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ABSTRACT

SPECIATION IN THE WESTERN NORTH AMERICAN WILDFLOWER GENUS
MIMULUS

By

James Michael Sobel
A central task of evolutionary biologists is to identify the forms of reproductive isolation
that are most important in speciation. The presented study approaches this issue by
examining the strength of multiple forms of reproductive isolation across a group of
recently diverged species pairs spanning the western North American wildflower genus,
Mimulus. Chapter 1, Unification of Methods for Estimating the Strength of Individual
Reproductive Barriers, reviews methods that have been used by previous authors for
calculating the strength of individual reproductive barriers and presents a simple linear
explanation for unifying the disparate approaches. Chapter 2, Ecogeographic Isolation
Among Recently Diverged Species Pairs in the Genus Mimulus, presents a method for
separating the intrinsic biological effects of differences in geographic range for
estimating the strength of ecogeographic isolation using an ecological niche modeling
approach. This work examines the strength of ecogeographic isolation for 12 recently
diverged species pairs in the genus, and shows that this barrier is commonly very strong,
with an average strength of 0.64 to 0.69 depending on which threshold of habitat
suitability is employed. Because isolating barriers act sequentially throughout the life
history of organisms, this first-to-act barrier is therefore responsible for the majority of
isolation experienced by recently diverged species. Chapter 3, entitled The Evolution of
Reproductive Isolation Across the Genus Mimulus, provides estimates of the strength of

other forms of reproductive isolation that can act upon the gene flow remaining after the



effect of ecogeographic isolation. Additional reproductive barriers examined include
temporal isolation, isolation due to relative seed set, intrinsic postzygotic isolation due to
relative hybrid viability, and relative hybrid fertility. Individually, intrinsic postzygotic
isolation due to inviability is highly variable but relatively strong. Temporal isolation,
seed set isolation showed moderate strength, and relative hybrid fertility was relatively
weak. When viewed in light of the linear sequential stages at which reproductive barriers
act in nature, ecogeographic isolation dominates the relative contribution of barriers to
total isolation, while other forms including postzygotic isolation due to hybrid inviability
prevents only a limited amount of gene flow. Several species pairs show evidence of
incomplete total reproductive isolation, and it is unclear whether this represents cases of
incomplete speciation or the effect of unmeasured barriers such as pollinator isolation or
extrinsic postzygotic isolation. In Chapter 4, Contrasting Patterns of Introgression in Two
Pairs of Mimulus Species, an introgression analysis of neutral molecular sequences is
presented to corroborate the measured values of isolation for two species pairs
representing relatively low and high reproductive isolation estimates. The species pair
with relatively high reproductive isolation measured in the lab (M. constrictus and M.
whitneyi) shows strong evidence of molecular sequence divergence, while the species
pair with lower estimates of isolation (M. bicolor and M. filicaulis) shows evidence
consistent with rampant gene exchange. Taken together, these analyses suggest that
measurements of isolation estimated in the lab accurately represent effects on gene flow
in nature, and ecogeographic isolation is of primary importance in the origin of Mimulus

species.
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CHAPTER 1: UNIFICATION OF METHODS FOR ESTIMATING THE STRENGTH

OF INDIVIDUAL REPRODUCTIVE BARRIERS

Under the biological species concept, understanding the evolution of reproductive
isolation is tantamount to describing the origin of species. A major goal of speciation
research is to identify which of the many forms of reproductive isolation contribute most
to total isolation at the time of speciation. In order to achieve this goal, the strength of
multiple forms of isolation must be compared in an equivalent manner. Despite this
necessity, there exists a wide diversity of methods that have been employed to estimate
isolation, falling into several mathematically non-equivalent categories. This has resulted
in comparisons between forms of isolation and between taxa in which the measure of
isolation is not directly comparable. In this study, a simple linear formulation for the
isolation index with the most biological support is given. This method for estimating
isolation provides three distinct advantages: 1) it is directly related to gene flow between
population, 2) it is symmetrical about the origin, such that measures of disassortative
mating and heterosis are comparable to measures of isolation in the positive range, and 3)
it is equivalent between broad categories of reproductive isolation. This linear
formulation can be adopted in cases where expected amounts of con- and heterospecific

gene flow differ under a null model and can be adjusted for use in all forms of isolation.



Introduction

Adherents of the biological species concept (Mayr 1942) have developed a
research program into the origin of species based upon understanding the evolution of
barriers to reproduction (Coyne and Orr 2004). Within this framework, the process of
speciation involves the accumulation of barriers to gene exchange leading to complete
reproductive isolation (Coyne and Orr 2004). It has been long recognized (Dobzhansky
1937; Mayr 1942; Poulton 1908) that reproductive barriers can take many forms from
ecological isolation to intrinsic hybrid inviability. These barriers are often separated into
those that operate before the formation of a hybrid (prezygotic) and those that act once a
hybrid has formed (postzygotic), and there is longstanding debate about which of these
broad categories of isolating barriers are most important in speciation (Schemske 2000;
Coyne and Orr 2004; Rice and Hostert 1993).

Early work on the nature of reproductive barriers typically consisted of gathering
data that showed that barriers existed (e.g. Dobzhansky 1938) without necessarily
estimating a metric that related the barrier strength to an amount of gene flow reduced by
it. However, a central task of speciation studies is to identify which forms of reproductive
isolation are the most important in the process (Coyne and Orr 2004); therefore, some
method for comparison is clearly necessary. In their highly influential study in
Drosophila, Coyne and Orr (1989; 1997) used data from the literature on 171
interspecific hybridization attempts, and developed a metric that related the relative
frequency of con- and heterospecific matings to reproductive isolation. This work
provided evidence that the evolution of prezygotic is_olation outpaces postzygotic due to

differences in sympatric taxa and that Haldane’s rule is a common feature of postzygotic



isolation evolution. A surge of interest in calculating the strength of reproductive
isolation resulted (e.g. Bolnick and Near 2005; Coyne and Orr 1989; 1997; Dopman et al.
2010; Matsubayashi and Katakura 2009; Mendelson 2003; Moyle et al. 2004; Presgraves
2002; Price and Bouvier 2002; Ramsey et al. 2003; Sasa et al. 1998), and most authors
adopted the mathematical formulation provided by Coyne and Orr (1989).

However, Martin and Willis (2007) recently challenged whether the isolation
coefficients estimated by these methods are truly representative of the declines in gene
flow experienced by species. Among other concemns, they raise issues about whether pre-
and postzygotic isolation are being calculated equivalently and propose methods for
accounting for different null expectations of gene flow due to unequal population or
gamete abundances. While these issues have been appreciated by some (e.g.
Matsubayashi and Katakura 2009), others have failed to adopt the proposed methods (e.g.
Dopman et al. 2010), creating substantial confusion over the correct methods for
analyzing isolation.

Given the importance of these measurements, the lack of consensus on the
methods used to calculate indexes of isolation is problematic. As a result, isolation
indexes are used inconsistently, even within a single study. Clearly, identifying the most
appropriate indexes for each form of isolation would be of great benefit, both when
assessing the relative strength of individual barriers in single species pair studies and
when assessing the strength of isolation among groups in a comparative context. Our goal
in this paper is to review the most common methods used by previous authors, present a
simplified view of the alternative with the most mathematical and biological justification,

and provide examples to illustrate how to utilize this method for both ideal and realistic



datasets. Ultimately, we hope this unification of methods will allow researchers the
opportunity to compare measures of reproductive isolation among disparate forms of

isolation and/or taxa.

Currently Used Methods

The purpose of calculating the strength of a reproductive isolating barrier is to
estimate how much gene flow is (or is potentially) reduced by a barrier (Coyne and Orr
2004). In most cases, previous workers have used equations to describe reproductive
isolation that range from 0 when there is no isolation to 1 when there is complete
isolation (Table 1.1). However, as long as a metric satisfies this one requirement, the
relationship between the strength of a barrier and the amount of isolation attributed to it
has been essentially unexplored. Because pre- and postzygotic isolation have traditionally
been approached in non-equivalent ways (Martin and Willis 2007), we will begin by

reviewing these separately.

Prezygotic Isolation

Metrics of prezygotic isolation attempt to predict how a barrier will affect the
probability of heterospecific zygote formation. Sexual isolation due to mating preferences
has been widely studied as a potential agent of isolation (Coyne et al. 2005; Coyne and
Orr 1997; Ehrman 1965; Matsubayashi and Katakura 2009; Mendelson 2003; Tilley et al.
1990). One equation used to describe the relationship between mating preferences and

isolation is presented in Coyne and Orr (1989) as:



frequency of heterospecific matings

Rl = 1 5
frequency of conspecific matings

which we will henceforward simplify as:
H
Rlj=1-—, 1
1 C (1

where H represents the frequency of heterospecific matings and C represents the
frequency of conspecific matings. This equation (or minor deviations from it) is the most
commonly used approach to estimating the contribution of mating preferences to
reproductive isolation (Table 1.1). The metric indeed results in an isolation index that
equals 1 when sexual preferences insure no heterospecific mating and zero when there
are no preferences. However, the relationship is not linear between 0 and 1, and ranges to
- in cases of disassortative mating (Figure 1.1A). As an example, in a choice mating
trial, if species X females mate heterospecifically 25% of the time and conspecifically
75% of the time, there is clearly a preference for within species matings, and equation 1
would result in an isolation index of 0.67. Alternatively, if females of species X actually
prefer males of species O resulting in the reversal of the above frequencies (25%
conspecific mating and 75% heterospecific mating), then equation 1 would give an
isolation index of -2. Given that the departure from random mating preferences are
equivalent, the effect on gene flow would be identical, but in opposite directions.
Obviously, this isolation index does not capture this symmetry, and the resulting indexes
are difficult to ascribe to the probability of gene flow. This creates situations in which
instances of disassortative mating have to be removed from consideration (or are replaced

with a zero) because they are not directly comparable to measures within the normal



bounds. While disassortative mating is relatively rare in interspecific studies (Coyne &
Orr 1989 note at least 5 examples in Drosophila), a method that can accommodate its
effects 6n gene flow is warranted for situations where it may be more common, such as
studies of pre-speciation population divergence.

Another equation used for estimating the strength of prezygotic isolation appears
in Ramsey et al. (2003) for calculating the strength of reproductive isolation due to
pollinator preferences on monkeyflowers Mimulus lewisii and M. cardinalis. They
present an equation using the relative frequency of cross-species foraging bouts to all
visits to estimate isolation:

number of cross - species foraging bouts

Rl =1-
total number of foraging bouts

which we will henceforward simplify into:

RIy=1- 2)

C+H’

RI; can range from 0 (all heterospecific gene flow) to 0.5 (random mating) to 1 (no
heterospecific gene flow) (Figure 1.1B). The biological interpretation of R/, may be very
different from the same R/; value, presenting some problems. For instance, when RI; =

0.5, heterospecific mating is half of conspecific mating, while an R/, = 0.5 results from

hetero- and conspecific mating being equivalent. Clearly, a situation that doesn’t deviate
from a null expectation under random mating is most appropriately considered to have no

isolation.



Yet another form of the equation used to calculate prezygotic isolation is
presented in Mendelson’s (2003) study of reproductive isoiation across fish in the genus

Etheostoma. Sexual isolation was calculated as:

# conspecific spawning events - # heterospecific spawning events
total # spawning events '

RI

This equation was referenced from Stalker’s (1942) study of sexual isolation in the

Drosophila virilis complex where the equation was presented as:

% conspecific females inseminated — % alien females inseminated
= -
% conspecific females inseminated + % alien females inseminated

RI

We will simplify this expression into:

C-H
. 3
C+H )

RI3 =

This index ranges from -1 (all heterospecific mating) to 0 (random mating) to 1 (no
heterospecific mating), which is mathematically easy to understand; yet the biological
meaning of the ratio between the numerator and the denominator is not made clear. The
symmetrical nature of this form of the equation presents significant benefits, and we will

return to its derivation in the following section.

Postzygotic Isolation

Isolation indexes of postzygotic isolation estimate the amount of gene flow
reduced by the inviability or sterility of hybrids (either through intrinsic or extrinsic
means). As pointed out by Martin & Willis (2007), one of the most serious difficulties in
comparing pre- and postzygotic isolation within studies is that the two isolation indexes
are commonly non-equivalent. For example, Coyne & Orr (1989) counted the number of

instances of complete sterility or complete inviability in a reciprocal cross and divided by



4 to make a metric that could only be 0.25, 0.5, 0.75, or 1. Others have attempted to
calculate postzygotic isolation in a more quantitative way, with equations that are
algebraically equivalent or similar to one of the three presented thus far. For example,
many studies (Table 1.1) calculate postzygotic isolation as:

average fitness of offspring from heterospecific cross
average fitness of offspring from conspecific cross

RI=1-

which is mathematically equivalent to R/,

Using this form of the equation presents difficulties when considering cases in

which hybrids outperform the parents. Heterosis is relatively common among recently
diverged species (e.g. Taylor et al. 2009), but the value that R/; gives in these instances is
not proportional to the amount of gene flow that may be facilitated by the phenomenon.
For example, if a plant of species X makes twice as many seeds when mated

interspecifically to species O, the isolation calculated by R/; would be -1. However, if the

seed sets are reversed (intraspecific matings produce twice as many seeds), RI; would

yield an isolation coefficient of 0.5. This is analogous to the problem discussed above for
cases of disassortative mating in prezygotic measures, and can present a considerable
challenge when making comparisons of the isolation strength or combining multiple

forms of isolation into composite metrics (as in Lowry et al. 2008).

Additional studies use equations that can be equivalent to R/3 under certain

circumstances. For example, Palmer and Feldman (2009) present this equation:

2 x average fitness of hybrid offspring
sum of average fitnesses from two allopatric populations’

RI=1-



While this form of the equation is the same as the simple linear solution discussed below,
the authors did not provide a justification for the equation used, and it is not made clear
what is gained by using this form of the equation.

The variety of isolation indexes available makes it difficult to compare the
strength of isolation among disparate taxa. Sufficient data on reproductive isolation exist
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