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ABSTRACT

FAULT DIAGNOSIS AND FAILURE PROGNOSIS OF ELECTRICAL
MACHINES

By
Syed Sajjad Haider Zaidi

Early detection, categorization and monitoring of faults can ensure safe and reli-
able operation, and increase the lifetime of a system. Fault is a condition correspond-
ing to initial damage to a component or subsystem that, although does not affect the
performance of it, can escalate to a failure. Diagnosis is the early detection of faults
in the system and the assessment of its severity. On the other hand, failure prognosis
is to identify the evolution of the fault condition and to predict the remaining useful
life of the system.

The goal of this work is to develop a framework for fault diagnosis and failure
prognosis which can detect and categorize the condition of an electromechanical sys-
tem, and predicts its remaining useful life. In this work, methods are presented to
identify transient faults using time-frequency analysis. The fault features are ex-
tracted from the motor current using Short Time Fourier Transform, Undecimated
Wavelet Transform, Wigner Transform and Choi-Williams Transform. The presence
of a fault is detected using spectrum energy density analysis and the categorization
is performed by the pattern recognition classifiers, linear discriminant classifier and
the nearest neighborhood classifier. The efficiency of cach transform, to represent the
underlying transient phenomenon, is compared by using Fisher discriminant ratio.

A prognosis algorithm is developed which predicts the remaining useful life of the
system. Both the diagnosis and prognosis algorithms use the same time-frequency
features extracted from the motor current. The prognosis algorithm is developed
based on the statistical Hidden Markov Model. The model has three elements, state

transition probabilities, state dependent observation densities and initial state prob-



ability distributions. Large data sets are required for the training of these elements,
which are generally not available in the case of electromechanical systems. Methods
are presented for the training of these elements from sparse data sets. For the com-
putation of state transition probabilities, a method based on the Matching Pursuit
decomposition is presented. The state dependent observation probability densities
are defined as parametric densities and their statistics are computed from the exper-
imental observations.

A survey of the state of the art diagnosis and prognosis methods is also presented in
the dissertation. Possible faults in electromechanical system and their manifestation
in the system parameters, and the experimental setup are also included. The proposed

method is illustrated by examples using data collected from the experimental setup.
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Chapter 1

Introduction

1.1 Overview and Objectives of the Thesis

The present day world economics have ever increasing demand for cost-cffective op-
eration of critical equipment. The last few years have witnessed an increased interest
in the reliable and safe opera.tion‘ of complex systems. In order to achieve this goal,
fault diagnosis and failure prognosis have become key issues of interest for research.
A fault is a condition corresponding to initial damage to a component or subsystem
that, although does not affect the performance of it, can escalate to a failure. Fault
diagnosis is the early detection of fault in the system and the assessment of its severity.
On the other hand, failure prognosis is to identify the evolution of the fault condition
and to predict the remaining useful life of the system. Diagnosis and prognosis share
commonalities and generally prognosis is a succeeding activity of diagnosis. In this
thesis, fault diagnosis and failure prognosis are collectively referred to as fault analysis

In many engineering and non engineering fields, fault diagnosis and failure prog-
nosis find applications. Common applications of these methods can be found in the
medical fields, which are the first to use diagnosis and prognosis tools for their sub-

jects, the patients. Other examples are electro-mechanical systems, structural health

1



assessment systems, computer software fault detection and prediction methods, and
manufacturing systems.

The task of fault diagnosis and failure prognosis becomes more challenging if the
system is complex, nonlinear, noisy and contains different subsystems. Such system
might not be modeled without extensive efforts and without significant approxima-
tions. The prognosis algorithms are difficult to realize in the absence of the system
model. Moreover, most of the prognosis methods need huge amounts of historical
data in order to implement them.

The principle objective of this thesis is to develop a generic method to deal with
the problem of prognosis of complex systems, using hidden Markov model (HMM), a
statistical tool for the probabilistic estimation of failure state, which works even with
non linear systems in the presence of non Gaussian noise. The task was accomplished
and specific objectives were successfully completed.

Diagnosis is not necessarily the preceding action of failure prognosis, but in most
of the applications it is the preliminary phase. The first objective of this work was
to develop an efficient diagnosis algorithm using non intrusive methods for complex
nonlinear systems. The algorithm should be able to detect the presence of fault and
should classify its severity. Supervised learning method is the overall approach, in
which labeled data are available for algorithm training.

The second objective was to develop methods for the computation of HMM pa-
rameters. Generally, this needs large amounts of historic data to compute these
parameters. In this work, methods for the parameters computation are developed
using heuristic and experimental approaches with sparse data sets.

The third objective was to develop an algorithm which can estimate the probability
of the next state and remaining useful life (RUL) of the system. Given the model and
the sampled information, the algorithm computes RUL in terms of probability of the

failure state.



In this work the starter of automobiles is the target system. A laboratory ex-
periment was built for the system and data were collected for the validation of the
proposed methods. Different signals were sampled from systems in healthy condi-
tions and systems with seeded fault conditions. The developed prognosis algorithm

was tested, results were obtained and conclusions are made.

1.2 Principal Contributions

This thesis presents non intrusive fault diagnosis and failure prognosis methods based
on the supervised learning approach. The motor current signature analysis is per-
formed and the fault features are extracted in the time frequency domain. The same
health indicator is used for fault diagnosis and failure prognosis. In particular, the

principal contributions of this work are:

1. Selection of a suitable signal transform to represent transient repeti-
tive faults in the electromechanical system: In this work, four candidate
transforms were compared for the extraction of fault features. A selection crite-
rion based on the Fisher discriminant ratio is developed and the most suitable

transform is identified.

2. A general framework for fault diagnosis: A complete framework for the
diagnosis is presented for complex electromechanical systems having repetitive
transient faults under varying load conditions. Different classifiers were eval-
uated for the classification of the transient faults. The computation efficiency

and accuracy of classification is evaluated for each classifier.

3. Methodologies to estimate HMM parameters are developed in pres-
ence of sparse data: In this work, HMM is used for prediction of the failure

state. Methodologies to compute the model parameters from sparse data are

3



developed. These methodologies use training data and classifier training output

to compute the model parameters.

. A HMM based algorithm for failure prognosis capable of estimating
the probability of failure at future time (RUL): The remaining useful life
(RUL) is estimated in terms of the failure state probability at the time of each
sample. The algorithm uses the collected sample’s features at the present state
and the HMM parameters, initial state probabilities, state transition probabil-
ities and state dependent observation densities, to compute the failure state

probability.

. The validation of the proposed algorithm using experimental and sim-
ulated data. The proposed algorithm is demonstrated using two different data
sets, experimental and simulated. The simulated data are generated using the
statistics obtained from the actual experimental data. The results obtained

from the algorithm are presented and conclusions are made.

1.3 Organization of the thesis

There are four major parts to this thesis. The first part, contained in Chapter 2,

provides a general overview of the literature related to the fault diagnosis and fail-

ure prognosis techniques. In addition, this chapter gives an account of the state-of-

the-art techniques used for the development of fault diagnosis and failure prognosis

algorithms. The second part is contained in Chapter 3 and Chapter 4. In Chapter

3, the fault diagnosis and failure prognosis problem is formulated and the selected

approach is presented for fault analysis of the complex electromechanical systems. It

explains the hierarchy of the algorithm, what selections are required and why they

are instituted. The second chapter of this part, Chapter 4, illustrates the hardware

4



built for implementation of the diagnosis and prognosis algorithms. It explains the
setting up of the electromechanical system in the laboratory, faults of the system, its
operation and control, the sampled signals and sensors.

The third part of this thesis is comprised of Chapters 5 and 6, where a diagno-
sis and prognosis framework for electromechanical system is presented. Chapter 5,
introduces the features extraction methods using time frequency distributions and
diagnosis approaches using pattern recognition classifiers. Comparison of four distri-
bution methods is performed and computed values of the Fisher discrimination ratio
are presented. The fault diagnosis methods, with and without detection of fault event,
are presented. The classification results using different classifiers are presented. In
Chapter 6, a statistical modeling based prognosis method is presented. In this chap-
ter, methodologies of the computation of model parameters from empirical data and
algorithm for the estimation of RUL are presented. The chapter also contains exam-
ples illustrating the implementation of the developed methodologies on the sampled
data. The last part of the thesis, Chapter 7, states the conclusions and suggested

future work.



Chapter 2

Background

2.1 Scope and Objective of the Chapter

Fault diagnosis and failure prognosis have become an active field of research. Different
diagnostics and prognostics methods, algorithms and techniques have been proposed
in the literature. For the completeness of this thesis, it is considered essential to
present a review of the related literature. Moreover, the developed diagnosis and
prognosis methods involve different concepts related to time frequency analysis, pat-
tern recognition, statistics and estimation. A comprehensive theoretical review of the
related concepts will provide a better understanding of the problem. The objective
of this chapter is to present a review of the literature and the theoretical concepts

related with fault diagnosis and failure prognosis.

With the intention to achieve this objective, this chapter is arranged two sections.
In Section 2.2 the literature review is presented, and in Section 2.3, theoretical con-
cepts related to the feature extraction methods, pattern recognition classifiers and

prognosticators are presented.



2.2 Literature Review

In this section, fault diagnosis and prognosis techniques are presented. There are two
major categories of these techniques, intrusive and non-intrusive. The intrusive tech-
niques are generally the classical methods for the fault diagnosis. Signatures in the
vibration of a machine are often used to detect mechanical faults. These techniques
require the installation of an accelerometer, which can be bulky and adds to cost.
In [1], a three phase induction machine with a gearbox and its corresponding bear-
ing assemblies are analyzed. The wavelet transform using the Daubechies 4 mother
wavelet was applied to the fast Fourier transform (FFT) of the accelerometer output.
The details coefficients at the first scale were the input to an artificial neural network
(ANN) used for classification. The ANN was trained to detect faults including the
presence of a small ‘blip’ of 2mm diameter welded onto a gear tooth, a triangle shaped
area missing from a gear tooth, and a fractured inner race of the bearing housing.

This technique was implemented offline.

For induction machines, parameter estimation is a typical method for condition
monitoring [2]. For the parameter estimation the classical methods are locked-rotor
test, no-load test or the DC test. These tests are intrusive, need special equipments

and are to be conducted under off-linc condition.

Other common intrusive methods for fault detection are temperature monitoring
[3, 4], tagging compounds([5], high frequency injection[6, 7], axial leakage flux [8]
and air gap flux signature analysis[9] and vibration signatures analysis[10, 11, 12].
Intrusive methods require installation of additional equipment, which is costly and
may not be practical in many applications due to the nature of operation of the

systems. Therefore, non-intrusive fault analysis is an attractive alternative.

7



2.2.1 Non-Intrusive Methods

Non intrusive analysis methods do not require additional sensors and installations.
They only use voltage and current measurements from motor terminals and these
signals are ready available. For a number of machines the stator current has been
the monitored quantity, often without relating it to the underlying electromagnetic
phenomena. In recent years, non intrusive fault detection methods have attracted
interest.

Fault analysis methods can be divided in three groups, model based, signal based,
and data based. Signal processing is an enabling technology for all three but with
different impact and role. Moreover, with advances in digital technology over the
last few years, adequate data processing capability is now available on cost-effective

hardware platforms.

2.2.1.1 Model Based

Model-based diagnosis relies on a theoretical analysis of the machine whose model
is used to predict fault signatures. The difference between measured and simulated
signatures is used as a fault detector. Residual analysis and suitable signal processing
are used to define a fault index.

The signal processing methods used in [13] were based on a Condition Monitoring
Vector Database to find the presence of broken rotor bars in induction machines. First
a set of Condition Monitoring Vectors (CMV') were determined through simulations
using the time-stepping Finite Element (TSFE) technique, and a single vector was
computed for each complete AC cycle, both in the presence and absence of a fault.

The CMYV is defined in (2.1),

Vo In Z
CMV=|f 1 7 AULsB) 8pB Adsc wm Tyey 2.1)
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where V, I, and Z with the subscripts n and p are the negative and positive sequence
components of the stator voltages, currents, and associated impedances; A ( fLs B) is
the amplitude of the low sideband frequency spectrum component of the stator current
at the frequency (1-2s) fs, where fs is the power supply frequency; Aég g and Adgo
represent the range of oscillation of the resultant mid air-gap magnetic field for broken
rotor bars and stator winding inter-turn faults; and wm and T, dey are the motor
speed and developed motor torque respectively. Finally, an artificial intelligence-
based statistical machine learning approach, using Gaussian Mixture Models, was
used to train a Bayesian maximum likelihood classifier. Experimental results showed

that the algorithm could discern between various numbers of broken rotor bars.

In [14], brushless DC (BLDC) machines were analyzed using parameter estimation
in a model-based technique. Based on the inverter supply voltage, the DC current,
and the mechanical speed, a least-squares method was used to estimate parameters
in a model of the machine. In the model for the electrical subsystem (2.2), estimates

of R and kp were obtained.

o(t) = Ri(t) + kgwr(t) (2.2)

In the model for the mechanical subsystem (2.3), estimates for J, cc, and ¢y were
obtained.

Jur(t) = ki — cesign(wr(t)) — cowr(t) (2.3)

Here, cc¢ is the Coulomb friction coefficient, cy is the viscose friction coefficient, and
it is assumed that kT = k. From the electrical model, the authors could determine
whether the phase resistance of all coils had increased, indicating an increase in stator
temperature, or a broken coil. From the mechanical model, the authors could detect

increases in Coulomb and viscose friction.

Permanent magnet brush DC machines are analyzed for the presence of an open
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phase/broken connector fault, shorting of adjacent commutator bars, and worn brush
faults in [15]. This approach is model-based and uses block-pulse function series
techniques to estimate parameters in a continuous-time system. This is advantageous
as it eliminates the need to discretize the system so that an algorithm like the least-
squares method can be used. Based on measured DC current, DC voltage, and
mechanical angular velocity, estimates of the armature resistance and inductance,
back-EMF coefficient, rotor inertia, and friction coefficient are obtained from the
motor model. These parameters are passed to an ANN to determine the fault type.

This system was implemented offline.

FEA (Flux2D) was used in [16] to determine the fault signatures in the DC bus
voltage and current, stator currents, torque, and speed in a trapezoidal BLDC ma-
chine. The following faults were studied: Single-phase open circuit fault; phase-to-
phase terminal short circuit; and internal turn-to-turn short circuit (across 6/26 turns
of one coil). The machine was a 3-phase, 6 pole, 18 slot machine with a bifurcated
stator tooth structure (helping to reduce torque ripple and doubling the frequency of
cogging). The rotor of the machine had 6 Nd-Fe-B magnet poles magnetized radially.
Six-step / voltage mode control was used. In this type of control, each switching
pattern lasts 60 electrical degrees, and with a 6-pole machine, 20 mechanical degrees.

An experimental setup was used to validate the FEA model.

A model-based approach based on wavelet analysis to detect faults in induction
motors is presented in [17]. The faults analyzed are one broken rotor bar, two bro-
ken rotor bars, stator short circuit in single phase and stator short circuit in two
phases. Application of the wavelet transform helped to remove variations due to
changes in speed. The temporal coincidence of wavelet coefficients at different scales

corresponding to an event was used for fault detection in this paper.
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2.2.1.2 Data Based

Data-based diagnosis does not require any knowledge of machine parameters and
model. It only relies on signal processing and on clustering techniques. Data sampled
from the actual machine are processed to extract a set of features that are clustered
in order to classify them. Eventually, decision process techniques are used to define
a fault index. AI and pattern recognition techniques are widely used to achieve the

above purposes

2.2.1.3 Signal Based

Signal-based diagnosis looks for known fault signatures in quantities sampled from the
actual machine. Then, these signatures are monitored by suitable signal processing.
Typically, frequency analysis is used, although advanced methods and/or decision-
making techniques can be of interest. Here, signal processing plays a crucial role
as it can be used to enhance signal-to-noise ratio and to normalize data in order to
isolate the fault from other phenomena and to decrease the sensitivity to operating
conditions.

The signal based techniques, which have received the most attention in the recent
years, are implemented in the frequency domain, time domain and time-frequency
domain. In [18] classical and modern diagnosis methods for machine faults based on

signal processing techniques are presented.

2.2.1.3.1 Time Domain Analysis Time-domain analysis is a powerful tool for
machine fault diagnosis as they offer a lower computational cost and, thus, require
a reduced time acquisition period. Faults in induction machines are diagnosed by
analyzing the starting current transient under a no-load conditions, where the only
measurable and useful information exists in the large starting transient current of

the motor. In [19], the oscillation of the electric power in the time domain becomes
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mapped in a discrete waveform in an angular domain. Data-clustering techniques
are used to extract an averaged pattern that serves as the mechanical imbalance
indicator. The maximum covariance method is another technique that is based on
the computation of the covariance between the signal and the reference tones in the
time domain. However, in the case of nonstationary signals, these methods may not
be very helpful.

In [20], a method to detect turn-turn insulation failures in induction machines
was described. The line-neutral stator voltages were measured and filtered to remove
the fundamental component of the machine excitation voltage. The RMS value of
Vsum = Van + Vpy, + ven of the filtered components is zero in a balanced machine,
however in the case of turn-turn insulation failures, the number of shorted turns
could be determined by the amplitude. This technique was implemented offline, and
requires that the machine be star connected with the neutral accessible.

The Park’s vector pattern of the currents is analyzed for stator voltage unbalance
or an open phase in three-phase induction machines in [21]. The Park’s vector pattern
is plotted in the stationary frame of reference using a two-phase representation of the
measured stator currents for one electrical cycle. The plot is analyzed using an ANN
to check for a stator voltage unbalance or an open phase. The occurrence of either of
these faults manifests itself in the deformation of the current Park’s vector pattern
corresponding to a healthy condition. This deformation leads to an elliptic pattern,
whose major axis orientation is associated with the faulty phase. The severity of the
deformation helps to distinguish between the two faults, with the open phase fault
the most deformed. A mathematical model of the induction motor is not required.

This system is implemented offline.

2.2.1.3.2 Frequency Domain Analysis Frequency domain analysis is a popular

method in machine diagnosis. There are three main subclasses of this method: non-
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parametric methods, parametric methods, and high-resolution methods. Fourier anal-
ysis and optimal bandpass filtering are the nonparametric methods. Autoregressive-
moving-average model is a type of parametric methods which is employed for the
estimation of linear time invariant systems from noise. Multiple signal classification

(MUSIC) and eigenvector are called high-resolution methods[22].

Frequency domain analysis was used in [23] to analyze three-phase induction ma-
chines for the presence of broken rotor bars or end rings. An FFT is performed on
the currents, and a diagnostic index is assigned equal to the sum of the amplitude of
the two sideband current components at (1 +2s) f, where s is the slip of the machine,
and f is the fundamental component of the current. If the value of the diagnostic
index exceeds a threshold, it is determined that either a broken rotor bar or end ring
is present. Knowledge of the main nameplate data of the machine as well as the

number of bars is required for this system. This system is implemented offline.

Stator line currents, circulating currents between parallel stator branches and
forces between the stator and rotor were analyzed. These quantities were computed
using finite element analysis (FEA) and noise was added to them (0 mean, 3% variance
of the amplitude of the current). The power spectrum of each signal was used for
classification. Faults analyzed included shorted turns, shorted coils, broken rotor
bars, broken end rings, rotor eccentricities, and asymmetrical line voltages. Analysis
was performed for both 35kW and 1600kW induction motors. Simulation results
showed that classification of faults based on any of the above parameters was possible.
Experimental results showed that classification of faults based on stator line currents
was possible only when the measurement data was used for both training and testing

of the classifier.

FEA was used in [24] to calculate electromagnetic variables and parameters, used
to detect mechanical faults in PMAC machines. These parameters were flux linkages

and inductances as functions of rotor position, and were stored in a look-up table
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and then used in a transient simulation of the motor. This process was repeated for
various rotor conditions. Faults were then directly mapped to the increase in har-
monics. This technique detects the presence of static and dynamic eccentricities, and
flux disturbances originating from defects to the permanent magnets. The authors
determined that the current harmonic components can be analyzed in either the rotor
or stationary reference frame. In the case of the static eccentricity, however, analysis
in the stationary reference frame was required, since the fault effects in the rotor

reference frame were obscured.

In [25], tool fracture in drilling operations, which is the chipping, breakage, or
severe deformation of the cutting edges of a drill bit, is analyzed. When tool fracture
occurs, a larger motor torque is generated due to the tool acting on the broken cutting
edges. The authors show that tool fracture can be observed through the estimated
motor torque. The torque is approximated as the square of one of the lowpass filtered,
rectified, phase currents. The cutoff frequency of the lowpass filter is 166Hz. Increased

amplitude of the estimated torque can indicate the presence of a tool fracture.

In [26, 27, 28], various diagnostic techniques are used to detect inner and outer
race faults in bearings. It is of interest to determine the signatures in the spectrum
of the vibration due to the bearing defects. In these papers, the expected frequencies
associated with the occurrence of the faults are lower than 250H z. It can be observed
in the spectrum, however, that excitation not only occurs at the expected frequencies,
but also at higher frequencies, up to 12kHz. The expected frequencies are based on
the frequency of occurrence of the faults, i.e. the inverse of the period which successive
balls contact one point in the race. The higher frequencies are due to the event that
occurs each time a ball contacts the damaged part of the race. In the present research,
fault identification is based on the higher frequencies due to the individual events.

In [29, 30, 31], various diagnostic techniques are used to detect faults in gears.

The faults pertain to a single tooth that is missing, cracked, or has a notch cut in it.
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Of particular interest are the signatures in the spectrum of the vibration due to the
gear defects. In these papers, the tooth meshing frequency, i.e. the frequency which
the defective tooth makes contact, ranges from 250 — 500H z. This can be considered
to be the frequency of occurrence of the fault. It can be observed, however, that
significant excitation occurs not only at the tooth meshing frequency, but at higher
frequencies as well, up to approximately 5k H z. The higher frequencies are due to the

event that occurs each time the defective tooth makes contact.

Support Vector Machine (SVM) based classification, [32], was used in [33] to clas-
sify between faults in induction machines. SVMs are used to map a set of coefficients
to a high-dimensional feature space where a set of ‘best’ separating hyperplanes are
constructed. This mapping is based on a set of kernel functions, whose selection
is critical. SVMs are binary classifiers, and hence, for multiclass problems, either
one-against-all or one-against-one classificrs are developed. In this work, the one-
against-one formulation was used requiring n(n — 1)/2 classifiers, e.g. for 6 faults

(and healthy), 21 classifiers would be required.

Several related techniques have been presented in [34, 35, 36] in which three-phase
induction machines are analyzed. In [34], a single phase of stator current is monitored.
The stator current spectrum is analyzed for the presence of harmonics indicating the
possibility of two types of faults. In the case of air gap eccentricities, harmonics with

frequencies predicted by (2.4)

fece = fe |:1ik(1és)] (2.4)

are observed, where fe is the electrical supply frequency, k = 1,2,3,..., s is the per

unit slip, and p is the number of machine poles. In the case of rolling-element bearing
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defects, harmonics with frequencies predicted by (2.5)

fbng =|fexm- ful (2.5)

are observed where m = 1,2,3,... and fy is one of the characteristic vibration fre-
quencies. While this technique is performed offline, it is expanded upon in [35] to

be an online diagnostic. Additional frequencies are monitored to detect broken rotor

Sorp = fe [k (1 é s) + s} (2.6)

where due to the normal winding configuration, % =1,5,7,11,13,.... A selective

frequency filter is added along with an ANN. The selective frequency filter provides

bars (2.6)

the ability to discern between frequency bands possibly related to specific faults. The
filter has a learning stage where an adaptive threshold is calculated from the FFT
components. The frequency components which exceed the calculated threshold are
placed in a table. It also has a reducing stage where it is decided which table entries
will be provided as inputs to the ANN. The ANN has a training phase where is forms
clusters which represent valid motor operating conditions. As the ANN is exposed
to more and varied operating conditions, the number of acceptable classifications
increases. After the training phase, the ANN switches to a fault-sensing mode. When
a spectral signature falls outside the trained clusters, it is tagged as a potential motor
fault. The ANN alarms the user only after multiple indications of a potential fault
have occurred protecting the ANN from alarming on random signals which have been
incorrectly identified. The techniques presented in [34, 35] do not require information
on the motor or load characteristics. In [36], the authors combine the techniques
applied in [34, 35], and expand upon them. In this case, all three stator currents

as well as all line-line stator voltages are measured. A model-based thermal failure
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protection algorithm is added. This system was implemented online. It is claimed
that the system can operate with any motor design and load condition with only

nameplate motor data.

2.2.1.3.3 Time Frequency Domain Analysis Recently, the application of sig-
nal processing techniques different froin frequency analysis has been proposed to
diagnose machine faults [37]. Time-frequency analysis consists of the 3-D time, fre-
quency, and energy representation of a signal, which is inherently suited to indicate
transient events in the signal. The Wigner distribution and its various permutations
is an analysis technique that has been widely used in the detection of faults in me-
chanical systems [38, 39, 40, 41] together with wavelet transform and Hilbert-Huang
transform[42]. Reasonable success was reported using wavelets to extract fault infor-
mation from the stator current prior to classification. The problems of translation
variance and the inability to closely approximate sinusoidal signals make their use
difficult in rotor fault detection. In [40], the detection of rotor faults was investigated
in electrical machines operating under continuously changing operating conditions.
This allows an efficient diagnosis in every condition and not only during the mo-
tor start-up. In summary, the accurate signal processing of the electrical quantities
acquired for monitoring purposes in the diagnostic process is a key issue.

A set of wavelets were introduced based on the shapes of widely encountered tran-
sient phenomena in the eddy currents on the surface of a steel mill in [43]. These new
wavelets are high frequency oscillations enveloped by single and double-sided expo-
nentials, a cosine-tapered rectangle, and Gaussian, Hanning and Hamming functions.
A time-frequency scale distribution was developed and its power distribution was
mapped onto a three dimensional image. Through analysis of these image patterns,
detection and classification of faults is possible. Since the wavelets match specific

transients, the modified wavelet transform can have a high sensitivity for certain
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applications.

The techniques presented in [44, 45, 46, 47] were developed to detect the pres-
ence of several faults in automotive permanent magnet brush DC machines, mostly
attributed to improper assembly. Both windshield wiper motors and fuel pump mo-
tors were used. The input coefficients to three fault detcction algorithms were the
modulus maxima of the first ten scales of the wavelet transform of the DC current.
The classifier used were the decision tree, the nearest neighbor rule and the linear

discriminant classifier

In [48], the authors used different time frequency transformations, such as Undec-
imated Wavelet Transform [49], Short Time Fourier Transform, Choi-Williams Trans-
form [50] and Wigner-Ville Transform, in combination with the linear discriminant
classifier, nearest neighborhood classifier and multiple discriminant based classifier
[51] for the early identification and classification of the non-stationary electrical and

mechanical faults in permanent magnet AC machines.

In [52], broken bar faults in induction machines are diagnosed using time fre-
quency analysis of stator current and spectral power density as the health indicator.
In [53], the authors proposed empirical mode decomposition of stator current to ex-
tract the fault frequencies. In [54] the authors proposed stator current decomposition
using both the continuous and discrete wavelet transform for the detection of de-
magnetization in permanent magnetic synchronous machine, which a non-stationary
fault. The motor current analysis is carried out for the detection of fault in the me-
chanical components attached to electrical machines. In [55] the authors proposed
discrete wavelet transform based method for broken rotor bar detection in induction
machines, which does not require slip information if only the low frequency bands
are analyzed. The squared instantaneous magnitude of the stator current and the
squared stator-current space-vector magnitude, are proposed as health indicators. In

[56], an efficient method in terms of computational effort and memory requirements
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is proposed for the diagnosis of machine faults using MCSA.

Although, diagnosis and prognosis are closely related and share commonalties,
fault prognosis is a relatively new field of research. Extensive work has been done on
diagnosis, i.e the early detection of faults in electrical machines, applying a variety of
techniques as mentioned in preceding paragraphs. On the other hand, prognosis of

failure has been further explored only recently.

2.2.2 Prognosis Methods

In practical terms prognosis, i.e. estimation of the remaining useful life (RUL) and
prediction of the future state, is the next logical step to fault diagnosis and central
to determining the need for timely maintenance, employment of auxiliary systems
when such exist, or simply cease operation to avoid dangerous failure. Prognosis
algorithms can also be classified as model based and data driven. In model based
approach either mathematical models or models based on the equipment physics, or
both, are used. The fault is considered continuously variable, whose evolution is
defined by a deterministic or stochastic law.

One common model based prognosis technique uses particle filters [57, 58]. Or-
chard and Vachtsevanos in [59] used particle filters for the prediction of RUL of rotary
systems having cracks. In [60], fuzzy logic classifier is used for the diagnosis of in-
verter faults and can be extended to prognosis. The misfiring in the Voltage Source
Pulse Width Modulation inverter (PWM-VS) is detected by the fuzzy fault classifier,
which compares the patterns generated from the output current from the healthy and
faulty inverters. In [61] models of Time Dependent Dielectric Breakdown (TDDB)
and Hot Carrier are used for the life estimation of the semiconductor devices. In
[62], a Preisach model is used to estimate the state of charge of the batteries. In
[63], the authors used a genetic algorithm for the monitoring and fault detection of

an induction motor drive. In this diagnostic method, the motor current is analyzed
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in the frequency domain and the decision is made by an expert system using fuzzy
logic. In [64], data-driven similarity-based prognostic techniques were used for the
RUL estimation. The system/equipment life patterns are obtained from the run-to-
failure data, using the training data sets. Prognosis from a test sample is performed
by pattern matching. Another data driven tool for prognosis is neural networks and
neuro-fuzzy systems [65, 66, 67] and have been used for predicting the health and

RUL of machines, bearings and batteries.

2.2.3 HMM as classifier and prognosticator

Hidden Markov Models (HMMs), which are used here as the prognosis tool, were
introduced by Rabiner [68], as a powerful statistical modeling tool, having its main
strength in its doubly statistical nature. HMMs are extensively used for speech recog-
nition [69], hand gesture recognition [70] and text segmentation. They have been used
for fault diagnosis, classification and prognosis, tool wear detection/prediction [71]
and bearing faults monitoring [72]. In [73] and [74], HMMs are used for the structure
damage classification where as HMMs were employed for monitoring machine tool
wear in [75] and [76]. In [77] the authors use HMMs for the diagnosis of machine
faults using features extracted from time frequency distributions. Easy model inter-
pretation is a competitive edge of HMMs over the commonly used black-box modeling

techniques such as neural network[78].

2.3 Theoretical Background

This section presents the theory related with the different tools used for the diagnosis
and prognosis algorithm. Motor current signature analysis is performed for the ma-
chine health assessment. The fault features are extracted in time frequency domain

and different candidate distribution and transforms are compared. Section 2.3.2,
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presents the pattern recognition classifier and in Section 2.3.3, the prognostication

method are discussed.

2.3.1 Features Extraction Methods
2.3.1.1 Short Time Fourier Transform

Fourier Transform provides a good representation of signals in the frequency domain,
since it decomposes the signals in terms of complex exponentials at different fre-
quencies. However, this representation does not contain any information about the
occurrence of a particular frequency in time. This idea is illustrated in Figure 2.1,
with the time-frequency tiling showing the joint time and freciuency resolution pro-

vided by the Fourier transform. The faults studied in this work manifest themselves

I

Frequency

v

Time

Figure 2.1: Fourier Transform Tiling

as repeated short transients superimposed on the stator currents. Analysis of these
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short transients, however, requires information in both frequency and time. The
inability to provide time localization of a signal is a fundamental limitation of the

FFT(79].

Frequency

A 4

Time
Figure 2.2: STFT Tiling

The short-time Fourier transform (STFT) is an extension of the Fourier transform,
allowing for the analysis of non-stationary signals. Here, the signal is divided into

small time windows, and each is analyzed using the FF'T as follows:

o0

STFT(t, f) = / h(t — 7)a(r)e 92T T 47 (2.7)

—00

where h is the window function. This formulation provides the localization in time,
while simultancously capturing the frequency information. The resultant cocfficients
of the STFT are intuitive and easy to correlate with the original signal. Tiling for

the STFT is given in Figure 2.2. The time-frequency tiling for the STFT is uniform
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across time and frequency. In the implementation of the STFT, a design tradeoff
must be made between time and frequency resolution. This is due to the principle of

uncertainty, which limits the lower bound on the time-bandwidth product.

TB > (2.8)

DN =

The duration, T, and bandwidth, B represent the broadness of a signal in time
and frequency. Good time localization, requires selection of narrow window in time
domain, h(t), whereas for good frequency resolution narrow window in fréquency
domain, H(w) is needed. But both h(t) and H(w) cannot be made arbitrarily narrow,

causing an inherent trade-off between time and frequency localization[79).

2.3.1.2 Discrete Wavelet Transform

Wavelet analysis [49] is also suitable for non-stationary signals. The DWT has greater
flexibility than the STFT. Different basis functions, or mother wavelets, may be used
in wavelet analysis while the basis function for Fourier analysis is always the sinusoid.
Unlike sinusoids, wavelets have finite energy concentrated around a point. One can
choose, or design a wavelet to achieve the best results for a specific application.

Tiling for the DWT is shown in Fig. 2.3. Unlike Fourier methods, the tiling
for the DWT is variable allowing for both good time resolution of high frequency
components, and good frequency resolution of low frequency components in the same
analysis.

The Hilbert space of measurable, square-integrable functions, f(z) € LQ(R), is
defined in (2.9).

+00
/ |f(2)[2dz < +o0 (2.9)

—00
A basis for a space V is defined as a set of linearly independent functions that

span the space. That is, any function in V can be written as a linear combination of
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Figure 2.3: DWT Tiling
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the basis functions. This can be illustrated by a linear decomposition (2.10), where
f(t) represents any function in the space V, v;(t) are the basis functions, and a, are

the scaling coefficients.

F(8) =" aguy(t) (2.10)
¢

The discrete wavelet transform can be defined using the idea of multiresolution
by starting with the scaling function and defining the wavelet function in terms of it.
A basic one-dimensional scaling function can be designed to translate a function in

time (2.11) where Z is the set of all integers.
et =p(t—k) keZ gel? (2.11)

Wavelet systems are two-dimensional, so a scaling function ¥ 1 (1) that both scales
and translates a function ¢(t) is defined in (2.12),

e it) =212 (21' (t - 2—J'k)) jkeZ pel? (2.12)

1

where j is the logy of the scale and 2Tk represents the translation in time. A
subspace of the LQ(R) functions can be defined as the scaling function space V.
®;, i (t) spans the space Vj, meaning that any function in Vj can be represented by a

linear combination of functions of the form ¢ j, L(t).

When discussing scaling functions in terms of multiresolution analysis the rela-
tionship between the span of scaling functions with different indices can be seen in
(2.13-2.14).

. CV_gCV_jCcVycVycVycC---CL? (2.13)

V_oo = {0}, Voo =L2 (2.14)

Through this scaling, if a function f(t) € v, then f(2t) € Vjt1- In the case of the
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Figure 2.4: Scaling Function and Wavelet Vector Spaces

scaling function, ¢(t) is written as a function of ¢(2t) in (2.15),

o(t) =) ho(n)V2p(2t —n), neZ (2.15)

where hy) is a set of coefficients discussed in Section 2.3.1.3.

Another subspace of the L2(R) functions is the wavelet vector space W. A wavelet
spans the space W., which represents the difference between two scaling function

spaces, V; and V; ;1. It can be seen that (2.16) extends to (2.17).
Vi=VgoW (2.16)

L2=VyeWpow, o (2.17)

The relationship between the scaling function and wavelet vector spaces is illustrated

in Figure 2.4.

The scale of the initial space Vj can be chosen arbitrarily, but is usually chosen to

be the coarsest detail of interest in a signal. It can even be chosen as 7 = —oo where
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Figure 2.5: Haar Scaling and Wavelet Functions

L? can be reconstructed in terms of only wavelet functions (2.18).
L2= - 0W_q0W_] oW DWW, O W@ - (2.18)
In the case of the wavelet function, (t) is written as a function of ¢(2t) in (2.19),

Zhl V2p(2t —n), neZ (2.19)

where h] is a set of coefficients discussed in Section 2.3.1.3.

A very basic wavelet system with a scaling function and a wavelet function to
make up the detail between one level of decomposition and the next is the Haar

system shown in Figure 2.5.

Any function in LQ(R) can be written as an expansion of a scaling function and
wavelets (2.20), where CjO(k) are the scaling function coefficients, “jo k(t) is the
scaling function at the initial scale j), dj(k) are the wavelet function coefficients and

Y 1.(t) are the wavelet functions spanning the space between V., and L2.
Ik J0

o)

f&) =D cjpR)ejort) + Z Zd k(1) (2.20)
k=—0c0 k=—007=]0
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2.3.1.3 Filter Banks

In order to perform the Discrete Wavelet Transform on a computer, computational
methods must be developed. The DWT can be performed without using calculus,

but rather additions and multiplications in the form of convolutions [49].

If the decomposition is considered linear (2.10), and if the basis functions are

orthogonal (2.21),

(x,00) = [ v =0, k#¢ (2.21)

the cocfficients of the decomposition, aj., can be determined by calculating the inner

product (2.22).
o = (SO0 = [ 1O (2.22)

In the two-dimensional case of the wavelet transform, the same techniques can be

used to calculate the scaling coefficients (2.23) and the wavelet coeflicients (2.24).
5 (k) = (10 04(0) = [ 10040 (2.23)

() = (10,0 40) = [ 70510 (224

Finally the scaling function coefficients for a coarse scale can be determined from
the scaling function coefficients at the next finer scale by convolving the coefficients

at the finer scale with the recursion coefficients hg(n) and then down-sampling (2.25).
= Z hg(m — Qk)(:j_H(m) (2.25)
m

The coefficients hp(n) are referred to as the decomposition lowpass filter coefficients.

The same can be done in the case of the wavelet coefficients using the recursion
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Figure 2.6: Two-Stage Filter Bank Analysis Tree

coefficients h(n) (2.26) where hq(n) = (=1)"hg(1 — n).

dj(k) =D hy(m —2k)cjt(m) (2.26)

m

The coefficients hj(n) are referred to as the decomposition highpass filter coefficients.
An example of a filter bank analysis tree is illustrated in Figure 2.6.

The down-sampling operation does not result in the loss of signal information. In
the filter bank structure shown in Figure 2.6, there is enough information to recon-
struct ¢; 41 in either the combination of cj and d > or the combination of Cj—1s d -1
and d - Despite down-sampling, either of these combinations of coefficients will have
approximately the same number of values as Cjt1- Signal reconstruction from DWT

coefficients is not used in this work, however it is discussed in detail in [49].

2.3.1.4 Undecimated Discrete Wavelet Transform

One of the drawbacks of the DWT is that it is not a shift-invariant transformation.
This makes pattern recognition problems based on the DWT more difficult since the
DWT coefficients resulting from decomposition of a signal and a shifted version of
the signal can be very different. Only in special cases, where the signal is shifted by
specific powers of two will the outputs be shifted versions of one another.

The UDWT adds the property of shift-invariance to the DWT. Here, the down-

sampling step is omitted from the DWT algorithm, and zeros are inserted between
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Figure 2.7: UDWT Filters Modified by the “Algorithme a Trous”

the filter coefficients at each successive scale, as shown in Fig. 2.7. This is known as
the “Algorithme a Trous” [80, 81]. While circular convolution is used in [80], linear
convolution is used here, since the signals are not periodic. The coefficients at each
end of the convolution where the filter and the signal are not completely overlapping,
known as end effects, are replaced by zeros. As these zeros propagate through each
scale of the UDWT, the number of end effect coefficients increases. The fact that the
length of the wavelet filters increase at each scale also contributes to additional end

cffects.

2.3.1.5 Wigner Ville Distribution

Wigner distribution(WVD)[79] of a signal s(t) is defined as:

W(t,w) = 2—17; /s*(t - Té)s(t + %)e—j“‘)dr (2.27)

WVD gives the energy distribution of the signal as a function of time and frequency.
It has high time-frequency resolution and does not suffer from the temporal vs. fre-
quency resolution tradeoff encountered in STFT. The distribution preserves the en-

ergy of the underlying signal. Following are the basic properties of this distribution:
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. Reality The Wigner distribution is always real, even if the signal is complex.

. Symmetry For symmetric spectra the Wigner distribution is symmetric in the
frequency domain and for real spectra the time waveform i symmetrical and the

Wigner distribution is symmetrical in time

W(t,w) = W(t, —w)for real signals = symmetrical spectra,S(w)= S(-w)
(2.28)

W(t,w) = W(—t,w)for real spectra = symmetrical signals, S(t) = S(-t)

(2.29)

. Marginals The distribution satisfies the time frequency marginals
/wmwm:me (2.30)
/wmma=wwﬁ (2.31)

. Time Shift If the signal is shifted in time, the distribution is shifted accordingly

if (1) — s(t — Lo) then W(t,w) = W (L — Lo, w)

. Frequency Shift If the signal is shifted in spectrum, the distribution is shifted

accordingly if s(t) — ej‘*’ots(t) then W (t,w) = W(t,w — wo)

The major shortcoming of WVD occurs for multicomponent signals in terms of the

cross-terms. When applied to multicomponent signals, it produces interference terms

known as crossterms, which can hinder the correct identification of signal components.

It is possible to attenuate the crossterms significantly using ambiguity domain kernel

functions.
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2.3.1.6 Choi Williams Distribution

Choi-Williams distribution(CWD)[79] of a signal s(t) is defined as:
C(t, f) = / / / (0, 7)s(w — %)s*(u— %)ej(eu'()t_”")dudé?dr (2.32)

2
where ¢(0,7) = e(—@) is the kernel function that acts as a filter on the signals
autocorrelation function. This distribution can be thought of as a filtered/smoothed
version of the WVD and the amount of smoothing is controlled by o. This smoothing

removes the cross-terms seen in the WVD at the expense of reduced resolution.

1. Reality The CWD distribution real if the kernal satisfies the identical conditions

(0,7) = ¢* (-8, —7)

2. Marginals The distribution satisfies the time and frequency marginals
/ C(t, w)dw = |s(t)|% (2.33)

/ C(t,w)dt = |S(w)|? (2.34)

if ¢(6,0) = 1 and ¢(0,7) = 1 respectively. As the kernel function satisfies

#(0,0) = 1, total energy is preserved.

3. Time Shift As the kernel is independent of time, the distribution is time shift
invariant. If the signal is shifted in time, the distribution is shifted accordingly

if s(t) = s(t —to) then C(t,w) = C(t — to,w)

4. Frequency Shift As the kernel is independent of frequency, the distribution is
frequency shift invariant. If the signal is shifted in spectrum, the distribution

is shifted accordingly if s(¢t) — eijts(t) then C(t,w) = C(t,w — wo)
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The features from the motor current in time frequency domain were used as input
for the classifier and prognosticator. The selection of the suitable distribution is based

on the fisher discriminant ratio.

2.3.1.7 Fisher Discriminat Ratio

The Fisher discriminant ratio is a measure that quantifies the discrimination capacity
of features regardless of the classifier. The classification results obtained by the
different classifiers give information about which class each fault belongs to. However,
these results are not necessarily informative of the separation of the different fault
classes and how the time-frequency coefficients cluster with the different methods.
The goodness of the features can be quantified through the classification accuracy or
through Fisher discriminant ratio, which is independent of the classifier.

Fisher’s discriminant ratio [51] can be used both as a classification method and as
a class separability criterion. In this work, it is as an indicator of the class separability
for the four different time-frequency analysis methods. For multi-class data, Fisher’s

discriminant ratio is defined as:

FX) = S _ Ilzglei(mi—m)(mi-m)TH%
w Siyst
1
]ECZ'
1
7 = = 2 I -mill3
l .
]EC,L'
K
1
m = E.lei’ (2.35)
1=

where X is the matrix of the extracted features, K is the number of samples in
2

each class, m; is the mean of each class, s ; is the variance within each class, and K

is the total number of samples. Fisher discriminant ratio can be interpreted as the
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ratio of the inter-class distance to inner-class scatter. Fisher’s criterion is motivated
by the intuitive idea that the discrimination power is maximized when the spatial
distribution of different classes are as far away as possible from each other and the
spatial distribution of samples from the same class are as close as possible to each
other.

In the application proposed, this criterion will be applied to the time-frequency
features extracted by the four methods to compare the discrimination power of the

different transforms and X is the matrix of the time-frequency coefficients.

2.3.1.8 Energy Calculations

The time-marginal is used as a measure of energy for the coefficients of the STFT.
This is defined as the sum of the squares of the coefficients at each time step.

In the case of the UDWT, the energy is computed by giving increasing weight
to coefficients in higher scales. This gives more emphasis to the high frequency

information in the signal, but does not discard low frequency information entirely.
E(tg) = d2,12 224 d1,02 ol g d0,02 .90 (2.36)

For the WVD and CWD, the energy is computed based only on the coefficients
at the highest scale. For example, the energy at time instance t9 is computed using
(2.37).

E(tg) = dg 12 (2.37)

2.3.2 Pattern Recognition Classifier

Once the features of the signal are available, i.e. the coefficients resulting from the
STFT, UDWT, WVD and CWD, the type and the severity of the fault is determined

by a classifier. The classifier considered for this work are the following:
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2.3.2.1 Linear Discriminant Classifier

The lincar discriminant classifiers (LDCs)[51] are trained on the input feature vectors
of a set of known faults. The feature space is divided in C sub-regions, where C is the
number of fault classes, corresponding to different fault severities. Weighting coeffi-
cients are computed for each class that maximize the linear-discriminant function for
the corresponding input feature vectors. The linear-discriminant function is defined

as:

De(z) = w1 +ag0ge + -+ 2page + gy o
¢c=12,...,C (2.38)

where z is the k-dimensional feature vector and a are the normalized weighting co-
efficients for the C-th class. A sample vector belongs to a particular class if its
discriminant function for that class is greater than for the any other class, ie.,

belongs to class j if:

Dj(x) > Dy(z) (2.39)

for every k # j. The weighting coefficients are adjusted from their initial guess
through a training procedure. The algorithm for this procedure makes adjustments
to the weighting coeflicients until each of the training sample vector is correctly

classified.

Young and Calvert [82] show that this training algorithm will converge in a finite
number of steps. When a sample vector is correctly classified, no adjustment to the
weighting coefficients is made. When a sample vector is incorrectly classified, or

Dj(x) < Dy(x),
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where

Dj(x) = max [D1(x), ..., Dg(x)],

adjustments are made to o (2.40) and a; (2.41) only,
aj(i +1) = aj(z) + ax; (2.40)

o (i+1) = oq(i) — ax;, (2.41)

where a is a gain constant.

Discriminant functions have minimal storage requirements after the training phase
since, for each class, only a single vector of weighting coefficients need to be stored.
Storage of training samples is no longer required during the classification phase. For
multiclass problems (K > 2), it can be said that the classes are linearly separable if
linear discriminant functions Dy(x), ..., D (x) exist, such that (2.42) is true.

Dj(x) > Dp(x) for every x in Cj and all k # j (2.42)

2.3.2.2 k-means Classification

k-means is one of the simplest unsupervised learning algorithms that solve the well
known clustering problem. The procedure follows a simple and easy way to classify a
given data set through a certain number of clusters (assume k clusters) fixed a priori.
The main idea is to define k centroids, one for each cluster. These centroids can be
chosen in different ways, such as choosing k£ random points or using the means from
training data as centroids. The next step is to take each point belonging to a given
data set and associate it to the nearest centroid. In pattern recognition, k-means
is a method for classifying objects based on closest training examples in the feature

space. The distance is usually measured using the Euclidean distance (Euclidean
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distance classifier EDC). When all of the data points have been assigned to clusters,
this procedure is repeated by measuring the means of each cluster and using these as
the centroids for clustering. This procedure is repeated until there are no changes in

the k centroid.

The alternate method for the distance measurement is the Mahalanobias distance[51]
(Mahalanabois distance classifier, MDC). This distance not only takes into account
the means of the cluster but also adjusts itself for the clusters’ variances. This the

given as

Dm(z) =/ ( ~ WTE~ Lz — ) (2.3

where 1 and ¥ are the means and variances of the clusters respectively.

2.3.2.3 Multiple Discriminant Analysis Classifier

Multiple discriminant analysis (MDA) classifier is a pattern recognition technique
[51], which is used to analyze the fault signals. Analysis of the faults with different
time-frequency transforms indicates that the time-frequency feature vectors contain
redundant information and that not all regions of the time-frequency plane contain
discriminative information [83]. Suitable data reduction methods are required to
choose the ‘optimal’ lower dimensional transformation of the time-frequency feature

vector.

MDA transforms from high dimensional feature space to a low dimensional space
and maximizes the discrimination between different classes. It is an extension of
Fisher Discriminant Ratio, which uses the ratio of intra-class scatter to inter-class
scatter. Given the time-frequency feature vectors z and the class labels, the intra-

class and inter-class scatter matrices are computed. Intra-class scatter matrix is
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defined as:

C
Yo=Y @-me-my)T (2.44)

1=1 J:ECi

and the inter-class scatter matrix is defined as

C
Zb = Z K;(m; — M)(m; — M)T (2.45)

i=1
where m; is the class average, M is the total average, and K is the number of
samples in class ¢. The optimal linear transformation @ is defined such that following

is maximized:

Ty, e

- Ty s (2.46)

J(®)

The optimal @ is found by solving the generalized eigenvalue problem, > p @ =
AY w ®. For C classes, the linear transform projects to a C' — 1 dimensional space
moreover, lower dimensional space is the one which give the maximum separation
between different classes.

The MDA classifier calculates the distance of each new incidence from the centroid
of all the clusters (generated during the training phase) and assigns it to the class for

the distance is the least.

2.3.2.4 Support Vector Machine Classifier

An support vector machine (SVM) aims to fit an optimal separating hyperplane
(OSH) between classes by focusing on the training samples that lie at the edge of
the class distributions, the support vectors. The OSH is oriented such that it is
placed at the maximum distance between the sets of support vectors. It is because
of this orientation that SVM is expected to generalize more accurately on unseen

cases relative to classifiers that aim to minimize the training error such as neural
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networks. Thus, with SVM classification only some of the training samples that lie
at the edge of the class distributions in feature space (support vectors) are needed in
the establishment of the decision surface.

The training data is projected into arbitrary higher dimensional feature space,
using non-linear mapping. This mapping is implicitly defined by the algorithm. The

selection of OSH is carried out in higher dimensional space.

r = (z1,29,...,xn) = ¢(x) = (¢1(z), 9o(x), ..., on(x)) (2.47)

The simplest form of SVM classifier is maximal margin classifier and it will ex-
plained. It is convex optimization problem, which tries to minimize a quadratic func-
tion under linear inequality constraints. Suppose we have linearly separable training

data as shown in 2.8 and we to find a optimal hyperplane for the separation of it.

Figure 2.8: Linearly Separable Data

Suppose the set of labeled training data is

(yl,xl), ..... ,(yl,xl) Y; € {-—1,1} (2.48)

This data set is linearly separable if there exist a vector w and a scalar b such that
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the inequalities

wr; +b<1 if y, =1 (2.49)
w; +b>-11if y; = —1 (2.50)

are valid for all the elements of the training set. Eq. 2.49 and 2.50 can be combined
in the following form:

yj(wr; +b) >1 i=1,..,1 (2.51)

The optimal hyperplane
wpz +b=0 (2.52)

is the unique one which separates the training data with maximal margin. It deter-
mines the direction where the distance between the projections of training vectors of
two different classes is maximal. Support Vectors are those data point against which

this margin pushes up.

2.3.2.4.1 Optimal Hyperplane Selection Selection the optimal hyperplane is

a constrained optimization problem given by

mig :‘lz—wtw subject to yi(wt¢(ri) +b)>11i=1,..,1 (2.53)
w,

The optimization problem mentioned in Eq. 2.53 is for the case where the training
data is completely separable. It is a very strong assumption and may not be true
in most of the practical and generalized applications(84]. For non separable training
data, a non-negative variable ( is introduced in the equation 2.53 and it is expressed

as

n
min( %wt’w + CZ ¢; subject to yi(wtqﬁ(mi) +b)>1-¢ i=1,..,1 (2.54)
w «

e 1=1
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2.3.3 Prognosticators

There are many popular techniques for prognosis, some of which are reviewed in this

section.

2.3.3.1 Kalman Filter

It is one of the most popular and common methods[85], which works with linear
systems in presence of Gaussian noise. It provides an efficient recursive computational
solution by minimizing the least-squared error. It can estimate the past, present and
future states of the system under observation.

Kalman filter solves the general problem of estimating the state of a discrete-time

process that is governed by the linear stochastic difference equation given as Eq 2.3.3.1

Tp = Arp_1+ Bup_1+wp_ (2.55)

and 2.3.3.1 as output equation

2 = H.‘ck + v (2.56)

where ;. is the state vector at time k, z}. is the output, A, B and H are the systems
matrices, v and wy, are the process and measurement noise respectively assumed to
be Gaussian white noise with zero mean and Q and R are process noise covariance

and output noise covariance matrices respectively.

p(w) ~ N(0,Q) (2.57)

p(v) ~ N(0, R) (2.58)
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If x; € Ry, is a priori state estimate at step k, given knowledge of the process prior
to step k, and ;. € Ry is a posteriori state estimate at step k given measurement

z).. A priori and a posteriori estimate errors are defined as

e =xp — Iy (2.59)
and
e = T} — I} (2.60)
The a priori estimate error covariance is then
P =Elej e !] (2.61)
and the a posteriori estimate error covariance is
Py, = Elgge} (2.62)

There are two stages of Kalman filter. First is the prediction, in which the states
are projected ahead in time. Suppose we have a initial guess about the state 2. _;
and error covariance Pj_1 at time k-1. The prediction stage will project the state
and covariance from time step k-1 to time step k. With zero input the system predict

states will be

A~

IS8

4
Bkl ; (2.63)
Pk = APk—lA +Q
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The next stage is update or correct. In this face the Kalman gain is computed.

Ky =P; HY(HP, Hp + R)™1 (2.64)

The Kalman gain is used to update the state estimate and error covariance esti-

mate.

i+ Kz — Hip)
(I - KpH)+ P

k= (2.65)
P =

The measurement noise covariance R is measured prior to the operation of the
filter, which is generally possible, however, the determination of the process noise
covariance, Q, is more difficult therefore reasonable values are selected.

After each predict and update, the process is repeated with the previous a posteri-
ori estimates used to project or predict the new a priori estimates and filter eventually
converges to the correct state of the system. The recursive nature is one of the very
appealing features of the Kalman filter.

Due to the stringent conditions of linearity, the extended Kalman filter is the more
suitable alternate for real world systems. The extended Kalman filter linearizes the
systems around the point of interest and solution is obtained recursively as in case of

Kalman filter.

2.3.3.2 Particle Filters

Particle filter is a Bayesian method in which the solution of filtering problem is com-
puted by recursively estimation[59]. The filtering problem is to estimate the first
two moments of the state vector which is governed by the dynamic state space model
having noisy observation. A discrete time controlled process can be expressed in state

space form by the stochastic difference equation of the form
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and a measurement equation y € Rk given by

Y = hp(Tp, vg) (2.67)

The equation Eq.(2.66) is called the state transition(dynamic) equation whereas the
Eq.(2.67) is called the correction, update or output equation. At time l;, =, is the
state vector, wy. is the dynamic noise, yj. is the real observation vector and v is
the observation noise vector. The function f}. gives the relationship between the
previous state and the current state and the function hj, links the current state to

the output[57).

In Bayesian form, instead of the future state vector, the probability density (pdf)
of the future state vector is estimated. Following the pattern of update and mea-
surement equations, the prior pdf is calculated using the update equation and the
posterior pdf using the measurement equation. Eq.(2.66) gives the predictive condi-
tional transition density, p(z|T;_1,¥;_1), of the current state given the previous
states and previous observations [86]. The observation or measurement equation
Eq.(2.67) gives the likelihood function of the current measurement given the current
state, p(yg|zg). If p(zg_1lyg_1) is defined as the previous posterior density then

the prior pdf p(z;|y;.p_1) is defined using the Baye’s rule as:
pailvik—) = [ plerler_1)pee_1lve_1)dog_y (268)

The correction step generates the posterior probability density function from

P(zgly1.k) = c* p(yglzr)p(zplyy . —1) . (2.69)
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The filtering problem is to recursively estimate the first two moments of z;. given
yy.- For a general distribution, pz, this consists of recursive estimation of the expected

value of any function of x, say (g(z)) using Eqns. 2.68 and 2.69. This requires

p(z)
the calculation of the integral of the form[87].

@) = [ s(@p(a)is (2.70)

2.3.3.2.1 Monte Carlo Integration Monte Carlo (MC) methods are stochastic
techniques, meaning they are based on the use of random numbers and probability
statistics to investigate problems(88]. In this technique, the solution of a numerical
problem is estimated by means of an artificial sampling experiment. The estimate is
usually given as the average value, in a sample, of some statistic whose mathematical
expectation is equal to x. The main idea behind this method is centered around the
availability of very large computational power of present day processors. MC estimate
advocates that when a large number of samples are drawn from the required posterior
distribution, it is possible to approximation the intractable integral.Suppose we want

to numerically evaluate a multidimensional integral:
I = /g(z)dx (2.71)

where x€ R%. In MC methods, numerical integration is factorized as g(z) =
f(z)m(z) in such a way that n(z) is a probability density satisfying m(z) > 0 and
J n(z)dz = 1. The assumption is that it is possible to draw N > 1 samples {:pi;i =

1,..., N} distributed according to m(z). MC estimation of the integral

I = /f(z)w(x)dx (2.72)
is the mean sample
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Iy = % 3 f(ah) (2.73)

If the samples % are independent then /)y is an unbiased estimate and according
to law of large numbers 7y will almost surely converge to I. However, 7(z) a posterior
density in Bayesian estimation, is not possible to sample efficiently, the reason being
its multivariate, nonstandard nature and limited possible assess. The possible solution

is use of "Importance Sampling Method”.

2.3.3.2.2 Importance Sampling Ideally we want to generate samples directly
from 7 (z) and estimate I using Eq.(2.72). But suppose we can only generate samples
from a density g(z), which is similar to m(z). Then we need to introduce correcting
weights for the sampled set in order to make MC estimation possible. The pdf ¢(z) is

referred to as the importance density provided that the following condition is fulfilled:
m(zr) >0=gq(z) >0 (2.74)

for all z € R%, which means that both = and ¢(z) have same support. It is a necessary
condition for importance sampling to hold. If this condition is met, any integral of

the form (2.72) can be written as:

’;((;)) q(z)dz (2.75)

q(z) > 0. A MC estimate of I is computed by generating N > 1 independent samples

1= [ Hom@az = [ 1)
{i,i = 1...N}, distributed according to ¢(z) and forming the weighted sum:

N o
Iy = % > f@ha(') (2.76)
i=1
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where

o(rt) = (2.77)

are the importance weights. If the normalizing factor of the desired density is unknown
we need to perform the normalization of the importance weights. Then the estimate

I is as follow:

_ N Zi s
N T o)

Particle filter estimation is a type of MC integration, which is also called sequential

Iy (2.78)

importance sampling. In this method recursive Bayesian estimation is performed
by implementing MC simulations. The required posterior density function 2.69 is
represented by a set of random samples with associated weights. As the number of
samples becomes very large, the MC representation converges to the actual functional

description of the posterior pdf.

2.3.3.3 Hidden Markov Model

A HMM is a stochastic technique for modeling signals that evolve through a finite
number of states[68, 73]. The states are assumed hidden and responsible for pro-
ducing observations. An HMM assumes that the system is Markovian, this means
the behavior depends only on the current state. The objective is to characterize the
states given the observations. Sj. is the hidden state at time k and Oj. as the ob-
servation sequence, assuming that there are C possible states. The main objective is
to determine hidden parameters (states) from the observable parameters. There are

three basic problems to solve by HMM.

1. Problem 1: Given the observation sequence y = {y1y9...y;} and set of model
parameters 8 = {, A, B} how to efficiently compute p(y), that is the probability

of the observation sequence, given the model.
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2. Problem 2: Given the observation sequence y = {yjy9...y;} and set of model
parameters § = {m, A, B} how to choose corresponding state sequence r =
{r1,79...,x}}, which is optimal to generate the observation sequence. The

optimal measure can be the maximum likelihood.

3. Problem 3: How do we adjust the parameters § = {m, A, B} to maximize the

likelihood of all observation sequences.

In this work, HMM is used to get the solution of the Problem 2, which tries to
maximize the likelihood of the states given the observable variable. An algorithm is

developed which uses HMM for the prognosis. The model has three elements:

e m: Cx 1 initial state distribution vector where the ;, element is the probability

of being in state i at time k = 0. p(Sy = 1).

th

e A: C x C state-transition matrix where the (z,j)"" element is the probability

of being in state j at time k + 1, given that it is in state i at time k, p(Sg41 =
jISk = i).

e B: State-dependent observation density B. Its jth element is the probability of

observing Oy, at time k given the system is in state j, b;(Oy) = p(Of|Sy = 7).

The model parameters are collectively denoted by A = {w, A, B}. In order to imple-
ment the HMM based prognosis algorithm, the model parameters need to be trained.
The state transition probabilities(A) and state dependent observation densities (B)
are generally obtained from the historical data collected from large number of observa-
tions and the initial state probability distributions (7r) depend on the implementation
area and the nature of operation of the system being studied. In this work, computa-
tional methods for the HMM elements (A = {7, A, B}) and algorithm for prognosis

based on these elements are developed and presented in Chapter 6.
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Chapter 3

Problem Formulation and Selected

Approach

3.1 Scope and Objective of the Chapter

The first objective of the present chapter is to formulate the problem addressed in the
thesis. It describes the available inputs, major constraints and limitations in the case
of complex electromechanical systems. Moreover, the required intermediate data and
information needed to compute the solution are also identified. The second objective
of the chapter is to postulate the approach to address the problem. Based on the
selected approach, an overview of the different phases of the algorithm development

are also presented.

3.2 Problem

In this thesis, fault analysis of the complex electromechanical systems is addressed.
Generally, electromechanical systems are non-linear, noisy and complex. Early fault

detection, categorization and prognosis require continuous monitoring of the systems.
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Mostly, the deployment, role and location of the electromechanical systems confine
the analysis methods only to the ones which are non-intrusive in nature. As the
faults in the system manifest themselves in the machine current[89], motor current
signature analysis is an attractive non-intrusive fault analysis tool. By examining the
features extracted from the machine current, faults can be analyzed. This method
has been successfully implemented for the diagnosis of major machine faults, for
example turn-to-turn short circuit, cracked /broken rotor bars, bearing deterioration
etc. (89, 90, 91].

The objective of the thesis is to develop algorithms of fault diagnosis and failure
prognosis of the transient faults in complex electromechanical systems, using non-
intrusive methods. For the diagnosis, it is assumed that there is no apriori information
available. For prognosis, the limitations are the non linearity of the system, presence
of non Gaussian noise, non availability of the historic data from which fault progres-
sion trends can be extracted, and non availability of system model. The objective is

to develop a methodology while remaining within these constraints.

3.3 The Selected Approach

Diagnosis and prognosis techniques are generally divided in three groups, model
based, data based and signal based. The modeling of electromechanical systems
is not practical due to their complex construction and the requirement of extensive
approximations, which makes model based analysis methods an inappropriate choice.
For the data based methods, huge data is required to define system trends and fault
patterns, which is mostly not available in electromechanical systems. The signal based
techniques are considered suitable options for this analysis and they are applied on
the lines of the supervised learning methods. In the supervised learning, the data is

collected from the system in known health conditions and based on the decision rules
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developed, health conditions of unknown systems are categorized and prognosticated.
The adopted approach has three major parts, analysis of the feature extraction meth-
ods, classifiers and the prognosticator. Algorithms are to be developed for feature
extraction, diagnosis and prognosis. The overview of the methodology adopted is

shown as Fig. 3.1

Selection of Overall Analysis
Approach

:

Features Extraction

|

Diagnosis — Pattern
Recognition Classifiers

:

Prognosis — Probabilistic
Estimator

Figure 3.1: Methodology
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3.3.1 Analysis of the Feature Extraction Methods

The fault features can be extracted in time, frequency and time-frequency domains.
The time domain features can be the peak values or covariance comparisons. They
offer lesser computational cost. However, they are not very efficient in the case of
transient signal analysis. The frequency domain features or the spectrum analysis
is extensively used for the fault diagnosis, however, in case of transient signals the
frequency domain features are not very discriminative. In the time-frequency analysis
the signal is represented in three dimensions, time, frequency, and amplitude. It
is inherently suited to indicate transients in the signal. Different transforms have
been proposed for efficient representation of transient events. In this work, the fault
features are extracted in the time-frequency domain using four different transforms,
short time Fourier transform, undecimated wavelet transform, Wigner transform and
Choi-Williams transform. The Fisher discrimination ratio is used as the figure of

merit for the selection of most suitable transform for the transient repetitive faults.

3.3.2 Analysis of the Diagnostic Methods

The features extracted using time-frequency distribution are the input of the classi-
fiers. For the fault classification different candidate methods are analyzed, which are
linear discriminant classifier, ncarest neighborhood classifier, support vector machine
classifier and Mahalanobias distance classifier . The comparative analysis of the clas-

sifiers is performed in terms of classification accuracy and the computational time.

3.3.3 Analysis of the Prognosticators

Prognosis succeeding the activity of diagnosis and it gives the estimate of the RUL

of the equipment. Different prognosis methods have been presented in the literature,
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Figure 3.2: Training block diagram

methods are model based techniques.

HMM has three parameters, (matrices A,B and m) as mentioned in Chapter 2.

Define of State Dependent

Observation Probability
Densities
(Matrix B)

Estimation of Initial
State Probabilities
(Matrix =)

namely Kalman filter, fuzzy logic predictor and particle filters.
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In this problem, these methods cannot be
employed as the model of the system is not available. A statistical technique HMM-

based prognosis method is presented for the estimation of RUL.

These parameters needs to be trained before engaging the model for the prediction.

The training of parameters requires a large amount of data, which is not always

These prediction



available. In the presence of limited data, this task becomes more challenging. In
this work methods are developed for the computation of these parameters from the
experimental data. For the computation of state transition probabilities(matrix A) a
heuristic method is developed, which is based on the matching pursuit decomposition.
The state dependent observation densities are defined as parametric densities. The
outcome of the training of the classifier and the experimental observations are used
to obtain the parameters of the densities. A prognosis algorithm is developed, which
computes the RUL in terms of the probability of the failure state, given the trained

model.

3.4 Algorithm Execution Phases

Supervised learning is the overall approach for the development of the algofithm.
In supervised learning, the execution is performed in two phases. The first phase
is called the training phase. During the training phase, it is assumed that all the
required information about the system is available. The decision rules are developed,
provided the known set of information. Following is the testing phase, during which
the decision rules are applied to the data sampled from the systems of unknown health
conditions. Both diagnosis and prognosis algorithms need to be trained, and both
use the same set of time frequency features extracted from the machine current. The
prognosis phase utilizes the information acquired from the diagnosis. Figure 3.2 and

Figure 3.3 show the block diagrams of the training and testing phases respectively.
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Chapter 4

Experimental Setup

4.1 Scope and Objective of the Chapter

The first objective of this chapter is to discuss possible faults in electromechanical
systems and their manifestation in the signals which can be used for fault analysis.
The second objective of the chapter is to present the details of the experiment built.
The developed algorithms for fault diagnosis and failure prognosis are generic in
nature and can be used for a wide range of applications. However, their working is
demonstrated by applying them to the analysis of the health condition of starting
systems used in automobiles. This chapter describes the operation of the starting
systems, the laboratory experiments, fixtures, control and data acquisition methods,

sampled signals, sensors and signal enhancement methods.

4.2 Faults in Electromechanical Systems

A variety of faults can occur in electromechanical systems. These faults can be
grouped as electrical and mechanical faults. Generally, the faults which occur in the

current path are termed as electrical and ones which are related with mechanical
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components are regarded as mechanical faults. Following are the possible faults in

electromechanical systerns:
1. Electrical faults

(a) Short circuit

(b) Open circuit

(c) Deterioration of brushes
(d) Brush spring faults

(e) Deterioration of commutator
2. Mechanical faults

(a) Damaged gears
(b) Eccentricity

(c) Bearing faults

These faults can manifest themselves as mechanical vibrations, acoustic noise, and/or
current transients [48, 92, 93, 94, 95| and the fault features can be extracted from
these signals. The gear fault in automobile starting systems is selected as a test fault
for the demonstration of the developed algorithm. It is a repetitive transient fault
which is common in many electromechanical systems. The starting system uses DC
machines energized by battery. Although DC machines have been largely replaced in
industrial applications by permanent magnet and induction machines, they are still
extensively used in auxiliary automotive systems. Besides starting systems, these
machines are popular for the wipers, door locks, view mirrors and seat adjustment
systems. Despite not being part of the traction system, their malfunction can result

in overall failure of the vehicle.
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4.3 Operation of Starting Systems

The starter motor cranks the engine when a starting signal is applied by the user
through the twist of the key. During cranking, the starter motor turns the flywheel;
which translates the rotary motion to linear motion of the pistons through the crank
shaft. In one crankshaft revolution, the engine undergoes three cycles of compression
and expansion in the cylinders, which causes variable load on the starter motor. The

starter motor current is sampled and is shown in Figures 4.1 and 4.2.

Sampled Current - Healthy Motor

900 T T

Current (A)

0 0.2 04 0.6 0.8 1
time (sec)

Figure 4.1: Sampled Current

During compression, the load on the flywheel, and in turn on the starter motor
increases and a rise in current appears (4.2-region A). This is the time when the starter
motor is exerting torque and turning the flywheel. In contrast, during the expansion,
the load reduces, and the flywheel is turning mainly due to inertia and does not
offer significant load to the starter motor. The motor current decreases causing an

increase of starter motor speed (4.2-region B). As the starter gear applies force, a
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Figure 4.2: Healthy Motor Current - Zoomed

moment comes when contact between the starter and flywheel gears is lost, followed
by a knock when contact is re-established. This mechanical transient is translated
into speed and torque transients, and subsequently into a short transient of the stator
current. Any damage in the gear tooth is reflected in the knock. Figures 4.3~4.7
show schematics of healthy gears and gears with one tooth damaged with different
severities. The gear shown in Figure 4.3 is without damaged, called healthy gear. The
other four figures show gears with increasing damage severities, which are illustrated
by the dotted lines. The gear ratio between the starter motor and flywheel is 15.8:1
and it completes approximately five revolutions during one compression/expansion

cycle.

The starter motor provides the initial torque during the starting attempts. The
load of the machine is an engine, with widely varying load torque. The load torque

depends on the motor conditions, external environment and multiple resonances. The
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load on the starting system is very complex both in terms of electrical and mechanical.
Therefore its electromechanical model is inadequate. However, despite the nonlinear
and variable load, the stator current remains as a good health indicator both in
terms of accuracy and in terms of cost and can provide useful insight about the
motor operating conditions. Therefore, the signal based techniques are a suitable

option for diagnosis and prognosis, which were discussed in Chapter 2.

Figure 4.3: Gear with no faults

Figure 4.4: Gear fault severity - 1
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Figure 4.7: Gear fault severity - 4
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4.4 Engine and Starter

In automobiles, the starter motor assembly is energized by a 12V battery. It is oper-
ated through a relay controlled by the ignition key. The relay and the ignition switch
are also energized by the same 12V battery. The starter motor turns a flywheel
which cranks the engine. The starter motor is attached to the engine body. In the
laboratory, the experimental setup was constructed using a complete engine module,
housing the motor assembly. It served two purposes, first to create a realistic oper-
ational environment and second to operate the motor under actual load conditions.
Commercially available engine cradle with certain modifications was used to hold and
stow the engine during the experiments. The engine was mounted on the cradle using
rubber pad mounts to dampen the vibrations as much as possible. Figure 4.8 shows

the engine placed on the cradle in the laboratory.

4.5 Control of Starter Motor and Data Acquisition

To control the motor and sample the data, a PC running National Instrument Labview
software was used. In automobiles, the twist of key sends the energizing signal to the
starter relay. In the experiment, this signal is generated by Labview upon the users
input. The starting signal is sent from the USB port to the data acquisition card,
National Instrument DAQ 6229. It is a high-performance M Series multifunction data
acquisition (DAQ) module, capable of sampling at a rate of 250K S/s and with 16-bit
resolution. The same data acquisition card is used for the sampling of data from the
motor. The front end for the motor control was designed using NI Labview. A block

diagram of the experimental setup is shown in Figure 4.9.
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Figure 4.8: Hardware Setup

4.6 Sampled Signals

From the starter motor three signals, motor current, battery voltage and engine vi-

bration, were sampled.

1. The motor current was the primary signal for the analysis. In typical starter
cycle the initial motor current reaches 750 — 800A, moreover, the frequencies of
the electrical faults are expected to be in the range of kHz. Therefore a sensor
having high current tolerance, wide bandwidth, and adequate accuracy was
required. LEM Current Transducer HASS 600S was used, which can withstand
current up to +3500A, has a linear range between —900A and 900A and a

bandwidth of 50k H z, with accuracy within 1 percent of full scale.
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Figure 4.9: Block Diagram Experimental Setup

2. The second signal sampled was the battery voltage. Voltage sensor, LEM LV
25V, was used, which has wide band width and has accuracy within less than

1 percent.

3. The third signal measured was the vibration of the engine. For the measure-
ment of the vibration, series 303A Quartz accelerometer was used. It functions
to transfer shock and vibratory motion into high-level, low-impedance (10012)
voltage signals compatible with readout, recording, or analyzing instruments.
It is a small, sensitive (10mV/g) sensor, which operates reliably over wide am-

plitude and frequency ranges under adverse environmental conditions.

4.7 Gear Position Sensor

Information about the precise position of the starter motor pinion and the flywheel
was required in order to establish relationship between the fault occurrence instance
and the point in the engine cycle. Speed and position sensor4.10 was made, using

an optical pulse counter. It gave one pulse for each tooth crossing of the flywheel
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and generated a total of 142 pulses per flywheel revolutions. Given the initial posi-
tion of the pinion, relative positions of the flywheel and starter motor pinion with
respect to compression/expansion cycle can be obtained from the output of position
sensor. Therefore, the position of pinion was physically noted before collecting each

sampled signal. In Figure 4.11 the sampled current with pulses of the optical sensor

is exhibited.

:
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3
3
i
g
’
3
§

Figure 4.10: Position Sensor
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Figure 4.11: Sampled Current with Pulses

4.8 Hardware Optimization and Signal Enhance-

ment

Modifications in the hardware were incorporated to optimize its efficiency and ef-
fectiveness. In the initial experimental setup, the output of the current senor was
directly feed to the data acquisition system. However, the sensor was capable of
handling +£900A. It produced 3.44V for +900A , 2.5V for 0A and 1.56V for —900A.

In this application, the current was always positive. It reached 700A during the
initial rise, and remained below 400A after that, which corresponded to 3.24V and

2.92V respectively. The samples collected during the initial spike of the current were
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rejected, leaving the samples for the time when the current is below 4004 (2.92V),

which is the maximum current used for analysis. As, the current was not changing
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Figure 4.12: Signal Conditioning Electronics

direction and the output was always positive, the range of -10V to 0V was unused,
means that the data acquisition card, which has 16 bit resolution for 10V, was not
completely utilized. The following modifications were made for the optimal utilization

of hardware:

1. Voltage Regulator: The input to the DAQ card was limited according to
the useful current range (~ 400A). A zener diode based voltage regulated was

placed which sets voltage threshold corresponding to 400A.

2. Pre Conditioning: The scale of the input was adjusted in order to utilize
the complete range of the DAQ card. The DAQ acceptable range was £10V
and the required input voltage range in this experiment was from 2.5V-2.95V.
The input was translated to —10Vto + 10V respectively by using a differential

operational amplifier.

3. Sensor Utilization: The current sensor can with stand with much higher
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current (approx. +3500A). Increasing current through the sensor effected the
overall resolution of the systems. The number of turns through the current

sensor was increased.

Volts (V)
o

1% 0.2 0.4 0.6 0.8 1

time (sec)

Figure 4.13: Unconditioned Data

The signal conditioning electronics are shown in Figure 4.12. The input to con-
ditioning electronics was fed from non-intrusive Hall effect current sensor. It had
+900A linear range. As the sensor can withstand up to 30kA, the through current
was doubled by passing the wire two times around it for maximum utilization of lin-
car range. The output of current sensor was fed to the operational amplifier LT1057,
which scaled and shifted it. A bidirectional Zener diode was placed at the output

of operational amplifier to chop the initial high current and to block the negative
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Figure 4.14: Conditioned Data
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voltage. The scaling and shifting was performed according to the Eqn 4.1.
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Figure 4.15: Projection using Original Data

I
Vo = 5% — 240 (4.1)

where /p is the motor current and V{) is the output Voltage. The original and the
conditioned signal are shown in Figures 4.13 and 4.14, against the full input scale.
These modifications caused the optimum use of the NI DAQ card resolution. New
data was sampled and the effects of down-sampling and bit reduction were observed
and compared with the previously sampled ones. It was found that the information
in the new data was more robust as the Fisher values were higher for the scaled data.
Fisher values of the original data and conditioned data are shown in Figures 4.15 and

4.16.
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Figure 4.16: Projection using Conditioned Data
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From Figure 4.16 it can be observed that the Fisher coefficient values remain
within range if the bit rate and sampling frequency are reduced to 8 bits and 4kH z.
This implies use of low cost hardware for sampling. However, the same may not be

true for the electric faults where the frequencies are expected to be higher.

4.9 Data Collection

During cranking, the flywheel was turned by starter motor gear pinion. At the start
of cranking, the pinion slides out and meshes with the flywheel. The data were
collected from healthy starter motors and damaged gear motors. Faults of different
intensities were introduced in one tooth of a number of starter motors pinions. The
faults were introduced by griding the tooth, which is similar to the griding of tooth
due to improper meshing of gears. Figure 4.17 shows the healthy pinion of starter
motor, and Figures 4.18 and 4.19 are motors with damaged teeth having different

intensity fault levels.

Figure 4.17: Healthy
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Figure 4.18: Fault Intensity I

The position of the damaged tooth was physically noted for each sample. The sam-
pled current was defined by three separate and concurrent cycles: the compression-
expansion cycle of the pistons, the flywheel rotation and the starter motor rotation.
Out of these three, the starter motor cycle was of interest as it had the damaged
tooth on it. The second cycle which plays a significant role in the analysis is the
compression/expansion cycle. Assuming a healthy flywheel, the flywheel cycle had

no role in this process.
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Figure 4.19: Fault Intensity IV
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Chapter 5

Feature Extraction and Fault

Diagnosis

5.1 Scope and Objective of the Chapter

In this chapter, the objective is to present the feature extraction and diagnostic
methods suitable for the analysis of repetitive transient faults. Fault features were
extracted from the motor current signature analysis in the time frequency domain.
These features were the inputs of the classifiers. In this chapter, the working of clas-
sifiers with the consideration to the operational constraints is presented. A method
to compute the discriminative strength of the features extracted using four different

transformations is also presented.

Diagnosis of faults comprises of detection and categorization. Generally the cat-
egorization is performed after the detection of the faults. However, in the present
application, the time of the damaged tooth meshing could not be identified pre-
cisely. This was due to the complexity of the load, inherent noise of the system and
uncertainty in the location of damaged tooth. As the meshing time could not be

pinpointed, the training of the algorithms was not very accurate. This made the
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detections unreliable. Two groups of the classification algorithms are developed, one
with detection of fault event and other without detection of fault events. In Section
5.2, the algorithms are presented which categorize once the detection has been made
and in Section 5.3 the algorithms are presented which work without the detection of
the faults. In section 5.4 the comparisons of the discriminative strength and execution

time of the candidate transforms are made.

5.2 Fault Categorization - Known Meshing Instance

of Damaged Tooth

Mostly the categorization algorithms are developed in way that they are executed
after the detection of faults and they use only a small portion of measured signal.
This make categorization computationally efficient. Categorization algorithms based

on all four candidate transforms were developed on the similar approach.

5.2.1 Algorithm Based on the Short Time Fourier Transform

The input to the algorithm was the STFT of the measured motor current, i;;. For
this analysis, nfft=64, noverlap=48, and a 64-point rectangular window is used. The
parameters of the STFT are described in Chapter 2. The resultant STFT has 33
frequency bands, however the two outermost bands are discarded. The energy in these
bands is far greater than in the inner bands of interest. After the initial high current,
the DC component of iy, is approximately 250A. The algorithm is based on the
remaining 31 frequency bands. The algorithm has two parts; a detection phase and
a classification phase. The detection phase of the algorithm is based on thresholding
on the time marginal of the STFT. In this work, data from fifteen experiments on

a healthy machine were analyzed. The initial high current region was discarded and
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Figure 5.1: Measured currents and spectrograms

each signal was containing 8,192 time samples resulting in 509 STFT samples. The
threshold on the time marginal was set to be 25% greater than the largest which
was observed in all the healthy STFT samples from the healthy machine data. If the
energy in new test data exceeds this threshold, a fault is considered to exist. During
the selected time span of the signal, the damaged tooth meshes for four times. The
algorithm considers each meshing as separate event and classification of each incident

is performed separately.

The classification phase was based on pattern recognition classifiers. This phase
is implemented when the criterion for detection is met. Three different classifier

are tested in this work, LDC, NNC Euclidean distance and NNC with Mahalanobis

distance. Training of certain parameter is required for all the three classifiers.

For the LDC, the weighting coefficients were to be determined. The data used
to train the algorithm were 127 STFT samples of the high frequency bands from
15 experiments for each severity level of fault. From each experiment, four meshing
events were recorded and total 300 (60 samples per class) were used for training.
Following the training of the weighting coeflicients, data that had not been used in

the training algorithm were tested. Twenty meshing events (data from 5 experiments),
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each containing 8,192 time samples resulting in 509 STFT samples, from each of the
following operating conditions were tested: Healthy; fault severity 1; fault severity 2;

fault severity 3 and fault severity 4. The classification results are presented in the

Table 5.1

Table 5.1: STFT - LDC Classifier

Tested | Correct | Incorrect
Healthy 20 01 19
Severity 1 20 05 15
Severity 2 20 11 09
Severity 3 20 05 15
Severity 4 20 08 12

For the NNC, two distances measures are used, Euclidean distance and Maha-
lanobis distance. For the Euclidean distance classifier, the means of the training
samples of each class were computed. The data used to train the algorithm were 127
STFT samples of the high frequency bands from 60 meshing events (15 experiments).
Following the training of the weighting coefficients, data that had not been used in the
training algorithm were tested. Twenty meshing events (data from 5 experiments),
each containing 8,192 time samples resulting in 509 STFT samples, from each of the
following operating conditions was tested: Healthy; fault severity 1; fault severity 2;
fault severity 3 and fault severity 4. The classification results are presented in the

Table 5.2.

Table 5.2: STFT - NNC Classifier Euclidean Classifier

Tested | Correct | Incorrect
Healthy 20 09 11
Severity 1 20 04 16
Severity 2 20 01 19
Severity 3 20 05 15
Severity 4 20 03 17
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For the NNC, with Mahalanobis distance the variances of the data is also cal-
culated. The data used to compute mean and variances for the algorithm were 127
STFT samples of the high frequency bands from 60 meshing events (15 experiments).
The multidimensional variances are computed. Following the training of the weight-
ing coefficients, data that had not been used in the training algorithm were tested.
Twenty meshing events (data from 5 experiments), each containing 8,192 time sam-
ples resulting in 509 STFT samples, from each of the following operating conditions
was tested: Healthy; fault severity 1; fault severity 2; fault severity 3 and fault severity

4. The classification results are presented in the Table 5.3.

Table 5.3: STFT - NNC Classifier Mahalanobis Distance

Tested | Correct | Incorrect
Healthy 20 08 12
Severity 1 20 02 18
Severity 2 20 04 16
Severity 3 20 01 19
Severity 4 20 16 04

5.2.2 Algorithm Based on the Undecimated Wavelet Trans-

form

For this analysis, the Daubechies D4 mother wavelet was used and decomposition
was performed to 6 levels. The input of the algorithm is the measured motor current,
im. The algorithm has two parts; a detection phase and a classification phase. The
detection phase of the algorithm is based on thresholding on the weighted energy in
the UDWT.

Data from fifteen experiments on a healthy machine were analyzed. The initial
high current region was discarded and each signal was containing 8,192 time samples.

The threshold was set at 12% greater than the largest which was observed in all
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Figure 5.2: Measured currents and UDWT coefficients

samples from the healthy machine data. If the weighted energy in new test data
exceeds this threshold, a fault is considered to exist. During the selected time span of
the signal, the damaged tooth meshes for four times. The algorithm considers each

meshing as separate event and classification of each incident is performed separately.

The classification phase was based on pattern recognition classifiers. This phase
is implemented when the criterion for detection is met. Three different classifier are
tested, LDC, NNC Euclidean distance and NNC with Mahalanobis distance. Training

of certain parameter is required for all the three classifiers.

For the LDC, the weighting coefficients were to be determined. The data used
to train the algorithm were 127 UDWT samples of the high frequency bands from
15 experiments for each severity level of fault. From each experiment, four meshing
events were recorded and total 300 (60 samples per class) were used for training.
Following the training of the weighting coeflicients, data that had not been used in

the training algorithm were tested. Twenty meshing events (data from 5 experiments),
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from each of the following operating conditions were tested: Healthy; fault severity
1; fault severity 2; fault severity 3 and fault severity 4. The classification results are

presented in the Table 5.4

Table 5.4: UDWT - LDC Classifier

Tested | Correct | Incorrect
Healthy 20 20 00
Severity 1 20 12 08
Severity 2 20 03 17
Severity 3 20 08 12
Severity 4 20 08 12

For the NNC, two distances measures are used, Euclidean distance and Maha-
lanobis distance. For the Euclidean distance classifier, the means of the training
samples of each class were computed. The data used to train the algorithm were
127 UDWT samples of the high frequency bands from 60 meshing events (15 experi-
ments). Following the training of the weighting coefficients, data that had not been
used in the training algorithm were tested. Twenty meshing events (data from 5
experiments), from each of the following operating conditions was tested: Healthy;
fault severity 1; fault severity 2; fault severity 3 and fault severity 4. The classification

results are presented in the Table 5.5.

Table 5.5: UDWT - NNC Classifier Euclidean Classifier

Tested | Correct | Incorrect
Healthy 20 03 17
Severity 1 20 08 12
Severity 2 20 0 20
Severity 3 20 10 10
Severity 4 20 14 06

For the NNC, with Mahalanobis distance the variances of the data is also cal-

culated. The data used to compute mean and variances for the algorithm were 127
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UDWT samples of the high frequency bands from 60 meshing events (15 experiments).
The multidimensional variances are computed. Following the training of the weight-
ing coefficients, data that had not been used in the training algorithm were tested.
Twenty meshing events (data from 5 experiments), from each of the following oper-
ating conditions was tested: Healthy; fault severity 1; fault severity 2; fault severity

3 and fault severity 4. The classification results are presented in the Table 5.6.

Table 5.6: UDWT - NNC Classifier Mahalanobis Distance

Tested | Correct | Incorrect
Healthy 20 0 20
Severity 1 20 0 20
Severity 2 20 2 18
Severity 3 20 - 0 20
Severity 4 20 20 00

5.2.3 Algorithm Based on the Wigner Transform

For this analysis, the input to the algorithm is the measured motor current iy,. The
input signal is decomposed in sixteen bands. In Wigner transform the kernel function
is 1 which no effect on time frequency distributions. As the information in the band
1 to 8 is same as contained in bands 9 to 16, only the bands 1 to 8 are analyzed.

The algorithm has two parts; a detection phase and a classification phase. The
detection phase of the algorithm is based on thresholding on the weighted energy in
the WVD.

Data from fifteen experiments on a healthy machine were analyzed. The initial
high current region was discarded and each signal was containing 8,192 time samples.
The threshold was set at 25% greater than the largest which was observed in all
samples from the healthy machine data. If the weighted energy in new test data

exceeds this threshold, a fault is considered to exist. During the selected time span of
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Figure 5.3: Measured currents and WVD coefficients

the signal, the damaged tooth meshes for four times. The algorithm considers each

meshing as separate event and classification of each incident is performed separately.

The classification phase was based on pattern recognition classifiers. This phase
is implemented when the criterion for detection is met. Three different classifier are
tested, LDC, NNC Euclidean distance and NNC with Mahalanobis distance. Training

of certain parameter is required for all the three classifiers.

For the LDC, the weighting coefficients were to be determined. The data used
to train the algorithm were 127 WVD samples of the high frequency bands from
15 experiments for each severity level of fault. From each experiment, four meshing
events were recorded and total 300 (60 samples per class) were used for training.
Following the training of the weighting coeflicients, data that had not been used in
the training algorithm were tested. Twenty meshing events (data from 5 experiments),
from each of the following operating conditions were tested: Healthy; fault severity

1; fault severity 2; fault severity 3 and fault severity 4. The classification results are
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presented in the Table 5.7

Table 5.7: WVD - LDC Classifier

Tested | Correct | Incorrect
Healthy 20 19 01
Severity 1 20 12 08
Severity 2 20 07 13
Severity 3 20 06 14
Severity 4 20 12 08

For the NNC, two distances measures are used, Euclidean distance and Maha-
lanobis distance. For the Euclidean distance classifier, the means of the training
samples of each class were computed. The data used to train the algorithm were 127
WVD samples of the high frequency bands from 60 meshing events (15 experiments).
Following the training of the weighting coefficients, data that had not been used in the
training algorithm were tested. Twenty meshing events (data from 5 experiments),
from each of the following operating conditions was tested: Healthy; fault severity
1; fault severity 2; fault severity 3 and fault severity 4. The classification results are

presented in the Table 5.8.

Table 5.8: WVD - NNC Classifier Euclidean Classifier

Tested | Correct | Incorrect
Healthy 20 18 02
Severity 1 20 09 11
Severity 2 20 05 15
Severity 3 20 06 14
Severity 4 20 10 10

For the NNC, with Mahalanobis distance the variances of the data is also cal-
culated. The data used to compute mean and variances for the algorithm were 127

WVD samples of the high frequency bands from 60 meshing events (15 experiments).
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The multidimensional variances are computed. Following the training of the weight-
ing coefficients, data that had not been used in the training algorithm were tested.
Twenty meshing events (data from 5 experiments), from each of the following oper-
ating conditions was tested: Healthy; fault severity 1; fault severity 2; fault severity

3 and fault severity 4. The classification results are presented in the Table 5.9.

Table 5.9: WVD - NNC Classifier Mahalanobis Distance

Tested | Correct | Incorrect
Healthy 20 16 04
Severity 1 20 04 16
Severity 2 20 08 12
Severity 3 20 11 09
Severity 4 20 08 12

5.2.4 Algorithm Based on the Choi-Williams Transform

For this analysis, the input to the algorithm is the measured motor current ¢;;. The
input signal is decomposed in sixteen frequency divisions. In the CWD, the smooth
of the signal is controlled by the parameter o. For the higher values of o, smooth
is less and the distribution approaches Wigner transform. The information in the
frequency divisions 1 to 8 is same as contained in 9 to 16, therefore only the lower
ones were used for the analysis.

The algorithm has two parts; a detection phase and a classification phase. The
detection phase of the algorithm is based on thresholding on the weighted energy in
the CWD. Data from fifteen experiments on a healthy machine were analyzed. The
initial high current region was discarded and each signal was containing 8,192 time
samples. The threshold was set at 25% greater than the largest which was observed
in all samples from the healthy machine data. If the weighted energy in new test data

exceeds this threshold, a fault is considered to exist. During the selected time span of
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Figure 5.4: Measured currents and CWD coefficients

the signal, the damaged tooth meshes for four times. The algorithm considers each

meshing as separate event and classification of each incident is performed separately.

The classification phase was based on pattern recognition classifiers. This phase
is implemented when the criterion for detection is met. Three different classifier are
tested, LDC, NNC Euclidean distance and NNC with Mahalanobis distance. Training

of certain parameter is required for all the three classifiers.

For the LDC, the weighting coefficients were to be determined. The data used
to train the algorithm were 127 CWD samples of the high frequency bands from 15
experiments for each severity level of fault. From each experiment, four meshing
events were recorded and total 300 (60 samples per class) were used for training.
Following the training of the weighting coeflicients, data that had not been used in
the training algorithm were tested. Twenty meshing events (data from 5 experiments),
from each of the following operating conditions were tested: Healthy; fault severity

1; fault severity 2; fault severity 3 and fault severity 4. The classification results are
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presented in the Table 5.10

Table 5.10: CWD - LDC Classifier

Tested | Correct | Incorrect
Healthy 20 20 00
Severity 1 20 12 08
Severity 2 20 10 10
Severity 3 20 07 13
Severity 4 20 12 08 _a
B
For the NNC, two distances measures are used, Euclidean distance and Maha-
lanobis distance. For the Euclidean distance classifier, the means of the training |
samples of each class were computed. The data used to train the algorithm were 127 J

CWD samples of the high frequency bands from 60 meshing events (15 experiments).
Following the training of the weighting coefficients, data that had not been used in the
training algorithm were tested. Twenty meshing events (data from 5 experiments),
from each of the following operating conditions was tested: Healthy; fault severity
1; fault severity 2; fault severity 3 and fault severity 4. The classification results are

presented in the Table 5.11.

Table 5.11: UDWT - NNC Classifier Euclidean Classifier

Tested | Correct | Incorrect
Healthy 20 18 02
Severity 1 20 09 11
Severity 2 20 05 15
Severity 3 20 04 16
Severity 4 20 10 10

For the NNC, with Mahalanobis distance the variances of the data is also cal-
culated. The data used to compute mean and variances for the algorithm were 127

CWD samples of the high frequency bands from 60 meshing events (15 experiments).
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The multidimensional variances are computed. Following the training of the weight-
ing coefficients, data that had not been used in the training algorithm were tested.
Twenty meshing events (data from 5 experiments), from each of the following oper-
ating conditions was tested: Healthy; fault severity 1; fault severity 2; fault severity

3 and fault severity 4. The classification results are presented in the Table 5.12.

Table 5.12: UDWT - NNC Classifier Mahalanobis Distance

Tested | Correct | Incorrect
Healthy 20 19 01
Severity 1 20 11 09
Severity 2 20 09 11
Severity 3 20 08 12
Severity 4 20 09 11

5.2.5 Classification Efficiency of the Classifiers

The categorization accuracy of the classifiers is shown in Figure 5.5. The LDC pro-
duces more accurate results as compared to the other classifiers. The performance of
the classifier is better for the features which are extracted using CWD. The features
extracted using WVD caused second best performance of the classifier. The cate-
gorization results were low for the features extracted using STFT. The classification

results indicate that the CWD can efficiently represent transient repetitive faults.

5.3 Fault Categorization - Unknown Meshing In-

stance of Damaged Tooth

The results of the fault identification show that LDC is suitable for this type of faults.

However, the problem of detection that a fault may be present is more complex. The
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Figure 5.5: Classifiers’ Accuracy

threshold energy of the transformed signals was used for this purpose, and to ini-
tialize the testing for a fault. However, the same is not accurate in the present case
due to the complicated nature of operation of the starter motor, non linear load, the
fault type and the similar energy levels of healthy and damaged cases. For the ac-
curate classification, the extracted features should be discriminatively representative
of their classes. During the training, the fault features are extracted from the motor
current for the duration in which the damaged tooth is meshing. To collect data for
the training of algorithms, the correct instance of the meshing of damaged tooth is
mandatory, which a difficult task. This makes the identification of the meshing in-
stance ambiguous, which can be one of the major reasons for the lower classification

accuracy. A heuristic approach is used for the fault categorization in the absence of

known starting instance.

Compared to expansion cycle, meshing of bad tooth during compression cycle
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is more significant and prominent. In the proposed method, the fault recognition
is preformed only during the compression cycle, using window sizes of progressively
increasing length. The algorithm first searches for the start of the compression cycle,

using the slope information of the current.

5.3.1 Recognition of the Commencement of Compression

During the compression the torque requirements are high, the motor current increases
and the current waveform has a positive slope. To recognize this positive slope, a
watchdog is used, which calculates the consecutive slopes. If it finds the expected
number of consecutive positive slopes, the compression part of the cycle is assumed

to have commenced. Once the system is in compression, the recognition phase starts.

5.3.2 Fault Recognition - Compression Cycle

Although, this phase commences when the system is in compression, the exact starting
time of fault commencement is not known, if a fault exists at all. No analytical method
or well defined criterion is available. Therefore, a heuristic method is developed and

the following points are considered while defining the method:

1. Repeated Incidences: Typically during normal operation, the vehicle starts in
less than a second of cranking. During this period, after an initial high current,
there are approximately six to seven compression cycles and the starter motor
completes approximately the same number of turns. If we misclassify a bad
tooth as a good one (false negative), there are fairly good chances of detecting

it correctly elsewhere.

2. Error Cost. False indication of fault (false positive) is assumed to be a more
costly error [51]. Therefore only misclassification of bad tooth during few cycles

is acceptable.
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According to the proposed algorithm, the fault is sought using windows of different
time lengths during the compression cycle, that is, first a window of smaller time
length, w; is used, as shown in Figure 5.6. If consecutive incidences are classified
as fault, they are investigated using more windows, of higher lengths. If all three
windows identify the incidence as a fault, it is recorded as a fault, otherwise it is

assumed a false indication. = Current measurements of one second duration were
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Figure 5.6: Motor Current with different length windows

sampled from healthy and defective motors. Each signal had seven compressions.
Fifteen samples from each class were used for training the algorithm coefficients and
five were used for testing. The results of the testing algorithm are shown in Table

5.13.
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Table 5.13: Results of the Classification Algorithm
identification

Class 32 Time Samples | 64 Time Samples | 128 Time Samples | Decision
Healthy 1 H - - Healthy
Healthy 2 D D D Defective
Healthy 3 D H H Healthy
Healthy 4 H - - Healthy
Defective 1 D D H Healthy
Defective 2 D D D Defective
Defective 3 D D D Defective
Defective 4 D D D Defective

It can be observed from Table 5.13 that by using three different window lengths,
w1, wo and wg, the number of false positives is minimized. The initial window length
is wy = 32 time samples, which is increased to wg = 64 and wg = 128 time samples.
Each incidence is first investigated using the shorter window. If it is identified as
faulty, for the required number of times, then further investigation is carried out
using wider time window. If the algorithm recognizes the incidence as faulty using
each window for required numbers, only then is the incidence recognized as a fault.
The algorithm can be made more robust on the supervisory level, by introducing
more stringent conditions to avoid false positives, which is considered a much costlier

€rTor.

5.4 Transform Discrimination Power

The Fisher ratio is used as figure of merit to measure the discriminative strength
of the features generated by the distributions. It compares the within class spread
of fcatures of the same category and between class scatter of features from different
categories as mentioned in Chapter 2. Ideally, the within class spread should be as

low as possible and the between class scatter should be as high as possible. The Fisher
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ratio is computed for all the four candidate transforms. From 20 sampled currents
signals, four meshing events were recorded for each class making at total samples size
of eighty meshing events per class. Fisher ratios were computed and are presented in

the Table 5.14.

Table 5.14: Fisher discrimination ratio for transforms

Transform | STFT | UDWT | WVD | CWD
Fisher Value | 0.0201 | 0.2899 | 2.3750 | 2.5040

From the computed Fisher values, it can be seen that the CWD has better dis-
crimination strength as compared to any other transform. However, in terms of
computational efforts, it is not efficient. In Table-5.15, the execution time for each

transform is given. The CWD needs longer time as compared to the others.

Table 5.15: Execution time for transforms

Transform | STFT | UDWT | WVD | CWD
Time (sec) | 0.0201 | 0.2899 | 2.3750 | 2.5040

As the CWD has better discrimination strength, it is expected that it will produce
better results during diagnosis. It is the nature of application, which is the deciding
factor in selection of the suitable transform. The CWD can be selected, provided the
computational cost is not a concern. The discrimination strength of CWD depends
on the value of smoothing function, o. If the value of o is selected high (near 10 or
-10), the CWD approaches the Wigner distribution. The discrimination strength of
CWD is maximum when the smooth function is set to 0.1. Fisher ratios of CWD for

different values of o are shown in the Table-5.7
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Chapter 6

Prognosis

6.1 Scope and Objective of the Chapter

During the prognosis phase, RUL of the system is computed. In case of continuously
increasing severity event, the developed algorithm can compute the RUL in terms of
time, however, in case of discontinuous event, the RUL cannot be specified as time.
It can be implicitly computed in terms of probability of the failure. This approach
enable users to set the threshold depending upon the criticality of the system. In this
work, the develop prognosis algorithm is tested by applying it on the starter motor
data. State motor operation is not continuous, therefore the RUL is computed in
terms of probability of the failure.

This chapter describes the reasons of the selection of HMM as the prognosticator
in section6.2. For the model three parameters needs to be defined, state transition
probabilities(matrix A), state-dependent observation densities (matrix B) and initial
state probabilities (matrix 7r). The computation of these parameters becomes a chal-
lenging task if the available data is limited. The proposed methodologies developed
to compute the model parameters using limited data are presented in section 6.3. In

section 6.4, the algorithm for prognosis is explained. In section 6.5, shows how the
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proposed methods for parameter computation are applied on the data sampled from
the electromechanical system. The working of the algorithm is demonstrated using
example and the future state probabilities are calculated. The result obtained from
the parameter computation methods and the probabilities computed are presented in

section 6.7.

6.2 Selection of Prognosticator

Genecrally, the candidate prognosticators are Kalman filter, particle filter or hid-
den Markov model. Kalman filter predicts the future state of the linear systems
in the presence of Gaussian noise, however, if the system is a nonlinear one, extended
Kalman filter(EKf) is the alternate option. However, in case of severe nonlinearitics
and non Gaussian noise, extended Kalman filter does perform good. On the other
hand, although the particle filter method can work with non linear systems, it needs
large of number of states to in order to converge. A more suitable option for prognosis

of starting systems, is the hidden Markov model.

6.3 Model Parameter Calculation

The components of HMM need to be trained before it could be used for prediction.
The training and testing phases are shown as part of Fig. 3.2 and Fig. 3.3 respectively.
Parametric probability densities are defined for the state dependent observation den-
sities using the experimental data. For the state transition probabilities a matching

pursuit decomposition based method is presented.
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6.3.1 State-dependent Observation Density B

The state dependant observation density B, (bj(Ot) =p(Oy|S; = i)) is defined as
the probability of observing a feature, given that the machine is in fault severity state

S;. According to the Bayes rule, this probability is given as (6.1):

P(S;]0) x P(0)

P(0|S;) = P(S)

(6.1)

These probabilities could not be computed in closed form. It was assumed that the

probabilities are Gaussian and were defined as Eqn-6.2.

(6.2)

°- “OISz‘)2

P(OIS;) = —= exp(
202 790|5;

The statistics were obtained from the experimental data. The output of training of
the LDC classifier was a set of coefficients (a € §Rk+1) for each class, which gives the
maximum discrimination for the corresponding class. The sets of coeflicients were
used as projection hyperplanes, and each training sample, 2] = {Ijl - r{c}, 2 e %k,

was projected to all C planes as:
D¢(xd) = x]lalc + x%agc +... .+ xiakc topp1e €= ,2,...,C (6.3)

The statistics for the probabilities densities were computed from these projections.
For each of C classes, mean Lo|S and standard deviations a0|s» Were calculated
corresponding to the projections on each of the C planes, generating a set of C x C

means and C x C variances.
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6.3.2 State Transition Probabilities Matrix A

In order to determine the state transition probabilities, large amounts of histori-

cal/collected training data were needed. Following were the possible options:

o Large Scale Testing: carried out on large samples of machines and allowing

faults to naturally develop to failure over a long period of time.

o Fatigue Analysis of the meshing faces of starter motor gear and flywheel was
an alternative. It may include finite element analysis, stress analysis and/or

non destructive testing.

e Online Estimation: The transition probabilities can be estimated online during
the operation of the motor. Transition probabilities could be estimated if they

are considered similar to earlier transitions.

However, in the case of highly reliable electrical machines, the first two options were
not practical. The third one could only be used during the actual operation of the ma-
chine, where faults develop naturally. For the laboratory setup, a mix of experiments
and heuristic methods were used to estimate these probabilities.

The State Transition Probability A (“ij =p(zg41 = Jlvg = i)), has on the di-
agonal the probabilities of self state transitions (SST) and at off diagonal other state
transition probabilities (OST). For the calculation of OST probabilities, a method

based on Matching Pursuit Decomposition (MPD) was developed.

6.3.2.1 Matching Pursuit Decomposition

In general, any signal f € X can be represented by a lincar combination (finite or
infinite) of signals gj., provided that the set of signals g;., forming the dictionary

D, spans the space, means is complete. A signal can be represented as a sum of
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predefined signals g;.,k € {0,1,2- -, K}, (in general g, || = 1), as

M-1
[= apg; k€{0,1,2..M} (6.4)
k=0

kth atom, ay. is the kth weighting coeflicient and M is the number of

where g. is the
dictionary atoms. Equation 6.4 decomposes the signal f as a linear combination of M
signals. The dictionary may contain more elements than necessary to span the space
X, that is, M may be larger than the dimension of the signal space. The key issue is
how to obtain the coefficients o, and the atoms g;.. Usually, a signal approximation is
generated by using a number of atoms smaller than M. In general, this approximation
improves as the number of atoms used increases. Usually, the dictionary must contain
a very large number of structures g;. to enable the decomposition of 6.4 to coherently
identify the different phenomena composing a signal. The dictionary should contain
distinct structures for any phenomena that would be present in the systems, meaning
that the dictionary may be quite large. That is why K is, in general, larger than

the dimension of the signal space. In this case, the dictionary is called redundant or

overcomplete.

Matching Pursuit (MP) Decomposition is an adaptive approximation algorithm,
which decomposes the signal in terms of the elements, i.e., atoms (g;.), of an over-
complete dictionary. It was introduced by Mallat and Zhang[96]. At each step, the
MP chooses the atom in the dictionary that best represents the signal (the atom
with largest inner product with the signal). The chosen atom is then scaled and
subtracted from the signal, and the process is repeated, representing the signal by
progressive approximations. The atoms are selected by a iterative greedy algorithm,

which chooses the atom in a dictionary that best represents the signal.

9y = a.rgmax»yi(ka, 9v;) (6.5)
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where RF is the residue at the kth step and is initially set as the signal f. The chosen

atom is then scaled and subtracted from the previous residue.

Rk+1 _ Rk . <Rk+1’97k+1)97k+1 (6.6)

The process is repeated, representing the signal by progressive approximations. The
outcome of the MP decomposition is:
AM -1

f=Y (R¥f gy )9y, + RE S (6.7)
k=0

At each step of the MP, two pieces of information must be stored, the coefficient
aj. and the index 7, defining the atom and more information about the signal is
extracted. In this way we can arranged the complete set of dictionary atoms. The
arrangement of dictionary atoms depends on the signal being represented by it. The
information contained in the positioning of atoms, in MP decomposition of signals is

manipulated to get the state transition probabilities.

6.3.2.2 Computation of State Transition Probabilities by Matching Pur-

suit Decomposition

The time frequency representation of two signals differs by the ordering of the atoms,
reflecting the dissimilarity between them. This ordering was used to obtain a probabil-
ity estimate. The following observations were made when analyzing the decomposed

samples:
e The samples of same class had very similar ordering of the atoms.

e The samples from two different classes, which were closely matched, had small

variation in ordering of atoms.
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e The samples from two different classes, having large difference in fault severity,

showed large variations in atoms’ ordering.

Based on the above observations, a method to calculate OST probability was devel-
oped, using the relative atom’s position. Samples from each class were decomposed
and the mean of the decomposition is calculated as class representative. The relative
difference (A) in the ordering of atoms of the representative decompositions was used

for transition probability estimation. A was defined as (6.8):

,j <N (6.8)
'y’
k=0 k
where ;. is the rank of atom and N is the number of states.
The variances of each state were used to estimate SST by projecting them on a
inverse unit scale through a sigmoid function transform to the range of 0-1. The sum
of transition probabilities to other states except itself is 1-self transition probability.

The transitional probabilities are computed as

SST,-,- i=j,

! —‘zs—lL 7]
6.3.3 Initial State Distribution Vector =«

The initial state probability for the faults should be obtainable from the manufacturer
or the repair facilities. However, such data was not easily available. Reasonable prob-
abilities were assumed to illustrate the methodology. The initial state probabilities
for a new starter motor should be assumed to be 1 for healthy state and 0 for all the
rest. The fault prognosis method then would then track the evolution of a fault. For
two reasons different probabilities set was selected in this case: first, we did use used

starter motors, and secondly in the sequence of observations we used for testing, an
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initial distribution as mentioned above, only delays the transition to a faulty state
and the manifestation of the prognosis of failure. In practice, many more observations

will be taken before a healthy motor fails.

6.4 Algorithm for Future State Probability Esti-
mation

Intuitively, if there is no additional information available, the machine condition will
be the predicted based on the initial state probabilities only. However, if somehow,
information about the present state of operation of the machine is available, the initial
probabilities can be update in light of new measurements and more likely probabilities
of the present state can be obtained. In order to make prediction for the future state,
from the updated present state, information about the transition chances from one
state to other is required. If this information is available, we can predict the future
state of operation. The components of HMM, matrix A, B and =, provide these
required inputs. A prognosis algorithm is developed based on HMM model.

The goal of prognosis is to assess the time to failure (remaining useful life) or the
next probable state. In this work an algorithm is developed to estimate the latter one
at each time sample. We define é;(7) as the normalized forward probability at time ¢
for each state S;. The state transition probabilities, aj; and 0;(z) are used to predict
the probabilities of states at time ¢ + 1. The transition probability to state S j at the
time instance ¢t + 1 is given by:

] ]
Plag+1=Sj1\ = D _ Plag= SilNajj; = D 6¢(D)aj (6.10)
: —

i=1 1
where ) is the set of model parameters. The most probable state at time ¢ + 1 is the

one that has the highest probability. The predicted state probabilities are updated
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using state dependent observation b;(j) at each time step. The algorithm works as

follows:

e Initialization : In the initialization phase the initial state probabilities are up-
date based on the freshly acquired information. é contains the update proba-
bilities about the machine condition at the present time. The HMM is doubly
statistical, therefore the states are probabilistically estimated from the informa-

tion acquired from motor current.
01(1) =m;bj(01) 1<i< N (6.11)

q1())=0 1<i< N (6.12)

e Recursion : In the recursion phase the future state probabilities are estimated.
This estimate is made based on the probabilities of current state and transition
probabilities. The transition probabilities were computed before hand from the

collected data.

g(j) =argmax Y [§_1(i)a;j] 2<t<T,1<j<N (6.13)
1<i<N

Finally the state which has the largest probability at future time is the most

likely state.

§(G) = D [64—1(Day;l6j(0) 2<t<T, 1<j<N (6.14)
1<i<N

6.5 Prognosis - Implementation

The proposed method and algorithm were tested using the sampled data from the

experimental setup. The model parameters were computed and the algorithm working
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was demonstrated by illustrated examples.

6.5.1 Matrix A Calculation

To calculate the state transition probability, data were analyzed from fifteen experi-
ments each on a healthy machine and four machines with damaged gear of increasing
intensity. The initial high current region was discarded and each signal was containing
8,192 time samples. Four meshing of the damaged tooth occur during this period and
each meshing is considered as a separate event. The motor current representing each
event was decomposed by MPD using a Gabor dictionary of 3905 atoms. It generated
60 sets of 3905 atoms per class, one for each sample. Had the faults been reversible,
there would be five possible transitions from each state, including self transitions.
However, the severity progression of the gear faults is unidirectional, leaving only the
left-right transitions possible and an upper triangular transition probability matrix.
The initial estimates of state transition probabilities are calculated using (6.9) and

are given in Table 6.1.

Table 6.1: State Transition Probabilities Matrix (A)

Class 1 2 3 4 5
1 0.5063 | 0.2435 | 0.1481 | 0.0800 | 0.0221
2 0.0000 | 0.4935 | 0.2967 | 0.1751 | 0.0347
3 0.0000 | 0.0000 | 0.4542 | 0.3709 | 0.1749
4 0.0000 | 0.0000 | 0.0000 | 0.5829 | 0.4171
b} 0.0000 | 0.0000 | 0.0000 { 0.0000 | 1.0000

6.5.2 Matrix B Calculation

Matrix B describes the probability distributions of the fault observations. It was
assumed that these distributions are Gaussian. The statistics to calculate them were

obtained using the experimental data. The diagnosis phase gave five sets of LDC
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weighting coefficients, one for each class.The features of the samples from each class
were projected on the corresponding set of LDC weighting coefficients planes. The
statistics of the distributions are given in Tables 6.2 and 6.3. The mean of the
projection of the samples on their own corresponding planes is on the diagonal and
it is higher as compared to the other means. The overlapping variances reflect the
chances of the outliers to transition from one class to other. The histograms of the
projection of sample data of class 3 on all the LDC planes are shown in Fig.6.1. The
mean is shown as vertical line in each subplot, which is largest for the projection on

planes 3.

Table 6.2: Means of the projection on each plane

P Py Py Py Ps 3
0.0759 | -0.0008 | 0.0087 | -0.0052 | 0.0012
0.0148 | 0.0793 | 0.0213 | 0.0042 | 0.0143
0.0582 | 0.0449 | 0.1284 | 0.0533 | 0.0525
0.0665 | 0.0537 | 0.0379 | 0.2726 | 0.0223
0.2117 | 0.2161 | 0.2326 | 0.2552 | 0.4383

Y W N —

P; is the LDC plane of fault i

Table 6.3: Variances of the projections of the samples from each class on LDC planes

Py Py P Py P
0.0081 | 0.0084 | 0.0103 | 0.0140 | 0.0138
0.0088 | 0.0066 | 0.0112 | 0.0101 | 0.0143
0.0231 | 0.0294 | 0.0336 | 0.0410 | 0.0358
0.1134 | 0.1282 | 0.1934 | 0.1712 | 0.2363
0.1753 | 0.1669 | 0.2522 | 0.2631 | 0.2612

Y | W N -

P; is the LDC plane of fault i

Once a new sample is obtained at time instance ¢, the state dependent observation

probabilities, b;(O;) (where 7 is the number of the state), were calculated.
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Figure 6.1: Projections of Class 3 on LDC Planes
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Figure 6.2: State Dependent Observation Probabilities -Example I

6.5.3 Initial State Distribution Vector =

The possible options for the initial state probabilities were usually obtained from the

manufacturer, repair facilities or experimentally by large scale sample analysis. Here,
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in order to demonstrate the proposed method, arbitrary values of the initial state

probabilities were assumed and are given in Table 6.4.

Table 6.4: Assumed Initial State Probabilities ()

Class 112|345
Probability | 06 |1 0.20.1 /0.1 |0

6.6 Examples of Future State Probability Estima-
tion

Although the prime objective of prognosis is to estimate the remaining useful life, the
developed algorithm computes the probability of all the failure states during the next
starting attempt, thus implicitly giving the remaining useful life. It is not practical
to test the algorithm using the data acquired from the field, where fault inception
and progression are natural and slow, nor was it possible to ‘run to failure’ a large
number of starter motors in the laboratory. Therefore, data from the machines with
artificially created faults arranged in order of increasing severity, were used to test

and evaluate the algorithm. The algorithm was tested using two data sets:

6.6.1 Illustrative Example 1

To emulate the development of a fault, data was sampled from a number of starter
motors. These samples were ordered corresponding to increasing fault severity: Sy,
So, So, S9, S3, S3, Sy, Sg, Sy, S5. The values of the state-dependent observation
probabilities are calculated for each sample (shown in Fig. 6.2). The first value was
used to initialize the algorithm. The estimated next state sequence and failure state

probabilities are shown in Fig. 6.3 and 6.4 respectively.
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Figure 6.3: Probable Next State - 10 Samples, Example I

6.6.2 Illustrative Example 11

The algorithm was also tested using artificial data, sequenced in way that the fault
severity was in increasing order. Ten samples from each of the five classes were
generated by adding white noise to the actual observations. The observed values of
by (i) were used as mean of the white noise and variance of the noise was set to be
30% of bs(i). The estimated next state sequence and failure state probabilities are

shown in Fig. 6.5 and Fig. 6.6 respectively.

6.7 Prognosis - Results

6.7.1 Training of HMM Parameters

From the computed values, it can be observed that the self transition probabilities are
higher compared to other state transition probabilities, which means that is generally

more likely for the motor to continue operating in the same class. The other obser-
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Figure 6.4: Failure State Probability - 10 Samples, Example I

vation is that the higher the difference in the intensity of faults in consecutive states,
the lower the transition probability is, which conforms to the general understanding
of fault progression.

The statistics for the state dependent observation probability densities are com-
puted from the projections of the training samples on the LDC planes.The mean of
projections is the highest when the samples are projected on the corresponding plane,

which concurs with the expectations.

6.7.2 Examples

The proposed algorithm is illustrated by two examples, in which the fault state of
the machine during the next starting attempt is predicted. The algorithm selects the
most probable next state as the predicted state. Creating a large number of naturally
developing sequences of machine gear faults was not practical. Therefore, sequences

of increasing severity of artificially induced physical faults were generated to test the
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Figure 6.6: Failure State Probability, Example II

proposed method. The predicted next probable states are shown in Fig. 6.3 and 6.5

for the two examples. The prediction accuracy of the next probable states is 70% and
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the rest 30% are predicted with a difference of only one state. This error might be
due to the very small difference in fault severities of different classes.

It was expected that when starting from a healthy motor the probability of reach-
ing the failure state in the next start (state 5) would be low, and towards the end
of the sequence this probability would be the highest. The estimated results show
this trend. Figures 6.4 and 6.6 show failure state probabilities for two examples,

supporting the expected trend.
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Chapter 7

Conclusions and Suggestions for

Future Work

7.1 Conclusions

This thesis presented the theoretical foundation and implementation of a complete
framework for the diagnosis and prognosis of complex electromechanical systems. In
this work, non-intrusive signal based methods were used. The analysis was performed
using the fault features, extracted in the time frequency domain from the motor
current. Diagnosis and prognosis of the repetitive and transient faults was performed.

Different time frequency distributions were compared. The candidate transforms
were the Short Time Fourier Transform, Un-Decimated Wavelet Transform, Wigner
Transform and Choi-Williams Transform. The Fisher discriminant ratio of the fault
features generated by respective transforms were used as the figure of merit. Choi-
Williams transform had the highest Fisher ratio, however, the computation time
required for this transform was high. The un-decimated wavelet transform had lower
Fisher ratio however, it needed much less computational time.

A general framework for diagnosis was presented, in which fault categorization
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methods were discussed with and without explicit detection of fault instances. Dif-
ferent pattern recognition classifiers were employed, and classification accuracy and
computation cost were calculated. The linear discriminant classifier, Euclidean dis-
tance classifier and Mahalanobis distance classifier were tested. It was observed that
the classification accuracy of linear discriminant classifier was better, though it was
computationally inferior than the distance classifiers. The multiple discriminant anal-
ysis based distance classifiers were also analyzed, however, it is sensitive to training
data, which made it unsuitable for the application as a supervised learning method.
The classifiers were not only used for the categorization, but also for the collection of
statistics for the prediction phase. The output of the training phase of the linear dis-
criminant classifier was a set of discriminating planes, LDC planes. On these planes,
the extracted features were projected and the statistics were computed to be used

during the prognosis phase.

A failure prognosis algorithm was presented, based on the statistical modeling
method, Hidden Markov Model. Methods to train the HMM elements were developed
for the case of sparse data set. The state transition probabilities were estimated from
the relative order of atoms in matching pursuit decomposition of the measured motor
current signals. For the decomposition of signals, Gabor dictionary was used. The
selection of the appropriate dictionary is important for the proper representation of
signals. The other element of HMM is the group of the state dependent observation
densities, which were defined as parametric densities. A method was presented to
compute these parameters which uses the experimental observations and the output
of training of the classifier. The training data was projected on the corresponding

linear discriminant classifier planes and statistics were computed from the projections.

An algorithm was presented for the estimation of the next state probability using
the model parameters. The algorithm calculates the most probable sequence of states

from a sequence of observations and the previous state.
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The proposed methods of diagnosis and prognosis were experimentally validated
by analyzing faults in the gears of automobile DC starter motors. The selected fault
was repetitive and transient. An experimental setup was built and sample data was
collected. The working of the algorithm was explained by illustrative examples.

The methods presented are generic, and address the problem of transient fault
detection, categorization and prediction with sparse data, using heuristic methods
and reasonable assumptions. The test fault is of mechanical nature. However, the

sample methodology can be applied for the analysis of electrical faults.

7.2 Future Work

The fault analysis method was developed on the component level. In many appli-
cations, system level diagnosis and prognosis is required. The developed prognosis
method can be implemented for the system level maintenance by using some polling
system or time slot sharing topology. It needs supervisory level routines for such
applications.

The selection of the dictionary is of significance in the computation of the state
transition probabilities, A dictionary which truly represents the underlying transient
phenomenon, can provide accurate probabilities.

The proposed method is validated by analyzing the mechanical faults of DC
machines. It is expected that for electrical faults in DC machines and for electri-
cal/mechanical faults in other types of electrical machines, a similar approach is
applicable, with suitable modifications. However, electrical faults are generally tran-
sient and manifest themselves in high frequencies, raising demand for much higher
sampling frequency. The same diagnosis and prognosis algorithm could be applied to
electrical fault analysis.

Implementation of the algorithm for online fault diagnosis and prognosis can be
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accomplished by using DSP. The algorithmn needs to be developed in C or C++ or
DSP programming language.

In the presented work, each meshing event of the damaged tooth is categorized.
After the initial high current, there are four meshing incidences of the damaged tooth
in one sample of the measured motor current. Categorize of the features extracted
from the complete motor current sample, after the initial high current, can be an
alternate option. Initial results show that the categorization is better if the spectrum
energy density analysis of the complete motor current sample is performed. The fault
diagnosis and failure prognosis algorithms based on the spectrum energy density
analysis can be developed.

Although the algorithms developed in this work were used for analysis of me-
chanical faults associated with DC machine system, they can be implemented for the
fault and failure analysis of induction machines and synchronous machines. However,
some modifications in the algorithms might be required and transformations of the
measured signals might be suitable to address the issues of power frequencies and
frame of references.

The sampling frequency was set to be 20kHz and the sample size was 16 bits. In
practical systems, this high sampling frequency and required memory might not be
possible. The cffects of lower sampling frequency and lesser resolution were discussed
in Chapter 4, but it needs to be further explored.

In this work, HMM based algorithm is presented for prognosis. However, the
field of fault prognosis in electromechanical systems is relatively new, the question of
which signal processing method is preferable, is not settled. A comparative analysis
of different prognosis methods in terms of lower or higher cost, more or less accuracy,
easier or more difficult to implementation method, might be of interest. The candidate

methods can be HMM, extended Kalman, neurofuzzy and particle filters etc.
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