in

the list as we retrieve more documents. For the last four data sets, there is only one relevant

document for each query. Even a good ranker is not able to retrieve the only relevant

document on the top of the list and that is why you see NDCG increases until it retrieves

the relevant documents of all the queries and then remains constant.

4.4.3 Effect of Base Ranker

W examine how the proposed algorithm response to different base tankers, in particular

the base rankers with relatively poor retrieval performance. We tested MRR algorithm with

three different base rankers that are selected automatically based on their ranking perfor-

mance. These three base rankers are the worst, the best and a medium quality base ranker

selected from the list of features for each data set. Figure 4.3 shows how MRR algorithm

performs when the selected base rankers are used. In each sub-figure, different base rankers

are distinguished with a number in the legend that shows the feature number they use. The

result indicates that the quality of base rankers has a direct impact on the performance

of the MRR algorithm. However, the proposed algorithm is able to significantly improve

the performance for a base ranker that can retrieve some relevant documents. When the

base ranker performs extremely poor (like in TD2003, HP2003, HP2004, NP2003, and

NP2004), all the retrieved documents are are judged as irrelevant by user and no infor-

mation is available from either sources. Therefore, no improvement can be made by the

proposed algorithm for extremely poor base rankers. It is also interesting to observe that for

data set OHSUMED, even with the worst base ranker, MMR algorithm is able to achieve

similar performance to the baseline methods when they use the best base tanker. This re-

sult further confirms the effectiveness of the proposed algorithm for ranking refinement.

We thus conclude that the MR algorithm is resilient to the imperfectness of base rankers.

78

4.4.4 Effect of Size of Feedback Data

To investigate the effect of the number of feedback documents on the performance, we ran

the MR algorithm by varying the number of feedback documents from 5 to 20. Figure 4.4

shows the result using varied number of feedback documents. We clearly observed that

the number of feedback documents have a direct effect on the performance of ranking

refinement. However, even with a small amount of feedback, MRR is able to improve

the retrieval performance considerably, particularly for the accuracy of the first few ranked

documents. We thus conclude that the proposed algorithm for ranking refinement is robust

to the size of feedback data. Also notice that for data set NP2003, there is no changes in the

performance ofMR with different relevance feedback. The reason is that the base ranker

in this case is not able to retrieve any relevant documents for most queries.

4.4.5 Results for Recommender System

We evaluated the generality of the proposed algorithm by applying it to recommender sys-

tem (movie recommendation). Figure 4.5(a) show the results of different algorithms when

applied on the MovieLens dataset. It is surprising to observe that the results ofLRR, the lin-

ear ranking refinement algorithm, even with the tuned parameter 7, is not comparable to the

the performance of the base ranker. In contrast, the MRR algorithm is able to significantly

improve the accuracy of the base ranker and outperforms the other baseline algorithms con-

siderably. This result further indicates the importance of appropriately combining the two

information sources, i.e., the ranking information behind the base sranker and the feedback

information provided by users.

Figure 4.5(b) shows the sensitivity of MRR to the size of feedback data by varying the

number of movies rated by the test user from 5 to 25. Similar to the result for relevance

feedback, we observed that the size of feedback data affects the performance of MRR

considerably. However, even with 5 rated movies, the MR algorithm is able to make a

noticeable improvement in the ranking accuracy compared to the base ranker. This result

79

further confirms the robustness of the proposed algorithm to the size of feedback data.

4.4.6 Time Efficiency of Ranking Refinement

Figure 4.6 shows the efficiency of the MR algorithm in terms of the running time for

different numbers of rated movies for each test user. We chose movies data set for the

experiment because the number of rated movies varies significantly from users to users,

making it easy for us to evaluate the computational efficiency of the proposed algorithm.

We partitioned the test users into groups where each group of users has a different number

of rated movies. The running time of MR for each group is calculated by averaging it

across all the users in the group. As pointed in Section 4.3.4 and seen in Figure 4.6, the

running time is linear in the number of instances. Note that the relatively long running time

is due to the MATLAB implementation.

80

—r- Base Ranker

+Rocchio

—°—SVM

MoBest_LRR

-~—Worst_LRR

—-— MRR

0.8

0.2

0 10 15 0 5

o 51b75 2o 25

Top Documents

HP2003

4 '-

_gangaaailaaaamaaaaaam‘

AAAAAAAAAA

A A A

............ vn"

o 1'0 15 2o 25

Top Documents

NP2003

1

Top Documents

OHSUMED

o 5 1‘0 15 21)

Top Documents

T02004

25

N
D
C
G

o 5 1o 15 20

Top Documents

HP2004

o 5 1o 15 2o

Top Documents

o 5 1o 15 2o

Top Documents

Figure 4.2: NDCG of relevance feedback for different algorithms

81

25

OHSUMED

—0— Base Ranker-46

—+— MRR-46

+Base Ranker-36

---o-- MRR-36

—-— Base Ranker-16

0.2 L

. _ o 5 1‘0 1‘5 20 2'5

MRR 16 Top Documents

TDZOOB TDZOO4

0.4’

N
D
C
G

 W W

00 5 10 15 20 25 00 5 10 15 20 25

Top Documents Top Documents

HP2003 HP2004

 W W

00 5 10 15 20 25 00 5 10 15 20 25

Top Documents Top Documents

NP2003 NP2004

 W W

00 5 10 15 20 25 0O 5 10 15 20 25

Top Documents Top Documents

Figure 4.3: NDCG ofMR with different base rankers for relevance feedback

82

—1— Base Ranker

—o— MRR-5

—e— MRR-10

.-...9 MRR-15

-~— MRR-20

—-— MRR—25

TDZOO3

0.2 r

o 5 1b 15

Top Documents

HP2003

0.951 -_

0.9

2 0.75-

M 1

0.65

20

o 140 20

Top Documents

NP2003

0.8 '

0.7'

0.6 ’

N
D
C
G

0.5’

0'40 5 1o 15

Top Documents

250

3‘0

25

0.9“

0.8* .

0.4

OHSUMED

5 1‘0 15 20 25

Top Documents

TD2004

5 10 15 2o 25

Top Documents

HP2004

0.2

5 1‘0 15 20 25

Top Documents

NP2004

5 1‘0 15 20 25

Top Documents

Figure 4.4: NDCG of MR with different numbers of feedback documents for relevance

feedback

83

r
r
—
y

.
-
W

l
u
v
-
a
l
.
:

Movie +3 8 R k .

1 . a e . an er MOV' “ -+-Base Ranker
'9' ROCChIO 0 9.

' -0-MRR-5

0 9 +SVM -e— MRR-1O
' r «a» Best_LRR 0.85 .t _a” MRR-15

8 0.8' « ‘ +Worst_LRR (9 0.3 +MRR-20

o 8 +MRR-25

ZQT zom-

0.61 0.7

0.50 5 1o 15 2‘0 25 0'650 10 20 so
Top Documents Top Documents

(a) NDCG chart (b) Sensitivity to the number of rated movies

Figure 4.5: The ranking result for rmommender system

3.5 I I I I I I I I

T
i
m
e
(
S
e
c
o
n
d
s
)

..
.

5
A 0
1 I L

0'5 1 1 J l L l I 1

o 50 100 150 200 250 300 350 400 450

Number of Movies

Figure 4.6: Running time of MMR for different numbers of movies rated by test users

84

1
!

Chapter 5

Online Classification with Bandit

Feedback

In this chapter, we consider the problem of online classification with bandit feedback: in

each trial of online learning, instead of providing the true class label for a given instance,

the adversary will only reveal to the learner if the predicted class label is correct. Unlike

online learning with full feedback, learner here does not receive the loss value for all the

hypotheses in the hypothesis space after it chooses one, which demands a new approach

for an effective Ieaming. We present a general framework for online multi-class learning

with partial feedback based on the notion of potential [83]. The generality of the proposed

framework is verified by the fact that Banditron [5] is indeed its special case with the

squared L2 norm of the weight vector as the potential. Using the exponential potential,

we propose an exponential gradient algorithm for online multi-class Ieaming with partial

feedback that has the interesting property that its mistake bound is independent from the

dimension of data, making it suitable for classifying high dimensional data. Our empirical

study with the classification data sets show that the proposed algorithm for online learning

with partial feedback is more reliable than Banditron.

85

5.1 Introduction

Online learning with partial feedback assumes that, in each trial of online learning, the

adversary only reveals to the learner if the predicted class label is correct and does not

provide the true class label for a given instance. Online learning with partial and full

feedback are equivalent when there are only two classes. Therefore, we assume it is clear

that the classification problem is a multi-class one when we talk about online classification

with bandit feedback.

Online learning with partial feedback is closely related to the problem of multi-armed

bandit which is the generalization of a traditional slot machine game, called one armed

bandit [84]. In multi-armed bandit, there are n arms to pull with unknown rewards. A

player aims to maximize its reward over the trials by Ieaming the best arm to pull. When

the player starts, he/she does not know which arm is more profitable. It is only over the

trials that he/she learns the best arm to pull. In each stage of this game, the player needs

to decide if he/she is going to explore a new arm or exploit his/her knowledge by choosing

the best arm, a technique called exploration vs. exploitation tradeoff. This strategy helps

the player to constantly receive feedback for all arms.

The problem of online classification with bandit feedback can be considered a multi-

armed bandit problem, with the feature vector of example available as a sort of side in-

formation; i.e., at each round, after observing an instance, the learner needs to decide a

class label (an arm). Although online multi-class Ieaming with full feedback has been ex-

tensively studied, the problem of online multi-class Ieaming with partial feedback is only

studied recently [5, 85]. The challenge in online Ieaming with bandit feedback is the fact

that after classifying a new instance, the learner only receives the loss value for the part

of the hypothesis space that have the same prediction as current hypothesis. To explore

different parts of the hypothesis space, the learner needs to sacrifice the chance of correctly

classifying the current instance in the hope that it finds the best model that minimizes the

long-term number of mistakes. We will give a detailed description of this strategy and its

86

characteristics in Chapter 6.

In this chapter, we propose a general framework to address the challenge of partial

feedback in the setup of online classification. This general framework adapts the potential-

based gradient descent approaches for online Ieaming [83] to the scenario of partial feed-

back. The generality of the proposed framework is verified by the fact that banditron is

indeed a special case of our framework if the potential function is set to be the squared L2

norm of the weight vector. Besides the general framework, we further propose an expo-

nential gradient algorithm for online multi-class Ieaming with partial feedback. Compared

to the Banditron algorithm, the exponential gradient algorithm is advantageous in that its

mistake bound is independent from the dimension of data, making it suitable for classifying

high dimensional data. We verify the efficacy of the proposed algorithm for online learning

with partial feedback by an extensive empirical study.

5.2 Related Work

Although introduced very recently and there is only a few work directly related, the prob-

lem of online multi-class Ieaming with bandit feedback can be traced back to online multi-

class classification with full feedback and multi-armed bandit Ieaming. The former pro-

vides the required tools to handle the problem of partial feedback and the later offers a

starting point for the development of an online multi-class Ieaming with partial feedback.

Both these areas have been extensively studied and we only provide a brief review Several

additive and multiplicative online multi-class Ieaming algorithms have been introduced in

the literature [52]. Perceptron [43] and Winnow [86] are two such algorithms. Kivinen

and Warrnuth developed potential functions that can be used to analyze different online

algorithms [87]. Grove et al. [88] showed that polynomial potential can be considered as a

parameterized interpolation between additive and multiplicative algorithms.

Multi-armed bandit problem refers to the problem of choosing an action from a list

87

of actions to maximize reward given that the feedback is (bandit) partial [44, 89, 90]. The

algorithms developed for this problem usually utilize the exploitation vs. exploitation trade-

off strategy to handle the challenge with partial feedback [46, 47].

Multi-class learning with bandit feedback can be considered as a multi-armed bandit

problem with side information. Langford et al. in [85] extended the multi-armed setting to

the case where some side information is provided. Their setting has a high level of abstrac-

tion and its application to the multi-class bandit Ieaming is not straightforward. Banditron,

which can be considered as a special case of our framework, is a direct generalization of

Perceptron to the case of partial feedback and uses exploration vs. exploitation tradeoff

strategy to handle partial feedback [5]. Potential function and exploration vs. exploitation

tradeoff techniques are the main tools used to develop the framework in this paper.

Notice that the problem of bandit with side information has been also addressed in rein-

forcement learning under the name of Associative Bandit problems [91—94]; however those

work assume that the side information are i.i.d samples from an unknown distribution. This

is unlike our online approach that no assumption is made about the process that generates

data.

5.3 A Potential-based Framework for Classification with

Partial Feedback

We first present the problem of online classification with partial feedback, followed by the

presentation of potential based framework and exponential gradient algorithm.

5.3.1 Problem Definition

We denote by K the number of classes, and by x1, x2, . . . ,xT the sequence of training

examples received over trials, where x,- 6 Rd and T is the number of received training

instances. In each trial, we denote by g, E {1, . . . , K} the predicted class label. Unlike

88

the classical setup of online learning where an oracle provides the true class label y,- E

{1, . . . , K} to the learner, in the case of partial feedback, the oracle only tells the learner if

the predicted class label is correct, i.e., [yt = 'y't]. This partial feedback makes it difficult to

learn a multi-class classification model.

In our study, we assume a linear classifier for each class, denoted by W =

(W1, . . . , wK) E RdXK, although the extension to nonlinear classifiers using ker-

nel trick is straightforward. Given a training example (x, y), we measure its loss by

E (maxkfllng — wa) where 13(2) = max(0, z + 1) is a hinge loss. We denote by

W1, . . . , WT a sequence of linear classifiers generated by an online learning algorithm

over the trials. Our objective is to bound the number of mistakes made by the online learn-

ing algorithm. Since the proposed framework is a stochastic algorithm, we will focus on

the expectation of the mistake bound. As will be shown later, the expectation of the mistake

bound is often written in the form

T

a<I>(U) + fig! (gagixzuk — xguyt)

where U = (u1,. . . , uK) is the linear classifier, <I>(W) : RdXK H R is a strictly convex

function that measures the complexity of the linear classifiers, and a and 5 are weight

constants for the complexity term and the classification errors. Note that the Banditron

algorithm is a special case of the above framework where it measures the complexity ofW

by its Frobenius norm, i.e., <I>(W) = %|W|%.. In this chapter, we design a general approach

for online learning with partial feedback that is adapted to any complexity measure <I>(W).

Finally, for the convenience of presentation, we define

K W =€(maxxth -xth > (5.1)t() [696% t k t 31:

89

5.3.2 Banditron

Kakade et al. [5] developed Banditron for the problem of online classification with bandit

feedback. Banditron, depicted in Algorithm 7, is basically Perceptron adapted to handle the

case of bandit feedback by utilizing the exploration vs. exploitation tradeoff technique. Af-

ter receiving a new instance xt, Banditron computes the primary class assignment if]; using

the weight matrix W“1 at Step 5, just like Perceptron. Using the exploration vs. exploita-

tion tradeoff parameter '7, the learner decides label 3}} at Step 6 and 7 which is either gift

(exploitation) or another random class label (exploration). After receiving a feedback, the

algorithm computes the update matrix xtrit which, on average, is equivalent to the update

matrix in Perceptron for the full feedback setting. Kakade et al. provided the following

mistake bound for Banditron in [5].

Bound for Banditron: Let K be the number of classes. After running over a sequence

of examples x1, . . . ,xT, with ||xt||2 g 1 for all t, the expected number of mistakes made

by Banditron, denoted by E[M], is bounded as follows

2mm} 2 [Morgan
EM<€U T 3 ,‘/U T + 5.2[]_()+1+maX{7 Ilpr} 7 ()

where U is any arbitrary weight matrix (classifier) and L.

5.3.3 Potential-based Online Classification for Partial Feedback

Our framework, depicted in Algorithm 8, generalizes the Banditron algorithm [5] by con-

sidering any complexity measure <I>(W) that is strictly convex. In this algorithm, we intro-

duce 0 6 RdXK, the dual representation of the linear classifiers W. In each iteration, we

first update at based on the partial feedback [3]; = fit], and compute the linear classifier Wt

via the mapping V<I>* (6), where <I>* (6) is the Lagendre conjugate of <I>(W). Similar to Ban-

ditron and most online Ieaming with partial feedback [83], a stochastic approach is used

90

 Algorithm 7 The Banditron Algorithm

1: Parameters:

0 Step size: '7 > 0

2: Set wg = 0,11: =1,...,Kand90 = V<I>*(WO)

3: fort = 1,...,Tdo

4: Receive xi 6 Rd

Compute 37;} = arg maxlskgK ”(I‘VE—1

Seter = (1 -’7)[k = 17t1+7/K,k =1,---,K

Sample {it by distribution p = (p1, . . . , pK)-

Predict it and receive feedback [yt = 5,]

0
9
9
.
2
9
3
9

Compute (it = 1.771: -— 12% 1311):}11 where 1k stands for the vector with all its elements

31

being zero except its kth element is 1.

10: Compute Wt = Wt‘l — xtcitT

11: end for

to predict class assignment, in which parameter 7 > 0 is introduced to ensure sufficient

exploration [44].

In the following, we show the mistake bound for the proposed algorithm. For the con-

venience of discussion, we define vector rt 6 Rd as

T, = 1% _ 1,, (5.5)

Proposition 3. For €t(W) 2 1, we have

ve,(W)=<Wt-1,X,T,T), and E,[5,]=T, (5.6)

where Et[] is the expectation over fjt and (St is defined in (5.4).

We denote by D¢(A, B) the Bregman distance function for a given convex function (I),

which is defined as follows

Dq,(A, B) = <I>(A) — 5(3) — (A — B, V<I>(B)) (5.7)

The following classical result in convex analysis summarizes useful properties of Bregman

91

Algorithm 8 Online Learning Algorithm for Multi-class Bandit Problem

1: Parameters:

o Smoothing parameter: 7 E (O, 0.5)

0 Step size: 17 > 0

0 Potential function: <I> : RdXK v—> R and its Legendre conjugate <I>* : RdXK I—+ 1R

2; Setw2=o,k= 1,...,Kand00=vq>*(W0)

3: fort=1,...,Tdo

4: Receive xt 6 Rd

5: Compute

{it = arg maac)c;rwt_1 (5.3)

1_<_lcSK

6: Setpk = (1 —7)[k=37t] +7/K,k= 1,...,K

7: Randomly sample fit according to the distribution p = (p1, . . . ,pK).

8: Predict {it and receive feedback [yt = gt]

9: Compute

(it = 137t — 1§t[yt = gt] (5.4)
pA

yt

where 11: stands for the vector with all its elements being zero except its kth element

is 1.

10: Compute 6t = 6t"1 — nxtdg—

11: Compute Wt = V<I>(6t) where 6t = (6t,...,6§()

12: end for

distance.

Lemma 6. Let <I>(W) be a strictly convex function with constant p with respect to norm

H ‘ H i.e.,for any W and W’ we have

(W — W', V<I>(W) — WW» 2 mm — W’llz.

We have thefollowing inequalityfor any 9 and 0’

<6 — 6', v<1>*<0> — V<I> * (6')) s fine — 6’11:

where <I>*(0) is the Legendre conjugate of<I>(W) and H - H... is dual ofnorm || - H. Further-

92

more, we have thefollowing equalityfor any W and W'

Dq,(W, W’) = 19.1,. (0, 0’),

where 9 = V<I>(W) and 6’ = V<I>(W’).

Proposition 4. For any linear classifier U 6 Rd" K, We have thefollowing inequality hold

for two consecutive classifier Wt_l and Wt generated by Algorithm 8

17.1,. (U, WH) — 0.1,. (U, Wt) + 13.1,.(Wt—1, Wt)

= —(U — Wt_1,nxt6;r) (5.8)

Proof. Using the property of Bregman distance function (see for example Chapter 11.2

in [83]), we have

0.1,.(U, WH) — 0.1,.(U, Wt) + 13.1,.(Wt-1, Wt) = (U — Wt_1, V<I>*(Wt) — V<I>*(Wt_1))

= (U _ Wt_1,6t _ gt—l)

= — <U -— Wt—1,nxt5;r>

The second step follows the property 9t = V<I>*(Wt), and the last step uses the updating

rule of Algorithm 8. C]

Now, we can bound E[|6t l2} as follows, with the proof provided in Appendix A.13.

Proposition 5. For any 3 > 0, we have

K 3 2/3

E 6 2 <_.L A _ l _
[Itlsl—1_7+[yt7éyt]{1 7+K(1+[7]) }

We use |W|p,3 to measure the norm of matrix W E RdXK with p 2 1 and s 2 1. It is

93

defined as

W = max 11, Wv 5.9I has lulpsws£1< > (>

where u e Rd, v E RK, and |u|q and Mt are L, and Lt norm of vector u and v, respec-

tively. Evidently, the dual norm of I - Ip,s is l - I”, with p"1 + q“1 = land s_1+ t”1 = l.

The theorem below shows the regret bound for Algorithm 8. The proof of this theorem is

provided in Appendix A.14 ‘

Theorem 11. Assume thatfor the sequence ofexamples, (x1, 311),. . . , (XT, yT), we have,

for all t, xt 6 Rd, ||x||p 3 land the number ofclasses is K. Let U = (ul, . . . ,uK) E

RdXK be any matrix, and <I>* : RdXK r—> 1R be a strictly convex fimction with constant

p with respect to norm I - lp,s- The expectation of the number of mistakes made by by

Algorithm 8, denoted by E[M], is bounded asfollows

T

1 1 177T

EMS—D*U+— €U+——+T[] m <1>() REA) 2pn(1_7) 7

where

_ 77 ’7 K3 2/3

“—1‘z{1‘7+k‘(”[?]) }

Notice that the Banditron algorithm is a special case of the general framework with

<I>*(W) = %|W|%. and | - Ip,3 = | - I22 = I - |F~ The Banditron bound is specifically

obtained through approximations 7/ (1 — 7) S 27 and 1+ Iii/’7 S 2k/7 in summarizing the

terms in n.

94

5.3.4 Exponential Gradient for Online Classification with Partial

Feedback

In this section, we extend the exponent gradient algorithm to online multi-class Ieaming

with partial feedback. A straightforward approach is to use the result in Theorem 11 by

setting

K (1

«5(9) = [Zane-,1.) (5.10)

7
7
‘

ll
l
—
l

a
: ll
H

’9
;

1% u

M
»

M
a
.

Wi,k(1an',k — 1) (5.11)

' 1F
r

ll
H s

II

where each wk is a probability distribution. Following the general framework presented in

Algorithm 8, Algorithm 9 summarizes the exponential gradient algorithm for online multi-

class Ieaming with partial feedback. Since <I>*(W) is strictly convex with constant 1 with

respect to | - | F, we have following mistake bound for the exponential gradient algorithm.

Theorem 12. Assume thatfor the sequence ofexamples, (x1, yl), . . . , (xT, yT), we have,

for all t, xt 6 Rd, ||x||2 g 1 and the number ofclasses is K. Let U = (111, . . . , uK) E

RdXK where each uk is a distribution. The expectation ofthe number ofmistakes made by

by Algorithm 9 is bounded asfollows

T

Kan 1 777T

EMS +— E U+————+ T

wherenzl—zzlp(l—7+%+§-).

By minimizing the mistake bound in the above theorem, we choose step size n as fol-

lows

_ K(1-'7)1nK
_\/ T7 (5.12)

95

 Algorithm 9 Exponential Gradient Algorithm for Online Multi-class Learning with Partial

Feedback

1: Parameters:

o Smoothing parameter: 7 E (0, 0.5)

0 Step size: n > 0

2: Set (90 = llT/d

3: fort = 1,...,Tdo

4: Compute W153,c = exp(6§,k)/Z,tc where Zfc = 2L1 exp(6f,k).

5: Receive X): 6 Rd

6: Compute

i1} = arg maxxgrwt—1 (5.13)

lngK

$6th = (1 -7)[k = 37t1+7/K.k = 1,---.K

Randomly sample fit according to the distribution p = (p1, . . . ,pK).

Predict 5t and receive feedback [yt = at]

10: Compute

9
9
9
:
1

[yt = 9t]
(St = 1A — 1~ —— (5.14)

y y

t t pilt

where 11: stands for the vector of all elements being zero except that its kth element

is 1.

11: Compute at = Ot‘l — nxtdg

12: end for

For the high dimensional data, we can improve the result in Theorem 12 by using the

following lemma. The proof of this lemma is provided in A.15.

Lemma 7. <I>(W) and <I>* (W) defined in (5.10) and (5.11) satisfies thefollowing properties

K

(W — w’, v<1>*(W) — V<I>*(W’)) 2 Z Iwk — wm

k=1

K

<6 — 0’. We) — V<I>*(6’)> 5 Z l6.,k — 61,..IE.

g
r

II
b
-
l

where 0*): = (61,,“ . . . ,HdJc).

Using the above lemma, we have the following theorem that updates the result in The-

orem 12

96

Theorem 13. Same as the setup of Theorem 12 except that |x1|oo S 1. The expectation of

the number ofmistakes made by by Algorithm 9 is bounded asfollows

T

Kan+ 777T

EM < __[1 +-Zlft(U) +2p.1_,)+rT

wherenzl—Qn—p(2—2’y—4fi).

Proof The proof is the same as the proof of Theorem 11 except that we have

K 722

E[D¢(6‘165.61 12723 Zlénuxtlio s;Euatm

lc=1

A simple computation shows that E[|6t|1] = 2 — 27 — 47/K. By combining these results,

we have the theorem. [:1

The major difference between Theorem 12 and 13 is the constraint on x: L2 is used

in Theorem 12 and Loo is used in Theorem 13. Therefore, Theorem 13 shows that the

exponential gradient algorithm is essentially independent from dimensionality d, making it

suitable for handling high dimensional data.

5.4 Experiments

To study the performance of the proposed framework, we applied the exponential poten-

tial algorithm introduced in 5.3.4 on the multi-class classification data sets introduced in

Section 1.6.1.

We compared the classification performance of the proposed exponential gradient algo-

rithm, Exp, to the Banditron algorithm. Since the exponential gradient algorithm assumes

all the combination weights to be non-negative, in order to make fair comparison between

the proposed approach and the Banditron algorithm, we run two sets of experiments for

Banditron, one which is the original Banditron and one that projects the learned weights

97

MNIST NURSERY

1 _

& Perceptron 0 6513‘ —Perceptron

0.8“; G Banditron_pos ' . 4}Banditron_pos

o 3‘. "a" Banditron 0-5 ’ \‘1 «n- , Banditron

i‘: --O-'Exp % 0.55" “€1.13 -o--Exp

s a-§§gg .3333

o 0 0 one o o--o ,0

0 - - 4 . . L

0 2 , . 4 6 0 5000 10000 15000

“8|an rounds x 10“ Training rounds

PROTEIN LETTER

0.8 1%.

—Peroeptron “a... a w

4} Banditron_pos 09' ' ‘-"béc‘—§.;3 -f= - ~ g. .n. _
, , m3-.. _. _ __n

0-7 tan-Banditron 08 8 0 9" '9

g on. .0.. Exp .3 - —Perceptron

5 0
'5 0.7- G Banditron_pos

LE ' ,5 06 ail-Banditron

0.5- G'fi‘ygri‘éwsé . ("0" Exp

0.5 \—

0.4 . r . l . ‘ ‘

0 0-5 , . 1 1-5 2 0.40 5000 10000 15000

Training rounds x 104 Training rounds

PENDIGITS OPTDIGITS

1 —-Peroeptron 1[

--D'Banditron_pos 5,,

0 8 “i ‘G'Banditron 0-8' #3; _. _

0: (83:3: cr- 0 Exp 0 g~§§? '8: ‘1 ~{: a»a .‘ .. _ - " “ fl ._ n- .- «... r» _ "‘E} __a

E :0.,'B"g.: G T - “ E— a S 0'6\ 0'”-3. STE“ 3- El

'5 0 6 Glue ‘ BlBT'fl-‘O-«g h " -0- .0

I: °"-o---o..., 2 0,4- —Perceptron

m 0 0~ 0 LU
0 4 JCFBanditron_pos

' 0.2’ --D--Banditron M

0'20 2000 4000 6000 8000 00 1000 2000 3000 4000

Training rounds Training rounds

ISOLET

1a.~a.=§.:.é.z-82-~32é8£

£8 ' '- p.

0.8 ‘ ”rial-0

.9 —Perceptron

E 0 6 0 Banditron_pos

g ~D~Banditron

0.4

0.2

0 2000 4000 6000 8000

Training rounds

Figure 5.1: The figure shows the error rates of different methods over trials with the best

setting of 7.

98

.
1
"

'.
-_
n
u
n
.
.
l
.
w
.
n
_

_I

MNIST NURSERY

1 -

—Perceptron —Perceptron

0_ ‘ --D--Banditron . «Gr-Banditron

2 h's
Exp

0 Exp .

S 0.6' K," _ 'gfi
,G‘B‘IQ

a :-.,..fl_.g-_,g:~..-err8~--5“‘ .‘ ,.a—-cr_,,.o---o '

0.2 Omo‘"

00 0:1 0:2 0:3 014 0.5 0 0:1 0:2 0:3 0:4

Gamma Gamma

PROTEIN LETTER

0.8 . . , 1 - .

—Perceptron 1%,;va

iii-Banditron 0.9 "---..o"'E'--a-..g.._3__ .-.a---u---m

07’ --o--Exp ""'o-~-o--~o.._., ...-3---o-~~o~---<>

g g 0.8: :

a 2. 9

“ 05f ‘ " 0-7 —Perce tron

g b, _ 11317.8 g . . -p
LU 1.5.3. __ _, .o-8'f_;87'---'8—“'0 LIJ 0.6: fl- Banditron

0.5 9.....5.,,:g....8-~ ‘ o-Exp

0.5-

. . r r . .4 l . . .

040 0.1 0.2 0.3 0.4 0.5 0 O 0.1 0.2 0.3 0.4 0.5

Gamma Gamma

PENDIGITS OPTDIGITS

1 . g 4 1 . . ,

& ——Pereeptron é,‘ -— Perceptron

.: .,\ Kit-Banditron 0.80 'x' ~0- Banditron

o 0.829 K‘s ..o.. Exp 0 “a" ..o.. Exp V

E ‘-. "n-5," ,P'ua" 160.6» “o._“a"n'~. x” “OMB"..-O

‘- 0.6' 21' ‘3'":13' ..o...,o."‘<> ._ 00300

E "o. ...-0: -o---o“' g 04-
LIJ '--.,o,..-0’ uJ '

0.4- 0.2

0.2 1 r 1 1 G . r . .

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

Gamma Gamma

ISOLET

1

&. ---..- -- Perceptron

Emma‘s.- ... ‘G'Banditl'on

0.8- 8 ~-o--Exp

O

E
h 0.6-

E
w

0.4-

0'20 0:1 012 04.3 0:4 0.5

Gamma

Figure 5.2: Figure shows the final error rates of different methods with varied 7.

99

into the positive orthants, which is equivalent to setting all the negative weights to be zero.

It is easy to verify that the projection step does not change the theoretic properties of Ban-

ditron, in particular the mistake bound (of course only with respect to linear classifiers U

in the positive orthants. We call this projected Banditron, Banditron_Pos.

For each tested algorithm and for each data set, we conduct 10 independent runs with

different seeds for randomization. We evaluate the performance of online Ieaming by the

accumulate error rate, which is computed as the ratio of the number of misclassified sam-

ples and the number of samples received so far during the online learning process.

Since these online algorithms rely on the parameter 7 to control the tradeoff between

exploration and exploitation, we examine the classification results of all the algorithms in

comparison by varying 7. The step size 17 of online learning often play an important role

in the final performance. For the proposed algorithm, we set the step size according to

Eq. 5.12. Because the exponential function may exceed the upper bound of a real number

with double precision type in a 64-bit computer, we further multiple the step size with a

small factor (typically 10—5) to avoid this issue.

5.4.1 Experimental results

Figure 5.2 compares the average error rates of the online algorithms with varied 7 values,

and Figure 5.1 shows the average error rates of the three online methods over the entire

online process. For the proposed algorithm and both version of Banditron, we choose the

optimal 7 that results the lowest classification error rate.

First, by examining the classification performance with varied 7, we clearly see that the

exponential gradient algorithm shows comparable performance compared with the original

Banditron algorithm for online multi-class learning with limited feedback. In particular,

we observe that the proposed algorithm performs significantly better than the Banditron

algorithm for three data sets ’OptDigits’, ’Pendgitis’, and ’Nursery’. The result indicates

that the proposed algorithm is overall more reliable. Notice that for all data sets except for

100

’Nursery’ data set, we observe a significant gap between online Ieaming with full feedback

and online learning with partial feedback, which is due to the limited feedback from the

adversary.

Second, we compare the learning rate of all three algorithms. We observe that the pro-

posed algorithm overall exhibits a significantly better learning rate than the Banditron_Pos

algorithm (i.e. Banditron with positive weights), for most data sets and most part of the

online Ieaming process. This result indicates that the proposed online Ieaming algorithm

with partial feedback is generally effective in reducing the error rate.

Finally, notice that these algorithms are sensitive to the choice of parameter 7. In

Chapter 6, we provide more details on the exploration vs. exploitation tradeoff parameter

7 and provide effective algorithm to automatically tune it.

101

”
L
‘
s
.

.
.
.
.
.
.
.
—
m
,

Chapter 6

Robust Online Classification With

Bandit Feedback

As we have already seen in Chapter 5, exploration vs. exploitation tradeoff strategy is the

main tool to develop online classification algorithms with bandit feedback. The major prob-

lem with utilizing this strategy is the sensitivity of the resulting algorithm to the exploration

vs. exploitation tradeoff parameter. In this chapter, we propose three learning strategies to

automatically adjust the tradeoff parameter for Banidtron. Our extensive empirical study

with multiple real-world data sets verifies the efficacy of the proposed approach in learning

the exploration vs. exploitation tradeoff parameter.

6.1 Introduction

Exploitation vs. exploration tradeoff strategy has been widely applied to develop online

learning techniques when the feedback provided to learner is bandit, i.e. the learner only

receives the cost of its action but not the cost of other possible actions. Exploration refers to

the choice of an action not recommended as the best action by the current model (classifier).

It allows the learner to explore the game and receive the feedback for different strategies

and gain new knowledge from the adversary. Exploitation refers to choice of the best action

102

according to the current knowledge in order to maximize the gain. These two objectives are

complementary, but opposite: exploration leads to maximization of the gain in the long run

at the risk of losing short term reward; exploitation maximizes the short term gain at the

price of losing the gain over the long run. A careful tradeoff between these two objectives

is important to the success of any online learner utilizing the combined strategy.

The challenge of online classification with bandit feedback is that after classifying an

instance, the learner only receives the loss value for those hypotheses that have the same

prediction as the current hypothesis. This means that the learner is not able to explore

the whole hypothesis space if it only classifies according to the current hypothesis. As

described in Chapter 5, Banditron [5] utilizes the exploration vs. exploitation tradeoff tech-

niques to handle this challenge. This tradeoff is explicitly captured by a single parameter

7 6 (0, 0.5) in Banditron: with probability 1 - 7, the learner will predict the most likely

class label based on the current classification model (exploitation), and with probability 7,

the learner will randomly choose one of the remaining class labels for prediction (explo-

ration).

Figure 6.1 shows the performance of Banditron for different data sets by varying the

value of 7. The best 7 values for data sets ’Protein’, ’Pendigits’, ’Isolet’, ’Nursery’, ’Opt-

digits’, ’Letter’, and ’Mnist’ are respectively 0.1, 0.25, 0.2, 0.15, 0.25, 0.35, and 0.15. It

is clear that the performance of Banditron strongly depends on the value of 7 and and it is

therefore very helpful to develop strategies to automatically tune this parameter. Intuitively,

at the beginning of the learning stage, due to the fact that classification model is trained by

a limited number of examples, it is likely that the classification model will perform poorly.

As a result, it may be more desirable to have a large value for 7. As the Ieaming procedure

proceeds, the classification model is updated with sufficiently large number of examples,

and therefore is likely to yield accurate classification performance. Therefore, it is desir-

able to reduce the value of 7 and the amount of exploration with increasing number of

Notice these plots are extracted from Figure 5.2.

103

MNIST NURSERY

0.3 . . - 0.6 . a

0.7 0.55.

m

E 0.6» ‘5

III 0.5 El

04 0.45:

I . J r 0.4 r . A r

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4

gamma gamma

PROTEIN LETTER I

0.6 . - 0.96 . . .1

'1

0.58 I g

‘3 0.56- L
E

m 0.54-

0'50 0.1 0.2 0:3 0:4 0'840 0:1 0:2 0:3 0:4

gamma gamma

PENDIGITS OPTDIGITS

1 ~ - 0.9 . .

0.9-

§0.8- f3

3 §
LEI 0.7 m

0.6-

0'50 0:1 0:2 0:3 0:4 0.5 0'50 0:1 0:2 0:3 04 0.5

gamma gamma

ISOLET

0.95 . .

E
r
r
o
r
r
a
t
e

 L

0 0:1 0:2 03 0.4

gamma

Figure 6.1: The error rates of Banditron with different choice of 7 for different data sets

104

training examples. Theoretically, as suggested by [5], the choice of 7 = 0(tTI/3) pro-

duces the optimum result in the agnostic case. This is because by minimizing the mistake

bound provided in Inequality 5.2 with regard to 7, we obtain 7 = O(t‘1/3). However, as

we show in this chapter, the adaptive choice of parameter 7 should be not only dependent

on time t but also dependent on the number of correctly/incorrectly classified instances to

control the speed in which we reduce the amount of exploration.

6.2 Related Work

To the best of our knowledge, this is the first study that aims to learn the exploration vs

exploitation tradeoff parameter for online classification with bandit feedback. Since explo-

ration vs. exploitation tradeoff parameter is widely utilized for the problem of multi-armed

bandit, here we briefly describe the tuning techniques for this parameter in multi-armed

bandit [6]. However, none of these methods utilizes the classification specific information,

e.g. the number of mistakes.

In the simplest form, called 7-first strategy [6], a pure exploration phase is followed by

a pure exploitation phase [46, 95]. Evan-Dar et al. [46] showed that to obtain an a-optimal

arm with probability 1 — 6, 0(EKZ log(éf—D rounds of exploration is needed. The problem

with this approach is that it cannot produce arbitrary small regrets. A second approach,

called 7-decreasing strategy [6], is similar to the approach proposed by Kakade et al. [5]

for the problem of online classification with bandit feedback. In this approach, 7 is a

decreasing function of time t. Several decreasing function have been proposed including

7t = 0G) [6], 7t = 06—0—ng) [96]. and 7t = Otis) [5].

Another approach, the Boltzmann exploration, chooses each arm with a probability

proportional of their obtained reward [96]. A temperature parameter can be utilized to

smoothly switch from pure exploration to a pure exploitation. Notice that except 7-

decreasing strategy proposed in [5], no theoretical results are known for the other methods

105

Algorithm 10 The Banditron Algorithm

1: Set wg = O,k=1,...,Kand00 = V<I>*(W0)

2: fort = 1, . ..,Tdo

3: Receive xt 6 Rd

Compute Q} = arg maxlsksK xtwac—l

Choose sampling probability ’Yt

Setpk = (1 -7t)[k =17t1+7t/K.k = 1..-..K

Sample 31;} by distribution p = (121, . . . , pK)~

Predict fit and receive feedback [yt = fit]

Compute 6; = lilt — lgtifitiytlV where 1k stands for the vector with all its elements

yt

being zero except its kth element is 1.

10: Compute Wt = W“1 - xtdtT

1 1: end for

4:

S:

6'.

'7:

8

9

introduced here for the problem of online classification with bandit setting.

6.3 Balancing between Exploration and Exploitation

6.3.1 Preliminary

Algorithm 10 shows the Banditron algorithm [5], which is exactly the same algorithm as

given in Algorithm 7 however it uses an adaptive 7t to emphasize that the exploration vs.

exploitation tradeoff parameter changes over time. Theorem 14 provides a new form for

the mistake bound of Banditron. The proof of Theorem 14 is provided in Appendix A.16.

Theorem 14. Let K be the number ofclasses. After running over a sequence ofexamples

x1, . . . ,xT, with ”Xt ”2 _<_ 1 for all t, the expected number ofmistakes made by Banditron,

denoted by E[M], is bounded asfollows

T T T T
A K A

EiMlSWli‘i'E :(t(U)+E 2% +13 E:’7t[yt=ytl+ E :Tfllyti‘éyt] (6-1)

t=1 t=1 t=l t—l

where U is any arbitrary weight matrix (classifier) and {7t}?=1 are exploration vs. ex-

ploitation tradeofirparameters oftrials.

106

Remark: It is important to realize that by a proper re-scaling of the complexity of U and

margin as suggested in [97], the bound provided in Theorem 14 can be rewritten as:

T T T T

ElM] S EMU) + E :72: + IUIF 23 ZTtigt = 11:] + 2%[1’11 75 yr] (6-2)

t=1 t=1 t=1 t=1

which is the inequality used in [5] to obtain the bound of Bandtiron given in Equation 5.2.

More specifically, the bound in Equation 5.2 is obtained by two relaxations in Inequal-

ity 6.2: [fit = gt] 3 1 andW S x/E + x/b. Moreover, notice that €t(U) is the hinge

loss with margin equal to 1 in both inequalities 6.1 and 6.2.

Given the bound provided in Theorem 14, the optimal set of sampling probabilities

{7t};F=1 will be evidently obtained by minimizing the mistake bound stated in Theorem 14,

i.e.

T K T
L 2 Z _[gt 7g yt] + Z7t(1+[17t = ytI)

t=1 7‘ t=1

However [31} ¢ yt] and [fit = yt] are not provided as the feedback in the bandit setting and

we need to approximate them with an expectation in terms of 17. We consider the following

approximations in Section 6.3.2 :

' [lit = yt] = Et [Effiglgtzyd] S Et [5? =§_3t=y 1] S 2Et [[17t = 01111;} = yd] =
yt

m

' [lit 3'5 yt] = 1 — [371: = tn] 5 1 - Et [Ii/‘1: = @101: yd] = Tt

To understand the merit of the above approximations, we analyze the following two ap-

proximations in Sections 6.3.3 and 6.3.4 respectively and use them as the competitors in

the experiments.

' [and S 1and[@‘t=yt1 Sflt

0 [fit 2 yt] g 1 (which is the relaxation used in [5]) and [1h 9'5 9t] S ”Ft

107

6.3.2 Finding Optimal 7 using [3’], 7E gt] S 7', and [3, = 3),] 3 pt

In order to bound the quantity L = 2:1 753} + 221:1 7t(u + 1), we consider a general

family of 7 that is defined based on a concave function. We introduce the concept of good

supportfimction.

Definition 15. A function 02(2) defined in the domain of 2 2 0 is called a good support

function ifit satisfies thefollowing conditions: (a) 02(2) is concavefor z 2 0 and 02(0) 2 0,

(b) 02(2) is monotonically increasing, i.e., 02’(2) > 0, for 2 2 0, (c) 02(2) is Lipschitz

continuous with Lipschitz constant L, i.e., 02’ (2) S L, for 2 2 0, and (d) there exists a

constant p _>_ 1 such thatfor any t 2 0 and 2 Z 0, we have w’(2) S ptw'(2 + t).

Proposition 6. (1) 02(2) = (a + 2))‘, with A E (0, 1] and a > 0, is a good supportfimction,

with Lipschitz constant L = Aux-1, and p = 6(1—A)/0, and (2) 02(2) = ln(a + 2) with

a > 0 is a good supportfunction, with L = l/a, and p = el/a.

The proof of this Proposition is provided in Appendix A.17.

In order to bound quantity L, we introduce two good support functions 021(2) and 022 (2) ,

with 021(2) 2 05(2) for any 2 2 0. We define

WE (213 1 + 6:)

7t : I t—l

2W1 (22:1 Ti)

 (6.3)

It is straightforward to verify that ’Yt E (0, 1/2]. In addition, since 021(2) and 022(2) are two

concave functions, 021(2) and 02'2 (2) are non-increasing functions of 2, leading to a decreas-

ing function of M and t and increasing function of 'rt. The following proposition shows a

key property for the construction of 7t in 6.3. The proof is provided in Appendix A.18.

108

Proposition 7. Given the construction of 711 in (6. 3), we have thefollowing inequalities:

T 022 (T) T 2 “’2 (Zirzl Ht)

2’72: S 102 2 T , 27%: S 102 I T

t=1 2011 (thl Tt) t=1 20)] (Zt=1 Tt)

T K 021 (2:31:10)

2: _Mt S 2P1K 2 T

t=1 7t “2 (21:1 1 + Mt)

where p1 and p2 are the constants defined in Definition 15 respectivelyfor 021 and 022.

Theorem 16. Let 021(2) and 002(2) be two good supportfitnctions with 021(2) Z 02% (2) for

any 2 Z 0. By running Algorithm 10 with ’Yt set as in Eq. (6.3), we have the following

boundfor the expected number ofmisclassified examples

T
p2w2 (T) 2P1 K021 (3T) 022(2T)

EIMI S #21001) + 202’1(T) + IUIF (\/ 02’2(3T) +P2 202((2T)

where p1 and p2 are the constants oftwo good supportfimctions.

Proof. The proof is straightforward by using the result in Remark 1, Proposition 7, in-

equality Va + b S ([6 + x/b, and considering the fact that for a good support function 02:

02 (233;, 7,) _<_ am 5 02(2T) and 02' (23;, p.) 3 02’(2T). III

Now, using the above theorem and Proposition 6, we have:

Corollary 17. Suppose 7t is in Eq. (6.3) with 021(2) 2 (1 + 2))‘1 and022(2) = (1 + 2))‘2

where A1, A2 6 (0, 1] and A1 = A2 + 1/3. By running Algorithm 10, we have thefollowing

boundfor the expected number ofmisclassified examples

1

3K
E[M]<:lt()U +:—2—((1+T)3+|U|p ”2:2 (1+3T)3+\/p——§_T(1+2T)3

where p2 = (Bl—AZ. This bound is of 0(T2/3) and similar to the bound of the original

Banditron.

109

Proof. It is a simple plug-in of the two support functions in Theorem 16. CI

6.3.3 Finding Optimal 7 using [39} 7é yt] _<_ 1 and [’y} = gt] 3 at

In this section, we use the the upper bound approximation L = 2&1 %+23:1 ’Yt(1+ltt)-

Given a good support function 02(2), we define ”it as

t—l

1 I
7, = 51:02 (21+ 11,-) (6.4)

It is straightforward to see that ’71: is valid since ’7t 6 [0, 1 /2]. In addition, since 02(2) is

a concave function, 02’ (2) is a non-increasing function of 2, leading to a decreasing value

for 7,3 as more and more training examples have been classified correctly. The following

proposition shows a key property for the construction of 7t in (6.4), with the proof provided

in Appendix A.19.

Proposition 8. Given the construction of’Yt in (6.4), we have thefollowing inequalities

l
/
\

T_p— 5 2KLT
an<_ 21101:” : Z713 2Lw(T)’ 1,27: 0)’(thr=11+flt)

Using the above proposition, we have the following theorem for the mistake bound of

dynamic 7 introduced in 6.4.

Theorem 18. Let 02(2) be a good supportfunction. By running Algorithm 10 with ’Yt set as

in Eq. (6.4), we have thefollowing boundfor the expected number ofmistakes made by the

algorithm

EIM] < {i +p02(T) + IUI 02(2T) + 2KLT

_ t—l F p 2L 02’ (3T)

Proof. Similar to Theorem 16. E]

110

The following corollary directly follows from the result of Proposition 6 and Theo-

rem 18.

Corollary 19. By running Algorithm 10 with 7), as in Eq. (6.4) and 02(2) = (1 + 2)“) , where

)1 E (0, 1], we have thefollowing boundfor the expected number ofclassification mistakes

T 1-I\ 1-I\ A l-A 1

E[MISE €t(U)+E——(1+T)’\+|U|p t-3——(1+2T)?+\/2K(1+T) 2 T2

t=1 2’\ V20

When A = 2/3, we have E[M] = 0(T2/3) which is the same convergence rate as

Banditron.

6.3.4 Finding Optimal 7 using [fit 7é 3),] S T, and [3’], = yt] _<_ 1

Similar to the approach presented in the previous sections, we set ”It as

I

t

n = , “221 (6.5)
2021 (22-21 Ti)

where 021(2) and 022(2) are two good support functions and 021(2) _>_ 025(2). It is easy to

verify that 7t 6 (0, 1/2] due to the properties of a good support function. The proposition

below allows us to bound 2:le ’Yt and 2&1 K/”Yt-

Proposition 9. Given the construction of7t in (6.5), we have thefollowing inequalities

T K ., (21:1 6) T 626)
— < 2K & <

Z; ’Yt Tt — p 02$(T) g,” — 2011 (El; Tt)

Proof. Similar to Proposition 7. III

Theorem 20. Let 021(2) and 022 (2) be two good supportfimctions. By running Algorithm 10

with 7t set as in Eq. (6.5), we have the following boundfor the number of misclassified

111

examples M = ELIE: 75 ytl

T

022(T)
w2(T)

M51M] 5 EMU) + 20', (23:1 n) + 'U'F (V 202; (T) + \/2K”1 025(1))

Proof. The proof directly follows Theorem 14 and Proposition 9. CI

The following corollary directly follows from the result of Proposition 6 and Theo-

rem 20.

Corollary 21. By running Algorithm 10 with ’11: in Eq. (6.5) and 021 = (1 + 2)’\1 and

022 = (1 -I- 2))‘2 with A1, 2\2 E (0, 1], we have thefollowing boundfor the expected number

ofmisclassified examples

T

1 A _

E[M] _ t§=1:8t(U) + —2/\1(1+T)

1 ,\ +1—,\ 2k l-Al A +1-,\

+ IUIF (l2—/\1(1+T)_2T'l+(l :2 (marl—24

with A1 = A2 + :1; we have E[M] = 0(T2/3) which is ofthe same rate as Banditron.

6.4 Experiments

In this section, we conduct experiments on the classification data sets, introduced in 1.6.1,

to validate the proposed strategies for balancing the tradeoff between exploration and ex-

ploitation.

6.4.1 Experimental Settings

We refer to the algorithms developed in Sections 6.3.2, 6.3.3, and 6.3.4 as banditron_ag3,

banditron_agl and banditron_ag2. To evaluate the classification performance of the

112

three proposed Ieaming strategies for exploitation vs. exploration tradeoff parameter 7,

we compare them with three different version of Banditron, namely, Banditron_worst,

Banditron_Best, and Banditron_ag0. Banditron_worst and Banditron_Best are Ban-

ditron algorithm when 7 is set to the worst and best value for a given data. Banditron_ag0

is the Banditron with the adaptive ’Yt = %t-1/3 as suggested in [5] for the general ag-

nostic case. We repeat each experiment 50 times by generating random sequences of in-

stances and report the average accumulate error rates, which are computed as the ratio

of the number of misclassified samples to the number of samples received so far. For

all three proposed methods in all the experiments, we use similar good support functions

02(2) = 021(2) = 022(2) = (1 + 2)’\ with A = 0.1 for a fair comparison. Also notice that

the result is pretty stable for most of these data sets with different values of A.

6.4.2 Experimental results

To study the behavior of different Ieaming algorithms over trials, we show the average error

rates of all the methods over the entire online process in Figure 6.2. First notice that there

is big gap between Banditron_worst and Banditron_Best in all data sets that emphasizes

that the Banditron algorithm can perform very poorly if 7 is not set appropriately. We

observe that overall the proposed algorithms exhibit similar or better learning rates as the

Banditron algorithm with the optimal 7. In particular, banditron_ag2 and banditron_ag3

yields the best performance among the algorithms in comparison. In almost all the data sets,

banditron_ag2 and banditron_ag3 perform significantly better than banditron_agO which

suggests that 7t 2 %t—1/3 is not a good adaptive choice. As a few examples, notice

that the final error rate of banditron_agO is 45% versus 38% error rate of banditron_ag2,

banditron_ag3 and banditron_best for MNIST data set. For Pendigits data set, the final error

rate of banditron_ag2 and banditron_ag3 is 56% which is significantly low compared to

60% error rate of banditron_best and 62% error rate of banditron_agO. The latter example

also suggests that our adaptive strategy is better than the Banditron with a single best 7.

113

E
r
r
o
r
r
a
t
e

E
r
r
o
r
r
a
t
e

E
r
r
o
r
r
a
t
e

---B-- Banditron_Best

- o-~ Banditron_worst

- 0 - Banditron_ago

‘ Banditron_ag1

- + - Banditron_agZ

- 4+ — Banditron_Ag3

NURSERY

o

0000000

:éat}; \

0.45» :883233g,8

0'40 5000 10000 15000

Training rounds

LETTER

1r

0953, 0.,

\\ °~$
'8'”- «jj, - 1’ ~ ‘

‘ - ~0‘e6-
"mm:

0.9' ‘: \ '0- -

a‘flzfi.
e-$ 0-0

"‘3‘: ._

0.85-
1.13:4;

0'80 5000 10000 15000
Training rounds

OPTDIGITS

I ‘28: ‘1‘). -

0 7
“WK: ~ ‘-" . (1.:

#1: : :#‘°~

06
28:33; ~70~°

8213532

0.5

0 1000 2000 3000 4000

Training rounds

MNIST

‘I

o ~ _ ,

E ‘ "if” . _

h- »
‘3-

’: 1 ‘ 5, .

Lg0.5 ~u~n~~2~~22'2.2

0 - . .

0 12- . g 6
raining roun s 4

x 10

PROTEIN

0.8-

£2

9

go 6 . Mg....0...0...o...0._,0...o
.0

‘1' -‘ . I '1 51-2.
LU ahfiflifi$_#_$

0.4
- .

0 T . . 1 d 2
raining roun s 4

x 10

PENDIGITS

i{'0-“0- -o-~--o 2.0..
.-,, o.

0-8'\:‘:.. 0 01110.13

0) ~' ‘

*5 it,
§0.7’ 1kat" :9 .

m “in...“ ‘9?

0.6 ‘15»51—g8

‘ “-1

0'50 2000 40800 6000 8000

Training rounds

ISOLET

1.

0.95 ' o

E x" if; 2.3%“.

12- 0.9- 9:0. ~; «1.5.,

‘ ‘0- -

LU fl‘mfi. .6 ONO

0.85» 3g. . _

0'80 2000 4000 6000 8000

Training rounds

Figure 6.2: The error rates of different methods over trials. Each point on a curve is the

average results of 50 randomly generated sequences of data.

114

Although better than banditron_worst, the performance of banditron_agl is not com-

parable to that of the other methods. This can be explained by the inherited difference

between banditron_agl and the other two proposed approaches. Unlike banditron_ag2 and

banditron_ag3 where two good support functions are introduced to determine 7t, the ”It

defined in banditron_agl is determined by a single good support function. As a result, we

have a better control of the value for 7 over time in banditron_ag2 and banditron_ag3 by a

tradeoff between two functions: one which is the decreasing function of time and the other

which is the increasing function of the number of misclassified examples.

115

Chapter 7

Conclusion and Future Work

In this chapter, we summarized the main contributions of this thesis and draw some direc-

tions for future work.

7.1 Summary and Conclusions

We developed several online and batch learning algorithms in this thesis. The batch Ieam-

ing algorithms that we covered have the common property that they all utilize boosting for

optimizing an objective function in a function space. Utilizing boosting is particularly ben-

eficial because it allows any existing supervised learning algorithms be applied for a new

learning task. For the online Ieaming, our focus has been on the classification with bandit

feedback. In the following subsections, we briefly review our main contributions in two

separate sections, one for boosting and one for online Ieaming with bandit feedback.

7.1.1 Boosting

We developed boosting algorithms for several classification and ranking problems, as sum-

marized below.

0 Semi-supervised classification: Unlike existing semi-supervised learning algo-

116

rithms that focus on binary classification problems, we addressed the problem of

multi-class semi-supervised learning directly. We proposed a new framework, termed

multi-class semi-supervised boosting (MCSSB), that is able to improve the classifi-

cation accuracy of any given base multi-class classifier. MCSSB utilizes both the

cluster and manifold assumptions in the design of objective function and exploits

boosting techniques to optimize the objective function. We showed that our proposed

framework is able to improve the performance of a given classifier much better than

Assemble, a well-known semi-supervised boosting algorithm, on several real world

data sets. We also showed that MCSSB is very robust to the choice of base classifiers,

the number of labeled examples, and the value of parameter C.

Learning to rank by maximizing NDCG: Listwise approach is a relatively new

approach to Ieaming to rank that aims to optimize listwise loss functions; i.e. loss

functions that measure the performance of a ranking model in the query-level. The

difficulty in optimizing such losses lies in the inherited sort function used for comput-

ing them. We address this challenge by a probabilistic framework for the problem of

maximizing NDCG that optimizes the expectation ofNDCG over all the possible per-

mutations of documents. We present a relaxation strategy to effectively approximate

the expectation of NDCG, and a bound optimization strategy for efficient optimiza-

tion. Our experiments on benchmark data sets shows that our method is superior to

the state-of-the-art learning to rank algorithms in terms of performance and stability.

Ranking Refinement: We considered the problem of ranking refinement whose goal

is to improve a given ranking function by a small number of labeled instances. The

key challenge in combining the ranking information from the base ranker and the

labeled instances arises from the fact that the information in the base ranker tends

to be inaccurate and the information from the training data tends to be noisy. We

presented a multiplicative objective function to combine these sources of information

117

and proposed a boosting algorithm for learning. Empirical studies with relevance

feedback and recommender system show promising performance of the proposed

algorithm.

7.1.2 Online Learning

0 General framework: We presented a general framework for online multi-class

learning with partial feedback using the potential-based gradient descent approach

of which Banditron is a special case. In addition, we proposed an exponential gra-

dient algorithm for online multi-class Ieaming with partial feedback. Compared to

the Banditron algorithm, the exponential gradient algorithm is advantageous in that

its mistake bound is independent from the dimension of data, making it suitable for

classifying high dimensional data. We verified the efficacy of the proposed algo-

rithm by empirical studies with several real-world data sets. Our experiments show

the exponential gradient approach for online learning with partial feedback is more

effective than Banditron in terms of the Ieaming rate, which makes it more suitable

for the scenario when the number of training examples is relatively small.

0 Automatic tuning of trade-off parameter : We studied the problem of optimizing

the exploration—exploitation tradeoff in the context of online classification with bandit

feedback. We proposed three different strategies to automatically tune the tradeoff

parameter used by the Banditron algorithm. We showed through extensive experi-

mental study that the proposed approaches are effective in adjusting the exploration-

exploitation tradeoff. In particular, we found that two of the proposed algorithms

achieve similar or better performance compared to Banditron with the best value for

7.

118

7.2 Future Work

In this section, we summarize future research directions that are directly related to the

theme of this thesis, in two separate subsections, one for boosting and one for online Ieam-

ing.

7.2.1 Boosting

There has recently been increasing interests in understanding the relation between game

theory and machine learning and furthermore examining how each field contributes to the

other [98, 99]. Particularly, boosting can be considered a fictitious zero-sum game [39]

between two agents: a data generator as a row player that chooses a mixed strategy over

the space of training examples and a learner as a column player that chooses strategies

over the hypothesis space. The followings are some interesting game theory questions for

boosting:

e Representability of a given hypothesis for an specific task: Using Minimax the-

orem, Freund et al. [39] showed that there is a mixed strategy over the space of

hypotheses H that produces zero classification error over the training set if for any

mixed strategy over the training examples, there is one hypothesis in H able to per-

form better than random guessing. Similar results may be extended to other tasks

that also utilize boosting. For example, we utilized the space of binary classifiers to

learn a ranking algorithm that maximizes NDCG in Chapter 3. It is interesting to

study the ability and limitation of binary hypotheses in maximizing NDCG; i.e. to

analyze the maximum value of NDCG obtained by a mixed strategy over the binary

hypotheses given.

9 New methods to find mixed strategies: Boosting (and other ensemble methods)

can be considered methods to find the mixed strategy over the hypothesis space.

However, the designer of these methods did not have the notion of equilibrium in

119

mind while developing them. Designing new algorithms that directly consider the

data generator as the row player and the learner and the column player and aim to

find a equilibrium solution is potentially advantageous and interesting. One possible

option is to learn a finite set of weak models sequentially (similar to boosting) and

then playing a game to find the best weighted majority votes (mixed strategy).

0 Batch learning with partial feedback: In this problem, the feedback (i.e. labeling)

is similar to online learning with partial feedback except that training instances are

provided in batch mode. For instance, consider the multi-class learning problem

where each instance is given a class label and a flag that indicates whether or not

the given class label is correct. Similar to online Ieaming with partial feedback,

contextual advertisement and recommender systems are some example applications

of this problem. For these problems, training examples can be collected and utilized

for learning in batch mode similar to the click-through ranking feedback that is being

used in learning to rank. Designing a boosting algorithm that utilizes a supervised

classifier for this problem is one direction of research work. From the game theory

point of view, this problem can be considered a game between two players with

partially known payoff matrix.

7.2.2 Online Ieaming

Online learning with bandit feedback is a new research area for which there are several

open research questions, as summarized below:

0 Tighter bounds: Kakade et. al [5] proved that there exists algorithms for online

classification with bandit feedback with bounds of order 0(T1/2), however the algo-

rithms that are introduced so far are of order 0(T2/3). Developing algorithms that

have better regret bounds than existing ones is one of the future research directions.

0 Online Ieaming to rank and multi-label classification with partial feedback:

Contextual advertising and recommender systems are originally ranking problems

120

that were simplified as multi-class problems when dealing with online partial feed-

back. An intermediate setting between online ranking and online classification with

bandit setting is online multi-label classification in which more than one class (adver-

tisement) are relevant. Developing algorithms for online Ieaming to rank and online

multi-label classification with partial feedback is another research direction that will

be explored in the future.

121

APPENDICES

122

Appendix A

APPENDIX

A.l Proof of Lemma 1, Chapter 2

Proof Bound in Equation (2.8) can be derived as follows:

1 1 (22::b,b’exp(abf’)><z$__1b,-exp<abk»

T = —‘:m1."12:1: 1: k+ k
Zm- k’—1bi b]. z:k:=1bz'bjemewi‘l-hj»

7" m .k. -— hk +hk))
kl k, kl k, (213:1 szexp(a(' j

3 (Z bi exp(ahz-)) (Z bi exp(ahj)) x Em bkbl‘?

klzl k’zl k:1 2 J

[:1 k2 Tk3-

m b b
k2 k

= Z ———ij’j exp (amt-k1 + h].2 _hz'3 — $73))

k1,k2,k3=1 2,]

1 + exp(6cr) + exp(—6a) exp(6c1) — 1 m k k k

irj 2!] =1

The inequality in (A.l) follows the convexity of reciprocal function, i.e.,

1 1 1

m k k k k = k k m k k k
Zk=1bibj exp(a(hi +hj)) Z:Ic-lbibjEmitt=1Tz'j(”Cpmwi +hj))

——-—1——bkbk 27'2":jexp(—a(hk +hk)

23k:1 2 J k=1

123

The inequality in (A.1) follows the convexity of exponential function, i.e.,

k1 k2 k3 k3

k k k k 60 +

hfl + hi2 — h2g3 — h’73 + 2 1 —hf1 — hi2 + hk3 + h’73 + 2

S J 6 ‘7 exp(6a) + 5 exp(6a) + '7 6 ‘7

Bound in Equation 2.9 can be derived as follows

I

-:- Z yz-kexp(Hk —Hk+a(hJk —hk))

l

22'm’ k’ ,=k1

1 m bk k
+ exp(6a) + exp(-—6a) +e_x______p((6a) k’ z y,

s 1 >3 >3b, —--,
32w _ bk’ b.

k- k’=1 2 2

The inequality used by the above derivation follows the convexity of exponential function, i.e.,

I I

, h’.c —h’?+2 —h’.c +h"?+2 1

exp(a(hl-c — hk)) < exp fia—z———J——-— + 0 x Z J + 60—

% .7 _ 6 6 3

I I

hf —h’?+2 1 415° +h’?+2

S ——6—J——— exp(6a) + 5 exp(6a) + 6 3

Using the definition of dbfj, we have the result in Equation 2.9.

A.2 Proof of Lemma 2, Chapter 2

Proof. Following the result in (A.1), we have

1 m bklbkzk3 k k k k
37 Z —-'7y—’Jexp(a(hil +11]? —hz.3 —hj3))

751.7 k1,k2,k3=1 3:]

1 exp_(___2cr)- kk kkexp(201)—1 k+ k

5 75+—2th]. (Zh'bi'bthbj 22gb]. Zak?” +3“

124

The inequality in (A.l) follows the convexity of exponential function, i.e.,

hkl
'i

k1 ’62 ’63 k3 _ 6"

0x 2 J " 3

k2 k3 k3
+11]. hi h]. +2
 +

1
+ 603

E3+2 —hhfl + W hb°3 — h 1

exp(6a) + 3 exp(6a) +< j z

_ 6

Bound in Equation 2.9 can be derived as follows

m

_ k k’_ k k’_ k
..H 2 yiexp(Hj Hj+a(hJ hj))

7'7] kl,k=1

1 + exp(60:) + exp(—6a) exp(6a) - 1 E: hk m k’ bf yzlc

z + 6 i _ _ —
32' ' k’=1

|
/
\ y .

J k

1,] k=1 bf, bi

The inequality used by the above derivation follows the convexity of exponential function, i.e.,

k’ k
I

41%“ +hf+2

6 +0X 6 +60§I
A

2 exp 60exp<a(b’-°' — 1.59))

I I

hk—h’?+2 41’? +h§7+2
2 J 1 z
-—————-6 exp(6a) + 3 exp(60:) + 6|

/
\

Using the definition of qbfj, we have the result in Equation 2.9. D

A.2 Proof of Lemma 2, Chapter 2

Proof. Following the result in (A.1), we have

’61 k2 1:3

1 2 b J m k1 k2 k3 k3

a] k1,k2,k3—l 1.7

1 exp(2a) — 1 m k k k k exp(—2cr)— 1 m k hk hk

5 T+—'T._ 2"be ”ij +‘7f‘3 201,31 2' + j)Z 2Z 2
2,] 1,] k=1 1:] 11:21

124

The inequality in (A.l) follows the convexity of exponential function, i.e.,

hf1+h§2 —hf3 —h§3+2

6a +

—h. —h- +h- +h- +2
2 _7 7. J

1

hkl + hk2 41:63 — h’73 + 2 1 41:71 — h’72 + hk3 + hi3 + 2

g '7 exp(60:) + — exp(60z) + J J

6 3 6

Bound in Equation 2.9 can be derived as follows

i...

,E

1 _ k k’ k 'L
if — Z: y’i €Xp(H - — Hj + GUI-7' _hj)) .'

7'1] k’,k=1 71, i

m m b’? k
1 + exp(6a) + exp(—fia) exp(601) — 1 k k, z 312

l + 23b.- 2 b- ———
32 6 J bk’ bk

zrj k=1 ”=1 2 2

The inequality used by the above derivation follows the convexity of exponential function, i.e.,

I

k’ k hf —h§+2 —hf’+h§+2

exp(a(hi — hj» S Exp 60——-6—_ + 0 X 6 + 605

k’ k k’ 1:
hi —hj+2 1 —hz- +hj+2

< _ _
_ 6 exp(6a) + 3 exp(6a) + 6

Using the definition of (bi-‘7j , we have the result in Equation 2.9. CI

A.2 Proof of Lemma 2, Chapter 2

Proof Following the result in (A.1), we have

’91 k2k3
m b2- b

1 , k2 k k

27. Z —-J—lexp(a(hzk1+hj2—h.3 —hj3))

2,] k1,k2,k3=1 'i,J

1 e___xp(2cr)— k k k k +e_____xp(-20) - 1 k+ k
5 75+——22,3 1(thbi+++hjbj ___-{__er Zafj(11 +111.)

124

The inequality in the above derivation follows the convexity of exponential function (similar to the proof of

Lemma 1). For Z‘j,we have

I I I

kbk h’? h‘? 2—h’? —h’?

21 yk—exp Za—L-Za—2—+0——l———’Z-

21].: kk’— 2 bj 2 2 2

I I

kbk hk hk m kbk 2— hk— hk

3 Z yz b—-:k Texp(2a)+—2-exp(—2a) +21 y;cBF——%—

+k,=k’ bjk,k’=1

Replacing 1 /Z1‘ , and l/Zzl j in (2.8) and (2.9) with the above bounds, we have the result in Lemma 2. Cl

A.3 Proof of Theorem 4, Chapter 2

Using Lemma 2 and Theorem 3, we have

_ < __ ___— _F F _ l/Au+CA1 (Au+CAl)+ Bu+CBl(B“+CB’) (Au+CAl+Bu+CBl)

—(,/Au+CA,—,/BU+CB,)2,

which is equivalent to

2
1_ (VZU‘l'CZ —‘/Bu+CBlj

F

2
(_(fiZu't'Cz —‘/Bu+CEl>) (A2)

F .

"
u
l
"
m

/
\

|
/
\

exp

The above inequality follows from exp(:2:) 2 1 + x. We rewrite FT as

T

t=1

By substituting Ft /Ft"1 with the bound in Equation A.6, we have the result in the theorem.

125

A.4 Proof of Proposition 2, Chapter 3

1
1

-k ~k =
k k k k1+exp(Fz. —Fj) 1+exp(Fi _Fj +a(fi "'fj))

k k

=
(+ 1 J eXP(a(fik - ff»

1 + expwzk _ F119) 1 + exp(Fz.k — FJ’F) 1 + exp(Fik — FJ’F)

exp(Fz-k — Ff) exp(Fz-k — FJ’F)
1

1 — +

1 + exp(Fik — F3153) (1 + exp(Fik — F?) 1 + exp(Fik — F319)

|
/
\

exp<a<ff - do)

1 k k k
= . . +7~exrba(f--f-)-1

1+ exp(sz - F341”) 2’3[< J z 1

The first step is a simple manipulations of the terms and the second step is due to the convexity of inverse

function on 12+.

A.5 Proof of Lemma 4, Chapter 3

1 = Z Pr(7rk|F,qk) + Z Pr(7rk[F,qk)

«keG§(i,j) wkerb'J)

= Z Pr(7rk|Feqk) (1 + exp [who — xk(j))<F(d§eqk> - F(dibqk))])

IrkEGIfliJ)

2 Z (Prekinqk) (1 + exp [Z(waeq’“) - F(dibqkflm
IrkGGgfiJ)

(1 + exp [2(F(df,qk) — F(df, qk))]) Pr (aka) > #0))

We used the definition of Pr(7rk IF, qk) in Equation (3.6) to find G§(i, j) as the dual of G50, j) in the first

step of the proof. The inequality in the proof is because wk(z‘) — Irk(j) _>_ 1 and the last step is because

Pr(7r’c IF, qk) is the only term dependent on 7r.

126

A.6 Proof of Theorem 5, Chapter 3

In order to obtain the result of :1}: Theorem 5, we first plug Equation (3.13) in Equation (3.11). This leads to

minimizing 22:1 2173!“: 1 2%,?ij [exp(a(f;-° — fz-k))] , the term related to a . Since fz-k takes binary

values 0 and 1, we have the following:

 Getting the partial derivative of this term respect to a and having it equal to zero results the theorem.

A.7 Proof of Theorem 6, Chapter 3

First, we provide the following proposition to handle exp(a(ff — fz-k)).

Proposition 10. Ifas, y E [0, 1], we have

exp(3;1) - 1(x _ y) + exp(3a) + e:p(—30r) + 1 (A3)

exp(a($ - 31)) 5

Proof Due to the convexity of exp function, we have:

z—y+1 1—x+y 1

exp(oz(a: — y)) = exp(3a 3 + O x —3—— + 3 x —3a)

— 1 1 — l

3 32—3; exp(3oz) + ——::£ + 5 exp(——3cr)

Using the result in the above proposition, we can bound the last term in Equation (3.13) as follows:

91“,,a[exp((ff—If>—1]<_0§j(———exp(3a) (If— If)+ exp<3a)+e:p(’3a)’2) (AA)

127

Using the result in Equation (AA) and (3.13), we have M(Q, 17‘) in Equation (3.] l) bounded as

 M(Q,F)sM(Q,F)+v<a>+el——3——p(3a)ZZZ“26,-‘1,(If—ft)

mk 7.119
k

1'.

__ - exp(3a)— k 22 —2.7 k

—M(Q,F) +7(a)+——2E3132 Tam

k=12=1 3:1

A.8 Proof of Theorem 7, Chapter 3

Proof By plugging Equation 13 into Equation 11, we have

rk

ijzb) —M(Q,F) s 21:42:}:1 Z—gfibfij [exp<e<f,’-c —f.-’°)> — 1]

Since fik takes binary values 0 and 1, we have the following

n mk {bk-10k k k
2:1:1 Z [0,,jexp<a(f,- —I,-))—1]

= 2"]:

n 77113211»?—

=2 Zk——0{f(exp<a>I<I,’°>I,-k>+exp(-e1)<ff<I,-’“))

k=1i,j=1

n mk 2rz:_1

—k§jmZ b,’f,-(I<f,’-“>I§>+I<Ij<ff+1<ff=ff>)

128

"
"
_
I
'
.
:
|
"
I
\
?
V

I

"
s
l

So,

n "U; 27'2-

M<Q.F,~’°)—M<Q,F) s 2 :—b,’i,(exp<a)I<I,-’°>If)+exp<—a>1<ff<ff))

k=1iz,j=1

n mk

— Z 23:—‘ (1(fk>fk)+1(fk<fk+1(fk do)

k=12,j=1

11 ml: 2r- _

S. eXP(a)E:1 23212 ,-I(f,k>f,k)

= l
+ exp(—0):“: f— jI(fk<f‘k)‘01-O‘2

i

k=1i,j=1

= exp(a)012 + exp(—a)a1k— 01 — 02

= exp(-—2log(—-)ag + exp(--—log(:;)al — a1 — 02

= WE‘LLE—ar -02- -(\/_-\/a_2)2

which is equivalent to

M(Q,F,-") < 1_(,/cT—,/cx—2)2

M(Q,F) _ M(Q.F)

spec-we?)|
/
\

M(Q,F)

The above inequality follows from exp(x) 2 1 + 2:. We rewrite MT as

T

Millet—b

‘ t

By substituting I}??? with the bound in Equation A.6, we have the result in the theorem.

129

m
f
‘

(A5)

(A.6)

A.9 Proof of Theorem 8, Chapter 4

Proof First, note that the objective function Lp is convex in terms of F. This is because Lp can be expanded

as follows:

12

Lp = Z Tm-Wz-J exp(Fj — F,- + Fk - Fl)

2',j,k,l=1

Since exp(Fj — Fz- + Fk — Fl) is a convex function, Lp is convex. Since Lp is a convex function, the solution

found by minimizing Lp will always be global optimal, instead of local optimal.

Second, to show that the optimal solution found by minimizing Lp is Pareto efficient, we prove by contra-

diction. Let F* denote the global minimizer of function Lp. By assuming that Theorem 8 is not correct,

there will exist a solution F aé F* that either (1) WWW) < e’fi'w(F*) and (2773 (F) g fiflF“), or (2)

e’fi'w(F) S e’fi'w(F*) and e’fi't(F) < €r7t(F*). We can easily infer Lp(F) < Lp(F*) since (1) both

e’fi'w and e’Frt are non-negative for any solution F, and (2) Lp = (27710 x (277}. Clearly, this conclusion

contracts the fact that F* is a global minimizer of Lp. El

130

.
fi
i
-
j
.

A.10 Proof of Lemma 5, Chapter 4

Proof Since F(x) 2 F(x) + af(x), we have

i n n

L—: (2: WM eXp(Fj —F,- +O(fj _fz'») >< (2 TM exp(Fj -F'i +0‘(fj -fi)))

(Z 0233' 6XP(0(fj -fz')) (Z: bi,j exp(an —fi))

i,j=1 2',j=1

where ai ,j and bi ,j are defined in (4.11) and (4.12). Thus, we have an upper bound of the log ratio as follows

i n 11

long log (Z aiaj exp(a(fj — fi») +10g (Z bi,j exp(a(fj - ft»)

iJ=1 iJ=1

n

—2 + 2: (am- + bi,j)exp(a(fj — fi»

z',j=1

|
/
\

The second inequality follows the concaveness of the logarithm function, i.e., logx _<_ x — 1 for any a: >

0. C]

A.11 Proof of Theorem 9, Chapter 4

Proof Using the upper bound expressed in Lemma 5, we have

~

L n

mfg-+2 5 Z 7,,jexp<a(fj—f,->)

z',j=1

= (Z 1i,j6(fj,1)6(f,-,O)) exp(a) + (Z 7,,j6(fj,0)6(f,~,1)) exp(—a)

z',j=1 2',j=1

Using the definition of a in (8), we have

I: ’n. n

logfg 5 -2+2 (2 7i,j5(fj,1)5(fi,0)) (Z 7i,j5(fja0)6(fia1))

z',j=1 i,j=1

= —2 + Law

131

{
L
-

v
.
1

In the above, we use the definitions of p and V in Theorem 8 to simplify the expression. Since 2 =

22j=1 72.1.7. 2 p + V, we have

~

L

log?)2 5 —2+2,/;u/ S —p—V+2,/;w= — (fi— WV

P

We thus have

Li 2
log Lt—l S rt : " (W'- M)

P

Substituting the above expression for rt into (4.17), and further using the fact

11.

L0 = Z T,,,-+W,-,,-,
231:1

we obtain the result in Theorem 9. E]

A.12 Proof of Theorem 10, Chapter 4

Proof We rewrite the quantity 17 as follows:

72 n n 'n

'7 = ZfiinWi|=Zfi Eng-71¢ = Z 7i,j(fi“fj)=”‘”
i=1 i=1 '=1 gj=1

Since

u—v=(¢fi—W)(¢fi+fi)2(¢fi—m2,

we have n 2 (fl — W)? Substituting this result into the expression of Theorem 9, we have Theorem 10.

C]

132

A.13 Proof of Proposition 5, Chapter 5

Proof

yt yt pm

8

2-

Etnatlfii = Et [

[=121,. _1~_U_

1_ [fit = fit]

p371:
= {3’1}: ytlEt [

1A __ 1~ [yt = yt]
+ [gt 7’; yt]Et yt yt ~

yt

2

3% #w

_ A_ 7(K-1)/K
_ [yt‘ydm

[Milli—m”err/3}
fir—7+[iit

#yt]{1
_7+% (1+ [g]s)2/s

}

|
/
\

A.14 Proof of Theorem 11, Chapter 5

We take the expectation of both sides of the equality in (5.8) with respect to fit, denoted by Et [-,] and have

E, [04,...(U, Wt_1) — 0,1,... (U, Wt) + D¢*(Wt—1,Wt)]

(Wt—1 — U, nxt'rtT)

We define Mt = [fit 76 yt]. Since 37, 79 yt implies V€t(Wt—1) = xtTtT, using the convexity of the loss

function, we have

(€t(Wt_1)—€t(U))Mt S (Wt—l—UaWt(Wt—1))

= (Wt—1 — U, xtrtT)

133

We thus have

1 _ _

6E1; [D¢*(U,Wt 1)—D¢*(U,Wt)+Dq,*(Wt 1,Wt)]

<W“1 — Umxnf) 2 (et<W‘-1)— et(U))Mt

By adding the above inequalities of all trials, we have

T 1 T

E [Z (“Wt—1)] - {;D¢*(U) + :Q(U)}

t=1 t=1

1 T t 1 t T 1 t 1 t
g —ZE[D¢*(W- ,w)] =Z-E[Dq,(9— ,0)]

"t=1 t=177

The last step uses the property of Bregman distance in Lemma 6. Since <I>* is a strictly convex function with

constant p with respect to H - ||p,3, according to Lemma 6, we have

D (A B) < 1 A B 2q) , _ 2p” II,,,

where p"1 + q—1 = 1 and 5‘1 + t"1 = 1. Hence,

E[Dq,(6t—1,0t)] l
/
\

2

77 T 2

ZEllxt‘st lq,t]

2 2

77 2 2 77 2

EEH‘Stlslxtlp] S 2—pEH5tls]|
/
\

where the second inequality is due to Holder’s inequality. Using the result in Proposition 5 and the fact

27le €t(Wt-1)Mt 2 £3le Mt, and that E[M] g E[M] + 77‘ we have the result in the theorem.

134

A.15 Proof of Lemma 7, Chapter 5

(W — W’, V<I>*(W) — V<I>*(W')) ||

I
M

(
5
:
1

[)2
Kd(w WW“;

=22 ’

M
a
u
l

The second equality is due to mean value theorem and uses the Taylor expansion of log function where

W = AW + (1 — A)W’ with A 6 [0,1]. Since

(2?:1 Wak—

22?:

__ r ,

21“]ch Z M231: ‘Wz'Jc'

and 2:121 W“: =1, we have

K

(W — W', V<I>*(W)— VcI>*(W’)) >kz||w,c — chfi

Using the property of Bregman distance in Lemma 6 and the fact the dual norm of L1 is Loo, we have the

result for <I>(0).

A.16 Proof of Theorem 14, Chapter 6

Proof Considering that Banditron uses a second-order potential function, we have the following bound when

37 is used as the predictor:

1 1

2MW) — Z W) s min + §|Wt—1 — th%~ s Ivlfp + 5E [WW]

|
/
\

|U|F+E{Z’Yt[yt =ytl+Z —lyt #11111}

t-l

135

where we used Theorem 11.1 of [83] and Lemma 6 in the first inequality, let ”2 5 1 in the second inequality,

and Lemma 5 of [5] in the third inequality. Using E[M] S 2:le £t(W) concludes the theorem when we

add E [2221 7,] to get the bound for 37 [5]. [:1

A.17 Proof of Proposition 6, Chapter 6

Proof. We only show the result for w(z) = (a+ z)>‘. A similar derivation can be applied to w(z) = ln(a+ 2:).

We have

L = max———)‘——=
A—l

Aa

220 (a + z)1’)‘

To derive p, we have

(a + z + t)1_)‘

(+)1_’\ S(1+t/a)1—)‘Set(1—’\)/a

Hence p = e(l_’\)/a. E]

A.18 Proof of Proposition 7, Chapter 6

Proof By defining At = 2:21 Ti, we have

Kwi(At_1)(At — At..1) < 2K 2;"; w'1(At—1)(At - At—l)

t—l —
wé (22:1 1 + #2) wé (2:1 1 + M)

T T

2 K 2 2
—Tt :-

t=1

where the inequality is because w'2 is a non-increasing function. We also have:

T T

Z w'1(At-1)(At — At—l) S pl 2: c0'1(At)(2‘1t - At—l)

t=1 t=1

T

S p1 2601040 - w2(At—1) S p1W1(AT) (A7)

t=1

where the first step is due to the definition of good support functions, the second step is due to the concavity

of “’1 and the last step is due to the telescope property and the fact that w1(0) 2 O. Combining the above

136

results produces the first inequality in the proposition. The proof of the second inequality in the proposition

is similar and follows. By defining Bt = 2::1 pi, we have

T T I T I
w (Bi—1 +t-1) w (Bt—l)

2:7tl‘t = E, 2 ___—2(Bt-Bt—l)

t=1

B—B_ S

H 2w’1(At-1) (t ‘1) 22404-)

2&1 w§(Bt—1)(Bt — Bt—1)<Zt__1 pgw’2(Bt)(Bt - Bt— 1) < P%W2(BT)

_ 2w'1(AT) — 2w1(AT) _ 2w’1(AT)

Notice the third equality is because wé (Bt—l) S pgt w’2(Bt) and #t S 2. Similarly, we have:

T T w; (B T I _

_ ”(2 t—1+t 1) _ _ “’2“ 1) _ _tan — ; 2‘0th1) [t (t 1)]sZ———2w,(At_)[t (t 1)]

5 20421411)Zw2(t— 1)[t— (t—1)]_2—————L‘J,1‘E2flzw'fltflt--(t-1)]

< P2w2(T)
— I

20.21 (AT)

D

A.19 Proof of Proposition 8, Chapter 6

Proof Similar to the argument in Section 6.3.2, we have

T T T 1 I p2

2WM: 22—11] 2”2‘ =2 R” (At— 1) (At At—l) < EZwMt)

t=1 t=12 t=1

A similar argument can be applied to prove the second and third inequality in the proposition. El

137

BIBLIOGRAPHY

138

Bibliography

[1] N. Cesa-Bianchi and G. Lugosi. Prediction, Ieaming, and games. Cambridge Univ Pr, 2006.

[2] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements ofStatistical Learning.

Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

[3] Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition. Data

Min. Knowl. Discov., 2(2):]21—167, 1998.

[4] Robert E. Schapire. The strength of weak leamability. Journal ofMachine Learning, 5:197—

227, 1990.

[5] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Efficient bandit algorithms for

online multiclass prediction. In International Conference on Machine Learning ’08, pages

440—447, 2008.

[6] Joannes Vermorel and Mehryar Mohri. Multi-anned bandit algorithms and empirical evalua-

tion. In In European Conference on Machine Learning, pages 437-448. Springer, 2005.

[7] Alon Altman and Moshe Tennenholtz. Ranking systems: the pagerank axioms. In EC ’05:

Proceedings of the 6th ACM conference on Electronic commerce, pages 1—8, New York, NY,

USA, 2005. ACM.

[8] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun.

ACM, 18(11):613—620, 1975.

[9] Jay M. Ponte and W. Bruce Croft. A language modeling approach to information retrieval. In

SIGIR ’98: Proceedings ofthe 21st annual internationalACM SIGIR conference on Research

and development in information retrieval, pages 275—281, New York, NY, USA, 1998. ACM.
[10] Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. Learning to rank by op-

timizing ndcg measure. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. 1. Williams, and

A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1883—1891 ,

2009.

[1 1] T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, pages 133—142,

2002.

[12] Tie-Yan Liu. Learning to Rankfor Information Retrieval. Now Publishers Inc, 2009.

[13] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support vector method

for optimizing average precision. In SIGIR 2007, pages 271—278, 2007.

139

[14] Kalervo Jiirvelin and Jana Kekiil'ainen. Ir evaluation methods for retrieving highly relevant

documents. In SIGIR 2000, pages 41—48, 2000.

[15] Koby Crammer and Yoram Singer. Pranking with ranking. In Advances in Neural Information

Processing Systems I4, pages 641—647. MIT Press, 2001.

[16] Ping Li, Christopher Burges, and Qiang Wu. Mcrank: Learning to rank using multiple classi-

fication and gradient boosting. In Neural Information Processing Systems 2007, Cambridge,

MA, 2008.

[17] Ramesh Nallapati. Discriminative models for information retrieval. In SIGIR 2004, pages

64—71, 2004.

[18] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector Ieaming for ordinal

regression. In ICANN 1999, pages 97—102, 1999.

[19] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm

for combining preferences. Journal ofMachine Learning Research, 4:933—969, 2003.

[20] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. N. Hul-

lender. Learning to rank using gradient descent. In International Conference on Machine

Learning, pages 89—96, 2005.

[21] Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, and Hsiao—Wuen Hon. Adapting

ranking svm to document retrieval. In SIGIR 2006, pages 186—193, 2006.

[22] Ming Feng Tsai, Tie yan Liu, Tao Qin, Hsin hsi Chen, and Wei ying Ma. Frank: A ranking

method with fidelity loss. In SIGIR 2007, 2007.

[23] Rong Jin, Harned Valizadegan, and Hang Li. Ranking refinement and its application to infor-

mation retrieval. InW2008, pages 397—406, 2008.

[24] Tao Qin, Tie yan Liu, Ming feng Tsai, Xu dong Zhang, and Hang Li. Learning to search web

pages with query-level loss functions. Technical report, 2006.

[25] Christopher J. C. Burges, Robert Ragno, and Quoc V. Le. Learning to rank with nonsmooth

cost functions. In Neural Information Processing Systems 2006, 2006.

[26] Zhe Cao and Tie yan Liu. Learning to rank: From pairwise approach to listwise approach. In

International Conference on Machine Learning 2007, pages 129—136, 2007.

[27] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to leam-

ing to rank: theory and algorithm. In International Conference on Machine Learning 2008,

pages 1192—1199, 2008.

[28] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: optimizing non-

smooth rank metrics. In WSDM 2008, pages 77—86, 2008.

[29] Maksims Volkovs and Richard S. Zemel. Boltzrank: Ieaming to maximize expected ranking

gain. In International Conference on Machine Learning, page 137, 2009.

[30] K. P. Bennett and Ayhan Demiriz. Semi-supervised support vector machine. In Neural Infor-

mation Processing Systems, 1999.

140

[31] O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In 10th

Int. Workshop on Al and Stat, 2005.

[32] Avrim Blum and Shuchi Chawla. Learning from labeled and unlabeled data using graph

mincuts. In International Conference on Machine Learning, 2001.

[33] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and

harmonic functions. In International Conference on Machine Learning, 2003.

[34] D. Zhou, O. Bousquet, T. La], J. Weston, and B. Scholkopf. Learning with local and global

consistency. In Neural Information Processing Systems, 2003.

[35] M. Belkin, 1. Matveeva, and P. Niyogi. Regularization and semisupervised learning on large

graphs. In Internation Conferent on Learning Theory, 2004.

[36] Yoav Freund. Boosting a weak learning algorithm by majority. In COLT ’90: Proceedings of

the third annual workshop on Computational Ieaming theory, pages 202—216, San Francisco,

CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[37] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals

ofStatistics, 29:1189-1232, 1999.

[38] Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. On the convergence of bound

optimization algorithms. In Uncertainty in Artificial Intelligent, pages 509—516, 2003.

[39] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Inter-

national Conference on Machine Learning, 1996.

[40] Pavan Kumar Mallapragada, Rong Jin, Anil K Jain, and Yi Liu. Semiboost: Boosting for

semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31:2000—2014, 2009.

[41] Yr Liu, Rong Jin, and Anil K. Jain. Boostcluster: boosting clustering by pairwise constraints.

In KDD ’07: Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 450—459, New York, NY, USA, 2007. ACM.

[42] Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval. In SIGIR 2007,

pages 391-398, 2007.

[43] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization

in the brain. Psychological review, 652386—408, 1958.

[44] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic

multiarrned bandit problem. SIAM Journal ofComputing, 32(1):48—77, 2003.

[45] C. Watkins. Learningfrom delayed Rewards. PhD thesis, Cambridge, 1989.

[46] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and

markov decision processes. In Internation Conferent on Learning Theory ’02, pages 255—270,

2002.

[47] Shie Mannor and John N. Tsitsiklis. The sample complexity of exploration in the multi-armed

bandit problem. Journal ofMachine Learning Research, 5:623-648, 2004.

141

[48] K. P. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble methods. In

KDD, 2002.

[49] K. Chen and S. Wang. Regularized boost for semi-supervised learning. In Neural Information

Processing Systems, 2007.

[50] Hamed Valizadegan, Rong Jin, and Anil K. Jain. Semi-supervised boosting for multi-class

classification. In ECML PKDD '08: Proceedings of the European conference on Machine

Learning and Knowledge Discovery in Databases - Part 11, pages 522—537, Berlin, Heidel-

berg, 2008. Springer-Verlag.

[51] S. Robertson and D. A. Hull. The tree-9 filtering track final report. In TREC9, pages 25-40,

2000.

[52] Koby Crammer, Yoram Singer, and K. Warmuth. Ultraconservative online algorithms for

multiclass problems. 3:2003, 2003.

[53] Shijun Wang, Rong Jin, and Hamed Valizadegan. A potential-based framework for online

multi-class Ieaming with partial feedback. In International Conference on Artificial Intelli-

gence and Statistics ’10, 2010.

[54] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[55] Chih-Chung Chang and Chih-Jen Lin. Libsvm : a library for support vector machines, 2001.

[56] Tre-Yan Liu, Tao Qin, Jun Xu, Wenying Xiong, and Hang Li. Letor: Benchmark dataset for

research on learning to rank for information retrieval. In LR4IR 2007, 2007.

[57] GroupLens. MovieLens Data sets. http://www.grouplens.org/node/12, 2006.

[58] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-

correcting output codes. J. AI Res., 2:263—286, 1995.

[59] Rong Jin and Jian Zhang. Multi-class Ieaming by smoothed boosting. Mach. Leam.,

67(3):207—227, 2007.

[60] Bernhard Scholkopf and Alexander J. Smola. Learning with Kemels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond. MIT Press, 2001.

[61] B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass probability

estimates. In KDD, 2002.

[62] Giinther Eibl and Karl-Peter Pfeiffer. Multiclass boosting for weak classifiers. J. Mach. Learn.

Res., 6: 189-210, 2005.

[63] Ling Li. Multiclass boosting with repartitioning. In International Conference on Machine

Learning, 2006.

[64] Xiaojin Zhu. Semi-supervised Ieaming literature survey. Technical Report 1530, Computer

Science, University of “Wisconsin-Madison, 2005.

[65] Thorsten Joachims. Transductive inference for text classification using support vector ma-

chines. In International Conference on Machine Learning, 1999.

142

[66] T. De Bie and N. Cristianini. Convex methods for transduction. In Neural Information Pro-

cessing Systems, 2004.

[67] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector

machines. InAAAI, 2005.

[68] F. d’Alche Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised marginboost. In Neural

Information Processing Systems, 2002.

[69] Nicholas J. Higham. Matrix neamess problems and applications. In M. J. C. Gover and

S. Barnett, editors, Applications ofMatrix Theory, pages 1—27. Oxford University Press, 1989.

[70] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22(8):888—905, 2000.

[71] Jen-Yuan Yeh, Yung-Yi Lin, Hao-Ren Ke, and Wei-Pang Yang. Learning to rank for informa-

tion retrieval using genetic programming. In LR4IR 2007, 2007.

[72] Zhengya Sun, Tao Qin, Qing Tao, and Jue Wang. Robust sparse rank learning for non-smooth

ranking measures. In SIGIR, pages 259-266, 2009.

[73] J. Lafferty and C. Zhai. Document language models, query models, and risk minimization for

information retrieval. In SIGIR, pages 111—119, 2001.

[74] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality

diagnosis. In Uncertainty in Artificial Intelligent, 2000.

[75] R. E. Steuer. Multiple Criteria Optimization: Theory, Computation and Application. John

Wiley, 546 pp. 1986.

[76] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regres-

sion. In Advances in Large Margin Classifiers, pages 115-132, 2000.

[77] J. Gao, H. Qi, X. Xia, and J.-Y. Nie. Discriminant model for information retrieval. In SIGIR,

pages 290—297, 2005.

[78] D. Harman. Relevance feedback revisited. In SIGIR, 1992.

[79] Mark Montague and Javed A. Aslam. Condorcet fusion for improved retrieval. In CIKM ’02:

Proceedings ofthe eleventh international conference on Information and knowledge manage-

ment, pages 538—548. ACM, 2002.

[80] RT. Rockafellar. Convex analysis. Princeton University Press, Princeton, NJ, 1970.

[81] Robert E. Schapire. Theoretical views of boosting and applications. In Algorithmic Learning

Theory, I0th International Conference, ALT ’99, volume 1720, pages 13—25. Springer, 1999.

[82] J. J. Rocchio. Relevance feedback in information retrieval. 1971.

[83] Nicolo Cesa—Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge Uni-

versity Press, 2006.

143

[84] Donald A. Berry and Bert Fristedt. Bandit problems: Sequential allocation of experiments.

Chapman and Hall, 1985.

[85] John Langford and Zhang Tong. The epoch-greedy algorithm for contextual multi-armed

bandits. In Neural Information Processing Systems ’07, 2007.

[86] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold

algorithm. Journal ofMachine Learning, 2(4):285-318, April 1988.

[87] Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponentiated gradient updates for

linear prediction. In ACM Symposium on Theory of Computing ’95, pages 209—218, 1995.

[88] Adam J. Grove, Nick Littlestone, and Dale Schuurmans. General convergence results for

linear discriminant updates. Journal ofMachine Learning, 43(3): 173—210, 2001.

[89] Herbert Robbins. some aspects of the sequential design of experiments. Bulletin ofthe Amer-

ican Mathematical Society, 58:527—535. 1952.

[90] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stopping condi-

tions for the multi-armed bandit and reinforcement Ieaming problems. Journal ofMachine

Learning Research, 7:1079—1105, 2006.

[91] Chih chun Wang, Student Member, Sanjeev R. Kulkami, and H. Vincent Poor. Bandit prob-

lems with side observations. IEEE Transactions on Automatic Control, 50:338—355, 2005.

[92] V1jaykumar Gullapalli Computer and V1jaykumar Gullapalli. Associative reinforcement leam-

ing of real-valued functions. In Proceedings of the IEEE Conference on Systems, Man, and

Cybernetics, 1991.

[93] Alexander L. Strehl, Chris Mesterhartn, Michael L. Littman, and Haym Hirsh. Experience-

effieient Ieaming in associative bandit problems. In ICML ’06: Proceedings ofthe 23rd inter-

national conference on Machine Ieaming, pages 889—896, New York, NY, USA, 2006. ACM.

[94] Chih chun Wang, Sanjeev R. Kulkami, and H. Vincent Poor. Arbitrary side observations in

bandit problems. Adv. Applied Math, 34:903-936. 2005.

[95] Nicolas Meuleau and Paul Bourgine. Exploration of multi-state environments: Local measures

and back-propagation of uncertainty. Mach. Leam., 35(2):117—154, 1999.

[96] Nicole Cesa-Bianchi and Paul Fischer. Finite-time regret bounds for the multiarmed bandit

problem. In In 5th International Conference on Machine Learning, pages 100—108. Morgan

Kaufmann, 1998.

[97] Kolby Crammer. Online learning of real-world problems. In International Conference on

Machine Learning ’07, 2007.

[98] lead Rezek, David S. Leslie, Steven Reece, Stephen J. Roberts, Alex Rogers, Rajdeep K. Dash,

and Nicholas R. Jennings. On similarities between inference in game theory and machine

learning. J. Artif Intell. Res. (JAIR), 33:259—283, 2008.

[99] Amy R. Greenwald and Michael L. Littrnan. Introduction to the special issue on learning and

computational game theory. Machine Learning, 67(1-2):3—6, 2007.

144

