

I
'
I
'
I

.
I
'
u
u
-
I
-
I

‘
,

..

,
1
.
.
;
\
1
J
‘
I
A
I
T
;
’
I
’
K
‘
.

'
I

,
l

.
l

|
.
.

I
.

m
:

I
.

.
I

I
I~

N
3
1
,

3
3
!
"

I
‘
v
'
w
v
’
v

"
:
I
r
"

"
“

1
:
"
-

.,
..

.'...
y
I
I
W
W
‘
I
I
L

’
9

a
.
‘

1‘.
r¢“Iir‘r‘;J.r¥.-'

I
a
i
n

,;:';rr'r'

w
r
:

z
.
"

..
*
‘
m
‘
r
‘
m
’
I

?
.
"
?
:
§
{
‘
m

“
3
‘
1
5
?.
:

“
w
“
.
l
“
?
‘
j
3
'

"
”

2
'

‘

m
_
.

.
.

.
1

.
,

.
,

.
'

n
n

-
I

‘

I
‘
M
M
W
H
;
g
r
a
h
a
m

.
m
w
‘
z
"
.

'
'

"
"
W
”
"
”
3

3
"
"

“
‘
4
‘
”
“

"
"
“
'

‘9'
“3'

1
‘

I
a
t
!

n
-

I
'
I

l
“
.
V
-
‘
I
'
I
.
'
“
\
”
.
|

l
-
0
8
"

I
a

.
.

h
.

.
.

3
;
.
.
.
“
2

V
'
.
”
h

n

.
1

I
o

I
I
q
l

I
n
‘
I
O
'
O
-

.
.

D
.
.
J
.
n
’
v

O
’
l
-
v
O

o
A
"

4
0
‘

‘
-

"
7

I
}

”
‘
2
4
‘
W
U
‘
Q
!

I
t

‘
I
I
O
O
I
“
F
*
‘
:

‘
0
9

I
-
‘
0
‘

a
g
n
‘
fi

“
1
:
1
3
.

_
'
I
I

r
o
a
n
0
‘

0
0
‘

I
!
.
Q
'
O
'
O
"
"
n
o

c
I
I
’
I
-
N
C
-

-
“
I

0
I
.
“
I
i
-
M
u
.

I
‘
d
-
J
"

.
1
0
4

D
o
.

q
z
v
l
u
u
q
fl
"
'
-
\
-

«
l
s
-
K
.

.
0

Q
A

O
w
a
n
t
-
«
s
q
.

I
I
I
-
I
-

m
m
»

I
-
'
I
-
I
'
I
«
'
I
"
I
'
m
-
m
Q
,
W
W
"

I
‘
I
I
I
"

I
I
L
n

w
m
‘
.
”
t
u
n
a
-
w
a
r

o
.
1

I
I
I
-
I
M
N

I
I
-
I
I
I
O
A
I
I
-

‘
0

.
0
.

s
o
.
.
.
.
q
u
-
I
v
fl
fi
'

'
I
-
I

“
Z
I
V

'
-

I
I
‘
”
I
n
.

‘
4
V

\
l
q
.
~
"
‘

I
?

3
‘

I
I
9
-
“

’
Q
u
w
l
.
.
.
‘

'
-
I

I
I
I
“
“
.
‘
~
.
‘
.
O

3
»

’
0

0

I
.

"
9
“
I
t

4
.
.
.
;

0
'

I
I
~

.
h

I
[
t
w
i
n
-
A
n
t
.
.
.
"

.
q
I
n
‘
O
I
Q
‘
fl
U
Q
-
I
I
-

a
.
.
.

I
‘
“
Q
.
1
.
.
.
”
.

.
‘
I
I
.

I
,
‘

I
I

~
L
'
-

I
l

"
j
l
'
.
‘
t
,
l

.
,

.
.
.

I
I
I
.
H

I
u
.
”

a

Q
t
.

~
I

.

-
-

.
.

.
,

n
o

I

,
‘
I

n
o
"
1
I
‘
O

I
I
.
~
L

~
"

.
’
h

.
‘

:
z
l
fl
n
l
‘
:
1
'
:

n
M
u
d
M
n
»
.

«
3
.

.
L
I
I
-
I
t
o

b
.

-
,

.,
>
r
.
0
‘
0
\
b
.
n
l
u

-
I

-
.
I

0
‘

1
|
.

.
a
n
.
.
.

.
i
-
L
‘
M
'
-
O
.
H
§
.
‘
I
I
L
-

N
o
u
n
-
I
I
.
.
.

.

nV

l

.'
_

'
‘

.

k
.

V
{
I
}

I
n
-

r
-
I
.

v
u
u
u
w

.
.
.
.

‘
.‘

.

.

'
”
.
~
’
"
.
1
~
"
u
l
‘
.

I
I
-

.

I
N
u
n
-
d

1
:
.
o
n

I

.
‘

I
.
1
r
d
.
“

I
C
I
I
I
I

I
-
"
-
8
4

I
.
.
.

I
n

1
'
!

v
"
0
‘
”

:
1

G
u
n

.
o

m
0
-
"

0
.
0
-

-
v

I
‘
Q
Q

Q

_

.
_

.
.
.
I

.
I
,

.
.
'

n
.

.
u
u
h
u
q

.
o
q
-
g
-

P
'
.
o
|
.
~

.
I
I
‘

-
u

m
f
i
y
g
‘
r
a

i
m
.

I
.

I
o
-
I
O
I
O
'

.

.
.

.A
.
I

.
.

I
-

“
I
.

I
n
r

.
1
.
.
.

"
I
O
I
'

I
0
-
.

I
I
-
I
v
l

o
u
r

0
m
.

I
I
.
‘

.
I
I
I
I
I
-

.
.

I
.

o
.

,
r
u
n
g
.
“

.
p
.
.
.

.
g
o
v
-
p
.
.
.

u
.

I
u
p
.

.
o
c
c
-

.
.
4

I
.
O
.
I
n

I
m
a
g
o
.
“
A
C
"
“
I
I
I
.

.
1
"

A
.
"
c
a
n
;

1
o
r
"

I

,
.

t
.

‘
,
.

.
.
.
.
.
.
v
0

4
.

.
I
q
.
‘

.
I

.
u
g
h
.
.
r
;

.
I

.
.

.
“
a
“

q
v
-
I
Q
M
I
N
u

.
.
.
.

H
.
.
9
3
.
,
“

.
0

-
.

‘
g
l
l

>
5
”
p
u
n
.

‘
4
0
.
“
.
"
a
.
.
.
”

.
h
p
.

.
r
‘
.
“
.
'
0
1
"
p
’
,
.
.

m
i
t
t
-
I

.
1

‘
4
'
.
«
n
o
;
4
"
.
u
h

I
.
“

q
t

O
I
.

l
”
0
‘
5
"
.

:
\

A
.
.
.

fi
fi
‘
O
Q
'
Q
“
'
I
fl
'

I
.
I
.
.
n

I
1
-
.
.
.
n
u
n
-
«
t
i
n
.
.
.
a
n

I
n

‘
-
4
»

(
I
I
'
"
.
'
I
I
'

I
.
.
P
'
"

q
u
o
t
”

-
I
—
I
’
I
'
I
~
q
u

-
O
u
t
t
a
-
"
'
0
:
a

I
n
s
»
.

.-
.

-
—
«
g
r
0
"

u
n
-
"
I
n
.
n
e
w

I
n

-
I

d
‘
p
o
d
h
.
‘
A
“

I
.

I
I
I
-
I
I
!
I
"

I
‘
l
l
.

g
-
J
"

I
u
—

\
.

-
.
,
-

.
.

n
.

I
.
.
.

.
.

.
.
.

I
.
u
-
"
a
!

"
i
n
.
-
-
-
n
o
-
‘
o
o
C
H
M
"

.
.
I
'
.

.
.

I
n
.
I
-
v
o
.
-
I
-
I
-
I
I
;
¢
~
I
I
.
-

-
I
o
.
1
'
0
P
I

u
-
I
I
n
.

.
.
L
.
g
I
I
I
I
I
I
-
I
I
I
I
I
I
J
H
I
O
-
c
'
w
o
u
r

.
I
I

M
'

I
I
-
I
I
I
a
-
n
l
l
m
u

r
u
i
n
-
I

I
I
‘
-

I
I

I
J
‘

.
M

I
,
a
u
r
n
s
-
a
.

I
n
«
o
n

n
a
u
g
h
t
"

w
t
a
n
n
g
u
w
I

c
u

~
I

-
.

n
u
n
.
.
.
p
m
-

.
-

I

I
I
'
I
-
I
o
l

0
'
q

I
I
-
‘
a
p
v
o
fl
-
I

.
I
t
.

I
Q
I
-

I
o
I
‘
O
I
i
m
n
-

O
I
I
O
I
I
-
O
I
I
I
I
I
I
I
I
J

I
.

.
v

I
I
t

n
o
.
.
.

.
I

.
.
L
l
u
u

I
I
.
~
¢

I
-
.

-
.

.
-
n

.

.
-

~
A
-

-
-

-
I
.

Q
"
I

-
-
I
a
-
~
I
I
«
I
»
I
o
t
a
-
m
4
.
r
0

M
o
m
m
a
-
I
I
I
:

w
a
n

“
H
o
w
-
u
m

I
-
J

I
u
m

I
.

I
I

I
.

-
-
-
w
-

-
-
o
,
-

.
.
I
.
,

-
-

-
‘

I

I
I
I
I
I
‘
W
'
c
-
h
-

I
'
I
v
'
v
v
l
l
I
q
u
l
a
-
v
a
-
U
I
‘
”
9
0

I
I
-
I
J
I
I

.
I
m
-

I
I

I
I
I

I
I

I
I
I
I

O

L
r
.
.

.
m
,
‘

1
.
.
.
.
.
.

g
'

.
I
g
-
'
t
u
u
_
l
fl
n
u

.

.

I
I
-

.
.
.
5

.
0
.
u
s

.
.
.
.
I
I
"
.
y
‘
q
g
r
o
n
-
I

-
'
.
~
'
t
"
"
.

a
l
u
m
-
q
u
a

.
u
q
u
v
g
g
i
a
m
o

.
J
‘
,
.
£
‘

.

.
I
"

t
‘
u
q

n
.
4
"
.

.
3
.

s
.

.

I
fi
s
t
,

H
I
.

9
.
u
.

r
u
g
.
.
.
-

a
n

.
g
.
.
.
‘

y
«
n
o
»
”
u
p

9
.
1
.
.

I
t
o
n
a
u
u
.

"
I
o
w
a
-
I
a
n
.

.
I
l
n
-
o
n
u
u
‘
g
q
l
p
u

I
A

a
n
"

1
.
.

I
n

I
n
‘
'
H
-
I
d
fi
a
u

1

u
.
.
.
J
u
n
g
-
n
.

,
I
m
-
-

I
(
1
0
.

.
a
n
y
:

k
'
o
o
‘
,
b
-
‘
I
’
O
r
u
-
o
q
u
-
o
-
u

.
u

.

"
I

"
n
u
n
-
o

.
o
c
h
I
o
v
-
n
‘

a
.

I
I
‘
O
I
W

I
I
N
‘
O
~

I
“
I
n
.

I
I

[
A
r
r
-
1
H
q
u
a
“
fl
i
q

I
n

I
I
d
‘

”
I
n

J
-
I
I
a
d
n
n
I
n
v
'
u
V
-
I

“
‘

'

.
B
,
;

r
"
4
.
.
.
”
.
.
.

.
0
.
-
‘
.
.

.
n
-

I
”
g
n
u
"

.
.
u
.

.
-

"
.
‘
”
g

.
I
.
.
.

;
.
.
.
.
.

.
.
l
,
'
y
"
:
“
a

1

‘
.
I
«
u
h
-
I
I
.
.
.

'
0
0
-
\
~
O
‘
O
Q
'
I

H
I

I
.

I
.
D
I
‘

n
o
-

0
.

.
.
‘
H
I
-

.
.
n
1
"
1
“
q
u

t
o
.

Q
.
‘
g
l
F
fi
-
O
M
-

"
I
t
“

.
9

j

‘
"

K
.

.
n
I
n
n
-
"
l
fi
‘
”
I
n
-
c
m
.

.
w
w
n
n
I
I
I
-
.
g
n
p
w
u

m
u
c
u
s
-
m
-

.
I
I
n
.
.
.

“
~
1
4
.
m

u
.
m

-
I

o
.
0
0

I
»
I
4
I
I
r
I
-
o
p
n
w
-

-
I
«
I
n

.
I
I
I
I
H
I
v

A
s
h
I
L
F
‘
Q
"

.
I

-
M
I
"
I
n
u
n

t
I
.
I
I

m
l

I
I
I
-
0

0
6
.

0
‘

"
I

"
h
”
N
"

i
“
.
h
"

.
‘
I
'
T
'

"
I
“

"
"
I

'
1

q
.
.
.

"
O
I
O
-
0
0

O
I
I
u
v
-
I
I
-
-

.
.
.
.

¢
-

.
a
“
-
-
J
"
|
l
°
'

-
I
I
I
I
n
.
"
1
‘
“

I
u
n
-
I
'
I
Q
I

n
a
w
e
-
I

“
I
o
-
I

-
.

'
I
‘
I
I
I
M
I

a
u
n
t
i
e

c
a
n
”
.

a
.
w
n
q
u
u
-

‘
u
.

-

*
M

V
’

"
‘

_
"
A
"

n
.
.
.
‘
.

‘
.
.
.
.
.
,
‘
w

.
_
.

.
.
-

.
.
.
,
.
,
I
'
y
u
g
l
A

.
.
,
u
»

u
‘

4
“

‘
u
'
y
w
-
u
o
‘
u
u
u
n

.
u
,

.
.
.
.
-
.
-

-
.
.
I
.
I
u
.
u

[
I
n
a

I
g
i
g
-
.
-
o
n
'
fl
n
a

I
I

a
n
q
.
o
.
.
.
.
4
~
d
v
»
i
l
h
a
.
t
fl
d
fl
.

A
!
“

d
’

”
‘
1

‘
x

f

_
-
—

.
4
!

.
I
I

I
I
.

.
u
.

-
o
n
.
»
-

-
I
»

I
v
a
-
v
.
I
»
I
.
"

I
I

I
n
"
I
n
“

«
o
c
h
»

I
;

I
-

Q
u
a
-
I

I
.
4

I
n

I
I
b
u
d
a

“
'
i
‘

’
J
"

O
.

.

«
I
n
»
.
M
a
n
a
m
a

.1
5
0
4

.
I
I

m
u
n
-
I

.
«
a
:

0
‘
!

J
a
m
a
l

.
I
"
“

'
7
"
"

H
0
.
.
.

.
.
.
.
.
.
.
.
.
~

5
u
.
w

x

-
g
.

4
.
.
g
u
n
-
4
.
.

.~
n

.
u
a
w
a
n
t
"

1
"
f

.
u

a
l
i
g
n
-
:
3

[
‘
J

"
E

‘
‘
"
"
"
"
'

"

I
n
”

I
n
o
"

‘
I
.
.
.
»
r
e

a
.
-

n
r
'
a
u
u
-
I
p
n
a
—
G
“

.
J
1
”

.
y
W

.
,
.
1
,
.
.
.

r
,

I
.
.

d
i
d
?
u

n
u
n
-
I
I
I

.
O
n
h
fl
fl
q
d
$
’

f
?

.
2
"
“
*

.
q
-

.
.

.
-

u
u
.
.
.

,

‘
0
‘

I
’
m
-
I
n
c
u

a
p
é
.
a
n

I
‘
I
M
I
I
I

I
.
»

I

J
'

.
’
7
'

1
“

I
.
.
,
~

'
'
I
I
-
p
I
u
I
I
w

I
n
t
-
I
n
.

I
c
u

d
e
'
h
b
c
u
.
-
o
l
o
v
fl
h

I
r
v
-
s
m
o
g
[
”
4
0
4

fl
'
n
u
n
v
a
u
d
-

n
‘

V
’

V
'

I
“

.
n

4
.
,
n
-

'
I
0
‘
”
.

I
0
1

y
o
u
.
I
n

‘
.
'
I
-
O
‘
I

0
I
.
I
I
"
"
.

-
-

-

I
n
d
-
I

I
”

I
t
M
I
'
u
L
-
‘
u
-
fl
.
0
-
I
&
d
&
d

.
6
"
.
.
.
1

”
L

‘

~
I
.
\
q
»
o
w
~
.
.
~
I
I
-
.
I

.,

‘
u
‘
n
!
m
u
m
-
>
n
I
-
o
q
u
-
v
u
l
h
fi
u
u
d
i
m

I
I
a

”
1
-
3
0
4
“
.
.
.

-
.
.

.
«

m
I
I
I

.
a
d
v

I
I
I
'
I
I
I
C
I
I

0
0
-

.
I

J
.

I
T

.
J

“

1
.
,

a
n
y
:

~
m

I
.
.
.
q
fi
.
u
g
i
-

a
d
m
i
n
"
.
.
.

0
0
.
0
'
I
I
H
I
'
I
I
n
o
d
-
1
.
5
.
“

I
.

~

:
4

m
a
.

.
m
a
u
l
-
o

.
I

5
“

fi
¢

*
.
*

'
V

,
.
I
u

.
L

»
.

I
,

.
.
.
.
,
.

p
m
.

.
I
.
a
-
-
-
u
n
w
o
m

.
I
-

'
—

-
w
.
-
.
n
.
.

I
I
J

-
.
‘
1
'
”
:

.
-
.

-
0
.
:

.
1

I
.

I

u
d
o
“
.

I
t
"

I
'
D
-
I
I

J
‘
J
I
1
9
“
c
h

i
f

’
2
“

l

.
9
"
.
”

w
.

-
I

n
o
.
.
.

I
~

'
”
0
,
.

A
.
.
I
.

4
t
h

n
q
n
u
q
-

.
“
o
n
"
.
.
.

.
.
.

»
I

-
I
‘
O
‘

.
-

"
I

I
'
9
‘
.

-
.
.
"
h
p
-
I
I

n
u
n

.
.
o
.
n
.
.
¢
”
c
a
n

“
s
a
y

I
I
b
-
m
fi
m
n
m
o
.

"
.

_
"

.
4
.
.
.
q

p
,

p
v
w
r
u
r
4
»
.

,
u

r
.
,
.
n
‘
.

-
.
n

I
n
”

.
-
.
u
o
-
m

-
I
.
-
.
<

O
c
t
-
1
.
0
!
!

-
5
1
:
3
"
\
h
u
I
,

c
u
p
-
a
g
o

'
a
w
v
n
-
a
n
q
k
a
y
n
.
»
y
’
fi

a
l
a
s
-
g
u
n
‘
s
.
r
q
fl
q
a
u
fi
a
u

“
’
Y
”

.
.
.
I
.
.
.
u
.

.
,
.
m

.
A

.
.

u
.
I
'
I
M
B
.

r
u
g
-
.
u
n
a
-

I
I
I
,

_

°
I

'
.
‘

l
u
n
-

l
fi
'
y
l
i
d
fl
'
o
“
I
I
-
s
u
l
t
h
u
I
-
I
fl
r
o
u
b
v
w
l

c
a
n
o
l
a
-
I
n
g
a
“

“
I
t
,
“
k
l
h
‘
v
O
J
-
Q
-
fi

-

.
1

.
a
n
.
.
.

-

.
.
7
.
a
.

I
"
1
-
0
.
!
”
I
N
N
-
I

c
a
s
t
-
«
1
.
6
.

a
m
p
.

«
I
!
-

I
n

.
I
'
O
'
"

“
9

g
r
.

I
v
a

“
h
a
n
g
-
I
.
M

a
h
n
u
q
u
r
a
a
n

0

I
.
.
.

v
I

-
.

.
I

.
-

-
.

I
.
.

«
a
.

I
I
-

o
.

\
r
u
o
p
.

u
“
.

o
I
'
.
I

.
.
.

.
I

1
n
‘
4
.
-

.
'
u
H
I
‘
a
n
—
I

A
,

I
—
I
I
-
‘
4
g

¢
0
.
n
l
u
u
-
‘
h
u
'
d
o

~
«
I
M
O
I
‘
I
I

l
b

q

u
-
‘
O
‘

~
o
«
I
n
.
.
.
»

.
.
.
I

-
A

0
.
0
“
“
‘
0
-
I
4
.

I
.
a
.

I
.
.
.

I
I
-
I
n

O
'
I
f
u
'

r
I
I
Q
J
H
'
I

I
I
c
a
n
-
C
I
"
.

I
a
n
-
I
r
m
n
-
u
~
I
‘
N
I
'
.
“
l
-
‘
I
9

I
.
I
n

q
-
I
I
-
r

I
I
o
I
J
~
a
u

-
u
'
I
I

-
>
I
«
N

u
'
l
u
-
I
‘
fi
'
t
‘

'
I
'

I
I
I
"
V
I
I
I
»
.

I
O
‘

[
O
I

.
I
I
.

.
fl

I
I
'
m
.

I
n

I
.

I
.

I
a

.
.
.
.
'
I
.
o

.
n
.
.
.
.
n

n
o
v
a

I
O
-
I

“
I
.

‘
0
.

.
.
‘

.
u
'

.
‘
I

I
I

'

~

I
h
-
I
‘
o

l
"
4
|
0
’

L
N
O
I
b
u
t
.

I
'
.

~
1
1
,

,
1

.
.
‘
.
‘
Q

‘
0
.

.
‘
5
‘
a
-

I

4

I
n
n
-
I
u
m
.

e
r

4
A
.
”
.
A
I
V
I
I
Q
I
-
‘

.
3
‘
5
'
J
'
x
3
'
.

.
I
»
.

.
u

.
-

m
I
I
w
I
D
C

I
I
-
V
I
I
I
I
I
I
I
I
I
I
I
O
'
I
I
‘
I
n
I
I
-
m
u
a
n
“

a
n
d

“
I

4
:
,

‘

.
.
,
.
.

.
.

-
.7

'
.

U
I

I
I
'

«
I
{
1
1
%
9
h
m
“
!
W

“
Z
?

"
,
~
J
‘
"

I
«
m
u
.

-
-
a
a
u
m
o
h
i
q

a
h
a
-
a
a
n
t
y
m
o
d
'
m

”
'
9
3
-
.

.:~..-:
;
;
~
r
r
:
.
-
‘
:
.
~
:
:
.
r
:
:
.
~
:
.
'
y
w
-
I
m
a
r
.

..
.

.
,

,

‘
’
”
m
m
"

‘
.

I

5
.
4
.
»
‘
q
u
w
c
'
u
-
h
o
w
a
.

o
o

I
t
.

I

N

W
.

.
.
a
.
.
.

"
n
o
n
d
l
u
fl
u
l
l
a

1
'
3
.

.
'
9

w
h
o

"
O
I
C
I
-
t
l

.
I
I
I
I

-
o
m
I

.
.

I
.
I
”

m
u
n
-
I
a
n
“

‘
I

m
m

.
r
I
-
I
I
I
.
”
9
.
4
.
4
7
:
t
h

1
"
”

*
‘
r
I
;

.
.
~
.
.
.
u
.
.
.

.
I
-
n
w
r
-
g
-
m
n
p
m
.

1
0
0
'
.
”
I
I
.

m
u
n
-
I
-

m
J
-
.
p
.
.
.
.
I
a
-
-
.
u
u
¢
a
u
u
n
n
u
~
a

I
I
.
”
a
n
-
u

1
“

1
3
m

,
,.

‘

.
M
-

I
I
.
‘
n

I
~

I
.
I
0

n
q
'
y

H
u
h
-
I
I
.

—
-
.
I

O
“
-

-

n
o
t

I
I
n

I
-
I
-
I
-

I
I
I
I
I
-
u

‘
N
o
'
I
-
m
-

“
n
o
“

_
'

"
‘
I

.
.

-
~

I
I

n
,
-

-
.

-
'

a
I
-
u
I
V
-
I
u
a
.
‘

I
n
.
-
.

.
I
o
v
o

I
n
n
a

q
u
a
-
o
m
e
n
:

I
a
.
.
.

.
a

g
-

N
«
.
-

u

‘
¢
-
,
.
,
.
¢
I
.
.
.
I
.
o
.
,
g

.
.

~
..

n
o
u
n
-
9
0
0
1
4
}
;
"
u

u
.

-
I
0

.
h
v
a
n
v
i
l
-
I
I
n

I
-

a
”
”
0

I

f
‘

I
n
u
.

u
.
.
-

.
u
~
.
.
I
.
I
.
-
I
n
n
.
o
a
a

I
4

.
"
a
n
d
”

.
I
Q

.
1
-

a
n
,

n
o
u
n
c
a
u
u
u
q
u
h

H
u
h
-
n
o
.
4
.

9
.

o
-

9
‘

.
9

a
l

k
'

.
m
-
u
n
.

0
'
I
V
A
-
4

fl
'
u
'
J

‘
4
0

~
M
I
'
O
t
h
l

!
‘

3
‘
.
-

§
o

R
i
k
i
-
r
I
O
U

n
n
n
o
k
c
d
a
u
u
a

‘
I

Q
d

I
n
.

.
-

.
-

-
.
.
.

.
.

m
a
n
-
I
I

.
I
r
I
w
L
-
I
u
r
o
u
s
i
n
-
a
w

.
n

I
I
'
I
V
J
D
‘
I
I
-

I
o
n
-
m
u
n
«
u
m
-
I
n
a

u
m

I
.

q
‘
V

{
I
I
I

~
-

-

.
-

.
.

.
.

.
I
5
.

I
I
-
I
l
o
0
'

I
I
I
"
.
0
.
a
.

-
g
o
o
-
r
-

I
-
g

“
b
u
t
t
I
q
u
u
v

I
‘
V

-
.
I
o
‘
l
a
u
f

7
m
a

I
o
n
-
I
r

d
0

O
n

Q

A
|
“
a

I
”
'
l
‘

-
.

-
.

.
-

.
,

-
.

.
.
4
a
n
.

.
I
-

I
I
I
.
N
‘
”
M
u
-
I
»

a
:

(
«
I
C
W
U
S
I

I
n
c
-
1
“
O
l
fi
fl
a
o
k

¢
0

Q
t

I
.
u
.

I
-
.

»

.
~

.
.

.
-

.
.
-

.
t
o
.
.
.

w
h
o
.

'
I
-
I
v
-
«
I
a
-
I
o
”
t
o
g
“

I
n
u
I
I
I
I
I
I
I
I
I
I
I
u
j
I
I
.

o
u
n
-

“
I
.

o
!
I
q
a
-

fl
u
v
n
l
‘
l
‘

“
r
O
I
-
d

.
fi
fi
fi
fi
‘
b
-
‘
fl
‘
r

I
;

'
'

9
-
-
I
O

4
—
-

‘
.
I
~
I
.
.
.
-
u

I
-

I
-

.
-

-
.

I
.

.
.

.
.
.
,
.
.
.
.

.
u
.

I
o
n

O
"
s
n
I
a
-
I
n

.
I
4
'
~
.
'
"
’
I
"
"
n

I
-

-
4
w
h
m
.

I
n
.
.
.
»

I
n
n
a
.

Q
‘
m
l
h
a
u

~
I
n
a
l
u
l
-
n
e
m
-
fi
v

a

.
I
n
—

-
“
N
I
-
c

-

“
I
.

.
I
"
u
m
.

0
6
'

.
u
r
q
u
u
o
n
o
o
u
o
n
m
i

«
I
c
h
l
V
I
A
-
c
u

I
I
I
-
l
u
u
o
'

I
"
I
.

)
b
-
I
u
o
t
b

I
n
t
-
0
0
v

'
0
0
:
.

I
.
v
0
5

.
'

-
.

I
.

.
4
.

0
I

-

‘
O
"

C
'
.

I
.

c

I
I
I
-
O
I

I
.
"

l
~
I
I
I
~

.
-

u
"
I

.
-
g
y
m
,

’
0
O
u
-

‘
o
‘

3
.
»
!

a
d

‘
I

I
‘

|
.

‘
0

u
-
O
I
I
I

.
I
.

:
I
I

N
o

n
o
u
n
-
I
I
I

I
I

1
0
“
.
a
n

l
.
.
'
|
.
‘

N
I
«
H
’
h
Q
A
-
I
M
M
L
U
'

‘
4
‘
-

I
t
I
6
0
"
.

-
I
'
.
A
fi
c
i
“
:

I
.
I
.
“
fi
t
.
h
q
a
u
u
a
u
u
m

I
o
n
-
I

1
I
'
I
u
-
I

I
I
I
C
O
I
‘
O
I

O
-
I
‘
I
O
»

-
I

I
Q
I
I
I
.
a
s

I
t
«
p
a
w
-
u
”

.
I
.
.
.

I

'
V
I
I

5
*
:
.
\
-
I

'
5
9
.
"
H
a
n
n
a
.

.
,

J
'
“

3
.
4
.
0
“
:

«
-

I
v
a
“
4
“
"

~
‘
d
‘
%

.

y
'
m
m
fi
h

m
.

a
m

-
.
«
-

a
s
.
‘

A
I

,

"

‘
I
‘
fl
m
l
.
t
.
‘
M

A
fl
d
m
d
i
’
n
fl

-
I
C
Q
u
I
Q
J
d

I
I
I
I

«
I

n
o
.

M
a
o
-
u
h

I
I
I
c
u
-
I
q
-
I

Q
u
a
-
n
o
u
n
o
v
u
d
“
:
4
"

I
I
C
u

4
fi

n
u

.
4
\
I
I

a
n

A
"
.
.
.

a
n
.
.
.
"

«
3
.
q
u

l
o
u
d
-
I
m
u
q
c
o
a

Q
Q
’
Q
V
O

M
a

n
o

|
.
'

-
g
-
I
.
l
d
c
u
1
.
0
.
d
0
"
.
.
l
u
I
o
n
.

I
.
.
4
.
-
I
.
.
I
-
'
I
I
‘
|

a
t

0
.
3
'
J
v
c
i
u
u
l
-
A

.
I
Q
O
d
'
O
d
‘
A
‘
J
H
O
I
'
“

”
I
.

y
o
u
»
.
g
.
r
.

-
d
I
-
~
¢
-
I
J
I
I

a
n
.
”

I
.
1
*

I
I
w
u
u
fl
‘
a
u
-
o
-
u
-
d

v
-
I
-
I
I
I
n
u
n

I
I
n
n

0

I
I
‘
m
o
r
l
h
n

‘
0
4
"

"
.
"
M
a
n
o
-
H
i
t
.

‘
I
d
n
-
I
o
r
O
-
I
O
I
V
O
-
‘
1
“
.

-
.
f
«
I
I
-
l
q
u
u
I
I
u
'
H
N
I
-

0
"
‘
6
0
-
"
0
0
-

u
.

0
'
.
a
u
—
‘
n
o
<
n
-
O
o
h
‘
u
u
V
.
.
.

.
,
I
.
I
.
.
“
I
.
‘

I
Q
'

L
.

v
.
1
“
.

d
o
»
.

.
.

g
‘
.

.
.
.
.

Q
‘
I
'
U
‘
O
"

.
.

g
.
.
.

.
.
I
.
.
.
‘

,
.
-

I
.

o
,

g
.
.
.
.
.
.
1

.

I
”
I

.
_
g
’
a

.
‘
O

I
.
1

.
u

l
I
Q
I
.
.

-
I
I
O
‘
~
I
u
-
I
.
u
o

-

I
'
I
I
I
"
.

I
I
.

-
-

fl
g
l
I
-
.
o
-
O
O

D
m

~
.
n
q
u
g
n
-
g
u

'
-

~
-
'

-
I
.

I
I

Q
.

I
I

.
~

.
.
g
p
I
9
-
0
.
4
.
.
I
-
q
h
u

v
-
~

”
p
.
9
0
.
.
.
”
q
u
p

«
\
u
.

I
-

«
I
.

A
.

O
.

I
.
0

u
.
.
.
“
I
k
e
-
d
o
n
I
I
O
I
I
I
-
n
o

“
Q
a
h
a
n
a
n
n
u

n
a
n
-
l

h
.
”
u
n
a
c
c
o
u
n
-

I
.
p
.
.
~
.
.
g
y
l

.
u
v
u
d

I
I
-
M
I
I
-
I
u
-
v
I
n
fl
n

I
n

I
9
"

'
0
.
.
.

a
.
“

t
u
n

v
:

N

~
u
I
-
u
I

-
.
I
I
I
.
'
<

.
I
-

M
a
n
.
.
.
»

I
.

4
-

I
.
0
&
3
”
;

4
s

.
.
-
I
I
-
~
I
I
.
I
.
g
u
-
'
I
I
~
I
n
"

I
‘

I
a
-
I
a
u
-
u

.
I
I

-
I
n
u
n
l
h
I
I
n
‘
N
u
I
r
I
I

a
v

E

'
v
-
d

.
‘
.

0
.
.
.
.

o
c
u
p
-
9
"
.
.
n
'

u
m

'
l
.
.
"

I
0
4
"
.
d
u
“
.
.
I
I

‘
0
'
.
.
.
»

I

v
_

.
u

-
'

I
I
’

'
.

"
"
v
I
-
“
I
‘

"
I
t
.
'
U
U
N
I

‘
‘
fl

0
.

-

.
7
u
.
.
.

.

o

'
I
I
M
p
.
I
-

‘
'

I
~
’
-

.
.

I

.
r
I
u
"
“
"
l
"
'

I
-
o
u
‘
o
c
h
.

-

-
I
.
o
I
.
I
“
.
-

.
‘

‘
I

.

q
.
.
.

.
.

I
w
n

o

.
.
_
I

.
I
n

I
h
.

F
a
c
t
:

.

”
a
.

.
I
I
n
.
"

‘
u
l

'
'
C
u
~
‘
§
‘
-

“
1
.
1
.
.

-
I
I
.
¢
'
I
r
t
o
I
r

"
9
"

o
g

I
l
'
J

"
u

0
'
-
C
l

.
o
O
I
o
I

1
‘
.
.
.

Q
n
o
t
.
.
.
o
n

C
.

.
.
.

>
i
0

a
a
x

I

'
*

d
d
.
.
.

1
6
:
:
m

I
I

m
i
n
u
s

«
a
.

d
u
o
»

I
4
0
:

I
.
.
.

J
'
I
f

g
-
o

I
.

~
'
.

I’
.

.
‘

.
.

.
”

*
fi
‘
k
m

U
»
‘
W
'

,
.

.

‘
.

.
.
.
»

.
-

C
d
‘
-
o
’
”
m

M

a
n
.
"

I
.
.
-

.
..

.
,

.
.

h
-
I
q
fi
v
n
n
.

3
-
“

‘

0
:
;
m
e

'
.

"
J
u
l

I
.
.
-
-
.

u
.

.

.
.

I
a
.
.
.

.
o
-
0

.
.
.

I
I

4
.
0
-
t
h

-
0
'

'
9

'

O
"

u

.
’

..'.
.
"
.
‘
.
.
“
.

'

d
.
‘
«
-

n
o
w
-
I

.
.
I

R

.
.
u
‘
.
.
.
.

a
.

I
I

~
o

I
-

I
.
w
s
-
I
.

“
a
.

-
.
-
.
“
I
.

.
5
1
1
4

”
0
‘

‘
I

|
,

.
.
1
0

I
I
n
~
u
u

-
I
I
.
.
.

‘
,
I
O
I
.
.
.
‘

%
u

.

I

I
l

‘
0
”
I
.

.

.
p
.
.
.
.

.
0
-
”
.
.
.

a
“
.
m
m
.

'
,
5
"
o
a
a
n
n
-
r
d
I
I
-
I
q
I
-
I
n
c
u
‘
x
-
q
g
a
u
.
‘

‘
m

I
o
u
~
'
-

I
u
-

-
-

“
I
.
W
I

i
n
i
-
I
m
a
m
.
W

I
.
“

4
4

-
I
c
-
I
a
n
t
i
-
O
I
-
fl
a
-
fl
-
w
I
-
O
—
n
n
n
fi

-

«
1
J
a
u
n
n
u
‘
w
g
a
n
o

«
fi
t
m
u
g
u

a
m
i
a
d

“
I
I
-
m
u
.
.
.
-
u
u
h
a
a
~
u
u
~
v
o
-
N
u
u
é
r
u

~
<
o
.
.
-
I

I
v
a
-
O
I
:
'
-
h
-
J
‘
Q
|
-
v
i
“
.
v
‘
a
n
d
-
I

m
‘
d

d
q
n
u
-
b

c
a
n

.
0

a

d
M
o
u
n
u
u
m

v
o
l
-
I
-
u
p
»
“
c
a
n

m
a
g
-
I
q
u
fl
u
p
q

”
h
u
e
-
g
a
r
”
.
”
Q
'
N
O
I
a
.
)

.
\
O
O
G
M
O
‘
A
I
-
I
h
"

o
n
.
.
.
O
n
o
'
d
y
fi
m
u

-
'

.
.
.

-
.

.
.
D
r
u
g
-
h
.

.
.

-
a
-
|
-
u
«
.
-
Q
A
-
d
m
w
w

.
1
'
m
u
m
-
n
p
a
s
o
m
-
s
a
n
d
5
0
-
1
-
w
h
a
m
n
a
fi
m
n
m
p
r
n

a
.
"
M
I
'
u
-
I
o
u
o
w
.
I
o
‘
u
y
b
-
I
t
-
N
o
v
u
d
.
a
I
o
n
-
”
I
‘
m
m
n

m

‘
-
‘

;
I
v
I
-
I
-

-
-

‘
‘
‘
m
m
o
fl
w
u
q
o
d
¢
u
o
a
n
u
-
m
u
d
n

'
-

.
v
.
.
q
u
.
I
u
-
m
¢
~
.
m
c
m
u
r
u
i
w
u
«
s
p
a
-
v
.
»
w
-
m
o
h
n
v
m
4

m
.

n
a
n
"

'
a
m
u
c
u
q
o
o
n
a
m
m
a
fi
a
-
‘
9
'
.
A
d
a
m
“
.
w

'
u
l
v
‘
I
W
D
M
S
O

.
Q
h
é

.
.

.
.

.
.

.
.

.
.

.
«
a
n
-
I
n
o
-
M
o
-
I
v
r
.
"
a
~
u
a
u
I
O
—
“
h
-

u
u
l

.
n

I
Q

‘
a
.

O
C

u
.

u
a

‘
.

i
.

I

.
0
.
.
.

-
.
.
~
x

‘
.
I
-
,

.

.
A

-
.

.
.

.
.

I
.

I
M

‘
.
.
I
‘
-
C
I
O
»
U

-
I

i
-
.
0
v
a
-
u
u
r

-
V

_
.

n
.

.
y
'

-
u
I
-
o
-
I
-
I
-

'

v
.
4
.
.
.

I
~
v
.

.
.

-
.

-
I

-

I
-
.
.
q
u
v
I
~
.
.
.

.
w
.

.
.

M
.
W

N
“
N
O
“
U
M
‘
O

I

L
u
a
u
o
r
n
a
q
a
m
n
n
.
a
q
u
a
-
I
o
u
t
r
-
M
~
v
u

«
I
:

.
(
I
-
Q

'
I

‘
O
v
fl
fl
n
o
‘
Q
W
I
O
I
'

t
u
-

f
.
'
"
.
.
-
u
.
«
n
o
r

0
‘
-

n
o

-
'
I
~
1
“
¢
'
fl
r
c
w

a
n
t
-
I

.
0
'

‘
d
I
I
I
~
1
I
D
¢
N
V
~
O
~

m
a
~
u
.
‘
.
m
I
—
.
.
u
r
a
-
.
n
x
u
¢

a
l
u
m
n
i
-
G
A
G
E
.
.
.
“
J
O
O
$
Q
I
‘
I
‘
-
4
fi
b
fl
§
“
u
'
4
4
.
.

u
fl
q
a
a
o
I
I
-
w

“
.
3
5
'
I
I
O
I
I
O

h
u
n
k
.
"

w
a
w
h
-
u
c
a
o
fi
-

“
a
l
l
J
W
O
I
J
O
'
I

9
‘
0
0
"
.
“

‘
n

m
u
n
g
.
t
n
”
"
d
'
0
‘
.
M
.
.

.
-

.
.
.
.
,
.
.
,

.
.
.

.
I
I
O
M
I
Q
N
I
I
-
I
.
”
n
o
.

r
]

5
‘

|
I
n
u
"
-

,
.

-
a
-
-
-
~
.
.
\
.
.
.
1
"
.

.
.
«
c
u
-
g
n
u
u
u
.
.
.

“
a
q
u
b
o
-
b
c
w
o
n
m
w
w
n

«
D
I

~
I

.
-
I
a
m
;
«
.
-
.
w
-
u
a
-
.
v
~
.
u

a
w
n
-
c
u
»

«
I
n
-
«
b

‘
0
v
.

m
.
o
-
.
:
.
.
.
.
u
.
¢
W
I

C
h
o
i
r
-
I
"
.

-
c
I
I
'
Q
.
'
~
‘
I
‘
I
.

-
o
-
u
.
.
-
u
.
v
.
I
«
o
.
-
”
fi
'
fl
'
h
w
‘

-

I
I
n
;

'
U
t
'
t
fi
"

I
k
o
u
c
c
n

-
I
.
I
‘
d
-
‘
9
.

O
~

-
.
'
-
.
-
.
I
.
»
.
I
I
I
.
.
.

.
-

m
u
-

"
o
f
f
e
r
-
I
I
I
~
0
d
d
u
w
}
.
‘
-
M
‘
d
fl
'
~

p
o
d
-
a
.

.
.

~
I
|
‘
.
.
I
.
_
c
-
o
z
o
w
r
.
M

b
o
m
b
-
I
n
m
a
‘
v
‘
d
c
fi
-
I
b
a
u
-
N

-
‘

.
o
.
.
.
"
n
o
h
m

'
0
.
.
I
r
Q
¢
-
‘
*

\
4
-
‘
-
n

v
v
1

I
.
‘
I
I
u
I
O
M
O
I
-
O
O
O
Q
-
V
a
n
n
a
"

-
-

-
.
.

I
n
.
.
.
"
(
"
b
u
n
-
I
a
n

'
o

I
n
n
-
‘
9
'
“
.

-
0
o
-
r
-
o
I
-
I
0
h
u
n
n

I
~
§
c
o
u
u
o
¢
~
n
4
a
n
t
m

-

a
n
“

.
-

I
I

.
I
I

'
L
a
w
n
-
u
n
q
u
-

u
-
c

v
o
l
.
-
n
~

m
-
I
c
.
Q
:
"
-
.
~
.

L
'
h

-
.
.

I
u
N
I
A
I
-
«
j
a
u
n
t
-
I
i
.

0
"

.
.

1
.

I
.
.

'
0
0
“
a
d
!

x
0
‘
I
I
I
'
-
"
'
I

.
5
.

C
R
-
‘
v
-
O
fl
‘
-
o
-
l

I
n
c
-
M
fi
u
o
w
m
u
n
-
M

a
r
i
s
t
o
c

.
5

~
I

a
I

0
.
»
.
-

‘
1
'

-
.

"
'
9
-

o
o
h
-
‘
0
“
n
.

.
.
.
.
.
.
I
.
.

\
1

I
.
I
d

~
n

-
.
u
I
-
p
u

-
.
~
I
I
h
-
u
fl

l
-

'
u
—
n
o
-
I
I
D
O
I
‘
I
I
-
O
o
o

.
.
.
.
,

-
.

'
.
0
.

G
I
-
g
r

I
.

~
v
h
q
o
u
h
‘
h
u
l
fl
“

I
'
:

1
"
V
-
l
v
"
0
¢
.
’

.
0
"
b
'
l
‘

.

.
.
'
fi
4
.
.
o
0
~

I
I
.
‘

.
.
«
g
n
u
-
n
u
n

-
a
.
.
.
.
u
o
-

I
n
o
I
t
h
m
o
d
-
o
k
i
n
“

I
I
!
o
n

I
.
-
'
o

.
.
.

"
C
"
"
t
h
‘

I
v

'
C
-
i
'
.
“
“
'
|
"
.
.
.
c
n

'
.

I
.

‘
l

.
.
.
.

.
I

-
.

.
0
.
.
.
.

.
a
u
u
.
.
.

.
a

.
I

.
I
I
I
C

o
v
i
o
.
“

0
'

I
O
I
I
I
I
I
.

Q
h
fl
o
|
~
J
n
-
.
f
.
o
-
~
'
§
0

-
I
I
c
o
~
“
I
"

u
”
i
t
.

I
t

~
.

.

.
.
.

I
”
.
.
0
.
.
n
l
i
"
l
.
v
“
"
"
~
p
l

'
-

u
.

-
a

I
‘

g
,

I
I

~
u

"
I

a
.

~
.

.
I
.

I
-

:
.

.
"

.
.

I

,
.

-
.
-

.
“
0
1
0
.
1
5
.
"

v
'
I

I
I
I

O
.
.
a

I
‘
O

-
I

I
I

I
I
'

.
I

o
n

I
-
l

I
-

.
a
s
.
.
.

.
-
.
v
u
-
J
m
a

I
.

-
.
,

.
.

I
-

I
l
o
O
l
h
l
‘
.
Q
.
.
.
A
u
’
.
~
0
n
o

-
H
w
-

-
I

I
I
'
.
I
.
-
.
'

w
9

.
.

I
~
o

.
I
n

I
.
.
.

I
.
.

~
.

.
-
-

\
.
I
»

.
.

.
.
u

-
.
.

.
.
.

-

9
O
“
u

,
.
.
-
.
.
.
‘

.
,
.
.
,
3
.
.
.
”
.
-
.

‘
'

‘
I

‘
‘

"
'

-
.
.

'
"

'
.
-

I
'

~
-

I
I

-
-

I
I

.
-
"

o
n

.
I

~
-
.
.
-
.
I
.
.
-

c
a
u
c
u
s
-
a
w
-
d
-
v
o
a
w
v
u
-
M
c
o
-

‘
‘
“
"
0
"

.
'

'
V
’

I
‘
C

v
'

'
I

.
~

-
'
0
'
"
0

I
'
0
"
.
-
D
O
O
I

I

,
a

'

I
.
O
o
—
.

D
I
u
r
n
-
1
:
.
.
.

o
o
h
.

.
-
.
.
o

I
.
"
u

h
o
w
.
.
.
»
«
d
‘
o
.
I
m
-
fl
m
I
N
-
M
'
q
‘
.

g
”
.
”
N
V
O
’
F
'
W
'
.
o
o
r
y
r
o
w

‘
"
'

‘
'

‘
'

'
.

'
-

"
.

'
0
'

-
'

.
-

-
-
"
"
I
I
-
-
I
o
.
~
I

l
-

.
-

M
u
'
m
'
H
-
H
I
’
6
-

-
I
-
o
.
-
Q
I
I
v
-
I
-
»
I
u
«
n
u
m
c
u
w
.

'
I
v
c
o
a
w
o
‘
h
u
‘
l
l
‘
w
u
o
l
d
t
-

O
b
m
o
u
s
m
w
I
v

.
.
»
.
.

.
.

.
,

.
Q
“

.
.

.
.

-
.
-

.
.

,
.
.
,
.

.
I

-
.
.

g
,

-

,
.
.
.

.
.
.

.
.

.
I

.
.
.

-
»
A
.
.
.
-

.
-

.
I

I
o
n

a
I
o
w
a
-
«
r
o
y
-
n
.

I
.
"

.
o

.

"
'
~
.
“
.
~
v
w

'
-

.
O

.
.

,
.

g
.

.
.
.

o
n

.
-

.
o

t
.
“
I
”

.'
[
.
a
‘
u

.
.

.
I
-
.
.
.
I

.
l
o
'
l

I
.

.
-
.
-
.
.
'
-
-
.
I
o
-
o
-
“
.
o
~
.
o
I
-
p

.
-

-
.
.

-
'

h
N
I
-
o
‘
b
x
“
~
“
C
C
.

'
"

"
"

'
‘

'
‘

I
I

I
-

.
.
.

‘
'
V
'

-
'

'
0
-

.
-

.
«

n
l
0
"
"

~
‘

~
4
~
4
I
v
.
"

1
.
4
9
m
“
:

I
I

I
I

O
I

.
I
.
.
.

.
‘
l

-
-
o

.
a
4
.
0
1
4

I
.
"

.

"
n
o
!

-
.
-
u
.

-
.
-
‘

u
u
q
m
o
s
o
r
a
y
u
w
u

v
u
.

.
I

.
.

.
.

.
.
.
.

.
.
.
.
.
'
.
.
‘

-
-

.
«
-

m
'
fl
o
c
u
c
-
O
I
I
I
I
I
I
I
Q
I
I
A

I
..

H
"

m
0
-

I
‘

.
I

-
~

I
.

-
'

.
I

.
I
O
O
o
-
m
r
.
M

I
n
a
-
b
.

.
-
g

I
.
.
-

.
.
.
.
.

.
I

I
.
k

u
.
.
.

.
~
.
,
.
.

-
.
~

’
C
V
"
!

.
.
_
.
“
.
.

.
‘

.
O
I
I
I
O
-

I
a
.

.
-
.
-

I
I
I

-
.
o
g
.
.
.
‘

.
-

I
.
.

*
I
A
.

‘
C
‘
i
’
V
'
O
‘
C
-
O
‘

.
_

.
.

.
.

-
,

.
.

.
.
.

.
.
.
u

.
,

.
.
.

-
-

-
.
-
§
.
q
.
-
~
.
t
u
1
"
.
”
.
o
“
-
_
-
q
\
o
~
.

I
.

-
l

.
.

I
.

I
.
.

-
.

‘
.

.

-
~

~
.
.

u
r
v
v
-
M

'
M
I
O
'
M
Q
I

n
u
n
-
0
9
"
»
.
p
.
‘
a
~
0
"
-
O
‘
.
0
¢
*
1

u
p
.

u
r
-

I
-

.
.

I
'
,

.
«

q
.
I

-
-

I
.
‘
.

.
-
.
0
“
.
-
"

u
“
h
m
.

~
I
I

'
Q
I

.
I
.
«
n
o

I
-

I
w

r
.

c
a
n
d
o

.
‘
O
-
I
-
v

.
I
'

N
V
‘
.
.
‘
w
«
~
.
‘
o
-
v
fi
\
g
u
.
,
.
.

u
.
.
.
¢
.
.
fl
.
.
.

I

.

‘
'

m
.
4
-
”
a
)
w
u
u
-
o
-

I
,
-
o

—
I

-
I
l
y
o
-
O
I
“
t
w
i
n
e
-
0
v
:

I
'
-
I
0
5
'
.
"
0
5
-
0
1
.
”

,
.
,
~
.
o
.
-
I
—
o
-
o
m
-
.
u

c
u
p
-
A
'

-
.

,
.

I
.

.
I

Q
]

'
~
'
b
u
.
.
.

~
I
.

.
.
-

’
a

“
o
r
.

.
‘
I
.
-

-

.
.

.
.
.

t
.
o
-

-
4
1
‘
.

I

_

I
'
I
0

I
-
‘
~
I

.
‘
o
:

I
I

I
O

.
L

I
-

-
'

I
a
o

-
.

.
.
.
.

I
I

m
.

u
o

.
-

a
I

l
-
‘
.
I

I

o
0
n

I
I

I
0
.

I
'

I
I

o
I
-

|
s

.
-

.
-

.
.
.
-

D
o
-

I
.

.
.

o
-

-
-
.

I
a

I
-

-

J
-

.
I

~
'
\

.
.

I

-
.
.
.
.
~
.

.
.

_
-
.

I
,

.
.
a
t
.

-
I
I

.
\

”
,
n
n
p

.
‘
.
.

-
k
.
.
.
“

-
.

.
"
'

'
I
‘

'
-

'
'

‘

.
.
I
.
~
I

.
.
.
-

.

.
-
u
~
.
1
'
.
¢

a
v
.
.
-

.
,

I
.
.

o
I
.
I

I
o

5

.
.
.
,
_

.
.

.
,
7

'
.
.
_

I
.

.
I

I
0
-

I
I

I
I
-

.
D

O
-

-
I

I

.
.

.
.

I
.

.
»

.
-
-

4
_
O
-
C
-

‘
I
'

I
"
N
'

"
I

o
n
-
0

I
'
I

I
I

a
n
.
.
.

o
-
.
.
.
u

.
.

.

I
o

I
-

Q
.

.
.
.

“

.
.
.
-

.
-

O
~
I

1
~

.

"
.
.
.

“
'

'
"

'

c
-
I
‘
o
u
:

>
u

.
I

I
'

-
a

o
-

o
-
.
.

~
r
o

I
I

.
,

I
.

I
I

.
I

-
g

.
I

.
-

n
l

0
-

I
.

I
-

—
u

a
n

n
.
.
.

I
I

b
-

'
I
0
'

I
l
"
-

.
-

N
'
u
'

,
I

~
I

.
-

‘
.
u

'
0

'
'

‘

m
o
w
-
I
I
I
r
o
-
v
n
o

I
c
.
0
0
g
o
o
"
b
.
v

I
-
.
.
¢
-
o

-
I
.
o
4
o
-
.
%
s
\
r
—
.
.
~
\

I
-

o
a

I
I

.
g
.

.
.
.

l
-
.
Q
-
fi
s
I

I
"
:

0
-
4
4
1
.
.
.

u
I

u
_

.
.
.
-
.
.
.
-
.
y
o
u
.
.
.

.
4

o
4
“
“
.

'
C
Q

'
‘

H
"

‘
"

'
‘

"

o
.

-

U
M
.
C
O
.
"
~
'
I
-
O

-
.
o
.
u
o
h
-
I
.
I
u
c
f
v

a
c

o
u
q
o
n
o
v
o
.

"
'

"
‘

'
°
'

‘
D

-
I
-

'
I

-
-
a

r
I
-

.
‘
I
I
O
'
O
'
I
b
'
l
-
v
I
.
I
l
~
l
u
1
o
~
n
‘
-
o
.
o
.
g
-
n
n

.
o
.
'
.
—
.
q

-

‘
I

‘
‘

"
'

'
'

'

v
.
0
I
\
-
-
¢
I
-

5
0
‘
0
0
.
.
“

-
.

-
'

‘
-

.
0
‘
-

.
.

.
9
-

.
,

.
,
I
\
-
-
‘
I

I
“
c
o
¢
o
m
o
u
v
.
~
.

‘
-

.
.

t
I
.

.

.
.

.
I

I

.
.

-
“
u

-
6
"

-
-

.
»
c
a
n
.

v
.

0
-
t
.
‘

a
l
l
‘
0
‘
7
.
‘
o
a
n

-
4
-
o
o

v
v
a
u
-

.
g

.
.

I
-

I
O

»
I

-
-

-
-

.
.

I
'
l

n
o

'
m

.
.

o
I

-
I
I
I
.

I
-

-

I
!

I
'
0
.
o
n
p
”
.

-
.

-
'

-
o
<
~
.
.
-
r

O
~
I

O
’

0
0
“
.
!
"

‘
v
-
Q

-
C
M
Q
D

“
C
O
-
.
‘
.
W
.
‘
I
~
4
2
.
»

.
-
l
>
.
-
I
g
-
.
.
c
-
-
o
d
~
<
g

I
I

.
.

'
-

‘
'

~
'

-
‘

~
-
0

O
-

‘
I
.

I
l
t
'

|
'

'
I
»
.

I
,
.
.

.
a

O
I

'
,

I
-

u
I

-
o
I
n
”
.

I
I

V
,

.
‘
I
u
‘
-
.
0
¢
.
.

.
p
.
.
-
.
I
.

t
‘
.
y
‘

.
g
.
r
.
.
u
-

'
.
.
.
_
.
~
¢

.
.

I
’
~

0

I
'
"
I
-
l
"
-
I
'

'
'

~
|

'
'

I
'

'
I
-

0
‘
I

I
"
I

'
'

I
-

"
I
I

~
‘
«
.
7
.
.
.

I
-
l
o
-
I
-

-
.

o
o
.
.
'
I
-
I
-

'
£
u
p
.

.
-
r
.

n
.
o
-
o
-
o

.
u
‘
n

.
.
.
.

~
'
I
<
-
.
.
-
-

-
-
'

o
.
o
.
.
p
.
.
.
.
-
.
.
.
,
.
.
~
.
-
.

.
5
.
.
.
.
W
g
w
m
”
.
»
-

1
1
-

-
'

'

-
I

'
-

I

-
-

-
I

.
-
.

o
-

.
.
.
I

,
.

.
v
-
o
.
—

.
c
I
¢
¢
-

o
-
<
.
—
¢
-
u
.
.
-
.
-
u
-
-
p
.
"
\
-
I
-

-
.

.
.

.
.
.

I
.
.
.
.
.
I

-
I

I
.
.
.
.
-
n

I
-
I
-

l
‘

5
-

I
I

7
a
n
.

.
.
.

.
-

.
-

.
I

|
g

.
I
.

-
.
~
.
-

‘
g
.

a
.
.
.

‘
0

.
.

.
.

n
.
.
.
“

.
-

-

I
w
.

d
I
n
1
.
.
.
.

.
—
-
.

I
I

-
I
n

I
l

.
v

I
“
O
n

I
.

.
"
.
o

'
.
O
I
I
,
|
M

I
-

.
.
-
u
-
.
u
I
.
-
y
o

.
O
n
n
y
o
.
.
.

.
.
u
'
.
.
y
y
’
I
O
-
O
A
O

0
.
.
.
’
¢
.
I

p
J
-
o
v
~

-
I

4

-
O

.
v

v
o

I
.

~
.

.
I
-

I
I

-
.
.

I
.
.

.
.
.

.
.
.

.
n

I

-
.
.

-
.
.
I

.
o
o
o
-
.
¢
.
.
r
“
.
.

.
'

.
.
a

n
.
0

r
-

I
a

I
o
n
-
#
0
.

u
n
.

-
p
—
q
.
.
I
J
.
.
.
'
o
-
v
.
o
o
I
-
U
w
a
.
v
-
(
-
.
.
.
n

«
‘
O
I

.

O
-

‘
0
‘

I
I
I

t
.
.
.

I
I

I
n
-

I
I
.

o
u
I
~
c
I

a
"
-

.
-

-
A

|
I

-
I

I
~

I
-

-
I

.
-
I
~

I
-

I
I
I
-
.
.
-

.
I

.
.
.
.
.
,
-
.

.
y
o

I
.

I

-
.

.
o

o
n

I
I

-
.

-
.

u
-
o
n

q
.
-
n
o
n
-
m

-
-

I
-

.
.
L
“
.
.
.

I
-
-
0
‘

.
.
.

g
.
"
-
.
"
:
‘
.
u
'
.
.

-
.
.
q
.

g
.
-
r
.
-

C
t
-
.
4
fi
.
‘
t
~
.
.

0
o
»

I
‘

'
'

‘
5

“
I

I
'
I
"

'
‘

O
-

I
"
I

'
-

.
I
.

I
0
-

-
.

-
I
I
.

.
-
-

u
p
.

.
.
.
.
.

o
-

.
-
‘

.
4

a
.
.
.

I
.
.
.
I
r
~
.
-
4
-
.
-
o
w
.
.
¢
"
.
"
-
I
~
I
‘

.
-

.
I

.
~

-
-
-

-
-

'
I
'

—
l

.
.

"
'
|

‘
-
I

-
«

.
-
‘

.
.

-
'
I
I

.
_

-

c
o
m

"
0
-

.
.

.
.

.
n
u
s
-
1
"
.
u
n
”
.
.
-

0
0
o
.
.
.
“

.

.
.
q
.
.
.
n
.
-
p
.
.
.
.
.

.
.
.
.

I
-
-

o
'

I
.
.

I.
u

.
-

.
.

.
I

.
.
a

-
.
o

-
.

,
.

1
.
.
.

u
.
.
.
.
.
.
-

‘
-
'
"

‘
-

"
‘

'
‘

I
I

I
'
-

‘
0
'

I
-

‘
c

‘
'

'
"
'

0
b
l

O
I
I
'

I
-

.
.

g
v

o
I

‘
I

I
l

I

.
-
o
~

-
I
-
.
.
1

o
»
.

v
.
0
I
.
n
o
.

I
g

.
A

O
o

-
-

I
.

.
o

.

.
.

-
a

O
.

.
I

-
I

.
I
0

I

¢
u

I
.

.
-

.
.
.

i
.

n
o
w

I
o

I

O
.

.
.

w
,
,

I

d
I

I
A

0
-
I

o
.
'

.
-
'

.

I
.
u
-

—
I

-
i

0

I
I
.

.
.
u

v
.
.

.
I
!

.
-

.
-

O
-

I
-

v
V

‘
0
'

o
.

.
.

O
t

.

u
0

.
I
u

I
o
~

I
o

y
n
o
”

.
.

I
'

w
.

y
.
.
-
I

-
.

O
.
.

.
-

-

4
.
.

.

.
.
.
.
.

r
.
.

.
.
.
I
‘
.
¢

O
.

.
.
.
.
.

.
.

§
-
I

7
o

.
-

.
.

‘
.
.

,
.
9
.
.
.

,

.
H
.

O
'

r

I
‘

u
-

.

.
I
I

0
.

I
.

.
n

.
.

l
u
.

I
.

I
t
-

1
.

.
u

I
.

-
,
-

.
.

.
.

.
‘

I
u
.

D
.

’
.
'

'
.

’
~
'

'

u
.

I
.
.
.

.
I

.
I
‘
-

I
.

.
~

I
I

I
I
"

‘
.

.
n
.
-

.

.
a

-
o
l
I
‘
.

|
c

—
.

.
I

_
.

w
"
o
-

I
.

I
0

I
I
-

I
.

I
-

I
O
I

I
“
-

I
.
4

~
I
I
I
I
-
e
r
-
a
v
-

-
.
w
c
¢
0
0
I
-
O
-

I

.
-

u
.

.
-

D
Q
I
C
I
-
I
i
‘
h
o
c
o
b
O
-

Q
4
:

-
o
»
I
.
0
c
§
I
-
s
o
~
o
v
“

o
-
.
I
~
o
I

O
u
.

-
.

'
.

.
-

0
v
‘
I
-

-

I
n
-

-
.
I
.
.
.
.

.
.
-
~

I
o

.
.

o
o
-

I
<
0
~

I
'
v
a
o
o
-
‘
I
I

I
v
y
-
c
u
'
t
a
o
d
o
t
5
u
-
J
'
.
a

O
'
O
I
-
O
I
O

.
.
v
o

I
n
o
~

o
n

.
.
I

o
.
.

I
I

O

a

a
.

.
.

a
I

-
.
-

.
.

-
.
.
-

.
.

.
.
.

o
t
.
.
.
.
.
-
‘
>
‘

-
I
"
.
'
.
"
I
-
.
l

9
0
"

n
o
r
-
.
I
-

o
.
.
.

.
.
.

.
.
‘
I
.
.
.
o
.
q
-
-
-
c
o
.

.
.
.

«
I
n
.

-
I
'

I
O

I
.

I
n

I
o
‘

O
I

”
I

I

I
.

I

D
g
.

o
g

.
-
.
I
I
I
.

0
"

a
.
~
.
.
.
-
o

.
-
-
.
u

o
c
h
.
o
v
I
-

o
-
-
.
I
.
I

.
O
I
-

o
y
h
O
I
~
.
*

,
.
,
.
-
.

.
«
a
.
.
.
-
-
-

I
.
0

.
.
-
-
.
-

.
a

.
.
.

I
.

.
.

.
.

.
‘
.

.
.
,

.
.
.
.

.
g

-
-

.
.
.
I
I
.

-
.
.
.
-
I
.
o

.
.

I
.

o
-

4
-

-
u
.
.
.
o

.
.

a
.
.
-
-
.
.
-
.
.

o
v
.
.
.
.
.

.
‘
0

‘
J
'

I
'

"
‘

"
I

-
I

‘
O
-

7
0

”
I

I
~

.
.
0
.
.
.

I
I
'
d
-
'
1
.

n
o

-
.
.
.
A

I
I
.
.

<
o
'
4
<
.
o
v
.
.
l
u

I
I

.
I
.

.
.
.
<
-
0
"
t
0
6
l
.

«
I
.
.
.

.
I
.
.
.

n
-
.
.

-
.

o
4
"
.

u
.
a
-
.
-

V
.
‘
.

I
-
-

.
.
-
.

n
o

'
l
-
'
.

.
.

I
.

.
I
.

.

I
.
.

I
.

I
0
'
.
.
.

I
.

g
.

I
'
_
.
.

c
-
I

-
.

'
-
-

n
-
o
I
-
.
.

v
I
.
‘

.
-
-

.
v
u
~

.
-

.
.
.
I

.
.

.
.

,
.
.

.
o

-
I

N
-

-
l

.
5

n
u

.
‘
u

I
D

o
o
-
o
:

.
-

.
I

.
.

.
I
.
-
.
.

g
.
.

.
.
I

~
-
I
I

-
.

.
l

-
.
.

-
I

.

.

—
I

I
I

.

A
-

.
o

u
0

u
o

I
-

.
.

a
.

-

—

'
'

'
.

‘
.

‘
v

o
o

o
‘

.
-

.
f
.
“

“
-
0
.
:

.
.

g
'

"
.
'
6
‘
?

Y
‘
"
'
1

’
‘

'
r
'
”

“
I

'
-

,
u
-
Q
“

u
.

A
,
1
.
”

‘
.

(
’
.

_
.
I

L
,

I
'
_
"
‘
I

I
‘

f
‘

‘
.

.
I

‘
f
‘
I
-
'

.
I

.
.
5

_
.
U
'
“
m

*
v

.
’

.
.
.

R
a
v
i

r
u
i

:
\

1
.
1
“
.
“

r
'

r
,
-
4
‘
”
V
A
T
-
1
'

i
.
"

.
A

“
r
"
‘
,
"
:
:
“
-
’
.
"
.
I
‘
.
5
'
_
Y
'
,
-
'
.
'
.
'
,
-

‘
-

I
‘
V
r
“
"
'
l
>
q

'
,

-
“
'
1
'
“

I
I

I
9
4

-
l

s
I

II
‘
”
r
"
.

I
‘
'
u
“
m
y
.

I
I

-
-

.
n

‘
m
‘

'
*
‘
“

-
'

v
"

w
.
"

I
;

‘
I
‘
3
3

v
L
l

r
,
'

"
‘
3
‘
"

r
“
\

‘
L
4
"

I
,
‘
)
v
5
'
3
.
)

I
)
[
‘
1
9

r
,

a
I
f
I
.

I
I
J
J
I
‘
L
r
I

l
“
)
‘
t
‘
;
«
‘
v
"
‘
“
A
.
”

x
V

I
,
A

.
L

)
,_

g
‘

_
"
u

I
“
.

7
"
R
’
v
r
a
l
r

-
.
,

-
-

.
.
-

.'.
-

.
.
-
-

'
'
H
M
;

.
.
.
c
u
m
-
.
q
o
fl

"
3
.
1
,
"
:
‘
3
'
7
'
9
‘
,

'
.

:
3
4
-

3
I
~

.
.
”
g
n
u
!

1
3
0
.
1
,
.

.
-
g

.
0
.

v
1
.

‘
.
1
.

!
:
'

.
;

I
I

“
a
!
”

a
.

-
n

)
I
I
S

a
;

w
'
u

a
h

1
"

x
-
.

“
I
f
!

(
M
r

‘1'
l

“
I

I
“
:
n
"
L
I
J

W
t
.

4
3

I
v

I
.
1
}

I
1
.
.

5
,
4
u
”

'
h
,

J
’
m
.

.
g
4
.
.
.

.
,

u
»
.
.
.

.
k

I
.
.

o
n

o
.

l
.

I
.
"

4
4
.

I
-
.

.
.

a
.
"
O

.
'

.
-

-
u
-

q
'

I
'
.

.
-
,
,

.
.

1
9
.
.

.
.

~
‘

,
l

,
‘

~
.

,
‘t

‘
.

.

‘
.

I
I
‘
O
I

'
I

'
.
,

I
I
"
'
1
'

a
.

I
I

I
l

fl
-
‘
W
‘
O
fl
k

"
‘
9

9
)
:
.
.
f
"
fi
"
l
“
‘
”
-
I
Q
"

d
‘
I
I
‘
I
O
-

V
I
-
fi
v
‘
I
Q
-
I
I
I
-

1
0
‘
h
u
fi
.
W
L
W
I
V
‘
“
!

‘
3
.

I
.
I
n
g
q
h
q
‘

.
Q
I
Q

o
-
{
v

I
.

.
q

I
I
9
”
“
q
u
9

,
v

7
I
;

’
fi

_
_

y
I

“
’

w
V
“

>
I
.

I_
n

‘
0
'
.
D

.
3
“
a
.

u
v
u
o
u
_
v
.
n

s
o
-
.
.
»

.
.

.
—
-
.
,
-
.
.
.

_
,

.
.
.

)
.

.
.
.
f

.
I
.

.
”
.
1
,
“

.
1

.
H
,

u
p
.

«
I

I
u
.
.
.

-
.
.
.
n
.
4

.
u
.

I
l
!
.
-
\
~
I
J
.
|
~
,

.
r
u
n
.
.
.
1

”
I
n
"
.
.
.

t
.
3
.

,
'
0
'
q
-
O
y
u
p
.
.
.

I
.
‘
4

.
“
9
.
4
.
.
.
4
.

.
.
1
3
.

.
1
:
‘
-
I
fi
«
-
l
~
.
q

I
;

I
I
I

I
»

I
I
I
r

»
1

I
.
“

4
u

a
I
l
i
a
'
4
5
“
.
.
.
q
u

t
'
”
"
fl
‘
l

I
.
I
»
.

-
.

~
.
-

-
I

.
.
o
.

.
.
u

.
-

.
.

.
.

.
.

.

i
-
I
H
-
a
-
h
|

.
d

1
0
3
‘

.
-
u

q
I
|
¢
q
4
~
n
t
h
-
u
o

-
I
O
'
I
p
e
g
.
‘
[
0
6
"
.

o
.
4

t
.
.
.

I
»
.
-

I
I
I

4
.
.
.
4
”
u
p
.
.
.

.
n

.
-
I
.
,
.
.
~
.
v
m
.
‘
u
-
.
.
s
.
.
.

n
T
.
.
.
.
.
I
“
.
u
u
.
a
.
p
.
-
n
g
g
.
o
r
1
‘
.
.
-

,
u
u
q
c
o
‘
fi
'
o
i

“
I
I
q
-
I
—
o
-
m
u
s
u
-
1
‘
I
b
v
r
n
d
a
o
-
I
-
O
I
I
”
W
i
n

“
O
D
I
'
H
'

I
n
fi
’
t
o
l
l
d
p
I
t
“
.

.
-

v
.
.
-

I
n
-
n
-
I
u

-
-

-
.
.
o

.
c
'
u
-
p
.
.
.
I
.

.
.
.
I
-
.
o
o
o
o
u
.

.
.

-
-
a

.
4

-
.

I
’
0

.
O

I
.
1

I
.

I
-

‘
I
“

.
‘
0
.
a
-
Q
I
I

I
Q
t

I
I

.
-
I
v

.
.

'
I

I
.

I
‘
.

I
.
.
.

.
.

.
.
.

_
g

.
.
.

.
.
.

.
‘

I
v

I
I

4
.

-
.
.

.
-

.
.

-
.

I
y

.
-

I
o

.
-

\
‘
t
fl
-
fl
o
.
-
-
D

.
I
'

.
A

.
.
u
-

.
-

.
-

-
9
-
.

a
n

7
:

-
.
.

.
.

.
n
.
.
.

.
.

.
c

-

.

A
I
L
—
—

20‘ ‘ LIBRARY

Michigan State

lJnhmusfiy

This is to certify that the

dissertation entitled

Towards Automated Model Revision For Fault-Tolerant

Systems

presented by

FUAD ABUJARAD

has been accepted towards fulfillment

of the requirements for the

Ph.D. degree in Computer Science

WMlaw

Majo‘r’ Professor’s Signature

95 i ii l0
i F

Date

MSU is an Affirmative Action/Equal Opportunity Employer

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K:IProleoc&Pres/CIRCIDateDue.indd

TOWARDS AUTOMATED MODEL REVISION FOR

FAULT-TOLERANT SYSTEMS

By

FUAD ABUJARAD

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2010

ABSTRACT

TOWARDS AUTOMATED MODEL REVISION FOR

FAULT-TOLERANT SYSTEMS

By

FUAD ABUJARAD

Automated model revision of distributed programs is one of the emerging and impor-

tant approaches for achieving and maintaining program correctness. In this approach, an

existing model is automatically revised to satisfy new properties. Such model revision

is required when an existing model/program is subject to a newly identified fault, a new

requirement, or a new environment. Thus, model revision is especially beneficial in the

development of systems that need high assurance. To apply model revision in practice, we

need to develop tools that are user friendly, comprehensive, and efficient.

However, due to their limitations, the current model revision tools and techniques are

not widely used in the development of practical systems. More specifically, some of the

limitation are that they suffer from a high learning curve, they require high time and space

complexity, they need many details to be specified that otherwise could be automatically

discovered, and they do not cover different types of revision.

Taking into consideration the aforementioned limitations, in this dissertation, we derive

theories, develop algorithms, and build tools to advance the state-of-the-art of the auto-

mated model revision. Our approach comprises four main elements: First, we reduce the

learning curve for the automated model revision techniques by utilizing existing design

tools to perform the revision under-the-hood. Second, to permit the designer to efficiently

describe the model to be synthesized and to minimize the user input, we develop algorithms

and tools to automate the generation of the legitimate states of the original model, thereby

reducing the burden of the designer. Third, to utilize the available computing resources and

to efficiently complete the revision, we utilize both symmetry and parallelism to speedup

the automated revision and to overcome its bottlenecks. Fourth, to provide comprehensive

revision and to cover more types of model revision, such as nonmasking and stabilizing

fault-tolerance, we develop algorithms and tools to allow for addition of new types of fault-

tolerance. To validate our approach and illustrate its feasibility, we apply it to several case

studies.

© Copyright by

FUAD ABUJARAD

2010

I dedicate this dissertation to my wonderfulfamily. Particularly, to my

parents, who believed in diligence, science, and the pursuit ofacademic

excellence. To my beloved wife, Samah, who has been patient and

supportive with these many years ofresearch, and to our lovely kids Haya,

Khaled, and Amir, who are the joy ofour lives.

ACKNOWLEDGMENTS

I am extremely grateful to all who helped me complete my PhD. program. First and

foremost, it was the unconditional support of my wife, Samah. Her support, encourage-

ment, quiet patience, and unwavering love were undeniably the bedrock upon which the

past eleven years of my life have been built. Her tolerance of my changing moods is a

testament in itself of her unyielding devotion and love. I would like to thank our three

children, Haya, Khaled, and Amir who made this all possible. My family made tremen-

dous sacrifices so that I could spend time on my doctoral education. They encouraged and

pushed me to continue in my pursuit.

I would like to gratefully and sincerely thank Dr. Sandeep S. Kulkarni for his guid-

ance, understanding, and patience during my graduate studies at Michigan State University.

His mentorship was paramount in providing a well-rounded experience consistent with my

long-term career goals. He encouraged me to not only grow as an experimentalist but also

as an independent thinker. For everything you have done for me, Dr. Kulkarni, I thank you.

I would like to thank the Department of Computer Science and Engineering at MSU,

especially those members of my doctoral committee for their input, valuable discussions,

and availablity. In particular, I would like to thank Dr. Laura Dillon and Dr. Betty H. C.

Cheng, as well as Dr. Jonathan Hall from the Department of Mathematics. This dissertation

would not have been nearly as complete without your help.

Additionally, I am very grateful for the friendship of all the members of the SENS lab

research group, especially Ali Ebnenasir, Mahesh Arumugam, Borzoo Bonakdarpour, and

Jingshu Chen, with whom I worked closely and co-authored some of my papers during my

vi

PhD. program.

Finally, and most importantly, I would like to acknowledge my parents, Suleiman and

Hamamah, for their unconditional love and for their faith in me. It was under their watchful

eye that I gained so much self—steam and an ability to tackle challenges. Also, I would like

to thank my brothers and sisters for their continuous support and unending encouragement.

vii

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES ... xiv

1 Introduction 1

1.0.1 Motivations and Goals 3

1.0.2 Thesis 4

1 .0 .3 Contributions 5

1.0.4 Outline 8

2 Preliminaries 9

2.1 Models and Programs 9

2.2 Modeling Distributed Programs 12

2.2.1 Write Restrictions 13

2.2.2 Read Restrictions 13

2.2.3 Example (Group) 13

2.2.4 The Group Algorithm 14

2.3 Specification 16

2.4 Faults 18

2.5 Fault-Tolerance 19

2.6 Example: (Data Dissemination Protocol in Sensor Networks) 20

3 Under-The-Hood Revision 24

3.1 Introduction to SCR 24

3.1.1 SCR Formal Method 25

3.1.2 Automated Model Revision to Add Fault-Tolerance 29

3.2 Integration of SCR toolset and SYCRAFT 30

3.2.1 Transforming SCR specifications into SYCRAFI' input 30

3.2.2 Translation from SCR Syntax to SYCRAFI‘ Syntax 32

3.2.3 Modeling of faults 32

3.2.4 Adding fault-tolerance to SCR specifications 33

3.3 Case Studies 33

3.3.1 Case Study 1: Altitude Switch Controller 34

3.3.2 Case Study 2: Cruise Control System 37

3.4 Summary 39

4 Expediting the Automated Revision Using Parallelization and Symmetry 40

4.1 Introduction 41

4.2 Issues in Automated Model Revision 43

4.2.] Input for Byzantine Agreement Problem 43

4.2.2 The Need for Modeling Read/Write Restrictions 45

4.2.3 The Need for Deadlock Resolution 46

viii

4.3 Approach 1: Parallelizing Group Computation 48

4.3.1 Design Choices 49

4.3.2 Parallel Group Algorithm Description 50

4.3.3 Experimental Results 54

4.3.4 Group Time Analysis 59

4.4 Approach 2: Alternative (Conventional) Approach 60

4.4.1 Design Choices 61

4.4.2 Algorithm Sketch 62

4.4.3 Experimental Results 66

4.5 Using Symmetry to Expedite the Automated Revision 69

4.5.1 Symmetry 69

4.5 .2 Experimental Results 71

4.6 Summary 77

Nonmasking and Stabilizing Fault-Tolerance 80

5.1 Introduction 81

5.2 Programs and Specifications 85

5.3 Synthesis Algorithm of the Nonmasking and Stabilizing Fault-Tolerance . . 86

5.3.1 Constraint Satisfier 87

5.3.2 Algorithm Illustration 90

5.4 Expediting the Constraints Satisfaction 91

5.4.1 Design Choices for Parallelism 91

5.4.2 Partitioning the Constraints Satisfaction 93

5.5 Case Studies 96

5.5.1 Case Study 1: Stabilizing Mutual Exclusion Program 96

5.5.2 Case Study 2: Data Dissemination in Sensor Networks 103

5.5.3 Case Study 3: Stabilizing Diffusing Computation 106

5.6 Choosing Ordering Among Constraints 111

5.7 Reducing the Complexity with Hierarchical Structure 117

5.8 Summary 119

Legitimate States Automated Discovery 121

6.1 Introduction 122

6.2 The “Weakest Legitimate State Predicate Generator (stpGenerator)” Al-

gorithm 124

6.2.1 Weakest Legitimate State Predicate Generator 125

6.2.2 Safety Checker 125

6.2.3 Liveness Checker 126

6.3 Application of stpGenerator in Automated Model Revision 131

6.3.1 Case Study 1: Byzantine agreement program 131

6.3.2 Case Study 2: Token Ring 135

6.3.3 Case Study 3: Mutual Exclusion 136

6.3.4 Case Study 4: Diffusing Computation 138

6.4 Summary 139

ix

7 Automated Model Revision Without Explicit Legitimate States 141

7.1 Introduction 142

7.2 Problem Statement 144

7.3 Relative Completeness (Q. 1) 146

7.4 Complexity Analysis (Q. 2) 148

7.4.1 Complexity Comparison for Partial Revision 148

7.4.2 Complexity Comparison for Total Revision 153

7.4.3 Heuristic for Polynomial Time Solution for Partial Revision . 155

7.4.4 Algorithm for Model Revision Without Explicit Legitimate States . 156

7.4.5 Summary of Complexity Results 159

7.5 Relative Computation Cost (Q. 3) 161

7.6 Summary 162

8 Related Work 163

8.1 Model Checking 164

8.2 Controller Synthesis and Game Theory 167

8.3 Model Revision and Automated Program Synthesis 168

8.4 Parallelization and Symmetry 170

8.5 Nonmasking and Stabilizing Fault-Tolerance 172

8.6 Legitimate States Discovery 173

9 Conclusion and Future Work 175

9.1 Contributions 175

9.2 Future Research Directions 182

BIBLIOGRAPHY .. 187

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.11

3.12

4.1

4.2

4.3

4.4

LIST OF TABLES

Monitored Variables of the altitude switch controller system (ASW)..... 28

Mode transition table for the mode class mcStatus. 28

Condition table for cWakeUpDOI. 29

mRoom Mode Table 30

Translation rules 32

The mcStatus mode table translated. 35

The SYCRAFT fault section. 36

The fault-tolerant mcStatus mode table. 36

Fault-tolerant mode class mcStatus. 37

Fault intolerant mode class mcCruise. 38

The SYCRAFT fault section. 38

Fault-tolerant mode class mcCruise. 39

Deadlock scenario 1 (The underlined values indicates which variable is

being changed by the program action/fault. For reasons of space the true

and false values are replaced by 1 and 0 respectively for the variables b

and f.) 47

Deadlock scenario 2 (The underlined values indicates which variable is

being changed by the program action/fault. For reasons of space the true

and false values are replaced by 1 and 0 respectively for the variables b

and f.) 48

Group computation time for Byzantine Agreement. PR: Number of pro-

cesses. RS: Size of reachable state space. GT(s): Group time in seconds.

SR: Speedup ratio. 60

Group computation time for the Agreement problem in the presence of fail-

stop and Byzantine faults. PR: Number of processes. RS: Size of reachable

state space. GT(s): Group time in seconds. SR: Speedup ratio. 60

xi

4.5

4.6

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Group computation time for token ring. PR: Number of processes. RS:

Size of reachable state space. GT(s): Group time in seconds. SR: Speedup

ratio....................................... 61

The time required for the revision to add fault-tolerance for several numbers

of non-general processes of BA in sequential and by partitioning deadlock

states using parallelism.PR: Number of processes. RS: Size of reachable

state space. DRT(s): Deadlock resolution time in seconds. TST(s): Total

revision time in seconds. 68

Stabilizing Mutual Exclusion, linear topology 99

Stabilizing Mutual Exclusion, binary tree topology. 100

Stabilizing Mutual Exclusion using Constraints partitioning. Cnst t(s) :

Total time spent in constraints satisfaction in seconds. Syn t(s): Total revi-

sion time in seconds. Mem (MB): Memory usage in MB........... 101

Stabilizing Mutual Exclusion using Group threading. Grp t(s) : Total time

spent in Group computation in seconds. Syn t(s): Total revision time in

seconds. Mem (MB): Memory usage in MB. 102

Nonmasking with linear topology data dissemination program. 106

Data Dissemination program using Constraints partitioning. Grp t(s) :

Total time spent in Group computation in seconds. Syn t(s): Total revision

time in seconds. Mem (MB): Memory usage in MB. 107

Data Dissemination program using Group threading. Grp t(s) : Total time

spent in Group computation in seconds. Syn t(s): Total revision time in

seconds. Mem (MB): Memory usage in MB. 108

Stabilizing Diffusing Computation, linear topology. 1 10

Stabilizing Diffusing Computation, binary tree topology. 110

Stabilizing Diffusing Computation program using Group threading. Grp

t(s) : Total time spent in Group computation in seconds. Syn t(s): Total

revision time in seconds. Mem (MB): Memory usage in MB......... 112

Stabilizing Diffusing Computation using Constraints partitioning. Cnst

t(s) : Total time spent in constraints satisfaction in seconds. Syn t(s): Total

revision time in seconds. Mem (MB): Memory usage in MB......... 113

Stabilizing Mutual Exclusion with linear topology using random con-

straints satisfaction. 115

xii

5.13 Stabilizing Diffusing Computation with linear topology using random con-

straints satisfaction............................... 116

6.1 The time required to generate the weakest legitimate state predicate

(Byzantine Agreement)............................. 134

6.2 The time required to generate the weakest legitimate state predicate (token

ring)....................................... 1 36

6.3 The time required to generate the weakest legitimate state predicate (Mu-

tual Exclusion). 138

7.1 The complexity of different types of automated revision (NP-C = NP-

Complete). 160

7.2 The time comparison for the Byzantine Agreement program. 162

xiii

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

5.2

5.3

LIST OF FIGURES

The transformation cycle between SCR toolset and SYCRAFT. 34

The time required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of non-general processes of BA in sequential

and parallel algorithms. 55

The time required for the revision to add fault-tolerance for several numbers

of non-general processes of BA in sequential and parallel algorithms. 56

The time required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of token ring processes in sequential and

parallel algorithms. 57

The time required for the revision to add fault-tolerance for several numbers

of token ring processes in sequential and parallel algorithms. 58

Inconsistencies raised by concurrency. 67

The time required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of BA non-general processes in sequential

and symmetrical algorithms. 72

The time required for the revision to add fault-tolerance for several numbers

of BA non-general processes in sequential and symmetrical algorithms. . . 73

The tttttime required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of token ring processes in sequential and

symmetrical algorithms. 74

The time required for the revision to add fault-tolerance for several numbers

of token ring processes in sequential and symmetrical algorithms. 75

The time required for the revision to add fault-tolerance for several numbers

of BA non-general processes using both symmetry and parallelism. 76

Constraints ordering and transitions selections. 90

The holder tree 98

Complexity and hierarchy for linear topology 117

xiv

5.4

7.1

7.2

7.3

8.1

Complexity and hierarchy for the binary tree topology 119

Model Revision with Explicit Legitimate States................ 142

Model Revision without Explicit Legitimate States. 143

Mapping of (x 1 Wm) /\ (fix; V -wx2) into corresponding program transitions.

The transitions in bold show the revised program where x1 = true and x2 :

false. 150

Model Checking and Automated Model Revision............... 167

XV

Chapter 1

Introduction

The rapid growth of computer systems is increasing our reliance on them more than ever.

Therefore, the burden of ensuring the correctness of reliable hardware and software sys—

tems is significantly growing. Model checking is one of the commonly used techniques to

provide such assurance, especially for finite state concurrent systems [48,49,64]. Given

a model of a system, a model checker verifies whether this model meets a given prop-

erty. If the model does not satisfy that property, the model checker (typically) gives a

counter-example. Then, the model needs to be modified to satisfy the desired property.

Consequently, such modification will require another cycle of verification.

Based on this observation, in this dissertation, we focus on model revision [26,29,

61,96] where an existing model is revised so that it satisfies a given property of interest.

Model revision is required in several contexts. For example, it is required to revise an

existing model to fix a counter-example, i.e. a bug. It is also required if the original speci-

fication was incomplete and the model has to be revised to meet the missing specification.

Furthermore, it is required to respond to faults introduced by a change in the environment.

When a program is deployed in a new environment, it may be subject to faults that were

not considered in the original design. Moreover, even if the faults were known in the initial

design, to provide separation of concerns, it is desirable to allow the designer to focus on

the functionality aspect and add fault-tolerance subsequently. In either case, it is desired

that we revise the program to add fault-tolerance.

One requirement for such revision is that the existing program requirements continue

to be satisfied [101]. Also, in the above contexts, it is more practical to reuse the existing

program in the construction of the revised one [25]. Performing such revisions manually

has the potential to incur a huge cost as well as introduce new errors. Therefore, automat-

ing such revisions is desirable for reducing cost and guaranteeing assurance. One approach

to gain assurance in such program revision is by automated model revision (also known as

automated incremental synthesis) [27,30,31,55,59,101,103], which guarantees that the

revised program is correct-by-construction. The automated model revision to add fault-

tolerance takes a fault-intolerant program, program specifications, and faults as an input

and generates a fault-tolerant program as an output. More specifically, it reuses the original

program (which is fault-intolerant) in synthesizing its fault-tolerant version [101]. More-

over, since the synthesized program is correct-by-construction there is no need to reverify

its correctness.

The automated model revision (or, incremental synthesis) of fault-tolerant programs is

highly desirable, as it allows the designer to focus on the normal system behavior in the

absence of faults and leaves the fault-tolerance aspect to the automated techniques. Ini-

tially, Kulkarni and Arora [101,102] presented an algorithm for synthesizing fault-tolerant

programs. The input to their algorithm is a fault-intolerant program that satisfies its spec-

ification in the absence of faults but provides no guarantees in the presence of faults. The

output of their algorithm is a fault-tolerant program that continues to satisfy its specifica-

tions in the absence of faults and provides the desired level of fault-tolerance to tolerate

the given faults. Later, in [59] Ebnenasir and Kulkarni presented an enumerative (explicit-

state) implementation to the revision algorithm. This was a significantly important step,

since it enabled them to verify the concepts of the revision and demonstrate the applica-

bility of the automated revision algorithms [59]. However, similar to other enumerative

implementations, it was subject to the state explosion problems and was only suitable to

revise small programs. Recently, Bonakdarpour and Kulkarni presented a symbolic-based

implementation for the revision algorithm [27,30]. In this implementation, the components

of the revision algorithm are constructed using Boolean formulae represented by Bryants

Ordered Binary Decision Diagrams [33]. This was the first time where moderate to large

050 and beyond) have been synthesized. The symbolicsized programs (a state space of 1

implementation enabled them to identify bottlenecks in the automated revision. These bot-

tlenecks included, deadlock resolution, computation of reachable states in the presence of

faults, and addition of recovery paths.

1.0.1 Motivations and Goals

In practice, applying the automated model/program revision in real life applications is dif-

ficult due to the following factors:

1. The use of the existing tools for automated model revision has a high learning curve.

The designer is required to learn different aspects of modeling distributed programs,

program specification, faults, and fault-tolerance [27,30,59]. To alleviate this diffi-

culty, we focus on moving the task for adding fault-tolerance to be under-the-hood.

In this manner, we make automated revision more accessible [3].

2. Current model revision tools require the designer to specify the fault-intolerant

model, the model specifications, the model legitimate states, and the faults [27,30,31,

59,101,103]. Of those, identifying the set of legitimate states is the most demanding

task. The designer needs to specify the legitimate states of the model and describe

them in a logical formula. Although specifying the model, the specifications, and the

faults is a must, it is an open question as to whether the explicit specification of the

legitimate states is necessary. To alleviate this difficulty, we focus on designing an

algorithm that provides automatic generation of the legitimate states from the model

actions and specifications [6].

3. Current model revision tools [27, 30,59] focus on the addition of masking fault-

tolerance, where both safety and liveness are preserved during recovery. However,

they do not address other types of fault-tolerance, including nonmasking and stabi-

lizing fault-tolerance. In nonmasking fault-tolerance, safety can be violated during

recovery and the program should tolerate temporary perturbation. In stabilizing fault-

tolerance, the program recovers to its legitimate states from any arbitrary state [57].

To provide broader domain of the problems that can be resolved by automated model

revision, we develop algorithms for the automated addition of nonmasking and sta-

bilizing fault-tolerance [4].

4. The current model revision tools utilize multiple heuristics to reduce the complex-

ity of the revision [27, 30,59,101]. However, to improve the efficiency further, we

need to utilize advantages from model checking [48,49,64,93]. Hence, we develop

techniques that concentrate on reducing the complexity of the revision using symme-

try and/or parallelism. We show that these approaches provide a significant speedup

separately as well as together [5].

1.0.2 Thesis

Thesis Statement: The automated model revision can be made more usable, compre-

hensive, and efficient through the use offour key elements: the use of existing design

tools asfront end to the automated model revision tools, the introduction ofnew revision

algorithms that handle different classes offault-tolerance, the use ofthe original model

specification and actions to automatically discover other inputs to the revision algorithm,

and the utilization ofsymmetry andparallelism.

To validate this thesis statement, we have derived theories, developed algorithms, and

built tools to advance the automated model revision through a usable, comprehensive, and

efficient toolset. First, to reduce the automated revision learning-curve, we utilized existing

design tools (i.e. SCR toolset) such that the automated revision is done under-the- hood

[3]. Second, to revise a broader range of programs, we developed algorithms and tools

to add new types of fault-tolerance [4, 5]. Next, we reduced the revision parameters by

automating the discovery of the program legitimate states, thereby reducing the burden of

the designer [6]. Finally, to overcome the automated revision bottlenecks and reduce its

time complexity, we utilize both symmetry and parallelism to speedup the revision time

[2,5].

1.0.3 Contributions

Our contributions can be grouped into four major categories:

Under-the-hood Revision

It is desirable that the designer utilizes the automated model revision tools with minimal

prerequisite knowledge of the details of the automated revision techniques. We focus on

performing the automated revision under-the-hood. Therefore, we utilize existing design

tools, such as the SCR toolset [21,84,87], in the automated revision. The SCR toolset is a

set of tools used to formally construct and verify the requirements specification document.

It is widely used in constructing many mission critical systems. Our approach is to combine

the SCR toolset with the tool SYCRAFT that automates the model revision. This approach

is desirable, as it allows one to perform functions of the automated model revision without

the need to know its details. Of course, it would be necessary to convert (l) the SCR

specification into a format that can be used with SYCRAFT and (2) the revised fault-tolerant

program into corresponding SCR specification. 1

Based on the above discussion, we combine the SCR toolset with the automated model

revision tool SYCRAFI' [27,30]. More specifically, we let the designer specify the program

requirements through the SCR toolset interface and we handle the aspects of the automated

revision of fault-tolerance using SYCRAFT.

Legitimate States Generator

One of the requirements of the model revision algorithm is identifying the set of the legiti-

mate states of the program being synthesized. This set represents the states from where the

execution of the actions of the model is correct. One approach for providing fault-tolerance

is to ensure that after the occurrence of faults, the revised program eventually recovers to

the legitimate states of the original model. Since the original model met its original specifi-

cation from these legitimate states, we can ascertain that eventually a revised model reaches

states from where subsequent computation is correct.

One of the problems in providing recovery to the legitimate states, however, is that these

legitimate states are not always easy to determine. Existing model revision approaches

(e.g., SYCRAFT [27, 30]) have required the designer to specify these legitimate states ex-

plicitly. It is straightforward to observe that if these legitimate states could be derived

automatically, then it would reduce the burden put on the designer, thereby making it easier

to apply these techniques in revision of existing programs. We focus on identifying the

largest set of states from where the existing model is correct.

Nonmasking and Stabilizing Fault-Tolerance.

To provide comprehensive tools for the automated model revision, we focus our atten-

tion on automated addition of nonmasking and stabilizing fault-tolerance to fault-intolerant

programs. Intuitively, a nonmasking fault-tolerant program ensures that if the program is

perturbed by faults to an illegitimate state, then it would eventually recover to its legitimate

states. However, safety may be violated during recovery [101].

The current model revision tools [30,59] support the design of masking fault-tolerance

only. However, there are several reasons that make the design of nonmasking fault-

tolerance attractive. For one, the design of masking fault-tolerant programs, where both

safety and liveness are preserved during recovery, is often expensive or impossible, even

though the design of nonmasking fault-tolerance is easy [15]. Also, the design of nonmask-

ing fault-tolerance can assist and simplify the design of masking fault-tolerance [105].

A special case of nonmasking fault-tolerance is the stabilizing fault-tolerance [54,56],

where, starting from an arbitrary state, the program is guaranteed to reach a legitimate state.

Stabilizing systems are especially useful in handling unexpected transient faults. Moreover,

this property is often critical in long-lived applications where faults are difficult to predict.

.We present an algorithm for adding nonmasking fault-tolerance to an existing program

by performing three steps [4]. The first step is to identify the set of legitimate states of the

fault—intolerant program. This set defines the constraints that should be true in the legitimate

states. The second step is to identify a set of convergence actions that recover the program

from illegitimate states to a legitimate state. This can be done by finding actions that satisfy

one or more constraints. The last step consists of ensuring that the convergence actions do

not interfere with each other. In other words, the collective effect of all recovery actions

should, eventually, lead the program to legitimate states.

Expediting the Automated Revision

To reduce the time complexity of the automated model revision, we first need to identify

bottleneck(s) where symmetry and parallelism features can provide the maximum impact.

Based on the analysis of the experimental results from Bonakdarpour and Kulkarni [30],

the performance of the revision suffers from two major complexity obstacles, namely gen-

eration offault-span and resolution ofdeadlock states. -

To effectively target those bottlenecks, we present two approaches for utilizing the

multi-core architecture in reducing the time required to complete the automated revision.

The first approach is based on the distributed nature of the program being revised. In par-

ticular, when a new transition is added (respectively, removed), since the process executing

it has only a partial view of the program variables, we need to add (respectively, remove) a

group of transitions based on the variables that cannot be read by the process. The second

approach is based on partitioning deadlock states among multiple threads. We show that

this provides a small performance benefit. Based on the analysis of these results, we argue

that the simple approach that parallelizes the group computation is likely to provide maxi-

mum benefit in the context of deadlock resolution in the automated revision of distributed

programs. To further expedite the automated model revision, we use symmetry speedup

the revision algorithm.

1.0.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the preliminar-

ies and presents the elements of the automated incremental model revision. In Chapter

3, we present our approach to minimize the prerequisite knowledge of the details of the

automated revision techniques and provide practical approaches to perform the automated

revision under-the-hood. In Chapter 4, we show how we utilize parallelism and symmetry

to expedite the automated model revision. Subsequently, to revise a broader range of pro-

grams, in Chapter 5 we present our approach for the automated addition of nonmasking and

stabilizing fault-tolerance to fault-intolerant programs. In Chapter 6, we show how we can

reduce the designer burden by automatically discovering the legitimate states of the model

being revised. Later, in Chapter 7, we analyze the effect of performing the automated

model revision without explicitly specifying the legitimate states. We present the related

work and literature review in Chapter 8. Finally, we present a summary of our contributions

and future research direction in Chapter 9.

Chapter 2

Preliminaries

In this chapter, we formally present the elements of our automated model revision frame-

work. Mainly, we define the notion of models, programs, specifications, faults, and fault-

tolerance. The notion of distributed programs is adapted from Kulkarni and Arora [101].

Definition of faults and fault-tolerance are based on the ones given by Arora and Gouda

[12], Kulkarni [100], and Bonakdarpour [25]. At the end of this chapter, we illustrate the

basic constructs of this framework using a real-world example, an application in sensor

networks.

2.1 Models and Programs

In this section, we present the formal definition of models and programs. A model is

described by an abstract program. Intuitively, a program, p, is described using a finite

set of variables VP 2 {v0,v1,...,v,,}, n 2 0, and a finite set of program actions Ap =

{ao,a1, . . . ,am}, m 2 0. Each variable, v,- E V , is associated with a finite domain of val-

ues, 0;. Let a,- 6 AP be an action, then a; is defined as follows: a,- :: g,- ——> sti; where

g,- is a Boolean formula involving program variables and st,- is a deterministic terminating

statement that updates a subset of program variables.

Before we give a formal definition of programs based on this intuition, we define the

notion of state space and state predicate.

Definition 2.1.1 (state) A state, s, of program p is identified by assigning each variable

in VI) a value from its respective domain, 0;. I

Definition 2.1.2 (state space) The state space, Sp, of p is the set of all possible states of

p.I

Definition 2.1.3 (state predicate) A state predicate of p is Boolean expression defined

over the program variables Vp- Thus, a state predicate C ofp identifies the subset, SC 9 Sp,

where C is true in a state s iff s 6 SC. I

Note that state predicate corresponds to a set of states where the Boolean value of the corre-

sponding predicate is true. Thus, the intersection of two state predicates corresponds to the

conjunction of corresponding functions. Likewise, disjunction corresponds to union, and

so on. Hence, we use these Boolean operators for constructing different state predicates.

For example, let C1 and C2 be state predicates that identify the state space subsets SCI and

5C2 , then C; /\ C2 (respectively C1 V C2) correspond to SCI (1 5C2 (respectively SCl U 3C2)-

Definition 2.1.4 (transition predicate) Intuitively, a program action consists of one or

more transitions. Let (a,- :: g,- —+ st;;) be an action of the program. Then, the corresponding

transitions included in this action are org, where 0t,- 2 {(s0,sl) | g,- is true in so and s1 is

obtained by executing st,- from so}. I

Hence, a transition predicate correspond to an action is a subset of Sp x Sp. A single

transition t is specified by the tuple (s0, s1), where so, s] E Sp and so is the before state and

s; is the after state.

Given a program that is defined in term of VI) and Ap, we can now identify an equivalent

representation in terms of its state space and transitions. In particular based on Vp and Ap,

we can compute Sp, the state space of p and on,- for each action of p. Based on the above,

we formally define the program as follows.

10

Definition 2.1.5 (program) The program p is defined as the tuple (Sp, (a1 , (12,03,or,))

where or,- 6 SP x Sp. I

In many instances, we do not need the details of the individual actions of p. For these

cases, we utilize program transitions 5,,. For the program p = (Sp, (on , a2, a3,a,)) , the

transitions of p is 5,, = (or. U 0L2 U (13 U. . . U 0L1). Whenever it is clear from the context, we

use p and its transitions 5,, interchangeably.

Definition 2.1.6 (closed) Let Sc be a state predicate, then Sc is closed in a program p iff

(V (80,81) I (S0,S]) E 5p 2 (So 6 Sc =>51€ Sc» .I

Definition 2.1.7 (enabled) The action a; is enabled in a state Sj iff the guard of g,- = true

in the states sj. I

Definition 2.1.8 (unfair computation) A sequence of states, 0' = (so,s1,...) is unfair

computation ofp iff

1. Vj : O < j < length(0') : (SJ--1 ,sj), is obtained by executing a program action, say

(a,- :: g,- ——> sti). That is, g,- is true in sj_| and s,- is obtained by executing st,-, and

2. if G is finite and terminates in s, then all the guards of the program actions are false

in S]. I

Computations can also be fair. Intuitively, a fair computation allows a fair resolution

for non-determinism. Next, we define weak and strong fair-computation.

Definition 2.1.9 (weak-fair computation) o = (so, s. , ...) is weak-fair computation ofp

if:

1. 0' is an unfair computation ofp, and

2. if any action, say a;, ofp, is enabled in all states sj, sj+1,sj+2 . .. then Elk : k 2 j: sk+1

is obtained by executing st,- in state sk. I

In weak-fair computation, if some guard , say g5, eventually becomes continuously enabled,

then the corresponding action is guaranteed to execute infinitely often.

11

Definition 2.1.10 (strong-fair computation) o = (s0,s| , ...) is strong-fair computation

iff:

1. 0' is an unfair computation of p, and

2. there exists an action a,- : g; —> st,- ofp such that g,- is true in s and s’ is obtained by

executing st,- in state s, then the transitions (s, s’) are included infinitely often in 0'. I

In strong-fair computation, if some guard , say g, is continuously enabled forever then the

corresponding action must execute infinitely often.

Note that, in this dissertation, we refer to weak-fair computation as afair computation.

Also, our definition of weak-fair computation is equivalent to weakfairness from [1 ,9,65].

2.2 Modeling Distributed Programs

Since we focus on the design of distributed programs, we specify the transitions of the

program in terms of a set of processes, where every process can read and write a subset of

the program variables. The transitions of a process are obtained by considering how that

process updates the program variables. The transitions of the program are the union of the

transitions of its processes.

Definition 2.2.1 (process) A process Pj is specified by the tuple (8},Rj, Wj) where Bj is

a transition predicate in Sp and 5,, = ’19:, 51-. Rj is the set of variable that the process P]

is allowed to read, and W} is the set of variables that the process P} is allowed to write and

W} g R,- E V (i .e., we assume that the program must, first, read the variable to be able to

write it.). I

Notation. Let va(s0) denote the value of variable va in the state so.

A process in a distributed program has a partial view of the program variables,

which introduces write/read restrictions. Therefore, when a new program transition is

added/removed, we need to add/remove a group of transitions based on the variables that

12

cannot be read/writen by that process. The write/read restrictions of the process are defined

as follows.

2.2.1 Write Restrictions

Let P} = (5,-,R,~,Wj) be a process, then the only variables that Pj can write are variables

in Wj. If P} can only write the subset of variables W,- and the value of a variable other

than that in W is changed in the transition (so,s1), then that transition cannot be used in

synthesizing the transitions of P]. In other words, being able to write the subset W} is

equivalent to providing a set of transitions writej(Wj) that Pj cannot use in the revision

algorithm. Clearly, the transition predicate writej(WJ-) is defined as follows.

writej(Wj) = {(so,s]) : (V va :: va 6 (VP—Wj): va(so) 7é va(sl))}.

2.2.2 Read Restrictions

Let P} = (5,-,R,~,Wj), the only variables that Pj can read are variables belonging to Rj.

let t = (so,s1) be a transition in 5,- then we define groupj(t) as the group of transitions

associated with t. Such a group includes transitions of the form (sz,s3) where so and S2

(respectively s1 and S3) are undistinguishable for Pj. By undistinguishable, we mean that

they differ only in terms of the variables that Pj cannot read. Thus, we formally define

groupj(t) as follows:

groupjll) : V(s2,53)

(AV¢RJ(V(SO) =V(Sl) /\ V(52) =V(S3)) /\

AveRJ-(V(SO) =V(Sz) /\ V(Sl) =V(53)))-

2.2.3 Example (Group)

Let p be a program specied using the set of processes P = {P1(= (81,R1,W1)),P2(=

(52,R2,W2))}, the set of variables V = {v1,v2}, and the domains Dv. = {0,1} and

13

D,,2 = {0,1} . Also, let R1 : {VI} (respectively R2 2 {v2}) and W. = {v1} (respectively

W2 2 {v2}) (i.e. each process can only to read and write its own variable). Now, consider

the transition from the state (v1 = 0,v2 = 0) to the state (v1 = 1,v2 = 0). If this tran-

sition is to be included in 8. then it is necessary to include the transition from the state

(v1 = 0, v2 = l) to the state (v1 = 1,vz = 1). Clearly, this should be the case since P1 is not

allowed to read the variable v2, therefore we have to consider the case where vz = 0 as well

as the case where v2 = 1. The automated model revision algorithm adds/removes program

transitions to complete the revision. Therefore, whenever a transition is added or removed,

the revision algorithm must add or remove the corresponding group.

2.2.4 The Group Algorithm

The group algorithm (c.f. Algorithm 1) takes a transition set, trans, as an input and com-

putes the transition group, transg, as an output. Specifically, it creates an array, tPred[],

with number of elements equal to the number of processes such that tPred [i] holds the part

of the group transitions associated with the process i (Line 1). Now, based on W; (i .e. the

set of variables the process i is allowed to write) the group algorithm uses the function

Alloeritei(W,-) to find the set of all transitions which process i is permitted to execute.

Then, it uses this set to find which of the transitions in trans process i is responsible for

(Line 3). Later, it uses the tPred [i] and R; in the function FindGroup to account for all vari-

ables that process i cannot read and compute the transitions that cannot be distinguished

by, i (Line 4). Once the steps in lines 3 and 4 are completed for all processes, the algorithm

collects the transitions of the group in transg (Lines 7-9) and returns.

Observe that for the transition t, groupj(t) can be executed by process Pj while respect-

ing its read/write restrictions. Let tr,- be a set of transitions. Now, based on the notion of

read/write restrictions, tr1 can be included in 5}- iff there exist transitions t1,t2,...t1 such

that tr,- 2 groupj(t]) U groupj(t2) U . . . groupj(t,). Furthermore, let p be a program whose

transitions specified with the processes P1, P2 ...Px. Also, let trp denote a set of transi-

14

Algorithm 1 Group

Input: transitions set trans.

Output: transitions group transg.

MDD* tPred := MDD[numberOfProcesses] ;

for i z: 0 to numberOfProcesses do

tPred[i] := trans /\ Alloerite;(W;);

' tPred[i] := FindGroup(tPred[i],R,-);

end for

MDD transg := false;

for i := 0 to numberOfProcesses do

transg := transg V tPred [i];

end for9
9
9
$
?
?
?
e
r

I
—
i

O : return transg;

tions. Then, trp can be included as transitions of p iff there exists a set of transitions tr],

trj, , ...trJr such that trp = U352] tr,- and tr,- can be included as transitions of process P}.

The way we use this group operation is as follows: When we compute a set of tran-

sitions, say tr, that we need to either add or remove, we ensure that tr can be imple-

mented using read/write restrictions of the synthesized program. Hence, often, we cannot

add/remove tr as is. Instead, we need to revise tr so that it respects the read/write restric-

tions of the program being revised. One operation we utilize for this is called Group, where

Groupmax(tr) returns a superset, say trlarg, that can be included as transitions of the syn-

thesized program. The intuition of Groupmax operation is as follows (c.f. Algorithm 1):

Given a set of transitions, say tr, we use a loop that traverses through all the processes.

While traversing process P-, it computes subset of transitions, say trj, in tr such that each

transition in trj satisfies the write restrictions of process Pj. Then, for each transition in

trj, it applies the group operation describe above to compute other transitions that must be

included. (Note that with the use of BDDs and MDDs (i.e., Binary and Multi-Valued Deci-

sion Diagrams [125]), we do not have to actually evaluate each transition in tr,- separately

to compute the corresponding group.) Finally, it takes a union of all transitions obtained

thus to compute Groupmax(tr).

15

Another operation we utilize is Groupmin. This operation returns a subset, say Irma”,

such that trsmau can be included as transitions of the revised program. The operation

Groupmm is implemented in a similar fashion to that of Group by traversing through all

processes.

Remark. Since Groupm is the operation that is used most frequently in our algo-

rithms, for simplicity of presentation, we drop the subscript and call it Group.

Remark. Note that the groupj(t) is defined only if I does not violate write restrictions

of process Pj. However, for brevity, we do not specify this whenever it is clear from the

context.

The tasks involved in computing one such group depend on the number of processes

and the number of variables in the program. As can be seen from the formula above, to

compute this group the algorithm (c.f. Algorithm 1) needs to go through all the processes

in the program and for each process it has to go through all the variables.

2.3 Specification

Following Alpem and Schneider [7], it can be shown that any specification can be parti-

tioned into some “safety” specification and some “liveness” specification. Intuitively, the

safety specification indicates that nothing bad should happen. And, a liveness specification

requires that something good must eventually happen. Formally,

Definition 2.3.1 (safety) The safety specification, Sfp, for program p is specified in terms

of bad states, SPECbs, and bad transitions SPECb,. A sequence (so,s1, ...) (denoted by 0')

satisfies the safety specification of p iff the following two conditions are satisfied.

1.Vj:0 S j < len(0') : sjgéSPECbS, and

2. Vj I 0 < j < [871(6) 2 (Sj_],Sj) QSPECM. I

16

Definition 2.3.2 (liveness) The liveness specification, Up, of program p is specified in

terms of one or more leads-to properties of the form {I w T . A sequence 0' = (so,s1, ...)

satisfies 9? -> rI ifij: (f is true in S} :> 3k : j S k < len(0‘) : ’I is true in sk). We assume

that 9? fl 'I = {}. If not, we can replace the property by ((f — T) w T). I

Remark. Observe that if p satisfies 9' w T , then it cannot contain computations that start

from 9? and reach a deadlock/termination state without reaching a state in '1' . Likewise, it

cannot contain computations that start from f and reach a cycle without reaching T .

Definition 2.3.3 (specification) A specification, say spec is a tuple (Sfp , va), where

Sfp is a safety specification and va is a liveness specification. A sequence 0' satisfies spec

iff it satisfies Sfp and Up. I

Based on the above definition, for simplicity, given a specification, say spec, defined as

(Sfp , va) we say that spec is an intersection of Sfp and va.

Given a program p and its specification, say spec, p may not satisfy spec from an arbi-

trary state. Rather, it satisfies spec only from its legitimate states (also known as invariant).

We use the term legitimate state predicate I to denote the set of legitimate states of p. In

particular, we say that a program p satisfies spec from 1 iff the following two conditions are

satisfied:

1. I is closed in p, and

2. every computation ofp that starts from a state in I satisfies spec.

A program p satisfies the (safety, liveness, or a combination of both) specification from

the legitimate states, I, iff every computation of p that starts from a state in I satisfies that

specification.

Definition 2.3.4 (legitimate state predicate) Let I be a state predicate, and p satisfies

spec from I, then we say that I is the legitimate state predicate ofp from spec. Note that a

program may have multiple legitimate state predicates. I

17

2.4 Faults

The faults that may perturb a program are systematically represented by transitions. Based

on the classification of faults from Avizienis et al. [18], this representation suffices for

physical faults, process faults, message faults, and improper initialization. It is not intended

for program errors (e .g. buffer overflow). However, if such errors exhibit behavior, such as,

a component crash, it can be modeled using this approach. Thus, a fault for p(——— (Sp, 8,,))

is a subset of 5,, x Sp.

We use ‘p[]f’ to mean ‘p in the presence of f’. The transitions of p[]f are obtained by

taking the union of the transitions ofp and the transitions of f.

Just as we defined computations of a program in Section 2.1, we define the notion of

program computations in the presence of faults. In particular, a sequence of states, 0' =

(so,s1,...), is a computation of p[]f (i.e., a computation of p(= (Sp, 8p» in the presence of

f) iff the following three conditions are satisfied:

1.Vj:0 < j < len(0’) : (sj_l,sj)E (5pr),and

2. if (so,s| , ...) is finite and terminates in state S, then there does not exist state s such

that (s,, s) 6 8p, and

3. ifo is infinite then 3n : Vj > n : (Sj_],Sj) 6 8,,)

Thus, if 0' is a computation of p in the presence of f, then in each step of 6, either a

transition of p occurs or a transition of f occurs. Additionally, 0' is finite only if it reaches

a state from where the program has no outgoing transition. And, if 0' is infinite then 0' has

a suffix where only program transitions execute. We note that the last requirement can be

relaxed to require that 0' has a sufficiently long subsequence where only program transitions

execute. However, to avoid details such as the length of the subsequence, we require that 0’

has a suffix where only program transitions execute.

We use f-span (fault-span) to identify the set of states from where the program satisfies

its fault-tolerance requirement.

18

Definition 2.4.1 (f-span) Let T be a state predicate, then T is an f-span of p from 1 iff

12> T and (V(so,s1) : (so,s1) Epflf: (soET => s1 ET)).I

Thus, at each state where I of p is true, the T ofp from I is also true. Also, T, like I,

is also closed in p. Moreover, if any action in f is executed in a state where T is true, the

resulting state is also one where T is true. It follows that for all computations ofp that start

at states where I is true, T is a boundary in the state space ofp, up to which (but not beyond

which) the state ofp may be perturbed by the occurrence of the actions in f.

2.5 Fault-Tolerance

In this section, we present a formal definition to three classical levels of fault-tolerance;

namely, failsafe, masking, and nonmasking fault-tolerance.

Fault-Tolerance. In the absence of faults, a program, p, satisfies its specification and

remains in its legitimate states. In the presence of faults, it may be perturbed to a state

outside its legitimate states. By definition, when the program is perturbed by faults, its

state will be one in the correspondingf-span. From such a state, it is desired thatp does not

result in a failure, i.e., p does not violate its safety specification. Furthermore, p recovers

to its legitimate states from where p subsequently satisfies both its safety and liveness

specification.

Based on this intuition, we now define what it means for a program to be (masking)

fault-tolerant. Let Sfp and va be the safety and liveness specifications for program p. We

say that p is masking fault-tolerant to Sfp and va from I iff the following two conditions

hold.

1. p satisfies Sfp and va from I.

2. 3 T ::

(a) T is f-span ofp from I.

19

(b) p[]f satisfies Sfp from T.

(c) Every computation of p[]f that starts from a state in T has a state in 1.

While masking fault-tolerance is ideal, for reasons of costs and feasibility, a weaker

level of fault-tolerance is often required. Two commonly considered weaker levels of fault-

tolerance include failsafe and nonmasking. In particular, we say that p is failsafe fault-

tolerant [72] if the conditions 1, 2a, and 2b are satisfied in the above definition. And, we

say that p is nonmasking fault-tolerant [71] if the conditions 1, 2a, and 2c are satisfied in

the above definition.

2.6 Example: (Data Dissemination Protocol in Sensor

Networks)

In this example, we show how we model distributed programs and illustrate some of the

previous definitions from the previous sections. We use the program Infitse, a time division

multiple access (TDMA) based reliable data dissemination protocol in sensor networks

[104]. In this example, a base station initiates a computation in which data are to be sent to

all sensors in the network. The data message is split into fixed size packets. Each packet is

given a sequence number. The base station starts transmitting the packets to its neighbor(s)

in specified time slots, in the order of the packet sequence number. Subsequently, when the

neighbor(s) receive a message, they, in turn, retransmit it to their neighbors and so on. The

computation ends when all sensors in the network receive all the messages.

This protocol does not require explicit acknowledgments to be sent back from the re-

ceiver to the sender. For example, when a sensor sends a message to one of its neighbors it

waits before sending the next message until it knows that the receiver did receive the mes-

sage. In other words, it gets its acknowledgment by listening to the messages the neighbor-

ing sensors are currently transmitting. It only advances to next message if it knows that all

20

its neighbors have attempted to transmit the last message it had sent.

To concisely describe the transitions of the program we use Dijkstra’s guarded com-

mand [53] notation:

(guard) —> (statement);

where guard is a Boolean expression over program variables and the statement describes

how program variables are updated and the statement always terminates. A guarded com-

mand of the form g —> st corresponds to transitions of the form {(so,s1)| g evaluates to true

in so and s1 is obtained by executing st from so}.

The Program.

In this example, we arrange the processes in a linear topology. The base station has N

packets to send to M processes. The fault-intolerant program transmits the packets in a

simple pipeline. For this, each process keeps track of the messages (received/sent) using

two variables r. j and s.j, where r. j is the highest message sequence number received by

process j and s.j is the sequence number of the message currently being transmitted by

process j. Process j increments r.j every time it receives a new message. It also sets s.j

to be the sequence number of the message it is transmitting. The base station transmits a

packet if its neighbor has received the previous packet (action 1N1). A process j, j > 0,

receives a packet from its predecessor if its successor had received the previous packet

(actions IN2 and IN3). Thus, the actions of fault-intolerant program are as follows:

Action for base station:

(1N1) (s.0=r.1)—> s.0 :2 s.0+1;

Action for process j E {1..M-1}:

(1N2) (MISS-(141)) /\ (MESH-1)) A (S-(j- 1) =r-J'+1))

——> r.j,s.j :2 r.j+1,s.j+1;

21

Action for process M:

(1N3) ((r.MSr.(M—l)) /\ (s.(M-—1)=s.M+1))

———> s.M, s.M :2 s.M+1, s.M+l;

Faults.

The faults we consider are such that when a fault occurs a message is lost. To model such

faults for the base station, we add action (F 1), where the base station increments s.0 even

though its successor has not received the previous packet. To model such action for other

processes, we add action (F2), where a process advances s. j even though the successor has

not yet received the previous packet.

(Fl) true ——> s.0 :2 s.0+l;

(F2) ((r-sz-(j-1)) /\ (S.(j-l)=S-(j+1))

—> r.j,s.j :2 r.j+l,s.j+l;

The Set of Legitimate States.

The constraints that define the legitimate states in the case of the data dissemination pro-

gram are as follows. The first constraint states that initially the base station has all the

packets (Cl). A process cannot receive a packet if its predecessor has not received it (C2),

and cannot transmit a packet that it does not have (C3). A process transmits a packet that

is expected by its successor (C4 and C5).

(c1) (s.0=N)

(C2) (Vj=0<jSM=(r-j=s.(j-1)))

(C3) (VJ'IOSjSMib-J'Snjh)

(C4) (s.ogs.1+1)

(C5) (Vj=0<jS(M-l)I(S-J'SS-(j-1)+1)/\(S-jSS-(j+1)+1)))

22

And the legitimate states predicate is:

I=C1/\C2/\C3/\C4/\C5

The data dissemination program has a set of constraints imposed by the model. More

specifically, these constraints identify the set of bad transitions that violate the safety spec—

ification of the program. In particular, the model requires that the reception of a packet

cannot be reversed (MTl), packets can only be received in sequence (MT2), a process can

only receive one packet at a time, it can only receive a packet sent by its predecessor (MT3

and MT4), a process cannot transmit a packet unless it has received it (MTS), and a process

should not transmit a packet unless it is potentially needed by its successor (MT6). Thus,

the set of transitions disallowed by the model are as follows:

MTl: (3j:0<jSM:r.j'<r.j)

MT2: (3j:0<jSM:r.j’<(r.j)+1)

MT3: (3j:0<jSM:(r.j’=(r.j)+l)/\(r.j’7$s.(j—1))/\(r.j’¢s.(j+l))

MT4: (s.M’=(s.M)+1/\s.M’#s.(M—l))

MT5: (Elj:0_<_jSM:(r.j’<s.j’))

MT6: (ElijSjSM—l:(s.j>s.(j+1)+l)/\(s.j’<s.(j+l)+l)

Fault-Tolerant program.

Using the program [NI-1N3 for each process, the faults FH“2, the constraints Sl-SS, and

prohibited transitions MTl-MT6, the output was a nonmasking fault-tolerant program with

the following recovery actions added to it.

(R1) (r.j>s.(j+l)) /\ (s.j>s.(j+1)+1) A (r.j+1=s.(j—1))

——>r.j:= s.(j—l),s.j:= s.(j+l)+l;

(R2) (r.j>s.(j+l)+l) /\ (s.j>s.(j+l)+1)—>s.j :2 s.(j+1)+1;

23

Chapter 3

Under-The-Hood Revision

In this chapter, we present our contributions on performing the automated model revision

while minimizing the effort and the expertise needed to perform such revision. We show

how the designer can continue to utilize existing design tools while the revision is done

under-the-hood. This makes automated revision more useable, as well as makes it available

across different design tools. Specifically, we focus on integrating the automated revision

with the SCR toolset. Part of the reasons behind our choice of SCR toolset is that the SCR

descriptions are precise, unambiguous, and consistent. Also, many industrial farms use the

SCR toolset to develop mission critical systems.

This chapter is organized as follows. In Section 3.1, we briefly describe the SCR formal

method and we provide highlights of the SCR toolset. In Section 3.2, we present our

approach for transforming the SCR specification into input for SYCRAFT. Then, in Section

3.3, we illustrate our approach using two case studies: an Altitude Switch Controller and

an Automobile Cruise Controller. Finally, we summarize the chapter in Section 3.4.

3.1 Introduction to SCR

The Software Cost Reduction (SCR) formal method [22,83,84] is a set of techniques for

constructing and evaluating requirements documents for high assurance systems. SCR uses

24

tables to describe system behaviors and properties, as these tables provide a precise descrip-

tion of the model and capture the mathematical representation of systems. But these tables

consume a considerable amount of time and resources to verify. Therefore, techniques and

tools have been developed to provide a comprehensive framework that automates the vali-

dation and verification of the SCR tables. Hence, the SCR toolset [22,83—87] was created

to serve this purpose. In this section, we describe the SCR formal method and show how

the SCR toolset is used in the design and verification of event-driven systems.

3.1.1 SCR Formal Method

SCR is a set of formal methods for constructing and verifying requirements specification

documents. The US. Naval Research Laboratory (NRL) developed SCR in the late 705.

Since then, it has been used in constructing many mission critical systems. SCR was used

to design and model the A-7 aircraft and to document requirements. It was also used in

the design of requirement specification of the Operational Flight Program (OFP) for the

A-6 aircraft [114], the Bell telephone [91], submarines communication systems, nuclear

plants [88], and many other systems.

The SCR formal method specifies system requirements using tabular notation. Tables

provide a precise and compact way to describe requirements, making it possible for the

user to automatically model and analyze those requirements to identify errors. SCR uses

tables to describe both the system and its environment [85, 86]. The environmental quan-

tities whose values changes the system behavior are described using Monitored variables.

The environmental quantities whose values are changed by the system are represented by

Controlled variables.

To relate the variables of the system and represent constraints on those variables, the

state machine model of the SCR is based on the “Four-Variable Model” that was, initially,

introduced by Paranas [120]. This model describes the desired functionality of an embed-

ded system in terms of four relations as follows.

25

o NAT: is the set of relations that describe the way in which the values of the variables

(monitored or controlled) are restricted by the laws of the environment, whether these

laws are imposed by previously deployed systems or by the physical laws.

0 REQ: is the set of relations that defines the way in which the system changes the

values of the controlled variables based on the change in the values of the monitored

variables .

0 IN: is the set of relations that maps the values of the monitored quantities to the

values of the input variables.

OUT: is the relation that maps the value of the output variable to a controlled quantity.

The IN and OUT relations describe the behavior of the input and output devices in

some level of isolation. Thus, the IN and OUT relations give requirements specification

the freedom of specifying the observed system behavior without going into further details.

Four more variables are also used in the constructs of the SCR. These are modes, terms,

conditions, and events. The mode class is a state machine whose states are called modes.

Changes from one mode to another are triggered by events. The terms are representations

of a group of input variables, mode classes, or other terms in one single term. The condition

is a predicate defined on single system state. Finally, the event is a predicate defined on two

system states and is triggered by a change in a system entity. The following state machine

formally represents a typical SCR system:

2 = (S, So,E’",T)

where S is the state space, So g S is the initial state set, Em represent, a change in the value

of the monitored events, and T is the function that identifies the transitions of the system

based on monitored events (i .e. T maps e E E'" and the current state s E S to the next state

s’ E S) [83].

26

In SCR, the systems are represented in the ideal state and with no time representation.

The model defines the system as a before state, in terms of the system entities with guards

as conditions, and an after state. The system transits from the before state to the after state

by transitions triggered by a change in an input variable. These transitions are part of a

transformation, T, which is defined by a set of functions that are represented by the SCR

tables.

The SCR toolset [22,83—87] is a set of tools for constructing and validating require-

ments specifications based on the SCR formal method. It is composed of a specification

editor, a user interface for creating and editing the specification in a tabular way; a de-

pendency graph browser, which uses the directed graph representation to show the depen-

dency of variables; and a simulator, which uses a symbolic variable representation to test

if the desired system behavior is satisfied. The SCR toolset also includes different kinds

of checkers: consistency checker, model checker, and property checker. This set of tools

helps systems designers to check and analyze the specifications and to automatically detect

errors and missed cases.

To illustrate these concepts, consider the altitude switch controller system (ASW) [21],

which is responsible for turning on a device of interest when an aircraft altitude is below

2,000 feet. ASW will be disabled if it receives an Inhibit signal. A Reset signal will reset

the system to its initial state. ASW has three altitude meters: two are digital and one is

analog. It also has a fault indicator that is switched 0n if the DOI does not turn on in two

seconds, if the system fails to initialize, or if all three altitude meters do not work for more

than two seconds.

The SCR specifications for the ASW system are constructed with five monitored vari-

ables as shown in Table 3.1, one controlled variable, and a mode class. The mAltBelow,

Boolean variable, value is true when the aircraft descends below 2, 000 feet. The mDOIsta-

tus is true when the D01 is on. The mlnitializing indicates if the system is being initialized.

The mlnhibit, indicates whether the system can turn on the DOI or not. The mReset mon-

27

itors the reset request. The controlled variable cWakeupDOI will be initialized to false. It

will be set to true to wake-up the DOI.

Name Type Init. Value Description

mAltBelow Boolean true true if alt. below threshold

mDOIStatus enum off on if DOI powered on; else off

mInitializing Boolean true true iff system initializing

mlnhibit Boolean false true iff DOI power on inhibited

mReset Boolean false true iff Reset button is pushed

Table 3.1: Monitored Variables of the altitude switch controller system (ASW).

Table 3.2 describes the mode class mcStatus. Each transition in the mode table de-

scribes the system transition from one mode to another as a result of change in one or more

monitored variables. There are three modes for the mode class mcStatus: Init, standby, and

awaitDOIon. For example, the first row of Table 3.2 states that ASW transitions from init

mode to standby if it is not initializing.

Table 3.3 contains the description of the condition table for the controlled variable

cWakeupDOI. The value of the controlled variable cWakeupDOI depends mainly on the

current value of the mod class mcStatus. If the value of mcStatus is awaitDOIon, then the

DOI can be powered on. If the value of mcStatus is Init or Standby, the DOI will be turned

Old Mode Event New Mode

init @F(mlnitializing) Standby

standby @T(mReset) init

standby @T(mAltBelow)WHEN NOT awaitDOIon

mlnhibit AND mDOIStatus = off

awaitDOIon @T(mDOIStatus = on) standby

awaitDOIon @T(mReset) init

Table 3.2: Mode transition table for the mode class mcStatus.

28

Mode cWakeupDOI

Init, Standby false

awaitDOIon true

Table 3.3: Condition table for cWakeUpDOl.

There are two major advantages of the SCR toolset. First, all the tools interface with

each other automatically. Hence, they behave as a single application [83]. Second, the

toolset has been adopted by the industry and was used in the development of many real

world applications [83]. Moreover, the toolset stores the specifications in an ASCII text file

from which other systems can have access to those specifications. More specifically, we

use this file as an interfaces channel to communicate with the tool SYCRAFT.

3.1.2 Automated Model Revision to Add Fault-Tolerance

Programs are subject to faults that may not be preventable. A program may function

correctly in the absence of faults. However, it may not give the desired functionality in

the presence of faults. The automated model revision to add fault-tolerance is the pro-

cess of transforming a fault-intolerant program to a fault-tolerant one. This transformation

guarantees that the program continues to satisfy its specification in the presence of faults.

SYCRAFT, described briefly next, is a framework for automating such revisions [27, 30].

In SYCRAFT, programs (input and output) and faults are represented using guarded com-

mands. SYCRAFI' takes both the program and the faults as an input and generates the

fault-tolerant program version as an output. To add fault-tolerance, SYCRAFT first identi-

fies states from where faults alone can violate safety specification. It removes such states

and the transitions that reach them. Then, it adds recovery transitions to ensure that after

the occurrence of faults, the program recovers to its legitimate states.

29

3.2 Integration of SCR toolset and SYCRAFT

In this section, we first describe how we translate the SCR program into an input for

SYCRAFT. Then, we describe modeling of faults and subsequently give an outline of our

tool for adding the automated model revision to the SCR toolset. Our approach, allows one

to perform separation of concerns where the fault-tolerance aspect is relegated only to the

tool that performs the automated addition of fault-tolerance.

3.2.1 Transforming SCR specifications into SYCRAFT input

The integration of SCR and SYCRAFT mainly focuses on the mode table since the mode

table captures the system behavior in response to different inputs. Hence, the mode table

is the most relevant in terms of the effect of the faults on system behavior. The integration

focuses on translating the mode table so that it can be used as an input in SYCRAFT and

then translating the SYCRAFI' output so as to generate the mode table of the fault-tolerant

SCR specification.

We illustrate the mode table in SCR using the simple example mRoom (cf. Table 3.4).

As the name suggests, this table describes different modes of mRoom and shows how they

change in response to the system events. mRoom has two modes: Dark and Light and

one monitored variable mSwitchOn. This system switches the room from Dark mode to

Light mode if the event @T(mSwitchOn) occurs, i.e. if the monitored variable mSwitchOn

changes its value fromfalse to true.

Old Mode Event New Mode

Dark @T(mSwitchOn) Light

Light @F(mSwitchOn) Dark

Table 3.4: mRoom Mode Table

To add fault—tolerance to the SCR specification, we need to convert the SCR tables

30

into guarded commands. In particular, we need to translate modes, conditions, terms, and

events. Next, we describe how we translate the SCR events into guarded commands for

SYCRAFI'. Events in SCR occur at the time when the value of their condition is switched

from false to true or vice versa in a single transition. It is not only the current state of

the monitored variable that initiates the transition; rather, it is the combination of both the

current and the old states. The notation used to represent events is as follows:

(@T(c)WHENd) E (fic /\ cI /\ d)

where (c) represents the condition value in the before state and (c’) represent the condition

value in the after state [83]. For example, if we consider the SCR mode table entry in

mRoom mode class:

From “Dark” EVENT “@T (mSwtichOn)” TO “Light”

In the “before” state, the mode value mRoom is Dark and the condition mSwitchOn isfalse.

And, in the “after” state the mode value mRoom = Light and the condition mSwitchOn =

true.

In SYCRAFT, (guarded commands) transitions are represented in the following format:

(8 —> st)

The guard, g, is a predicate whose value must be true in the before state in order for the

statement, st, to execute. The guarded command translation for mRoom table entry would

be:

((mRoom : Dark) /\ (mSwtichOn = false))

——> mRoom :2 Light; mSwtich :2 true

Likewise, we need to convert states, terms, and modes into the corresponding input for

SYCRAFT. In particular, each mode is translated into corresponding states that a program

could reach. Conditions are translated into guards that determine when actions can be

executed.

31

3.2.2 Translation from SCR Syntax to SYCRAFT Syntax

In this translation we preserve the model abstraction as well as compactness to avoid the

state explosion problem. The goal of this translation is to translate the SCR table syntax

into action language that the SYCRAFT can deal with. The translation rules are based

on the fact that the transition relation in the SCR tables is identified using a condition

on the current state and another condition on the next state. For example, the current

state in SCR is defined using the “FROM mode” with a condition, and the next state is

identified by the “TO mode”. In the SYCRAFT syntax we translate the “FROM mode” into

“mcMode== mode” and the “TO mode” into “—-> mcModezzmode”. Table 3.5 shows some

of the translation rules.

SCR Syntax SYCRAFT Syntax

MODETRANS “mcMode”; => process “mcMode” ;

FROM => (

“Source Mode” => (mcMode=“Source Mode”) &&

EVENT =>)(

@F (condl) => ! Condl

@T (condl) :> condl

WHEN :> &&

TO =>) —+

“Target Mode” => mcMode :=“Target Mode” ;
Table 3.5: Translation rules

3.2.3 Modeling of faults

Faults in SYCRAFT are also modeled using guarded commands that change program vari-

ables. To effectively model faults for designers, we can model them using tables similar

to the way the SCR specification is specified. Note that this would require changes to the

SCR toolset. However, the change is minimal in that it would require adding an extra table

for faults rather than putting all program/fault actions together as was done in [22]. Note

32

that with this change, we do not expect the designer task to be more complex since faults

are specified using a method. similar to describing programs. For simplicity, currently, we

let faults be directly represented using guarded commands so that modification to the SCR

toolset is not necessary. Likewise, it would be necessary for the designer to specify require-

ments in the presence of faults. These specifications are also similar to that used in SCR

for requirements in the absence of faults.

3.2.4 Adding fault-tolerance to SCR specifications

The scenario of adding fault-tolerance to the SCR specifications is described in Figure 3.1.

The cycle begins at step 1 by creating the specifications requirement using the SCR toolset.

The specifications in SCR formats are exported from the SCR toolset as in step 2. In step 3,

the middle-layer imports the SCR specifications and the first translation phase generates an

output file for the use in the addition of fault-tolerance by SYCRAFT. This file is imported

in step 4 to SYCRAFT, which generates a fault-tolerant version of the program in step 5. In

step 6, the middle-layer imports the SYCRAFT output and in step 7 translates it back to the

SCR specification. Finally, in step 8, the file is imported back into the SCR toolset so that

it can be visualized using the SCR toolset. Thus, the translation layer shown in Figure 3.1

allows the automated revision to add fault-tolerance where the addition is done under-the-

hood, meaning that, it allows users of the SCR tools to add fault-tolerance to specifications

without knowing the details of SYCRAFT or the theory on which SYCRAFT is based.

3.3 Case Studies

To illustrate the integration of SCR and SYCRAFT, we present two case studies: the control

system for an aircraft altitude switch (ASW) [22] and the automobile cruise control system

(CCS) [95]. For both systems, we briefly describe the concept and demonstrate how our

8-steps method from Section 3 .2 .4 works on these examples to translate the fault-intolerant

33

309* File _> Convert to input

for SYCRAFT

,, . Automated Model

SCR Tool Set The Translation Revision

Layer

[3

SCR” We Convert to SYCRAFT File

“—7 SCR" Syntax ‘I

Figure 3.1: The transformation cycle between SCR toolset and SYCRAFT.

SCR specification into the corresponding fault-tolerant specification.

3.3.1 Case Study 1: Altitude Switch Controller

In Section 3.1.], we described the ASW system and illustrated how it is modeled using the

SCR formal method. In this Section, we show how to transform the SCR specification of

the ASW into guarded command. Then, we use SYCRAFT to revise the specification of the

ASW to add fault-tolerance. Later, we show how to transform the ASW specification from

guarded command into SCR to import it back into the SCR toolset.

Step 1. As shown in Figure 3.1 at step 1, we eXtract the mode table of the ASW system in

the SCR specification. The mcStatus mode table of the ASW system is illustrated in Table

3.2. It describes the mode class mcStatus that represents a function between the monitored

variables and the current value of the mcStatus. The mcStatus class has one of the following

three modes: standby, init, or awaitDOIon.

Steps 2 8t 3. At step 2, we import the SCR specification into the middle layer. This layer

generates the input in guarded command format at step 3. The result of the translation layer

34

((mcStatus = init) /\ ((mInitializing) = true))

—-> mcStatus := standby; (mInitializing) :2 false;

((mcStatus = standby) /\ ((mReset) = false))

—> mcStatus := init; (mReset) :2 true;

((mcStatus = standby) /\ ((mAltBelow) =

falseA !mInhibit /\ mDOIStatus 2 off))

—-> mcStatus = awaitDOIon; (mAltBelow) = trueA

!mInhibit /\ mDOIStatus 2 off;

((mcStatus = awaitDOIon) /\ ((mDOIStatus = on) = false))

———> mcStatus := standby;mD01Status := true;

((mcStatus = awaitDOIon) /\ ((mReset) = false))

——> mcStatus :2 init;mReset := true;

Table 3.6: The mcStatus mode table translated.

is as shown in Table 3.6. For example, the first entry in Table 3.6 shows that in order for

this action to execute, the old value (i .e. the “before” state) of the mcStatus should be equal

to standby, and mReset should be equal tofalse. The two statements in the right hand side

represent the “after” state; both values of mcStatus and mReset should be changed.

We consider three hardware malfunctions that may alter the operation of the fault in-

tolerant ASW controller [22]. They are an altimeter fault, an initialization fault, and DOI

fault. All three faults are time-out faults, i.e., they require the system to stay in a given state

for a specified amount of time. But since SYCRAFT does not include the notion of time

yet, we abstract those faults to be on/ofi flags. We added a new mode, called fault, to the

mcStatus class to indicate the presence of faults in the system. Table 3.7 shows how those

faults are represented in the input file to SYCRAFT. Note that the fault transitions described

below can be easily described using SCR tables. Therefore, the designer can specify the

faults using the SCR toolset interface which they are familiar with.

Step 4. In step 4, we use the translated SCR specification and the three faults described

in Table 3.7 as an input to SYCRAFT so that SYCRAFT can add fault-tolerance to ASW

35

(mcStatus = init) /\ (Init.Duration_Fault = true)

—-+ Init_Duration_Fault :2 false ; mcStatus :2 Fault;

(standby = init) /\ (Alt_Duration_Fault = true)

—> Alt_Duration_Fault :2 false ; mcStatus :2 Fault;

(awaitDOIon = init) /\ (AwaitDOLDuartionfault = true)

—> AwaitDOLDuartiomFault :2 false ; mcStatus :2 Fault;

Table 3.7: The SYCRAFT fault section.

(mcStatus = init) /\ ((mInitializing) = true))

——> mcStatus := standby ; mInitializing :2 false;

((mcStatus = standby) /\ ((mReset) = false))

——+ mcStatus :2 init ; mReset :2 true;

((mcStatus = standby) /\ ((mAltBelow) = false/\lmlnhibitA

mDOIStatus 2 off /\ mAltFail = false))

—> mcStatus = awaitDOIon; (mAltBelow) = true;

((mcStatus = awaitDOIon) /\ ((mDOIStatus = false))

—+ mcStatus :2 standby ; mDOIStatus :2 true;

((mcStatus = awaitDOIon) /\ ((mReset) = false))

——» mcStatus :2 init ; mReset := true;

((mcStatus = fault) /\ ((mReset) = false))

——> mcStatus := standby ; mReset := true;

Table 3.8: The fault-tolerant mcStatus mode table.

specification that tolerates the failure of the altimeter, initialization, or DOI.

Step 5. The result of step 5 is shown in Table 3.8. The parts where SYCRAFT added

the tolerance were at two places. First, the condition (mAltFail = false) was added to

the guard of the third transition to prevent the mcStatus from activating the device when

mAltFail is true. Second, the last transition in the Table 3.8 was added to provide recovery

from the fault state to one of the system legitimate states.

Steps 6 & 7. We import the SYCRAFT specifications into the translation layer at step 6

to translate it to fault-tolerant SCR specifications. Table 3.9 is the result after applying the

translation on the mcStatus from SYCRAFT output to SCR.

36

Old Mode Event New Mode

init @F(mlnitializing) Standby

standby @T(mReset) init

standby mDOIStatus = off AND NOT mAltFail awaitDOIon

mDOIStatus = off AND NOT mAltFail

awaitDOIon @T(mAltBelow)WHEN NOT mlnhibit AND standby

mDOIStatus = off AND NOT mAltFail

awaitDOIon @T(mDOIStatus = on) init

fault @T(mReset) init

init @T(IniLDurationFault) fault

standby @T(AlLDurationFault) fault

awaitDOIon @T(AwaitDOLDuartiomFault) fault

Table 3.9: Fault-tolerant mode class mcStatus.

3.3.2 Case Study 2: Cruise Control System

The cruise control system (CCS) [95] manages the cruising speed of an automobile by con-

trolling the throttle position. It depends on several monitored variables, namely, mlgnon,

mEngRunning, mSpeed, mLever, and mBrake. The system uses monitored variables to con-

trol the automobile speed. The cruise mode is engaged by setting the mLever to “const”,

provided that other conditions like “engine running” and “ignition is on” are met. The

CCS can maintain constant, decrease, or increase automobile speed depending on the cur-

rent speed. Below, we show how fault-tolerant CCS is revised using the tool described in

Figure 3.1.

The mCruise mode table is shown in Table 3.10. This table specifies the values that

the mCruise class can take. We imported the modeTable 3.10 into the middle layer, which

generated specification in SYCRAFT format. Then we translated the mCruise mode table

to SYCRAFT.

We consider a system malfunction that may alter the operation of the fault intolerant

CCS. The fault takes place when the status of the cruise becomes unknown. Table 3.11

37

Old Mode Event New Mode

Off @T(mlgnOn) Inactive

Inactive @F(mlgnOn) Off

Inactive @T(mLever=const) WHEN mIgnOn AND Cruise

mEngRunning AND NOT Brake

Cruise @F(mlgnOn) Off

Cruise @F(mEngRunning) Inactive

Cruise @T(mBrake) OR @T(mLever = off) Override

Override @F(mlgnOn) Off

Override @F(mEngRunning) Inactive

Override @T(mLever = resume) WHEN mlgnOn AND Cruise

mEngRunning AND NOT mBrake OR @T(mLever = const)

WHEN mIgnOn AND mEngRunning AND NOT mBrake

Table 3.10: Fault intolerant mode class mcCruise.

(mcCruise = Override) V (mcCruise = Cruise) V (mcCruise =

Inactive) V (mcCruise = Off) /\ (CruiseFault = true)

—> mcCruise := Unkown;CruiseFault := false;

Table 3.11: The SYCRAFT fault section.

shows how this fault is represented in the input file to SYCRAFT.

We have inputted the faults and the fault-intolerant CCS to SYCRAFT in order to add

fault-tolerance to the CCS system to tolerate a recovery from an unknown state to one of

the CCS safe state. SYCRAFT added two actions to recover from the unknown state to one

of the system valid states depending on the value of the IgnOn monitored variable. The

fault-tolerant specification is as shown in Table 3.12.

38

Old Mode Event New Mode

Off @T(mlgnOn) Inactive

Inactive @F(mlgnOn) Off

Inactive @T(mLever=const) WHEN mIgnOn AND Cruise

mEngRunning AND NOT mBrake

Cruise @F(mlgnOn) Off

Cruise @F(mEngRunning) Inactive

Cruise @T(mBrake) OR @T(mLever = off) Override

Override @F(mlgnOn) Off

Override @F(mEngRunning) Inactive

Override @T(mLever = resume) WHEN mIgnOn AND Cruise

mEngRunning AND NOT mBrake OR

@T(mLever = const) WHEN mIgnOn

AND mEngRunning AND NOT mBrake

Unknown @T (IgnOn) Off

Unknown @F (IgnOn) Inactive

Override, Cruise, @T(CruiseFault) Unknown

Off, Inactive

Table 3.12: Fault-tolerant mode class mcCruise.

3.4 Summary

In this chapter we presented the techniques we developed to make the automated model

revision more easier to use. Our goal is to make the model revision accessible to wide range

of system designers. Specifically, we utilized existing design tools (e.g., SCR toolset) to

be the front end of our approach and performed all the aspects related to the automated

model revision behind the scene. To successfully achieve this coupling, we developed a

middle layer that translated the SCR specifications into SYCRAFT specifications and from

SYCRAFT back to SCR. With this middle layer, we enabled the designers to perform the

tasks of the automated model revision under-the-hood.

39

Chapter 4

Expediting the Automated Revision

Using Parallelization and Symmetry

To make the automated model revision more applicable in practice, we need to develop

approaches for enhancing their performance. Specifically, we need to able to revise pro-

grams with moderate to large state space in a reasonable amount of time. Our goal in this

chapter is to utilize both the properties of the programs being revised and the available

infrastructure (e.g., multi-core architecture) to expedite the revision. Hence, we focus on

using symmetry, inside the program being revised, and parallelism, obtained from multiple

cores, to speedup the revision algorithm.

The rest of this chapter is organized as follows. We explain the bottlenecks of the

automated model revision and illustrate the issues involved in the revision problem in the

context of Byzantine agreement in Section 4.2. We analyze the effect of the distributed

nature of the program being revised on the complexity of the revision in Section 4.2 .2. We

present our algorithms in Section 4.3. We analyze the results in Subsection 4.3.3 and argue

that our multi-core algorithm is likely to benefit further with additional cores. We evaluate

a different parallelism approach in Section 4.4. In Section 4.5, we present our approach for

expediting the revision of fault-tolerant programs with the use of symmetry. Finally, we

40

summarize in Section 4.6.

4.1 Introduction

Given the current trend in processor design where the number of transistors keeps growing

as directed by Moore’s law but where clock speed remains relatively flat, it is expected

that multi-core computing will be the key for utilizing such computers most effectively. As

argued in [90], it is expected that programs/protocols from distributed computing will be

especially beneficial in exploiting such multi-core computers.

One of the difficulties in adding fault-tolerance using automated techniques, however,

is its time complexity. Our focus is to evaluate the effectiveness of different approaches

that utilize multi-core computing to reduce the time complexity during deadlock resolution

in the revision to add fault-tolerance to distributed programs.

To evaluate the effectiveness of multi-core computing, we first need to identify bot-

tleneck(s) where multi-core features can provide the maximum impact. To identify these

bottlenecks, in [30], Bonakdarpour and Kulkarni developed a symbolic (BDD-based) algo-

rithm for adding fault-tolerance to distributed programs with state space larger than 1030.

Based on the analysis of the experimental results from [30], they observed that depending

upon the structure of the given distributed intolerant program, performance of the revision

suffers from two major complexity obstacles: (1) generation of fault-span, the set of states

reachable in the presence of faults, and (2) resolving deadlock states, from where the pro-

gram has no outgoing transitions. To resolve a deadlock state, we either need to provide

recovery actions that allow the program to continue its execution or eliminate the dead-

lock state by preventing the program execution from reaching it. Of these, generation of

fault-span closely similar to program verification and, hence, techniques for efficient veri—

fication are directly applicable to it. In this chapter, we focus on expediting the resolution

of deadlock states with the use of parallelism and symmetry.

41

In the context of dependable systems, the revised fault-tolerant program should meet

its liveness requirements even in the presence of faults. Therefore, no deadlock states are

permitted in the fault-tolerant program since the existence of such states can violate the

liveness requirements. A program may reach a deadlock state due to the fact that faults

perturb the program to a new state that was not considered in the fault-intolerant program.

Or, it may reach a deadlock state due to the fact that some program actions are removed

(e .g., because they violate safety in the presence of faults).

We present two approaches for parallelization. The first approach is to parallelizes the

group computation. It is based on the distributed nature of the program being revised.

In particular, when a new transition is added/removed, since the process executing it has

only a partial view of the program variables, we need to add/remove a group of transitions

based on the variables that cannot be read by the process. The second approach is based

on partitioning deadlock states among multiple threads; each thread resolves the deadlock

states that have been assigned to it. We show that this provides a small performance benefit.

Based on the analysis of these results, we argue that the simple approach that parallelizes

the group computation is likely to provide maximum benefit in the context of deadlock

resolution for the revision of distributed programs.

To understand the use of symmetry, we observe that, often, multiple processes in a

distributed program are symmetric in nature, i.e., their actions are similar (except for the

renaming of variables). Thus, if we find recovery transitions for a process, then we can

utilize symmetry to identify other recovery transitions that should also be included for

other processes in the system. Likewise, if some transitions of a process violate safety in

the presence of faults, then we can identify similar transitions of other processes that would

also violate safety. If the cost of identifying these similar transitions with the knowledge of

symmetry among processes is less than the cost of identifying these transitions explicitly,

then the use of symmetry will reduce the overall time required for revision.

We also present an algorithm that utilizes symmetry to expedite the revision. We show

42

that our algorithm significantly improves performance over previous implementations. For

example, in the case ofByzantine agreement (BA) [107] with 25 processes, time for revision

with a sequential algorithm was 1,632s. With symmetry alone, revision time was reduced

to 188s (8.7 times better). With parallelism (8 threads), revision time was reduced to 467s

(3.5 times better). When we combined both symmetry and parallelism together, the total

revision time was reduced to 107s (more than 15.2 times better).

4.2 Issues in Automated Model Revision

In this section, we use the example of Byzantine agreement [107] (denotedBA) to describe

the issues in automated revision to add fault-tolerance. Towards this end, in Section 4.2.1 ,

we describe the inputs used for revising the Byzantine agreement problem. Subsequently,

in Section 4.2 .2, we identify the need for explicit modeling of read-write restrictions im-

posed by the nature of the distributed program. Finally, in Section 4.2.3, we describe how

deadlock states get created while revising the program for adding fault-tolerance and illus-

trate our approach for managing them.

4.2.1 Input for Byzantine Agreement Problem

The Byzantine agreement problem (BA) consists of a general, say g, and three (or more)

non-general processes, say j, k, and l . The agreement problem requires that a process copy

the decision chosen by the general (0 or 1) and finalize (output) the decision (subject to

some constraints). Thus, each process of BA maintains a decision d; for the general, the

decision can be either 0 or 1, and for the non-general processes, the decision can be 0, 1, or

I, where the value 1 denotes that the corresponding process has not yet received the deci-

sion from the general. Each non-general process also maintains a Boolean variable f that

denotes whether that process has finalized its decision. For each process, a Boolean vari-

able b shows whether or not the process is Byzantine; the read/write restrictions (described

43

...-...:

in Section 4.2.2) ensure that a process cannot determine if other processes are Byzantine.

Thus, a state of the program is obtained by assigning each variable, listed below, a value

from its domain. And, the state space of the program is the set of all possible states.

V = {d.g} U (the general decision variables):{0, l}

{d.j,d.k,d.l} U (the processes decision variables):{0, l, I}

{f.j,f.k,f.l} U (finalized?):{false, true}

{b.g, b.j, b.k, b.l}. (Byzantine?):{false, true}

Fault-intolerant program. To concisely describe the transitions of the (fault-

intolerant) version of BA, we use guarded commands of the form g —-» st. Recall from

Chapter 1 that g is a predicate involving the above program variables and st updates the

above program variables. The command g —> st corresponds to the set of transitions

{ (so, s1) : g is true in so and s1 is obtained by executing st in state so}. Thus, the transitions

of a non-general process, say j, is specified by the following two actions:

BAinmlj :: BAlj :: (d.j= _L) /\ (f.j =false) /\ (b.j =false) —> d.j:=d.g

BAZJ- :: (d.jaé I) /\ (f.j =false) /\ (b.j =false) ——+ f.j:= true

We include similar transitions for k and l as well. Note that the general does not need

explicit actions; the action by which the general sends the decision to j is modeled by BA] j.

Specification. The safety specification of the BA requires validity and agreement.

Validity requires that if the general is non-Byzantine, then the final decision of a non-

Byzantine, non-general must be the same as that of the general. Additionally, agreement

requires that the final decision of any two non-Byzantine, non-generals must be equal.

Finally, once a non-Byzantine process finalizes (outputs) its decision, it cannot change it.

Faults. A fault transition can cause a process to become Byzantine, if no other process

is initially Byzantine. Also, a fault can change the d and f values of a Byzantine process.

The fault transitions that affect a process, say j, of BA are as follows: (We include similar

actions for k, l , and g)

F1 :: -wb.gA—wb.jA-wb.kAfib.l ———-> b.j:= true

F2 :: b.j ——> d.j,f.j:=0|1,false|true

where d.j :2 0|1 means that d.j could be assigned either 0 or 1. In case of the general

process, the second action does not change the value of any f-variable.

Goal of automated Addition of fault-tolerance. The goal of the automated revision

is to start from the intolerant program (BAimlj) and given the set of faults (F 1&F2) and to

automatically generate the fault-tolerant program (BAmlemmj), given below.

d.j: .L)A(f.j=false)A(b.j=false) ———>d.j:=d.g

d.j;éJ.)A(f.j —fa.lse)A(d17éJ_ Vd.k.7é_L)———>fj :=true

BA,01emmj::BAlj-:(

3A2,- ::(

3A3]- :: (d.l=)0A(d.k=0)A(d.j= l)A(f.j=O) ——>d.j,f.j::0,0|1

(d.l=3A4} :: 1)/\(d.k=1)A(d.j=0)/\(f.j=0)—>d.j,f.j:=1,0|1

In the above program, the first action remains the same. The second action is restricted

to execute only in the states where another process has the same d value. Actions (3&4)

are for fixing the process decision.

4.2.2 The Need for Modeling Read/Write Restrictions

Since the program being revised is distributed in nature, each process can only read a subset

of the program variables. It is important to articulate these restrictions precisely to ensure

that the revised program is realizable under the constraints of the underlying distributed

system for which it is designed. For example, in the context of the Byzantine agreement

example from Section 4.2.1, non-general process j is not supposed to know whether other

processes are Byzantine. It follows that process j cannot include an action of the form ‘if

b.k is true then change d.j to 0’. To permit such modeling, we need to specify read-write

restrictions for a given process. For the Byzantine agreement example, process j is allowed

45

to read Rj = {b.j,d.j,f.j,d.k,d.l,d.g} and it is allowed to write W} = {d.j,f.j}. Observe

that this modeling prevents j from knowing whether other processes are Byzantine.

With such read/write restriction, if process j were to include an action of the form ‘if

b.k is true then change d.j to 0’ then it must also include a transition of the form ‘if b.k is

false then change d. j to 0’. In general, if transition (so, s1) is to be included as a transition

of process j then we must also include a corresponding equivalence class of transitions

(called group of transitions) that differ only in terms of variables that j cannot read. For

further discussion of the group operation please refer to Section 2.2.

4.2.3 The Need for Deadlock Resolution

During revision, we analyze the effect of faults on the given fault-intolerant program and

identify a fault-tolerant program that meets the constraints of Problem 2.1. This involves

addition of new transitions as well as removal of existing transitions. In this section, we

utilize the Byzantine agreement problem to illustrate how deadlocks get created during the

execution of the revision algorithm and identify two approaches for resolving them.

0 Deadlock scenario 1 and use of recovery actions. One legitimate state, say so (c.f.

Table 4.1), for the Byzantine agreement program is a state where all processes are

non-Byzantine, d.g is 0 and the decision of all non-generals is 1. Thus, in this state,

the general has chosen the value 0 and no non-general has received any value. From

this state, process j (respectively k) can copy the general decision by executing the

program action BAl ,- (respectively BAlk) as in s1 (respectively s2) from Table 4.1.

The general can become Byzantine and change its value from 0 to 1 arbitrarily as in

s3. Therefore, a non-general can receive either 0 or 1 from the general.

Clearly, starting from S3, in the presence of faults (F l & F2), the program (BA,-,,,0,)

can reach a state, say s5, where d.g = d.l = 1, and d.j = d.k = 0. From such a state,

transitions of the fault-intolerant program violate safety if they allow j (or k) and l

46

to finalize their decision. If we remove these safety violating transitions then there

are no other transitions from state S5. In other words, during revision, we encounter

that state S5 is a deadlock state. One can resolve this deadlock state by simply adding

a recovery transition that changes d! to 0. (Note that based on the discussion of

Section 4.2 .2, adding such recovery transition requires us to add the corresponding

group of transitions. It is straightforward to observe that none of the transitions in

this group violate safety.)

Action/

State Fault b.g b.j b.k b.l d.g d j d.k d.l f j f.k f.l

So — O 0 O O 0 I I J. 0 O 0

S] BA 1 j 0 0 0 0 0 Q J_ .l. O O 0

S2 BA 1 k 0 0 O O O O Q _L O 0 0

S3 F 1 1 O 0 0 O 0 O _L 0 0 0

S4 F2 1 O O 0 _1_ 0 O J. O O 0

S5 BA 1 1 1 O O 0 1 0 0 l 0 O O

Table 4.1: Deadlock scenario 1 (The underlined values indicates which variable is being

changed by the program action/fault. For reasons of space the true and false values are

replaced by l and 0 respectively for the variables b and f.)

o Deadlock scenario 2 and need for elimination. Again, consider the execution

of the program (BAimOl) in the presence of faults (F 1 & F2). Starting from state

so in the previous scenario the program can also reach a state, say so (c.f. Table

4.2), where d.g = d.l = l,d.j = d.k = 0, and f.j : 1; state so differs from S5 in the

previous scenario in terms of the value of f.l. Unlike S5 in the previous scenario,

since I has finalized its decision, we cannot resolve S6 by adding safe recovery. Since

safe recovery from so cannot be added, the only choice for designing a fault-tolerant

program is to ensure that state S6 is never reached in the fault-tolerant program. This

can be achieved by removing transitions that reach S6. However, removal of such

transitions can create more deadlock states that have to be eliminated. Thus, the

47

deadlock algorithm needs to be recursive in nature.

Action/

State Fault b.g b.j b.k b.l d.g d j d.k d.l fj f.k f.l

so - O 0 0 0 0 I J. I 0 0 0

S1 BA] j 0 0 O O 0 Q I I 0 O 0

82 BA 1 k 0 O O O O O Q J. 0 0 0

S3 3A2]- O O O O 0 0 O _L 1 0 0

S4 F 1 1 O 0 O O O O 1 1 O 0

S5 F2 1 0 0 0 _1_ O 0 J. 1 O 0

s6 BA 1 1 1 O O O 1 O 0 1 l O O

Table 4.2: Deadlock scenario 2 (The underlined values indicates which variable is being

changed by the program action/fault. For reasons of space the true and false values are

replaced by 1 and 0 respectively for the variables b and f.)

To maximize the success of the revision algorithm, our approach to handle deadlock

states is as follows: Whenever possible, we add recovery transition(s) from the deadlock

’states to a legitimate state. However, if no recovery transition(s) can be added from the

deadlock states, we try to eliminate (i.e. make it unreachable) the deadlock states by pre-

venting the program from reaching the deadlock states. In other words, we try to eliminate

deadlock states only if adding recovery from them fails.

4.3 Approach 1: Parallelizing Group Computation

In this section, we present our approach for parallelizing the group computation to expedite

the revision to add fault-tolerance. First, in Section 4.3.1, we identify the different design

choices we considered and then present our algorithm. In Section 4.3 .2, we describe our

approach for parallelizing the group computation. Subsequently, in Section 4.3.3, we pro-

vide experimental results in the context of the Byzantine agreement example from Section

4.2.1 and the token ring [14]. Finally, in Section 4.3 .4, we analyze the experimental results

to evaluate the effectiveness of parallelization for group computation.

48

4.3.1 Design Choices

The structure of the group computation permits an efficient way to parallelize it. In particu-

lar, whenever some recovery transitions are added for dealing with a deadlock state or some

states are removed for ensuring that a deadlock state is not reached, we can utilize multiple

threads in a master-slave fashion to expedite the group computation. During the analy-

sis for utilizing the multiple cores effectively, we make the following observations/design

choices.

0 Multiple BDD packages vs. reentrant BDD package. We chose to utilize differ-

ent instances of BDD packages for each thread. Thus, at the time of group computa-

tion, each thread obtains a copy of the BDD corresponding to the program transitions

and other BDDs from the master thread. In part, this was motivated by the fact that

existing parallel BDD implementations have shown limited speedup. Also, we argue

that the increased space complexity of this approach is acceptable in the context of

revision, since the time complexity of the revision algorithm is high (compared with

model checking) and we always run out of time before we run out of space.

0 Synchronization overhead. Although simple to parallelize, the group computation

itself is fine grained, i.e., the time to compute a group of the recovery transitions

that are to be added to the program is small (100-500ms). Hence, the overhead of

using multiple threads needs to be small. With this motivation, our algorithm creates

the required set of threads up front and utilizes mutexes to synchronize between

them. This provided a significant benefit over creating and destroying threads for

each group operation.

0 Load balancing. Load balancing among several threads is desirable so that all

threads take approximately the same amount of time in performing their task. To

perform a group computation for the recovery transitions being added, we need to

evaluate the effect of read/write restrictions imposed by each process. A static way to

49

parallelize this is to let each thread compute the set of transitions caused by read/write

restrictions of a (given) subset of processes. A dynamic way is to consider the set of

processes for which a group computation is to be performed as a Sharedpool oftasks

and allow each thread to pick one task after it finishes the previous one. We find that

given the small duration of each group computation, static partitioning of the group

computation works better than dynamic partitioning since the overload of dynamic

partitioning is high.

4.3.2 Parallel Group Algorithm Description

To better illustrate the parallel group algorithm, we first describe its sequential version. The

sequential group algorithm (c.f. Algorithm 1) takes a transition set, trans, as an input and

computes the transition group, transg, as an output. Recall from Section 2.2 that the tasks

involved in computing the group depend on the number of processes and the number of

variables in the program. The sequential group algorithm (of Algorithm 1) needs to go

through all the processes in the program and for each process it has to go through all the

variables. The revision algorithm is required to compute the group associated with any set

of transitions added/removed from the program transitions. Based on this discussion and

the design choices above, we now describe the parallel group algorithm.

Algorithm sketch. Given transition set trans the goal of this algorithm is to compute the

Group of transitions associated with the set trans. The sequential algorithm will go through

many computations for each process, one after another. However, in the parallel algorithm,

we split the Group computation over the available number of threads. In particular, rather

than having one thread find the Group for all the processes, we let each thread compute

the Group for a subset of the processes. Since the tasks assigned to each thread require a

very small amount of the processor time, there is considerable overhead associated with

the thread creation/destruction every time the Group is computed. Therefore, we let the

master thread create the worker threads at the initialization stage of the revision algorithm.

50

The worker threads stay idle until the master thread needs to compute the Group for a set

of transitions. The Master thread activates/deactivates the worker threads through a set

of mutexes. When all worker threads are done, the main thread collects the results of all

worker threads in one Group.

The parallel group algorithm consists of three parts: the initialization of the worker

threads, the assignment of tasks to worker threads, and the computation of a group with

worker threads.

Initialization. In the initialization phase, the master thread creates all required threads

by calling the algorithm InitiateThreads (c.f. Algorithm 2). These threads stay idle until a

group computation is required and terminate when the revision algorithm ends. Due to the

design choice for load balancing, the algorithm distributes the work among the available

threads statically (Lines 3-4). Then it creates all the required worker threads (Line 7).

Algorithm 2 InitiateThreads

Input: n00fprocesses , n00fThreadS.

: for i := 0 to n00fThreads — 1 do

BDDMgr[i] = Clone(masterBDDManager) ;

- ,_ i x Ofpr c S ,

Star1‘” lll .— l gdnghrZad: es],

. ._ (i+l x n00fprocesses .

endPM '_ ‘- noOfThreads J _ 1’

end for

: for tth := 0 to n00fThreads — 1 do

SpawnThread -> GroupWorkerThread(thID);

end for9
?
:
‘
0
‘
9
‘
5
?

9
3
!
?
"

Tasks for worker thread. Initially, the algorithm WorkerThread (c.f. Algorithm 3)

locks the mutexes Start and Stop (Lines 1-2). Then it waits until the master thread unlocks

the Start mutexes (Line 5). At this point, the worker starts computing the part of the Group

associated with this thread. This section of WorkerThread (Lines 7-15) is similar to the

Group() function in the sequential revision algorithm, except rather than finding the Group

for all the processes, the WorkerThread algorithm finds the group for a subset of processes

51

(Line 8). When the computation is completed, the worker thread notifies the master thread

by unlocking the mutex Stop (Line 17).

Algorithm 3 WorkerThread

Input: thID.

10:

ll:

12:

l3:

14:

15:

16:

17:

9
9
9
.
5
1
9
.
5
0
9
9
?
?
?

// Initial Lock ofthe mutexes

mutexJock(thData [thlD] .mutexStart) ;

mutex_lock(thData [thID] .mutexStop) ;

while True do

// Waitingfor the Signalfrom the master thread

mutex_lock(thData [thID] .mutexStart);

gtr[id] :=false;

BDD* tPred := BDD[endP[thID] - startP[thID]+l] ;

for i := 0 to (endP[thID] — startP[thID]) + 1 do

tPred[i] := thData[thID].tranS A

alloerite [i + startP[thID]] fromfer(BDDMgr[thID]) ;

tPred [i] := FindGroup(tPred [i], i, thID);

end for

thData[thID].result := false;

for i := O to (endP[thID] — startP[thID]) + 1 do

thData[thID].result := thData[thID].result V tPred [i];

end for

// Triggering the master thread that this thread is done

mutex-unlock(thData [thID] .mutexStop) ;

18: end while

Tasks for master thread. Given transition set trans, the master thread copies trans to

each instance of the BDD package used by the worker threads (cf. Algorithm 4, Lines

3-5). Then it assigns a subset of group computation to the worker threads (Lines 6-8) and

unlocks them. After the worker thread completes, the master thread collects the results and

returns the group associated with the input trans.

52

Algorithm 4 MasterThread

Input: transitions set thisTr.

Output: transition group gAll.

$
0
5
?
r
i

tr 2: thisTr;

gAll :=false;

for i := 0 to NoOfThreads — 1 do

threadData[i] .trans := trans.Transfer(BDDMgr[thID]);

end for

// all idle threads to start computing the group

6: for i := O to NoOfThreads — 1 do

mutex_unlock(thData [i] .mutexStart);

8: end for

10:

ll:

12:

l3:

14:

15:

// Waitingfor all threads tofinish computing the group

for i := 0 to NoOfThreads — 1 do

mutex-lock(thData [i] .mutexStop) ;

end for

// Merging the resultsfrom all threads

for i := 0 to NoOfThreads — 1 do

gAll := gAll + thData[i] .results;

end for

return gAll;

53

4.3.3 Experimental Results

In this section, we describe the respective experimental results in the context of the Byzan-

tine agreement (described in Section 4.2.1) and the token ring [14]. In both case studies,

we find that parallelizing the group computation improves the execution time substantially.

Throughout this section, all experiments are run on a Sun Fire V40z with 4 dual-core

Opteron processors and 16 GB RAM. The OBDD representation of the Boolean formulae

has been done using the C++ interface to the CUDD package developed at University of

Colorado [125]. Throughout this section, we refer to the original implementation of the

revision algorithm (without parallelism) as sequential implementation. We use X threads

to refer to the parallel algorithm that utilizes X threads.

We would like to note that the revision time duration differences between the sequential

implementation in this experiment and the one in [30] is due to other unrelated improve-

ments on the sequential implementation itself. However, the sequential, and the parallel

implementations differ only in terms of the modification described in Section 4.3 .2.

We note that our algorithm is deterministic and the testbed is dedicated and, hence, the

only non-deterministic factor in time for revision is synchronization among threads. Based

on our experience with the revision, this factor has a negligible impact and, hence, multiple

runs on the same data essentially reproduce the same results.

In Figures 4.1 and 4.2, we show the results of using the sequential approach versus the

parallel approach (with multiple threads) to perform the revision. All the tests have shown

that we gain a significant speedup. For example, in the case of45 non-general processes and

8 threads, we gain a speedup of 6.1 . We can clearly see that the parallel 16-thread version is

faster than the corresponding 8-thread version. This is surprising, given that there are only 8

cores available. However, upon closer observation, we find that the group computation that

is parallelized using threads is fine-grained. Thus, when the master thread uses multiple

slave threads for performing the group computation, the slave threads complete quickly

and therefore cannot utilize the available resources to the full extent. Hence, creating more

54

10000 ~-~ - *-~---5-~--- - , +~ ~-~—~——~-» ,_- v- —~»-——-~~

 T

l
m
e
(
s
)

0 ' ' 'H - . . " _"‘ 7—_~’_‘-7‘_T~"” —‘ -T“ T ‘ "" 1""— I'_"~‘ _'

Processes IO 15 20 25 30 35 40 45

 +Sequential 2 Threads +4 Threads *8 Threads """‘ 16 Threads

L_“-_._.--_ _L ---—__._._._-..

Figure 4.1: The time required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of non-general processes of BA in sequential and parallel

algorithms.

55

60000 — — . - i

:

l

i

4

I
,

I
;

50000 ' , -
1

4mm 1...“-.. . ..-.-_-_-.._-.__- -_ . _ -___ _ -..-

20000 ~ — — - 5 .

I .

l f

l0000 I 5

F l‘5’ i

E. l . 1

E'- 0 >1 -~~~—tr--~-r«~~ ~wnfi'f'T " . . » 1 ~ . -. i
M |

“s“ 10 15 20 25 30 35 40 45 g

+Sequential 2 Threads +4 Threads *8 Threads “' 16 Threads

Figure 4.2: The time required for the revision to add fault-tolerance for several numbers of

non-general processes of BA in sequential and parallel algorithms.

56

50 ..t.-________.-._ ...- ___-_.____ -__.. - .____ _.____.____._-_ -_-_.____.-_

T
i
m
e
(
s
)

 0 l» ~ atwwwqu ~ -

Processes 10 20 30 40 50 60 70 80 90 100 150

2 Threads +4 Threads *8 Threads "‘9'" 16 Threads +Sequential ‘

Figure 4.3: The time required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of token ring processes in sequential and parallel algorithms.

threads (than available processors) can improve the performance further.

In Figures 4.3 and 4.4, we present the results of our experiments in parallelizing the

deadlock resolution of the token ring problem. After the number of processes exceeds a

threshold, the execution time increases substantially. This phenomenon also occurs in the

case of parallelized implementation, although it appears for larger programs. However, this

effect is not as strong. Note that the spike in speedup at 80 processes is caused by the page

fault behavior where the performance of the sequential algorithm is affected although the

performance of the parallel algorithm is still not affected.

57

I 700.-, .
.H,“

600
. ..- __ _

400

.
.
-

.
.
.
.
.
.
.
“
.
-
.
—

l
I

300

I

I

I

i 200 it-.-_---.--.--- Wm,a.,. -...n- ,- fish---”

I
1 100 T

l
m
e
(
s
)

I

0 ..L. mer- wfi-m'erfir-h'.“ ‘1 3": , ' r" . "T . . ‘r . ..z1 i

Processes 10 20 3O 40 50 60 70 80 90 100 150 I

+Sequential 2 Threads +4 Threads *8 Threads "'"" 16 Threads I

Figure 4.4: The time required for the revision to add fault-tolerance for several numbers of

token ring processes in sequential and parallel algorithms.

58

4.3.4 Group Time Analysis

To understand the speedup gain provided by our algorithm in Section 4.5.2, we evaluated

the experimental results closely. As an example, consider the case of 32 BA processes. For

sequential implementation, the total revision time is 59.7 minutes of which 55 are used

for group computation. Hence, the ideal completion time with 4 cores is 18.45 minutes

(55/4 + 4.7). By comparison, the actual time taken in our experiment was 19.1 minutes.

Thus, the speedup using this approach is close to the ideal speedup.

In this section, we focus on the effectiveness of the parallelization of group computation

by considering the time taken for it in sequential and parallel implementation. Towards this

end, we analyze the group computation time for sequential and parallel implementation in

the context of three examples: Byzantine agreement, agreement in the presence of failstop

and Byzantine faults, and token ring [14]. The results for these examples are included in

Tables 4.3-4 .5.

In some cases, the speedup ratio is less than the number of threads. This is caused

by the fact that each group computation takes a very small amount of time and incurs an

overhead for thread synchronization. Moreover, as mentioned in Section 4.2 .3, due to the

overhead of load balancing, we allocate tasks of each thread statically. Thus, the load of

different threads can be slightly uneven. We also observe that the speedup ratio increases

with the number of processes in the program being revised. This implies that the parallel

algorithm will scale to larger problem instances.

An interesting as well as surprising observation is that when the state space is large

enough then the speedup ratio is more than the number of threads. This behavior is caused

by the fact that with parallelization each thread is working on smaller BDDs during the

group computation. To understand this behavior, we conducted experiments where we cre-

ated the threads to perform the group computation and forced them to execute sequentially

by adding extra synchronization. We found that such a pseudo-sequential run took less

time than that used by a purely sequential run.

59

Sequential 2-threads 4-threads 8-threads

 PR RS GT(s) GT(S) SR GT(s) SR GT(s) SR

15 10“ 50 29 1.72 17 2.94 11 4.55

24 10'7 652 346 1.88 185 3.52 122 5.34

32 1022 3347 1532 2.18 848 3.95 490 6.83

48 1033 33454 14421 2.32 7271 4.60 3837 8.72

Table 4.3: Group computation time for Byzantine Agreement. PR: Number of processes.

RS: Size of reachable state space. GT(s): Group time in seconds. SR: Speedup ratio.

Sequential 2-threads 4-threads 8-threads

PR RS GT(S) GT(s) SR GT(S) SR GT(S) SR

10 10'0 53 24 2.21 23 2.30 30 1.77

15 10'5 624 319 1.96 175 3.57 174 3.59

20 1020 4473 2644 1.69 1275 3.51 1128 3.97

25 1025 26154 11739 2.23 6527 4.01 5692 4.59

Table 4.4: Group computation time for the Agreement problem in the presence of failstop

and Byzantine faults. PR: Number of processes. RS: Size of reachable state space. GT(s):

Group time in seconds. SR: Speedup ratio.

4.4 Approach 2: Alternative (Conventional) Approach

A traditional approach for parallelization in the context of resolving deadlock states, say

ds, would be to partition the deadlock states into multiple threads and allow each thread to

handle the partition assigned to it. Next, in Section 4.4.], we discuss some of the design

choices we considered for this approach. We give brief description of our. algorithm in

Section 4.4 .2. Subsequently, we describe experimental results in Section 4.4.3 and analyze

them to argue that for such an approach to work in revising distributed programs, group

computation must itself be parallelized.

6O

Sequential 2-threads 4-threads 8-threads

PR RS GT(S) GT(s) SR GT(S) SR GT(s) SR

30 1014 0.32 0.15 2.12 0.10 3.34 0.12 2.75

40 10'9 0.84 0.36 2.34 0.22 3.84 0.23 3.59

50 1023 1.82 0.68 2.68 0.39 4.66 0.42 4.37

60 1028 3.22 1.22 2.63 0.67 4.80 0.64 5.01

70 1033 5 .36 1 .91 2.80 1 .06 5 .05 0.86 6.23

80 1038 7.77 2.94 2.64 1.53 5.09 1.23 6.30

Table 4.5: Group computation time for token ring. PR: Number of processes. RS: Size of

reachable state space. GT(s): Group time in seconds. SR: Speedup ratio.

4.4.1 Design Choices

To maximize the benefits from parallelism, we consider two factors when partitioning the

deadlock state among available threads. First, the deadlock states should be distributed

evenly among the threads. Second, the partitions should minimize the overlap between

worker threads. More specifically, states considered by one thread should not be consid-

ered by an other thread. Therefore, we partition the deadlock states based on the values

of the program variables. We use the size of the BDDs and the number 0f minterrns to

split the deadlock states as evenly as possible. Regarding the second factor, we chose to

add limited synchronization among worker threads to reduce the overlap in the explored

states by different threads. For example, we can partition ds using the partition predicates,

prti, l g i g n, such that VL, (prti /\ ds) = ds and n is the number of threads. Thus, if two

threads are available during the revision of the Byzantine agreement program then we can

letprtl = (d.j = O) andprtz = (d.j aé 0).

After partitioning, each thread would work independently as long as it does not affect

the states visited by other threads. As discussed in Section 4.2 .3 , to resolve a deadlock state,

each thread explores a part of the state space using backward reachability. Clearly, when

the states visited by two threads overlap, we have two options: (1) perform synchronization

61

so that only one thread explores any state or (2) allow two threads to explore the states

concurrently and resolve any inconsistencies that may be created due to this.

We find that following the first option by itself is very expensive/impossible due to the

fact that with the use of BDDs, each thread explores a set of states specified by the BDD.

And, since each thread begins with a set of deadlock states and performs backward reach-

ability, there is a significant overlap among states explored by different threads. Hence,

following the first option essentially reduced the parallel run to a sequential run. For this

reason, we focused on the second approach where each thread explored the states concur-

rently. (We also used some heuristic-based synchronization where we maintained a set of

visited states that each thread checked before performing backward state exploration. This

provided a small performance benefit and is included in the results below.)

4.4.2 Algorithm Sketch

In this section, we focus on the descriptions of the parallel aspect of our deadlock resolution

algorithm. For more details on the sequential algorithm for deadlock resolution please refer

to [101].

The goal of our algorithm (c.f. Algorithm 5) is to resolve the deadlock states by adding

safe recovery. However, if for some deadlock states safe recovery is not possible, the al-

gorithm eliminates such states (i .e. makes them unreachable). To efficiently utilize the

available worker threads, the master thread partitions the set of deadlock states among

available threads as described in Section 4.4.1 and provides each thread with its own parti-

tion. Subsequently, the master thread activates the worker threads to add safe recovery (c.f.

Algorithm 6). Once activated, in adding safe recovery mode, each worker thread works as

follows. It constructs the recovery transitions that originate from the deadlock states and

leads to the legitimate states of the program in a finite number of steps. Of course, the

algorithm does not include any transition that reaches a state from where the safety of the

program can be violated. Once all worker threads are done computing the recovery transi-

62

tions, the master thread merges the recovery transitions, returned by all threads, and adds

them to the program transitions.

Algorithm 5 ResolveDeadlockStates

Input: program p, faults f, legitimate state predicate I, fault span T, pro-

hibited transitions mt, and partition predicates prtl ..prtn, where n is the

number of worker threads.

Output: program p’ and the predicatefte of states failed to eliminate.

9
.
"

g
i
l
l

10:

11:

12:

13:

14:

15:

16:

: ds := T /\ -:g(p);

// Resolving deadlock states by adding safe recovery

:forizzltondo

rt,- := SpawnThread w AddRecovery(ds /\ prti, 1, mt);

: end for

// Merging resultsfrom worker threads

: p==pVV§’=1rti:

vds,fte :2false;

: ds := T /\ -:g(p);

// Eliminating deadlock statesfrom where safe recovery is not possible

:forizzltondo

rpi, vds;,fie,- := SpawnThread w Eliminate(ds /\

prti,p,I,f, T, vds,fte);

end for

// Merging resultsfrom worker threads

I” 3: Group(Ai’=1 rPi);

fte, vds := lefiei, VLI vdsi;

// Handling inconsistencies

nds == ((T /\ 71) /\ "8(P’)) /\ _1((T /\ 71) /\ “8(PI)§

p’ := p’ V Group(p /\ nds);

14’ == 19’ V Group(8(P) A (fieI’):

return p’, fte;

At this point, the master thread computes the remaining deadlock states. This set iden-

tifies the deadlock states from which safe recovery is not possible. As mentioned earlier

in Section 4.2.3, those states have to be eliminated (i.e., made unreachable by program

63

Thread 6 AddSafeRecovery

Input: deadlock states ds, legitimate state predicate I, and transition predi-

cate mt.

Output: recovery transition predicate rec.

1: lyr, rec :2 I,false;

2: repeat

3 rt := Group(ds /\ (lyr)’);

4. rt := rt /\ fiGroup(rt /\ mt);

5: rec :2 rec V rt;

6: [yr := g(ds /\ rt)

7: until (lyr =false);

8: return rec;

transitions). Once again the master thread partitions the deadlock states and provides each

worker thread with one such partition. Subsequently, it activates the worker threads. Once

activated, in eliminating mode (c.f. Algorithm 7), the worker threads remove all program

transitions that terminate at the deadlock states, thereby making them unreachable. How-

ever, if the removal of some of those transitions introduces new deadlock states, then the al—

gorithm puts back such transitions and recursively eliminates the recently introduced dead-

lock states.

When threads explore states concurrently, some inconsistencies may be created. Next,

we give a brief overview of the inconsistencies that may occur due to concurrent state

exploration by different threads and identify how we can resolve them. Towards this end, let

S] and s2 be two states that are considered for deadlock elimination and (so, s1) and (so, s2)

be two program transitions for some so. To eliminate s1 and s2, a sequential elimination

algorithm removes transitions (so, s1) and (so, s2) , which makes so be a new deadlock state

(cf. Figure 4.5 .a).

This in turn requires that state so itself must be made unreachable. If so is unreachable,

then including the transition (so,s1) and (so,s2) in the revised program is harmless. In

fact, it is desirable since including this transition also causes other transitions in the corre-

64

Thread 7 Eliminate

Input: deadlock states ds, programp, legitimate state predicate I, fault tran-

sitions f, fault span T, visited deadlock states vds, predicate fte failed

to eliminate.

Output: revised program transition predicate p, visited deadlock states vds,

predicatefte failed to eliminate.

wait(mutex);

ds := ds /\ -nvds;

vds :2 vds V ds;

Signal (mutex);

if (ds =false) then

return p;

end if

old :=p;

tmp :2 (T /\ o!) /\p /\ (ds)’;

: p := p /\ fiGroup(tmp);

:fs :2 g(T /\ fiI/\f/\ (ds)’);

: p,vds,fte :2 Eliminate(fs,p,l, f, T, vds,fte);

: nds :2 g(T /\ fiIA Group(tmp) /\ fig(p));

: p := p V (Group(tmp) /\ nds);

: nds :2 nds /\ g(tmp);

// (X)” = {(s1,true)|(so,s1) E X}

16: fte :=fte V -1(old/\ op /\ T /\ (ds)’)”;

17: p, vds,fte :2 Eliminate(nds /\ fil,p,I, f, T, vds,fte);

18: return p, vds, fte;

9
9
.
5
1
9
9
9
9
?
?
?

t
—
‘
h
—
I
h
—
b
-
fi
l
—
t
t
—
t

m
-
m
e
r
—
O
}
?

65

sponding group to be included as well. And, these grouped transitions might be useful in

providing recovery from other states. Hence, it puts back (so,s1) and (so,s2) (and corre-

sponding group) and starts eliminating the state so. However, the concurrent execution of

worker threads may create some inconsistencies. We describe some of these inconsisten-

cies and our approach to resolve them next.

Case 1. States s1 and S; are in different partitions. Therefore, thl eliminates s1, which

in turn removes the transition (so,s1), and thz eliminates S2, which removes the transition

(so, s2) (cf. Figure 4.5.b). Since each thread works on its own copy, neither thread tries to

eliminate so, as they do not identify so as a deadlock state. Subsequently, when the master

thread merges the results returned by thl and thz, so becomes a new deadlock state that

has to be eliminated while the group predicates of transitions (so, 51) and (so, s2) have been

removed unnecessarily. In order to resolve this case, we replace all outgoing transitions

that start from so and mark so as a state that has to be eliminated in subsequent iterations.

Case 2. To eliminate deadlock states, the elimination algorithm performs backward

exploration starting from the deadlock state. Thus, two or more threads may consider the

same state for elimination. For example, if thl consider S] for elimination and thz consider

both s1 and s2 (c.f. Figure 4.5.b) then thl removes (so, 51) and thz removes (so, s1) and (so,

sz). Now, when the master thread joins the results of the two threads, the transition (so, s1)

is removed. However, as shown in Case 1, the removal of (so, s1) is not really necessary. In

fact, we would like to keep this transition in the program for the reasons mentioned above.

To handle this inconsistency, we collect _such transitions and add them back to the program

transitions.

4.4.3 Experimental Results

We also implemented this approach for parallelization. The results for the problem of

Byzantine agreement are as shown in Table 4.6. From these results, we noticed that the

improvement in the performance was small. To analyze these results, we studied the effect

66

Sequential

S] 82

3M

Before elimination

s s

k/02

SO

After elimination

(a)

Case 1 Case 2

Thread I Thread 2 Thread 1 Thread 2

S] 82 SI 82 S] 82 S1 82

O O O O O O

3.x 3.»» (3V

Merged Merged

S l 82 S 1 S2

O O Q

SOC) 80

s Fixecg Fzxed

1 s s

o c? ‘0 02

(b)

Legend

O Astate

O Eliminated state C To be considered for elimination

Figure 4.5: Inconsistencies raised by concurrency.

67

of this approach in more detail. For the case where we utilize two threads, this approach

partitions the deadlock states, say ds, into two parts, dsl and ds2. Thread 1 begins with dsl

and performs backward exploration to determine how states in dsl can be made unreach-

able. In each such backward exploration, if it chooses to remove some transition, then it has

to perform a group computation to remove the corresponding group. Although this thread

is working with a smaller set of deadlock states, the time required for group computation is

only slightly less than the sequential implementation where only one thread was working

with the entire set of deadlock states ds. Moreover, the time required in such group compu—

tation is very high (more than 80%) compared to the overall time required for eliminating

the deadlock states. This implies that, especially for the case where we are revising a pro-

gram with a large number of processes and where the available threads are relatively small,

parallelization of the group computation is going to provide us the maximum benefit.

Sequential Parallel Elimination with 2-threads

PR RS DR(s) TST(s) DRT(s) TST(s)

10 107 7 9 8 9

15 1012 78 85 78 87

20 1014 406 442 374 417

25 1018 1503 1,632 1,394 1503

30 102' 4,302 4,606 3,274 3,518

35 1025 11,088 11,821 10,995 11,608

40 1028 27,115 28,628 21,997 23,101

45 1032 45,850 48,283 39,645 41,548

Table 4.6: The time required for the revision to add fault-tolerance for several numbers of

non-general processes of BA in sequential and by partitioning deadlock states using paral-

lelism.PR: Number of processes. RS: Size of reachable state space. DRT(s): Deadlock

resolution time in seconds. TST(s): Total revision time in seconds.

68

4.5 Using Symmetry to Expedite the Automated Revision

In this section, we present our approach for expediting the revision with the use of sym-

metry using the input from Section 4.2.]. We utilize this approach in the task of resolving

deadlock states that are encountered during the revision process. Therefore, using the ex-

ample BA from Section 4.2.1, we describe how symmetry can help in resolving them. Then

we discuss our algorithms for resolving deadlock states by utilizing symmetry to expedite

the two aspects of deadlock resolution: adding recovery and eliminating deadlock states.

4.5.1 Symmetry

To describe the use of symmetry, consider the first scenario described in Section 4.2 .3. In

this scenario, we resolved the state S] by adding a recovery transition. Due to the symmetry

of the non-generals, one can observe that we can also add other recovery transitions. For

example, if we consider the state d.g = d.j = d.l = O,d.k = l,andf.k = O, we can add the

recovery transition by which d.k changes to 0.

With this observation, if we identify recovery action(s) to be added for one process, we

can add the similar actions that correspond to other processes. Therefore, to add recovery,

our algorithm does the following: whenever we find recovery transition(s), we identify

other recovery transitions based on symmetry. Then, we add all these recovery transitions

to the program being revised (c.f. Algorithm 8).

We also apply symmetry for deadlock states elimination. To eliminate a set of deadlock

states, we find the set of transitions, which if removed from one process, will prevent that

process from reaching deadlock states. Then, we use this set of transitions to remove sim-

ilar transitions from other processes. Therefore, to eliminate deadlock states by removing

program transitions, our algorithm does the following: whenever we find a set of transi-

tion(s), if removed from one process, the algorithm prevents the program from reaching a

deadlock state; we use symmetry to identify similar transitions for other processes, and we

69

Algorithm 8 Add_Symmetrical_Recovery

Input: deadlock states ds, legitimate state predicate I, and the set of unac-

ceptable transitions including those in specb, mt

Output: recovery transitions predicate rec

1: rec :2 ds/\ (I)’;

// (I)’ the set ofstates to which recovery can be added to ensure recovery

to legitimate states

2: rec :2 Group(rec);

// Select program transition or process i while ensuring read/write re-

strictions

3: rec :2 rec /\ -nGroup(rec /\ mt);

// Remove transition that violate safety while ensuring distribution re-

strictions

// Find similar transitionsfor other processes

4: for i := 1 to numberOfProcesses do

5: rec := recVSwapVariables(rec, i);

// Generate BDDs for other processes by swapping variables based

on symmetry

6: end for

7: return rec;

7O

remove these transitions from program transitions (c.f. Algorithm 9).

Algorithm 9 Group_Symmetry

Input: a set of transitions trans.

Output: a group of transitions grp.

l: grp :2 FindGroup(trans, read/write restrictions on i);

// Find the group related to process i transitions while ensuring the

read/write restrictions

// Find similar transitionsfor other processes

2: for i := 1 to numberOfProcesses do

grp := grpVSwapVariables(grp, i);

4: end for

P
?

5: return grp;

4.5.2 Experimental Results

In Section 4.5.], we described the use of symmetry approaches to resolve deadlock states

in the automated revision. In Sections 4.5 .2-4.5 .2, we describe and analyze the respective

experimental results. In particular, we describe the results in the context of two classi-

cal examples in the literature of distributed computing, namely, the Byzantine agreement

(described in Section 4.2.1) and the token ring [14]. In both case studies, we find that

symmetry and parallelism improve the execution time substantially.

Symmetry

In this section, we present our experimental results in using symmetry for the resolution of

deadlock of deadlock states in the automated revision.

Figure 4.6 shows the time spent in deadlock resolution, and Figure 4.7 shows the to-

tal revision time for different numbers of processes in the Byzantine agreement problem.

71

From this figure, we observe that the use of symmetry provides a remarkable improvement

in the performance. More importantly, one can notice that the speedup ratio (gained using

a symmetrical approach) grows with the increase in the number of processes. In particular,

as shown in Figure 4.7, the speedup ratio in the case of 10 non-general processes is 4.5.

However, in the case of 45 non-general processes the speedup ratio is 19. This behavior is

both expected and highly valuable. Since symmetry uses transitions of one process to iden-

tify transitions of another process, it is expected that as the number of symmetric processes

increases, so would the effectiveness of symmetry. Moreover, since the speedup is propor-

tional to the number of (symmetric) processes, we argue that symmetry would be highly

valuable in handling the state space explosion with an increased number of processes.

 ...“ ...-“—

60000 '*~—*”"~~——h “-4” ~~—————-——-“~-———_._—_m-w----_---Wfl..--2___-
--

50000______.__._H_ - -~-——~v~-~~-+-——-—4———_____~_-4—44_-___.._.2_-..--_
-__.-.___

40000

30000

20000

10000 ,.__2_._.#____.

 w

v

0

E
.-

0 ~--——-- .-

10 15 20 25 30 35 40 45

“"Sequential Symmetry

Processes

Figure 4.6: The time required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of BA non-general processes in sequential and symmetrical

algorithms.

To explain this remarkable improvement, we focus on the fact that far more time is

spent resolving deadlock states for each process independently than by simply resolving

72

 I I
60000 1

50000 “H

40000

30000 -2

20000 “b ———

 10000 —- m~———-——--——-

 U)

21
. ”...-O

..a. 0
E-t

10 15 20 25 30 35 40 45

+Sequential Symmetry

L. . ___._ .._-__.__ ...__-___---__ --.. _ w..____.___.__-..-_._ .

Processes
Figure 4.7: The time required for the revision to add fault-tolerance for several numbers of

BA non-general processes in sequential and symmetrical algorithms.

deadlock states for single process and using symmetry to resolve deadlock states for the

rest of the processes. Consequently, symmetry is expected to give better speedup ratios

when the number of symmetrical processes is large.

In Figures 4.8 and 4.9, we present the results of our experiments on the token ring prob-

lem. We observe that symmetry substantially reduces the time for deadlock resolution. In

fact, symmetry was able to keep this time almost a constant, i.e., independent of the prob-

lem size. One can notice a spike in the required revision time of the sequential algorithm

for token ring after we hit the threshold of 90 processes. This behavior was also observed

in [30] and is caused by the fact that, at this state space, we are utilizing all the available

memory, causing performance to degrade due to page faults.

73

.10 +—~- --—- 0 SIM" l l 7 "I”? I 2-..]... ‘ uni—T.” 1 I l I "_"F'"'”" *1

10 20 30 40 50 60 70 80 90 100 150

rocesses +Sequential Symmetry

U)

35’

..E.
5..

P
Figure 4.8: The tttttime required to resolve deadlock states in the revision to add fault-

tolerance for several numbers of token ring processes in sequential and symmetrical algo-

rithms.

Symmetry and Parallelism

In this section, we present our experimental results of using parallelism in computing the

symmetry. The results of parallelizing the symmetry computation with various implemen-

tations in the automated symbolic revision are presented in Figure 4.10. We have achieved

the shortest revision time when we use parallelism to compute the symmetry. For example,

in the case of the Byzantine agreement with 45 non-general processes using 16 threads, we

achieve a speedup ratio of 1.8 times that of the symmetry alone. Since in case of the token

ring, symmetry alone reduces the time of computing recovery transitions to a negligible

amount, the results for this case are omitted.

74

 700 ~ — —~

600 22 -5-

500 7’

400 — v - ~-ww~—

300 ~— ——~_

200

100 +— ~n

 o -+——- .- r—-—- "

10 20 30 40 50 60 70 8O 90 100 150

rocesses

‘v'f a

.E
[—

P
+Sequential Symmetry

Figure 4.9: The time required for the revision to add fault-tolerance for several numbers of

token ring processes in sequential and symmetrical algorithms.

75

3000 T -—— ~—~——-—--- r————~— - ~~——-~—

2
-

_
-
_
_
~
_
.
_
_
2
4
1

+1 Thraed 2 Threads +4 Threads *8 Threads "*“ l6 Threads

Figure 4.10: The time required for the revision to add fault-tolerance for several numbers

of BA non-general processes using both symmetry and parallelism.

76

4.6 Summary

In this chapter, we focused on the techniques that can efficiently complete the automated

model revision in a reasonable amount of time. Specifically, we used techniques that ex-

ploit symmetry and parallelism to expedite the automated model revision and to overcome

its bottlenecks. For parallelism, our approach was based on parallelization with multiple

threads on a multi-core architecture. We found that the performance improvement with the

simple parallelization of the group computation is significantly more efficient than tradi-

tional approaches that partition the deadlock states among available threads. With group

computation parallelism we achieved significant benefit that is close to the ideal. In the

case of symmetry, we used the fact that multiple processes in a distributed program are

symmetric in nature. We used this characteristic to efficiently expedite the automated re-

vision. Since, the cost of identifying the transition of a given model with the knowledge

of symmetry among processes is less than the cost of identifying these transitions explic-

itly, the use of symmetry reduces the overall time required for the revision. Moreover, the

speedup increases as the number of symmetric processes increases.

Lessons Learned. The results show that a traditional approach of partitioning dead-

lock states provides a small improvement. However, it helped identify an alternative ap-

proach for parallelization that is based on the distribution constraints imposed on the pro-

gram being revised. While parallelization reduces the time spent in eliminating deadlock

states, it may also lead to some inconsistencies that have to be resolved. The time for

resolving such inconsistencies is one of the bottlenecks in parallelization, as this inconsis-

tency is resolved sequentially. We note that the synchronization on visited states was also

added, in part, to reduce inconsistencies among threads by requiring them to coordinate

with each other.

The performance improvement with the parallelizing of the group computation is sig-

nificant. In fact, for most cases, the performance was close to the ideal speedup. What

this suggests is that for the task of deadlock resolution, a simple approach based on par-

77

allelizing the group computation (as opposed to a reentrant BDD package or partitioning

of the deadlock states, etc.) will provide the biggest benefit in performance. Moreover,

the group computation itself occurs in every aspect of the revision where new transitions

have to be added for recovery or existing transitions have to be removed for preventing

safety violations or breaking cycles that prevent recovery to the set of the legitimate states

model/program. Therefore, the approach of parallelizing the group computation will be

effective in the automated model revision of distributed programs.

Impact. Automated model revision has been widely believed to be significantly more

complex than automated verification. When we evaluate the complexity of automated revi-

sion to add fault-tolerance, we find that it fundamentally includes two parts: (1) analyzing

the existing program and (2) revising it to ensure that it meets the fault-tolerance properties.

We showed that the complexity of the second part can be significantly remedied by the use

of parallelization in a simple and scalable fashion. Moreover, if we evaluate the typical

inexpensive technology that is currently being used or is likely to be available in the near

future, it is expected to be 2-16 core computers. And, the first approach used in this chap-

ter is expected to be the most suitable one for utilizing these multi-core computers to the

fullest extent. Also, since the group computation is caused by distribution constraints of the

program being revised, it is guaranteed to be required even with other techniques for ex-

pediting automated revision. For example, it can be used in conjunction with the approach

for parallelizing the group as well as the approach that utilizes symmetry among processes

being revised. Hence, even if a large number of cores were available, this approach would

be valuable together with other techniques that utilize those additional cores.

Memory Usage. Both of our approaches, symmetry and parallelism, require the use of

more memory. For instance, the revision of the BA with 2 threads requires almost twice the

amount of memory needed by the sequential algorithm for the same number of non-general

processes. However, unlike model checking, in automated model revision, since we always

run out of time before we run out of memory, we argue that the extra usage of memory is

78

acceptable given the remarkable reductions we achieve in total revision time.

79

Chapter 5

Nonmasking and Stabilizing

Fault-Tolerance

Achieving practical automated model revision requires us to derive theories and develop

algorithms that provide broader domain of problems, which we can resolve by automated

model revision. Towards this end, in this chapter, we focus on the constraint-based auto-

mated addition of nonmasking and stabilizing fault-tolerance to hierarchical programs. We

specify legitimate states of the program in terms of constraints that should be satisfied in

those states. To deal with faults that may violate these constraints, we add recovery ac-

tions while ensuring interference freedom among the recovery actions added for satisfying

different constraints. Since the constraint-based manual design of fault-tolerance is well

known to be applicable in the manual design of nonmasking fault-tolerance, we expect

our approach to have a significant benefit in automation of fault-tolerant programs. We

illustrate our algorithms with three case studies: stabilizing mutual exclusion, stabilizing

diffusing computation, and a data dissemination problem in sensor networks. With exper-

imental results, we show that the complexity of revision is reasonable and that it can be

reduced using the structure of the hierarchical systems.

To our knowledge, this is the first instance where automated revision has been success-

80

fully used in revising programs that are correct under fairness assumptions. Moreover, in

two of the case studies considered in this chapter, the structure of the recovery paths is too

complex to permit existing heuristic-based approaches for adding recovery.

To expedite the revision, we concentrate on reducing the time complexity of such revi-

sion using parallelism. We apply these techniques in the context of constraint satisfaction.

We consider two approaches to speedup the revision algorithm: first, the use of the multiple

constraints that have to be satisfied during revision; second, the use of the distributed nature

of the programs being revised. We show that our approaches provide significant reductions

in the revision time.

The rest of the chapter is organized as follows. In Section 5.2, we define the problem

statement for the automated addition of nonmasking and stabilizing fault-tolerance. We

describe the algorithms for the automated addition of nonmasking and stabilizing fault-

tolerance in Section 5.3. We present our multi-core algorithms in Section 5.4 and experi-

mental results in Section 5 .5. In Section 5 .6, we study the ordering in which the constraints

should be satisfied. We show how we can use the hierarchical structure to reduce the com-

plexity of our algorithm in Section 5.7. Finally, we summarize the chapter in Section 5 .8.

5.1 Introduction

In this chapter, we focus on automated addition of nonmasking and stabilizing fault-

tolerance to fault-intolerant programs. Intuitively, a nonmasking fault-tolerant program en—

sures that if it is perturbed by faults to an illegitimate state, then it would eventually recover

to its legitimate states. However, safety may be violated during recovery. Therefore, non-

masking fault-tolerance is useful to tolerate a temporary perturbation of the program state.

After recovery is completed, a nonmasking fault-tolerant program satisfies both the safety

and liveness in the subsequent computation. Nonmasking and stabilizing fault-tolerance

is an ideal solution to add fault-tolerance to the programs that organize network nodes in

81

specified topology or a predefined logical structure [13].

There are several reasons that make the design of nonmasking fault-tolerance attractive.

For one, the design of masking fault-tolerant programs, where both safety and liveness

are preserved during recovery, is often expensive or impossible even though the design of

nonmasking fault-tolerance is easy [15]. Also, the design of nonmasking fault-tolerance

can assist and simplify the design of masking fault-tolerance [105]. Moreover, in several

applications nonmasking fault-tolerance is more desirable than solutions that provide fail-

safe fault-tolerance (where in the presence of faults the program reaches to “safe” states

from where it does not satisfy liveness requirements). This is especially true for networking

related applications such as routing and tree maintenance.

A special case of nonmasking fault-tolerance is stabilization [54,56], where, starting

from an arbitrary state, the program is guaranteed to reach a legitimate state. Stabiliz-

ing systems are especially useful in handling unexpected transient faults. Moreover, this

property is often critical in long-lived applications where faults are difficult to predict. Fur-

thermore, it is recognized that verifying stabilizing systems is especially hard [76]. Hence,

techniques for automated revision are expected to be useful for designing stabilizing sys-

tems.

Techniques for adding nonmasking and stabilizing fault-tolerance to distributed pro-

grams can be classified in two categories. The first category includes approaches based

on distributed reset [13], where the program utilizes approaches such as distributed snap-

shot [38] and resetting the system to a legitimate state if the current state is found to be

illegitimate. Approaches from this category suffer from several drawbacks. In particular,

they require the designer to know the set of all legitimate states. The cost of detecting the

global state can be high. Additionally, this approach is heavy-handed since it requires a

reset of the entire system, even if the fault may be localized.

The second category includes approaches based on constraint satisfaction, where we

identify constraints that should be satisfied in the legitimate states. Typically, the con-

82

straints are local (e .g., involving one node or a node and its neighbors); therefore, detecting

their violation is easy. Since the constraints are local, the recovery actions to fix them are

also local.

There are several issues that complicate the design of nonmasking and stabilizing fault-

tolerance [10]. One such issue is the complexity of designing and analyzing the recovery

actions needed to ensure that the program recovers to legitimate states. Another issue is

that to verify correctness of the nonmasking fault-tolerant program, one needs to consider

all possible concurrent executions of the original program, recovery actions, and fault ac-

tions. Yet another issue is that most nonmasking algorithms assume that faults can keep

happening (although they will eventually stop for a long enough time to permit recovery)

even during recovery, thereby, complicating the recovery to legitimate states.

Adding nonmasking and stabilizing fault-tolerance to an existing program is achieved

by performing three steps. The first step is to identify the set of legitimate states of the fault-

intolerant program. This set defines the constraints that should be true in the legitimate

states. The second step is to identify a set of convergence actions that recover the program

from illegitimate states to legitimate states. This can be done by finding actions that satisfy

one or more constraints. The last step consists of ensuring that the convergence actions do

not interfere with each other. In other words, the collective effect of all recovery actions

should, eventually, lead the program to legitimate states.

In this chapter, we automate the last two steps by identifying the necessary actions to

ensure that the constraints are satisfied and that the recovery actions do not interfere with

each other. The automation of the first step is discussed in details in Chapter 6.

However, this approach suffers from one important drawback: local actions taken to

fix one constraint may violate other constraints. Consequently, these constraints need to

be ordered. Furthermore, we need to ensure that satisfying one constraint does not vio-

late constraints earlier in the order. Since verifying that recovery actions for satisfying

one constraint do not affect other constraints is a demanding task, automated techniques

83

that ensure correctness by construction are highly desirable. In the correct-by—construction

approach, a program is automatically revised such that the output program preserves ’the

original program specification. In addition, it satisfies new properties. However, algo-

rithms for designing programs that are correct by construction suffer from high complexity

and, hence, techniques to expedite them need to be developed. Since the time complexity

of the automation algorithms can be high, we also evaluate parallelization techniques to

expedite addition of nonmasking and stabilizing algorithm.

In this chapter, we present an automated model revision algorithm for constraint-based

synthesis of nonmasking and stabilizing fault-tolerant programs. We illustrate our algo-

rithm with three case studies. We note that the structure of the recovery actions in the

first two case studies is too complex to permit previous approaches to achieve revision of

the corresponding fault-tolerant programs [30]. We also show that the structure of the hi-

erarchical system can be effectively used to generalize programs with a small number of

processes while preserving the correct-by-construction property of the revised program.

Also, we present a multi-core algorithm to synthesize distributed nonmasking and sta-

bilizing fault-tolerant programs by partitioning the satisfaction of the constraints among

available threads. To further expedite the revision, we also present a multi-core algorithm

that utilizes the distributed nature of programs being revised by parallelizing them.

To our knowledge, this is the first instance where programs that require fairness assump-

tions have been revised with automated techniques. Particularly, in our first case study, it

is straightforward to observe that stabilizing fault-tolerance cannot be added without some

fairness among all processes. Thus, the previous algorithms (e.g., [30]) will declare failure

in adding fault-tolerance.

84

5.2 Programs and Specifications

In this section, we define the problem statement for adding nonmasking and stabilizing

fault-tolerance. Please note that the problem statements defined in this section are instances

of the original definition of the fault-tolerance from Section 2.5. Those definitions are based

on the ones given by Arora and Gouda [12]. Also, we use the definitions of distributed

programs, fairness, legitimate states, faults, and fault-span from Chapter 2.

The goal of an algorithm that adds nonmasking fault-tolerance is to begin with a fault-

intolerant program p, its legitimate state predicate I, and faults f, and to derive the non-

masking fault-tolerant program, say p’, such that in the presence of faults, p’ eventually

converges to I . Furthermore, computations of p’ that begin in I must be the same as that of

p.

Based on this discussion, we define the problem of adding nonmasking fault-tolerance

as follows:

Problem statement 4.1 Given p, I, and f, identity p’ such that:

o Transitions within the legitimate states remain unchanged

so 6 I :>(Vs1::(so,s1)Ep <=> (so,s1) Ep’)

0 There exists a state predicate T (fault-span) such that

- I g T,

- (so,s.) €(p’Vf) /\ (506 T) :>s1 e T,

— so 6 T/\ (so,sl,...) is a computation ofp’

 => (3j:j20:sj61).

Stabilizing fault—tolerance is a special instance of this problem statement with the re-

quirement that T = Sp, i.e. the fault-span equals the set of all states. Based on this discus-

sion, we define the problem of adding stabilizing fault-tolerance as follows:

85

Problem statement 4.2 Given p, I, and f, identify p’ such that:

o Transitions within the legitimate states remain unchanged:

- S0 6 [=> (V81 :2 (80,61) Ep <=> (S(),S1) Ep’)

0 All program transitions eventually converge to the set of le-

gitimate states

- so E 5,, /\ (so,sl , ...) is a computation of p’

 23> (Elj:j20:s,-€I)

Note that since each constraint is preserved by the original program p, closure property of

the stabilizing program p’ is satisfied from the first constraint of the problem statement.

Thus, it is not explicitly specified above.

5.3 Synthesis Algorithm of the Nonmasking and Stabiliz-

ing Fault-Tolerance

Our approach for adding nonmasking and stabilizing to fault-intolerant programs, based

on [13]. The goal of nonmasking and stabilizing fault-tolerance is to ensure that after faults

occur, the program eventually reaches one of the legitimate states in I . We focus on the

instance of the problem where I = C; AC2... AC”, and C;, 1 2 i 2 m, is a constraint on

the variables of the program. Faults perturb the program to a state in (-w 1). Hence, in

the presence of f, one or more of the constraints from C1,C2...Cm are violated. The goal

of our algorithm is to automatically synthesize the recovery actions such that when faults

stop occurring, the constructed recovery actions in conjunction with the original program

actions will, eventually, converge the program to a state where I holds.

86

5.3.1 Constraint Satisfier

Our algorithm for adding nonmasking and stabilizing fault-tolerance is shown in Algorithm

10. The input for the algorithm is the constraint array C, fault-span T, and program p.

In this algorithm, the constraints from the constraint array are satisfied one after another.

The algorithm starts by computing the legitimate state predicate as the intersection of all

constraints in the constraint array (Lines 3).

Then, the algorithm computes the recovery transitions to satisfy C[I] Let Tr denote

transitions that begin in the fault-span and in a state where C [t] is false and end in a state

where C[i] is true. Unfortunately, we cannot add Tr as is, since Tr may not be imple-

mentable using read/write constraints on processes due to the distributed nature of the pro-

gram. The algorithm adds a subset of Tr, say Tr] , such that Tr] can be implemented

using the read/write restrictions of one or more processes. We denote this by the function

Groupmin (see Line 6)‘. This ensures that the only transitions added are those that start

from a state where C[l] is false and reach a state where C[t] is true. These transitions are

denoted by temp on Line 6.

Subsequently, the algorithm removes transitions from temp that violate the closure of

the fault-span T. Thus, it computes a subset of transitions, say Trf,M , in temp that begin in

a state in T and reach a state in -~T. Again, we need to ensure that the removed transitions

are consistent with read/write restrictions of processes. The algorithm achieves this by

applying function Groupm to Trfspan; this computes a superset of Trfspan such that one

or more processes can execute it. Subsequently, it removes this superset from temp (Line

7). This ensures that all transitions that violate closure of T are removed. Therefore, it

removes the group of transitions that violates T (respectively, I) (Lines 7-8).

The algorithm needs to ensure that none of the transitions used to satisfy the constraint,

say C[i], violates the pre-satisfied constraints C[0] to C [i — 1]. Hence, it lets V include

the transitions that originate from a state where C[i — l] is true and end in a state where

I(X /\ (Y)’) refers to the transitions that start in a state in X and reach Y.

87

C[i — I] is false as well as similar transitions for the constraints C[0] to C [i — 2] (Line 11).

The transitions in V are used to ensure that recovery transitions do not violate other pre-

satisfied constraints. The algorithm ensures that none of the transitions in temp interfere

with earlier constraints. Therefore, it removes the transitions in V from temp if any are

found (Line 9). At this point, the algorithm collects all recovery transitions in rec (Line

10). Steps 4 — 12 are repeated until all the recovery actions that satisfy all the constraints

in the array C are found. Finally, it returns the recovery actions of the program p.

Algorithm 10 ConstraintSatisfier

Input: constraint array C, fault-span T, and program transitions p.

Output: recovery transitions rec.

p
—

: temp, V :=false,false;

2: m :2 SizeOf(C) — 1; // m is the number of constraints

3: I :2 30cm; //Compute I (invariant) as the intersection of all con-

straints

4: fori:=0tom do

5: //temp are the transitions that start in a state in T — C(i) and reach

C(i)

6: temp :2 Groupmm((T — C[i])A (C[i])’);

//ensure that no recovery transitions violate T

7: temp := temp — Group(temp * (TA (nT)’));

//ensure that no recovery transitions violate I

8: temp := temp — Group(temp * (I/\ (-.I)’));

9: temp := temp — V ;

// Combine current recovery transitions with the new recovery transi-

tion.

10: rec :2 rec V temp;

//Compute, V, the set of the transitions that violating the constraints

11: V := V V Group(C[i]/\(-1C[i])’)

12: end for

// return the recovery transition.

13: return rec;

88

Theorem 5.3.1 :

0 Given arefault—intolerantprogram p, constraints C1,C2...Cm, andfaults f.

0 Let I = C1/\C2.../\Cm.

0 Let T: set ofstates reached in the execution ofpVf that startfrom any state in I .

0 Let rec: ConstraintSatisfier(C, T, p).

1f

V80 2 So 6 T—I: (3S1 2S1 E T I (S0,S|) 6 rec)

Then

p’ (= p V rec) solves the constraints in Problem statement 4.]. I

Proof. To prove Theorem 3.1 we show that the p’ (2 p V rec) solves the constraints of

the problem statement 4.1.

o By the construction of the transitions in rec, it is straightforward to see that rec does

not introduce any new transitions in I . Therefore, the transitions within the legitimate

states remain unchanged.

0 By the construction of T, it is clear that I g T since T includes all the states in I as

well as the states reachable from I by (pVf).

0 From Line 7 in the algorithm ConstraintSatisfier, the transitions in rec do not in-

clude any transition that violates T.

0 Since rec does not include any of the transitions from V (Lines 9 and 11), none

of the transitions in rec violate pre-satisfied constraints. Therefore, there will be

no cycles between the recovery transitions themselves. Hence, the constraint (so 6

TA (so,s|,...) is acomputation ofp’ => (Eljzjz 0 : s; E 1)) is satisfied. I

89

Figure 5.1: Constraints ordering and transitions selections.

5.3.2 Algorithm Illustration

To illustrate the algorithm ConstraintSatisfier, consider the system described in Figure

5.1. In this system, we have three ordered constraints C1,C2, and C3 and I = C1 AC2 AC3.

Since C1 is the first to be satisfied, we construct all possible recovery actions that start

from any state in T — C1 and reach a state in C1 A T. We proceed to satisfy C2 in the

same manner. However, after constructing the recovery actions that satisfy C2, we need to

exclude actions that violate the constraint C1. In particular, we exclude actions like rec]

(c.f. Figure 5.1) since it starts from a state, so, where C. is true and ends in a state, s],

where CI is false. On the other hand, we keep transitions like recz and reg. We continue

to construct the recovery actions that establish C3 provided that they preserve T, C1 , and

C2.

5.4 Expediting the Constraints Satisfaction

In Section 5.3, we described the sequential approach (i.e., single thread) for synthesiz-

ing nonmasking and stabilizing fault-tolerant distributed programs from fault-intolerant

versions. In this section, we explain our design choices and present our approaches for

expediting the revision with multi-core computing (i.e., multiple threads).

5.4.1 Design Choices for Parallelism

After reviewing Algorithm 10, we can see that there are two main bottlenecks, which lower

the performance of this algorithm. The first is the main loop (Lines 4-12) where the number

of iterations is determined by the number of constraints. The second is the Group operation

in Lines 6, 7, 8, and 11. The group operation is based on the nature of distributed programs

where addition of a transition for one process requires us to add additional transitions that

are computed based on what the process cannot read/write.

Choices for constraint satisfaction. One way to partition the computation of recovery

transitions is to split the recovery computation among multiple threads by allowing them

to work on satisfying separate constraints. However, Algorithm 10 uses the computation

of V, transitions that violate preceding constraints (Line 11). Clearly, one possibility is to

compute all possible values taken by V during the computation up front and utilize them ap-

propriately for computing valid recovery transitions. Computing the possible values taken

by V also requires a computation that utilizes a loop that requires sizeOf(C) iterations,

which can be parallelized using standard techniques from parallel computing.

After computation of V, we can partition the iterations (Lines 4-12 in Algorithm 10)

among several threads. We considered several approaches for this. One approach we con-

sidered was dynamic partitioning. In particular, in this approach, a pool of uncompleted

iterations is maintained. Each thread picks an iteration from this pool and computes the

recovery transitions for that iteration. Subsequently, it picks another iteration from the pool

91

and so on. We found that this dynamic partitioning approach, however, resulted in a high

overhead, thereby reducing the speedup. Hence, we considered static partitioning where

each thread was given fixed iterations. Even here, we tried different options. One option

was to partition the iterations in an alternating manner (e .g., thread 1 gets iterations 0, 2, 4,

and thread 2 gets iterations l, 3, 5, ...). It was expected that this would leave the size

of MDDs used in each thread to be evenly balanced. However, we found that this approach

and the approach of partitioning where thread 1 got iterations 0, l, (sizeOf(C) /2) — 1

and thread 2 got iterations sizeOf(C) /2, sizeOf(C) — 1 had almost identical perfor-

mance in the case studies. We have used the latter in our experiments. However, we believe

that the choice of partitioning could play a role in other case studies.

Choices for utilizing distributed nature. When the recovery algorithm adds new tran-

sitions (or removes transitions that violate earlier constraints), we have to add the corre-

sponding group of transitions based on the distributed nature of the program. Moreover,

with symbolic approach, we add (or remove) a set of transitions at a time. This set may

include transitions that could be executed by several processes. Therefore, for a given set

of transitions that are added, we need to consider read/write restrictions of each of these

processes to determine the group for that set of transitions. We can utilize this feature to

parallelize the group computation itself by having each thread compute the group corre—

sponding to a subset of processes.

Again, similar to the parallelization with constraints, we considered several approaches.

It turned out that even for this approach, the overhead of dynamic partitioning was more

than its benefit. Thus, we utilized static approaches. Since several approaches consid-

ered for partitioning resulted in a similar speedup, we utilize the simple approach where

each thread obtains a subset of processes and computes the corresponding group for those

processes.

Finally, in group parallelization, the actual computation involved in the group itself is

small. Hence, we found that the overhead of creating and terminating threads for each

92

group computation was very high. For this reason, we created the threads up front and used

mutexes to determine when they will be active. I

Choices for parallelizing the MDD (Multi-Valued Decision Diagrams) library. Since

we are using MDD-based symbolic revision [28], the constraints are characterized by

Boolean formulae involving the variables in the program being revised. The MDD li-

brary [125] is not designed to be reentrant and assumes that at most one MDD package

is active at any given time. Multiple threads cannot operate on the same MDD package

simultaneously. Also, different threads cannot access different MDD packages simultane-

ously. We considered two approaches to solve this problem: (1) utilize a reentrant version

of the MDD package, or (2) utilize multiple independent MDD packages. Since a reentrant

MDD package is not available, we followed the second approach. We modified the MDD

library so that multiple instances could be used simultaneously. We also added a Transfer

function to transfer an MDD object from one MDD package to a different MDD package.

Hence, during the parallel algorithms, a master thread spawns several worker threads, each

running on a different core/processor in parallel with an instance of its own MDD pack-

age. The instance of the MDD package assigned to each worker thread is initialized using

MDDs (e.g., program transitions MDD) transferred from the MDD package of the master

thread.

5.4.2 Partitioning the Constraints Satisfaction

Based on the design choices from Section 5.4.1, we present a multi-core algorithm that

partitions the satisfaction of such constraints among available cores/processes.

Algorithm sketch. Intuitively, our algorithm works as follows. During constraint

satisfaction, a master thread spawns several worker threads, each running on a different

core/processor. Each worker thread runs on its own MDD package concurrently with other

threads. The instance of the MDD package assigned to each worker thread is initialized us-

ing MDDs transferred from the MDD package of the master thread. Some of those MDDs

93

are the array of constraints to be satisfied, the program transitions, the array of constraints

violating transitions, and the legitimate state predicate. The master thread partitions the

constraints and provides each worker thread with one such partition. Subsequently, worker

threads start resolving their assigned set of constraints in parallel by adding the required

recovery actions. Upon completion, the master thread merges the results returned by the

worker threads.

Algorithm ll ParallelConstraintsSatisfaction [Master Thread]

Input: constraint array C, program transitions p, fault-span T, and number

of threads n.

Output: recovery transitions recAll .

1:

2:

.10:

11:

12:

13:

14:

15:

16:

17:

18:

9
9
9
.
5
'
9
‘
9
9
9
’

gAll :=false;

I 1= Ain=0CIiI§

// Notation: C [t] A (-1C[i])’ refers to transitions that start in -1C[i] and

ends in C [i]

fori:= 1 ton— 1 do

SpawnThread w ComputeViolate(i);

end for

for i := 1 to Size0f(C) —1 do

V[i] :2 V[i— l] V V[i];

end for

fori:=0ton— 1 do

(3,, [i] = Split(i,C);

v,,[i] = Split(i, V);

end for

fori:=lton—1do

rec[i] := SpawnThread -> PConstraintSatisfier(Cp[i] , p, fault-span

T, VpIiI , I);

end for

ThreadJoin(0..n — 1);

recAll := V30] rec[i]; // Merging the resultsfrom all threads

return recAll;

Parallel Constraints Satisfaction. Our algorithm for satisfying the constraints in parallel

is as shown in Algorithm 11. This algorithm begins with the array of constraints to be

94

satisfied C, fault-intolerant program p, fault-span T, and the number of worker threads to

be spawned n. The goal of this algorithm is to discover the set of recovery transitions

recAll such that all the constraints in C are satisfied in a way that enables the fault-tolerant

program to recover to its legitimate states. Initially, the algorithm starts by computing

the legitimate state predicate I as the intersection of all constraints (Lines 2). Now, the

algorithm constructs the array V such that V[i] includes the transitions that start from a

state where C[I] is true and end in a state where C[t] is false as well as the similar transitions

for the constraints C[j], where 0 S j g i— 1 (Lines 3-8). A more efficient way to do this

computation is by letting the master thread use the worker threads such that each worker

thread computes its share of V elements such that V[i] contains the transitions that starts

from C[l] and end in -vC[i]. Once all threads are done, the master thread updates the array

V such that V[i] = V[i — l] V V[i]. In other words, V[i] contains all transitions that violate

the constraint C[0] to C [i].

After constructing the array V , the algorithm proceeds to evenly distribute the elements

of the arrays C and V among the worker threads (Lines 9-12). Specifically, Cp [1] includes

the array of constraints assigned to the thread i, and Vp[i] includes the array of correspond-

ing constraints violating transitions. Note that the availability of the array Vp enables each

worker thread to work independently without interfering with the other threads. To com-

pute the respective recovery transitions, each worker thread (Lines 13-15) calls the algo-

rithm PConstraintSatisfier, which is similar to Algorithm 10 except that in addition to Cp

and p it also takes VI) and I as an input. Once all worker threads complete their jobs (Line

16), the master thread collects all the recovery transitions returned by worker threads in

recAll (Lines 17-19) and returns the overall recovery transitions.

95

5.5 Case Studies

In Section 5.3, we presented our approach for constraint-based automated addition of non-

masking and stabilizing fault-tolerance. In Section 5.4, we presented different approaches

to exploit parallelism. In Subsections 5.5.1-5 .5 .3, we describe and analyze three case stud-

ies, namely the Stabilizing Mutual Exclusion [124], the stabilization of Data Dissemina-

tion Problem in Sensor Networks [104], and the Stabilizing Diffusing Computation [13].

Of these, the first and the third case study are classic problems from distributed comput-

ing and illustrate the feasibility of algorithms that add stabilizing fault-tolerance. In the

second case, study we demonstrate the applicability of our approach on a real world prob-

lem, particularly, in the field of sensor networks. In all of these case studies, we find

that our approach for constraint-based automated addition of nonmasking and stabilizing

fault-tolerance was successful in synthesizing the nonmasking fault-intolerant programs.

Furthermore, we find that parallelism significantly reduces the total revision time.

Throughout this section, all experiments are run on, sun x4275 with 4 x Quad-core

Intel Xeon E5520 (2.27GHz w/ 8MG cache each) processors with 24 GB RAM. The MDD

representation of the Boolean formulae has been done using a modified version of the

MDD/BDD Glu 2.1 package [125] developed at the University of Colorado.

5.5.1 Case Study 1: Stabilizing Mutual Exclusion Program

Mutual exclusion is one of the fundamental problems in distributed/concurrent programs.

One of the classical solutions to this problem is the token-based solution due to Raymond

[124]. In this solution, the processes form a directed rooted tree, a holder tree, in which

there is a unique token held at the tree root. If a process wants to access the critical section,

it must first acquire the token. Our goal in this case study is to add stabilization to the

fault-intolerant program in [15]. When faults occur and perturb the holder tree, the new

program will stabilize and reconstruct a correct holder tree within a finite number of steps

96

under weak fairness assumption.

FauIt-Intolerant Program. In Raymond’s algorithm, the processes are organized in a

logical tree, denoted as a parent. The holder tree is superimposed on top of the parent

tree such that the root of the holder tree is the process that has the token. For example,

Figure 5.2.a represents the undirected parent tree and Figure 5.2.b shows the holder tree

when c has the token. In the fault-intolerant program, each process j has a variable h. j.

If h. j = j then j has the token. Otherwise, h.j contains the process number of one of j’s

neighbors. The holder variable forms a directed path from any process in the tree to the

process currently holding the token.

In this program, a process can send the token to one of its neighbors. For example,

Figure 5.2.c shows the case where process c sends the token to e. In particular, if j and

k are adjacent (in the parent tree), then the action by which k sends the token to j is as

follows:

A1 :: (h.k=kA jEAdj.k) A (h.jzk)—>h.k, h.j :=- j, j;

Constraints. Recall from Section 5.2 that we define the legitimate states to be a set of

constraints on the program state space. In this case study, this set is the conjunction of the

constraints S1, 52, and S3, described next. Moreover, each of these constraints is specified

for each process separately. Therefore, if n is the number of processes then we have 3n

constraints to satisfy. Constraint S 1 requires that j’s holder can either be j’s parent, j itself,

or one of j’s children. S2 requires that the holder tree conforms to the parent tree. Finally,

S3 requires that there are no cycles in the holder relation. Thus, predicates S1, 52, and S3

are as follows:

(51) Vj:(h.j=P.j)V(h.j=j)V(3k:(P.k=j)A(h.j=k))

($2) vr=<m¢j>=>(h.j=Rj)v(h.(P.j)=j)

(53) W : (ID-1'7é 1') => n((h~j -= P-J') A (h-(P-j) = j))

97

e f

undirected parent tree

(a)

a b c d a b c d

O—> 04—0 O—> 4—0

eO/f token e f

‘_0 token .<_O

c has the token 0 passes the token to e

(b) (C)

Figure 5.2: The holder tree

Faults. Since we focus on stabilizing fault-tolerance, we consider faults that perturb the

holder relation of all processes to an arbitrary value. Thus the fault action is as follows:

(F 1) true ——> {h.j :2 any arbitrary value from its domain};

Fault-Tolerant Program. To add stabilizing fault-tolerance to the above program, we

used the revision algorithm as follows. The fault intolerant program for each process is

specified by actions Al; the faults are specified by the fault action F 1; and the constraints

are from S l , $2, and S3. We specified these constraints in the following order: first, we

specified constraints S l for the root, then its children, then its grandchildren, and so on.

Subsequently, we specified constraint $2 likewise. Finally, we specified constraint S3 in

the reverse order. The recovery actions computed by the revision algorithm are as follows:

R1 :: —1((h.jsz)V(h.j=j)V(Elk:(P.k=j)A(h.j=k)))

——>h.j:=j|h.j:=P.j|h.j:= {childofj};

98

82 :2 31 (ID-1741') : (M = P-j)V(h-(P-j) =1))

... h.j :———P.j | h.(P.j) == 1';

R331 "((ID-1751') => «(12.7: P-J'IMh-(P-J') =1?))

—+ M := j I h.(P.j) := Rj I h-(le := 8187);

Analysis of experimental results. Table 5.1 shows the results of synthesizing the Sta-

bilizing Mutual Exclusion program with various numbers of processes organized in linear

topology. It shows the time needed, in seconds, to add recovery, validate the recovery tran-

sitions (against pre-satisfied constraints), and the total revision time in terms of the number

of processes being revised. Table 5.2 shows the result of a similar case study where the

processes are arranged in a binarytree topology.

N0. of Time(s)

Processes constraint satisfaction total

Recovery Validation

30 19 21 40

40 78 74 153

50 217 238 457

60 505 509 1020

70 1 1 10 1103 2238

Table 5.1: Stabilizing Mutual Exclusion, linear topology.

Table 5.2 illustrates that given the same state space, the complexity is higher in the

tree topology than the linear topology. This is due to the following reason: the constraints

of a process compare its variables with that of its neighbors. To model this effectively,

the process variables and the variables of its neighbors need to be close to each other in

the MDD variable ordering. This can be achieved easily on a linear topology. However,

for a tree topology, this is not possible for all the processes. Hence, computing recovery

transitions for those cases is more expensive.

99

No. of Time(s)

Processes constraint satisfaction total

Recovery] Validation

7 < 1 < 1 < 1

15 2 < 1 < 3

17 3 < 1 < 4

21 3 5 10

31 30 19 49
Table 5.2: Stabilizing Mutual Exclusion, binary tree topology.

Table 5.3 shows the results of using parallelism during constraints satisfaction in syn-

thesizing the stabilizing Mutual Exclusion program. The table illustrates the results for

various numbers of processes organized in linear topology using different numbers of pro-

cessors/cores. It shows the time needed, in seconds, to satisfy the constraints, and the total

revision time. It also shows the amount of memory in megabytes. As we can see from this

table, using parallelism has substantially reduced the time needed for the revision. As a

concrete example, observe that the time required to synthesize a stable mutual exclusion

program with 50 processes dropped from 457 seconds, using the sequential algorithm, to

374 seconds when two cores were used, and to 178 seconds when four cores were used.

Table 5.4 shows the results of exploiting the distributed nature of the program being

revised (i .e., Group parallelism) in synthesizing the stabilizing Mutual Exclusion program.

It shows the time needed, in seconds, to compute the group, and the total revision time. It

also shows the amount of memory in megabytes needed by our algorithm.

We can clearly see the feasibility of adding stabilizing fault-tolerance using automated

revision. Both time and space complexity are reasonable and proportional to the reachable

state space. Furthermore, as specified in Section 5.7, the complexity for a larger number of

processes can be reduced by utilizing the hierarchal structure.

100

101

N
o
.
o
f

P
r
o
c
e
s
s
e
s

r
e
a
c
h
a
b
l
e

s
t
a
t
e
s

S
e
q
u
e
n
t
i
a
l

2
t
h
r
e
a
d
s

4
t
h
r
e
a
d
s

8
t
h
r
e
a
d
s

C
n
s
t

S
y
n

M
e
m

C
n
s
t

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

S
y
n

t
(
s
)

M
e
m

(
M
B
)

C
n
s
t

t
(
s
)

S
y
n

t
(
s
)

M
e
m

(
M
B
)

C
n
s
t

t
(
s
)

S
y
n

t
(
s
)

M
e
m

(
M
B
)

2
0

3
0

4
0

5
0

6
O

7
0

1
0
2
6

1
0
4
4

1
0
6
4

1
0
8
4

1
0
1
0
6

1
0
1
2
9

 6
7

6
5

4
0

4
0

1
3

3
6

1
5
2

1
5
3

1
4

1
0
0

4
5
5

4
5
7

1
5

3
7
4

1
0
1
4

1
0
2
0

1
6

7
5
2

2
2
1
3

2
2
3
8

1
7

1
6
7
3

 3

6

1
0
1

3
7
4

7
5
3

1
6
7
4

 2
3

4
2

4
2

4
6

5
1

7
4

 3 1
9

7
2

1
8
6

5
1
5

1
0
6
0

3

2
0

7
3

1
8
7

5
1
5

1
0
6
2

3
3

6
6

7
1

7
7

8
2

1
1
4

 3 1
9

7
4

1
9
8

4
1
8

8
9
3

3 1
9

7
5

1
9
9

4
1
9

8
9
6

 4

1

9
1

1
2
0

1
3
2

1
3
7

1
9
0

T
a
b
l
e
5

.
3
:
S
t
a
b
i
l
i
z
i
n
g
M
u
t
u
a
l
E
x
c
l
u
s
i
o
n
u
s
i
n
g
C
o
n
s
t
r
a
i
n
t
s
p
a
r
t
i
t
i
o
n
i
n
g
.
C
n
s
t

t
(
s
)

:
T
o
t
a
l
t
i
m
e
s
p
e
n
t
i
n
c
o
n
s
t
r
a
i
n
t
s
s
a
t
i
s
f
a
c
t
i
o
n
i
n
s
e
c
o
n
d
s
.

S
y
n

t
(
s
)
:
T
o
t
a
l
r
e
v
i
s
i
o
n
t
i
m
e

i
n
s
e
c
o
n
d
s
.
M
e
m

(
M
B
)
:
M
e
m
o
r
y
u
s
a
g
e

i
n
M
B
.

102

S
e
q
u
e
n
t
i
a
l

2
t
h
r
e
a
d
s

4
t
h
r
e
a
d
s

8
t
h
r
e
a
d
s

N
o
.
o
f

r
e
a
c
h
a
b
l
e

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

M
e
m

P
r
o
c
e
s
s
e
s

s
t
a
t
e
s

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

*
3

2
0

1
0
2
6

6
7

6
4

4
1
6

3
3

2
5

3
3

4
2

3
0

1
0
4
4

4
0

4
0

1
3

3
6

3
7

3
2

2
0

2
0

5
0

1
6

1
6

8
3

4
0

1
0
6
4

1
5
2

1
5
3

1
4

1
0
5

1
0
6

4
0

7
7

7
8

6
8

5
4

5
6

1
2
2

5
0

1
0
8
4

4
5
5

4
5
7

1
5

3
2
0

3
2
2

4
4

2
2
4

2
2
6

7
4

1
5
0

1
5
4

1
3
3

6
0

1
0
1
0
6

1
0
1
4

1
0
2
0

1
6

6
7
9

6
8
6

4
5

5
4
7

5
5
3

7
1

3
7
0

3
7
6

1
2
5

7
0

1
0
1
2
9

2
2
1
3

2
2
3
8

1
7

2
1
1
0

2
1
3
5

4
7

1
0
9
0

1
1
1
6

7
7

7
0
0

7
2
5

1
3
6

T
a
b
l
e
5
.
4
:
S
t
a
b
i
l
i
z
i
n
g
M
u
t
u
a
l
E
x
c
l
u
s
i
o
n
u
s
i
n
g
G
r
o
u
p
t
h
r
e
a
d
i
n
g
.
G
r
p

t
(
s
)

:
T
o
t
a
l
t
i
m
e
s
p
e
n
t
i
n
G
r
o
u
p
c
o
m
p
u
t
a
t
i
o
n
i
n
s
e
c
o
n
d
s
.
S
y
n

t
(
s
)
:

T
o
t
a
l
r
e
v
i
s
i
o
n
t
i
m
e
i
n
s
e
c
o
n
d
s
.
M
e
m

(
M
B
)
:
M
e
m
o
r
y
u
s
a
g
e
i
n
M
B
.

5.5.2 Case Study 2: Data Dissemination in Sensor Networks

In this problem, a base station initiates a computation in which a block of data is to be sent

to all sensors in the network. The data message is split into fixed size packets. Each packet

is given a sequence number. The base station starts transmitting the packets to its neigh-

bor(s) in specified time slots, in the order of the packet sequence number. Subsequently,

when the neighbor(s) receive a message, they, in turn, retransmit it to their neighbors and

so on. The computation ends when all sensors in the network receive all the messages.

Our goal in this case study is to synthesize a nonmasking fault-tolerant version of the

data dissemination program that can tolerate a finite number of lost packets. The revised

program is the same as Infuse [104] that is designed manually.

Fault-Intolerant Program. In this case study, we arrange the processes in a linear topol-

ogy. The base station has N packets to send to M processes. (We note that similar revision

is possible for any other fixed topology.) The Fault-intolerant program transmits the pack-

ets in a simple pipeline. For this, each process keeps track of the messages (received/sent)

using two variables u.j and l. j, where u.j is the highest message sequence number received

by process j, and l . j is the sequence number of the message currently being transmitted by

process j. Process j increments u. j every time it receives a new message. It also sets I . j

to be the sequence number of the message it is transmitting. The base station transmits a

packet if its neighbor has received the previous packet (action 1N1). A process j, j > 0,

receives a packet from its predecessor if its successor had received the previous packet

(actions IN2 and IN3). Thus, the actions of the fault-intolerant program are as follows:

Action for base station:

(1N1) (10:01) —4m:=w+1;

Action for process j E {1..M—l}:

(1N2) (u.jg U.(j+1))/\(U.jg U.(j— 1))/\(L.(j— 1) :U.j+ 1)

'—> U.j,L.j:: U.j+l,L.j+ 1;

103

Action for process M (the last process):

(1N3) UMg U.(M— 1)AL.(M— 1) = U.M+1—> U.M, L.M :2 U.M+1,L.M+ 1;

Faults. In this section, we consider faults that lose a message. To model such faults for

the base station, we add action (F l), where the base station increments L.0, even though its

successor has not received the previous packet. To model such action for other processes,

we add action (F2), where a process advances L. j, even though the successor has not yet

received the previous packet.

(F1) true—+1102: [10+];

(F2) (U.ng.(j—1))/\(L.(j— 1) =U.(j+1)) ——>U.j,L.j :2 U.j+1,L.j+1;

Constraints. The constraints that define the legitimate states in the case of the data

dissemination program are as follows. The first constraint states that initially the base

station has all the packets (S l). A process cannot receive a packet if its predecessor has not

received it (S2), and cannot transmit a packet that it does not have (S3). A process transmits

a packet that is expected by its successor (S4 and S5).

51 (U02 N)

S2 (Vj: 0<j<M: (U.j=U.(j—1)))

S4

()

()

(S3) (Vj: 0<j<M (LIEU-1)))

()(L.0<U.1+1)

()SS (Vj: 0<j<(M—l):(L.jSU.(j—l)+l)A(L.jSU.(j+l)+1)))

The data dissemination program has a set of constraints imposed by the model. More

specifically, these constraints identify the transitions that the revised algorithm is not al-

lowed to use as recovery transitions. Notice that Algorithm 10 is slightly modified to con—

sider such transitions; these transitions are removed from temp right before Step 4. This

set is specified by predicates imposed on the current and the next state. In particular, the

104

model requires that the reception of a packet cannot be reversed (MTl), packets can only

be received in sequence (MT2), a process can only receive one packet at a time, it can

only receive a packet sent by its predecessor (MT3 and MT4), a process cannot transmit a

packet unless it has received it (MTS), and a process should not transmit a packet unless it

is potentially needed by its successor (MT6). Thus, the set of transitions disallowed by the

model are as follows:

MTl: (3j:0<jSM:U.j’<U.j)

MT2: (3):0<ng:U.j’<(U.j)+1)

MT3: (3j:0<jSM:(U.j’=(U.j)+1)/\(U.j’7éL.(j—1))/\(U.j’7AL.(j+1))

MT4: (U.M’= (U.M)+1/\U.M'7é L.(M— 1))

MTS: (3j:0§jSM:(U.j’<L.j’))

MT6: (Eijzogng—l:(L.j>U.(j+1)+1)/\(L.j’<U.(j+l)+1)

Fault-Tolerant program. Using the program actions (IN 1-1N3) for each process, the

faults (F l-F2), the constraints (Sl-SS), and prohibited transitions (MTl-MT6), the output

was a nonmasking fault-tolerant program with the following recovery actions added to it.

(R1) (U.j>U.(j+1)) /\ (L.j>U.(j+1)+l) /\ (U.j+1=L.(j—1))

—>U.j:= L.(j—l),L.j:= U.(j+l)+1;

(R2) (U.j>U.(j+l)+1) /\ (L.j>U.(j+1)+1)

—>L.j :2 U.(j+l)+l;

Table 5.5 shows the results of synthesizing the data dissemination protocol with a vari-

ous numbers of processes. One can notice that most of the total revision time was spent

on adding recovery, while a smaller amount of time was spent in validating the recovery

transitions.

The main reason for this behavior is that the structure of the fault-span in this case study

is simpler: if a message is lost on one link, then until it is recovered, that message cannot

be sent again (it is possibly lost on subsequent links).

105

N0. of Space Timefis)

Processes reachable memory constraint satisfaction total

states (MB) Recovery l Validation

50 1025 11 4 2 6

100 1059 12 32 14 48

150 1070 15 153 47 207

200 1093 16 452 162 633

Table 5.5: Nonmasking with linear topology data dissemination program.

Table 5 .6 shows the results of synthesizing the data dissemination protocol with various

numbers of processes by partitioning the constraints among available threads. Note that, in

the case of the data dissemination problem, there were only 5 constraints to satisfy. Hence,

when the revision is launched with 8 threads, we are only utilizing 5 of them. As can

be seen from Table 5.6 if the number of constraints is not large enough then the speedup

gained from portioning the constraints is limited.

Table 5 .7 shows the results of synthesizing the data dissemination protocol with various

numbers of processes by exploiting the distributed nature of this program.

5.5.3 Case Study 3: Stabilizing Diffusing Computation

In distributed systems, diffusing computation is used to inquire about (e.g., termination

detection) or establish (e.g., distributed reset) a system global state. We consider a diffusing

computation on a system where processes are arranged in a logical tree. The root initiates

a diffusing computation and propagates it to its children and the children forward it to their

children and so on until it reaches all processes. Once the computation reaches a leaf, it

marks the leaf as completed and reflects back to the parent. When all children of a process

are marked completed, that process marks itself completed and reflects the computation to

its parent. The diffusing computation ends when it marks the root as completed.

106

107

S
e
q
u
e
n
t
i
a
l

2
t
h
r
e
a
d
s

4
t
h
r
e
a
d
s

8
t
h
r
e
a
d
s

N
o
.
o
f

r
e
a
c
h
a
b
l
e

C
n
s
t

S
y
n

M
e
m

C
n
s
t

S
y
n

M
e
m

C
n
s
t

S
y
n

M
e
m

C
n
s
t

S
y
n

M
e
m

P
r
o
c
e
s
s
e
s

s
t
a
t
e
s

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

5
0

1
0
4
7

6
6

1
1

4
4

2
8

5
5

4
4

5
5

6
3

1
0
0

1
0
9
5

4
6

4
8

1
2

3
1

3
2

4
0

3
1

3
1

6
5

3
9

3
9

1
1
0

1
5
0

1
0
1
4
3

2
0
0

2
0
7

1
5

1
1
8

1
1
9

4
1

1
2
1

1
2
1

6
8

1
3
0

1
3
0

1
1
5

2
0
0

1
0
1
9
0

6
1
4

6
3
3

1
6

3
2
2

3
2
4

4
6

2
8
5

2
8
7

7
2

3
2
9

3
3
0

1
1
6

T
a
b
l
e

5
.
6
:
D
a
t
a
D
i
s
s
e
m
i
n
a
t
i
o
n
p
r
o
g
r
a
m
u
s
i
n
g
C
o
n
s
t
r
a
i
n
t
s
p
a
r
t
i
t
i
o
n
i
n
g
.
G
r
p

t
(
s
)

:
T
o
t
a
l
t
i
m
e
s
p
e
n
t

i
n
G
r
o
u
p
c
o
m
p
u
t
a
t
i
o
n

i
n
s
e
c
o
n
d
s
.

S
y
n

t
(
s
)
:
T
o
t
a
l
r
e
v
i
s
i
o
n
t
i
m
e

i
n
s
e
c
o
n
d
s
.
M
e
m

(
M
B
)
:
M
e
m
o
r
y
u
s
a
g
e

i
n
M
B
.

S
e
q
u
e
n
t
i
a
l

2
t
h
r
e
a
d
s

4
t
h
r
e
a
d
s

8
t
h
r
e
a
d
s

N
o
.
o
f

r
e
a
c
h
a
b
l
e

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

M
e
m

P
r
o
c
e
s
s
e
s

s
t
a
t
e
s

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

108

5
0

1
0
0

1
5
0

2
0
0

1
0
4
7

1
0
9
5

1
0
1
4
3

1
0
1
9
0

 6
8

6
1

l
4

4
2
7

2
3

4
4

2
2

6
8

1
4
9

4
8

1
2

2
7

3
0

3
9

l
4

1
6

6
6

9
1
1

1
1
9

2
4
5

2
0
7

1
5

8
7

9
3

4
2

6
4

7
0

6
8

3
2

3
9

1
2
1

4
4
6

6
3
3

1
6

2
3
3

2
5
3

4
6

1
7
3

1
9
2

7
2

8
7

1
0
6

1
2
7

T
a
b
l
e

5
.
7
:
D
a
t
a
D
i
s
s
e
m
i
n
a
t
i
o
n
p
r
o
g
r
a
m
u
s
i
n
g
G
r
o
u
p

t
h
r
e
a
d
i
n
g
.
G
r
p

t
(
s
)

:
T
o
t
a
l
t
i
m
e
s
p
e
n
t
i
n
G
r
o
u
p
c
o
m
p
u
t
a
t
i
o
n

i
n
s
e
c
o
n
d
s
.
S
y
n

t
(
s
)
:

T
o
t
a
l
r
e
v
i
s
i
o
n
t
i
m
e

i
n
s
e
c
o
n
d
s
.
M
e
m

(
M
B
)
:
M
e
m
o
r
y
u
s
a
g
e

i
n
M
B
.

Fault-Intolerant Program. The fault-intolerant program in this case study is the diffusing

computation program from [13]. Each process j has two Boolean variables c.j (color)

and sn.j (session number) and an integer variable P (the parent of j). A new diffusing

computation can start if the root is colored green (c.root _—_ green) and the session number

of the root is the same as its children. To start a new diffusing computation, the root

sets c.root = red and flips sn.root. When a green process finds that its parent is red, it

copies its parent color and session number. Moreover, if a process has no children or all

its children switched colors from red to green, the process then switches its color to green.

The program for the diffusing computation consists of three actions. The first action starts

the diffusing computation at the root (DC1). The second action propagates the diffusing

computation to the children (DC2). The third action completes the diffusing computation

when all the children complete computation (DC3). The program actions are described

below:

DC] :: (c.root 2 green) —> c.root :2 red,sn.root :2 -1sn.root;

DC2 :: c.j = green/\c.(P.j) = red/\sn.j 76 sn.(P.j) ——> c.j,sn.j : c.(P.j),sn.(P.j);

DC3 :: (c.j = red) /\ (Vk : P.k = j => (c.k = green/\sn.j = sn.k)) ——> c.j 2: green;

Constraints. The first disjunction of (81) states that j’s parent has participated in a dif-

fusing computation while j did not participate yet. The second disjunction of (S1) states

that j and its parent are participating in a computation or they both have completed a com-

putation .

(SI) \7’j : (c.j = green/\c.(P.j) 2 red) V (c.j = c.(P.j) Asn.j = sn.(P.j))

Faults. We now consider the faults that change the values of c. j and sn.j to an arbitrary

value. The fault actions are as follows:

(F1) true ——> c.j :2 red | green;

(F2) true ——> sn.j := true | false;

109

Fault-Tolerant Program. To construct the nonmasking fault-tolerant program of the

fault-intolerant program of Diffusing Computation, we used our algorithm with program

actions (DC 1 — DC3), and the constraint (S 1) with the fault actions (F l , F2) as an input.

The revised program has the actions (DCl — DC3) in addition to the following recovery

actions:

(R1) (c.jzred) A (sn.#3,.(3j) _. c. j ;= green, sn. j ;= sn.(P. j);

(R2) (c.(P. j) = green) A (c.jzred) _. c. j 2: green;

(R3) (c.(P.j) :c.j) A (sn.j¢sn.(P.1)) _. sn.j :2 sn.(Rj);

(R4) (c.(P. j) =red) A (c.jzred) A (sn.j;ésn.(P.j)) ——> c. j := green;

No. of Time(s)

Processes constraint satisfaction total

Recovery 1 Validation

5O 1 3 4

100 12 19 32

150 57 53 113

200 151 124 282

Table 5.8: Stabilizing Diffusing Computation, linear topology.

No. of Time(s)

Processes constraint satisfaction total

Recovery 1 Validation

15 < 1 < 1 < 1

17 1 1 2

21 1 3 25

23 2 4 6

Table 5.9: Stabilizing Diffusing Computation, binary tree topology.

Table 5 .8 shows the results for synthesizing a stabilizing diffusing computation program

with a various numbers of processes organized in a linear topology. Table 5.9 shows the

result where the processes are arranged in a binary tree.

110

Table 5.10 shows the results of synthesizing the diffusing computation program with a

various numbers of processes by exploiting the distributed nature of this program.

Table 5.11 shows the results of synthesizing the diffusing computation program with a

various numbers of processes by partitioning the constraints among available threads.

Memory Usage. Notice that the amount of memory needed during revision is proportional

to the number of threads being used. It is approximately the amount of memory used by the

sequential algorithm multiplied by the number of cores being used. Clearly, this is expected

since for every thread used, we create a new MDD package. We argue that using extra

memory to gain a speedup is acceptable, since in the automated revision, time complexity

is a far more serious barrier than space complexity.

5.6 Choosing Ordering Among Constraints

To apply Theorem 3.1, we need to identify an order among the constraints. In our case

studies, we attempted several orderings and most were successful in synthesizing the non-

masking and stabilizing fault-tolerant program. Hence, choosing the “right” order does not

appear to be very crucial. Also, [13] identifies several heuristics that can assist in identify-

ing the right order among constraints.

One possible approach is to consider different combinations as part of the revision algo-

rithm. With such an approach, 0(n2) combinations suffice for most examples. In particular,

to identify an ordering, we can utilize an algorithm similar to insert-sort as follows: first

consider only constraints Cl and C2 and attempt both orderings between them. If both

orderings fail, then adding nonmasking fault-tolerance cannot be achieved using the con-

straint based approach that uses constraints C 1 and C2. If both succeed, then we can choose

any order. Without loss of generality, let the order be C1 and C2. Then, we consider con-

straint C3 in conjunction with C1 and C2. There are three possible combinations to insert

C3 without affecting the order between C; and C2. We can evaluate all three options and

111

112

S
e
q
u
e
n
t
i
a
l

2
t
h
r
e
a
d
s

4
t
h
r
e
a
d
s

8
t
h
r
e
a
d
s

N
o
.
o
f

P
r
o
c
e
s
s
e
s

r
e
a
c
h
a
b
l
e

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

M
e
m

G
r
p

S
y
n

s
t
a
t
e
s

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

M
e
m

(
M
B
)

G
r
p

S
y
n

M
e
m

t
(
s
)

t
(
s
)

(
M
B
)

5
0

1
0
3
0

4
4

6
3

3
1
5

2
2

1
0
0

1
0
6
0

3
1

3
2

1
4

2
4

2
4

3
7

1
9

2
0

1
5
0

1
0
9
0

1
1
0

1
1
3

1
5

7
4

7
6

3
9

6
3

6
7

2
0
0

1
0
‘
2
0

2
7
5

2
8
2

1
5

1
7
7

1
8
4

4
0

1
3
8

1
4
4

2
2

5
8

6
5

6
6

1

2
4
O

1
3

1
4

9
5

4
6

4
9

1
1
8

1
1
7

1
2
4

1
1
9

T
a
b
l
e

5
.
1
0
:

S
t
a
b
i
l
i
z
i
n
g
D
i
f
f
u
s
i
n
g
C
o
m
p
u
t
a
t
i
o
n
p
r
o
g
r
a
m
u
s
i
n
g
G
r
o
u
p

t
h
r
e
a
d
i
n
g
.
G
r
p

t
(
s
)

:
T
o
t
a
l
t
i
m
e
s
p
e
n
t

i
n
G
r
o
u
p
c
o
m
p
u
t
a
t
i
o
n

i
n

s
e
c
o
n
d
s
.
S
y
n

t
(
s
)
:
T
o
t
a
l
r
e
v
i
s
i
o
n
t
i
m
e

i
n
s
e
c
o
n
d
s
.
M
e
m

(
M
B
)
:
M
e
m
o
r
y
u
s
a
g
e

i
n
M
B
.

113

S
e
q
u
e
n
t
i
a
l

2
t
h
r
e
a
d
s

4
t
h
r
e
a
d
s

8
t
h
r
e
a
d
s

N
o
.
o
f

r
e
a
c
h
a
b
l
e

C
n
s
t

S
y
n

M
e
m

C
n
s
t

S
y
n

M
e
m

C
n
s
t

S
y
n

M
e
m

C
n
s
t

S
y
n

M
e
m

P
r
o
c
e
s
s
e
s

s
t
a
t
e
s

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

t
(
s
)

t
(
s
)

(
M
B
)

5
0

1
0
3
0

4
4

6
3

3
1
7

2
2

2
7

2
2

3
4

1
0
0

1
0
6
0

3
1

3
2

1
4

2
2

2
3

4
0

1
5

1
5

6
2

1
5

1
5

9
8

1
5
0

1
0
9
0

1
1
0

1
1
3

1
5

7
8

7
8

4
0

4
9

4
9

6
6

4
7

4
7

1
1
3

2
0
0

1
0
1
2
0

2
7
5

2
8
2

1
5

1
8
6

1
8
6

4
1

1
1
6

1
1
6

6
7

9
7

9
8

1
1
4

T
a
b
l
e
5
.
1
1
:

S
t
a
b
i
l
i
z
i
n
g
D
i
f
f
u
s
i
n
g
C
o
m
p
u
t
a
t
i
o
n
u
s
i
n
g
C
o
n
s
t
r
a
i
n
t
s
p
a
r
t
i
t
i
o
n
i
n
g
.
C
n
s
t

t
(
s
)

:
T
o
t
a
l
t
i
m
e
s
p
e
n
t
i
n
c
o
n
s
t
r
a
i
n
t
s
s
a
t
i
s
f
a
c
t
i
o
n
i
n

s
e
c
o
n
d
s
.
S
y
n

t
(
s
)
:
T
o
t
a
l
r
e
v
i
s
i
o
n
t
i
m
e

i
n
s
e
c
o
n
d
s
.
M
e
m

(
M
B
)
:
M
e
m
o
r
y
u
s
a
g
e

i
n
M
B
.

then consider C4 and so on. It follows that the number of such runs will be 0(n2). In all the

case studies in this chapter as well as several other algorithms in the literature, the above

approach would succeed in identifying the right order of constraints. It follows that one

does not need to consider all possible (n!) orderings among the constraints.

Another approach is to allow the revision algorithm to chooses a random ordering for

satisfying the constraints. If the revision algorithm fails to find a solution using a given

constraints ordering, then it choses a different random order. The revision algorithm keeps

trying different random ordering for the constraints until it finds a solution or it exhausts

all possible combinations.

We implemented this approach. We found that depending on the program being revised

the time required to complete the revision may vary significantly. More specifically, in the

case of the Stabilizing Mutual Exclusion from Section 5.5.1, the order of the constraints

is almost always irrelevant and the revision algorithm found a solution using any order it

tried. Table 5.12 shows the results of 10 experiments. In each experiment, the revision

algorithm randomly chose an order for the constraints and tried to synthesize using that

order. In all cases the revision completed successfully for any order and from the first try.

The time needed to complete the revision was almost identical to that of the case where

the constraints were manually ordered (c.f. Table 5.1). However, this was not always the

case. For example, Table 5.13 shows the results of synthesizing the Stabilizing Diffusing

Computation from Section 5.5 .3. In this case, the order in which the revision algorithm

satisfies the constraints is significantly important. More specifically, the revision algorithm

has to try different orderings (on average 3-4 times) before it successfully synthesizes the

stabilizing fault-tolerant program. Moreover, the time required to complete the revision,

in this case, was much higher than that when the constraints were manually ordered (c.f.

Table 5.8).

114

115

T
o
t
a
l
R
e
v
i
s
i
o
n
T
i
m
e
(
s
)

N
o
.
O
f

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

A
v
e
r
a
g
e

P
r
o
c
e
s
s
e
s

1
2

3
4

5
6

7
8

9
1
0

3
0

5
1

5
4

5
1

5
8

5
8

5
2

5
1

5
1

5
3

5
1

5
1

4
0

2
1
3

1
9
7

1
9
8

1
8
4

1
8
4

1
8
8

1
8
4

2
2
6

1
8
9

1
9
0

1
8
1

5
0

5
5
2

5
5
7

5
7
4

6
3
8

5
7
1

5
7
4

5
5
6

5
3
7

5
4
1

5
3
6

5
1
7

6
0

1
2
3
0

1
2
5
0

1
4
1
0

1
2
3
3

1
2
4
9

1
2
3
1

1
2
3
5

1
2
6
2

1
2
3
2

1
2
4
6

1
1
4
9

7
0

2
8
7
7

2
7
6
7

2
7
2
6

2
7
5
8

3
0
6
2

2
7
5
4

2
7
5

l
2
7
8
1

2
7
1

1
2
9
0
5

2
5
6
0

T
a
b
l
e
5
.
1
2
:

S
t
a
b
i
l
i
z
i
n
g
M
u
t
u
a
l
E
x
c
l
u
s
i
o
n
w
i
t
h
l
i
n
e
a
r
t
o
p
o
l
o
g
y
u
s
i
n
g
r
a
n
d
o
m

c
o
n
s
t
r
a
i
n
t
s
s
a
t
i
s
f
a
c
t
i
o
n
.

116

T
o
t
a
l
R
e
v
i
s
i
o
n
T
i
m
e
(
s
)

N
o
.
O
f

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

E
x
p
.

A
v
e
r
a
g
e

P
r
o
c
e
s
s
e
s

1
2

3
4

5
6

7
8

9
1
0

5
0

2
0

2
6

2
6

1
4

2
0

3
1

3
4

2
4

1
5

3
1

2
6

1
0
0

2
8
9

2
4
4

2
1
8

1
6
4

2
0
3

2
1
8

2
4
3

1
7
4

2
0
8

2
8
3

2
1
3

1
5
0

8
5
9

9
9
7

5
6
9

7
1
6

8
5
3

7
2
5

5
6
7

7
6
4

6
1

1
8
5
3

6
9
7

2
0
0

3
2
8
0

1
4
5
7

2
1
8
1

2
1
8
7

2
2
1
8

2
2
1
7

2
1
9
6

2
2
0
9

1
4
5
1

1
8
2
6

1
9
4
7

T
a
b
l
e
5
.
1
3
:

S
t
a
b
i
l
i
z
i
n
g
D
i
f
f
u
s
i
n
g
C
o
m
p
u
t
a
t
i
o
n
w
i
t
h
l
i
n
e
a
r
t
o
p
o
l
o
g
y
u
s
i
n
g
r
a
n
d
o
m

c
o
n
s
t
r
a
i
n
t
s
s
a
t
i
s
f
a
c
t
i
o
n
.

5.7 Reducing the Complexity with Hierarchical Structure

Based on the case studies, we can observe that as the number of nodes in the hierarchy

increases, the time complexity can increase substantially. For example, in the first case

study, when we increased the height of the binary tree from 3 to 4 (i.e., from 7 to 15

processes), the revision time increased from 5 to 72 seconds. This is expected since the

state space increases from 105 to 10'6 states. Thus, a natural question in this area is whether

the structure of the hierarchical system can assist in reducing the complexity. We show that

the answer to this question is affirmative. For simplicity, we illustrate this in the context of

the linear topology and binary tree topology.

Linear topology. Consider the case where the system is as shown in Figure 5.3.a. Let

the constraints used during revision be Vj :: Cj, where the quantification is over the set

of all processes in the system. Let Cj be a constraint that depends on the variables of

process j, j—l (if it exists) and j+1 (if it exists). Furthermore, assume that constraints

for intermediate processes are identical except for the renaming variables. Let the order

of predicates added for system in Figure 5.3.a be CA,C3,CD. Furthermore, let the added

recovery actions be recA,recB, recD.

®®©©

(a) (b)

Figure 5.3: Complexity and hierarchy for linear topology

Theorem 5.7.1 If (recA V recB V recD) form the recovery actions for the program in

Figure 5.3 .a then (recA V recB V recér V rec'D) form the recovery actionsfor the program

in Figure 53.b where rec’C is obtained by replacing B by C and (then) replacing A by B

from recB and rec;J is obtained by replacing B by C in men. I

Proof. Based on the order of constraints and the rules used in constructing recovery

actions, constraints CA and CB will be satisfied even for the network in Figure 5.3.b. Since

117

recovery actions do not execute after the corresponding constraint is satisfied, eventually,

the recovery actions in rec}: and recb (and the fault-intolerant program) will execute. Since

CD only depends on the variables of D and its predecessor and they correct a predicate

involving D and its predecessor, if actions in recb execute then they will correct CD. More-

over, if actions in rec’D execute then they terminate (after satisfying C,3). Hence, given the

fairness assumption, actions in rec’C will execute. Observe that rec’C is obtained from recB

by replacing B by C and A by B. Furthermore, based on the definitions of the constraints,

Cc is obtained from C3 by replacing B by C and A by B. Thus, rec’C will correct CC. Note

that rec'C can violate Cb. However, it will be corrected again by recb. I

Binary tree topology. Consider the case where the system is as shown in Figure

5.4.a. Let the constraints used during revision be ‘7’j :: Cj, where the quantification is

over the set of all processes in the system. Let Cj be a constraint that depends on the

variables of process j, j’s parent (if it exists) and j’ children (if they exist). Furthermore,

assume that constraints for intermediate processes (respectively the leaves) are identical

except for the renaming variables. Let the order of predicates added for system in Fig—

ure 5.4.a be CA,C3,CC,CD,CE,CF,andC(;. Furthermore, let the added recovery actions be

recA , recB, recC, recD, recE , recF, andrecG.

Theorem 5.7.2 If (rec/1 V recB V recc V recD V recE V recF V recG) form the recovery

. . . I I l

actionsfor the program in Figure 5.4 .a then (recA V recB V recc V recD V recE V recF V

rec’G V recH V rec] V recJ V recK V rec), V recM V recN V reco) form the recovery

actionsfor the program in Figure 5 .4 .b where:

1. rec); is used generate rec’D by:

(a) replacing D by H and E by I,

(b) replacing B by D, and (then)

(c) replacing A by B,

2. rec” is obtained by replacing D by H and (then) by replacing B by D in recD,

118

3. rec, is obtained by replacing D by l and (then) by replacing B by D in recD;

recg, rec'F, rec’0, rec), recK, recL, recM, mm, and reco are generated by using steps

similar to the steps 1-3. I

Proof.

The proof of Theorem 5.7.2 is similar to that of Theorem 5.7.1]

(3)

Figure 5.4: Complexity and hierarchy for the binary tree topology

While the above result is straightforward and widely understood, it is especially useful

for managing complexity of hierarchical systems. While results of this form have been pre-

sented in the literature, the pre-conditions that must be satisfied to apply it are often difficult

to evaluate during automated revision. However, the conditions of the above theorem are

easy to evaluate and this theorem can reduce the complexity of synthesizing systems with

a larger number of nodes. Clearly, constructing and verifying the recovery action which

satisfy the conditions of Theorem 5.7.] and Theorem 5.7 .2 is syntactical and requires a

minimal amount of time to complete.

5.8 Summary

In this chapter, we focused on making the automated model revision more comprehensive

and covering more levels of fault-tolerance. In particular, we derived theories, developed

119

algorithms, and built tools to automate the addition of nonmasking and stabilizing fault-

tolerance. Our algorithm ensures that it adds recovery actions that enable the program

to recover to its legitimate states from any arbitrary state. This algorithm is based on

describing the legitimate states using a set of constraints. Then, it finds recovery actions

that satisfy each constraint. Finally, it makes sure that the recovery actions do not interfere

with each others and work collectively to reach the legitimate states.

Also, we used the multi-core technology to parallelize our algorithm to substantially

.reduce the revision time. We illustrated our approach with three case studies. Furthermore,

we demonstrated that automated revision in these case studies was feasible and achieved in

a reasonable time.

120

Chapter 6

Legitimate States Automated Discovery

Existing algorithms for the automated model revision require that the designers have to

identify the legitimate states of original model. Experience suggests that of the inputs re-

quired for model revision, identifying such legitimate states is the most difficult and creates

a burden on the use of these methods. To reduce this burden, we develop an algorithm wL-

spGenerator (i.e., weakest legitimate state predicate generator) for identifying the largest

set of states from where the program satisfies its specification. Furthermore, we show how

this algorithm can be integrated with existing algorithms for the addition of fault-tolerance.

With an example, we show that a straightforward approach of using reachability analysis

from initial states to compute legitimate states is not relatively complete.

The rest of the chapter is organized as follows: In Section 6.2, we present our algorithm,

stpGenerator, for computing the weakest legitimate state predicate for the given program.

In Section 6.3, we demonstrate the application of this algorithm with four case studies

to show that it computes the largest set of legitimate states required for model revision.

Finally, we present the summary in Section 6.4.

121

6.1 Introduction

In automated model revision to add fault-tolerance, it is required that after the occurrence

of faults, the revised program eventually recovers to the legitimate states of the original pro-

gram. Since the original program met its original specification from these states, we can

ascertain that eventually a revised program reaches states from where subsequent computa-

tions are correct. One of the problems in providing recovery to legitimate states, however,

is that these legitimate states are not always easy to determine.

Current approaches for automated model revision for revising an existing model to add

fault-tolerance include [27.30, 101, l l 1] as well as the approaches presented in Chapters

(4 - 3). These approaches describe the model as an abstract program. They require the

designer to specify (1) the existing abstract program that is correct in the absence of faults,

(2) the program specification, (3) the faults that have to be tolerated, and (4) the program

legitimate states, from where the existing program satisfies its specification. Of these four

inputs, the first three are easy to identify and are unavoidable. For example, one is expected

to utilize model revision only if they have an existing model that fails to satisfy a required

property. Thus, if model revision is applied in the context of newly identified faults, original

model and faults are already available. Likewise, specification identifies what the model

was supposed to do. Clearly, requiring it is unavoidable. Identifying the legitimate states

from where the fault-intolerant program satisfies its specification is, however a difficult

task. Our experience in this context shows that while identifying the other three arguments

is often straightforward, identifying precise legitimate states requires significant effort. It

is straightforward to observe that if these legitimate states could be derived automatically,

then it would reduce the burden put on the designer, thereby making it easier to apply these

techniques in revision of existing programs.

One approach for identifying legitimate states is to use initial states as legitimate states.

While identifying these initial states is typically easy for the designer, this approach is very

limiting. A variation of this approach is to define the legitimate states to be those states that

122

are reachable from the initial states. While less limiting, this approach fails to identify states

from where the existing program is correct, although such states are not reached in fault-

free execution. While the knowledge of these states is irrelevant for fault-free execution, it

is potentially useful in adding fault-tolerance. In particular, if faults perturb the program to

one of these states, no recovery may be needed. Furthermore, recovery could be added to

these states so that subsequent computation is correct.

In this chapter, we focus on automated model revision where we begin with the spec-

ification of the original program and discover the legitimate states automatically. In par-

ticular, we focus on identifying the largest set of legitimate states from where the original

fault-intolerant program satisfies its specification. Subsequently, we utilize this set of le-

gitimate states in obtaining the fault-tolerant program that is correct by construction. (If

we view a set of states as a predicate that is true only in those states, then this corresponds

to the weakest state predicate.) Of course, an enumerative approach, where we consider

each state as a potential initial state, is impractical. Our goal in this chapter is to identify

efficient techniques for identifying the largest set of legitimate states for a given program.

Our algorithm for computing the largest set of legitimate states takes two inputs: the

program (specified in terms of its transitions) and its specification. The program specifica—

tions consists of: (1) a safety specification, which is specified in terms of (bad) states that

the program should not reach and (bad) transitions that the program should not execute,

and (2) zero or more liveness specifications of the form f leads to 7' (written as f w T),

which states that if the program ever reaches a state where 9? is true then in its subsequent

computation it reaches a state where T is true.

In this chapter, we present the algorithm stpGenerator for identifying the set of le-

gitimate states with respect to the given program and specification. We show that our

algorithm for finding the largest set of legitimate states is sound. With a BDD based imple-

mentation, we show that our algorithm manages the state explosion problem. We illustrate

our algorithm in the context of four case studies: the Byzantine agreement program [108],

123

the token ring program [30], the Stabilizing Tree Based Mutual Exclusion problem based

on the fault-intolerant version by Raymond [124], and the Stabilizing Diffusing Computa-

tion [13]. The set of legitimate states computed in these examples are identical to those in

Chapters (3 -5) and in [30,102]. In particular, the sets of legitimate states computed in this

paper for mutual exclusion is used in [15] for adding nonmasking fault-tolerance. It fol-

lows that by combining our algorithm with that in [102] for adding fault-tolerance, it would

be possible to permit the revision to add fault-tolerance without requiring the designer to

specify the legitimate states explicitly.

6.2 The “Weakest Legitimate State Predicate Generator

(stpGenerator)” Algorithm

In this section, we present our algorithm to automatically generate the largest set of legiti-

mate states using the program transitions and its specification. The goal of our algorithm is

to generate the largest set of legitimate states (i.e., weakest legitimate state predicate) from

where the program satisfies its safety and liveness specification. Our algorithm consists

of three main parts: the legitimate states generator, the safety checker, and the liveness

checker. We will describe each of the three algorithms in subsections 6.2.1-6.2.3.

We use a symbolic representation in terms of Boolean formulas since we implemented

this algorithm using Ordered Binary Decision Diagrams (OBDD) [34].

Algorithm sketch. Intuitively, our algorithm consists of two main steps. The first step

is to generate the initial set of legitimate states from the program transitions and safety

specifications. In this step, we identify the initial set of legitimate states, say I, to be all the

states in the state space excluding the set of bad states, SPECb5 (the states that should not be

reached). Then we proceed to ensure that I does not include any state that violates safety.

The second step is to ensure that I suffices the liveness properties. To verify a specific

liveness property, say X «M Y, the algorithm needs to ensure that all program transitions

124

paths from all states in X reach to Y. Furthermore, all paths should be cycles-free. If such

cycles exist, then all Y states in X that leads to the cycles are removed from I.

We now describe our algorithm in detail: First, we describe the algorithm

stpGenerator, which computes the largest set of legitimate states, say I , that satisfy the

program specifications. Then, we proceed to describe the algorithm SafetyChecker that

computes the set of state in which the program does not violate the safety property. Finally,

we describe the algorithm LivenessChecker that removes any state that may violate the

liveness of the program from the set of legitimate states, 1.

6.2.1 Weakest Legitimate State Predicate Generator

The input to stpGenerator consists of the program transitions, SPEC,” (the states that

should not be reached), SPEC)” (the transitions that should not be executed), and the live-

ness properties. The algorithm returns the largest set of legitimate states from where the

program satisfies its specification. First, it initializes the legitimate states I to be the whole

state space (Line 1). Then, the algorithm computes the largest set of legitimate states by

calling the function SafetyChecker (Line 4). At this point, 1 includes the set of states from

where the program satisfies the given safety specification. Later, the algorithm satisfies the

liveness properties one after another by calling the function LivenessChecker that removes

states that violate the given liveness property (Lines 5-7). Removal of states due to live-

ness properties may require re-computation of 1. Hence, this computation is in a loop and

terminates when a fixpoint is reached.

6.2.2 Safety Checker

The input of the SafetyChecker algorithm consists of the initial set of legitimate states, the

program transitions, the SPEC)”, and the SPEC)”. The output is the computed largest set

of legitimate states, I, , for the given safety specification.

First, the algorithm initializes the set of legitimate states 15f to be Imp excluding the

125

Algorithm 12 WeakestLegitimateStatePredicateGenerator (stpGenerator)

Input: program transitions p, SPEC,” (states that should not be reached),

SPECb, (transitions that should not be executed), T [L and T [] state

predicates describing leads-to properties .

Output: weakest legitimate state predicate 1w.

// Initially 1w equals Sp, the program states space.

[W = Sp

repeat

tmp = 1w

1...: SafetyCheckeer, p, SPEC)”, SPECI”);

//check the i’h liveness properties

for i := 0 to N00fLivenessProperties do

lw:= LivenessCheckeer, p, T [i], T [i]);

end for

until tmp = [W

// return the largest set of legitimate states.

9: return 1...;

B
5
8
5
?
?
?

9
°
h
l
9
‘
9
‘

states in SPEC[,3 (Line 1). Then, the algorithm starts a fixpoint computation that removes

undesired states from I;,,,,. If [sf contains a state so such that the program can execute the

transition (so, s1), which violates safety, then so cannot be in 13f. Hence, we remove so

from [sf (Line 4). Note that a state is removed from 15f only if the given program violates

safety from that state. If 13f contains a state so, then p contains a transition (so, s1), and S]

has been removed from I, , then so must also be removed from 13f (Line 5). This process

continues until a fixpoint is reached. At this point, it exits the loop and returns the desired

set of legitimate states 15f.

6.2.3 Liveness Checker

The input of the LivenessChecker algorithm consists of the initial set of legitimate states,

11,,p, the program transitions, the T and T where T w T is a given state predicate describ-

ing leads-to properties. The output is the largest set of states that is a subset of [MP from

126

Algorithm l3 SafetyChecker

Input: initial legitimate states Imp, program transitions p, SPEC,” (states

that should not be reached), SPEC,” (transitions that should not be exe-

cuted).

Output: weakest legitimate state predicate 15f.

// Sp is the state space ofp

I: 13ft: Imp - SPEC)”;

repeat

tmpI:= 13f;

13ft: sf — {SO 2 (S0,S1) EanPECb, };

13ft: sf_ {S0 2 (So,S1) €p/\S0 E [sf/\S1¢ 15f};

until tmpI = sf

// return the set of states from where the program satisfies safety prop-

erties.

7: return Isf;

9
5
M
B
?
”

where the given program satisfies 9? w T .

First, the algorithm creates a program tmpP where we add a self-loop to all the dead-

lock states where the program p has no outgoing transitions from so and so 615 T (Line 1).

All computations of tmpP are infinite or terminate in a state in T . Now we remove all

transitions in tmpP that reach T (Line 2). Ifp satisfies (,T w T), then it follows that tmpP

cannot include any infinite computation that includes a state in {F . Hence, the algorithm

iteratively removes deadlock states in tmpP (Lines 5-7). If some states in 7 still remain,

then it implies that there are infinite computations of tmpP that begin in a state in T but do

not reach a state in T . We remove such states from [MP and iteratively compute Imp.

Extension. In some cases, the program actions are partitioned in terms of system ac-

tions and environment actions. It is expected that the environment actions will eventually

stop (for along enough time) so that the system actions can make progress (and satisfy live-

ness property). In such cases, we can apply the above algorithm as follows: The program

127

Algorithm 14 LivenessChecker

Input: initial legitimate states Imp, program transitions p, T , and T state

predicates describing leads-to properties.

Output: weakest legitimate state predicate Imp.

N
I
—
I

10:

: until T flinvF = {}

12:

P
P
P
E
I
Q
‘
S
P
B
E
’
?

// ASSUMPTION: T 0T 2 {}. Ifnot,change T to (T —T).

// let ds(p) = {so : Vs1,(so,sl) ¢ p} be the set of deadlock states.

// add self-loop to the states in ds(p).

: tmpP :=pU{(so,so) : so 66 T /\so 6 ds(p)};

tmpP:= {(so,s1) : (so,s1) E tmpP/\s1¢ T};

repeat

invF 2: Imp ;

while (invF flds(tmpP)) 79 {} do

invF := invF —ds(tmpP);

end while

ifT flinvF 7E {} then

Imp :2 Imp — (T flinvF);

end if

// return the set of states from where the program satisfies liveness

properties.

return Imp;

128

actions used in SafetyChecker will consist of both the system actions and the environment

actions. The program actions used for LivenessChecker will consist of only the system

actions.

Theorem 6.2.1 The Algorithm stpGenerator is sound (i .e., the generated set oflegitimate

states is the largest set of legitimate states).

Proof. The proof consists of two parts: (I) if state, say so, is not included in the output

of stpGenerator, then the program does not satisfy its specification from so, and (2) if

a state, say so, is included in the output of stpGenerator, then the program satisfies its

specification from so.

We now prove the first part by considering all parts of the code where some state is

removed from the output.

Line 1 of SafetyChecker: Clearly, states in SPEC)5, cannot be included in the final set

of legitimate states.

0 Line 4 of SafetyChecker: If (so,s;) is a transition of the program that violates safety

then there is a computation of the program that starts from so and violates the speci-

fication.

0 Line 5 of SafetyChecker: If s; is a state already removed from the final set of legit-

imate states, i.e., there is a program computation that starts from s] and violates the

specification, and (so, s1) is a program transition, then there exists a computation that

starts from so and violates the specification.

0 Line 9 of LivenessChecker: Observe that in tmpP, transitions that reach T are re-

moved. Now, the loop on Lines 5-7 removes all deadlock states in invF . If any state,

say so, in T is not removed, then that implies that there are infinite computations

of tmpP that start from so. For instance, this happens if a cycle is reachable from

so. By construction, this computation cannot reach T . Thus, if a state so is removed

129

on Line 9 of LivenessChecker, then there is a computation from so that violates the

specification.

We use proof by contradiction for the second part. Suppose so is included in the output

of stpGenerator and there is a computation, say (so, s1 , . . .) that violates the specification

from so. We consider two cases depending upon whether this computation violates the

safety specification or the liveness specification.

0 Safety specification. Consider the first state where safety violation is detected, e.g.,

because a state, say sj, in SPEC,” is reached or a transition, say (sj_ 1 , sj) in SPEC)"

is executed.

- Case 1: Sj G SPEC)”. By Line 1 of SafetyChecker, j yé 0. Also, from Line 5 of

SafetyChecker, sj_1 would be removed from the final set of legitimate states.

Likewise, sj_2 would be removed and so on. Thus, so cannot be in the output

of stpGenerator. This is a contradiction.

— Case 2: (sj-) ,sj) E SPEC)”. By the same argument as in Case 1, we can show

that so cannot be in the output of stpGenerator. This is a contradiction.

o Liveness specification. If this computation does not satisfy the liveness specifica-

tion then this implies that it has a suffix where T is true in some state, say sj, but

T is false in all states. Now, we define a computation 0' that starts from sj. If the

computation (so, s1 , . . .) is infinite then G is the suffix that starts from sj. If the com-

putation (so,s1, . . .) is not infinite, it ends in a state say, s], where p has no outgoing

transitions, then 0' is obtained by concatenating the suffix starting from sj and an

infinite stuttering of state S). By construction, 0 is also a computation of tmpP (Line

2 from LivenessChecker). Thus, sj is removed from the output of stpGenerator.

Again, by an argument similar to the case of safety specification, we can conclude

that so cannot be in the output of stpGenerator. This is a contradiction. I

130

6.3 Application of stpGenerator in Automated Model

Revision

In this section, we describe and analyze our approach for generating the legitimate states of

the four case studies: the Byzantine agreement program [108] , the token ring program [30],

the Stabilizing Tree Based Mutual Exclusion problem based on the fault-intolerant version

by Raymond [124], and the Stabilizing Diffusing Computation [13]. We chose these clas-

sical examples from the literature of distributed computing to illustrate the feasibility and

applicability of our algorithm in generating the weakest legitimate state predicate. Fur-

thermore, these case studies illustrate that the overhead of computing the legitimate states

using stpGenerator is very small compared to the overall time required for the addition of

fault-tolerance. Thus, reducing the burden of the designer in terms of requiring the explicit

legitimate states increases the complexity by a very small factor.

Throughout this section, all case studies are run on a MacBook Pro with 2.6 Ghz Intel

Core 2 Duo processor and 4 GB RAM. The OBDD representation of the Boolean formula

has been done using the C++ interface to the CUDD package developed at the University

of Colorado [125].

6.3.1 Case Study 1: Byzantine agreement program

We illustrate our algorithm in the context of the Byzantine agreement program from Section

4.3 .3. We start by specifying the fault-intolerant program. Then, we provide the program

specification. Finally, we describe the weakest legitimate state predicate generated by our

algorithm.

Program. The Byzantine agreement program consists of a “general” and three or

more non-general processes. Each process copies the decision of the general and finalizes

(outputs) that decision.

Recall from Section 4.3 .3, the actions of the Byzantine agreement program are as shown

131

in action below. The only difference is in the third and fourth actions that allow a Byzantine

process to change its decision and finalized status. The last two actions are environment

actions.

d.j=J_)/\(f.j:false) ——+ d.j:=d.g;

d.j ¢ 1) /\ (f.j =false) ———> f.j :2 true;

) —> d.j :2 ll0, f.j :=falseltrue;

R
U
I
N

(

(

'1 (

(0:

b.j

b.g) —> d.g 2:1

Where j E {l,n} and n is the number of non—general processes.

Specification. The safety specification of the Byzantine agreement requires validity and

agreement:

0 Validity requires that if the general is non-Byzantine, then the final decision of a

non-Byzantine process must be the same as that of the general. Thus, validity(j) is

defined as follows.

validity(j) = ((fib.j /\ -1b.g /\ f.j) :> (d.j=d.g))

0 Agreement means that the final decision of any two non-Byzantine processes must

be equal. Thus, agreement(j, k) is defined as follows.

agreement(j,k) = ((—1b.j A-wb.k /\ f.j /\ f.k)

:> (d. j : d.k)) ‘

o The final decision of a process must be either 0 or 1. Thus, final (j) is defined as

follows.

final(j) =f.j:> (d.j:OVd.j: 1)

We formally identify safety specification of the Byzantine agreement in the following set

of bad states:

SPECBA,” = (3j,k e {1..n} ::

(-1(validity(j)Aagreement(j,k)Afinal(j)))

132

Observe that SPEC3,;m can be easily derived based on the specification of the Byzantine

Agreement problem.

The liveness specification of the Byzantine agreement requires that eventually every

non-Byzantine process finalizes a decision. The requirement that process j eventually fi-

nalizes a decision can be specified as follows:

517-} w (f7')

Application of our algorithm. The weakest predicate computed (for 3 non-general pro-

cesses) is as follows. If the general is non-Byzantine, then it is necessary that d . j, where j

is also a non-Byzantine, be either d.g or _L. Furthermore, a non-Byzantine process cannot

finalize its decision if its decision equals _L. Now, we consider the set of states where the

general is Byzantine. In this case, the general can change its decision arbitrarily. Also,

the predicate includes states where other processes are non-Byzantine and have the same

value that is different from 1. Thus, the generated weakest legitimate state predicate is as

follows:

13A:

(fib.g/\(Vp e {1..n} :: ((nb.pAf.p) => an r 1)

/\ (nap :> (d.p = _LVd.p = d.g)))) v

(b.g/\(Vj,k€ {1..n} :jaékzz (d.j=d.k)

/\ (d-J'S’é i)))

Observe that 13,; cannot be easily derived based on the specification of the Byzantine Agree-

ment problem. More specifically, the set of states where the general is Byzantine, are not

reachable from the initial states of the program.

We used the exact same predicate in the case study from Section 4.3 .3 to add fault—

tolerance to Byzantine faults. (In [30], where we reported the results for addition of fault-

tolerance with symbolic techniques, the set of legitimate states used was a conjunction

133

of the above predicate and a formula that states that at most one process is Byzantine.

However, this extra formula does not affect the revised program or the time complexity.)

The amount of time required for computing this set of legitimate states for a different

number of processes is as shown in Table 7.2. We would like to note that the set of le-

gitimate states computed in these case studies is the same as that used in the addition of

fault-tolerance.

No. of Reachable Legitimate States

Process States Generation Time(Sec)

10 109 0.57

20 10'5 1 .34

30 102?- 4.38

40 1030 9.25

50 1036 26.34

100 107' 267.30

Table 6.1: The time required to generate the weakest legitimate state predicate (Byzantine

Agreement).

We note that the time required to compute the set of legitimate states is very small as

compared with the total time needed to complete the revision. For example, to synthesize

a fault-tolerant Byzantine agreement program with 40 processes, it takes more than 9,000

seconds as shown in Section 4.3.3. By contrast, the time to compute the legitimate states

is only 9.25 seconds. Thus, the overhead of synthesizing with the specification without

explicit legitimate states is negligible.

We use this case study to illustrate that computing the set of legitimate states to be

those that are reachable from initial states is not relatively complete. In particular, for the

Byzantine agreement example, the initial state is one where all processes are non-Byzantine

and the decision of all non-general processes is equal to 1. Clearly, all processes are non-

Byzantine in all states reached by the program from these initial states. It follows that

recovery to these reachable states is not always feasible in the presence of faults. Hence,

134

these reachable states are insufficient to obtain the fault-tolerant program. By contrast, the

weakest legitimate state predicate can be utilized to find the fault-tolerant program.

6.3.2 Case Study 2: Token Ring

In this section, we illustrate our algorithm in the context of the token ring program. First,

we specify the fault-intolerant program. Then, we provide its specification. Finally, we

identify the largest set of legitimate states generated by the algorithm from Section 6.2.

Program. The token ring program consists of n processes organized in a ring. A

token is circulated among the processes in a fixed direction. When a process gets the token

it can access the critical section. Each process j, where j E {0..n}, has a variable x.j with

the domain {0, 1,1} , where J. denotes that the process is in an illegitimate state. A process

0 has the token iff x.n is equal to x0 and a process j, where l S j _<_ n, has the token iff

x.j;éx.(j— 1).

The actions of the token ring program are as follows:

l::x.j¢x.(j—l) ——+ x.j:=x.(j—l);

2 :: x.0=x.n —> x.0 :2 x.n+21;

where +2 denotes modulo 2 addition.

Specification. The safety specification of the token ring requires that the value of x at

any process is either 0 or 1 and that no two processes have a token simultaneously. Thus,

the safety specifications of the token ring program can be identified using the following set

of bad states (i.e. states that should not be reached by normal program execution).

sprang:

(3j,k:j7ék /\j,k€{1..n} :: ((x.(j—1)#x.j)/\(x.(k—l)#x.k))) v

(Elj:j€{l..n} :: ((x.(j—l)#x.j)/\(x.0=x.n))) v

(a) ; j€{0..n} ;: (x.j=J_))

135

The liveness specification of the token ring requires that eventually every process gets

the token. The requirement that process 0 eventually gets the token can be specified as:

true -+ (x0 = x.n).

Application of our algorithm. After applying our algorithm with the above inputs,

the generated largest set of legitimate states can be represented using the following regular

expression:

(x.0,x. 1 ,x.2. . .x.n) e (0’1<n+ H) L) 1’0“” l-’>), where 0 g 1 g n +1.

Thus, the above predicate states that the sequence of (x.0,x. l ,x.2. . .x.n) is a sequence

of zeros followed by ones or ones followed by zeros. The value of l + l in the above

sequence identifies the process with the token.

We note that this is the exact same set of legitimate states used in Section 4.3.3 for

adding fault-tolerance to the fault where up to n processes are detectably corrupted. Fur-

thermore, the time for computing this set of legitimate states for different values of n is as

shown in Table 6.2. As we can see, its very small.

No. of Reachable Legitimate States

Process States Generation Time(Sec)

10 104 0.1

20 109 0.2

30 10'4 0.3

40 10[9 0.4

50 1023 0.6

100 1047 0.19

Table 6.2: The time required to generate the weakest legitimate state predicate (token ring).

6.3.3 Case Study 3: Mutual Exclusion

In this section, we illustrate our algorithm in the context of the Raymond’s tree-based mu-

tual exclusio'n program from Section 6.3.3. Our goal in this case study is to automatically

136

generate the weakest legitimate state predicate for the program in [15].

We start by specifying the fault-intolerant program. Then, we provide the program

specification. Finally, we identify the weakest legitimate state predicate generated by our

algorithm.

Program. Recall that the action by which k sends the token to j is as follows:

1:: (lz.k=k /\ jEAdjk) /\ (h.j:k) ———>h.k::j, h.j:zj;

Where Adj.k denotes one of the neighbors of k.

Specification. Since the goal of Raymond’s mutual exclusion algorithm is to main-

tain a tree rooted at the token, it requires that the holder of any process is one of its tree

neighbors. It also requires that there should be no cycles in the holder relation.

We formally describe the safety specifications in the following predicate:

SPECMEM : (EUE {0..n} :: ((h.j7éj)V(h.j7£p.j)V(h.j;éch.j))) v

(Eij,k€ {0..n}:j7$k:: ((h.j=k)/\(h.k:j))) V

(3j,k E {0.11} : j 75 k :: ((h.j = j) /\(h.k= k)))

Where ch.j denotes one of the children of j.

Application of our algorithm. The generated weakest legitimate state predicate of the

mutual exclusion program computed by our algorithm is as follows. The legitimate states

predicate require that j’s holder can either be j’s parent, j itself, or one of j’s children. It

also requires that the holder tree conforms to the parent tree and there are no cycles in the

holder relation.

[ME = (VjE {0..n}::(h.sz.j)V(h.j=j)V(Elk:(P.k=j)/\(h.j=k))) /\

(W6 {9.4} == (81747) :> (h.j: Rove-(Pa) =1)) A

(W e {0.42} 2: (Rj r 1) => 6((47 = 87) A (h-(P-j) = 7»)

Where P.j denote the parent of j.

137

Recall that [ME is equivalent to the conjunction of the constraints (S 1 , S2, and S3), from

Section 6.3.3, used in deriving the the non-masking fault-tolerant version of the mutual

exclusion program.

The amount of time required for computing this set of legitimate states for a different

number of processes is as shown in Table 6.3.

No. of Reachable Legitimate States

Process States Generation Time(Sec)

10 109 0.01

20 1026 0.1

30 1044 0.2

40 10")4 0.5

50 1084 0.9

100 :10200 0.43

Table 6.3: The time required to generate the weakest legitimate state predicate (Mutual

Exclusion).

6.3.4 Case Study 4: Diffusing Computation

In this case study, we consider a diffusing computation on a system where processes are

arranged in a logical tree. The root initiates a diffusing computation and propagates it to its

children and the children forward it to their children and so on until it reaches all processes.

Once the computation reaches a leaf, it marks the leaf as completed and reflects back to

the parent. When all children of a process are marked completed, that process marks itself

completed and reflects the computation to its parent. The diffusing computation ends when

it marks the root as completed.

Program. The fault-intolerant program in this case study is the diffusing computation

program from [13]. Each process j has two Boolean variables c. j (color) and sn.j (session

number) and an integer variable P (the parent of j). A new diffusing computation can

start if the root is colored green (c.root 2 green) and the session number of the root is the

138

same as its children. To start a new diffusing computation, the root sets c.root = red and

flips sn.root. When a green process finds that its parent is red, it copies its parent color

and session number. Moreover, if a process has no children or all its children switched

colors from red to green, the process then switches its color to green. The program for

the diffusing computation consists of three actions. The first action starts the diffusing

computation at the root (1). The second action propagates the diffusing computation to the

children (2). The third action completes the diffusing computation when all the children

complete computation (3). The program actions are described below:

1 :: (c.root 2 green) —+ c.root 2: red,sn.root z: fisn.root;

2 :: c.j = green/\c.(P.j) = red/\sn.j # sn.(P.j) ——r c.j,sn.j = c.(P.j),sn.(P.j);

3:: (c.j: red) /\ (Vk : P.k = j :> (c.k 2 green /\sn.j = sn.k)) ——> c.j 2: green;

Specification. The safety specifications for the diffusing computation program re-

quires that all processes must have the same color and the same session number. We for-

mally define the safety specifications in the following predicate:

SPECDC = ((3j,k E {0..n} : j 75 k :: (sn.j 75 sn.ch.j 74 c.k))

Application of our algorithm. The generated weakest legitimate state predicate

of the diffusing computation is as follows : The set of legitimate states requires that all

processes should have the same colors and session numbers.

IDF = Vj: (c.j : green/\c.(P.j) : red) V (c.j = c.(P.j) /\sn.j = sn.(P.j))

6.4 Summary

In this chapter, we provided techniques that permit the designer to efficiently describe the

model to be revised. Specifically, we derived theories, developed algorithms, and built tools

to automate the discovery of the legitimate states of the model. Our techniques relieve the

139

designer from performing unnecessary steps, thereby simplifying the application of the

automated model revision. Our algorithm uses the program actions and specification to

automatically generate the weakest legitimate state predicate. First, it initializes weakest

legitimate state predicate to be the set of the states from where the given program does not

violate the safety specification. Second, it ensures that the generated weakest legitimate

state predicate satisfies the liveness properties by removing any state that violates liveness

properties. Also, we considered four case studies. We used our algorithm to automatically

discover the set of legitimate state for each case. In each of these examples, the generated

set of legitimate states was the same as the one specified explicitly in automated addition of

fault-tolerance an the time to generate the legitimate states was very small when compared

with that for performing the corresponding model revision.

140

Chapter 7

Automated Model Revision Without

Explicit Legitimate States

In Chapter 6 we introduced our algorithm for the automated discovery of the legitimate

state. We also showed how such automation reduces the burden put on the designer, making

it easier to apply these techniques in the revision of existing programs. However, one

question that we need to answer is regarding the completeness of this approach. In other

words, if it were possible to perform model revision with explicit legitimate states, then is

it possible to do so without the explicit identification of the legitimate states.

In this chapter, we consider the problem of automated model revision without explicit

legitimate states. We show that this formulation is relatively complete, i.e., if it were pos-

sible to perform model revision with explicit legitimate states, then it is possible to do so

without the explicit identification of the legitimate states.

We also identify instances where the complexity class of model revision without ex-

plicit legitimate states is the same as that with explicit legitimate states. In turn, this iden-

tifies heuristics for performing model revision without explicit legitimate states. Finally,

we show that with these heuristics, the increased cost for model revision without explicit

legitimate states is small.

141

The rest of this chapter is organized as follows: In Section 7.1 , we present an alternative

approach for performing model revision. In Section 7.2, we state the automated model re-

vision problem statement. In Sections, 7.3, 7.4, and 7.5, we answer three questions related

to the completeness, complexity, and coast of our approach. Finally, we summarize the

chapter in Section 7.6.

7.1 Introduction

In this chapter, we focus on the problem of model revision where the legitimate states are

computed using automation techniques. In particular, when the algorithm stpGenerator

from Chapter 6 is used to generate the set of legitimate states. Recall from Chapter 6

that the current approaches for automated model revision describe the model as an abstract

program. They require the designer to specify (1) the existing abstract program that is

correct in the absence of faults, (2) the program specification, (3) the faults that have to be

tolerated, and (4) the program legitimate states, from where the existing program satisfies

its specification (c.f. Figure 7.1). We call this problem as the problem of model revision

with explicit legitimate states.

 _'_________.__._

Original _

Model

_______________.__

Specifications ‘ Automated Revised

Model Model

77”,“.— > Revision
Faufls

Legitimate a

States

Figure 7.1: Model Revision with Explicit Legitimate States.

We focus on the problem of model revision where the input only consists of the fault-

intolerant program, faults and the specification, i.e., it does not include the legitimate states.

142

We call this problem as the problem ofmodel revision without explicit legitimate states (cf.

Figure 7.2).

 [W _

Model

Automated

Specifications ‘ Model "17:21?

Revision

Fauna)

Figure 7.2: Model Revision without Explicit Legitimate States.

There are several important questions that have to be addressed for such a new formu-

lation.

Q. 1 Is the new formulation relatively complete? (i.e., if it is possible to perform model

revision using the problem formulation in Figure 7.1, is it guaranteed that it could be

solved using the formulation in Figure 7.2?)

An affirmative answer to this question will indicate that reduction of designers’ bur-

den does not affect the solvability of the corresponding problem.

Q. 2 Is the complexity of both formulation in the same class? (By same class, we mean

polynomial time reducibility, where complexity is computed in the size of state

space.)

An affirmative answer to this question will indicate that the reduction in the design-

ers’ burden does not significantly affect the complexity.

Q.3 Is the increased time cost, if any, small comparable to the overall cost of program

revision?

While Question 2 focuses on qualitative complexity, assuming that the answer is

affirmative, Question 3 will address the quantitative change in complexity.

143

In this chapter, we show that the answer to Q. 1 is affirmative (cf. Theorem 7.3.1).

Furthermore, we show that the answer to Q. 2 is partially affirmative. Specifically, we

identify two versions of problem revision: partial revision and total revision. We show

that the answer is affirmative for total revision (cf. Theorem 7.4 .3). We point out that the

answer is negative for partial revision. In other words, for partial revision, complexity of

solving the problem in Figure 7.2 can be larger (cf. Section 7.4 .5). Even though the answer

to Q. 2 is negative for partial revision, we show that there is a subclass of this problem

where the complexity of the approach in Figure 7.2 is the same as that in Figure 7.1. In

particular, we show that for all instances where the answer to the problem in Figure 7.1

is affirmative, it is possible to solve the corresponding problem in Figure 7.2 under the

same complexity class. However, it is possible that the answer to the problem in Figure 7.1

is negative, i.e., the corresponding algorithm declares failure to generate the fault-tolerant

program, although the answer to the corresponding problem in Figure 7.2 is affirmative.

For these cases, complexity of solving the problem in Figure 7.2 can be high. Regarding Q.

3, we show that for instances where the answer to the question in Figure 7.1 is affirmative,

the extra computation cost of solving the problem using an approach in Figure 7.2 is small.

7.2 Problem Statement

In this section, we formally define the problem of model revision with and without explicit

legitimate states.

Model Revision with Explicit legitimate states (Approach in Figure 7.1). Recall that in

Section 2.5 we defined what it means for a program to be (masking) fault-tolerant. Using a

similar definition we now formally specify the problem of deriving a fault-tolerant program

from a fault-intolerant program with explicit legitimate states I, safety specification Sfp,

and liveness specification Up. The goal of the model revision is to modify p to p’ by

only adding fault-tolerance, i.e., without adding new behaviors in the absence of faults.

144

Since the correctness ofp is known only from its legitimate states, I, it is required that the

legitimate states ofp’ , say 1’ , cannot include any states that are not in I . Additionally, inside

the legitimate states, it cannot include transitions that were not transitions of p. Also, by

Assumption [1.] , p cannot include new terminating states that were not terminating states

of p. Finally, p’ must be fault-tolerant. Thus, the problem statement (from [101]) for the

case where the legitimate states are specified explicitly is as follows.

Problem Statement 7.1

Revision for Fault-Tolerance with Explicit Legitimate States.

Given p, I, Sf,,, va and f such that p satisfies

Sfp and va from I

Identify p’ and I’ such that

(Respectively, does there exist p’ and I’ such that)

A1: I’ :> 1.

A2: so 6 1’ => Vs] :sl 6 I’ : ((so,s1) Ep’ => (so,s1) 6p).

A3: p’ is f-tolerant to Sfp and va from I’.

Note that this definition can be instantiated for each level of fault-tolerance (i.e., mask-

ing, failsafe, and nonmsaking). Also, the above problem statement can be used as a revision

problem or a decision problem (with the comments inside parenthesis).

We call the above problem as the problem of ‘partial revision’ because the transitions

of p’ that begins in 1’ are a subset of the transitions of p that begins in I’ . An alternative

formulation is that of total revision where the transitions of p’ that begins in I’ is equal to

the transitions ofp that begins in I’ . In other words, the problem of total revision is identical

to the problem statement 7.] except that A2 is changed to A2’ described next:

A2,: So E ”IVY/$12816 1’ 2 ((80,81) Ep’ <=> (80,31) Ep)

Modeling Revision without Explicit legitimate states (Approach in Figure 7.2) Now,

we formally define the new problem of model revision without explicit legitimate states.

145

The goal in this problem is to find a fault-tolerant program, say p,. It is, also, required

that there is some set of legitimate states for p, say I, such that p, does not introduce new

behaviors in 1. Thus, the problem statement for partial revision for the case where the

legitimate states are not specified explicitly is as follows.

Problem Statement 7.2

Revision for Fault-Tolerance without Explicit Legitimate States.

Given p, Sfp and up, and f

Identify pr such that

(Respectively, does there exist pr such that)

(31::

B1: so 6 I :> Vs1:31€ I: ((so,s|) 6p, :> (so,s|) Ep)

82: p, is a f-tolerant to Sfp and va from I

)

Just like problem statement 7.1, the problem of total revision is obtained from problem

statement 7.2 by changing B] with B 1’ described next:

Bi’:soEI =>Vsl :51 EI:((so,s;)€pr 4:) (so,s1)€p)

Existing algorithms for model revision [27,30, 101,111] are based on Problem State-

ment 7.]. Also, the tool SYCRAFT [27] utilizes Problem Statement 7.1 for the addition of

fault-tolerance. However, as stated in Section 7.1, this requires the users of SYCRAFT to

identify the legitimate states explicitly. Our goal is to evaluate the effect of simplifying the

task of the designers by permitting them to omit explicit identification of legitimate states.

7.3 Relative Completeness (Q. 1)

In this section, we show that if the problem of model revision can be solved with explicit

legitimate states (Problem Statement 7.1), then it can also be solved without explicit legit-

imate states (Problem Statement 7.2). Since each problem statement can be instantiated

146

with partial or total revision, this requires us to consider four combinations. We prove this

result in Theorem 7.3.1.

Theorem 7.3.1 -

If

0 the answer to the decision problem 7.1 is affirmative with input p (fault-intolerant

program), Sfp (safety specification), va (liveness specification), f (faults) and I

(legitimate states).

Then

a the answer to the decision problem 7.2 is aflirmative with input p (fault-intolerant

program), Sfp (safety specification), va (liveness specification) and f (faults).

Proof. Intuitively, a slightly revised version of the program that satisfies Problem 7.] can

be used to show that Problem 7.2 can be solved. Specifically, let the transitions of pr to be

{(so,s|)| (so E I’Asl E I’/\ (so,s]) E p) V(so E’I’A(so,s1) E p’) }.

Formally, since the answer to the decision Problem 7.1 is affirmative, there exists pro-

gram p’ and I’ that satisfy constraints in Problem Statement 7.1. To show that the answer to

the decision problem 7.2 is affirmative, we need to find p, such that constraints of Problem

Statement 7.2 are satisfied. We let transitions ofp, be

{(So,sl)l (So E I’AS] E l’/\(S0,Sl) E p) V(SO El’A (50,51) E p’) }.

Next, we show that pr satisfies the constraints of Problem Statement 7.2. Towards this

end, we instantiate I to be I’ and show that constraints B 1 and B2 are satisfied.

0 Constraint B1: By construction of transitions of pr, this constraint is satisfied for

the case where we consider partial revision and for the case where we consider total

revision.

147

c Constraint BZ: By construction, I’ is closed in p,. Also, since 1’ => I and p satisfies

Sfp and va from I, it is straightforward to observe that p, satisfies Sfp and va from

I’ .

Also, transitions of p, that begin outside I’ are identical to that of p’. The second

constraint “(3T :: ...)” from the definition of fault-tolerance is also satisfied. Thus,

p, is fault—tolerant to Sfp and va from I’ . I

Implication of Theorem 7.3.1 for Q. 1: From Theorem 7.3.1, it follows that answer

to Q. 1 from Introduction is affirmative for both partial and total revision. Hence, the new

formulation (c.f. Figure 7.2) is relatively complete.

7.4 Complexity Analysis (Q. 2)

In this section, we focus on the second question and compare the complexity class for

Problem 7.] with that of Problem 7.2. In particular, in Section 7.4.1, we show that the

complexity of the model revision can increase substantially for partial revision if legitimate

states are not specified explicitly. Then in Section 7.4.2, we show that for total revision

Problem 7.2 can be reduced to Problem 7.] in polynomial time. In Section 7.4.3, we give

a heuristic-based approach for partial revision. Furthermore, we show that the heuristic is

guaranteed to work when the answer to the corresponding Problem in Figure 3.1 is affirma-

tive. In section 7.4 .4, we show how one can obtain an algorithm for model revision without

explicit legitimate states by utilizing an algorithm that requires explicit legitimate states.

Finally, we mention other complexity results in Section 7.4.5.

7.4.1 Complexity Comparison for Partial Revision

In this section, we show that solving Problem 7.2 for partial revision is NP-complete. Since

the complexity of the revision Problem 7.1 is in P [101], it follows that the complexity of

148

partial revision increases substantially when the legitimate states are not specified explic-

itly. We show this by a reduction from the well-known 3-SAT problem. The 3-SAT instance

is specified as follows:

3-SAT Instance. Let x1 ,x2, ...,x,, be propositional variables. Given is a Boolean formula

y = y; /\ yz ~-- /\ yM, where each yj (1 5 j S M) is a disjunction of exactly three literals.

Does there exist an assignment of truth values to x1 ,x2, ...,xn such that y is satisfiable?

Since the membership of Problem 7.2 in NP is straightforward, we focus on showing

that it is NP-complete. Hence, we first present the mapping from the 3-SAT instance to the

problem of partial revision without explicit legitimate states. Then, we show that the given

3-SAT instance is satisfiable iff the answer to the corresponding instance of partial revision

is affirmative.

Mapping 3-SAT to Partial Revision without Explicit Legitimate States

We now present the mapping of an instance of the 3-SAT problem to an instance of the

partial revision problem without explicit legitimate states. Recall that this instance consists

of the program (specified in terms of its state space and transitions), safety, and liveness

specification and faults. We begin with identifying the input program. Then, we identify

faults and finally we identify safety and liveness specification.

The state space of the input program. Corresponding to each variable x; of the given

3-SAT instance, we introduce eight states Pi, Q;,R,~, T,-,a,-, b,-, c,-, and d,- where l g i g n (cf.

Figure 7.3). For each disjunction yj, we introduce states Zj and ej, where l S j g M, in the

state space. Thus, state space of the input program is Sp 2 {Pi,Q,-,R,-, 7},a,-,b,-,c,-,d,~ | l g

ign}U{ZJ-,ej | 1 _<_j_<__M}.

Transitions of the input program. Corresponding to each variable x;, we include the

following transitions in SP: (P,-,a,-), (a;,c,-), (c;,b,-), (b;,Q,-), (Ri,b;), (bi,d,-), (d;,a,-), (ai,T,-),

(Q;,ej) and (7},ej) where 1 S j S M. Moreover, corresponding to each disjunction yj, we

include the following transitions:

149

Figure 7.3: Mapping of (x; sz) /\ (-wa V -wx2) into corresponding program transitions.

The transitions in bold show the revised program where x. = true and x2 = false.

. (21.361),

0 If x,- is a literal in yj, then we include the transition (ej, P.) in SP, and

o If fix,- is a literal in yj, then we include the transition (ej,R,-) in 5,,.

Fault transitions. The fault transitionsf = {(7},Zj), (Qi,Zj)|1 S i g n, 1 S j S M}.

Safety specification Sfp. All transitions except those in EP U f that violate safety.

Liveness specification va. The liveness specification is P; -> c,-, c,- w Q), R; w d,- and

d;->T,-,where1§i§n.

Reduction from the 3-SAT Problem.

Theorem 7.4.1 The given instance of the 3-SAT problem is satisfiable if the correspond-

ing instance of the partial revision problem has an aflirmative answer for masking fault-

tolerance.

Proof.

First, we prove the => part, then we prove 4: part.

150

0 => If the given instance of the 3-SAT problem is satisfiable, then we construct the

transitions of revised program by including the following transitions:

-(er€j),1£jS M.

— If yj contains x,- and x,- is assigned truth value true, then (ej, P,:) ,

- If y,- contains fix,- and x,- is assigned truth value false then, (ej,R,-) ,

— Ifx,- is assigned truth value true then (P), at), (a), c,-), (c), bi) ,(bg, Qg) , and (Q;, ej) ,

lgign,

- If x,- is assigned truth value false then (R;,b,-),(b,-,d,-),(d,~,a,-), (ai,T,-), and

(Rhej), l S l S n.

The predicate, 1’ , used to show that this program satisfies SPEC includes all reachable

states except { Zj|1 S j g M }. It is straightforward to show that the constraints B 1

and 82 are satisfied.

0 <—_- The legitimate state predicate of the revised program contains at least one state.

Our first step is to show that for some i, Q; or T,- is included in the legitimate state

predicate of the revised program. To show this, we observe that if Zj, 1 g j _<_ M , is

included in the legitimate state predicate for some j, then the corresponding state e,-

must also be included in the legitimate state predicate. Hence, the revised program

must include at least one transition that begins in ej. It follows that either P,- or R),

1 S i S n , must also be included the legitimate state predicate. If P; (respectively,

R;) is included in the legitimate state predicate, then c,- and Q,- (respectively, d,- and

7}) must also be included so that va is satisfied. Also, if a,- (respectively, b,-) is

included in the legitimate state predicate, then T,- or Q,- must also be included in the

legitimate state predicate. From the above discussion, it follows that for some i, Q;

or 7} is included in the legitimate state predicate of the revised program. Now, based

on the definition of faults, all states in {Zj|1 S j S M } are reachable in the presence

151

of faults. Hence, transition (Zj,e1) must be included for 1 g j S M in the revised

program.

Furthermore, some transition originating from ej must also be included. Transitions

from e,- correspond to literals in disjunction yj. If a transition of the form (ej,P,°) is

included, then we set x,- to true. If a transition of the form (ej,R1) is included, then

we set x, to false.

Observe that if P,- is reachable in the revised program, then it must also include

(Pi,a,-), (ai,c,-), (c;,b,-), and (b;,Q,-) so that va is satisfied. And, if R,- is reachable

in the revised program, then it must also include (Ri, bi), (b;,d,-) , (di,a,-) , and (or, T,-).

However, if all these transitions are included, then va will not be satisfied. There-

fore, for any i, revised program cannot reach both P,- and R). This implies that the

truth value assigned to x,- by any disjunction is the same. Moreover, based on the con-

struction of the instance of the program of partial revision, the truth assignments to

literals make each clause to be satisfied, i.e., the assignment of truth values to literals

causes the given 3-SAT formula to be satisfiable. I

From the above theorem, it follows that the problem of partial revision without explicit

legitimate states is NP-hard. Moreover, in [101], it is shown that the problem of partial

revision can be solved in polynomial time if legitimate states are specified explicitly. Thus,

it follows that the complexity of partial revision increases substantially when explicit legit-

imate states are not available.

Intuition behind the increased complexity of partial revision. We analyze the NP-

completeness proof to determine why the complexity of partial revision increased substan-

tially. Towards this end, we carefully look at the instance of partial revision generated from

the SAT formula. Observe that the fault-intolerant program does not satisfy va from P,-

or R;, as the program can be stuck in the loop (ai,c,-), (c;,b,-), (bi,d,-), (di,a,-). However,

removal of some transitions allows P,- (or, R;) to be included as a legitimate state. The

increased complexity of partial revision is caused by the need to remove the “right” transi-

152

tions so that the additional states can be included in the set of legitimate states. Choosing

these “right” transitions increases the complexity substantially.

7.42 Complexity Comparison for Total Revision

Although the complexity of partial revision increases substantially when legitimate states

are not available explicitly, we find that complexity of total revision effectively remains

unchanged. We note that this is the first instance where complexity difference between

partial and total revision has been identified. To show this result, we show that in the

context of total revision Problem 7.2 is polynomial time reducible to Problem 7.] Since the

results in this section require the notion of weakest legitimate state predicate, we define it

next. Recall that we use the term legitimate state predicate and the corresponding set of

legitimate states interchangeably. Hence, weakest legitimate state predicate corresponds to

the largest set of legitimate states.

Definition. Let [W = stp(p,Sf,,,Lv,,)) be the weakest legitimate state predicate of p

for SPEC(=(Sfp , va)) iff:

l: p satisfies SPEC from Iw, and

2: V I :: (p satisfies SPEC from I) :> I... I

Recall from Chapter 6 that, we identified the algorithm stpGenerator(p, Sfp, va) that

computes weakest legitimate state predicate in polynomial time in the state space of p.

Theorem 7.4.2 If the answer to the decision problem 7.2 (with total revision) is affirma-

tive (i .e., 31 p, that satisfies the constraints of the Problem 7.2) with input p, Sfp, va, and

f, then the answer to the decision problem 7.1 (with total or partial revision) is affirmative

(i .e., 3 p’ and I’ that satisfy the constraints of the Problem 7.1) with input p, Sfp, va, f,

and stp(p,Sfp,va).

Proof. Intuitively, the program pr obtained for solving problem statement 7.2 can be used

to show that problem 7.1 is satisfied. Specifically, let [2 be the predicate used to show that

153

pr satisfies constraints of Problem 7.2. Then, let p’ = p, and I’ = 12.

Formally, since the answer to the decision problem 7.2 is affirmative, there exists

program pr that satisfies constraints in Problem Statement 7.2 (with total revision). Let

[2 denote the predicate used to show that constraints Bl and 32 are satisfied. Let

1,, = wlsp(p, Sfp, Up). To show that the answer to the decision problem 7.1 is affirmative,

we need to find p’ and I’ such that constraints of Problem Statement 7.] are satisfied. We

let p’ = p, and I’ = [2. Based on constraint 32, p, satisfies Sfp and va from 12. Also,

from constraint Bl , (for total revision), p satisfies Sfp and va from [2. Now, we show that

constraints A1 , A2, and A3 are satisfied.

0 Constraint Al: Based on definition of weakest legitimate state predicate, 12 => 1w.

Thus, constraint Al is satisfied.

0 Constraint A2: Based on constraint Bl , constraint A2 is satisfied for both total and

partial revision.

0 Constraint A3: Based on constraint 82, p, is fault — tolerant to Sf,, and va from

12. Thus, constraint A3 is satisfied. I

Remark: Note that if the phrase ‘with total revision’ shown in bold in Theorem 7.4.2 is

replaced by ‘with partial revision’ , then the corresponding theorem is not valid.

Theorem 7.4.3 For total revision, the revision problem 7.2 is polynomial time reducible to

the revision problem 7.1.

Proof. Given an instance, say X, of the decision problem 7.2 that consists of p, Sfp, Up,

and f, the corresponding instance, say Y, for the decision problem 7.1 is p, Sfp, va, f, and

stp(p, Sfp, va). From Theorems 7.3.] and 7.4 .2 it follows that answer to X is affirmative

iff answer to Y is affirmative. I

154

7.4.3 Heuristic for Polynomial Time Solution for Partial Revision

Theorem 7.4.2 utilizes the weakest legitimate state predicate to solve the problem of total

revision without explicit legitimate states. In this section, we show that a similar approach

can be utilized to develop a heuristic for solving the problem of partial revision in polyno-

mial time. Moreover, if there is an affirmative answer to the revision problem with explicit

legitimate states, then this heuristic is guaranteed to find a revised program that satisfies

constraints of Problem 7.2. Towards this end, we present Theorem 7.4 .4.

Theorem 7.4.4 For partial revision, the revision problem 7.2 consisting of (p, Sfp,va, f)

is polynomial time reducible to the revision problem 7.] provided there exists a legiti-

mate states predicate I such that the answer to the decision problem 7.1 for instance

(p,I,Sfp,va,f) is aflirmative.

Proof.

Clearly, if an instance of Problem 7.1 has an affirmative answer, then from Theorem

7.3.1, the corresponding instance of Problem 7.2 has an affirmative answer. Similar to the

proof of Theorem 7.4.3, we map the instance of Problem 7.2 to an instance of Problem 7.1

where we use the weakest legitimate state predicate. Now, from Theorem 7.3.1 it follows

that the answer to this revised instance of Problem 7.1 is also affirmative. I

What the above theorem shows is that even for partial revision, if it were possible to

obtain a fault-tolerant program with explicit legitimate states, then it is possible to do so

in the same complexity class without explicit legitimate states. However, there may be

instances where answer to the decision problem 7.1 may be negative and the answer to the

corresponding decision problem 7.2 is affirmative. For these instances, for partial revision,

the complexity can be high.

155

7.4.4 Algorithm for Model Revision Without Explicit Legitimate

States

In this section, we utilize the results in Section 7.4 .2 to obtain an algorithm for model re-

vision without explicit legitimate states. In particular, we present algorithm Add_fs_fr.spec

that adds failsafe fault-tolerance (where safety is satisfied in the presence of faults although

liveness may not be) to high atomicity programs (where a program transition can read any

number of variables as well as write any number of variables in one atomic step). This al-

gorithm is obtained by combining the algorithm stpGenerator from Chapter 6 to compute

the weakest legitimate state predicate as well as the algorithm Add_failsafe from [101].

Given the program transitions p, the fault transitions f, and the program specification

(Sfp , va) , the goal of this algorithm is to compute the failsafe fault-tolerant program p,-

that satisfies the constraints of problem statement 7.2 (with total revision). It first identifies

the weakest legitimate state predicate 1w. If p has any state in 1,, where it has no outgoing

transitions, we add self-loops at those states. These self-loops help us distinguish between

a state where p has no outgoing transitions and states that become a deadlock state because

we removed some transitions of p. Then it identifies ms as the states that violate safety

or the states from where execution of one or more fault transitions violates safety (Lines

4-7). Then, the algorithm finds the transitions, mt, of p that reach states in ms as well as

transitions of p that violate the safety specification SPEC1,, (Line 8).

If there exist states in If, such that execution of one or more fault actions from those

states violates the safety of the specification, then it recalculates If, by removing those

states (Lines 10-13). In this recalculation, it ensures that all computations of p—mt within,

I,’,,, are infinite. In other words, the final value of If, is the largest subset of Iw—ms such

that all computations of p—mt when restricted to that subset are infinite. At this point,

if I,’,, is empty the algorithm declares that no failsafe fault tolerant program can be found.

Otherwise, the algorithm removes mt from p to compute p, where no program transitions

violate the program specification (Line 18). Now, it ensures that all the transitions of pr

156

Algorithm 15 Add_is_fr-spec: Addition of Failsafe Fault-Tolerance

Input: program transitions p, fault transitions f, safety specification Sfp

(consisting of SPECb, and SPECb,), liveness specification va (consist-

ing of multiple T w T proprieties)

Output: failsafe fault-tolerant program p,.

g

14:

15:

16:

17:

18:

19:

20:

21:

// Find the legitimate states 1,,

SelfJoops = {(so,so)|so E I,,./\Vs1 :: (so,s1) Ep};

: p=pVSelf_loops;

° repeat

ms’ :2 ms;

ms := msU{so::Els1 : (so,s1) E f/\(((so,s1) E SPECb,) V (s1 E

ms) H:

: until (ms : ms’)

2 mt 2: {(80,51) :2 (((S0,S1) E SPEC“) V (5161715)) };

// compute the largest subset of 1,, from where all computations of p

are infinite

: 1,1, := [W — ms;

10:

ll:

12:

13:

repeat

ItImp I: 1:12;

If, :2 1,1,— {so :: soEI,’,, : (Vsl :: s1 Elf, : (so,s1)E(p—mt))};

until (I,’,, 2 [[mp)

if (1,1,: {}) then

print No failsafe f—tolerant program pr exists;

return {};

else

pr :2 p—mt;

pr=pr—{(so,si)::So€15n /\ S1¢1.'e};

end if

return p,—Self-loops;

157

that start in a state in 1,, also end in a state in 1W. If not such transitions are removed from

Pr-

Remark: Note that since this section focuses on failsafe fault-tolerant programs, there

is no recovery requirement for the program in the presence of faults. However, for other

levels of fault-tolerance, e.g., nonmasking and masking, where the program needs to satisfy

its liveness properties as well, we would need an additional requirement that states that

eventually faults stop for a long enough time to ensure that liveness properties can be met.

Theorem 7.4.5 Algorithm Add_is_ir-spec is sound, i .e., the output p, ofAdd_fs-fr_spec sat-

isfies the constraints ofProblem Statement 7.2.

Proof. Let 1,, from the problem statement 7.2 be instantiated with the value of If, at the

end of Add_fs_fr_spec. Now, the first constraint of the Problem Statement 7.2 is satisfied

by construction. Moreover, the satisfaction of the first constraint implies correctness of pr

in the absence of faults. Regarding the behavior in the presence of faults, we can observe

that by construction, the program does not reach a state in SPEC1,5 or execute a transition

in SPECbt. Moreover, the construction of ms implies that the program does not reach states

from where faults can violate the safety specification. Thus, the revised program is failsafe

fault-tolerant. I

Theorem 7.4.6 Algorithm Add_fs_lr_spec is complete, i.e., if it declares failure, then there

does not exist a fault-tolerant program that satisfies the constraints in Problem Statement

7.2.

Proof. Suppose that a program, say p”, satisfies the constraints of Problem Statement 7.2.

Let I” be the predicate used in demonstrating that p” satisfies the constraints of Problem

Statement 7.2. Now, we show that at any time in the use of Add.fs.fr_spec, it must be the

case that I” g I,’,,. In particular, on Line 1, this follows from the correctness of the algorithm

that computes the weakest legitimate state predicate. On Line 9, this follows from the fact

that no state in ms can be legitimate state, as faults alone can violate safety from those

158

states. Likewise, since I’’ cannot have deadlock states, I’' g I,’,, is true on Line 12. Since the

algorithm declares failure when I,’,. = { }, it follows that l” = { }, which is a contradiction.

Theorem 7.4.7 The algorithm Add_fs_fr_spec is in P.

Proof. Let us consider the complexity of each statement in Add_fs_lr_spec. (1) From

Chapter 6, the complexity of computing the weakest legitimate state predicate is in P. (2-

3) The complexity of statements 2, and 3 is clearly in P. (4-7) Calculating ms is in P

as we can use the following algorithm: For each fault transition (so,s1) such that (so,s1)

violates safety of SPEC, include so in ms. Now, in each iteration, check if there exists a

fault transition (so,s1) such that so E ms and s. E ms. If such a transition exists add so to

ms. Since the size of ms increases by at least one in each iteration, the number of iterations

is polynomial in the state space, namely, Sp. (8) Calculating mt is in P as we need to

check each transition only once. (9) This statement is in P. The while loop in (10-13) can

execute only ISpl number of times. (l4-21) The complexity of these statements is clearly

polynomial. I

The above result shows that in the context of failsafe fault-tolerance, when we reduce

the designer’s burden by not requiring them to identify the legitimate states explicitly, there

is no significance in terms of the complexity class of the problem involved or in terms of

the soundness and completeness property of the corresponding algorithms.

7.4.5 Summary of Complexity Results

In Section 7.4.4, we showed that the problem of total model revision for failsafe fault-

tolerance is in P. In this section, we list the complexity for other levels of fault-tolerance

for both total and partial revision.

Recall from Section 7.4.] that, for partial revision, the problem of adding failsafe and

masking fault-tolerance is NP-complete. For distributed programs, it is shown (in [101])

159

that revising the program for adding failsafe and masking fault-tolerance is NP-complete

when the set of legitimate states is specified explicitly. A variation of that proof also works

for model revision without explicit legitimate states. Revising the program for adding

nonmasking fault-tolerance is in NP. However, it is not known whether it is NP-complete

or whether it is in P.

For high atomicity programs, i.e., where a program can read and write all its variables

atomically, it is possible to perform total revision in P. To show this, we note that the algo-

rithm Add_is.fr-spec first identifies the weakest legitimate state predicate. Then it utilizes

the set of legitimate states in Add.failsafe (from [101]) which requires that the legitimate

states be explicitly specified. Likewise, we can utilize the algorithms Add_nonmasking

and Add-masking (from [101]) to obtain the corresponding algorithms for total revision for

adding nonmasking and masking fault-tolerance.

Revision Without Revision With

Explicit Legitimate States Explicit Legitimate States

Partial Total Partial Total

High Failsafe ? Pi P* P*

Atomicity nonmasking ? Pif P" P*

masking NP — C’ P’F P* P*

Distributed Failsafe NP—CA NP—CA NP—C* NP—C*

Programs nonmasking ? ? ? ?

masking NP—CA NP—CA NP—C* NP —C*
Table 7.1: The complexity of different types of automated revision (NP-C = NP-Complete).

In summary, the results for complexity comparison are as shown in Table 7.1. Results

marked with ‘1' follow from NP-completeness results from Section 7.4.1. Results marked

:1: follow from Section 7.4.2, 7.4.3, and 7.4.4. Results marked A are stated without proof.

Results marked ? indicate that the complexity of the corresponding problem is open. And,

finally, results marked * are from [10]].

160

7.5 Relative Computation Cost (Q. 3)

As mentioned in Section 7.1, the increased cost of model revision in the absence of ex-

plicit legitimate states needs to be studied in two parts: complexity class and relative in-

crease in the execution time. We considered the former in Section 7.4. In this section,

we consider the latter. As we can see from Section 7.4 .4, if the legitimate states are not

specified explicitly, the increased cost of model revision is essentially that of computing

stp(p,Sfp,va). Hence, we analyze the complexity of computing stp(p,Sfp,va) in

the context of a case study. We choose the classic example from the literature, namely,

Byzantine Agreement [107]. We explain this case study in detail and show the time required

to generate the weakest legitimate state predicate for different numbers of processes. This

case study illustrates that the increased cost when explicit legitimate states are unavailable

is very small compared to the overall time required for the addition of fault-tolerance. In

particular, we show that reducing the burden of the designer in terms of not requiring the

explicit legitimate states increases the computation cost by approximately 1%.

Throughout this section, the experiments are run on a MacBook Pro with 2.6 Ghz Intel

Core 2 Duo processor and 4 GB RAM. The OBDD representation of the Boolean formula

has been done using the C++ interface to the CUDD package developed at the University

of Colorado [125].

The amount of time required for computing this set of legitimate states for a different

number of processes is as shown in Table 7.2. We would like to note that the set of le-

gitimate states computed in these case studies is the same as that used in the addition of

fault-tolerance.

We use this case study to illustrate that computing the set of legitimate states to be

those that are reachable from initial states is not relatively complete. In particular, for the

Byzantine agreement example, the initial state is one where all processes are non-Byzantine

and the decision of all non-general processes is equal to 1.. Clearly, all processes are non-

Byzantine in all states reached by the program from these initial states. It follows that

161

No.of Reachable Leg. States Total Revision

Process States Generation Time(Sec) Time(Sec)

10 109 0.57 6

20 10'5 1.34 199

30 1022 4.38 1836

40 1030 9.25 9366

50 1036 26.34 > 10000

100 107' 267.30 > 10000

Table 7.2: The time comparison for the Byzantine Agreement program.

recovery to these reachable states is not always feasible in the presence of faults. Hence,

these reachable states are insufficient to obtain the fault-tolerant program. By contrast, the

weakest legitimate state predicate can be utilized to find the fault-tolerant program.

7.6 Summary

We devoted this chapter to study the problem of automated model revision without explicit

legitimate states. In particular, we compared performing the revision when the legitimate

states are explicitly specified with that when they are not explicitly specified. We consid-

ered three different aspects in our comparison: relative completeness, qualitative complex-

ity class comparison, and quantitative change of the time for model revision. We illustrated

that our approach for model revision without explicit legitimate states is relatively com-

plete. This isimportant, since it implies that the reduction in the human effort required for

model revision does not reduce the class of the problems that could be solved. Addition-

ally, we found some surprising and counterintuitive results. Specifically, for total revision,

we found that the complexity class remains unchanged. However, for partial revision, the

complexity class changes substantially. Finally, we found that quantitative change of the

time for model revision without explicit legitimate states is negligible.

162

Chapter 8

Related Work

During the past three decades, automation of the software verification tools evolved signif-

icantly. Currently, verification tools are widely used in several applications. In particular,

they are used in the verification of the high assurance and mission critical systems, where

the consequences of any failure can end with catastrophic results.

Formal verification of distributed and concurrent program focuses on the use of math-

ematical logic and formal methods to verify the correctness of the properties of a specific

program. Initially, the focus was on developing techniques to verify full functional correct-

ness. However, most of the tools developed for this purpose were incapable of handling

complex systems. This limitation encouraged many to focus on the verification of the prop-

erties that are more important than others. In most of the verification techniques the system

and the desired properties are described via a logical model. The verification algorithm

answers with (yes/no) to the question of whether the model satisfies the desired property.

Unlike the automated verification techniques, the goal of the automated model revision

is to automatically revise an existing model to generate a new model, which is correct-

by-construction. Such revised model will preserve the existing model properties as well

as satisfy new properties. The basic form of the problem of automated model revision

focuses on modifying an existing model, say M, into a new model, say M’. It is required

163

that M’ satisfies the new property of interest. Additionally, M’ continues to satisfy existing

properties of M using the same transitions that M used.

In this chapter, we briefly review some of the automated verification techniques and

discuss their relation to our approach. Currently, there is a wide range of tools available for

verifying the correctness of distributed programs. Those tools are based on different tech-

niques, which makes them useful for different types of applications. We believe that no

single approach is suitable for the verification of all types of distributed programs. How-

ever, some approaches may be more appropriate to some applications more than others.

Out of the wide range of the available techniques for automated verification of the finite

state distributed and concurrent programs, we focus on those that are closely related to our

approach.

8.1 Model Checking

Model checking is a technique for verifying the correctness of finite state programs. The

idea is based on exploring the state space of the program, described using temporal logic, in

an efficient manner. In model checking, the program is represented using Kripke structure,

say M, and a formula, say f, represent one of the program properties. The model checker

determines if M is a model for f, i.e., whether the formula holds or not.

One of the advantages of the model checking technique is that it provides a push but-

ton approach. Model checking is effective in verifying whether the system meets the de-

sired properties. Furthermore, if the model does not satisfy the property of interest, then

the model checker, typically, provides a counterexample and the corresponding execution

trace. Moreover, it supports partial verification, e.g., it does not require the complete spec-

ification of the program being verified. Due to this push-button approach, model checking

techniques have become very popular for detecting errors in the early stages of the design.

Also, it has helped in transferring the formal verification of correctness from research to

164

practice. Next, we briefly review the evolution of model checking tools and techniques.

As early as the 1970’s, Tadao Murata and Kurt Jensen started working on the ver-

ification of Petri nets; however, there were no actual verification tools created prior to

1981 [42]. The initial work on state exploration started in the 1980 when Bochmann pre-

sented a method for verifying communication protocols [24]. Later, Holzmann presented

a technique for automatic protocol verification. Burstall [37], Kroger [99] and Pnueli used

the temporal logic to describe the program behavior and the proof of correctness was done

manually.

In their early work on concurrency, E. M. Clarke et al. [45,50, 110] focused on the

fixed point theory and abstract interpretation. They emphasized on the connection between

Branching Time Logic and Mu-Calculus [62]. Clarke also presented how program text

is used to extract the invariant of a given program. In 1980, Emerson and Clarke [62]

developed a technique based on branching time logic. Later they adopted more elegant

presentation of temporal logic that was presented in [46]. In a milestone step in the evo-

lution of verification techniques, Clarke, Emerson and Sistla [43,48] presented the EMC

Model Checker. This was the first model checker that could handle fairness constraints.

Although, the EMC Model Checker can only check models with state space of a size not

more than 105 , it was able to detect errors in several systems. In [63] Emerson and Halpem

presented framework CTL* for investigating the expressive power of temporal logic. Their

framework was a combination of branching-time and linear-time operators.

The most significant improvement in model checking was in the early 90’s. To this

end, symbolic model checking and partial order reduction were used in building the model

checker. McMillan used a symbolic representation based on the ordered binary decision

diagrams (OBDDs) to develop the SMV [112]. The compact representation of the state

space and the transition graph made it possible to verify sophisticated programs with very

large state space [36,112]. Since then, the SMV model checker has been used in verifying

several systems. In 2000, a new version of SMV was released [41].

165

The second important improvement in model checking techniques is the exploitation

of the partial order reduction of the state space [74]. The basic idea of the partial order

reduction is as follows. If two events are independent, then the system will reach the same

global state with no regards to which event execute first. This way, less space is needed to

represent the system, which in turn reduces the effect of the state explosion problem.

Since the early 90’s, many techniques have been developed to extend the capabilities of

the model checking tools. These techniques include Abstraction [80], where the data values

of the system, usually reactive systems, are mapped to smaller set of abstracted values,

Compositional Reasoning [8,51,79], where the behavior of the system, which is composed

of many similar process, can be represented by few processes, Symmetry Reduction [44,

117], where the model checker exploits the symmetrical characteristics of the program to

obtain smaller model, and Induction and Parameterized Verification [106,131], where the

behavior of the system is represented in a way that can be used for an arbitrary number of

processes.

The development of more effective methods for program verification continued over

the past few years. Also, it resulted in the creation of more innovative technique, to handle

specific problems in more customized settings.

One application of our approach is to be complementary to existing approaches [36,41,

93] for verifying program correctness in early stages of system design. In particular, the

techniques in [98,119,130] aim to identify unacceptable system behavior to find the root

causes that makes the system behave incorrectly. However, these approaches do not address

what to do when new faults or bugs are identified. Generally, it is left to the designer to

address this with some guidance or with trial and error. Moreover, manual revision has the

potential to introduce new errors.

Our approach focuses on automating such model revisions. Therefore, once the model

checker identifies an instance where the model does not satisfy the property of interest,

we can use the automated model revision techniques to automatically revise the existing

166

model (c.f. Figure 8.1). The revised model will continue to satisfy the original properties

as well as the new property. Such automated revision is highly desirable since it enables

system designers to automatically and incrementally add properties to the models. Some

of the advantages of this approach are that the revised model is correct by construction and

there is no need to re-verify the revised model. Also, the original model properties are

preserved. Furthermore, there is a potential for this approach to require less time and space

complexities since it does not require the revision of the entire model specification.

Program Program

r Model Properties

Rev'se the

"'0“, Model Checker .

L No Yes

Figure 8.1: Model Checking and Automated Model Revision.

In another context, we have adopted many techniques, which were used to advance

the development of better model checking tools, in the development of our model revision

tools. For example, one way to reduce the complexity further is to integrate advances from

model checking, as incremental synthesis involves several tasks that are also considered

in model checking. We considered two approaches from model checking: (l) the use of

symmetry and (2) the parallelism of the algorithm with multiple processors/cores.

8.2 Controller Synthesis and Game Theory

Our work is closely related to the work on controller synthesis (e .g. [16,17,32]) and game

theory (e.g., [70]). In this work, supervisory control of real-time systems has been studied

167

under the assumption that the existing program (called a plant) and/or the given speci-

fication is deterministic. In particular, Jobstmann, Griesmayer, and Bloem [96] used an

approch based on the concepts of the game theory. They presented the problem of program

repair by two players playing the Biichi game. They modeled the program and its environ-

ment as the two players. More specifically, the program takes a move in response to a move

taken by the environment. Our formulation for the automated model revision is similar to

that used by Ramadge and Wonham [122] in the discrete controller synthesis problem. In

both approaches the goal is to restrict the program actions to the desired behaviors.

These techniques require highly expressive specifications. Hence, the complexity is

also high (EXPTIME-complete or higher). In addition, these approaches do not address

some of the crucial concerns of fault-tolerance (e .g., providing recovery in the presence of

faults) that are considered in our work.

8.3 Model Revision and Automated Program Synthesis

In this section, we review the history and the evolution of the automated model revision

techniques [101]. Also, we show how our work in this dissertation is related to the previous

work done in this regard.

Automated program synthesis and revision have been studied from various perspec-

tives. Inspired by the seminal work by Emerson and Clarke [64], Arora, Attie, and Emer-

son [11] propose an algorithm for synthesizing fault-tolerant programs from CTL specifica-

tions. Their method, however, does not address the issue of the addition of fault—tolerance

to existing programs. Initially, Kulkarni and Arora presented an automated algorithm for

the automated addition of fault-tolerance for centralized programs as well as distributed

programs. Their approach depends on the existence of an original program that is correct

in the absence of faults, i.e., the existing program satisfies its specification as far as no

faults exists. Their goal is to modify (i.e., revise) the existing program and generate modi-

168

fied (i.e., revised) version of the program such that the revised program is fault-tolerant as

well as it does not introduce any new behavior in the absence of faults [101]. The authors

also analyzed the complexity of adding fault-tolerance in different setting. We used some

of their results in the table in Section 7. For instance, they proved that the problem of the

automated addition of masking fault-tolerance is NP-complete.

Kulkarni, Arora, and Chippada [102] developed a polynomial time algorithm for auto-

mated synthesis of fault—tolerant distributed programs. Since this problem was proven to

be NP—hard in [101], the authors presented an algorithm that relies on heuristics to reduce

the complexity. Moreover, they demonstrated that the algorithm suffices to synthesize an

agreement program that tolerates a Byzantine fault.

In their effort to automate the synthesis of fault-tolerant programs, Ebnenasir and

Kulkarni developed a framework, called Fault-Tolerance Synthesizer (FTSyn) [60]. The

PISyn framework implemented most of the heuristics that have been proposed to syn-

thesize fault-tolerant programs. The main reasons for developing FTSyn were to validate

the theoretical results as well as to provide developers with an interactive tool for auto-

mated synthesize. The authors use FTSyn to synthesize several fault-tolerant distributed

programs. For instance, they used FTSyn to synthesis an altitude switch that controls the

altitude of an aircraft. The input of FTSyn consists of an abstract program consisting of

a set of processes described in a guarded command language. And, the output is masking

fault-tolerant program also in guarded commands. The authors used FTSyn to demonstrate

the applicability of their approach and also to show that with automation it can be applied

to the cases where there are different types of faults. However, similar to other enumerative

implementations, FTSyn was subject to the state explosion problems and was only suitable

for synthesizing small programs.

Recently, Bonakdarpour and Kulkarni presented a symbolic-based implementation for

the synthesis algorithm [27,30]. In their tool (SYCRAFT), the components of the syn-

thesis algorithm are constructed using Boolean formulae represented by Bryants Ordered

169

Binary Decision Diagrams [33]. This was the first time where moderate to large sized pro-

grams (a state space of 1050 and beyond) have been synthesized. Although, both FTSyn

and SYCRAFT implement similar synthesis heuristics from [102], there are several differ-

ence between them. For instance, the symbolic representation made SYCRAFT capable

of handling programs with larger state space. Moreover, the grammar of the input lan-

guage of SYCRAFT has more constructs which can assist the designer in describing the

abstract program. Also, one of the characteristics of SYCRAFT is that it describes the out-

put in an optimized representation. Using SYCRAFT, authors also have identified several

bottlenecks that can slow down the synthesis. In particular, they identified the following

bottlenecks: the deadlock resolution, computation of recovery action, computation of the

fault-span and the cycle resolution. In this dissertation, we focused on two major complex-

ity obstacles in deadlock resolution, namely computation of the recovery actions and the

deadlock elimination. We used parallelism and symmetry to overcome these bottlenecks.

Our work in this dissertation is closely related to the tool SYCRAFT. In particular, we

have implemented most of the techniques we presented in this dissertation and added them

to SYCRAFT.

8.4 Parallelization and Symmetry

In the model checking community, various techniques have been proposed to implement

the symbolic state space generation and exploration using parallel computing. Some of

those approaches targeted the state explosion problem by focusing on data parallelism by

distributing the computation among a group of workstations, e.g., NOWs [77,78,92, 115,

126]. Their goal was mainly providing more memory resources to handle the expanding

state-space. Obviously, the speed was not an issue here and the time complexity was not

the target. Others focused on enhancing the time-efficiency by using parallelism. For this

group, the goal was to use the ever-expanding parallel infrastructure of multi-core PCs and

170

multi-processers platforms in expediting model checking. Most notably was the work on

parallelizing the Saturation algorithm [39]. Unfortunately, the symbolic state exploration

has proven to be notoriously resistant to parallelization.

In [66,67,69], the authors propose solutions and analyze different approaches to paral-

lelization of the saturation-based generation of state space in model checking. In particular,

in [67], the authors show that in order to gain speedups in saturation-based parallel sym-

bolic verification, one has to pay a penalty for memory usage of up to 10 times, that of

the sequential algorithm. Other efforts range from simple approaches that essentially im-

plement BDDs as two-tiered hash tables [1 15, 127], to sophisticated approaches relying on

slicing BDDs [78] and techniques for workstealing [77]. However, the resulting implemen-

tations show only limited speedups. Ezekiel j., Luttgen G., and Siminiceanu R. [68] argue

that a heavily optimized symbolic algorithm such as Saturation may be more efficient than

a parallel version of the same algorithm.

Ebnenasir presented a divide-and-conquer method [58] for synthesizing failsafe fault-

tolerant distributed programs. In failsafe fault—tolerance, the program is not required to

maintain any liveness requirements when faults occur. Therefore, resolving deadlock states

in the fault-span is not needed.

In this dissertation, we focused on two major complexity obstacles in deadlock res-

olution, namely computation of the recovery actions and the deadlock elimination. We

used parallelism and symmetry to reduces the time complexity. Our work utilizes paral-

lelization of group computation as well as symmetry for expediting the automated model

revision. Unlike other parallelization algorithms for the symbolic based representation of

models, we were able to achieve speedup up to multiple orders of magnitude. By focusing

on parallelizing the group operation, we were able to harness the benefits of the multi-core

infrastructure.

171

8.5 Nonmasking and Stabilizing Fault-Tolerance

Automated program synthesis is studied from different perspectives. One approach (e.g.,

[l 1]) focuses on synthesizing fault-tolerant programs from their specification in a temporal

logic (e.g., CTL, LTL, etc .). Our approach for adding nonmasking and stabilizing fault-

tolerance is based on satisfying constraints that should be true in legitimate states.

In masking fault-tolerance, when faults occur, the program cannot violate the safety

property during recovery. Therefore, this approach will not be able to synthesize nonmask-

ing fault-tolerant programs where safety can be violated during recovery. Furthermore,

while our algorithm accounts for weak-faimess among program actions and allows for re-

covery actions to be added under this assumption, the heuristic-based approach does not

account for fairness assumptions.

Katz and Perry [97] proposed an algorithm to extend an arbitrary asynchronous dis-

tributed message-passing system into a self-stabilizing system. They also gave a formal

definition of the self-stabilizing extension of a non-stabilizing program and they defined

the set of properties that must be maintained by the new extension. Their algorithm super-

imposes a control program on the original non-stabilizing program. The control program

repeatedly takes a global snapshot and then checks if the snapshot indicates an illegal state.

If an illegal state is found, the control program resets the memory of each process to a legal

default state.

Arora, Gouda, and Varghese [13] proposed a manual approach to design nonmasking

fault-tolerant programs. In this approach, a program is intended to satisfy a set of con-

straints during normal operation (i .e., no faults). Program actions are categorized into

“closure” actions and “convergence” actions. When faults occur and violate one or more

of the program constraints, convergence actions are responsible for correcting program be-

havior and reestablishing those constraints again. This method, however, does not address

the issue of automated addition of nonmasking fault-tolerance to existing fault-intolerant

programs .

172

Our approach for adding nonmasking fault-tolerance and self-stabilization is based on

satisfying constraints that should be true in legitimate states. An orthogonal approach is to

utilize primitives such as distributed reset [97] where one detects whether the system is in a

consistent state and resets it to a legitimate state, if needed. Examples of these approaches

include [97, 128]. Our approach can be utilized to design the distributed reset protocol

itself.

The verification of self-stabilizing properties has been studied by several researchers.

One method to verify the correctness of self-stabilizing algorithms is by using mechanical

theorem proving. In [121], Qadeer and Shankar used PVS [118] to verify the correctness

of Dijekstra’s algorithm. Another approach to verify self-stabilizing algorithms was done

using model checking. In [129], Tsuchiya et al. applied CTL symbolic model check-

ing techniques to verify several distributed algorithms against self-stabilization properties.

They used SMV [113] to overcome the state explosion problem. They showed that the

state space can be efficiently reduced using OBDDs. However, they concluded that their

approach is applicable only when the number of process is modest.

8.6 Legitimate States Discovery

Several techniques have been developed to verify program correctness [35, 36,47,89,93,

113]. For most of those methods, the program is translated into a logical formula that de-

scribes the program behavior and properties. Then, tools are used to verify the correctness

of the program. For many of these tools, identifying the program legitimate states (i.e., legal

or invariant states) is an essential step. Several approaches have been proposed to improve

the automatic generation of the legitimate states [l9,20,23,109,116]. These methods can

be widely classified as either top-down or bottom-up approaches. The top-down approach

starts with the weakest possible invariant and uses program specification to strengthen that

invariant. The bottom-up approach performs forward propagations of the program actions

173

to derive the invariant. Our algorithm is a top-down approach since it starts by initializing

the largest set of legitimate states to be the whole state space and later removes states that

violate the predefined safety and liveness specifications.

Rustan, Leino, and Barnett [19,109] presented methods for forming an efficient weak-

est precondition to enhance the performance of the verification tools like ESC/Java and

ESC/Modula3. Their goal is to simplify the presentation of the weakest pre-condition to

avoid redundancy and to avoid exponential growth of the condition size. Our definition

of largest set of legitimate states is equivalent to their definition of the weakest conserva-

tive preconditions in which the execution of a program statement does not go wrong and it

terminates. However, in their work they address the problem of redundancy in describing

such conditions while we focus on the automatic generation of such conditions from the

program specification.

Jeffords and Heitmeyer [94,116] described an algorithm to automate the generation of

the invariant. Their technique is based on deriving the invariant based on propositional

formulas derived from the SCR tables. Their algorithm is intended for detecting errors

at early stages of program design. By contrast, our algorithm is intended to discover the

largest set of legitimate states of programs assumed to be correct for the purpose of adding

fault-tolerance to such programs.

The accurate and complete identification of the legitimate states is an essential step

that enables designers to apply the algorithms and tools for the automated model revision

of fault-tolerant programs from a fault-intolerant programs [27,30, 101,111]. Unlike the

traditional approaches, that require the explicit specification of the Legitimate States, our

approach does not require explicit specification of the Legitimate States but it generates

the largest set of legitimate states from program transitions and specification. Therefore, it

will significantly improve and simplify the process of automated addition of fault-tolerance.

Furthermore, our approach is relatively complete when compared to traditional approaches.

Moreover, it does not introduce any significant cost.

174

Chapter 9

Conclusion and Future Work

In this dissertation, we focused on the problem of automated model revision. We derived

theories, developed algorithms, and built tools to make the model revisions more compre-

hensive, efficient, and designer-friendly. In particular, we reduced the automated model

revision learning curve by utilizing existing design tools. Also, we developed algorithms

and tools to apply model revision in adding new types of fault-tolerance properties and

to automate the generation of the legitimate states of the original model. Finally, we uti-

lized both symmetry and parallelism to speedup the automated revision and to overcome

its bottlenecks to reduce its time complexity.

In this chapter, we present a summary of our contributions. In Section 9.1, we summa-

rize the contributions of this dissertation. Then, in Section 9.2 we list some of the future

research directions.

9.1 Contributions

This dissertation makes four main contributions:

1. Reducing the Learning Curve of the Automated Model Revision: To reduce the

learning curve of automated model revision, we focused on utilizing existing design

175

tools. We combined the automated model revision tool SYCRAFT with the SCR

tool set. To achieve successful coupling, we developed a middle layer that translated

the SCR specification into SYCRAFT input as well as from SYCRAFT output back

to SCR. Thus, our approach gives designers the ability to perform the tasks of the

model revision under-the-hood (i .e., while working within the SCR toolset). In this

way, they do not need to know all the details required to perform automated model

revision.

We expect that the ability to add fault-tolerance under-the-hood is especially useful,

as it allows designers to continue to use the design tools they were already using.

This reduces the learning curve of the model revision techniques. In the context of

SCR, this is especially useful since the SCR toolset has already been adopted by the

industry and is used in the development of many real world applications. Further-

more, the SCR toolset integrates several tools for consistency checking, verification,

etc. Since synthesized fault-tolerant SCR specification can be viewed/modified us-

ing the SCR toolset, one can analyze the revised fault-tolerant SCR specification for

various other properties.

With case studies we showed that, for our approach to be effective, certain changes

need to be made to the SCR interface. In particular, we demonstrated that the SCR

toolset would have to be modified to include the description of faults. However,

we showed that the changes required for describing faults in the SCR toolset are

straightforward. In particular, the faults themselves could be represented using tables.

We also demonstrated that the designer needs to specify the requirements that should

be met in the presence of faults. Once again, this is similar to how other requirements

(not related to fault-tolerance) are specified in the SCR toolset. These changes to the

SCR toolset are reasonable in that they essentially require the designer to specify

what the faults are and the requirements for fault-tolerance in the presence of faults.

Additionally, automated revision with SYCRAFT also provides the possibility of de-

176

tecting errors in the requirements themselves. In particular, one can identify errors

caused due to a missing requirement on how recovery can be added. Since SYCRAFT

tries to provide maximum non—determinism in the revised program, if a requirement

is missing, then there is a high potential that it would be detected. Therefore, this

approach provides the ability to reduce cost since it detects errors and missing spec-

ifications early in the design stage.

. Automating the Discovery of the Legitimate States: To further reduce the effort

required by the designer in automated model revision, we focused on generating

one of the inputs - legitimate states - automatically. In particular, the inputs to the

model revision algorithms includes: (1) the existing model, (2) the specification of

the model, (3) the faults, and (4) the legitimate states of the original model.

Clearly, specifying the existing model is unavoidable. Moreover, the task required

in identifying it is easy, as model revision is expected to be used in contexts where

designers already have an existing model. Specification is also already available to

the designer when model revision is used in contexts where, existing model fails to

satisfy the desired specification. Likewise, the new property that is to be added to the

existing model is also easy to identify. In the context of fault-tolerance, this requires

the designers to identify the faults that need to be tolerated.

Based on our experience, the hardest input to identify is the set of legitimate states

from where the original model satisfies its specification. In part, it is because of the

fact that identifying these legitimate states explicitly is often not required during the

evaluation of the original model. Hence, we focused on the problem of automated

model revision of an existing model without the use of explicit legitimate states.

Moreover, as shown by the example in Section 5.5, typical algorithms for computing

legitimate states based on initial states do not work in the context of automated model

revision.

177

We presented an algorithm for automated discovery of the weakest legitimate state

predicate of the given program. Our algorithm uses the program actions and specifi-

cation to automatically generate the weakest legitimate state predicate.

To evaluate this algorithm, we compared the automated model revision when the le-

gitimate states are explicitly specified with that when they are not. We considered

three questions in this context: (1) relative completeness, (2) qualitative complex;

ity class comparison, and (3) quantitative change of the time for model revision.

We illustrated that our approach for model revision without explicit legitimate states

is relatively complete, i.e., if model revision can be solved with explicit legitimate

states, then it could also be solved without explicit legitimate states. This is impor-

tant since it implies that the reduction in the human effort required for model revision

does not reduce the class of the problems that could be solved.

Regarding the second question, we found some surprising and counterintuitive re-

sults. Specifically, for total revision, we found that the complexity class remains un-

changed. However, for partial revision, the complexity class changes substantially.

In particular, we showed that problems that could be solved in P when legitimate

states are available explicitly become NP-complete if explicit legitimate states are

unavailable. This result is especially surprising since this is the first instance where

complexity levels for total and partial revision have been found to be different. Even

though the general problem of partial revision becomes NP-complete without the ex-

plicit legitimate states, we found a subset of these problems that can be solved in

P. Specifically, this subset included all instances where model revision was possible

when legitimate states are specified explicitly.

Regarding the third question, we showed that the extra computation cost obtained

by reducing the human effort for specifying the legitimate states is negligible. To-

wards this end, we considered four case studies that included Byzantine agreement,

mutual exclusion, token ring and diffusing computation. In each of these examples,

178

the generated set of legitimate states was the same as the one specified explicitly in

automated addition of fault-tolerance. Moreover, the time to generate the legitimate

states was negligible (less than 1%) when compared with the time for performing the

corresponding addition of fault-tolerance.

Also, we have integrated the automated revision without explicit legitimate states in

the tool SYCRAFT. We note that this result can also be extended to other problems

in model revision where one adds safety properties, liveness properties and timing

constraints.

. Exploiting Parallelism and Symmetry to Expedite the Automated Model Revi-

sion:

Another contribution of this dissertation is directed towards making the automated

model revision more efficient. Specifically, we worked on improving the perfor-

mance of the automated model revision to synthesize fault-tolerant programs from

their fault-intolerant version. Towards this end, we developed techniques that uti-

lize the (1) multi-core processors and (2) the symmetry among the processes of the

program being revised to expedite the automated model revision.

In the case of parallelism, we focused on one of the main complexity barriers, reso-

lution of deadlock states, in automated model revision to add fault-tolerance to dis-

tributed programs. Our approach was based on parallelization with multiple threads

on a multi-core architecture. We considered parallelization in two scenarios: (1)

adding recovery transitions, and (2) eliminating deadlock states. Our approach pro-

vides each thread its own copy of shared variables. Although this has a potential to

increase the memory usage, in general, automated model revision problems tend to

have a higher time complexity than the corresponding verification problems. Hence,

we expect that the automated model revision algorithm will run out of time before

it runs out of memory. Hence, the increased space complexity is unlikely to be the

179

bottleneck during revision.

Initially, we showed that the approach of partitioning deadlock states provides a small

improvement. And, the approach based on parallelizing the group computation —

that is caused by distribution constraints of the program being synthesized— provides

a significant benefit that is close to the ideal, i.e., equal to the number of threads

used. Additionally, we demonstrated that there is a potential to gain superlinear

speedup due to the partitioning of the group computation that reduces the size of

corresponding BDDs. Since the configuration used to evaluate performance was on

an 8-core (4 dual-cores) machine, we considered the case where up to 16 threads are

used. We find that as the number of threads increases, the revision time decreases. In

fact, because the parallelism is fine-grained, using more threads than available cores

has the potential to improve the performance slightly. This demonstrates that we

have not yet reached the bottleneck involved in parallelization. Furthermore, there is

potential for further reduction in revision time if the level of parallelism is increased

(e .g., if there are more processors). Although, the level of parallelism is fine-grained,

we showed that the overhead of parallel computation is small.

In the case of symmetry, we showed that symmetry provides a substantial benefit in

reducing the time involved in the revision. More specifically, we observed that mul-

tiple processes in a distributed program are symmetric in nature, i.e., their actions are

similar (except for the renaming of variables). Thus, if our algorithm finds recovery

transitions for a process, then it utilizes symmetry to identify other recovery tran-

sitions that should also be included for other processes in the system. Likewise, if

some transitions of a process violate safety in the presence of faults, then it identifies

similar transitions of other processes that would also violate safety. Since, the cost

of identifying these similar transitions with the knowledge of symmetry among pro-

cesses is less than the cost of identifying these transitions explicitly, then the use of

symmetry reduces the overall time required for the revision. Moreover, the speedup

180

increases as the number of symmetric processes increases.

. Automating the Model Revision to Add Nonmasking and Stabilizing Fault-

Tolerance: The tools for automated model revision need to be comprehensive and in—

clude techniques to automate the addition of different levels of fault-tolerance. In this

dissertation, we also focused on the automated revision to add nonmasking and stabi-

lizing fault-tolerance to hierarchical distributed systems. In particular, we considered

systems where legitimate states are specified in terms of constraints that are true in

legitimate states. The goal of adding nonmasking and stabilizing fault-tolerance was

to ensure that if these constraints are violated by faults, then eventually the program

would reach a state where all the constraints are satisfied and subsequent behavior

would be correct.

Our approach was to utilize an order among the constraints. With this order, we

ensured that correction actions that correct constraint C,- did not cause violation of

any of the previous constraints Co,C1 ...C,-_l although they may violate constraints

Cj, j > i. In our case studies from Chapter 5, we considered different possible or-

derings and in most cases, we were able to synthesize a nonmasking fault-tolerant

program. Therefore, identifying an order among these predicates does not appear to

be a critical concern. Moreover, the number of orderings that need to be considered

for a group of n constraints will be at most 0(n2). Finally, we find that this approach

is especially suited for synthesizing stabilizing programs, since it eliminates one of

the bottlenecks of the automated revision (evaluating fault-span).

Also, we focused on improving the revision to add nonmasking and stabilizing fault-

tolerant programs from their fault-intolerant version. We showed that the use of

multi-core technology to parallelize the revision algorithm reduces the revision time

substantially. We parallelized constraint satisfaction by: (l) partitioning the con-

straints and (2) utilizing the nature of distributed programs. We showed that paral-

181

lelism provides a substantial benefit in reducing the time needed in the revision. We

illustrated our approach with three case studies: stabilizing mutual exclusion, stabi—

lizing diffusing computation, and a data dissemination problem for sensor networks.

The complexity analysis demonstrated that automated model revision in these case

studies was feasible and achieved in a reasonable time speedup in all case studies.

Furthermore, since our work is structured on constraint based (manual) design of

nonmasking and stabilizing fault-tolerance from [13] that has been found to be useful

in deriving several protocols manually (e.g., [73,75,128]), we expect that it will

be highly valuable for automatically designing various stabilizing and nonmasking

programs. We also showed that the hierarchical nature of the underlying system

could be effectively utilized to reduce the complexity of synthesizing programs with

larger number of processes while maintaining the correct-by-construction property

of programs designed by automated model revision.

This work also advances the state-of-the-art of the automated model revision in yet

another way. To our knowledge, this is the first instance where automated model

revision to add fault-tolerance is achieved with fairness constraints. Without fairness

constraints, a stabilizing mutual exclusion algorithm based on [124] is impossible.

Moreover, the structure of the recovery actions in the first two case studies is too

complex to successfully utilize previous heuristic based approaches [30].

9.2 Future Research Directions

During our work on automated model revision we have identified several possible direc-

tions of future work. Some of these are listed below.

In Chapter 3, we identified the requirements to complete the revision under-the-hood.

Also, we developed middle layer that translate the SCR specification into the SYCRAFT

specification. One future research direction in this context is to develop an enhanced ver-

182

sion of the middle layer. In particular, a middle layer that can be more generic, i.e., capable

of handling several types of specifications other than SCR. We believe that many activities

of the automated model revision are not user centric and do not require direct involvement

for the user. Furthermore, many software solutions require modification to some of the

software properties at several stages in the software life cycle. Moreover, in many cases

such software modification is required to be completed in an expedited fashion. These

requirements make the ability to perform automated model revision under-the-hood more

appealing to many design tools. Hence, one future research direction in this context is in-

vestigating of the possibility of integrating automated model revision to other design tools

such as Simulink [52] and Rational Rhapsody [81, 82]. The enhanced middle layer will

also include complete description of the input and output fields. This will allow other

developers/researchers to link their design tools with SYCRAFT.

Time complexity is one of the important factors in a successful automated model re-

vision. One future research direction in this context is to combine other advances from

program verification. We expect that by combining these advances along with characteris-

tics of distributed systems, e.g., forward reachability analysis, hierarchical behavior, types

of expected faults, etc., would be extremely beneficial. Specifically, it will make the auto-

mated revision of practical distributed programs to add new properties more feasible.

In Chapter 4, we listed some of the factors that contribute to the time complexity of

the automated model revision. Of these, the deadlock resolution problem, is a unique

bottleneck and does not exist in other verification methods. However, we recognize that

there are other bottlenecks (e .g., forward reachability analysis) that are common with the

other verification techniques. Hence, one future work in this context is to incorporate other

techniques such as partitioning [35], clustering [123], and saturation-based reachability

analysis [39,40] in the automated model revision tools. We expect these techniques to

improve computation of many constructs in our tool.

In Chapter 4, we identified the importance of the group computations in automated

183

model revision. In particular, we found that the revision time is often dedicated to comput-

ing such groups. Also, since the group computation is caused by distribution constraints

of the program being synthesized, as discussed in Chapter 4 and 5, it is guaranteed to be

required even with other techniques for expediting automated model revision. One future

work is to combine the group parallelism with the techniques that partition the deadlock

states among available threads. In particular, as discussed in Chapter 4, the parallelism that

partitions the deadlock states is coarse-grained. However, it can permit threads to perform

inconsistent behaviors that need to be resolved later. Thus, it provides a tradeoff between

overhead of synchrony among threads and potential error resolutions. Hence, even when a

large number of cores were available, this approach would be valuable together with other

techniques that utilize those additional cores. Thus, one of the future works is to com-

bine the partitioning of the deadlock states and the group parallelism. Also, another future

research direction is to explore other approaches to expedite the group computation. For

example, it can be used in conjunction with the approach that utilizes symmetry among

processes being synthesized.

Another possible future work is developing more efficient algorithms for computing the

groups. Due to the distributed nature of the programs being revised, it is most likely the case

that the group associated with a given transition gets computed several times. Such repeated

computation is not really necessary. In fact, the group associated with a given transition

is fixed and does not change during the revision. Therefore, one approach for reducing

the time required for computing the groups is as follows. In the initialization stage of the

revision algorithm, we compute the groups associated with all the transitions of the program

and store them in an efficient data structure. Later and during the revision, whenever it is

required to compute the group associated with a given transition, such, group is retrieved

from the storage. We expect this approach to significantly reduce the time complexity of

the revision. However, it may require more memory and at that point some tradeoffs will

need to be made to select the appropriate choices. We also expect that integrating our

184

implementation with a SAT or SMT (satisfiability modulo theories) solver is beneficial. In

SMT solvers, one can use other types such as abstract data types, integers, reals etc., in

formulae that involve arithmetic and quantifiers as well.

In automated model revision tools, we used BDDs to efficiently represent the model

being revised. However, the level of efficiency depends on the order in which we choose

to list the variables of the model. Traditionally, such ordering is done manually based on

some heuristics to achieve the minimal space required to describe the model. Such, manual

approach is sufficient for other approaches for program verification (e .g., model checking)

since in verification the model itself does not change. Therefore, the initial order chosen for

the variables stays valid. Unlike verification, in model revision the model is modified. For

instance, transitions can be removed if they violate the safety, on the other hand, transitions

might be added to achieve recovery. Consequently, the initial order of the variables may

need to be changed during the revision. One interesting future work is to look for solutions

where the order of the variables is dynamic and changes during the revision.

Distributed programs often consist of processes with similar structure. In Chapter 4,

we developed some simple yet effective techniques that utilize symmetry to expedite the

revision. Also, we demonstrated that the use of symmetry could extremely lower the time

required for automated model revision. However, one limitation for our technique is that it

requires the designer to identify the symmetry patterns in the program. A future work in

this area will involve searching for techniques that allow for automated discovery of such

symmetry patterns. An interesting problem would be to exploit the symmetry in distributed

programs by automatically identifying symmetrical processes and actions.

In Chapter 5, we demonstrated how the hierarchal structure of the processes could be

used to reduce the complexity of the automated model revision. In particular, we showed

how we could revise a small model and use the results to revise larger models. One future

work in this context is to incorporate techniques that can automatically identify the net-

work topology of the model being revised and use it to complete the revision efficiently.

185

In the automated model revision to add nonmasking fault-tolerance, we used a set of con-

straints to describe the legitimate states of the model being revised. The order in which we

chose to satisfy these constraints is very important. More specifically, choosing a wrong or-

der may result in the impossibility of finding the correct nonmasking fault-tolerant model.

We briefly presented a heuristic that considers all possible combinations to order the con-

straints. Another future work in this context is to investigate other heuristics that takes

into consideration the relation between the constraints them selves. For example, if the set

of state identified by a constraint, say CI , is included in the set of states identified by the

constraints, say C2, then we may need to satisfy C1 before satisfying C2.

186

BIBLIOGRAPHY

[l] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 17(3):507—535, 1995.

[2] F. Abujarad, B. Bonakdarpour, and S. Kulkarni. Parallelizing Deadlock Resolution

in Symbolic Synthesis of Distributed Programs. In PDMC 2009, 2009.

[3] F. Abujarad and S. Kulkarni. Automated Addition of Fault-Tolerance to SCR

Toolset: A Case Study. In Distributed Computing Systems Workshops, 2008.

ICDCS ’08. 28th International Conference on, pages 539—544, 2008.

[4] F. Abujarad and S. Kulkarni. Constraint Based Automated Synthesis of Nonmasking

and Stabilizing Fault-Tolerance. In Reliable Distributed Systems, 2009. SRDS ’09.

28th IEEE International Symposium on, Niagara Falls, New York, USA, Sep 27 - 30,

2009. In Proceedings, pages 119 — 128, 2009.

[5] F. Abujarad and S. Kulkarni. Multicore Constraint-Based Automated Stabilization.

In Stabilization, Safety, and Security of Distributed Systems: 11th International

Symposium, SSS 2009, Lyon, France, November 3-6, 2009. Proceedings, page 47.

Springer, 2009.

[6] F. Abujarad and S. Kulkarni. Weakest Invariant Generation for Automated

Addition of Fault-Tolerance. Electronic Notes in Theoretical Computer Sci-

ence, 258(2):3—15, 2009. Available as Technical Report MSU-CSE-09-29 at

http://www.cse.msu .edu/cgi-user/web/tech/reports?Year=2009 .

[7] B. Alpem and F. B. Schneider. Defining liveness. Information Processing Letters,

21:181—185, 1985.

[8] R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learn-

ing assumptions. In Computer Aided Verification, pages 548—562. Springer, 2005.

[9] B. Aminof, T. Ball, and O. Kupferman. Reasoning about systems with transition

fairness. Proc. LPAR, LNCS 3452, pages 194—208, 2004.

[10] A. Arora. Efficient reconfiguration of trees: A case study in methodical design

of nonmasking fault-tolerant programs. In Science of Computer Programming.

Springer, 1996.

[1 l] A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant concurrent

programs. In Principles ofDistributed Computing (PODC), pages 173—182, 1998.

[12] A. Arora and M. G. Gouda. Closure and convergence: A foundation of fault-tolerant

computing. IEEE Transactions on Software Engineering, 19(1 l):1015—1027, 1993.

[13] A. Arora, M. G. Gouda, and G. Varghese. Constraint satisfaction as a basis for

designing nonmasking fault-tolerant systems. Journal of High Speed Networks,

5(3):293—306, 1996.

187

[14] A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.

IEEE Transactions on Software Engineering, 24(1):63—78, 1998.

[15] A. Arora and S. S. Kulkarni. Designing masking fault-tolerance via nonmasking

fault-tolerance. IEEE Transactions on Software Engineering, pages 435—450, June

1998.

[16] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed au-

tomata. In Hybrid Systems: Computation and Control (HSCC), pages 19-30, 1999.

[17] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-

tomata. In IFAC Symposium on System Structure and Control, pages 469—474, 1998.

[18] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy

of dependable and secure computing. IEEE transactions on dependable and secure

computing, pages 11—33, 2004.

[19] M. Barnett and K. Leino. Weakest-precondition of unstructured programs. In Pro-

ceedings of the 6th ACM SIGPLAN—SIGSOFT workshop on Program analysis for

software tools and engineering, pages 82—87. ACM New York, NY, USA, 2005.

[20] S. BensMem, Y. Lakhnech, and H. Saidi. Powerful techniques for the automatic

generation of invariants. In Proc. 8th Int. Conf. on Computer-Aided Verification, to

appear in Lect. Notes in Comput. Sci. Springer, 1996.

[21] R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics systems with

the SCR requirements method. In Digital Avionics Systems Conference, 2000.

[22] R. Bharadwaj and C. Heitmeyer. Developing high assurance avionics systems with

the SCR requirements method. In Digital Avionics Systems Conferences, 2000. Pro-

ceedings. DASC. The I 9th, volume 1, 2000.

[23] N. Bjomer, A. Browne, and Z. Manna. Automatic generation of invariants and in-

termediate assertions. Theoretical Computer Science, l73(1):49—87, 1997.

[24] G. V. Bochmann. Hardware specification with temporal logic: An example. IEEE

Trans. Comput., 31(3):223—231 , 1982.

[25] B. Bonakdarpour. Automated Revision ofDistributed and Real—Time Programs. PhD

thesis, Michigan State University, 2008.

[26] B. Bonakdarpour, A. Ebnenasir, and S. Kulkarni. Complexity results in revising

UNITY programs. ACMTransactions on Autonomous andAdaptive Systems (TAAS) ,

4(1):5, 2009.

[27] B. Bonakdarpour and S. Kulkarni. SYCRAFT: A Tool for Synthesizing Distributed

Fault-Tolerant Programs. In Proceedings of the 19th international conference on

Concurrency Theory, August, pages 19—22. Springer, 2008.

188

[28] B. Bonakdarpour and S. S. Kulkarni. SYCRAFT: SYmboliC synthesizeR and Adder

of Fault-Tolerance. Available at http: / /www. cse .msu . edu/ ”borzoo/sycraft.

[29] B. Bonakdarpour and S. S. Kulkarni. Automated incremental synthesis of timed

automata. In International Workshop on Formal Methods for Industrial Critical

Systems (FMICS), LNCS 4346, pages 261—276, 2006.

[30] B. Bonakdarpour and S. S. Kulkarni. Exploiting symbolic techniques in automated

synthesis of distributed programs with large state space. In IEEE International Con-

ference on Distributed Computing Systems (ICDCS), pages 3—10, 2007.

[31] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad. Distributed synthesis of fault-

tolerance. In International Symposium on Stabilization, Safety, and Security ofDis-

tributed Systems (SSS), 2006. Full version available as a Technical Report MSU-

CSE-06-27 at Computer Science and Engineering Department, Michigan State Uni-

versity, East Lansing, Michigan.

[32] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with partial

observability. In Computer Aided Verification (CAV), pages 180—192, 2003.

[33] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, 35(8):677—69l , 1986.

[34] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677—691 , 1986.

[35] J. Burch, E. Clarke, and D. Long. Symbolic model checking with partitioned tran-

sition relations. In International Conference on Very Large Scale Integration, pages

49—58, 1991.

[36] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2): 142-—

170, 1992.

[37] R. Burstall. Program proving as hand simulation with a little induction. Information

processing, 74(308-312):448 , 1974.

[38] K. M. Chandy and J. Misra. Parallelprogram design: afoundation. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[39] G. Ciardo, G. Luttgen, and R. Siminiceanu. Saturation: An efficient iteration strategy

for symbolic state-space generation. In Tools and Algorithms for the Construction

and Analysis ofSystems (TACAS), pages 328-342, 2001.

[40] G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis using con-

junctive and disjunctive partitioning. In Correct Hardware Design and Verification

Methods (CHARME), pages 146—161, 2005.

189

[41] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic

model checker. Int. J. Softw. Tools Technol. Transf., 2(4):410—425, 2000.

[42] E. Clarke. The birth of model checking. 25 Years ofModel Checking, pages 1—26,

2008.

[43] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concur-

rent systems using temporal logic specifications. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 8(2):263, 1986.

[44] E. Clarke, R. Enders, T. Filkom, and S. Jha. Exploiting symmetry in temporal logic

model checking. Formal Methods in System Design, 9(1):77—104, 1996.

[45] E. Clarke and L. Liu. Approximate algorithms for optimization of busy waiting in

parallel programs (preliminary report). 20th Annual Symposium on Foundations of

Computer Science, pages 255—266, 1979.

[46] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In Logic ofPrograms, pages 52—71 , 1981.

[47] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite

state concurrent system using temporal logic specifications: a practical approach. In

POPL ’83 : Proceedings ofthe 10th ACM SIGACT-SIGPLAN symposium on Princi-

ples ofprogramming languages, pages 1 l7—126, New York, NY, USA, 1983. ACM.

[48] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Transactions on

Programming Languages and Systems (TOPLAS), 8(2):244—263, 1986.

[49] E. M. Clarke, 0. Grumberg, and D. A. Peled. Model checking. Springer, 1999.

[50] E. Clarke Jr. Synthesis of resource invariants for concurrent programs. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 2(3):358, 1980.

[51] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions

for compositional verification. In TACAS’03: Proceedings of the 9th international

conference on Tools and algorithms for the construction and analysis of systems,

pages 331—346, Berlin, Heidelberg, 2003. Springer-Verlag.

[52] J. Dabney and T. Harman. Mastering Simulink. Prentice Hall PTR Upper Saddle

River, NJ, USA, 1997.

[53] E. Dijkstra. A discipline ofprogramming. Prentice-Hall, Englewood Cliffs, NJ.,

1976.

[54] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communica-

tions ofthe ACM, 17(11), 1974.

190

[55] R. Dimitrova and B. Finkbeiner. Synthesis of Fault-Tolerant Distributed Systems. In

Automated Technologyfor Verification and Analysis: 7th International Symposium,

Atva 2009, Macao, China, October 14-16, 2009, Proceedings, page 32]. Springer,

2009.

[56] S. Dolev. Self-Stabilization. MIT Press, 2000.

[57] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming

only read/write atomicity. Distributed Computing, 7:3—16, 1993.

[58] A. Ebnenasir. DiConic addition of failsafe fault-tolerance. In Automated Software

Engineering (ASE), pages 44—53, 2007.

[59] A. Ebnenasir, S. Kulkarni, and A. Arora. FTSyn: A framework for automatic syn-

thesis of fault-tolerance. International Journal on Software Tools for Technology

Transfer (STIT), 10(5):455—47 l , 2008.

[60] A. Ebnenasir, S. S. Kulkarni, and A. Arora. Ftsyn: a framework for automatic

synthesis of fault-tolerance. Int. J. Softw. Tools Technol. Transf., 10(5):455—471,

2008.

[61] A. Ebnenasir, S. S. Kulkarni, and B. Bonakdarpour. Revising UNITY programs:

Possibilities and limitations. In International Conference on Principles of Dis-

tributed Systems (OPODIS), LNCS 3974, pages 275—290, 2005.

[62] E. Emerson and E. Clarke. Characterizing Correctness Properties of Parallel Pro-

grams Using Fixpoints. In Proceedings of the 7th Colloquium on Automata, Lan-

guages and Programming, page 181. Springer—Verlag, 1980.

[63] E. Emerson and J. Y. Halpem. “Sometimes” and “not never” revisited: On branching

versus linear time temporal logic. J. Assoc. Comput. Mach., 33: 151—178, 1986.

[64] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize

synchronization skeletons. Science ofComputer Programming, 2(3):241—266, 1982.

[65] E. A. Emerson and C. L. Lei. Temporal model checking under generalized fairness

constraints. In Proc. 18th Hawaii International Conference on System Sciences,

pages 277—288, 1985.

[66] J. Ezekiel and G. Liittgen. Measuring and evaluating parallel state-space exploration

algorithms. In International Workshop on Parallel and Distributed Methods in Ver-

ification (PDMC), 2007.

[67] J. Ezekiel, G. Luttgen, and G. Ciardo. Parallelising symbolic state-space generators.

In Computer Aided Verification (CAV), pages 268—280, 2007.

[68] J. Ezekiel, G. Luttgen, and R. Siminiceanu. Can Saturation be Parallelised? Formal

Methods: Applications and Technology, pages 331-346.

191

[69] J. Ezekiel, G. Luttgen, and R. Siminiceanu. Can Saturation be parallelised? on the

parallelisation of a symbolic state-space generator. In International Workshop on

Parallel and Distributed Methods of Verification (PDMC), pages 331—346, 2006.

[70] M. Faella, S. LaTorre, and A. Murano. Dense real-time games. In Logic in Computer

Science (LICS), pages 167—176, 2002.

[71] F. Gartner. Fundamentals of fault-tolerant distributed computing in asynchronous

environments. ACM Computing Surveys (CSUR), 31(1): 1—26, 1999.

[72] F. Gartner and A. Jhumka. Automating the addition of fail-safe fault-tolerance: Be-

yond fusion-closed specifications. Lecture notes in computer science, pages 183-

198, 2004.

[73] F. Gartner and H. Pagnia. Self-stabilizing load distribution for replicated servers on

a per-access basis. In Proceedings of the 19th IEEE International Conference on

Distributed Computing Systems Workshop on Self-Stabilizing Systems, pages 102—

109, 1999.

[74] P. Godefroid. Using partial orders to improve automatic verification methods. In

CAV ’90: Proceedings of the 2nd International Workshop on Computer Aided Veri-

fication, pages 176—185, London, UK, 1991. Springer-Verlag.

[75] M. Gouda. Multiphase stabilization. IEEE Transactions on Software Engineering,

pages 201—208, 2002.

[76] M. G. Gouda. The triumph and tribulation of system stabilization. In Proceedings

ofthe 9th International Workshop on Distributed Algorithms, pages 1-18. Springer-

Verlag London, UK, 1995.

[77] O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster. Achieving speedups in dis-

tributed symbolic reachability analysis through asynchronous computation. In Cor-

rect Hardware Design and Verification Methods (CHARME), pages 129-145, 2005 .

[78] O. Grumberg, T. Heyman, and A. Schuster. A work-efficient distributed algorithm

for reachability analysis. Formal Methods in System Design (FMSD), 29(2):]57-

175, 2006.

[79] O. Grumberg and D. Long. Model checking and modular verification. In CON-

CUR ’91 , pages 250—265. Springer, 1991 .

[80] O. Grumberg and D. E. Long. Model checking and modular verification. ACM

Trans. Program. Lang. Syst., 16(3):843—87l , 1994.

[81] D. Harel and H. Kugler. The rhapsody semantics of statecharts. Lecture notes in

computer science, pages 325—354, 2004.

[82] D. Hare] and H. Kugler. The rhapsody semantics of statecharts. Lecture notes in

computer science, pages 325—354, 2004.

192

[83] M. Heimdahl and N. Leveson. Completeness and consistency in hierarchical state-

based requirements. IEEE transactions on Software Engineering, 22(6):363—377,

1996.

[84] C. Heitmeyer, M. Archer, R. Bharadwaj, and R. Jeffords. Tools for constructing

requirements specifications: The SCR toolset at the age of ten. International Journal

ofComputer Systems Science and Engineering, 20(1): 19—35, 2005.

[85] C. Heitmeyer and R. Jeffords. Applying a Formal Requirements Method to Three

NASA Systems: Lessons Learned. In 2007 IEEE Aerospace Conference, pages 1-

10,2007.

[86] C. Heitmeyer, J. Kirby, and B. Labaw. Tools for formal specification, verification,

and validation ofrequirements. In Computer Assurance, I 997. COMPASS97. Are We

Making Progress Towards Computer Assurance? Proceedings of the 12th Annual

Conference on, pages 35—47, 1997.

[87] C. Heitmeyer,J. Kirby, B. Labaw, R. Bharadwaj, et al. SCR*: A toolset for specify-

ing and analyzing software requirements, 1998.

[88] C. Heitneter and J. McLean. Abstract requirements specification: A new approach

and its application. IEEE Transactions on Software Engineering, pages 580—589,

1983.

[89] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. Information and Computation, 111(2):]93—244, 1994.

[90] M. Herlihy. The future of distributed computing: Renaissance or reformation? In

Twenty-Seventh Annual ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing (PODC 2008), 2008.

[91] S. Hester, D. Parnas, and D. Utter. Using documentation as a software design

medium. Bell System Tech. J, 60(8):]941—1977, 1981.

[92] T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving scalability in paral-

lel reachability analysis of very large circuits. In Computer-Aided Verification (CAV),

pages 20—35, 2000.

[93] G. Holzmann. The model checker spin. IEEE Transactions on Software Engineering,

1997.

[94] R. Jeffords and C. Heitmeyer. An algorithm for strengthening state invariants gen-

erated from requirements specifications. In Proceedings of the Fifth IEEE Interna-

tional Symposium on Requirements Engineering (RE ’01). IEEE Computer Society

Washington, DC, USA, 2001.

[95] R. Jeffords and C. Heitmeyer. A strategy for efficiently verifying requirements. ACM

SIGSOFT Software Engineering Notes, 28(5):28—37, 2003.

193

[96] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Computer

Aided Verification (CAV), pages 226—238, 2005.

[97] S. Katz and K. Perry. Self-stabilizing extensions for message passing systems. Dis-

tributed Computing, 7: 17—26, 1993.

[98] T. Kletz. Hazop and Hagan: Identifying and assessing process industry hazards.

Inst of Chemical Engineers, 1999.

[99] F. Kroger. Lar: A logic of algorithmic reasoning. Acta Inf., 8:243—266, 1977.

[100] S. S. Kulkarni. Component-based design offault-tolerance. PhD thesis, Ohio State

University, 1999.

[101] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal

Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT), pages 82—93, 2000.

[102] S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis of Byzantine

agreement. In Symposium on Reliable Distributed Systems (SRDS), pages 130—140,

2001.

[103] S. S. Kulkarni, A. Arora, and A. Ebnenasir. Software Engineering and Fault-

Tolerance, chapter Adding Fault-Tolerance to State Machine-Based Designs. World

Scientific Publishing Co. Pte. Ltd, 2007.

[104] S. S. Kulkarni and M. Arumugam. Infuse: A TDMA based data dissemination

protocol for sensor networks. International Journal ofDistributed Sensor Networks,

2(1):55—78, 2006.

[105] S. S. Kulkarni and A. Ebnenasir. Enhancing the fault-tolerance of nonmasking pro-

grams. International Conference on Distributed Computing Systems, 2003.

[106] R. Kurshan and K. McMillan. A structural induction theorem for processes. In Pro-

ceedings ofthe eighth annual ACM Symposium on Principles ofdistributed comput-

ing, pages 239—247. ACM, 1989.

[107] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3):382—401 , 1982.

[108] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 1982.

[109] K. Leino. Efficient weakest preconditions. Information Processing Letters, 93(6):281—

288, 2005.

[110] L. Liu and E. Clarke. Optimization of busy waiting in conditional critical regions.

13th Hawaii International Conference on System Sciences, 1980.

I94

[111] H. Mantel and F. C.G'artner. A case study in the mechanical verification of fault-

tolerance. Technical Report TUD-BS-l999-08, Department of Computer Science,

Darmstadt University of Technology, 1999.

[112] K. L. McMillan. Symbolic model checking: an approach to the state explosion

problem. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

[113] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[1 14] S. Meyer and S. White. Software requirements methodology and tool study for A6-

E technology transfer. Technical Report MSU—CSE-09-21, Grumman Aerospace

Corp., Bethpage, NY, 1983.

[l 15] K. Milvang-Jensen and A. J. Hu. BDDNOW: A parallel BDD package. In Formal

Methods in Computer Aided Design (FMCAD), pages 501—507, 1998.

[116] J. Nimmer and M. Ernst. Automatic generation of program specifications. ACM

SIGSOFT Software Engineering Notes, 27(4):229—239, 2002.

[117] C. Norris Ip and D. Dill. Better verification through symmetry. Formal methods in

system design, 9(1):4l—75, 1996.

[118] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system. In

D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),

volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752, Saratoga,

NY, jun 1992. Springer-Verlag.

[1 19] P. Palady. Failure modes and effects analysis. PT Publications Inc, 1995.

[120] D. Parnas and J. Madey. Functional documents for computer systems. Science of

Computer programming, 25(1):4l—61 , 1995.

[121] S. Qadeer and N. Shankar. Verifying a self-stabilizing mutual exclusion algorithm.

In D. Gries and W.-P. de Roever, editors, IF1P International Conference on Program-

ming Concepts and Methods (PROCOMET ’98), pages 424—443 , Shelter Island, NY,

June 1998. Chapman & Hall.

[122] P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings of

the IEEE, 77(1):81—98, 1989.

[123] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD algorithms

for FSM synthesis and verification. In IEEE/ACM International Workshop on Logic

Synthesis , 1995.

[124] K. Raymond. A tree based algorithm for mutual exclusion. ACM Transactions on

Computer Systems, 7:61-77, 1989.

[125] F. Somenzi. CUDD: Colorado University Decision Diagram Package.

http://vlsi.colorado.edu/“fabio/CUDD/cuddIntro.html.

195

[126] T. Stornetta and F. Brewer. Implementation of an efficient parallel BDD package.

In Proceedings of the 33rd annual Design Automation Conference, pages 641—644.

ACM, 1996.

[127] T. Stornetta and F. Brewer. Implementation of an efficient parallel BDD package. In

Design automation (DAC), pages 641—644, 1996.

[128] O. Theel and F. Gartner. An exercise in proving convergence through transfer func-

tions. In Proc. 4th Workshop on Self-stabilizing Systems, Austin, Texas, pages 41—47,

1999.

[129] T. Tsuchiya, S. Nagano, R. B. Paidi, and T. Kikuno. Symbolic model checking for

self-stabilizing algorithms. IEEE Trans. Parallel Distrib. Syst., l2(l):81—95, 2001.

[130] W. Vesely. Fault tree handbook. us nuclear regulatory committee report nureg-0492,

us me, washington dc, united states, 1981.

[131] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with net-

work invariants. In Proceedings of the International Workshop on Automatic Verifi-

cation Methodsfor Finite State Systems, pages 68—80, London, UK, 1990. Springer-

Verlag.

196

-.'\~'\v'

l
1

1ll

LIBRARIES

! Ill)!
3220 89063 1293 0

Hl

>
.

tV
)

KI
.
“

22DI
.
”

.
.
.

<
1

.
—

(
I
)

Z49I9S

_
n

.

n

,
n

.

.

o

.
.

-
.

v
n

.

u
,

.

.
.

,
.

.
-

.

.
.
o

.
.
.

.
1

u

.
.

A

1

v

v

.
.

.
.

n
u

'

.
.

r

,
u

.

.
r

,
.

.
.

.
u

o
4

r
I

I
‘

.

.
,

.
u

.

'
.

c
a
.

n

.
.
.

-
-

,

.
.
.

.
-

.
o
.

.
u

.
0

'

,
.
.

'

r
‘

.

.
.

'
I

.
.
.

.
-

.
.

.
.

.

,
n

.
-

~

.
v

.
~

-

.
.

r

.
,

.
v

u
I

.
.

