
SEMANTIC ROLE LABELING OF IMPLICIT ARGUMENTS
FOR NOMINAL PREDICATES

By

Matthew Steven Gerber

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2011

ABSTRACT

SEMANTIC ROLE LABELING OF IMPLICIT ARGUMENTS
FOR NOMINAL PREDICATES

By

Matthew Steven Gerber

Natural language is routinely used to express the occurrence of an event and existence of

entities that participate in the event. The entities involved are not haphazardly related to

the event; rather, they play specific roles in the event and relate to each other in systematic

ways with respect to the event. This basic semantic scaffolding permits construction of the

rich event descriptions encountered in spoken and written language. Semantic role labeling

(SRL) is a method of automatically identifying events, their participants, and the existing

relations within textual expressions of language. Traditionally, SRL research has focused on

the analysis of verbs due to their strong connection with event descriptions. In contrast, this

dissertation focuses on emerging topics in noun-based (or nominal) SRL.

One key difference between verbal and nominal SRL is that nominal event descriptions

often lack participating entities in the words that immediately surround the predicate (i.e.,

the word denoting an event). Participants (or arguments) found at longer distances in the

text are referred to as implicit. Implicit arguments are relatively uncommon for verbal

predicates, which typically require their arguments to appear in the immediate vicinity. In

contrast, implicit arguments are quite common for nominal predicates. Previous research

has not systematically investigated implicit argumentation, whether for verbal or nominal

predicates. This dissertation shows that implicit argumentation presents a significant chal-

lenge to nominal SRL systems: after introducing implicit argumentation into the evaluation,

the state-of-the-art nominal SRL system presented in this dissertation suffers a performance

degradation of more than 8%.

Motivated by these observations, this dissertation focuses specifically on implicit argu-

mentation in nominal SRL. Experiments in this dissertation show that the aforementioned

performance degradation can be reduced by a discriminative classifier capable of filtering

out nominals whose arguments are implicit. The approach improves performance substan-

tially for many frequent predicates - an encouraging result, but one that leaves much to be

desired. In particular, the filter-based nominal SRL system makes no attempt to identify

implicit arguments, despite the fact that they exist in nearly all textual discourses.

As a first step toward the goal of identifying implicit arguments, this dissertation presents

a manually annotated corpus in which nominal predicates have been linked to implicit argu-

ments within the containing documents. This corpus has a number of unique properties that

distinguish it from preexisting resources, of which few address implicit arguments directly.

Analysis of this corpus shows that implicit arguments are frequent and often occur within a

few sentences of the nominal predicate.

Using the implicit argument corpus, this dissertation develops and evaluates a novel

model capable of recovering implicit arguments. The model relies on a variety of information

sources that have not been used in prior SRL research. The relative importance of these

information sources is assessed and particularly troubling error types are discussed. This

model is an important step forward because it unifies work on traditional verbal and nominal

SRL systems. The model extracts semantic structures that cannot be recovered by applying

the systems independently.

Building on the implicit argument model, this dissertation then develops a preliminary

joint model of implicit arguments. The joint model is motivated by the fact that semantic

arguments do not exist independently of each other. The presence of a particular argument

can promote or inhibit the presence of another. Argument dependency is modeled by using

the TextRunner information extraction system to gather general purpose knowledge from

millions of Internet webpages. Results for the joint model are mixed; however, a number of

interesting insights are drawn from the study.

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Joyce Chai, who has provided many years of unwavering

intellectual and moral support. Joyce has worked tirelessly to keep me on track and has done

a wonderful job of separating the promising research directions from the far fetched ones that

I occasionally put forward. I am fortunate to have had her as my primary collaborator. I am

also grateful for the many friendships I formed in East Lansing over the years. To my lab

mates, thanks for making EB3315 a fun and (usually) productive place. Our many intense

but ultimately frivolous discussions were always a welcome diversion. To everyone else,

including those who have long since graduated and moved away, know that I will remember

all of the poker nights and other gatherings with particular fondness. Of course, none of this

work would have happened without the lifelong love and incredible support of my parents

Randy and Dee Ann, who always remained curious to learn about my research. And finally,

to my wife Amanda: thank you for putting up with me for the last nine months as I have

worked on this dissertation. You deserve an award. Thank you for reminding me to eat.

Thank you for showing me that there is more to life than research. Thank you.

iv

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

1 Introduction 1

2 Nominal semantic role labeling 6
2.1 Introduction . 6
2.2 Related work . 11

2.2.1 Rule-based SRL . 12
2.2.2 Annotated corpora for SRL . 13
2.2.3 Statistical SRL . 22

2.3 Nominal SRL model . 28
2.3.1 Model formulation . 28
2.3.2 Model features . 29
2.3.3 Post-processing . 33

2.4 Evaluation . 36
2.5 Discussion . 37
2.6 Conclusions . 38

3 Predicates that lack arguments: the problem of implicit argumentation 40
3.1 Introduction . 40
3.2 Empirical analysis . 42
3.3 Related work . 44
3.4 Argument-bearing predicate model . 45
3.5 Evaluation . 48

3.5.1 Predicate evaluation . 48
3.5.2 Combined predicate-argument evaluation 50
3.5.3 NomLex-based analysis of results . 52
3.5.4 Analysis of end-to-end nominal SRL speed 54

3.6 Conclusions . 59

4 Identifying implicit arguments 61
4.1 Introduction . 61
4.2 Related work . 63

4.2.1 Discourse comprehension in cognitive science 64
4.2.2 Automatic relation discovery . 65
4.2.3 Coreference resolution and discourse processing 68
4.2.4 Identifying implicit arguments . 70

4.3 Empirical analysis . 74
4.3.1 Data annotation . 74

v

4.3.2 Annotation analysis . 81
4.4 Implicit argument model . 83

4.4.1 Model formulation . 83
4.4.2 Model features . 84
4.4.3 Post-processing for final output selection 94
4.4.4 Computational complexity . 95

4.5 Evaluation . 96
4.6 Discussion . 103

4.6.1 Feature assessment . 103
4.6.2 Error analysis . 104
4.6.3 The investment and fund predicates 105
4.6.4 Improvements versus the baseline . 106
4.6.5 Comparison with previous results . 107

4.7 Conclusions . 108

5 An exploration of TextRunner for joint implicit argument identification 110
5.1 Introduction . 110
5.2 Related work . 111
5.3 Joint model formulation . 114
5.4 Joint model features based on TextRunner 116
5.5 Evaluation . 122
5.6 Discussion . 123

5.6.1 Example improvement versus local model 123
5.6.2 Test collection size . 125
5.6.3 Toward a generally applicable joint model 125

5.7 Conclusions . 127

6 Summary of contributions and future work 128
6.1 Summary of contributions . 128

6.1.1 A nominal SRL system for real-world use 128
6.1.2 A focused, data-driven analysis of implicit arguments 129
6.1.3 A novel model for implicit argument identification 129

6.2 Summary of future work . 130

APPENDIX 133
A.1 Support verb identification . 134
A.2 Nominal predicate features . 135
A.3 Nominal argument features . 136
A.4 Role sets for the annotated predicates . 137
A.5 Implicit argument features . 138
A.6 Per-fold results for implicit argument identification 141
A.7 Examples of implicit argument identification 142
A.8 Forward floating feature subset selection algorithm 144

REFERENCES 145

vi

LIST OF TABLES

2.1 Distribution of annotated NomBank arguments 21

2.2 Nominal argument results . 36

3.1 Degradation of standard nominal SRL system in the all-token evaluation . . 43

3.2 Nominal predicate identification results . 48

3.3 Combined predicate-argument identification results 51

3.4 Predicate and combined predicate-argument classification F1 scores for dever-
bal, deverbal-like, and other nominal predicates in the all-token evaluation . 54

3.5 Empirical speed performance of the nominal SRL system 57

4.1 Implicit argument annotation data analysis 77

4.2 Targeted PMI scores between argument positions 88

4.3 Coreference probabilities between argument positions 91

4.4 Overall evaluation results for implicit argument identification 102

4.5 Implicit argument identification error analysis 104

5.1 Joint implicit argument identification evaluation results 123

A.1 Support verb features . 134

A.2 Nominal predicate features . 135

A.3 Nominal argument features . 136

A.4 Implicit argument features . 140

A.5 Per-fold results for implicit argument identification 141

vii

LIST OF FIGURES

2.1 Position of an SRL system with respect to target applications 8

2.2 Split argument syntax . 19

2.3 NomLex distribution of predicate instances 20

2.4 Predicate syntactic context . 30

2.5 Global constraint violations for nominal arguments 34

3.1 Markability distribution of nominal predicates 42

3.2 Context-free grammar rules for nominal predicate classification 46

3.3 Nominal predicate identification with respect to the markability distribution 50

3.4 All-token argument classification results with respect to the markability dis-
tribution . 52

3.5 Nominal predicate identification with respect to the NomLex classes 53

3.6 End-to-end nominal SRL architecture . 55

3.7 Box plot of nominal SRL speed . 58

4.1 Location of implicit arguments in the discourse 82

5.1 Effect of depth on WordNet synset similarity 120

viii

CHAPTER 1

Introduction

Automatic textual analysis has successfully dealt with many aspects of the information

explosion that has taken place over the last few decades. One of the most prominent types

of textual analysis is what I will be referring to as non-semantic analysis. This type of

analysis often manifests itself in the ubiquitous bag-of-words (and related) models of natural

language. Such models are not typically concerned with the underlying meaning of text, as

evidenced by their use of stemming, stop word removal, and a host of other techniques that

trade semantic information for improved statistical information. While immensely successful

when dealing with large objects of interest (e.g., web pages, blog entries, PDFs, etc.), these

approaches do not perform well when the information need is described by a question or

imperative, or when the information need is a small object such as a concise answer or the

identification of an entity-entity relationship. More generally, non-semantic analyses perform

relatively poorly in situations that require semantic understanding and inference.

In an effort to fill this semantic gap, the research community has proposed a wide range

of resources and methods. Some of these address the semantic properties of individual words,

whereas others target the semantic properties of entire sentences or discourses. Below, I give

examples at a few points along this spectrum. As one moves down the list, larger units of

text are analyzed in greater semantic detail.

Words and phrases

• Word sense disambiguation (Joshi et al., 2006): determining whether the word

“bank” in a particular context refers to a mound of earth or a financial institution.

• Named entity identification (Bikel et al., 1999): identifying particular classes of

1

entities, for example, people or countries.

• Lexical semantics (Fellbaum, 1998): identifying semantic relationships between

concepts, for example, the fact that all humans are mammals.

Short-distance relationships

• Relations between nominals (Girju et al., 2007): identifying a product-producer

relation between the words in a phrase such as “honey bee”.

• Temporal relations (Verhagen et al., 2007): identifying the relationship between

a temporal expression (e.g., “yesterday”) and the events mentioned in a sentence.

Shallow sentential meaning

• Event extraction (ACE, 2007): identification of a few specific event types.

• Semantic role labeling (Surdeanu et al., 2008): identifying a large number of event

types and their participants within a sentence.

Deep sentential meaning

• First-order semantics (Bos, 2005; Mooney, 2007): transforming natural language

text into a first-order logic representation.

Tasks near the bottom of this list are generally more difficult because they require detailed

analyses of large text fragments; however, these analyses provide a more complete semantic

picture of natural language expressions.

This dissertation focuses on a specific type of shallow sentential meaning called semantic

role labeling (SRL). In the SRL paradigm, a predicate word (typically denoting an event)

is bound to various entities in the surrounding text by means of relationships that describe

the entities’ roles in the event. Consider the following example:

(1.1) [Sender John] [Predicate shipped] [Thing shipped a package] [Source from Michigan]
[Destination to California].

2

In this example, John is purposely acting to ship a package from its source location (Michi-

gan) to its destination location (California). The goal of automatic SRL is to identify

the predicates and role-filling constituents that together provide a basic understanding of a

sentence’s event structure.

Traditionally, automatic SRL research has focused on verb predicates due to their strong

connection with event descriptions; however, recent years have witnessed an increased em-

phasis on SRL for nouns, which frequently denote events and are also amenable to role

analysis. Although they are related, nominal and verbal SRL exhibit important differences

that must be taken into account. One key difference is that nominal SRL structures of-

ten lack argument fillers that would normally be required for the corresponding verbal SRL

structure. Consider the following variant of Example 1.1:

(1.2) [Sender John] made a [Predicate shipment] [Source from Michigan] [Destination to
California].

The nominal predicate in Example 1.2 does not require the Thing shipped to be overtly

expressed in the sentence, whereas the verbal predicate in Example 1.1 does (it is ungram-

matical otherwise). When the Thing shipped (or any other argument) is expressed elsewhere

in the discourse, we have an instance of implicit argumentation. In general, implicit argu-

mentation is extremely common for nominal predicates, but the research community has

paid very little attention to it. This dissertation focuses specifically on the issue of implicit

argumentation in nominal SRL.

I begin by developing a nominal SRL system capable of producing analyses similar to

Example 1.2. When given a predicate known to take arguments in the current sentence, this

system is able to recover the arguments with an F-measure (β = 1) score of 75.7%. This

is a state-of-the-art result for the task; however, the practice of supplying a system with an

argument-bearing nominal has serious implications due to implicit argumentation. When

evaluated over all predicates (including those whose arguments are entirely implicit), the

same system achieves an argument F1 score of only 69.3%.

3

In an attempt to address the issue of implicit argumentation, I develop a model that

is able to accurately (F1 = 87.6%) identify nominal predicates with explicit arguments,

effectively filtering out predicates whose arguments are implicit. This model pushes the

argument F1 score to 71.1% for all nominal predicates. The model more than doubles the

argument identification performance for particular groups of frequent nominal predicates.

These are encouraging results, but they leave much to be desired. In particular, the nominal

SRL system does not attempt to recover implicit arguments, which are often present in the

surrounding discourse.

Motivated by the results described above, I investigate the automatic identification of

implicit arguments using information from a predicate’s sentence and surrounding discourse.

This represents a dramatic departure from traditional SRL approaches, which, for a given

predicate, do not look past sentence boundaries for argument fillers. I base my investigation

on a corpus of manually annotated implicit arguments. This corpus is one of the first of its

kind and has been made freely available for research purposes. Using this corpus, I show that

implicit arguments constitute a significant portion of the semantic structure of a document;

they are frequent, often located within a few sentences of their respective predicates, and

they provide information that cannot be recovered using standard verbal and nominal SRL

techniques.

Given their importance, it is interesting to note that very little attention has been paid to

the automatic recovery of implicit arguments. I address this issue by developing a model that

is capable of identifying implicit arguments across sentence boundaries. Whereas traditional

SRL models have relied primarily on syntactic information, the implicit argument model

relies primarily on semantic information. This information comes from a variety of sources,

many of which have not previously been explored. Overall, the implicit argument model

achieves an F1 score of approximately 50%. This result represents the current state-of-the-

art, since the task of implicit argument identification is a new one within the field.

The implicit argument model described above simplifies the modeling task by assuming

4

that implicit arguments are independent of each other. Each candidate is classified indepen-

dently of the other candidates, and a heuristic post-processing procedure is applied to arrive

at the final configuration. I present a preliminary investigation of this assumption in which

implicit arguments are identified in a joint fashion. The model relies, in part, on knowledge

extracted from millions of Internet webpages. This knowledge serves to identify likely joint

occurrences of implicit arguments. Evaluation results for this model are mixed; however,

they suggest a variety of interesting future directions.

This dissertation is organized as follows. In Chapter 2, I review the theoretical status

of semantic roles as well as previous SRL research. In the same chapter, I present the

basic nominal SRL system mentioned above. Chapter 3 begins by introducing implicit

argumentation in more detail and assessing its implications for the basic nominal SRL system.

The chapter then provides a detailed description and evaluation of the nominal filtering

model. Chapter 4 begins with an empirical analysis of nominal event structure, which

is found to be largely implicit. As part of this analysis, I describe in detail the implicit

argument annotation effort I conducted. The chapter then presents and evaluates the model

for implicit argument identification. Chapter 5 presents the exploration of joint implicit

argument modeling. I conclude, in Chapter 6, with a summary of contributions and future

work.

5

CHAPTER 2

Nominal semantic role labeling

2.1 Introduction

The notion of semantic role (variously referred to as thematic relation, thematic role, and

theta role) has enjoyed a long and occasionally contentious history within linguistics. Gruber

(1965), in an analysis of motion verbs, observed that certain semantic properties apply to the

entity undergoing motion, regardless of that entity’s surface syntactic position. For example,

consider the following alternations of the verb throw :

(2.1) John threw a ball to Mary.

(2.2) John threw Mary a ball.

(2.3) A ball was thrown to Mary by John.

(2.4) A ball was thrown by John to Mary.

(2.5) To Mary was thrown a ball by John.

...

In all cases, a ball is the entity undergoing motion; however, this entity fills the syntactic

object position in Example 2.1 and the syntactic subject position in Example 2.3. Gruber

introduced the term Theme to denote objects that passively undergo such actions, and made

similar generalizations for other event participants. For example, John fills the role of Agent

in the examples because he is the intentional causer of the event. Mary, to whom John is

throwing the ball, fills the role of Recipient in the examples. These roles reflect underlying

semantic properties of the entities within the context of the throw event. Semantic roles,

with their power to generalize over numerous syntactic constructions, have been of great

interest to a variety of researchers in fields from linguistics to philosophy to natural language

6

processing (NLP).

However, as alluded to above, semantic roles are not uncontroversial. A wide-ranging

debate has raised questions about the composition and requisite number of semantic roles.

The case grammar of Fillmore (1968) and the frame-based semantics of Fillmore (1976) each

posit a large number of specific semantic roles. Following these theories, entities in text

are assigned a specific role based on their relation to the event under consideration. On

the other end of the spectrum, Dowty (1991) posits only two roles: proto-agent and proto-

patient. These two proto-roles are composed of many different “contributing properties”

that entities assigned to them should possess. For example, an entity assigned to the proto-

agent role should be volitional and sentient, whereas an entity assigned to the proto-patient

role should involuntarily undergo a change of state. Constituents are assigned to these roles

in a graded fashion depending on how many of the relevant properties they possess. These

properties, though, are no more agreed upon than the various semantic roles mentioned

above, so the controversy would seem far from being resolved.

Despite a lack of consensus on finer points, semantic roles have much to offer automatic

natural language understanding systems. As demonstrated by Examples 2.1-2.5, semantic

roles generalize over the myriad ways in which an event may be described. Thus, because

events play a central role in everyday language use, the automatic identification of semantic

roles should prove helpful in many NLP tasks. In general, the task of automatic semantic

role labeling (SRL) is defined as follows:

Automatic SRL task: Given some unstructured text, identify the events and

the fillers of the events’ semantic roles.1

Figure 2.1 shows the position of an automatic SRL system with respect to unstructured

text (the input) and target applications that make use of structured information (the SRL

output). The figure includes three target applications to which SRL has been successfully

1In this dissertation, I will use the terms event and predicate interchangeably. I will do the
same for semantic role and argument. Thus, I will also use predicate-argument identification
to refer to the SRL task.

7

SRL system

Structured

information

Automatic question

answering

Information

extraction

Online

encyclopedias

Statistical machine

translation

Newswire

Intelligence

reports

Figure 2.1: Position of an SRL system with respect to target applications. Unstructured in-
formation flows in from the top. The SRL system identifies structure within this information,
which is consumed by target applications. For interpretation of the references to color in

this and all other figures, the reader is referred to the electronic version of this dissertation.

8

applied. Below, I describe these applications and the corresponding role of SRL.

Automatic question answering (QA) is the task of providing a precise answer to a

user’s question. Assume the following question has been issued:

(2.6) Who invented the polio vaccine?

Traditional Internet search engines are not suitable for directly answering 2.6 because they

often return ranked lists of documents instead of precise answers. An SRL-based approach,

on the other hand, might proceed as follows:

1. Query a large corpus of documents for exact matches to “invented the polio vaccine”.

2. Perform SRL on the returned sentences.

3. Identify and filter the Agent roles for the invent events, returning the single best as

the answer to the question.

Configured this way, the system stands a chance of returning the correct answer: “Jonas

Salk”. Kaisser and Webber (2007) and Pizzato and Mollá (2008) have shown that automatic

QA can benefit from SRL information.

Information extraction (IE) is the task of identifying facts, relations, events, and other

types of information within unstructured documents. Recently, there has been a surge of

interest in Web-scale IE, where information is extracted from millions of documents. Banko

et al. (2007) developed the Open IE (OIE) methodology to extract an open set of semantic

relations from text in an unsupervised fashion. The standard OIE approach tends to be a

low precision, high recall process. Supervised SRL, on the other hand, tends to be a high

precision, low recall process, particularly for out-of-domain data in which previously unseen

events are encountered. Banko and Etzioni (2008) showed how methods similar to SRL can

be combined with the standard OIE approach, yielding a hybrid system with the advantages

9

of both sub-systems.

Statistical machine translation (SMT) is a classic NLP task in which a system must

translate a text from the original source language S to a target language T . A simple ap-

proach to this task is to translate each word, possibly reordering it in the target language

sentence according to a distortion probability. Recently, researchers have shown that in-

tegrating syntactic information into the model can have a positive impact on translation

performance (May and Knight, 2007). Following this work, Liu et al. (2010) demonstrated

that SRL information can also help improve translation performance. In both cases, the

translation system used the additional information to filter out less plausible translation

results that contain either uncommon syntactic constructions or uncommon semantic argu-

ment arrangements.

For the three tasks described above, researchers found that system performance increased

when taking SRL-based information into account. More specifically, these systems used

information derived from verbal SRL analyses. Verbal SRL (demonstrated in Examples

2.1-2.5) is based on predicates that take the form of verbs within a sentence. Historically,

semantic roles have been associated with verbs for the simple reason that nearly all verbs

have semantic roles. However, other parts of speech are associated with semantic roles in

precisely the same manner as verbs. This dissertation focuses on semantic roles associated

with predicates in noun form (i.e., nominal predicates). To see the parallel between verbal

and nominal SRL, consider the following examples:

(2.7) Freeport-McMoRan Energy Partners will be liquidated and [Theme shares of the new
company] [Predicate distributed(verb)] [Destination to the partnership’s unitholders].2

(2.8) Searle will give [Destination pharmacists] [Theme brochures on the use of
prescription drugs] for [Predicate distribution(noun)] in their stores.3

2Borrowed from Kingsbury and Palmer (2003)
3Borrowed from Meyers (2007a)

10

Example 2.7 uses a verbal form of distribute, and Example 2.8 uses a nominal form. As

expected, the semantic properties of interest (i.e., those related to the distribute event) hold

for fillers of the semantic roles regardless of the fillers’ syntactic positions or the parts of

speech of their respective predicates. This is a key observation because it suggests that tasks

like QA, IE, and SMT might benefit from nominal SRL just as they do from verbal SRL. At

least, this might be the case if nominal predicates are also as frequent as verbal predicates.

As shown in Section 2.2.2, nominal predicates are on average more frequent per document

than verbal predicates.

The remainder of this chapter is structured as follows. In the next section, I review work

related to the tasks of verbal and nominal SRL, paying special attention to the latter as it is

the focus of this dissertation. Then, in Section 2.3, I present a nominal SRL system inspired

by previous work that significantly improves the state-of-the-art, as shown in Section 2.4.

This work sets the stage for a more in-depth investigation into nominal SRL, which is taken

up in subsequent chapters.

2.2 Related work

As in many other NLP tasks, research in semantic role labeling has progressed from hand-

crafted rule systems based on human engineering to statistical systems based on supervised

and unsupervised machine learning. In this section, I give a brief history of this progression,

starting with rule-based systems in Section 2.2.1. I then give an overview of the relevant

supervised training corpora in Section 2.2.2, followed by recent statistical SRL work in

Section 2.2.3. The nominal SRL model developed in Section 2.3 draws on many of the

techniques presented in this section.

11

2.2.1 Rule-based SRL

As noted above, early models of language semantics typically relied on large compilations

of hand-coded processing rules and world knowledge. For example, much of the work done

by Hirst (1987) relied on a rule-based syntactic parser and a frame-based knowledge rep-

resentation similar to the one developed by Fillmore (1976). Hirst used a mapping to link

syntactic constituents to their respective frame positions, and the sentence’s semantic rep-

resentation was built up compositionally. A similar emphasis on hand-coded lexicons and

grammars can be found in the work of Pustejovsky (1995) and Copestake and Flickinger

(2000), respectively.

Early work in identifying nominal argument structure used approaches similar to those

discussed above. For example, Dahl et al. (1987), Hull and Gomez (1996), and Meyers et al.

(1998) each employ sets of rules that associate syntactic constituents with semantic roles for

nominal predicates. Consider the following example from Dahl et al. (p. 135):

(2.9) Investigation revealed [Instrument metal] [Predicate contamination] in [Theme the
filter].

The system created by Dahl et al. used the following rules to identify the contaminating

substance (metal) and the contaminated entity (the filter):

1. The Instrument can be the noun preceding the predicate contamination.

2. The Theme can be the object of the prepositional phrase following contamination.

The rules defined above allow the system to properly identify the fillers of semantic roles in

Example 2.9. This system was not formally evaluated, but it is reasonable to believe that

the rules described above would often be correct when triggered.

The rules in Dahl et al.’s work have advantages and disadvantages that are common

to rule-based semantics systems. On one hand, if a precise rule produces a prediction, that

prediction is likely to be correct (e.g., the identification of the Instrument and Theme above).

12

Furthermore, the rule sets are explanatorily powerful, as any derivation can be explained

in terms of the rules that produced it. However, on the other hand, the systems described

above tend to be brittle, particularly when used in novel domains or on genres of text not

anticipated by the rule creators. This is the result of the all-or-nothing nature of rule-based

syntactic and semantic interpretation. Given the great versatility of language, it should

come as no surprise that, in many cases, a limited set of rules fails to apply (i.e., interpret)

a natural language utterance. Furthermore, as noted by Copestake and Flickinger (2000),

the learning curve for working with and extending some rule-based grammar systems can be

prohibitively steep, making it difficult to apply such systems to new domains.

In contrast to hand-coding the behavior of the analyzer as described above, this disserta-

tion develops methods whose behaviors are determined by supervised machine learning. As

described in Section 2.3, this approach allows one to identify the optimal system behavior in

a flexible, automated fashion while relying on hand-coded information that is less expensive

to obtain and more likely to be agreed upon across human annotators. The following section

describes a few of these annotated resources, all of which are used in this dissertation.

2.2.2 Annotated corpora for SRL

FrameNet

As mentioned previously, Fillmore (1968) developed a theory of grammar in which syntactic

constituents stand in various case relations with their predicates. Example cases include

Agent and Instrument, which correspond to the similarly named semantic roles presented

earlier. Fillmore’s case theory was later refined by grouping cases into larger units termed

frames (Fillmore, 1976). For example, in the Buy frame, one finds a Buyer, Seller, Goods,

Money, etc. Each frame is also associated with a number of predicates (e.g., buy, purchase,

barter) that instantiate it within a sentence.

FrameNet (Baker et al., 1998) is a machine-readable resource created by identifying and

relating Fillmore’s frames and documenting their presence within natural language text. In

13

FrameNet, case roles are called frame elements and predicates are called lexical items. These

lexical items can be verbs, nouns, or adjectives. For example, consider the Transfer frame,

shown with a few of its frame elements and lexical items:

The Transfer frame

Donor: the person that begins in possession of the Theme and causes it to be in the
possession of the Recipient

Theme: the object that changes ownership

Recipient: the entity that ends up in possession of the Theme

Purpose: the purpose for which the Theme is transferred

Lexical items: transfer.n, transfer.v

FrameNet arranges frames into a network by defining frame-to-frame relationships such as

inheritance and causation. For example, consider the Commerce goods-transfer frame, which

inherits from the Transfer frame:

The Commerce goods-transfer frame (inherits from the Transfer frame)

Seller (from Transfer.Donor): entity in possession of Goods and exchanging them for
Money with a Buyer

Goods (from Transfer.Theme): anything that is exchanged for Money in a transaction

Purpose (from Transfer.Purpose): the purpose for which a Theme is transferred

Buyer (from Transfer.Recipient): entity that wants the Goods and offers Money to a
Seller in exchange for them

Money (new in this frame): the thing given in exchange for Goods in a transaction

As shown above, the inheritance relation allows a general frame (e.g., Transfer) to be spe-

cialized with a particular semantic interpretation (e.g., the transfer of commercial goods).

Where applicable, the inheritance relationship also holds between the frame elements of the

related frames. This is indicated above, with Seller inheriting from Donor, Goods inheriting

from Theme, Purpose inheriting from Purpose, and Buyer inheriting from Recipient. Each of

the inheriting frame elements contains all semantic properties of the inherited frame elements

and possibly adds additional semantic properties. The two frames also show that sub-frames

may provide additional frame elements (e.g., Money) for the frame specialization. In total,

version 1.5 of FrameNet defines 1,019 frames related with 12 different relation types.

14

Having established a network of frames, the FrameNet annotators manually identified in-

stances of the frames within the British National Corpus.4 Consider the following annotation

of the Commerce goods-transfer frame:

(2.10) Four years ago [Buyer I] [Predicate bought] [Goods an old Harmony Sovereign
acoustic guitar] [Money for £20] [Seller from an absolute prat].

As shown in Example 2.10, not all frame elements are present in each frame annotation.

Furthermore, the annotators have only identified frame elements within the sentence con-

taining the predicate. In total, FrameNet contains approximately 150,000 annotated frame

instances. As shown below in Section 2.2.3, these annotated examples can be used as super-

vised learning material for systems that automatically identify frames and frame elements

within text.

VerbNet

The work of Kipper et al. (2000) (described more fully by Kipper (2005)) coincided roughly

with the development of FrameNet. This work, inspired by the analysis of so-called verb

classes by Levin (1993), resulted in a computer-readable lexicon of verb argument specifi-

cations called VerbNet. In VerbNet, verbs are collected into classes. The members of each

class exhibit the same diathesis alternations, or meaning preserving transformations. An

example alternation, the causative-inchoative, is shown below:

(2.11) [Agent John] [Predicate broke] [Theme the window]. (causative)

(2.12) [Theme The window] [Predicate broke]. (inchoative)

With respect to Examples 2.11 and 2.12, Levin and Kipper et al. made the following key

observations:

1. The causative-inchoative alternation is (mostly) meaning preserving. That is, Example

2.11 has roughly the same semantic interpretation as Example 2.12. This instance

4http://www.natcorp.ox.ac.uk

15

of the alternation is not completely meaning preserving because the Agent remains

unspecified in Example 2.12.

2. Other verbs that are capable of undergoing the causative-inchoative alternation also

appear to indicate a change of state (and vice versa). For example, close indicates a

change of state and may undergo the alternation, as shown below:

(a) [Agent John] [Predicate closed] [Theme the window].

(b) [Theme The window] [Predicate closed].

The verb hit, on the other hand, does not indicate a change of state and thus cannot

undergo the causative-inchoative alternation:5

(a) [Agent John] [Predicate hit] [Theme the window].

(b) *[Theme The window] [Predicate hit].

Each VerbNet class defines a set of semantic roles used by verbs in the class. Furthermore,

verb classes are arranged into an inheritance tree, such that sub-classes inherit the roles of

super-classes (similarly to FrameNet). Currently, version 3.1 of VerbNet groups 5,725 verbs

into 438 classes. This resource does not annotate instances of the verbs it contains; however,

it is important because it relates semantically similar verbs to each other - a fact that will

be used in Chapter 4 when predicate-predicate relations are examined.

PropBank

To document the different ways in which verbs can express their arguments, Kingsbury and

Palmer (2003) annotated semantic role information for all main verbs in the Penn TreeBank

(Marcus et al., 1993). The Penn TreeBank is a corpus of English newswire text that has

been annotated for syntactic structure by humans. Kingsbury and Palmer’s resource, called

Proposition Bank (or PropBank), contains more than 112,000 semantic role analyses for 3,256

distinct verbs. Instead of committing to one of the many competing theories of semantic

5A prefixed asterisk denotes an unacceptable sentence of English.

16

roles, the creators of PropBank chose a theory-agnostic approach in which each sense of each

verb is associated with its own set of roles. Each role set for a verb is contained in a frame

file for the verb. To demonstrate, consider the frame for the verbal predicate distribute from

the PropBank lexicon:

Frame for distribute, role set 1:

Arg0: the entity that is performing the distribution

Arg1: the entity that is distributed

Arg2: the entity to which the distribution is made

Next, consider an instance of distribute taken from the PropBank corpus:

(2.13) Freeport-McMoRan Energy Partners will be liquidated and [Arg1 shares of the new
company] [Predicate distributed] [Arg2 to the partnership’s unitholders].

In Example 2.13, the Theme and Destination from Gruber (1965) have been given the labels

Arg1 and Arg2, respectively. The interpretation of these roles is defined in the role set shown

above. Because the interpretation of arguments in PropBank is verb- and sense-specific,

there is no guarantee that Arg1 and Arg2 will denote the same semantic properties for other

verbs in the lexicon. However, Kingsbury and Palmer (2003) note that, across verbs, Arg0

and Arg1 are very often interpretable as Agent and Theme, respectively. PropBank’s theory-

agnosticism regarding semantic roles means that it is compatible with many different theories.

For example, subsequent studies have demonstrated the feasibility of mapping PropBank

argument positions into more traditional theories of semantic roles (see, for example, the

PropBank-VerbNet role mapping developed by Yi et al. (2007)).

NomBank

Unlike FrameNet, which focuses primarily on verbal argument structure, and PropBank,

which focuses solely on verbal argument structure, the NomBank corpus (Meyers, 2007a)

focuses solely on the argument structure of nominals. NomBank inherited the lexicon design

and annotation methodology used for the PropBank project. Thus, each nominal predicate is

17

associated with a frame file that lists role sets and argument definitions similar to those given

above for the verb distribute. Consider the following instance of the nominal distribution,

taken from the NomBank corpus:

(2.14) Searle will give [Arg0 pharmacists] [Arg1 brochures] [Arg1 on the use of prescription
drugs] for [Predicate distribution] [Location in their stores].

When possible, the creators of NomBank adapted PropBank frame files for verb-based nom-

inal predicates such as distribution. Thus, in Example 2.14, argument positions Arg0 and

Arg1 have the same semantic interpretation as argument positions Arg0 and Arg1 for the

PropBank verb distribute.

The compatibility between NomBank and PropBank is important because verbal and

nominal predicates often interact with each other. Consider the following contrived example:

(2.15) [Arg0 John] failed to make the [Arg1 newspaper] [Predicate delivery].

To arrive at the labeling of the nominal predicate delivery in Example 2.15, the reader relies

on his or her knowledge of how fail (verb), make (verb), and delivery (noun) interact in the

given context. This interaction is the key to understanding many event descriptions and

highlights the importance of the PropBank/NomBank compatibility - the two resources can

be seamlessly integrated.

Returning to Example 2.14, notice that two spans of text are bracketed with the Arg1

label. This is an instance of split argumentation, which is also present in PropBank. A split

argument is a span of text that constitutes an argument but cannot be precisely subsumed by

a single syntactic parse tree node within the Penn TreeBank. Split argumentation is typically

caused by syntactic analyses that are not binary branching. The syntactic parse for Example

2.14 is shown in Figure 2.2. As shown, it is impossible to select a single node that subsumes

only the complete Arg1 in Example 2.14. Thus, the creators of NomBank and PropBank

have elected to mark both the NP and the PP that together give the correct subsumption

(i.e., brochures on the use of prescription drugs). I will return to split arguments in Section

2.3.3, where argument prediction conflicts are discussed.

18

S

NP VP .

NNP

Searle

MD VP

will VB NP NP

give NNS

pharmacists

NP PP PP

NNS

brochures

on the use of prescription drugs IN NP

for NP PP

NN

distribution

IN NP

in PRP$ NNS

their stores

.

Figure 2.2: Syntax of the split argument construction in Example 2.14.

19

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
%

 o
f n

om
in

al
 in

st
an

ce
s

NomLex class

Figure 2.3: Distribution of nominal instances across the NomLex classes. The y-axis denotes
the percentage of all nominal instances that is occupied by nominals in the class.

Example 2.14 also demonstrates the annotation of the Location argument, which is one of

many adjunct argument types that are annotated by both PropBank and NomBank (other

adjuncts include Manner, Temporal, Purpose, Direction, and Location, among others). The

interpretation of an adjunct argument is the same across all predicates in PropBank and

NomBank. For example, the Location argument has the same interpretation regardless of

whether it is connected to the verbal predicate send or the nominal predicate flight. Because

their interpretations are not predicate-specific, adjunct arguments are not included in the

frame files. Instead, they are assumed to be available for all predicates.

Examples 2.14 and 2.15 involve nominal predicates that are derived from verbs. This

dissertation will refer to such predicates as deverbal or event-based nominal predicates.

In addition to these predicates, NomBank annotates a wide variety of nouns that are not

derived from verbs and do not denote events. An example is given below of the partitive

noun percent :

20

Argument Count % Argument Count %

Arg1 80,102 40.4 Location 5,771 2.9
Arg0 49,823 25.1 Extent 865 0.4
Arg2 34,850 17.6 Negation 655 0.3
Temporal 9,495 4.8 Adverbial 591 0.3
Arg3 7,611 3.8 Arg4 494 0.2
Manner 7,210 3.6 Purpose 444 0.2

Table 2.1: Distribution of annotated NomBank arguments. Argument positions with fewer
than 100 occurrences are omitted.

(2.16) Hallwood owns about 11 [Predicate %] [Arg1 of Integra].

In this case, the noun phrase headed by the predicate % (i.e., about 11% of Integra) denotes a

fractional part of the argument in position Arg1. Other partitive predicates behave similarly.

The NomLex resource (Macleod et al., 1998) is a hand-coded lexicon that classifies the various

nominal types annotated by NomBank (e.g., deverbal, partitive, and others). Figure 2.3

shows the distribution of NomBank predicate instances across the NomLex classes. Deverbal

(i.e., event-denoting) nominals reside in the nom class, which is significantly larger than any

other class. This is the expected result because events form the foundation of many textual

discourses.

In total, the NomBank corpus contains argument information for 114,574 instances of

4,704 distinct nominal predicates. Because this dissertation focuses on the automatic iden-

tification of the various argument types, it is important to understand the corresponding

distribution. Table 2.1 presents this information. As shown in the table, the distribution of

arguments is extremely skewed; Arg0, Arg1, and Arg2 account for approximately 83% of the

annotated argument structure. Thus, in order for a system to perform well it must target

these argument types.

I conclude this section by showing that NomBank contains a significant amount of seman-

tic information that is not present in PropBank and cannot be recovered using verbal SRL.

First, note that PropBank contains approximately 49 predicates per document, whereas

21

NomBank contains approximately 50 predicates per document. Thus, NomBank predicates

are just as frequent as PropBank predicates; however, this alone is not enough to show

that NomBank contains novel information beyond that given by PropBank. Consider the

situation in which an instance of the verb distribute is followed by an instance of the noun

distribution. It is quite likely that these two predicate instances refer to the same event.

Thus, extracting information from the latter might not enhance one’s understanding of the

document. Analysis shows that this behavior is more the exception than the rule: 87% of

NomBank predicate instances are neither preceded nor followed by corresponding PropBank

predicates in the same documents. This fact, combined with the per-document frequency

of nominal predicates mentioned above, is preliminary evidence that nominal predicate-

argument structure contributes a significant amount of information to the discourse. This

information should complement PropBank information, which, as described earlier, has been

useful in tasks such as QA, IE, and SMT.

2.2.3 Statistical SRL

The creation of FrameNet prompted a move from hand-coded semantic processing to sta-

tistical learning-based approaches. The seminal work of Gildea and Jurafsky (2002) treated

the SRL problem as a supervised learning task and used the FrameNet corpus as a source

of training data. Gildea and Jurafsky employed simple maximum likelihood statistics for

various lexical and syntactic features to both identify frame element boundaries within text

and assign semantic role labels (e.g., Agent) to the identified frame elements. Results of

this study were promising: the authors reported an overall role F1 score6 of approximately

63% on the task of combined frame element identification and labeling. Gildea and Jurafsky

obtained this result using (among other things) features extracted from automatically gen-

erated syntactic parse trees. Two results from this work have been particularly influential

6In this dissertation, F1 refers to the harmonic mean of precision and recall:
2∗Precision∗Recall
Precision+Recall

, where Precision = # true positives
predicted positives and Recall = # true positives

existing positives .

22

on subsequent work:

1. Syntactic information is essential for high-quality SRL. Many linguistic the-

ories posit a strong connection between syntax and semantics. For example, Adger

(2003) develops a framework in which all semantic roles for a predicate are assigned

to syntactic constituents (p. 81). Furthermore, each predicate places syntactic (p. 84)

and semantic (p. 87) restrictions on the semantic roles with which it can be associated.

Applied work in SRL has found the syntactic restrictions to be particularly important

(Gildea and Palmer, 2001; Punyakanok et al., 2008), and this chapter will place con-

tinued emphasis on syntactic information when identifying semantic arguments within

a sentence.

2. A two-stage configuration is possible. Gildea and Jurafsky (2002) used separate

classifiers to identify frame elements and apply labels to them. Numerous subsequent

studies have followed this tradition; however, no compelling arguments have been of-

fered in support of this configuration. This dissertation develops a single-stage model

in which arguments are predicted directly, thus avoiding the complexities of chaining

multiple classifiers together.

It is important to briefly mention the evaluation setup used by Gildea and Jurafsky

(2002). The authors evaluated their system using ground-truth predicates and frames. The

system’s only task was to identify and label the frame elements. Thus, although the work

was promising it left many open questions. One important question was how to extend the

model to a more practical scenario in which a system is given raw text and must handle

all processing tasks using no ground-truth information. The current chapter also assumes

ground-truth predicates. Chapter 3 explores automatic predicate identification in detail.

Soon after its release, PropBank became a popular resource for statistical SRL re-

searchers, supporting many studies and motivating a number of large-scale, competitive

evaluation tasks (e.g., the CoNLL Shared Tasks described by Carreras and Màrquez (2004),

23

Carreras and Màrquez (2005), and Surdeanu et al. (2008)). Below, I describe three key

aspects of PropBank-based SRL research.

Syntactic representation

Syntactic information is essential for the SRL task; however, there are different ways to

represent this syntactic information. Figure 2.2 (p. 19) demonstrates the constituency

approach to syntax, which uses a context free grammar formalism. This formalism has a long

history in linguistics and is amenable to processing by algorithms such as the popular Cocke-

Younger-Kasami (CYK) algorithm, whose running time is O(n3) in the sentence length. The

competition organized by Carreras and Màrquez (2005) used this syntactic representation.

More recently, Surdeanu et al. (2008) organized a competition in which the dependency

approach to syntax was explored. Although this formalism is not as rich as constituency

representations (i.e., some syntactic properties cannot be captured), it has the advantage of

processing algorithms with running times that are O(n) in the sentence length (Nivre, 2003).

This dissertation will use the constituency formalism in order to explore some of the deeper

syntactic properties of sentences.

Machine learning technique

As described by Carreras and Màrquez (2005) and Surdeanu et al. (2008), a majority of the

most successful SRL systems have used maximum entropy models (Berger et al., 1996) or

support vector machines (Burges, 1998). These techniques accommodate large-scale datasets

and often learn models that generalize well from training to testing. Most of the models

developed in this dissertation are produced by the logistic regression framework (LibLinear)

created by Fan et al. (2008), which is capable of handling millions of training instances and

features. As noted by Hsu et al. (2010), high-dimensional data does not always benefit from

a mapping into a higher-dimensional space, as is often done with SVMs. For nominal SRL,

I have found that the linear models produced by LibLinear perform as well as SVMs but are

24

significantly faster to train.

Joint inference

Many SRL systems have incorrectly assumed that the existence of one argument is inde-

pendent of the existence of other arguments. Consider the following examples, created by

Toutanova et al. (2008):

(2.17) [Temporal The day] that [Agent the ogre] [Predicate cooked] [Theme the children] is
still remembered.

(2.18) [Theme The meal] that [Agent the ogre] [Predicate cooked] [Beneficiary the
children] is still remembered.

Only one word differs between these examples (day is replaced with meal); however, the

interpretations are vastly different. In 2.17 the children are cooked, whereas in 2.18 the

meal is cooked. If the initial noun phrase is changed from a Temporal marker to a Theme,

the roles of other constituents are also changed. This dependence between roles prompted

Toutanova et al. to study joint inference across argument assignment possibilities. Simi-

larly, Punyakanok et al. (2008) used integer linear programming to enforce constraints on

joint SRL structures for verbal SRL (e.g., one constraint is that arguments cannot overlap

each other in the sentence). This dissertation explores a joint inference model for nominal

SRL in Chapter 5.

The PropBank-based SRL systems mentioned above often reach argument F1 scores

approaching 80% when tested on PropBank data. However, these systems tend to encounter

difficulties when tested on genres of text that differ from the training corpus. Carreras

and Màrquez (2005) cite a performance drop of around 10 F1 points for all participating

systems when evaluated over PropBank annotations from the Brown Corpus of Present-day

American English (Kučera and Nelson, 1967). The Brown Corpus comprises approximately

one million words from a variety of sources. Pradhan et al. (2008) provide an in-depth study

of the effects of text genre on verbal SRL, concluding that the second stage (argument label

25

assignment) contributes the most toward out-of-domain performance degradation. This is

due, in large part, to a reliance on lexical and semantic features tuned specifically for the

TreeBank corpus. A similar drop in performance can be expected for the model developed

in the current chapter.

Nominal SRL

Statistics-based work on nominal SRL has lagged behind its verbal counterpart by a few

years. This is probably because verbs are usually the first choice when analyzing textual

semantics. However, as pointed out above, nominal predicates carry a significant amount of

novel information. When it comes to automatically extracting this information, one finds a

few precursors to the standard nominal SRL task. For example, Lapata (2000) developed a

statistical model to classify modifiers of deverbal nouns as underlying subjects or underlying

objects, where subject and object denote the grammatical position of the modifier when

linked to a verb. Consider two possible interpretations of the phrase “satellite observation”

below:

(2.19) [Subject Satellite] [Predicate observation] techniques are used to keep track of enemy
troop movements.

(2.20) The stargazers routinely engaged in [Object satellite] [Predicate observation].

In Example 2.19, it is the satellites that are being used for observation, whereas in Example

2.20 the satellites are being observed. Lapata developed a simple statistical model to identify

this distinction, which corresponds roughly to the distinction between Arg0 (subject/Agent)

and Arg1 (object/Theme) in NomBank. The study did not account for other argument

positions, including adjunct arguments.

In a general sense, nominal SRL is the process of identifying relations between a noun

(the predicate) and other nouns in the surrounding context. In recent years, researchers have

investigated a variety of noun-noun relations. Girju et al. (2007) organized a SemEval7 com-

7http://www.senseval.org

26

petition in which systems identified noun-noun relations such as Cause-Effect, an example

of which is given below:

(2.21) The individual was infected with the [Effect flu] [Cause virus].

This relation is not analogous to any of the semantic role relations discussed so far. However,

the Instrument-Agency SemEval relation is:

(2.22) The [Instrument phone] [Agency operator] answered my call.

Girju et al.’s task defined five other relations and required systems to make binary decisions

about whether a segment of text contained a particular relation (the relation type was

given to the system at testing time). This task was later refined by Hendrickx et al. (2010),

resulting in a multi-way evaluation where each test example could exhibit any of the relations.

These two tasks are certainly related to nominal SRL, but most of the relations they focus

on do not have an interpretation in terms of semantic roles. Thus, the work presented in

this dissertation is largely complimentary to the SemEval tasks.

Although FrameNet contains some annotations for nominal predicates, NomBank (Mey-

ers, 2007a) has been the driving force behind true nominal SRL in recent years. Based on a

pre-release version of NomBank, Jiang and Ng (2006) used standard verbal SRL techniques

and achieved an overall argument F1 score of 69.14% using automatically generated syntac-

tic parse trees. Liu and Ng (2007) followed this up with a different technique (alternating

structure optimization) and achieved an F1 score of 72.83%; however, the latter study used

an improved version of NomBank, rendering these two results incomparable. Both studies

also investigated the use of features specific to the task of NomBank SRL, but observed only

marginal performance gains.

Following these initial studies, NomBank supported a series of competitive evaluation

tasks hosted by the Computational Natural Language Learning (CoNLL) conference. The

first task, Joint Parsing of Syntactic and Semantic Dependencies (Surdeanu et al., 2008),

required systems to identify the dependency syntax for a sentence as well the sentence’s

27

predicate-argument structure for both verbal and nominal predicates. Verbal predicate-

argument structure was derived from PropBank whereas nominal predicate-argument struc-

ture came from NomBank.

A majority of systems in the 2008 CoNLL competition formulated the SRL problem as a

two-stage classification problem. In the first stage, spans of text were assigned a binary label

indicating whether or not the span represented an argument. In the second stage, argument

spans were relabeled with a final label, which was then evaluated. For nominals, the best

overall F1 score was 76.64%; however this score is not directly comparable to the NomBank

SRL results of Jiang and Ng (2006), Liu and Ng (2007), or the results in this dissertation

because the evaluation metrics are not the same (see Section 2.4 for details). A similar

task was run in 2009 by Hajič et al., the only fundamental difference being the inclusion of

additional languages. This dissertation only investigates nominal SRL for English text.

In the remainder of this chapter, I present a statistical NomBank SRL system that will

be a starting point for the chapters that follow. In Section 2.3, I describe the SRL model in

terms of its formulation, features, and general operation. I then present a formal evaluation

of the model in Section 2.4. Sections 2.5 and 2.6 identify a variety of problems that will be

taken up in subsequent chapters.

2.3 Nominal SRL model

2.3.1 Model formulation

The following example demonstrates the testing input to the nominal SRL model:

(2.23) Searle will give pharmacists brochures on the use of prescription drugs for [Predicate
distribution] in their stores.

As shown, the system is given a sequence of words and the nominal predicate. Using this

information, the model must assign semantic labels (e.g., Arg0, Arg1, . . . , Location, etc.) to

spans of text in the sentence. The correct labeling is given in Example 2.14 (p. 18).

28

The nominal SRL task is treated as a multi-class classification problem over parse tree

nodes. Each parse tree node subsumes an unambiguous span of text. Thus, classifying a

node is equivalent to labeling a span of text in the sentence (see Figure 2.2 on page 19). All

nodes are classified except those that overlap the predicate. In total, there are 22 classes

representing the Argn and adjunct arguments. One additional class null is added to account

for parse tree nodes whose text does not fill a semantic role. For a classifiable node n, the

23 classes are modeled in a single stage as follows:

argmax
l∈Labels

Pr(Label(n) = l|f1, . . . , fn) (2.24)

Equation 2.24 constitutes a departure from the two-stage tradition in SRL; however, I have

found that this single-stage approach tends to outperform the two-stage approach described

previously. I used the multi-class logistic regression solver provided by LibLinear (Fan et al.,

2008) to estimate Equation 2.24. In the following section, I give a precise specification for

features f1, . . . , fn, which are used as evidence for the prediction.

2.3.2 Model features

Starting with a wide range of features, I used a greedy selection algorithm similar to the one

proposed by Pudil et al. (1994) to identify an optimal subset.8 Table A.3 in the Appendix

(p. 136) lists the selected argument features. Below, I give detailed examples for features

that are not sufficiently explained in the table.

Feature 4 identifies predicate-specific argument behavior. Consider the following examples

from the Penn TreeBank:

(2.25) [Arg1 Investment] [Predicate analysts] generally agree.

(2.26) The tender [Predicate offer] [Arg1 for Gen-Probe’s shares] is expected to begin next
Monday.

8See Section A.8 on page 144 for a listing of the feature selection algorithm.

29

S

NP VP

NP NP

John’s NN PP

destruction of the city

...

Figure 2.4: Syntactic context of the destruction predicate.

In Example 2.25 the Arg1 (entity analyzed) precedes the predicate. 95% of all analyst

instances behave the same way. Compare this to Example 2.26, where the Arg1 (entity ac-

quired) follows the predicate. Ninety percent of all offer instances behave similarly. As these

examples show, an argument’s location relative to the predicate can depend heavily on the

predicate itself. Thus, the value of Feature 4 is obtained by concatenating the predicate stem

with a binary value indicating whether the candidate argument n comes before or after the

predicate in the sentence. This feature would have a value of analyst:before in Example 2.25

and offer:after in Example 2.26. Many other features in Table A.3 have predicate-specific

values for similar reasons.

30

Feature 10 captures the basic syntactic structure that surrounds the predicate. Some

approaches to SRL begin with a set of pruning heuristics to eliminate unlikely candidate

arguments (Xue and Palmer, 2004). These heuristics start at the predicate node and inspect

the local syntactic context for particular constituents. For example, the predicate’s sibling

node is included in the candidate pool if it is a prepositional phrase. This situation is shown

in Figure 2.4 for the destruction predicate. Instead of using heuristics, Feature 10 directly

encodes the syntactic context of a predicate. The value for this feature is the context-free

grammar rule that expands the predicate’s parent node. With respect to Figure 2.4, this

grammar rule would be NP → NN,NP.

Feature 26 captures the syntactic relationship between the candidate argument node and

the predicate. Its value is formed by traversing the parse tree from the candidate to the

predicate node. At each step in the traversal, the current syntactic category and direction of

movement (up or down) is recorded. In Figure 2.4, the parse tree path from the candidate

argument of the city to the predicate node destruction would be PP ↑ NP ↓ NN . Since its

introduction by Gildea and Jurafsky (2002), this feature has proved to be one of the most

informative for the SRL task. In my nominal SRL model this feature ranks quite low because

variations of it are yet more informative. For example, Features 1 and 2 make the standard

path more specific by combining it with other information. Feature 13 makes the standard

path more general by removing information. The feature selection algorithm determined

that these variations were better suited to the nominal SRL task.

Feature 17 considers the parse tree path between the candidate argument node and so-

called support verbs in the sentence. Support verbs (also called light verbs) have very little

semantic meaning. Their primary purpose is to link long-distance arguments to nominal

predicates that are more meaningful. Consider the following contrived example:

(2.27) [Arg0 John] [Support took] a [Predicate walk].

31

In Example 2.27, took does not have the usual meaning of forcibly changing possession;

rather, this verb’s purpose is to bring in John as the Arg0 (walker) of walk. This sentence

can be paraphrased with the verb walk as “John walked.”.

Feature 17 identifies the parse tree path between the candidate argument and the near-

est support verb. As shown above (see Example 2.23), the system is not given support verb

information at testing time. Thus, I created a model to automatically identify support verbs

so that they may be used by this feature. The model and features used to identify support

verbs are described in Appendix Section A.1 (p. 134).

Before moving on, it is worth noting that there are alternatives to the extensive feature

engineering and selection process described above. Moschitti et al. (2008) present a detailed

analysis of so-called tree kernels and their application to various NLP problems, SRL being

their primary interest. Tree kernels provide a means for feature engineering based on the

“kernel trick” that is available in learning frameworks such as support vector machines. This

dissertation leaves the exploration of tree kernels to future work.

Feature binarization

Like many other machine learning toolkits, LibLinear’s instance representation format re-

quires features with numeric values. As shown above, the value range for many features has

no meaningful numeric ordering. That is, a value of PP ↑ NP ↓ NN for Feature 26 cannot

be meaningfully compared to other values for this feature (e.g., the NP ↑ NP ↓ NP ↓ NN

path from John to destruction in Figure 2.4). Thus, it would be unwise to create a single

numeric feature Parse path by mapping PP ↑ NP ↓ NN to 1 and NP ↑ NP ↓ NP ↓ NN to

2. Instead, as suggested by Hsu et al. (2010), all non-numeric features are binarized. Assume

that each candidate node n is represented using only Feature 26 (the parse tree path). Also

assume that this feature has two possible values (the paths mentioned above). In LibLinear,

each node n would be represented as one of the following:

32

n has path PP ↑ NP ↓ NN : 〈1, 0〉

n has path NP ↑ NP ↓ NP ↓ NN : 〈0, 1〉

n has neither path: 〈0, 0〉

Thus, for a feature with m possible values, binarization creates m mutually exclusive binary

features. Instances are represented by activating at most one of these features.

The binarized feature space can be extremely large. A single word-based feature can easily

binarize to 105 binary features. This poses a problem for the greedy forward search algorithm

described on page 144, which inspects each individual feature. Whether this is actually a

problem depends on how one defines a feature. If one defines a feature to be the unbinarized

version, then the parse tree path represents a single feature that can be selected. If one

defines a feature to be the binarized version, then the parse tree path represents thousands

of features to be selected from. I assumed the former definition when performing feature

selection. For example, by including or excluding Feature 26, the selection process implicitly

includes or excludes all resulting binarizations of this feature. This compromise keeps the

selection process tractable.

2.3.3 Post-processing

After classifying all candidate nodes in the tree using the model described above, two steps

still remain. First, a special classification must be performed on the predicate node itself.

Following this, the entire assignment must be made consistent. These two steps are described

below.

Incorporated arguments

An important difference between PropBank and NomBank is that the latter often applies

argument labels to predicate nodes themselves, whereas the former does not. In NomBank,

predicates that are also arguments are referred to as incorporated arguments. An example

is given below:

33

Arg1 (0.95)

null (0.99) Arg1 (0.97)

(a) Overlapping arguments

null (0.95)

Arg1 (0.99) Arg1 (0.97) null (0.99)

Arg1 (0.65)

(b) Duplicate arguments

Figure 2.5: Global constraint violations. The circled node in 2.5a is reassigned to the null

class after its score is averaged into its parent node. The circled node in 2.5b is reassigned
to the null class because it has lower confidence than other nodes of the same type. The
remaining Arg1 nodes in 2.5b are kept because they are siblings. This accounts for split
arguments (see Section 2.2.2 for a discussion of split argument constructions).

(2.28) Petrolane is the second-largest [Arg1 propane] [Predicate/Arg0 distributor]
[Location in the U.S.].

In 2.28, the predicate additionally assumes the Arg0 role (the entity performing the distribu-

tion). In order to account for incorporated arguments, the system uses a separate model to

assign argument labels to predicate nodes. For the predicate distributor, the model assigns

the label that maximizes the following probability:

P (Argi|distributor) =
#(Argi, distributor)

#(distributor)
(2.29)

In Equation 2.29, #(Argi, distributor) is the number of times that the distributor predicate

is observed with the incorporated argument label Argi in the training data. #(distributor)

is the total number of occurrences of the distributor predicate in the training data. This

simple method labels incorporated arguments with an F1 score of approximately 87%.

Conflict resolution

When labeling a particular node, the feature-based logistic regression model does not take

labels for other nodes into account. Neither does the model use dynamic programming to

34

arrive at the most likely consistent assignment of labels to constituents, as done by Jiang and

Ng (2006) and Toutanova et al. (2005). As a result, argument labels sometimes violate global

labeling constraints, which are illustrated in Figure 2.5. These constraints are enforced using

the following heuristics:

Overlapping argument heuristic Overlapping arguments arise when two nodes are la-

beled as arguments and one node is an ancestor of the other, as shown in Figure 2.5a. If

each node has the same label, the system re-scores the ancestor node with the average

of the two nodes’ confidence scores. The descendant node is then reassigned to the

null class. If the two nodes have different labels, the node with higher confidence is

kept and the other is reassigned to the null class. All reassignments to the null class

are made with confidence equal to 1.0.

Duplicate argument heuristic Duplicate arguments arise when two nodes are assigned

the same argument label and one is not an ancestor of the other, as shown in Figure

2.5b. If the two nodes are not siblings, the node with the higher confidence score is

kept and the other is reassigned to the null class. If the two nodes are siblings, both

are kept. Keeping both sibling nodes accounts for split argument constructions, which

were discussed in Section 2.2.2 (p. 13).

Low confidence heuristic After the previous two heuristics are applied, all argument

nodes with confidence less than a threshold targ are removed. The value for targ

is found by maximizing the system’s performance on a development dataset.

To summarize, when given a sentence and a nominal predicate within the sentence, the

logistic regression model is applied to each node in the parse tree that does not overlap with

the predicate node. The predicate node is then labeled, and the heuristics are applied to

resolve argument conflicts and remove argument labels with low confidence scores.

35

Development F1 Testing F1
Jiang and Ng (2006) 0.6677 0.6914
Liu and Ng (2007) (not reported) 0.7283
This dissertation 0.7401 0.7574

Table 2.2: NomBank SRL results for argument prediction using automatically generated
parse trees. The F1 scores were calculated by aggregating predictions across all classes.

2.4 Evaluation

To test the model described in the previous section, I extracted training nodes from sec-

tions 2-21 of NomBank, keeping only those nodes that did not overlap with the predicate.

LibLinear parameters were set as follows: bias = 1, c = 1, w+ = 1. I tuned the targ

threshold using section 24 as development data (targ = 0.42). Finally, I used section 23 for

testing.9 All syntactic parse trees were generated by the August 2006 version of Charniak’s

re-ranking syntactic parser (Charniak and Johnson, 2005). Each annotated predicate in the

testing section was presented to the system as shown in Example 2.23 (p. 28).

Table 2.2 presents the evaluation results. I calculated the F1 scores by aggregating

predictions across all predicates. Precision and recall were defined in the usual way:

Precision =
#(correct labels applied)

#(labels applied)
(2.30)

Recall =
#(correct labels applied)

#(labels in ground-truth)
(2.31)

This evaluation methodology follows the one used by Jiang and Ng (2006) and Liu and Ng

(2007); however, the results for my model are only comparable to the latter because the

former used a preliminary release of NomBank.10

9This data separation is standard for PropBank/NomBank SRL evaluations. See, for
example, Carreras and Màrquez (2005).
10The discrepancy between the development and testing results is likely due to poorer

syntactic parsing performance on the development section (Carreras and Màrquez, 2005).

36

2.5 Discussion

As can be seen, the NomBank SRL system presented in this chapter comfortably outperforms

the best previous result. Because the models share many properties, it is worth discussing

factors that could possibly lead to the performance difference. First, I observed a significant

performance increase when moving from a traditional two-stage pipeline to the single-stage

classifier presented above. To my knowledge, the research community has not thoroughly

investigated the need for a two-stage pipeline. It is, however, the computationally easier

route. A two-stage approach requires a binary first-stage classifier trained over approxi-

mately 3.7 million nodes and a 22-class second-stage classifier trained over approximately

179,000 nodes. A single-stage nominal SRL classifier, on the other hand, requires a 23-class

classifier trained over approximately 3.7 million nodes. In the one-versus-all approach to

multi-class classification, the single-stage SRL classifier is much more computationally in-

tensive. However, the single-stage approach is free of cascading errors, which are common in

pipelined architectures such as the two-stage model. In the two-stage model, a false negative

error in the first stage prevents the second stage from making a decision.

Another important difference between the current model and the other two is the treat-

ment of overlapping argument nodes and incorporated arguments. In the work of Jiang and

Ng (2006), incorporated arguments were not included in the training data despite the fact

that they occur very frequently - approximately 15% of arguments in the training data are

incorporated. The authors do attempt to label predicate nodes at evaluation time using the

trained model, but the most important features for argument labeling (e.g., the parse tree

path) are not informative for such nodes. In contrast, Liu and Ng (2007) included all parse

tree nodes in the training data, even those that overlap with the predicate node (presumably,

this includes the predicate node itself). At evaluation time, all nodes are classified; however,

considering the fact that 0.02% of non-incorporated arguments overlap the predicate node,

this approach is likely to create more errors than correct labels. The model presented in Sec-

37

tion 2.3 takes a hybrid approach. Nodes that overlap the predicate are not used as training

data, nor are they labeled by the logistic regression model during testing; instead, predicate

nodes are labeled by the simple model described in Section 2.3, which achieves an F1 score

of 0.84 on incorporated arguments of all types.

2.6 Conclusions

This chapter has shown that the tremendous syntactic flexibility of natural language can be

semantically normalized by analysis in terms of semantic roles. This analysis does not aim

to produce a deep, complete semantic interpretation; rather, the aim is to extract shallow

information reliably. This chapter has also shown that, despite its shallow nature, semantic

role analysis produces a significant amount of information that can be levered for language

processing tasks that require inference.

The nominal SRL system described in this chapter produces state-of-the-art results using

no manual intervention. It relies primarily on a rich syntactic analysis combined with tra-

ditional supervised machine learning. The single-stage architecture is computationally more

expensive than the standard two-stage model; however, it does not require one to chain

multiple components together. By carefully handling nominal-specific issues like argument

incorporation, the system is able to recover arguments with an F1 score of approximately

76%. This is an encouraging result; however, the system makes two important assumptions

that must be addressed:

1. Ground-truth predicates are provided to the system at testing time. This does

not invalidate the evaluation methodology used in this chapter, which still provides

useful information about the SRL model; however, in order to assess true end-to-end

performance in a practical setting, one must remove this assumption and force the

system to identify predicates as well as arguments. The following chapter does exactly

this.

38

2. Extra-sentential arguments are similar to the arguments described in this chapter.

The only difference is that extra-sentential arguments are not present in the sentence

that contains the predicate. Rather, these arguments exist in some other sentence

of the document. Chapter 4 will explore the nature and extraction of extra-sentential

arguments, which have received relatively little attention from the research community.

39

CHAPTER 3

Predicates that lack arguments: the problem of

implicit argumentation

3.1 Introduction

The previous chapter presented a state-of-the-art nominal SRL system that will serve as a

baseline for the current chapter. The system achieves an overall argument F1 score of ap-

proximately 76% using a supervised learning approach combined with carefully constructed

post-processing heuristics. Although this result is encouraging, it is produced by an eval-

uation methodology that has specific limitations. In particular, the evaluation (which has

been used in many previous NomBank and PropBank SRL studies) provides a system with a

predicate that is known to take arguments in the local context. However, nominal predicates

often surface without local arguments. Consider the following instances of distribution from

the Penn TreeBank:

(3.1) Searle will give [Arg0 pharmacists] [Arg1 brochures] [Arg1 on the use of prescription
drugs] for [Predicate distribution] [Location in their stores].

(3.2) The [Predicate distribution] represents [NP available cash flow] [PP from the
partnership] [PP between Aug. 1 and Oct. 31].

In Example 3.1, distribution is associated with arguments annotated by NomBank. In con-

trast, distribution in 3.2 has a noun phrase and multiple prepositional phrases in its envi-

ronment (similarly to 3.1), but not one of these constituents is an argument to the marked

predicate. As described by Meyers (2007a), predicate instances such as 3.1 are called “mark-

able” because they are associated with local arguments. Predicate instances such as 3.2 are

called “unmarkable” because they are not associated with local arguments. In the NomBank

40

corpus, only markable predicate instances from the Penn TreeBank have been annotated.

All other predicates have been ignored.

A number of evaluations (e.g., those described by Jiang and Ng (2006), Liu and Ng

(2007), and Chapter 2 of this dissertation) have been based solely on markable predicate in-

stances (i.e., those annotated by NomBank). This group constitutes only 57% of all nominal

predicate instances found in the underlying TreeBank corpus. In order to use the output of

nominal SRL systems as input for other systems (e.g., QA, IE, and SMT), it is important to

develop and evaluate techniques that can handle all predicate instances instead of a select

few. With respect to the evaluation procedure of the previous chapter, this amounts to

eliminating the assumption that a test predicate takes arguments; instead, the SRL system

must make this decision automatically for every token in the corpus.

Underlying the issues described above is a phenomenon called implicit argumentation.

An implicit argument is any argument that is not annotated by NomBank. Thus, a predicate

is unmarkable when all of its arguments are implicit. In this chapter, I investigate the role of

implicit argumentation in nominal SRL. This is, in part, inspired by the 2008 CoNLL Shared

Task (Surdeanu et al., 2008), which was the first evaluation of syntactic and semantic depen-

dency parsing to include unmarkable nominal predicates. The current chapter extends this

task to constituent parsing with techniques, evaluations, and analyses that focus specifically

on implicit argumentation for nominal predicates. In the next section, I assess the prevalence

of implicit argumentation and its impact on the nominal SRL system presented in Chapter 2.

I find that, when applied to all nominal instances, this system achieves an argument F1 score

of only 69%, a loss of approximately 8%. In Section 3.3, I review the recent CoNLL Shared

Task, noting similarities and differences with the current work. In Section 3.4, I present a

model designed to filter out nominal predicates whose arguments are entirely implicit. This

model reduces the aforementioned loss, particularly for nominals that are not often mark-

able. In the analyses of Section 3.5, I find that SRL performance varies widely among specific

classes of nominal predicates, suggesting interesting directions for future work. I conclude,

41

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

%
 o

f n
om

in
al

 in
st

an
ce

s

Observed markable probability

Figure 3.1: Distribution of nominal predicates. Each interval on the x-axis denotes a set
of nominal predicates that are markable between (x− 5)% and x% of the time in the Penn
TreeBank corpus. The y-axis denotes the percentage of all nominal predicate instances in
TreeBank that is occupied by nominal predicates in the interval. Quartiles are marked below
the intervals. For example, the 0.25 quartile at x = 0.35 indicates that approximately 25%
of all nominal instances are markable 35% of the time or less.

in Section 3.6, by motivating additional work on implicit argumentation, which is taken up

in the following chapter.

3.2 Empirical analysis

As shown in Example 3.2, nominal predicates often surface without local arguments. In this

section, I provide an analysis of implicit argumentation and its implications for the nominal

SRL system developed in the previous chapter. On the whole, instances of predicates from

the NomBank lexicon are markable only 57% of the time in the Penn TreeBank corpus.

Figure 3.1 shows the distribution of nominal predicates in terms of the frequency with which

42

Markable-only evaluation All-token evaluation % loss

Precision 0.8093 0.6832 15.58
Recall 0.7117 0.7039 1.10
F1 0.7574 0.6934 8.45

Table 3.1: Comparison of the markable-only and all-token evaluations of the SRL system
from Chapter 2. In the all-token evaluation, argument identification is attempted for any
nominal with at least one annotated (i.e., markable) instance in the training data.

they are markable. As shown, approximately 50% of nominal instances are markable 65% of

the time or less, indicating that implicit argumentation is a very common phenomenon. This

tendency toward implicit argumentation is also reflected in the percentage of roles that are

filled in NomBank versus PropBank. In NomBank, 48% of possible roles are filled, whereas

61% of roles are filled in PropBank.

To assess the impact of implicit argumentation, I evaluated the nominal SRL system from

Chapter 2 over each token in the testing section. The system attempted argument identi-

fication for all singular and plural nouns that have at least one annotated (i.e., markable)

instance in the training portion of the NomBank corpus (morphological variations included).

Table 3.1 gives a comparison of the results from the markable-only and all-token evalua-

tions. As shown, assuming that all known nouns take local arguments results in a significant

performance loss. This loss is due primarily to a drop in precision caused by false positive

argument predictions made for nominal predicates with no local arguments. An example of

this is shown below:1

(3.3) [Arg0 0.64 Canadian] [Predicate investment] rules require that big foreign takeovers
meet that standard.

The sentence in Example 3.3 does not contain any constituents that are considered arguments

to investment under the NomBank guidelines, but the SRL system (mistakenly) identifies

1In this dissertation, a number following an argument label indicates prediction proba-
bility.

43

Canadian as filling the Arg0 position. Presumably, Canada is the entity imposing rules on

those who invest; Canada is not the investing entity. Examples such as 3.3 demonstrate

an important difference between nominal predicates and verbal predicates: the former are

more flexible than the latter in terms of argument realization. Both classes of predicates may

undergo syntactic alternations that change the linear order of argument expression; however,

only nominal predicates routinely surface without explicit arguments. Thus, the approach

to SRL used for verbal predicates is not entirely appropriate for nominal predicates.

3.3 Related work

Implicit argumentation was not accounted for in large-scale evaluation tasks until the 2008

Computational Natural Language Learning (CoNLL) Shared Task on dependency parsing

(Surdeanu et al., 2008). In this task, systems were required to identify both syntactic and

semantic dependency structure. Ground-truth syntactic dependency structure was automat-

ically extracted from the constituent trees contained in the Penn TreeBank. Ground-truth

semantic dependencies were extracted from the annotations in PropBank (for verbs) and

NomBank (for nouns). In the semantic portion of the evaluation, systems were required

to identify predicating verbs and nouns in addition to the corresponding arguments. Thus,

systems in this evaluation were required to process instances such as Example 3.2 (p. 40).

Among all entries to the CoNLL Shared Task organized by Surdeanu et al. (2008), the

system created by Johansson and Nugues (2008) fared the best overall and near the top for

nominal predicates in particular. Johansson and Nugues’s system used a classification-based

approach to predicate-argument identification that is similar to the one presented in this

chapter. However, the authors left open two important questions. First, there is the simple

question of how effectively the system identifies nominal predicates. Second, the study does

not evaluate the impact of the nominal predicate classifier on overall predicate-argument

identification performance. As shown in the previous section, implicit argumentation has

a significant negative effect on the standard approach to nominal SRL. It is important to

44

quantify how much of this loss can be recovered by adding a nominal predicate classifier.

In addition to answering the two questions above, this chapter develops a nominal pred-

icate classifier that is, in many respects, simpler than the method used by Johansson and

Nugues, which employed an individually trained classifier for each of the 4,704 predicates

contained in NomBank. I opted for a single model capable of making predictions for all

predicates in the corpus.

3.4 Argument-bearing predicate model

Given a sentence, the goal of predicate classification is to identify nouns that bear local

arguments (i.e., those that would be annotated by NomBank). I treated this as a binary

classification task over token nodes in the syntactic parse tree of a sentence. Once a token

has been identified as bearing local arguments, it can be further processed by the argument

identification model developed in Chapter 2. A token is ignored if it is not identified as

argument-bearing.

The nominal predicate classifier was constructed using the greedy feature selection al-

gorithm introduced in the previous chapter (see page 144 for details). I used the logistic

regression solver of Fan et al. (2008) over a feature space binarized as described on page 32.

Table A.2 (p. 135) presents the selected features. As shown by Table A.2, the sets of features

selected for argument and nominal classification are quite different. Many of the features

used for nominal classification were not used by Johansson and Nugues (2008) or Liu and

Ng (2007). Below, I provide details for features that are not sufficiently explained in the table.

Feature 1 captures the local syntactic structure that contains the candidate predicate. As

shown in Table A.2, this is the most informative feature for nominal predicate classification,

surpassing the predicate text itself (Feature 2). For a candidate predicate n, Feature 1 is

actually a set of sub-features, one for each parse tree node between n and the tree’s root. The

value of a sub-feature is the context-free grammar rule that expands the corresponding node

45

VP: Sub2 = V P → V,NP

V (made) NP: Sub1 = NP → Det,N

Det (a) N (sale)

Figure 3.2: Context-free grammar rules for nominal predicate classification (Feature 1). The
candidate nominal predicate sale is being classified. Arrows indicate grammar productions.

in the tree. Each value is additionally indexed according to its tree node distance from n.

An example of Feature 1 with two sub-features is shown in Figure 3.2. In this example, the

candidate nominal predicate sale is being classified. The first sub-feature (Sub1) is derived

from the parent of sale, and the second (Sub2) from sale’s grandparent. The sub-features

are indexed under the hypothesis that the same context-free grammar rule might indicate

different outcomes at different levels in the parse tree. In Figure 3.2, Sub2 indicates the use

of a support verb structure. This in turn indicates a high likelihood that sale will take an

Arg0 that linearly precedes made.

Feature 8 is a modified version of the parse tree path used for nominal argument identifi-

cation. The modification is two-fold: first, the path begins at the candidate predicate and

ends at the nearest support verb. As mentioned in the previous chapter, there exists a close

link between nominal predicates and support verbs (see page 31). Second, the parse tree

path is lexicalized, meaning it is concatenated with surface words from the beginning or end

of the path. This finer-grained path captures the joint behavior of the syntactic and lexical

content. For example, in the tree shown in Figure 3.2, the path from sale to made with a

lexicalized destination would be N ↑ NP ↑ V P ↓ V : made. A similar strategy is used for

Features 5, 11, 13, 23, and 29. Lexicalization increases sparsity; however, it provides useful

information and is often preferred over unlexicalized paths. Support verbs for this and other

46

features were automatically identified using the model described on page 134.

Feature 16 leverages the existing content of PropBank to identify argument-bearing nominal

predicates. The value for this feature is the probability that the context (± 5 words) of a

nominal predicate is generated by a unigram language model trained over the PropBank

argument words for the corresponding verb. All named entities are normalized to their

entity type using BBN’s IdentiFinder (Bikel et al., 1999), and adverbs are normalized to their

related adjective using the ADJADV dictionary provided by NomBank. The normalization

of adverbs to adjectives is motivated by the fact that adverbial modifiers of verbs typically

have corresponding adjectival modifiers for nominal predicates. This is shown below:

(3.4) [Arg0 John] [Predicate gossiped] [Manner quietly] with his coworkers.

(3.5) John’s quiet [Predicate? gossip] was overheard.

Example 3.4 provides evidence that a predicate such as gossip takes arguments when sur-

rounded by Person mentions and adverbs such as quiet. This information is useful when

classifying the nominal predicate gossip in Example 3.5, where we find a similar named entity

and adjectival modifier. Example 3.5 is indeed markable.

LibLinear model configuration

As with other LibLinear models in this dissertation, I found it helpful to adjust the per-

class costs for nominal predicate classification. I used cost c = 2 and w+ = 1, which were

identified during feature selection. Two additional parameters were set: (1) the classification

bias (= 1), and (2) the prediction threshold tpred. The latter functions similarly to the targ

threshold used for argument classification. Any candidate predicate scoring higher than tpred

is passed to the argument identifier. All other candidate predicates are ignored. Actual values

for tpred are discussed in the following section.

47

Precision (%) Recall (%) F1 (%)

Baseline 55.5 97.8 70.9
MLE 68.0 90.6 77.7
LibLinear 86.6 88.5 87.6

Table 3.2: Evaluation results for identifying nominal predicates that take local arguments.
The first column indicates which nominal classifier was used.

3.5 Evaluation

I evaluated the model described above using a practical setup in which the nominal SRL

system had to process every token in a sentence. The system could not safely assume that

each token took local arguments; rather, this decision had to be made automatically. In

Section 3.5.1, I present results for the automatic identification of nominal predicates with

local arguments. Then, in Section 3.5.2, I present results for the combined task in which

nominal classification is followed by argument identification.

3.5.1 Predicate evaluation

Following standard practice, I trained the nominal classifier over token nodes in TreeBank

sections 2-21. All syntactic parse trees were automatically generated by Charniak’s re-

ranking syntactic parser (Charniak and Johnson, 2005), and only those tokens with at least

one annotated (i.e., markable) instance in NomBank were retained for training. As mentioned

above, the classifier imposes a prediction threshold tpred on the classification decisions. The

value of tpred was found by maximizing the nominal F1 score on the development section

(24) of NomBank (tpred = 0.47). The resulting model was tested over all token nodes in

section 23 of TreeBank. For comparison, I implemented the following simple classifiers:

• The baseline model classifies a token as locally bearing arguments if it is a singular

or plural noun that is found to be markable at least once in the training sections of

48

NomBank. As shown in Table 3.2, this classifier achieves nearly perfect recall. Recall

is less than 100% due to (1) part-of-speech errors from the syntactic parser and (2)

nominal predicates that were not annotated in the training data but exist in the testing

data.

• The MLE model operates similarly to the baseline, but also produces a score for the

classification. The value of the score is equal to the probability that the nominal bears

local arguments, as observed in the training data. When using this model, tpred = 0.33.

As shown by Table 3.2, this exchanges recall for precision and leads to a performance

increase of approximately 8 F1 points.

The last row in Table 3.2 shows the results for the feature-based nominal predicate classifier.

This model outperforms the others by a wide margin, achieving balanced precision and recall

scores near 88% F1. In addition, the feature-based model is able to recover from part-of-

speech errors because it does not filter out non-noun candidates; rather, it combines part-of-

speech information with other lexical and syntactic features to classify nominal predicates.

Interesting observations can be made by grouping nominal predicates according to the

probability with which they are markable in the corpus. Recall Figure 3.1 (page 42), which

shows the distribution of markable nominal predicates across intervals of markability. Using

this view of the data, Figure 3.3 presents the overall F1 scores for the baseline and LibLinear

nominal classifiers.2 As shown, gains in nominal classification diminish as nominal predicates

become more reliably associated with local arguments (i.e., as one moves right along the x-

axis). This is because the baseline system makes fewer errors for predicates in intervals to

the right. Furthermore, nominal predicates that are rarely markable (i.e., those in interval

0.05) remain problematic due to a lack of positive training instances and the unbalanced

nature of the classification task.

Overall, however, the feature-based model exhibits substantial gains versus the baseline

system, particularly for nominals occupying the left-most intervals of Figure 3.3. As will

2Baseline and MLE scores are identical above the MLE threshold.

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

re
di

ca
te

 n
om

in
al

 F
1

Observed markable probability

Baseline
LibLinear

Figure 3.3: Nominal classification performance with respect to the distribution in Figure
3.1 (page 42). The y-axis denotes the combined F1 for nominal predicates that occupy the
interval given on the x-axis.

be shown in the next section, these gains in nominal predicate classification transfer well to

gains in argument identification.

3.5.2 Combined predicate-argument evaluation

I now turn to the task of combined predicate-argument classification. In this task, systems

must first identify nominal predicates that bear local arguments. I evaluated three configu-

rations based on the nominal classifiers from the previous section. Each configuration uses

the argument classification system described in Chapter 2. Table 3.3 presents the results of

using the three configurations for combined predicate-argument classification. As shown in

Table 3.3, overall argument classification F1 suffers a relative loss of more than 8% under the

baseline assumption that all known nouns bear local arguments. The MLE predicate clas-

50

Predicate classifier used tpred targ All-token argument F1 (%) Loss (%)

Baseline N/A N/A 69.3 8.5
MLE 0.23 0.44 69.9 7.7
Logistic regression 0.32 0.43 71.1 6.1

Table 3.3: Comparison of the combined predicate-argument classifiers in the all-token eval-
uation. The first column indicates which nominal predicate classifier was used. All config-
urations used the argument classification system described in Chapter 2. The second and
third columns give the prediction thresholds used. The fourth column gives overall argument
F1 scores, and the last column gives the loss with respect to the standard evaluation task
in which the system is given an argument-bearing predicate (this was used in the previous
chapter).

sifier is able to reduce this loss slightly. The LibLinear predicate classifier reduces this loss

even further, resulting in an overall argument classification F1 of 71.1%. This improvement

is the direct result of filtering out nominal instances that do not bear local arguments.

Similarly to the predicate classification evaluation of Section 3.5.1, one can view argument

classification performance with respect to the prior probability that a nominal bears local

arguments as determined by the training data. This is shown in Figure 3.4 for the three

configurations. The configuration using the MLE nominal predicate classifier obtained an

argument F1 of zero for nominal predicates below its prediction threshold. Compared to the

baseline predicate classifier, the LibLinear classifier achieved argument classification gains

as large as 163% (interval 0.05), with an average gain of 58% for intervals 0.05 to 0.3. As

with nominal classification, argument classification gains versus the baseline diminish for

nominal predicates that occupy intervals further to the right of the graph. I observed an

average gain of only 1% for intervals 0.35 through 1.00. A couple factors contribute to this

result. First, the feature-based predicate model is not substantially more accurate than the

baseline predicate model for the highest intervals (see Figure 3.3 on page 50). Second, the

argument prediction model has substantially more training data for the nominal predicates

in intervals 0.35 to 1.00; NomBank contains many more instances of these predicates than

the predicates occupying lower intervals. Thus, even if the nominal classifier makes a false

51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A

rg
um

en
t

F
1

Observed markable probability

Baseline

MLE

LibLinear

Figure 3.4: All-token argument classification performance with respect to the distribution
in Figure 3.1 (p. 42). The y-axis denotes the combined argument F1 for nominal predicates
in the interval.

positive prediction in the 0.35 to 1.00 interval range, the argument model may correctly

avoid labeling any arguments.

As noted in Section 3.3, the results in Table 3.3 are not directly comparable to the results

of the recent CoNLL Shared Task (Surdeanu et al., 2008). This is because the semantic

labeled F1 score used in the Shared Task combined predicate and argument predictions into

a single score. The same combined F1 score for my best two-stage nominal SRL system

(logistic regression predicate and argument models) is 79.1%. This compares favorably to

the best score of 76.6% reported by Surdeanu et al..

3.5.3 NomLex-based analysis of results

As mentioned previously, NomBank annotates many classes of deverbal and non-deverbal

predicates. These predicates have been semi-automatically categorized on syntactic and

52

P
re

di
ca

te
 n

om
in

al
 F

1

NomLex class

Baseline

MLE

LibLinear

Figure 3.5: Nominal classification performance with respect to the NomLex classes in Figure
2.3. The y-axis denotes the combined F1 for nominal predicates in the class.

semantic bases by the NomLex-PLUS resource (Meyers, 2007b). To help understand what

types of nominal predicates are particularly affected by implicit argumentation, I further

analyzed performance with respect to these classes.

Recall Figure 2.3 (p. 20), which shows the distribution of nominal predicates across

classes defined by the NomLex resource. As shown in Figure 3.5, many of the most frequent

classes exhibit significant gains. For example, the classification of partitive nominal predi-

cates (13% of all nominal instances) with the LibLinear classifier results in gains of 55.5%

and 33.7% over the baseline and MLE classifiers, respectively. For the five most common

classes, which constitute 82% of all nominal predicate instances, I observed average gains of

27.5% and 19.3% over the baseline and MLE classifiers, respectively.

Table 3.4 separates predicate and argument classification results into sets of deverbal

(NomLex class nom), deverbal-like (NomLex class nom-like), and all other nominal predi-

cates. A deverbal-like predicate is closely related to some verb, although not morphologically.

53

Predicate F1 (%) Combined predicate-argument F1 (%)
Deverbal Deverbal-like Other Deverbal Deverbal-like Other

Baseline 79.8 67.9 67.6 70.6 67.4 74.5
MLE 83.0 73.3 74.9 72.1 66.4 76.8
LibLinear 92.6 88.3 89.1 72.8 71.8 78.5

Table 3.4: Predicate and combined predicate-argument classification F1 scores for deverbal,
deverbal-like, and other nominal predicates in the all-token evaluation. The first column
indicates which nominal classifier was used. All configurations used the nominal SRL system
described in Chapter 2.

For example, the noun accolade shares argument interpretation with the verb award, but the

two are not morphologically related. As shown by Table 3.4, predicate classification tends

to be easier - and argument classification harder - for deverbals when compared to other

types of nominal predicates. For combined nominal-argument F1, the difference between

deverbal/deverbal-like predicates and the others is due primarily to relational nominals,

which are included the others column. Relational nominals are accurately classified by the

logistic regression model (F1 = 0.95 in Figure 3.5); additionally, relational nominals exhibit

a high rate of argument incorporation (i.e., predicate-as-argument behavior), which is easily

handled by the maximum-likelihood model described in Section 2.3.

3.5.4 Analysis of end-to-end nominal SRL speed

The combined predicate-argument classification system presented in this chapter is capable

of operating in an end-to-end fashion over completely unstructured text.3 In this section, I

provide asymptotic and empirical analyses for the system’s performance.

54

Part-of-speech tagging and

syntactic parsing

(Charniak and Johnson, 2005)

Sentence

segmentation

(Gillick, 2009)

SentencesDocuments

Nominal SRL

Support verb

identification

Predicate

identification

Argument

identification /

post-processing

SRL structure

sell(seller = John, entity_sold = book, buyer = Mary)

pay(payer = Mary, paid = John, amount = $30)

…

Figure 3.6: End-to-end nominal SRL architecture.

Processing components

Figure 3.6 shows the end-to-end nominal SRL architecture. Processing begins by segmenting

each document into a sequence of sentences. This step is performed using Gillick’s (2009)

SVM-based segmenter. Each sentence is then tagged for part-of-speech and syntactic in-

formation using the August 2006 version of Charniak and Johnson’s (2005) parser. The

nominal SRL classifier chain then labels support verbs (see page 134), nominal predicates

(page 45), and arguments (page 28). In the final post-processing step, argument conflicts

3The nominal SRL system is freely available for non-commercial use. Please contact the
author at gerber.matthew@gmail.com for more information.

55

are removed and incorporated arguments are identified (page 33). In the following sections,

I provide analyses for various components in Figure 3.6.

Asymptotic analysis

One can analyze the computational complexity of the processing components with respect

to either the number of tokens in a document (denoted by d) or the number of tokens in a

sentence (denoted by s).

• Sentence segmentation is O(d). The component needs to scan the document for

ambiguous punctuation marks, which might indicate the end of a sentence.

• Part-of-speech tagging and syntactic parsing is O(s3). The Charniak parser is

a re-ranker working on top of a chart parser that is O(s3) (Charniak et al., 1998).

• Support verb identification is O(s). Each token is classified.

• Predicate identification is O(s). Each token is classified.

• Argument identification is O(s2). The length s of a sentence is related to the

number of nodes n in the sentence’s perfect binary tree (this is the worst case) by

s =
⌈

n
2

⌉

. Thus, n
2 ≤ s < n

2 +1 and 2s−2 < n ≤ 2s. At most, then, there are 2s nodes

in the tree for a sentence of length s. During argument identification, each of these

nodes is classified for each predicate in the sentence. s is a theoretical upper bound for

the number of predicates in a sentence of length s, giving O(s2) for all argument node

classifications; however, in practice there are far fewer than s predicates per sentence

(see empirical results below).

• Argument post-processing is O(s2). The post-processor looks at each argument

node for each predicate node and detects/resolves conflicts in a constant number of

operations. The maximum number of argument nodes for a predicate node is less than

the number of nodes in the tree because argument nodes are not allowed to overlap

56

Documents 1000
Sentences per document 8
Words per sentence 29
Words per minute 1134
Predicate trees per minute 120
Sentence segmentation total (seconds) 24
Part-of-speech tagging and syntactic parsing total (minutes) 158
Support verb, predicate, and argument identification / post-processing (minutes) 52

Table 3.5: Empirical speed performance of the nominal SRL system. Here, Predicate trees

refers to a single predicate node and its associated support verbs and argument nodes.

the predicate node. Thus, the previous upper bound of 2s is also an upper bound on

the number of argument nodes for a predicate node. There are O(s) predicate nodes

in a sentence, for a total of O(s2) for argument conflict resolution. The post-processor

also labels incorporated arguments for each of the detected predicates, adding O(s) for

a total of O(s2). Note again that the practical number of predicates in a sentence of

length s is far less than s.

Empirical analysis

To test the speed performance of the nominal SRL system empirically, I randomly selected

1000 documents from the Gigaword corpus (Graff, 2003). Documents from this corpus

contain reports from a variety of newswire agencies. Thus, the genre is quite similar to that

of the training data used for the nominal SRL system. In total, the 1000 document sub-

corpus contained approximately 232,000 tokens and 8,000 sentences. Each document was

provided to the system without paragraph markings or any other structural information.

The processing hardware consisted of standard desktop machine with a 2.8 GHz Pentium 4

CPU and 3 GB of main memory.

Table 3.5 lists the key performance statistics. As shown, sentence splitting contributed a

negligible amount of time (24 seconds) to the total of more than 3.5 hours. Three quarters of

the time was spent performing part-of-speech tagging and syntactic parsing with the Char-

57

10 14 18 22 26 30 34 38 42 46 50 54 58

0
1

2
3

4
5

6
7

Sentence length

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

10 14 18 22 26 30 34 38 42 46 50 54 58

0
1

2
3

4
5

6
7

Sentence length

P
ro

ce
ss

in
g

tim
e

(s
ec

on
ds

)

POS tagging and syntactic parsing (top)
Nominal SRL (bottom)

Figure 3.7: Box plot of nominal SRL speed. Each vertical box shows the range of times
observed for sentences with length given along the x-axis. Medians are indicated by the
black bar in each box, and the box spans from the first to the third quartiles.

niak parser. As mentioned above, syntactic analysis has the slowest worst-case performance

of any of the components. Figure 3.7 demonstrates the cubic worst-case visually. Contrast

this with the performance of the nominal SRL components, which consumed one quarter of

the total time. Asymptotically, argument identification and post-processing are quadratic

in the worst-case; however, the worst case (i.e., all tokens being predicates) rarely, if ever,

occurs. This can be seen in Figure 3.7, where the slowing of the nominal SRL components

58

is roughly linear in the sentence length.

Speed performance of the end-to-end nominal SRL system could be enhanced using two

approaches. First, one could instantiate multiple instances of the architecture shown in Fig-

ure 3.6 using multiple systems. Since there are no inter-document dependencies, documents

can be distributed among these systems, increasing performance. Second, one could replace

the cubic time syntactic parser with a linear time dependency parser (Sagae and Lavie,

2005). Dependency parsing has received a significant amount of attention in recent years.

Although its parsing formalism is not as expressive as the constituent formalism used by

parsers such as Charniak’s, dependency parsing often produces useful results very efficiently.

3.6 Conclusions

The application of nominal SRL to practical NLP problems requires a system that is able

to accurately process each token it encounters. Previously, it was unclear whether the

models proposed by Jiang and Ng (2006) and Liu and Ng (2007) would operate effectively

in such an environment. The systems described by Surdeanu et al. (2008) are designed

with this environment in mind, but their evaluation did not focus on the issue of implicit

argumentation. These two problems motivate the work presented in this chapter.

The contribution of this chapter is three-fold. First, it shows that the state-of-the-art

nominal SRL system of the previous chapter suffers a substantial performance degradation

when evaluated over nominal predicates whose arguments are implicit. Second, it identifies

a set of features - many of them new - that can be used to accurately detect nominal

predicates with local arguments, thus increasing the overall performance of the nominal SRL

system. The nominal predicate model also allows the nominal SRL system to operate in

real-world settings over completely unstructured text. Third, the evaluation results suggest

interesting directions for future work. As described in Section 3.5.2, many nominal predicates

do not have enough labeled training data to produce accurate argument classifiers. The

generalization procedures developed by Gordon and Swanson (2007) for PropBank SRL and

59

Padó et al. (2008) for NomBank SRL might alleviate this problem.

Most important, however, is the following observation: the logistic regression nominal

predicate classifier is able to accurately filter out predicates whose arguments are implicit;

however, this model cannot actually recover implicit arguments, which are often expressed in

the surrounding discourse. It is also the case that nominal predicates with local arguments

often have additional implicit arguments somewhere in the discourse; these, too, are ignored

by the models in this chapter. In the following chapter, I describe an in-depth study of

implicit arguments and their recovery from the discourse. This topic has received very little

attention from NLP researchers; however, as I will show, implicit argument recovery is (1)

a fundamental process within discourse semantics, and (2) a process that can be modeled

effectively.

60

CHAPTER 4

Identifying implicit arguments

4.1 Introduction

The previous chapter showed that it is possible to accurately distinguish nominals that bear

local arguments from those that do not. This is an important step because it frees us from

the assumption that all nominal predicates take local arguments - an assumption shown to

be false. Ultimately, the goal is to use the output of the nominal SRL system as input for

other NLP tasks such as QA, IE, and SMT. Being able to process all tokens in a document

is essential for such tasks.

Despite these improvements, though, the system developed in the previous chapter does

not address a fundamental question regarding implicit arguments: if an argument is implicit

(i.e., missing) in the local context of a predicate, might the argument be located somewhere

in the wider discourse? The previous chapter stopped short of answering this question,

opting instead for an approach that ignores predicates whose arguments are implicit. The

current chapter directly addresses this important question.

As an initial example, consider the following sentence, which is taken from the Penn

TreeBank:

(4.1) A SEC proposal to ease [Arg1 reporting] [Predicate requirements] [Arg2 for some
company executives] would undermine the usefulness of information on insider trades,
professional money managers contend.

The NomBank role set for requirement is shown below:

Frame for requirement, role set 1:

Arg0: the entity that is requiring something

61

Arg1: the entity that is required

Arg2: the entity of which something is being required

In Example 4.1, the predicate has been annotated with the local argument labels provided

by NomBank. As shown, NomBank does not annotate an Arg0 for this instance of the

requirement predicate; however, a reasonable interpretation of the sentence is that SEC is

the entity that is requiring something.1 This dissertation refers to arguments such as SEC

in Example 4.1 as implicit. When all arguments for a predicate are implicit, one obtains the

situation addressed in the previous chapter; however, this is the extreme case. In Example

4.1, some arguments are local (i.e., Arg1 and Arg2) and some are not (i.e., Arg0 = SEC).

Building on Example 4.1, consider the following sentence, which directly follows Example

4.1 in the corresponding TreeBank document:

(4.2) Money managers make the argument in letters to the agency about [Arg1 rule]
[Predicate changes] proposed this past summer.

The NomBank role set for change is shown below:

Frame for change, role set 1:

Arg0: the entity that initiates the change

Arg1: the entity that is changed

Arg2: the initial state of the changed entity

Arg3: the final state of the changed entity

Similarly to the previous example, 4.2 shows the local argument labels provided by NomBank.

These labels only indicate that rules have been changed. For a full interpretation, Example

4.2 requires an understanding of Example 4.1. Without the latter, the reader has no way of

knowing that the agency in 4.2 actually refers to the same entity as SEC in 4.1. As part

of the reader’s comprehension process, this entity is identified as the filler for the Arg0 role

in Example 4.2. This identification must occur in order for these two sentences to form a

coherent discourse.

1The Securities and Exchange Commission (SEC) is responsible for enforcing investment
laws in the United States.

62

From these examples, it is clear that the scope of implicit arguments quite naturally

spans sentence boundaries. Thus, if one wishes to recover implicit arguments as part of the

SRL process, the argument search space must be expanded beyond the traditional, single-

sentence window used in virtually all prior SRL research. What can we hope to gain from

such a fundamental modification of the problem? Consider the following question, which

targets Examples 4.1 and 4.2 above:

(4.3) Who changed the rules regarding reporting requirements?

Question 4.3 is a factoid question, meaning it has a short, unambiguous answer in the targeted

text. This type of question has been studied extensively in the Text Retrieval Conference

(TREC) Question Answering Track (Dang et al., 2007). Using the evaluation data from this

track, Pizzato and Mollá (2008) showed that SRL can improve the accuracy of a QA system;

however, a traditional SRL system alone is not enough to recover the implied answer to

Question 4.3: SEC or the agency. Successful implicit argument identification provides the

answer in this case.

This chapter presents an in-depth study of implicit arguments for nominal predicates.2

The following section surveys a broad spectrum of research related to implicit argument

identification. Section 4.3 describes the study’s implicit argument annotation process and

the data it produced. The implicit argument identification model is formulated in Section

4.4 and evaluated in Section 4.5. Discussion of results is provided in Section 4.6, and the

chapter concludes in Section 4.7.

4.2 Related work

The research presented in this chapter is related to a wide range of topics in cognitive sci-

ence, linguistics, and NLP. This is partly due to the discourse-based nature of the problem.

In single-sentence SRL, one can ignore the discourse aspect of language and still obtain

2A condensed version of this study was published by Gerber and Chai (2010).

63

high marks in an evaluation (for examples, see Carreras and Màrquez (2005) and Surdeanu

et al. (2008)); however, implicit argumentation forces one to consider the discourse con-

text in which a sentence exists. Much has been said about the importance of discourse to

language understanding, and this section will identify the points most relevant to implicit

argumentation.

4.2.1 Discourse comprehension in cognitive science

In linguistics, the traditional view of sentence-level semantics has been that meaning is

compositional. That is, one can derive the meaning of a sentence by carefully composing the

meanings of its constituent parts (Heim and Kratzer, 1998). There are counterexamples to a

compositional theory of semantics (e.g., idioms), but those are more the exception than the

rule. Things change, however, when one starts to group sentences together to form coherent

textual discourses. Consider the following examples, borrowed from Sanford (1981) (p. 5):

(4.4) Jill came bouncing down the stairs.

(4.5) Harry rushed off to get the doctor.

Examples 4.4 and 4.5 describe three events: bounce, rush, and get. These events are intri-

cately related. One cannot simply create a conjunction of the propositions bounce, rush, and

get and expect to arrive at the author’s intended meaning, which presumably involves Jill’s

becoming injured by her fall and Harry’s actions to help her. The mutual dependence of

these sentences can be further shown by considering a variant of the situation described in

Examples 4.4 and 4.5:

(4.6) Jill came bouncing down the stairs.

(4.7) Harry rushed over to kiss her.

The interpretation of Example 4.6 is is vastly different from the interpretation of Example

4.4. In 4.4, Jill becomes injured whereas in 4.6 she is quite happy.

Examples 4.4-4.7 demonstrate the fact that sentences do not have a fixed, compositional

interpretation; rather, a sentence’s interpretation depends on the surrounding context. The

64

standard compositional theory of sentential semantics largely ignores contextual information

provided by other sentences. The single-sentence approach to SRL operates similarly. In both

of these methods, the current sentence provides all of the semantic information. In contrast

to these methods - and aligned with the preceding discussion - this chapter presents methods

that rely heavily on surrounding sentences to provide additional semantic information. This

information is used to interpret the current sentence in a more complete fashion.

Examples 4.4-4.7 also show that the reader’s knowledge plays a key role in discourse com-

prehension. Researchers in cognitive science have proposed many models of reader knowl-

edge. Schank and Abelson (1977) proposed stereotypical event sequences called scripts as

a basis for discourse comprehension. In this approach, readers fill in a discourse’s semantic

gaps with knowledge of how a typical event sequence might unfold. In Examples 4.4 and

4.5, the reader knows that people typically call on a doctor only if someone is hurt. Thus,

the reader automatically fills the semantic gap caused by the ambiguous predicate bounce

with information about doctors and what they do. Similar observations have been made by

van Dijk (1977) (p. 4), van Dijk and Kintsch (1983) (p. 303), Graesser and Clark (1985)

(p. 14), and Carpenter et al. (1995). Inspired by these ideas, the model developed in this

chapter relies partly on large text corpora, which are treated as repositories of typical event

sequences. The model uses information extracted from these event sequences to identify

implicit arguments.

4.2.2 Automatic relation discovery

Examples 4.4 and 4.5 in the previous section show that understanding the relationships

between predicates is a key part of understanding a textual discourse. In this section, I

review work on automatic predicate relationship discovery, which attempts to extract these

relationships automatically.

Lin and Pantel (2001) proposed a system that automatically identifies relationships sim-

ilar to the following:

65

(4.8) X eats Y ↔ X likes Y

This relationship creates a mapping between the participants of the two predicates. One

can imagine using such a mapping to fill in the semantic gaps of a discourse that describes a

typical set of events in a restaurant. In such a discourse, the author probably will not state

directly that X likes Y ; however, the reader might need to infer this in order to make sense

of the fact that X left a large tip for the waiter.

Lin and Pantel created mappings such as 4.8 using a variation of the so-called “distri-

butional hypothesis” posited by Harris (1985), which states that words occurring in similar

contexts tend to have similar meanings. Lin and Pantel applied the same notion of similarity

to dependency paths. For example, the inference rule in Example 4.8 is identified by exam-

ining the sets of words in the two X positions and the sets of words in the two Y positions.

When the two pairs of sets are similar, it is implied that the two dependency paths from X

to Y are similar as well. In Example 4.8, the two dependency paths are as follows:

X
subject
←−−−−− eats

object
−−−−→ Y

X
subject
←−−−−− likes

object
−−−−→ Y (4.9)

One drawback of this method is that it assumes the implication is symmetric. Although this

assumption is correct in many cases, it often leads to invalid inferences. In Example 4.8, it

is not always true that if X likes Y then X will eat Y . The opposite - that X eating Y

implies X likes Y - is more plausible but not certain.

Bhagat et al. (2007) extended the work of Lin and Pantel to handle cases of asymmetric

relationships. The basic idea proposed by Bhagat et al. is that, when considering a rela-

tionship of the form 〈x, p1, y〉 ↔ 〈x, p2, y〉, if p1 occurs in significantly more contexts (i.e.,

has more options for x and y) than p2, then p2 is likely to imply p1 but not vice versa.

Returning to Example 4.8, we see that the correct implication will be derived if likes occurs

in significantly more contexts than eats. The intuition is that the more general concept (i.e.,

66

like) will be associated with more contexts and is more likely to be implied by the specific

concept (i.e., eat). As shown by Bhagat et al., the system built around this intuition is able

to effectively identify the directionality of many inference rules.

Zanzotto et al. (2006) presented another study aimed at identifying asymmetric relation-

ships between verbs. For example, the asymmetric entailment relationship X wins −→ X

plays holds, but the opposite (X plays −→ X wins) does not. This is because not all those

who play a game actually win. To find evidence for this automatically, the authors examined

constructions such as the following, adapted from Zanzotto et al.:

(4.10) The more experienced tennis player won the match.

The underlying idea behind the authors’ approach is that asymmetric relationships such as

X wins −→ X plays are often entailed by constructions involving agentive, nominalized verbs

as the logical subjects of the main verb. In Example 4.10, the agentive nominal “player”

is logical subject to “won”, the combination of which entails the asymmetric relationship

of interest. Thus, to validate such an asymmetric relationship, Zanzotto et al. examined

the frequency of the “player win” collocation using Google hit counts as a proxy for actual

corpus statistics.

A number of other studies (e.g., those by Szpektor et al. (2004) and Pantel et al. (2007))

have been conducted that are similar to the work described above. In general, such work

focuses on the automatic acquisition of entailment relationships between verbs. Although

this work has often been motivated by the need for lexical-semantic information in tasks

such as automatic question answering, it is also relevant to the task of implicit argument

identification because the derived relationships implicitly encode a participant role mapping

between two predicates. For example, given a missing Arg0 for a like predicate and an

explicit Arg0 = John for an eat predicate in the preceding discourse, inference rule 4.8

would help identify the implicit Arg0 = John for the like predicate.

The missing link between previous work on verb relationship identification and the task

of implicit argument identification is that previous verb relations are not defined in terms

67

of the Argn positions used by NomBank. Rather, positions like subject and object are used

(see Example 4.9). In order to identify implicit arguments in NomBank, one needs inference

rules between specific argument positions (e.g., eat :Arg0 and like:Arg0). In the current

chapter, I propose methods of automatically acquiring these fine-grained relationships for

verbal and nominal predicates using existing corpora. I also propose a method of using these

relationships to recover implicit arguments.

4.2.3 Coreference resolution and discourse processing

The current chapter will make heavy use of the notions of reference and coreference. The

referent of a linguistic expression is the real or imagined entity to which the expression

refers. Coreference, therefore, is the condition of two linguistic expressions having the same

referent. In the following examples from the Penn TreeBank, the underlined spans of text

are coreferential:

(4.11) “Carpet King sales are up 4% this year,” said owner Richard Rippe.

(4.12) He added that the company has been manufacturing carpet since 1967.

Non-trivial instances of coreference (e.g., Carpet King and the company) allow the author

to repeatedly mention the same entity without introducing redundancy into the discourse.

Pronominal anaphora is a subset of coreference in which one of the referring expressions is

a pronoun. For example, he in Example 4.12 refers to the same entity as Richard Rippe in

Example 4.11. These examples demonstrate noun phrase coreference. Events, indicated by

either verbal or nominal predicates, can also be coreferential when mentioned multiple times

in a document (Wilson, 1974; Chen and Ji, 2009).

For many years, the Automatic Content Extraction (ACE) series of large-scale evaluations

(ACE, 2008) has provided a test environment for systems designed to identify these and

other coreference relations. Systems based on the ACE datasets typically take a supervised

learning approach to coreference resolution in general (Versley et al., 2008) and pronominal

anaphor in particular (Yang et al., 2008).

68

A phenomenon similar to the implicit argument has been studied in the context of

Japanese anaphora resolution, where a missing case-marked constituent is viewed as a zero-

anaphoric expression whose antecedent is treated as the implicit argument of the predicate of

interest. This behavior has been annotated manually by Iida et al. (2007), and researchers

have applied standard SRL techniques to this corpus, resulting in systems that are able

to identify missing case-marked expressions in the surrounding discourse (Imamura et al.,

2009). Sasano et al. (2004) conducted similar work with Japanese indirect anaphora. The

authors used automatically derived nominal case frames to identify antecedents. However,

as noted by Iida et al., grammatical cases do not stand in a one-to-one relationship with

semantic roles in Japanese (the same is true for English).

Many other discourse-level phenomena interact with coreference. For example, Center-

ing Theory (Grosz et al., 1995) focuses on the ways in which referring expressions maintain

(or break) coherence in a discourse. These so-called “centering shifts” result from a lack of

coreference between salient noun phrases in adjacent sentences. Discourse Representation

Theory (DRT) (Kamp and Reyle, 1993) is another prominent treatment of referring expres-

sions. DRT embeds a theory of coreference into a first-order, compositional semantics of

discourse.

In Centering Theory, DRT, and the ACE coreference competitions, coreference relation-

ships hold between relatively small constituents in one or more sentences (e.g., a pronoun

and its noun phrase antecedent); however, researchers have also investigated relationships

that hold between larger segments of text, including full sentences. Consider the following

example, adapted from Rhetorical Structure Theory (Taboada and Mann, 2006):

(4.13) [Objective The visual system resolves confusion] [Means by applying knowledge of
properties of the physical world].

In Example 4.13, the objective (resolution of confusion) is accomplished by a particular

means (application of knowledge). RST analyses do not depend on “trigger” words in the

way that PropBank, NomBank, and FrameNet do. Rather, segments of text are identified

69

and the relationships between them are then inferred.

Prasad et al. (2008) take a slightly different approach to discourse-level annotation, one

that relies heavily on lexical cues to guide the annotation process. The resulting resource,

called the Penn Discourse TreeBank (PDTB), identifies RST-like relationships that obtain

between large fragments of text. Consider the following example, taken from the PDTB:

(4.14) [Arg1 Use of dispersants was approved] when [Arg2 a test on the third day showed
some positive results].

In Example 4.14, I have underlined the lexical item that triggers the Reason discourse

relationship between the bracketed spans of text. Argument position when:Arg1 indicates the

effect, and argument position when:Arg2 indicates the cause. The latter contains an instance

of the nominal predicate test, whose Arg1 position (the entity tested) is implicitly filled by

dispersants. The identification of this implicit argument is encouraged by the discourse

connective when, which indicates a strong relationship between the events described in its

argument positions. In Section 4.4.2, I will explore the use of PDTB relationships for implicit

argument identification.

4.2.4 Identifying implicit arguments

Past research on the actual task of implicit argument identification tends to be sparse.

Palmer et al. (1986) describe what appears to be the first computational treatment of im-

plicit arguments. In this work, Palmer et al. manually created a repository of knowledge

concerning entities in the domain of electronic device failures. This knowledge, along with

hand-coded syntactic and semantic processing rules, allowed the system to identify implicit

arguments across sentence boundaries. As a simple example, consider the following two

sentences, borrowed from Palmer et al.:

(4.15) Disk drive was down at 11/16-2305.

(4.16) Has select lock.

70

Example 4.16 does not specify precisely which entity has select lock. However, the domain

knowledge tells the system that only disk drive entities can have such a property. Using this

knowledge, the system is able to search the local context and make explicit the implied fact

that the disk drive from Example 4.15 has select lock.

A similar line of work was pursued by Whittemore et al. (1991), who offer the following

example of implicit argumentation (p. 21):

(4.17) Pete bought a car.

(4.18) The salesman was a real jerk.

In Example 4.17, the buy event is not associated with an entity representing the seller. This

entity is introduced in Example 4.18 as the salesman, whose semantic properties satisfy the

requirements of the buy event. Whittemore et al. build up the event representation incre-

mentally using a combination of semantic property constraints and Discourse Representation

Theory.

The systems developed by Palmer et al. and Whittemore et al. are quite similar. They

both make use of semantic constraints on arguments, otherwise known as selectional prefer-

ences. Selectional preferences have received a significant amount of attention over the years,

with the work of Ritter et al. (2010) being some of the most recent. The model developed

in the current chapter uses a variety of selectional preference measures to identify implicit

arguments.

The implicit argument identification systems described above were not widely deployed

due to their reliance on hand-coded, domain-specific knowledge that is difficult to create.

Much of this knowledge targeted basic syntactic and semantic constructions that now have

robust statistical models (e.g., those created by Charniak and Johnson (2005) for syntax

and Punyakanok et al. (2005) for semantics). With this information accounted for, it is

easier to approach the problem of implicit argumentation. Below, I describe a series of

recent investigations that have led to a surge of interest in statistical implicit argument

identification.

71

Fillmore and Baker (2001) provided a detailed case study of FrameNet frames as a basis

for understanding written text (see page 13 for the details of FrameNet). In their case study,

Fillmore and Baker manually build up a semantic discourse structure by hooking together

frames from the various sentences. In doing so, the authors resolve some implicit arguments

found in the discourse. This process is an interesting step forward; however, the authors did

not provide concrete methods to perform the analysis automatically.

Nielsen (2004) developed a system that is able to detect the occurrence of verb phrase

ellipsis. Consider the following sentences:

(4.19) John kicked the ball.

(4.20) Bill [did], too.

The bracketed text in Example 4.20 is a placeholder for the verb phrase kicked the ball in

Example 4.20, which has been elided (i.e., left out). Thus, in 4.20, Bill can be thought

of as an implicit argument to some kicking event that is not mentioned. If one resolved

the verb phrase ellipsis, then the implicit argument would be recovered. Nielsen created

a system able to detect the presence of ellipses, producing the bracketing in 4.20. Ellipsis

resolution (i.e., figuring out precisely which verb phrase is missing) was described by Nielsen

(2005). Implicit argument identification for nominal predicates is complementary to verb

phrase ellipsis resolution: both work to make implicit information explicit.

Burchardt et al. (2005) suggested that frame elements from various frames in a text could

be linked to form a coherent discourse interpretation (this is similar to the idea described by

Fillmore and Baker (2001)). The linking operation causes two frame elements to be viewed as

coreferent. Burchardt et al. propose to learn frame element linking patterns from observed

data; however, the authors did not implement and evaluate such a method. Building on the

work of Burchardt et al., this dissertation presents a model of implicit arguments that uses

a quantitative analysis of naturally occurring coreference patterns.

The previous chapter, a condensed version of which was published by Gerber et al.

(2009), demonstrated the importance of filtering out nominal predicates that take no local

72

arguments. This approach leads to appreciable gains for certain nominals. However, the

approach does not attempt to actually recover implicit arguments.

Most recently, Ruppenhofer et al. (2009) conducted SemEval Task 10, “Linking Events

and Their Participants in Discourse”, which evaluated implicit argument identification sys-

tems over a common test set. The task organizers annotated implicit arguments across

entire passages, resulting in data that cover many distinct predicates, each associated with

a small number of annotated instances. As described by Ruppenhofer et al. (2010), three

submissions were made to the competition, with two of the submissions attempting the im-

plicit argument identification part of the task. Chen et al. (2010) extended a standard SRL

system by widening the candidate window to include constituents from other sentences. A

small number of features based on the FrameNet frame definitions were extracted for these

candidates, and prediction was performed using a log-linear model. Tonelli and Delmonte

(2010) also extended a standard SRL system. Both of these systems achieved an implicit

argument F1 score of less than 0.02. The organizers and participants appear to agree that

training data sparseness was a significant problem. This is likely the result of the annotation

methodology: entire documents were annotated, causing each predicate to receive a very

small number of annotated examples.

In contrast to the evaluation described by Ruppenhofer et al. (2010), the study presented

in this chapter focused on a select group of nominal predicates. To help prevent data sparse-

ness, the size of the group was small, and the predicates were carefully chosen to maximize

the observed frequency of implicit argumentation. I annotated a large number of implicit

arguments for this group of predicates with the goal of training models that generalize well

to the testing data. In the following section, I describe the implicit argument annotation

process and resulting dataset.

73

4.3 Empirical analysis

As shown in the previous section, the existence of implicit arguments has been recognized

for quite some time. However, this type of information was not formally annotated until

Ruppenhofer et al. (2009) conducted their SemEval task on implicit argument identification.

There are two reasons why I chose to create an independent dataset for implicit arguments.

The first reason is the aforementioned sparsity of the SemEval dataset. The second reason is

that the SemEval dataset is not built on top of the Penn TreeBank, which is the gold-standard

syntactic base for all work in this dissertation. Working on top of the Penn TreeBank makes

the annotations immediately compatible with PropBank, NomBank, and a host of other

resources that also build on the TreeBank.

4.3.1 Data annotation

Predicate selection

Because implicit arguments were a new subject of annotation in the field, it was important

to focus in on a select group of nominal predicates. Predicates in this group were required

to meet the following criteria:

1. A selected predicate must have an unambiguous role set. This criterion corresponds

roughly to an unambiguous semantic sense and is motivated by the need to separate

the implicit argument behavior of a predicate from its semantic meaning.

2. A selected predicate must be derived from a verb. This dissertation focuses primarily

on the event structure of texts. Nominal predicates derived from verbs denote events,

but there are other, non-eventive predicates in NomBank (e.g., the partitive %). This

criterion also implies that the annotated predicates have correlates in PropBank with

semantically compatible role sets.

74

3. A selected predicate should have a high frequency in the Penn TreeBank corpus. This

criterion ensures that the evaluation results say as much as possible about the event

structure of the underlying corpus. I calculated frequency with basic counting over

morphologically normalized predicates (i.e., bids and bid are counted as the same

predicate).

4. A selected predicate should express many implicit arguments. Of course, this can only

be estimated ahead of time because no data exist to compute it. To estimate this value

for a predicate p, I first calculated Np, the average number of roles expressed by p in

NomBank. I then calculated Vp, the average number of roles expressed by the verb

form of p in PropBank. I hypothesized that the difference Vp −Np gives an indication

of the number of implicit arguments that might be present in the text for a nominal

instance of p. The motivation for this hypothesis is as follows. Most verbs must be

explicitly accompanied by specific arguments in order for the resulting sentence to be

grammatical. The following sentences are ungrammatical if the parenthesized portion

is left out:

(4.21) *John loaned (the money to Mary).

(4.22) *John invested (his money).

Examples 4.21 and 4.22 indicate that certain arguments must explicitly accompany

loan and invest. In nominal form, these predicates can exist without such arguments

and still be grammatical:

(4.23) John’s loan was not repaid.

(4.24) John’s investment was huge.

Note, however, that Examples 4.23 and 4.24 are not reasonable things to write unless

the missing arguments were previously mentioned in the text. This is precisely the

type of noun that should be targeted for implicit argument annotation. The value of

Vp −Np thus quantifies the desired behavior.

75

Predicates were filtered according to criteria 1 and 2 and ranked according to the product of

3 and 4. I then selected the top ten, which are shown in the first column of Table 4.1. The

role sets (i.e., argument definitions) for these predicates can be found in Appendix Section

A.4 on page 137.

Annotation procedure

I annotated implicit arguments for instances of the ten selected nominal predicates. The an-

notation process proceeded document-by-document. For a document d, I annotated implicit

arguments as follows:

1. Select from d all non-proper singular and non-proper plural nouns that are morpho-

logically related to the ten predicates in Table 4.1.

2. By design, each selected noun has an unambiguous role set. Thus, given the arguments

supplied for a noun by NomBank, one can consult the noun’s role set to determine

which arguments are missing.3

3. For each missing argument position, search the current sentence and all preceding

sentences for a suitable implicit argument. Annotate all suitable implicit arguments

in this window.

4. As often as possible, match the extent of an implicit argument to the extent of an argu-

ment given by either PropBank or NomBank. This was done to maintain compatibility

with these and other resources.

In the remainder of this dissertation, I will use iargn to refer to an implicit argument

position n. I will use argn to refer to an argument provided by PropBank or NomBank. I

will use p to mark predicate instances. Below, I give an example annotation for an instance

of the investment predicate:

3See page 137 for the list of role sets used in this study.

76

Pre-annotation Post-annotation
Role avg. (SD)

Pred. # Pred. # Imp./pred. Role coverage (%) Noun Verb Role coverage (%) Noun role avg. (SD)

bid 88 1.4 26.9 0.8 (0.6) 2.2 (0.6) 73.9 2.2 (0.9)
sale 184 1.0 24.2 1.2 (0.7) 2.0 (0.7) 44.0 2.2 (0.9)
loan 84 1.0 22.1 1.1 (1.1) 2.5 (0.5) 41.7 2.1 (1.1)
cost 101 0.9 26.2 1.0 (0.7) 2.3 (0.5) 47.5 1.9 (0.6)
plan 100 0.8 30.8 1.2 (0.8) 1.8 (0.4) 50.0 2.0 (0.4)
investor 160 0.7 35.0 1.1 (0.2) 2.0 (0.7) 57.5 1.7 (0.6)
price 216 0.6 42.5 1.7 (0.5) 1.7 (0.5) 58.6 2.3 (0.6)
loss 104 0.6 33.2 1.3 (0.9) 2.0 (0.6) 48.1 1.9 (0.7)
investment 102 0.5 15.7 0.5 (0.7) 2.0 (0.7) 33.3 1.0 (1.0)
fund 108 0.5 8.3 0.3 (0.7) 2.0 (0.3) 21.3 0.9 (1.2)

Overall 1,247 0.8 28.0 1.1 (0.8) 2.0 (0.6) 47.8 1.9 (0.9)
1 2 3 4 5 6 7 8

Table 4.1: Annotation data analysis. Columns are defined as follows: (1) the annotated predicate, (2) the number of predicate
instances that were annotated, (3) the average number of implicit arguments per predicate instance, (4) of all roles for all
predicate instances, the percentage filled by NomBank arguments, (5) the average number of NomBank arguments per predicate
instance, (6) the average number of PropBank arguments per instance of the verb form of the predicate, (7) of all roles for
all predicate instances, the percentage filled by either NomBank or implicit arguments, (8) the average number of combined
NomBank/implicit arguments per predicate instance. SD indicates the standard deviation with respect to an average.

77

(4.25) [iarg0 Participants] will be able to transfer [iarg1 money] to [iarg2 other investment
funds]. The [p investment] choices are limited to [iarg2 a stock fund and a
money-market fund].

NomBank does not associate this instance of investment with any arguments; however, one

can easily identify the investor (iarg0), the thing invested (iarg1), and two mentions of the

thing invested in (iarg2) within the surrounding discourse.

Of course, not all implicit argument decisions are as easy as those in Example 4.25.

Consider the following contrived example:

(4.26) People in other countries could potentially consume large amounts of [iarg0? Coke].

(4.27) Because of this, there are [p plans] to expand [iarg0 the company’s] international
presence.

Example 4.27 contains one mention of the iarg0 (the agentive planner). It might be tempting

to also mark Coke in Example 4.26 as an additional iarg0; however, the only reasonable

interpretation of Coke in 4.26 is as a consumable fluid. Fluids cannot plan things, so this

annotation should not be performed. This is a case of metonymy between Coke as a company

and Coke as a drink. In all such cases, I inspected the implied meaning of the term when

deciding whether to apply an implicit argument label.

Lastly, it should be noted that I placed no restrictions on embedded arguments. Prop-

Bank and NomBank do not allow argument extents to overlap. Traditional SRL systems

such as the one created by Punyakanok et al. (2008) model this constraint explicitly to arrive

at the final label assignment; however, as the following example shows, this constraint should

not be applied to implicit arguments:

(4.28) Currently, the rules force [iarg0 executives, directors and other corporate insiders]
to report purchases and [p sales] [arg1 of [iarg0 their] companies’ shares] within
about a month after the transaction.

Despite its embedded nature, the pronoun their in Example 4.28 is a perfectly reasonable

implicit argument (the seller) for the marked predicate. Systems should be required to

identify such arguments.

78

Inter-annotator agreement

Implicit argument annotation is a difficult task because it combines the complexities of

traditional SRL annotation with those of coreference annotation. To assess the reliability of

the annotation process described above, I compared my annotations to those provided by an

undergraduate linguistics student who, after a brief training period, re-annotated a portion

of the dataset. For each missing argument position, the student was asked to identify the

textually closest acceptable implicit argument within the current and preceding sentences.

The argument position was left unfilled if no acceptable constituent could be found. For

a missing argument position iargn, the student’s annotation agreed with my own if both

identified the same implicit argument or both left iargn unfilled. The student annotated 480

of the 1,247 predicate instances shown in Table 4.1.

I computed Cohen’s chance-corrected kappa statistic for inter-annotator agreement (Co-

hen, 1960), which is based on two quantities:

po = observed probability of agreement

pc = probability of agreement by chance

The quantity 1−pc indicates the probability of a chance disagreement. The quantity po−pc

indicates the probability of agreement that cannot be accounted for by chance alone. Finally,

Cohen defines κ as follows:

κ =
po − pc
1− pc

Cohen’s kappa thus gives the probability that a chance-expected disagreement will not occur.

When agreement is perfect, κ = 1. If the observed agreement is less than the expected chance

agreement, then κ will be negative. As noted by Di Eugenio and Glass (2004), researchers

have devised different scales to assess κ. Many NLP researchers use the scale created by

79

Krippendorff (1980):

κ < 0.67 low agreement

0.67 <= κ < 0.8 moderate agreement

κ >= 0.8 strong agreement

However, Di Eugenio and Glass also note that this scale has not been rigorously defended,

even by Krippendorff himself.

For the implicit argument annotation data, observed and chance agreement are defined

as follows:

po =

∑

iargn

agree(iargn)

N

pc =

∑

iargn

PA(n) ∗ PB(n) ∗ random agree(iargn) + (1− PA(n)) ∗ (1− PB(n))

N
(4.29)

where N is the total number of missing argument positions that need to be annotated, agree

is equal to 1 if the two annotators agreed on iargn and 0 otherwise, PA(n) and PB(n) are the

observed prior probabilities that annotators A and B assign a label of n, and random agree

is equal to the probability that both annotators would select the same implicit argument

for iargn when choosing randomly from the discourse. In Equation 4.29, terms to the right

of + denote the probability that the two annotators agreed on iargn because they did not

identify a filler for it.

Using the above values for po and pc, Cohen’s kappa indicated an agreement of 64.3%.

According to Krippendorff’s scale, this value is borderline between low and moderate agree-

ment. Possible causes for this low agreement include the brief training period for the lin-

guistics student and the sheer complexity of the annotation task. If one considers only

those argument positions for which both annotators actually located an implicit filler, Co-

80

hen’s kappa indicates an agreement of 93.1%. This shows that much of the disagreement

concerned the question of whether a filler was present. Having agreed that a filler was

present, the annotators consistently selected the same filler. The student’s annotations were

only used to compute agreement. I performed all training and evaluation using randomized

cross-validation over the annotations I created.

4.3.2 Annotation analysis

I carried out the annotation process described above on the standard training (2-21), de-

velopment (24), and testing (23) sections of the Penn TreeBank. Table 4.1 on page 77

summarizes the results. Below, I highlight key pieces of information found in this table.

Implicit arguments are frequent

Column three of Table 4.1 shows that most predicate instances are associated with at least

one implicit argument. Implicit arguments vary across predicates, with bid exhibiting (on

average) more than one implicit argument per instance versus the 0.5 implicit arguments per

instance of the investment and fund predicates. It turned out that the latter two predicates

have unique senses that preclude implicit argumentation (more on this in Section 4.6).

Implicit arguments create fuller event descriptions

Role coverage for a predicate instance is equal to the number of filled roles divided by

the number of roles in the predicate’s role set. Role coverage for the marked predicate in

Example 4.25 (p. 78) is 0/3 for NomBank-only arguments and 3/3 when the annotated

implicit arguments are also considered. Returning to Table 4.1, the fourth column gives

role coverage percentages for NomBank-only arguments. The seventh column gives role

coverage percentages when both NomBank arguments and the annotated implicit arguments

are considered. Overall, the addition of implicit arguments created a 71% relative (20-point

absolute) gain in role coverage across the 1,247 predicate instances that I annotated.

81

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 18 19 25 27 28 30 43 46

Im
pl

ic
it

 a
rg

um
en

ts
 r

es
ol

ve
d

Sentences prior

Figure 4.1: Location of implicit arguments. Of all implicitly filled argument positions, the
y-axis indicates the percentage that are filled at least once within the number of sentences
indicated by the x-axis (multiple fillers may exist for the same position).

When I introduced the NomBank resource, I observed that approximately 87% of nom-

inal predicate instances do not have a corresponding verbal form present in the document.

This indicates that much of the information contained in NomBank is not redundant with

PropBank. Because most of the NomBank predicates are novel, the implicit arguments

associated with these predicates should also contribute novel information.

The Vp −Np predicate selection metric behaves as desired

The predicate selection method used the Vp−Np metric to identify predicates whose instances

are likely to take implicit arguments. Column five in Table 4.1 shows that (on average)

nominal predicates have 1.1 arguments in NomBank, this compared to the 2.0 arguments

per verbal form of the predicates in PropBank (compare columns five and six). I hypothesized

that this difference might indicate the presence of approximately one implicit argument per

predicate instance. This hypothesis is confirmed by comparing columns six and eight: when

82

considering implicit arguments, many nominal predicates express approximately the same

number of arguments on average as their verbal counterparts.

Most implicit arguments are nearby

In addition to the analyses described above, I examined the location of implicit arguments

in the discourse. Figure 4.1 shows that approximately 56% of the implicit arguments in

our data can be resolved within the sentence containing the predicate. Approximately 90%

are found within the previous three sentences. The remaining implicit arguments require

up to forty-six sentences for resolution. These observations are important; they show that

searching too far back in the discourse is likely to produce many false positives without a

significant increase in recall. Section 4.6 discusses additional implications of this skewed

distribution.

4.4 Implicit argument model

4.4.1 Model formulation

Given a nominal predicate instance p with a missing argument position iargn, the task

is to search the surrounding discourse for a constituent c that fills iargn. The implicit

argument model conducts this search over all constituents that are marked with a core

argument label (arg0, arg1, etc.) associated with a NomBank or PropBank predicate. Thus,

the model assumes a pipeline organization in which a document is initially analyzed by

traditional verbal and nominal SRL systems. The core arguments from this stage then

become candidates for implicit argumentation. Adjunct arguments are excluded.

A candidate constituent c will often form a coreference chain with other constituents in

the discourse. Consider the following abridged sentences, which are adjacent in their Penn

TreeBank document:

(4.30) [Mexico] desperately needs investment.

83

(4.31) Conservative Japanese investors are put off by [Mexico’s] investment regulations.

(4.32) Japan is the fourth largest investor in [c Mexico], with 5% of the total
[p investments].

NomBank does not associate the labeled instance of investment with any arguments, but

it is clear from the surrounding discourse that constituent c (referring to Mexico) is the

thing being invested in (the iarg2). When determining whether c is the iarg2 of invest-

ment, one can draw evidence from other mentions in c’s coreference chain. Example 4.30

states that Mexico needs investment. Example 4.31 states that Mexico regulates investment.

These propositions, which can be derived via traditional SRL analyses, should increase our

confidence that c is the iarg2 of investment in Example 4.32.

Thus, the unit of classification for a candidate constituent c is the three-tuple
〈

p, iargn, c
′
〉

,

where c′ is a coreference chain comprising c and its coreferent constituents.4 I defined a bi-

nary classification function Pr(+|
〈

p, iargn, c
′
〉

) that predicts the probability that the entity

referred to by c fills the missing argument position iargn of predicate instance p. In the

remainder of this dissertation, I will refer to c as the primary filler, differentiating it from

other mentions in the coreference chain c′. In the following section, I present the feature set

used to represent each three-tuple within the classification function.

4.4.2 Model features

Table A.4 (p. 140) lists all features used by the model described in this chapter. As shown,

these features are quite different from those used in previous work to identify semantic argu-

ments in the traditional nominal SRL setting (see Chapter 2 and Gerber et al. (2009)). This

difference is due to the fact that syntactic information - a crucial part of traditional SRL -

is not very informative for the implicit argument task, which is primarily a semantic phe-

nomenon. Below, I give detailed explanations for features that are not sufficiently explained

in Table A.4.

4I used OpenNLP for coreference identification: http://opennlp.sourceforge.net

84

Feature 9 captures the semantic relationship between predicate-argument positions by

examining paths between frame elements in FrameNet. SemLink5 maps PropBank argument

positions to their FrameNet frame elements. For example, the arg1 position of sell maps to

the Goods frame element of the Sell frame. NomBank argument positions (e.g., arg1 of sale)

can be mapped to FrameNet by first converting the nominal predicate to its verb form. By

mapping predicate-argument structures into FrameNet, one can take advantage of the rich

network of frame-frame relations provided by the resource (see Section 2.2.2 on page 13 for

an example).

The value of Feature 9 has the following general form:

(4.33) Frame1.FE1
Relation1−−−−−−−→ Frame2.FE2

Relation2−−−−−−−→ . . .
Relationn−1
−−−−−−−−−−→ Framen.FEn

This path describes how the frame elements at either end are related. For example, consider

the frame element path between the arg1 of sell and the arg1 of buy, both of which denote

the goods being transferred:

(4.34) Sell.Goods
Inherits
−−−−−→ Giving.Theme

Causes
−−−−→ Getting.Theme

Inherited by
−−−−−−−−→ Buy.Goods

This path can be paraphrased as follows: things that are sold (Sell.Goods) are part of a

more general giving scenario (Giving.Theme) that can also be viewed as a getting scenario

(Getting.Theme) in which the buyer receives something (Buy.Goods). This complex world

knowledge is represented compactly using the relationships defined in FrameNet. In my

experiments, I searched all possible frame element paths of length five or less that use the

following relationships:

• Causative-of

• Inchoative-of

• Inherits

• Precedes

• Subframe-of

5http://verbs.colorado.edu/semlink

85

Feature 9 is helpful in situations such as the following (contrived):

(4.35) Consumers bought many [c cars] this year at reduced prices.

(4.36) [p Sales] are expected to drop when the discounts are eliminated.

In Example 4.36 we are looking for the iarg1 (thing sold) of sale. The path shown in

Example 4.34 indicates quite clearly that the candidate cars from Example 4.35, being the

entity purchased, is a suitable filler for this position.

Lastly, note that the value for Feature 9 is the actual path instead of a numeric value.

When c forms a coreference chain of multiple elements, this feature can be instantiated using

multiple values (i.e., paths). Ultimately, these instantiations are binarized into the LibLinear

input format, so the existence of multiple feature values does not pose a problem.

Feature 11 checks whether two predicate-argument positions have the same thematic

role and reside in the same VerbNet class. As described in Section 2.2.2 (p. 15), VerbNet is

a lexicon of verb classes. Each class contains verbs that are semantically related in addition

to a set of thematic roles used for all verbs in the class. The classes are arranged into an

inheritance hierarchy. An example class is shown below:

54.4 appraise, approximate, price . . . Thematic roles: Agent, Theme, Value

Here, the dot notation 54.4 should be viewed as a Gorn address (Gorn, 1967) to the verb

class within the VerbNet hierarchy (not shown), which is tree-structured. Feature 11 uses

these classes to identify implicit arguments in situations such as the following (contrived):

(4.37) John appraised [c the house].

(4.38) [arg0 He] determined a [p price] that was fair.

In Example 4.38 we are looking for the iarg1 (the valued item) of price. In VerbNet terms,

we are looking for the 54.4.Theme argument. Candidate c is the arg1 of appraise, which

maps to the VerbNet thematic role 54.4.Theme. A simple identity check allows us to fill

the iarg1 of price with the house. Feature 11 is a boolean feature indicating whether this

identify check is satisfied.

86

Feature 13 is inspired by the work of Chambers and Jurafsky (2008), who investigated

unsupervised learning of narrative event sequences using pointwise mutual information (PMI)

between syntactic positions. I extended this PMI score to semantic arguments instead of

syntactic dependencies. Thus, the value for this feature is computed as follows:

pmi(〈p1, argi〉 ,
〈

p2, argj
〉

) = log
Pcoref pmi(〈p1, argi〉 ,

〈

p2, argj
〉

)

Pcoref pmi(〈p1, argi〉 , ∗)Pcoref pmi(
〈

p2, argj
〉

, ∗)
(4.39)

I computed Equation 4.39 using carefully selected subsets of the Gigaword corpus (Graff,

2003). I first indexed the entire Gigaword corpus (approximately 106 documents) using

the Lucene search engine.6 I then queried this index using the simple boolean query “p1

AND p2”, which retrieved documents relevant to the predicates considered in Equation

4.39. I used the verbal SRL system of Punyakanok et al. (2008) and the nominal SRL

system of Gerber et al. (2009) to extract arguments from these documents, and I identified

coreferent arguments with OpenNLP. Assuming the resulting data has N coreferential pairs

of arguments, the numerator in Equation 4.39 is defined as follows:

Pcoref pmi(〈p1, argi〉 ,
〈

p2, argj
〉

) =
#coref(〈p1, argi〉 ,

〈

p2, argj
〉

)

N
(4.40)

In Equation 4.40, #coref returns the number of times the given argument positions are

found to be coreferential. In order to penalize low-frequency observations with artificially

high scores, I used the simple discounting method described by Pantel and Ravichandran

(2004) resulting in the following modification of Equation 4.40:

x = #coref(〈p1, argi〉 ,
〈

p2, argj
〉

)

Pcoref pmi(〈p1, argi〉 ,
〈

p2, argj
〉

) =
x

N
∗

x

x+ 1
(4.41)

Thus, if two argument positions are rarely observed as coreferent, the discount factor x
x+1

6http://lucene.apache.org

87

Argument position #coref with loss.arg1 Raw PMI score Discounted PMI score

win.arg1 37 5.68 5.52
gain.arg1 10 5.13 4.64
recoup.arg1 2 6.99 4.27
steal.arg1 4 5.18 4.09
possess.arg1 3 5.10 3.77

Table 4.2: Targeted PMI scores between the arg1 of loss and other argument positions. The
second column gives the number of times that the argument position in the row is found to
be coreferent with the arg1 of the loss predicate. A higher value in this column results in a
lower discount factor. See Equation 4.41 for the discount factor.

will be small, reducing the PMI score. The denominator in Equation 4.39 is computed with

a similar discount factor:

x1 = #coref(〈p1, argi〉 , ∗)

x2 = #coref(
〈

p2, argj
〉

, ∗)

Pcoref pmi(〈p1, argi〉 , ∗)Pcoref pmi(
〈

p2, argj
〉

, ∗) =
x1x2

(N2)
min(x1,x2)

min(x1,x2)+1

(4.42)

Thus, if either of the argument positions is rarely observed as coreferent with other argu-

ment positions, the discount factor
min(x1,x2)

min(x1,x2)+1
will be small, making the denominator of

Equation 4.39 large, reducing the PMI score. In general, the discount factors reduce the

PMI score for argument positions that are not frequent in the corpus.

I refer to Equation 4.39 as a targeted PMI score because it relies on data that have been

chosen specifically for the calculation at hand. Table 4.2 shows a sample of targeted PMI

scores between the arg1 of loss and other argument positions. There are two things to note

about this data: first, the argument positions listed are all naturally related to the arg1

of loss. Second, the discount factor changes the final ranking by moving the less frequent

recoup predicate from a raw rank of 1 to a discounted rank of 3, preferring instead the more

common win predicate.

88

The information in Table 4.2 is useful in situations such as the following (contrived):

(4.43) Mary won [c the tennis match].

(4.44) [arg0 John’s] [p loss] was not surprising.

In Example 4.44 we are looking for the iarg1 of loss. The information in Table 4.2 strongly

suggests that the marked candidate c, being the arg1 of win, would be a suitable filler for this

position. Lastly, note that if c were to form a coreference chain with other constituents, it

would be possible to calculate multiple PMI scores. In such cases, the targeted PMI feature

uses the maximum of all scores.

Feature 23 takes on a value equal to the concatenation of p.iargn (the missing argument

position) and pf .argf , which is the argument position of the candidate c. To reduce data

sparsity, this feature generalizes predicates and argument positions to their VerbNet classes

and thematic roles using SemLink. For example, consider the following Penn TreeBank

sentences:

(4.45) [arg0 The two companies] [p produce] [arg1 market pulp, containerboard and white
paper]. The goods could be manufactured closer to customers, saving [p shipping]
costs.

Here we are trying to fill the iarg0 of shipping. Let c′ contain a single mention, The

two companies, which is the arg0 of produce. Feature 23 is instantiated with a value of

26.4.Agent → 11.1.1.Agent, where 26.4 and 11.1.1 are the VerbNet classes that contain

produce and ship, respectively. This feature captures general properties of events; in the

example above, it describes the tendency of producers to also be shippers. Similarly to other

non-numeric features, Feature 23 is instantiated once for each element of c′, allowing the

model to consider information from multiple mentions of the same entity.

Feature 27 captures the selectional preference of a predicate p for the elements in c′

with respect to argument position iargn. In general, selectional preference scores denote

the strength of attraction for a predicate-argument position to a particular word or class

of words. To calculate the value for this feature, I used the information-theoretic model

89

proposed by Resnik (1996), which is defined as follows:

Pref(p, argn, s ∈WordNet) =

Pr(s|p, argn)log
Pr(s|p, argn)

Pr(s)

Z
(4.46)

Z =
∑

si∈WordNet

Pr(si|p, argn)log
Pr(si|p, argn)

Pr(si)

In Equation 4.46, Pref calculates the preference for a WordNet synset s in the given

predicate-argument position. Prior and posterior probabilities for s were calculated by ex-

amining the arguments present in the Penn TreeBank combined with 20,000 documents

randomly selected from the Gigaword corpus. PropBank and NomBank supplied arguments

for the Penn TreeBank, and I used the aforementioned verbal and nominal SRL systems to

extract arguments from Gigaword. The head word for each argument was mapped to its

WordNet synsets, and counts for these synsets were updated as suggested by Resnik. Two

things should be noted about Equation 4.46. First, WordNet contains only those synsets

that were observed in the training data. Second, the equation is defined as zero for any

synset s that is in WordNet but not observed in the training data.

Equation 4.46 computes the preference of a predicate-argument position for a synset;

however, a single word can map to multiple synsets if its sense is ambiguous. Given a word

w and its synsets s1, s2, . . . , sn, the preference of a predicate-argument position for w is

defined as follows:

Pref(p, argn, w) =

∑

si
Pref(p, argn, si)

n
(4.47)

That is, the preference for a word is computed as the average preference across all possible

synsets. The final value for Feature 23 is computed using the word-based preference score

defined in Equation 4.47. Given a candidate implicit argument c′ comprising the primary

90

Argument Raw coreference probability Discounted coreference probability

rethink.arg1 3/6 = 0.5 0.32
define.arg1 2/6 = 0.33 0.19
redefine.arg1 1/6 = 0.17 0.07

Table 4.3: Coreference probabilities between reassess.arg1 and other argument positions.
See Equation 4.49 for details on the discount factor.

filler c and its coreferent mentions, the following value is obtained:

Pref(p, iargn, c
′) = min

f∈c′
Pref(p, argn, f) (4.48)

In Equation 4.48, each f is the syntactic head of a constituent from c′. The value of Equation

4.48 is in (−∞,+∞), with larger values indicating higher preference for c as the implicit

filler of position iargn.

Feature 33 implements the suggestion of Burchardt et al. (2005) that implicit argu-

ments might be identified using observed coreference patterns in a large corpus of text. My

implementation of this feature uses the same data used for the previous feature: arguments

extracted from the Penn TreeBank and 20,000 documents randomly selected from Gigaword.

Additionally, I identified coreferent arguments in this corpus using OpenNLP. Using this in-

formation, I calculated the probability of coreference between any two argument positions.

As with Feature 13, I used discounting to penalize low-frequency observations, producing an

estimate of coreference probability as follows:

Corefjoint = #coref(〈p1, argi〉 ,
〈

p2, argj
〉

)

Corefmarginal = #coref(〈p1, argi〉 , ∗)

Pcoref (〈p1, argi〉 ,
〈

p2, argj
〉

) =
Corefjoint

Corefmarginal
∗

Corefjoint
Corefjoint + 1

∗
Corefmarginal

Corefmarginal + 1

(4.49)

91

For example, I observed that the arg1 for predicate reassess (the entity reassessed) is

coreferential with six other constituents in the corpus. Table 4.3 lists the argument positions

with which this argument is coreferential along with the raw and discounted probabilities.

The discounted probabilities can help identify the implicit argument in the following con-

trived examples:

(4.50) Senators must rethink [c their strategy for the upcoming election].

(4.51) The [p reassessment] must begin soon.

In Example 4.51 we are looking for the iarg1 of reassess. Table 4.3 tells us that the marked

candidate - an arg1 to rethink - is likely to fill this missing argument position. When c

forms a coreference chain with other constituents, this feature uses the minimum coreference

probability between the implicit argument position and elements in the chain.

Feature 59 is similar to Feature 9 (the frame element path) except that it captures the

distance of the relationship between predicate-argument positions. Consider the following

VerbNet classes:

13.2 lose, refer, relinquish, remit, resign, restore, gift, hand out, pass out, shell out

13.5.1.1 earn, fetch, cash, gain, get, save, score, secure, steal

The path from earn to lose in the VerbNet hierarchy is as follows:

(4.52) 13.5.1.1 ↑ 13.5.1 ↑ 13.5 ↑ 13 ↓ 13.2

The path in Example 4.52 is four links long.

Intuitively, earn and lose are related to each other - they describe two possible outcomes

of a financial transaction. The VerbNet path quantifies this intuition, with shorter paths

indicating closer relationships. This information can be used to identify implicit arguments

in situations such as the following from the Penn TreeBank (abridged):

(4.53) [c Monsanto Co.] is expected to continue reporting higher [p earnings].

(4.54) The St. Louis-based company is expected to report that [p losses] are narrowing.

92

In Example 4.54 we are looking for the iarg0 (i.e., entity losing something) for the loss

predicate. According to SemLink, this argument position maps to the 13.2.Agent role in

VerbNet. In Example 4.53, we find the candidate implicit argument Monsanto Co., which

is the arg0 to the earning predicate in that sentence. This argument position maps to

the 13.5.1.1.Agent role in VerbNet. These two VerbNet roles are related according to the

VerbNet path in Example 4.52, producing a value for Feature 59 of four. This relatively

small value supports an inference of Monsanto Co. as the iarg0 for loss.

It is important to note that a VerbNet path only exists when the thematic roles are iden-

tical. For example, a VerbNet path would not exist between 13.5.1.1.Theme and 13.2.Agent

because the roles are not compatible. Lastly, note that c might form a coreference chain

c′ with multiple elements. In such a situation, the minimum path length is selected as the

value for this feature.

Feature 67 identifies the discourse relation (if any) that holds between the candidate

constituent c and the filled predicate p. Consider the following example:

(4.55) [iarg0 SFE Technologies] reported a net loss of $889,000 on sales of $23.4 million.

(4.56) That compared with an operating [p loss] of [arg1 $1.9 million] on sales of $27.4
million in the year-earlier period.

In this case, a comparison discourse relation (signaled by the underlined text) holds between

the first and sentence sentence. The coherence provided by this relation encourages an

inference that identifies the marked iarg0 (the loser). The value for this feature is the name

of the discourse relation (e.g., comparison) whose two discourse units cover the candidate

(iarg0 above) and filled predicate (p above). Throughout my investigation, I used gold-

standard discourse relations provided by the Penn Discourse TreeBank (Prasad et al., 2008).

Filler-independent features are those that do not depend on elements of c′. These

features are usually specific to a particular predicate. Consider the following example:

(4.57) Statistics Canada reported that its [arg1 industrial-product] [p price] index dropped
2% in September.

93

The “[p price] index” collocation is rarely associated with an arg0 in NomBank or with an

iarg0 in the annotated data (both argument positions denote the seller). Feature 25 accounts

for this type of behavior by encoding the syntactic head of p’s right sibling. The value of

Feature 25 for Example 4.57 is price:index. Contrast this with the following:

(4.58) [iarg0 The company] is trying to prevent further [p price] drops.

The value of Feature 25 for Example 4.58 is price:drop. This feature captures an important

distinction between the two uses of price: the former cannot easily take an iarg0, whereas

the latter can. Many other features in Table A.4 depend only on the predicate and have

values that take the form predicate:feature value.

4.4.3 Post-processing for final output selection

Without loss of generality, assume there exists a predicate instance p with two missing

argument positions iarg0 and iarg1. Also assume that there are three candidate fillers c1, c2,

and c3 within the candidate window. The discriminative model will calculate the probability

that each candidate fills each missing argument position. This is depicted graphically below:

iarg0 iarg1
c1 0.3 0.4
c2 0.1 0.05
c3 0.6 0.5

There exist two constraints on possible assignments of candidates to positions. First, a

candidate may not be assigned to more than one missing argument position. To enforce this

constraint, only the top-scoring cell in each row is retained, leading to the following:

iarg0 iarg1

c1 - 0.4
c2 0.1 -
c3 0.6 -

Second, a missing argument position can only be filled by a single candidate. To enforce this

constraint, only the top-scoring cell in each column is retained, leading to the following:

94

iarg0 iarg1
c1 - 0.4
c2 - -
c3 0.6 -

Having satisfied these constraints, a threshold t is imposed on the remaining cell proba-

bilities.7 Cells with probabilities below t are cleared. Assuming that t = 0.42, the final

assignment would be as follows:

iarg0 iarg1

c1 - -
c2 - -
c3 0.6 -

In this case, c3 fills iarg0 with probability 0.6 and iarg1 remains unfilled. The latter outcome

is desirable because not all argument positions have fillers that are present in the discourse.

4.4.4 Computational complexity

In a practical setting, the implicit argument model described above would take as input the

output of the end-to-end nominal SRL system described in Chapter 2. Thus, the implicit

argument model has a best-case performance of O(s3) owing to the cubic time syntactic

parser. This case is achieved when the linear time predicate identifier does not identify any

predicate nodes. In this case, there are no argument nodes to be used as candidate implicit

arguments, and the implicit argument model will not perform any work in addition to that

performed by the nominal SRL system. The best case, however, is rare. Sentences from

documents in the news genre almost always have predicates and arguments. Thus, the best

case O(s3) is not likely to be very informative.

In general, it is difficult to characterize the performance of the implicit argument model

7The threshold t is learned from the training data. The learning mechanism is explained
in the following section.

95

accurately. This is largely because many of the features used in the model required a signif-

icant amount of data pre-processing before the evaluation experiments were conducted (see,

for example, Feature 13 on page 84). In a practical setting, this pre-processing would not

be possible and its associated cost would need to be incorporated into the runtime analysis.

This dissertation leaves an examination of this issue to future work.

4.5 Evaluation

Data

All evaluations in this chapter were performed using a randomized cross-validation configu-

ration. The 1,247 predicate instances were annotated document by document. In order to

remove any confounding factors caused by specific documents, I first randomized the anno-

tated predicate instances. Following this, I split the predicate instances evenly into ten folds

and used each fold as testing data for a model trained on the instances outside the fold.

During training, the system was provided with annotated predicate instances. The system

identified missing argument positions and generated a set of candidates for each such position.

A candidate three-tuple
〈

p, iargn, c
′
〉

was given a positive label if the candidate implicit

argument c (the primary filler) was annotated as filling the missing argument position.

During testing, the system was presented with each predicate instance and was required to

identify all implicit arguments for the predicate.

Throughout the evaluation process I assumed the existence of gold-standard PropBank

and NomBank information in all documents. This factored out errors from traditional SRL

and affected the following stages of system operation:

• Missing argument identification. The system was required to figure out which

argument positions were missing. Each of the ten predicates was associated with

an unambiguous role set, so determining the missing argument positions amounted

to comparing the existing local arguments with the argument positions listed in the

96

predicate’s role set. Because gold-standard local NomBank arguments were used, this

stage produced no errors.

• Candidate generation. As mentioned in Section 4.4.1, the set of candidates for

a missing argument position contains constituents labeled with a core PropBank or

NomBank argument label. Gold-standard PropBank and NomBank arguments were

used; however, it is not the case that all annotated implicit arguments are given a label

by PropBank or NomBank. Thus, despite the gold-standard argument labels, this stage

produced errors in which the system failed to generate a true-positive candidate for an

implicit argument position.

• Feature extraction. Many of the features described in Section 4.4.2 rely on underly-

ing PropBank and NomBank argument labels. For example, the top-ranked Feature 1

relates the argument position of the candidate to the missing argument position. In my

experiments, values for this feature contained no errors because gold-standard Prop-

Bank and NomBank labels were used. Note, however, that features such as Feature

13 were calculated using the output of an automatic SRL process that occasionally

produces errors.

For simplicity, I also assumed the existence of gold-standard syntactic structure when pos-

sible. Because most of the features used for implicit argument identification are semantic,

this assumption is not likely to have a significant impact on end performance.

Scoring metrics

I evaluated system performance using the methodology proposed by Ruppenhofer et al.

(2009). For each missing argument position of a predicate instance, the system was required

to either (1) identify a single constituent that fills the missing argument position or (2) make

no prediction and leave the missing argument position unfilled. I scored predictions using

97

the Dice coefficient, which is defined as follows:

Dice(Predicted, T rue) =
2 ∗ |Predicted

⋂

True|

|Predicted|+ |True|
(4.59)

Predicted is the set of tokens subsumed by the constituent predicted by the model as filling

a missing argument position. True is the set of tokens from a single annotated constituent

that fills the missing argument position. The model’s prediction receives a score equal to

the maximum Dice overlap across any one of the annotated fillers (AF):

Score(Predicted) = max
True∈AF

Dice(Predicted, T rue) (4.60)

Precision is equal to the summed prediction scores divided by the number of argument

positions filled by the model. Recall is equal to the summed prediction scores divided by

the number of argument positions filled in the annotated data. Predictions not covering the

head of a true filler were assigned a score of zero. For example, consider the following true

and predicted labelings:

(4.61) True labeling: [iarg0 Participants] will be able to transfer [iarg1 money] to [iarg2
other investment funds]. The [p investment] choices are limited to [iarg2 a stock fund
and a money-market fund].

(4.62) Predicted labeling: Participants will be able to transfer [iarg1 money] to other
[iarg2 investment funds]. The [p investment] choices are limited to a stock fund and a
money-market fund.

In the ground-truth (4.61) there are three implicit argument positions to fill. The hypothet-

ical system has made predictions for two of the positions. The prediction scores are shown

98

below:

Score(iarg1 money) = Dice(money,money) = 1

Score(iarg2 investment funds) = max{Dice(investment funds, other investment funds),

Dice(investment funds, a stock . . . money-market fund)}

= max{0.8, 0} = 0.8

Precision, recall, and F1 for the example predicate are calculated as follows:

Precision =
1.8

2
= 0.9

Recall =
1.8

3
= 0.6

F1 =
2 ∗ Precision ∗Recall

P recision+Recall
= 0.72

I calculated the F1 score for the entire testing fold by aggregating the counts used in the

above precision and recall calculations. Similarly, I aggregated the counts across all folds to

arrive at a single F1 score for the evaluated system.

I used a bootstrap resampling technique similar to those developed by Efron and Tibshi-

rani (1993) to test the significance of the performance difference between various systems.

Given a test pool comprising M missing argument positions iargn along with the predic-

tions by systems A and B for each iargn, I calculated the exact p-value of the performance

difference as follows:

1. Create r random resamples from M with replacement.

2. For each resample Ri, compute the system performance difference dRi
= ARi

− BRi

and store dri in D.

3. Find the largest symmetric interval [min,max] around the mean of D that does not

include zero.

99

4. The exact p-value equals the percentage of elements in D that are not in [min,max].

Experiments have shown that this simple approach provides accurate estimates of signif-

icance while making minimal assumptions about the underlying data distribution (Efron

and Tibshirani, 1993). Similar randomization tests have been used to evaluate information

extraction systems (Chinchor et al., 1993).

LibLinear model configuration

Given a testing fold Ftest and a training fold Ftrain, I performed feature selection using only

the information contained in Ftrain.
8 As part of the feature selection process, I conducted

a grid search for the best c and w LibLinear parameters, which govern the per-class cost of

mislabeling instances from a particular class (Fan et al., 2008). Setting per-class costs helps

counter the effects of class size imbalance, which is severe even when selecting candidates

from the current and previous few sentences (most candidates are negative). I ran the feature

selection and grid search processes independently for each Ftrain. As a result, the feature set

and model parameters are slightly different for each fold.9 For all folds, I used LibLinear’s

logistic regression solver and a candidate selection window of two sentences prior. As shown

in Figure 4.1 (p. 82), this window imposes a recall upper bound of approximately 85%. The

post-processing prediction threshold t was learned using a brute-force search that maximized

the system’s performance over the data in Ftrain.

Baseline and oracle models

I compared the supervised model described above with the simple baseline heuristic defined

below:

Fill iargn for predicate instance p with the nearest constituent in the two-sentence

candidate window that fills argn for a different instance of p, where all nominal

8See Appendix Section A.8 (p. 144) for the feature selection algorithm.
9See Table A.5 (p. 141) for a per-fold listing of features and model parameters.

100

predicates are normalized to their verbal forms.

The normalization allows, for example, an existing arg0 for the verb invested to fill an iarg0

for the noun investment. This heuristic outperformed a more complicated heuristic that

relied on the PMI score described in Section 4.4.2. I also evaluated an oracle model that

made gold-standard predictions for candidates within the two-sentence prediction window.

Results

Table 4.4 presents the evaluation results for implicit argument identification. As column

two shows, the systems were tested over 966 missing argument positions for which at least

one true implicit filler existed. Overall, the discriminative model increased F1 performance

by 21.4 points (74.1%) compared to the baseline (p<0.0001). Predicates with the highest

number of implicit arguments - sale and price - showed F1 increases of 13.7 points and 17.5

points, respectively (p<0.001 for both differences). As expected, oracle precision is 100%

for all predictions, and the F1 difference between the discriminative and oracle systems is

significant at p<0.0001 for all test sets. See Appendix Section A.6 (p. 141) for a per-fold

breakdown of results and a listing of features and model parameters used for each fold.

I also measured human performance on this task by running the undergraduate assistant’s

annotations against a small portion of the evaluation data comprising 275 filled implicit

arguments. The assistant achieved an overall F1 score of 56.0% using the same two-sentence

candidate window used by the baseline, discriminative, and oracle models. Using an infinite

candidate window, the assistant increased F1 performance to 64.2%. Although these results

provide a general idea about the performance upper bound, they are not directly comparable

to the cross-validated results shown in Table 4.4.

101

Baseline Discriminative Oracle
Imp. args. P R F1 P R F1 pexact(B,D) P R F1 pexact(D,O)

sale 181 57.0 27.7 37.3 59.2 44.8 51.0 0.0003 100.0 72.4 84.0 <0.0001
price 138 67.1 23.3 34.6 56.0 48.7 52.1 <0.0001 100.0 78.3 87.8 <0.0001
bid 124 66.7 14.5 23.8 60.0 36.3 45.2 <0.0001 100.0 60.5 75.4 <0.0001
investor 108 30.0 2.8 5.1 46.7 39.8 43.0 <0.0001 100.0 84.3 91.5 <0.0001
cost 86 60.0 10.5 17.8 62.5 50.9 56.1 <0.0001 100.0 86.0 92.5 <0.0001
loan 82 63.0 20.7 31.2 67.2 50.0 57.3 <0.0001 100.0 89.0 94.2 <0.0001
plan 77 72.7 20.8 32.3 59.6 44.1 50.7 0.0032 100.0 87.0 93.1 <0.0001
loss 62 78.8 41.9 54.7 72.5 59.7 65.5 0.0331 100.0 88.7 94.0 <0.0001
fund 56 66.7 10.7 18.5 80.0 35.7 49.4 <0.0001 100.0 66.1 79.6 <0.0001
investment 52 28.9 10.6 15.5 32.9 34.2 33.6 0.0043 100.0 80.8 89.4 <0.0001

Overall 966 61.4 18.9 28.9 57.9 44.5 50.3 <0.0001 100.0 78.0 87.6 <0.0001

Table 4.4: Overall evaluation results for implicit argument identification. The second column gives the number of ground-truth
implicitly filled argument positions for the predicate instances. P , R, and F1 indicate precision, recall, and F-measure (β = 1),
respectively. pexact is the bootstrapped exact p-value of the F1 difference between two systems, where the systems are (B)aseline,
(D)iscriminative, and (O)racle.

102

4.6 Discussion

4.6.1 Feature assessment

Previously, we assessed the importance of various implicit argument feature groups by con-

ducting feature ablation tests (Gerber and Chai, 2010). In each test, the discriminative

model was retrained and reevaluated without a particular group of features. I summarize

the findings of this study below:

Semantic roles are essential. We observed statistically significant losses when excluding

features that relate the semantic roles of elements in c′ to the semantic role of the

missing argument position. For example, Feature 1 appears as the top-ranked feature

in eight out of ten fold evaluations (see Table A.5 on page 141). This feature is formed

by concatenating the filling predicate-argument position with the filled predicate-

argument position, producing values such as invest.arg0-lose.arg0. This value indicates

that the entity performing the investing is also the entity losing something. This type

of commonsense knowledge is essential to the task of implicit argument identification.

Other information is important. Our 2010 study also found that semantic roles are only

one part of the solution. Using semantic roles in isolation also produced statistically

significant losses. This indicates that other features contribute useful information to

the task.

Discourse structure is not essential. We also tested the effect of removing discourse

relations (Feature 67) from the model. Discourse structure has received a significant

amount of attention in NLP; however, it remains a very challenging problem, with state-

of-the-art systems attaining F1 scores in the mid-40% range (Sagae, 2009). Our 2010

work as well as the updated work presented in this dissertation used gold-standard

discourse relations from the Penn Discourse TreeBank. As shown by Sagae, these

103

Description %

1 A true filler was classified but an incorrect filler scored higher 30.6
2 A true filler did not exist but a prediction was made 22.4
3 A true filler existed within the window but was not classified 21.1
4 A true filler scored highest but below threshold 15.9
5 A true filler existed but not within the window 10.0

Table 4.5: Implicit argument identification error analysis. The second column indicates the
type of error that was made and the third column gives the percentage of all errors that fall
into each type.

relations are difficult to extract in a practical setting. In our 2010 work, we showed that

removing discourse relations from the model did not have a statistically significant effect

on performance. Thus, this information should be removed in practical applications of

the model, at least until better uses for it can be identified.

To further assess the relative importance of features used in this dissertation, I aggregated

the feature rank information given in Table A.5 (p. 141). For each evaluation fold, each

feature received a point value equal to its reciprocal rank within the feature list. Thus, a

feature appearing at rank 5 for a fold would receive 1
5 = 0.2 points for that fold. I totaled

these points across all folds, arriving at the values shown in the final column of Table A.4

(p. 140). The scores confirm the findings described above. The highest scoring feature

relates the semantic roles of the candidate argument to the missing argument position.

Non-semantic information such as the sentence distance (Feature 2) also plays a key role.

Discourse structure is consistently ranked near the bottom of the list (Feature 67).

4.6.2 Error analysis

Table 4.5 lists the errors made by the system and their frequencies. As shown, the single

most common error (type 1) occurred when a true filler was classified but an incorrect

filler had a higher score. This occurred in approximately 31% of the error cases. Often,

though, the system did not classify a true implicit argument because such a candidate was

104

not generated. Without such a candidate, the system stood no chance of making a correct

prediction. Errors 3 and 5 combined (also 31%) describe this behavior. Type 3 errors resulted

when implicit arguments were not core (i.e., argn) arguments to other predicates. To reduce

class imbalance, the system only used core arguments as candidates; however, this came at

the expense of increased type 3 errors. In many cases, the true implicit argument filled a

non-core (i.e., adjunct) role within PropBank or NomBank.

Type 5 errors resulted when the true implicit arguments for a predicate were outside the

candidate window. Oracle recall (see Table 4.4) indicates the nominals that suffered most

from windowing errors. For example, the sale predicate was associated with the highest

number of true implicit arguments, but only 72% of those could be resolved within the

two-sentence candidate window. Empirically, I found that extending the candidate window

uniformly for all predicates did not increase F1 performance because additional false positives

were identified. The oracle results suggest that predicate-specific window settings might offer

some advantage for predicates such as fund and bid, which take arguments at longer ranges.

Error types 2 and 4 are directly related to the prediction confidence threshold t. The

former would be reduced by increasing t and thus filtering out bad predictions. The latter

would be reduced by lowering t and allowing more true fillers into the final output. However,

it is unclear whether either of these actions would increase overall performance.

4.6.3 The investment and fund predicates

In Section 4.4.2, I discussed the price predicate, which frequently occurs in the “[p price]

index” collocation. I observed that this collocation is rarely associated with either an overt

arg0 or an implicit iarg0. Similar observations can be made for the investment and fund

predicates. Although these two predicates are frequent, they are rarely associated with

implicit arguments: investment takes only 52 implicit arguments and fund takes only 56

implicit arguments (see Table 4.4). This behavior is due in large part to collocations such as

“[p investment] banker”, “stock [p fund]”, and “mutual [p fund]”, which use predicate senses

105

that are not eventive and take no arguments. Such collocations also violate the assumption

that differences between the PropBank and NomBank argument structure for a predicate

are indicative of implicit arguments (see Section 4.3.1 for this assumption).

Despite their lack of implicit arguments, it is important to account for predicates such

as investment and fund because the incorrect prediction of implicit arguments for them

can lower precision. This is precisely what happened for the investment predicate (P =

33%). The model incorrectly identified many implicit arguments for instances such as “[p

investment] banker” and “[p investment] professional”, which take no arguments. The right

context of investment should help the model avoid this type of error; however in many cases

this was not enough evidence to prevent a false positive prediction. Additional investigation

is needed to address this type of error.

4.6.4 Improvements versus the baseline

The baseline heuristic covers the simple case where identical predicates share arguments in

the same position. Because the discriminative model also uses this information (see Feature

8), it is interesting to examine cases where the baseline heuristic failed but the discriminative

model succeeded. Such cases represent more difficult inferences. Consider the following

sentence:

(4.63) Mr. Rogers recommends that [p investors] sell [iarg2 takeover-related stock].

Neither NomBank nor the baseline heuristic associate the marked predicate in Example 4.63

with any arguments; however, the feature-based model was able to correctly identify the

marked iarg2 as the entity being invested in. This inference relied on a number of features

that connect the invest event to the sell event (e.g., Features 1, 4, and 76). These features

captured a tendency of investors to sell the things they have invested in.

I conclude my discussion with an example of a complex extra-sentential implicit argument:

(4.64) [arg0 Olivetti] [p exported] $25 million in “embargoed, state-of-the-art, flexible
manufacturing systems to the Soviet aviation industry.”

106

(4.65) [arg0 Olivetti] reportedly began [p shipping] these tools in 1984.

(4.66) [iarg0 Olivetti] has denied that it violated the rules, asserting that the shipments
were properly licensed.

(4.67) However, the legality of these [p sales] is still an open question.

In Example 4.67, we are looking for the iarg0 of sale. As shown, the discriminative model was

able to correctly identify Olivetti from 4.66 as the implied filler of this argument position.

The inference involved two key steps. First, the model identified coreferent mentions of

Olivetti in 4.64 and 4.65. In these sentences, Olivetti participates in the marked exporting

and shipping events. Second, the model identified a tendency for exporters and shippers

to also be sellers (e.g., Features 1, 4, and 23 made large contributions to the prediction).

Using this knowledge, the system extracted information that could not be extracted by the

baseline heuristic or a traditional SRL system.

4.6.5 Comparison with previous results

In a previous study, we reported results similar to those in this chapter (Gerber and Chai,

2010). The key difference between the two is cross-validation, which was not used in our 2010

study. Our 2010 study used fixed partitions of training, development, and testing data. As

a result, feature and model parameter selections overfit the development data; we observed

a 23-point difference in F1 between the development (65%) and testing (42%) partitions.

The small size of the testing set also led to small sample sizes and large p-values during

significance testing. The cross-validated approach reported in this chapter alleviated both

problems. The F1 difference between training and testing was approximately 10 points for

all folds, and all of the data were used for testing, leading to more accurate p-values. It

is not possible to directly compare the evaluation scores in the two studies; however, the

methodology in the current chapter is preferable for the reasons mentioned.

107

4.7 Conclusions

Chapter 3 provided a partial solution to the problem of nominals with implicit arguments.

The model described in that chapter is able to accurately identify nominals whose arguments

are implicit using a variety of lexical and syntactic features. This increases performance by

reducing the number of false positive argument predictions; however, all implicit arguments

remain unidentified, leaving a large portion of the corresponding event structures unrecog-

nized.

This chapter has presented a detailed study of implicit arguments for a select group of

nominal predicates. The study was based on a manually created corpus of implicit arguments,

which is freely available for research purposes. The study’s primary findings include the

following:

1. Implicit arguments are frequent. Given the predicates in a document, there exist a

fixed number of possible arguments that can be filled according to NomBank’s predicate

role sets. Role coverage is defined as the fraction of these roles that are actually filled

by constituents in the text. Using NomBank as a baseline, the study found that role

coverage increases by 71% when implicit arguments are taken into consideration.

2. Implicit arguments can be automatically identified. Using the annotated data,

I constructed a feature-based supervised model that is able to automatically identify

implicit arguments. This model relies heavily on the traditional, single-sentence SRL

structure of both nominal and verbal predicates. By unifying these sources of infor-

mation, the implicit argument model provides a more coherent picture of discourse

semantics than is typical in most recent work (e.g., the evaluation conducted by Sur-

deanu et al. (2008)). The model demonstrates substantial gains over an informed

baseline, reaching an overall F1 score of 50% and per-predicate scores in the mid-50s

and mid-60s. These results are among the first for this task.

108

3. Much work remains. The study presented in the current chapter was very focused:

only ten different predicates were analyzed. The goal was to carefully examine the un-

derlying linguistic properties of implicit arguments. This examination produced many

features that have not been used in other SRL studies. The results are encouraging;

however, a direct application of the model to all NomBank predicates will require a

substantial annotation effort. This is because many of the most important features are

lexicalized on the predicate being analyzed and thus cannot be generalized to novel

predicates. Additional information might be extracted from VerbNet, which groups

related verbs together. Features from this resource might generalize better because

they apply to entire sets of verbs.

Lastly, it should be noted that the prediction model described in this chapter is quite

simple. Each candidate is independently classified as filling each missing argument position,

and a heuristic post-processing step is performed to arrive at the final labeling. This ap-

proach ignores the joint behavior of semantic arguments. In the next chapter, I describe

a preliminary joint model for implicit arguments that is based on a large-scale knowledge

based extracted from Internet webpages.

109

CHAPTER 5

An exploration of TextRunner for joint

implicit argument identification

5.1 Introduction

The model described in the previous chapter uses a wide variety of lexical and semantic

features to make binary implicit argument predictions for constituents in the surrounding

discourse. For a predicate instance p, each candidate constituent is classified as filling each

missing argument position. A heuristic post-processing procedure is then applied to arrive

at the final argument structure. With the exception of this final step, the candidates and

argument positions are assumed to be independent.

It is easy to construct examples that violate the assumption of independent arguments.

Consider the following sentences:

(5.1) [c1 The president] is currently struggling to manage [c2 the country’s economy].

(5.2) If he cannot get it under control, [p loss] of [arg1 the next election] might result.

In Example 5.2, we are searching for the iarg0 of loss (the entity that is losing). The sentence

in 5.1 supplies two reasonable candidates for this position: c1 and c2. If one only considers

the predicate loss, then c1 and c2 would appear to be equally likely: presidents often lose

things (e.g., votes and allegiance) and economies often lose things (e.g., jobs and value).

However, the sentence in 5.2 supplies additional information. It tells the reader that the

next election is the entity being lost. Given this information, one would likely prefer c1 over

c2 because economies don’t generally lose elections, whereas presidents often do. This type

of inference is common in textual discourses because authors assume a shared knowledge

110

base with their readers. This knowledge base contains information about events and their

typical participants (e.g., the fact that presidents lose elections but economies do not).

Inspired by the above observations, this chapter presents a preliminary exploration of

the interaction that occurs between implicit arguments. The interaction (or joint) model

relies on a knowledge base constructed by automatically mining semantic propositions from

Internet webpages using the TextRunner information extraction system.1 The primary goal

of this chapter is to assess whether these propositions can help identify likely joint implicit

argument configurations. In the following section, I review work on joint inference within

semantic role labeling. In Sections 5.3 and 5.4, I present the joint implicit argument model

and its features. Evaluation results for this model are given in Section 5.5. The joint model

contains many simplifying assumptions, which I address in Section 5.6. I conclude in Section

5.7.

5.2 Related work

Joint models for SRL

A number of recent studies have shown that semantic arguments are not independent and

that system performance can be improved by taking argument dependencies into account.

Consider the following examples, which were discussed in Section 2.2.3:

(5.3) [Temporal The day] that [arg0 the ogre] [Predicate cooked] [arg1 the children] is still
remembered.

(5.4) [arg1 The meal] that [arg0 the ogre] [Predicate cooked] [Beneficiary the children] is
still remembered.

These examples (due to Toutanova et al. (2008)) demonstrate the importance of inter-

argument dependencies. The fact that the sentential subject is headed by meal in 5.4 instead

of day causes a dramatic change in the interpretation of the constituent following the pred-

icate. Toutanova et al. first generated an n-best list of argument labels for a predicate

1http://www.cs.washington.edu/research/textrunner/reverbdemo.html

111

instance. They then re-ranked this list using joint features that describe multiple arguments

simultaneously. For example, one of the features captures the argument label sequence as

follows for Examples 5.3 and 5.4, respectively:

(5.5) [voice:passive, lemma:cook, Temporal, arg0, Predicate, arg1]

(5.6) [voice:passive, lemma:cook, arg1, arg0, Predicate, Beneficiary]

The label sequences in 5.5 and 5.6 help rule out globally invalid configurations such as the

following:

(5.7) [voice:passive, lemma:cook, arg1, arg0, Predicate, arg0]

The label sequence in 5.7 violates a commonly used constraint that allows a single constituent

to be given each argument label.

The unique label constraint just mentioned is also important to the work of Punyakanok

et al. (2008), who formulate a variety of constraints on argument labels. Punyakanok et al.

treat these constraints as binary variables within an integer linear program, which is opti-

mized to produce the final labeling. Other constraints include the following (for a complete

list, see p. 267 of the cited work):

• Arguments cannot overlap the predicate. This constraint was used by the nom-

inal SRL model presented in Chapter 2, where candidate arguments were not allowed

to overlap the predicate.2

• Arguments cannot overlap each other. This constraint was also used by the

nominal SRL system, which applied post-processing heuristics to remove argument

overlap.

Although the work of Punyakanok et al. focuses on SRL within single sentences, the key

finding is pertinent to multi-sentence implicit argumentation: semantic arguments should

not be predicted independently of each other.

2The exception to this constraint for the nominal SRL system of Chapter 2 is that incorpo-
rated arguments may overlap the predicate. See page 33 for details concerning incorporated
arguments.

112

Following this line of work, Ritter et al. (2010) investigated joint selectional preferences.

Traditionally, a selectional preference model provides the strength of association between a

predicate-argument position and a specific textual expression. Returning to Examples 5.1

and 5.2, one sees that the selectional preference for president and economy in the iarg0

position of loss should be high because each expression denotes an entity capable of losing

something. The traditional selectional preference model was used in Chapter 4 as a source of

information for identifying implicit arguments. Ritter et al. extended this single-argument

model using a joint formulation of Latent Dirichlet Allocation (LDA) (Blei et al., 2003). In

the generative version of joint LDA, text for the argument positions is generated from a

common hidden variable. This approach reflects the intuition behind Examples 5.1 and 5.2

and would help identify president as the iarg0. Training data for the model was drawn from

a large corpus of two-argument tuples extracted by the TextRunner system, which I describe

next.

The TextRunner information extraction system

Both Ritter et al.’s model and the model described in this chapter rely heavily on information

extracted by the TextRunner system (Banko et al., 2007). The TextRunner system extracts

tuples from Internet webpages in an unsupervised fashion. One key difference between

TextRunner and other information extraction systems is that TextRunner does not use a

closed set of relations (compare to the work described by ACE (2008)). Instead, the relation

set is left open, leading to the notion of Open Information Extraction (OIE). Although

OIE often has lower precision than traditional information extraction, it is able to extract a

wider variety of relations at precision levels that are often useful (Banko and Etzioni, 2008).

Returning again to Examples 5.1 and 5.2, one can query TextRunner in the following way:

TextRunner Query

arg0: ?

Predicate: lose

arg1: election

113

In the TextRunner system, arg0 typically indicates the Agent and arg1 typically indicates

the Theme. TextRunner provides many tuples in response to this query, two of which are

shown below:

(5.8) Usually, [arg0 the president’s party] [Predicate loses] [arg1 seats in the mid-term
election]

(5.9) [arg0 The president] [Predicate lost] [arg1 the election].

The tuples present in these sentences (and many others) suggest that presidents are capable

of losing elections. This was one possible inference for Examples 5.1 and 5.2. The other

possible inference - that the economy might lose the election - is not supported as strongly

by tuples returned for the TextRunner query. Given all of the returned tuples, only a single

one involves economy in the arg0 position:

(5.10) Any president will take credit for [arg0 a good economy] or [Predicate lose] [arg1 an
election] over a bad one.

In 5.10, TextRunner has not analyzed the arguments correctly (president should be the

arg0, not economy). Later in this chapter, I show how evidence from the tuple lists can

be aggregated such that correct analyses (5.8 and 5.9) are favored over incorrect analyses

(5.10). Given the tuple-based preference for president in the arg0 of lose where the arg1 is

election, the system would hopefully select c1 (The president) as the arg0 in Examples 5.1

and 5.2. The primary contribution of this chapter is an exploration of how such tuple-based

preferences can be computed and applied to the task of implicit argument identification.3

5.3 Joint model formulation

To simplify the experimental setting, the model described in this section targets the specific

situation where a predicate instance p takes an implicit iarg0 as well as an implicit iarg1.

3Thanks to Robert Bart and Alan Ritter at the University of Washington for their assis-
tance with the TextRunner system.

114

Whereas the model in the previous chapter classifies candidates for these positions indepen-

dently, the model in this chapter classifies joint structures by evaluating the following binary

prediction function:

P (+|
〈

p, iarg0, ci, iarg1, cj
〉

) (5.11)

Equation 5.11 gives the probability of the joint assignment of ci to iarg0 and cj to iarg1.

Given a set of n candidates c1, . . . , cn ∈ C, the best labeling is found by considering all

possible assignments of ci and cj :

argmax
(ci,cj)∈CxC s.t. i 6=j

P (+|
〈

p, iarg0, ci, iarg1, cj
〉

) (5.12)

Consider modified versions of Examples 5.1 and 5.2:

(5.13) [c1 The president] is currently struggling to manage [c2 the country’s economy].

(5.14) If he cannot get it under control before [c3 the next election], a [p loss] might result.

In this case, we are looking for the iarg0 as well as the iarg1 for the loss predicate. Three

candidates c1, c2, and c3 are marked. The joint model evaluates the following probabilities,

taking the highest scoring to be the final assignment:

P (+| 〈loss, iarg0, president, iarg1, economy〉)

*P (+| 〈loss, iarg0, president, iarg1, election〉)

P (+| 〈loss, iarg0, economy, iarg1, president〉)

P (+| 〈loss, iarg0, economy, iarg1, election〉)

P (+| 〈loss, iarg0, election, iarg1, president〉)

P (+| 〈loss, iarg0, election, iarg1, economy〉)

115

Intuitively, only the starred item should have a high probability. As described in the previous

section, TextRunner might be capable of modeling such intuitions if the tuple data can be

aggregated in the right way. In the following section, I describe such an aggregation method,

which forms the basis for features used to estimate the above probabilities.

5.4 Joint model features based on TextRunner

The TextRunner system has been extracting massive amounts of knowledge in the form of

tuples such as the following:

〈president, lose, election〉

The database of tuples can be queried by supplying a value for one or more of the tuple

arguments. For example, the following is a partial result list for the query 〈president, lose, ?〉:

〈Kenyan president, lose, election〉

〈party of president, lose seat in, election〉

〈president, lose, ally〉

〈President Bush, lose support for,mission〉

The final argument in each of these tuples provides a single answer to the question “What

might a president lose?”. In order to aggregate these answers, I first generalize each to its

WordNet synset (the WordNet gloss for each synset is shown after the arrow):

〈Kenyan president, lose, election〉 → vote to select the winner of a position

〈party of president, lose seat in, election〉 → vote to select the winner of a position

〈president, lose, ally〉 → a friendly nation

〈President Bush, lose support for,mission〉 → an organization of missionaries

In cases where the answer argument is a phrase, the phrase’s syntactic head is mapped to

a WordNet synset. In cases where the answer argument can be mapped to multiple synsets

(i.e., it has more than one sense), the argument is mapped to the most common sense as

116

listed in the WordNet database. The final mapping above shows the effect of sense ambiguity,

where mission in the sense of war is mapped to mission in the sense of religion. This type

of error is inevitable because the mapping process selects the most common sense instead of

applying a more sophisticated sense disambiguation model; however, the negative effects of

sense ambiguity are mitigated by the aggregation process described below.

Having mapped the answer argument of each tuple to its WordNet synset, each synset

is ranked according to the number of answer arguments that it covers. For the query

〈president, lose, ?〉, this produces the following ranked list of WordNet synsets:

1. election (77)

2. war (51)

3. vote (39)

4. people (34)

5. support (26)

...

In the list above, I have provided a one-word paraphrase for each of the top five synsets.

The number in parentheses indicates how many answer arguments are covered by the synset.

These synsets indicate likely answers to the original question of “What might a president

lose?”.

In a similar manner, one can answer a question such as “What might lose an election?”

using tuples extracted by TextRunner. The procedure described above produces the following

ranked list of WordNet synsets to answer this question:

...

9. people (62)

10. Republican (51)

11. Republican party (51)

12. Hillary (50)

13. president (49)

...

117

In this case, the expected answer (president) ranks 13th in the list of answer synsets. It is

important to note that lower ranked answers are not necessarily incorrect answers. It is a

simple fact that a wide variety of entities can lose an election. Items 9-13 are all perfectly

reasonable answers to the original question of what might lose an election. The features

described later in this section will accommodate this observation.

The two symmetric questions defined and answered above are closely connected to the

implicit argument situation discussed previously and reproduced below:

(5.15) [c1 The president] is currently struggling to manage [c2 the country’s economy].

(5.16) If he cannot get it under control before [c3 the next election], a [p loss] might result.

In Example 5.16, one is searching for the implicit iarg0 and iarg1 to the loss predicate.

Candidates ci and cj that truly fill these positions should be compatible with questions in

the following forms:

Question: What did ci lose?

Answer: cj

Question: What entity lost cj?

Answer: ci

If either of these question-answer pairs is not satisfied, then the joint assignment of ci to

iarg0 and cj to iarg1 should be considered unlikely. Using the first question-answer pair

above as an example, satisfaction is determined in the following way:

1. Resolve anaphoric expressions and normalize named entities in the sentences from

which ci and cj originate.4

2. Query TextRunner for 〈ci, lose, ?〉, retrieving the top n tuples.

3. Map the final argument of each tuple to its WordNet synset and rank the synsets by

frequency, producing the ranked list A of answer synsets.

4I used gold-standard anaphora annotations from Weischedel and Brunstein (2005) and
the automatic named entity extractor created by Bikel et al. (1999) for this purpose.

118

4. Map cj to its WordNet synset synsetcj and determine whether synsetcj exists in A.

If it does, the question-answer pair is satisfied.

Some additional processing is required to determine whether synsetcj exists in A. This is

due to the hierarchical organization of WordNet. For example, suppose that synsetcj is the

synset containing “primary election” and A contains synsets paraphrased as follows:

1. election

2. war

3. vote

4. people

5. support

...

synsetcj does not appear directly in this list; however, its existence in the list is implied by

the following hypernymy path within WordNet:

primary election
is-a
−−−→ election

Intuitively, if synsetcj is connected to a highly ranked synset in A by a short path, then one

has evidence that synsetcj answers the original question. The evidence is weaker if the path

is long, as in the following example:

open primary
is-a
−−−→ direct primary

is-a
−−−→ primary election

is-a
−−−→ election

Additionally, a path between more specific synsets (i.e., those lower in the hierarchy) indi-

cates a stronger relationship than a path between more general synsets (i.e., those higher in

the hierarchy). These two situations are depicted in Figure 5.1. The synset similarity metric

defined by Wu and Palmer (1994) combines the path length and synset depth intuitions into

119

entity (a)

physical entity (b)

thing

body of water (c)

bay (d)

matter

abstract entity

Figure 5.1: Effect of depth on WordNet synset similarity. All links indicate is-a relationships.
Although the link distance from (a) to (b) equals the distance from (c) to (d), the latter are
more similar due to their lower depth within the WordNet hierarchy.

a single numeric score that is defined as follows:

sim(synset1, synset2) =
2 ∗ depth(lca(synset1, synset2))

depth(synset1) + depth(synset2)
(5.17)

In Equation 5.17, lca returns the lowest common ancestor of the two synsets within the

WordNet hierarchy.

To summarize, Equation 5.17 indicates the strength of association between synsetcj (e.g.,

primary election) and a ranked synset synseta from A that answers a question such as “What

might a president lose?”. If the association between synsetcj and synseta is weak, then the

assignment of cj to iarg1 is unlikely. The process works similarly for assessing ci as the filler

of iarg0. In what follows, I quantify this intuition for use in estimating the joint probability

defined in Equation 5.11, which is reproduced below:

P (+|
〈

p, iarg0, ci, iarg1, cj
〉

) (5.18)

120

In order to estimate Equation 5.18 using LibLinear, one must extract numeric features from

the conditioning information. I describe these features below.

Feature 1: Maximum TextRunner association strength. Given the conditioning

variables in Equation 5.18, there are two questions that can be asked:

Question: What did ci p?

Answer: cj

Question: What entity p cj?

Answer: ci

Each of these questions produces a ranked list of answer synsets using the approach described

previously. The synset for each answer string will match zero or more of the answer synsets,

and each of these matches will be associated with a similarity score as defined in Equation

5.17. Feature 1 considers all such similarity scores and selects the maximum. A high value

for this feature indicates that one (or both) of the candidates (ci or cj) is likely to be an

answer to its associated question and is likely to fill its associated implicit argument position.

Feature 2: Maximum TextRunner reciprocal rank. Of all the answer matches de-

scribed for Feature 1, Feature 2 selects the highest ranking and forms the reciprocal rank.

Thus, values for Feature 2 are in [0,1] with larger values indicating matches with higher

ranked answer synsets.

Feature 3: Number of TextRunner matches. This feature records the number of

matches from either of the questions described for Feature 1.

Feature 4: Summed TextRunner reciprocal rank. Feature 2 considers answer synset

matches from either of the posed questions; ideally, each question-answer pair should have

some influence on the probability estimate in Equation 5.18. Feature 4 looks at the answer

121

synset matches from each question individually. The match with highest rank for each

question is selected, and the reciprocal rank 2
r1 + r2

is computed. The value of this feature

is zero if either of the questions fails to produce a matching answer synset.

Features 5 and 6: Local classification scores. The joint model described in this chapter

does not replace the local prediction model presented in the previous chapter. The latter

uses a wide variety of important features that cannot be ignored. Like previous joint models

(e.g., the one described by Toutanova et al. (2008)), the joint model works on top of the

local prediction model, whose scores are incorporated into the joint model as feature-value

pairs. Given the local prediction scores for the iarg0 and iarg1 positions in Equation 5.18,

the joint model forms two features: (1) the sum of the scores for ci filling iarg0 and cj filling

iarg1, and (2) the product of these two scores.

5.5 Evaluation

I evaluated the model described in this chapter over the manually annotated implicit argu-

ment data used elsewhere in this dissertation. As mentioned in Section 5.3, all joint model

experiments were conducted using predicate instances that take an iarg0 and iarg1 in the

ground-truth annotations. I reused the ten-fold cross-validation setup from the previous

chapter as well as the evaluation metrics (see Section 4.5, p. 96 for more details). For each

evaluation fold, features were selected using only the corresponding training data. I used the

forward feature subset selection algorithm from Section A.8 (p. 144) for this purpose.

For comparison with the model from the previous chapter, I also evaluated the local

prediction model on the evaluation data. Because this model predicted implicit arguments

independently, it continued to use the conflict resolution heuristics described on page 94.

However, the prediction threshold t was eliminated because the system could safely assume

that a true filler for each of the iarg0 and iarg1 positions existed.

Table 5.1 presents the evaluation results. The first thing to note is that these results are

122

Local model Joint model
Imp. args. P R F1 P R F1

price 40 65.0 65.0 65.0 67.5 67.5 67.5
sale 34 86.5 86.5 86.5 84.3 84.3 84.3
plan 30 60.0 60.0 60.0 56.7 56.7 56.7
bid 26 66.7 66.7 66.7 78.2 78.2 78.2
fund 18 83.3 83.3 83.3 83.3 83.3 83.3
loss 14 100.0 100.0 100.0 100.0 100.0 100.0
loan 12 63.6 58.3 60.9 50.0 50.0 50.0
investment 8 57.1 50.0 53.3 62.5 62.5 62.5

Overall 182 72.6 71.8 72.2 73.1 73.1 73.1

Table 5.1: Joint implicit argument identification evaluation results. The second column
indicates the number of filled implicit argument positions for the corresponding predicate(s).
For comparison, the full implicit argument annotation data contain approximately 1000 filled
implicit argument positions (see Table 4.1 on page 77).

not comparable with the results of the previous chapter. In general, performance is much

higher because predicate instances reliably took implicit arguments in the iarg0 and iarg1

positions. The overall performance increase was relatively small (approximately 1 percentage

point). The bid and investment predicates showed larger gains; however, due to the small

size of the test collection, the differences in F1 between the local and joint models were not

significant at p = 0.10 when using the bootstrap resampling procedure described by Efron

and Tibshirani (1993).

5.6 Discussion

5.6.1 Example improvement versus local model

The bid and investment predicates show the largest increase for the joint model versus the

local model. Below, I give an example of the investment predicate for which the joint model

correctly identified the iarg0 and the local model did not.

(5.19) [Big investors] can decide to ride out market storms without jettisoning stock.

123

(5.20) Most often, [c they] do just that, because stocks have proved to be the
best-performing long-term [Predicate investment], attracting about $1 trillion from
pension funds alone.

Both models identified the iarg1 as money from a prior sentence (not shown). The local

model incorrectly predicted $1 trillion in Example 5.20 as the iarg0 for the investment

event. This mistake demonstrates a fundamental limitation of the local model: it cannot

detect simple incompatibilities in the predicted argument structure. It does not know that

“money investing money” is a rare or impossible event in the real world.

For the joint model’s prediction, consider the constituent marked with c in Example

5.20. This constituent is resolved to Big investors in the preceding sentence. Thus, the two

relevant questions are as follows:

Question: What did big investors invest?

Answer: money

Question: What entity invested money?

Answer: big investors

The first question produces the following ranked list of answer synsets (the number in paren-

theses indicates the number of answer arguments that mapped to the synset):

money (71)

amount (38)

million (38)

billion (22)

capital (21)

As shown, the answer string of money matches the top-ranked answer synset. The second

question produces the following ranked list of answer synsets:

company (642)

people (460)

government (275)

124

business (75)

investor (70)

In this case, the answer string Big investors matches the fifth answer synset. The combined

evidence of these two question-answer pairs allows the joint system to successfully identify

Big investors as the iarg0 of the investment predicate in Example 5.20.

5.6.2 Test collection size

The performance improvements for the joint model versus the local model were not found

to be statistically significant at p = 0.10. Other studies of joint models for SRL (e.g., the

one by Toutanova et al. for verbal SRL (2008)) have shown slightly larger gains (2.8 F1

points). These gains, although modest, were statistically significant because of the larger

test sample size. There are at least two ways in which the evaluation test sample in this

chapter can be expanded. First, one could annotate additional implicit argument data.

This is technically straightforward; however, implicit argument annotation is an expensive

process. Alternatively, one could add to the test sample predicate instances that are not

constrained to take both an iarg0 and an iarg1. This approach makes the modeling task

more difficult, but the difficulty is one that needs to be addressed in order for the system to

be practically applicable. Below, I discuss other issues surrounding the joint model and its

wider application.

5.6.3 Toward a generally applicable joint model

The joint model presented in this chapter assumes that all predicate instances take an iarg0

and an iarg1. This assumption clearly does not hold for real data (these positions are often

not expressed in the text), but relaxing it will require investigation of the following issues.

1. Explicit arguments should also be considered when determining whether a candi-

date c fills an implicit argument position iargn. The motivation here is similar to

125

that given elsewhere in the current chapter: arguments (whether implicit or explicit)

are not independent. This is demonstrated by the example in the beginning of this

chapter (p. 110), where election is an explicit argument to the predicate and affects

the implicit argument inference. The model developed in this chapter only considers

jointly occurring implicit arguments.

2. Other implicit argument positions (e.g., iarg2, iarg3, etc.) need to be accounted

for as well. This will present a challenge when it comes to extracting the necessary

propositions from TextRunner. Currently, TextRunner only handles tuples of the form

〈arg0, p, arg1〉. Other argument positions are not directly analyzed by the system;

however, because TextRunner also returns the sentence from which a tuple is extracted,

these additional argument positions could be identified in the following way:

(a) For an instance of the sale predicate with an arg0 of company, to find likely arg2

fillers (the entity purchasing the item), query TextRunner with 〈company, sell, ?〉.

(b) Perform standard verbal SRL on the sentences for the resulting tuples, identifying

any arg2 occurrences.

(c) Cluster and rank the arg2 fillers according to the method described in this chapter.

This approach combines Open Information Extraction with traditional information

extraction (i.e., verbal SRL).

3. Computational complexity and probability estimation is a problem for many

joint models. The model presented in this chapter quickly becomes computationally

intractable when the number of candidates and implicit argument positions becomes

moderately large. This is because Equation 5.12 (p. 115) considers all possible assign-

ments of candidates to implicit argument positions. With as few as thirty candidates

and five argument positions (not uncommon), one must evaluate 30!/25! = 17, 100, 720

possible assignments. Although this particular formulation is not tractable, one based

on dynamic programming or heuristic search might give reasonable results.

126

5.7 Conclusions

Previous chapters of this dissertation have investigated the nature and recovery of semantic

arguments for nominal predicates. Throughout these chapters, the models have assumed that

the arguments are independent of each other. This assumption simplifies the computational

modeling of semantic arguments, but it ignores the joint nature of natural language. In

order to take advantage of the information provided by jointly occurring arguments, the

local prediction models must be enhanced.

The current chapter has presented a preliminary investigation into the joint modeling

of implicit arguments for nominal predicates. The model relies heavily on information ex-

tracted by the TextRunner extraction system, which pulls propositional tuples from millions

of Internet webpages. These tuples encode world knowledge that is necessary for resolving

semantic arguments in general and implicit arguments in particular. This chapter has pro-

posed methods of aggregating tuple knowledge to guide implicit argument resolution. The

aggregated knowledge is applied via a re-ranking model that operates on top of the local

prediction model described in the previous chapter.

In general, the model and results presented in this chapter are exploratory. The per-

formance gains of the joint model versus the local model were not found to be statistically

significant, with a large factor being the small size of the testing corpus. It is possible to

identify cases of improvement; however, a significant amount of future work will be required

to make the model more effective and applicable in a wider usage context. Additional pred-

icates and argument positions need to be accounted for, in turn requiring more efficient

computational approaches. This effort will hopefully lead to better performance using an

approach that more accurately reflects the joint properties of natural language.

127

CHAPTER 6

Summary of contributions and future work

6.1 Summary of contributions

6.1.1 A nominal SRL system for real-world use

This dissertation has addressed a number of preexisting issues surrounding nominal semantic

role labeling. Most basic among these was the need for a nominal SRL system that is capable

of handling unstructured textual input. Original work in nominal SRL assumed the existence

of certain pieces of the SRL structure (i.e., nominal predicates). It has always been clear that

this assumption does not hold when working on raw text; however, it was unclear whether,

and to what extent, removal of this assumption would affect nominal SRL performance.

This dissertation has confirmed that predicate identification is a crucial part of nominal

SRL for many frequent predicates. Without a predicate identification model, the nominal

SRL system presented in Chapter 2 suffers an argument F1 loss of approximately 8%.

The predicate identification model allows the nominal SRL system to move out of its

simplified experimental environment and into real-world settings such as the processing of

raw newswire text, intelligence reports, and other sources of important information. Genre

changes will undoubtedly have a negative impact on performance, but a tremendous amount

of text is created in a form very similar to the training genre of Wall Street Journal newswire.

Given the frequency and semantic importance of nominal predicates within this genre, it is

clear that the nominal SRL system has the potential to enhance automatic understanding of

important textual resources. The nominal SRL system is freely available for non-commercial

128

use.1

6.1.2 A focused, data-driven analysis of implicit arguments

Traditional SRL approaches such as the one just mentioned limit the search for arguments to

the sentence containing the predicate of interest. Many systems take this assumption a step

further and restrict the search to the predicate’s local syntactic environment; however, pred-

icates and the sentences that contain them rarely exist in isolation. As shown throughout

this dissertation, they are usually embedded in a semantically rich discourse that contains

complex phenomena such as coreference, coherence, and rhetorical structure. This disser-

tation has endeavored to make implicit arguments part of the discourse landscape. As a

first step, this dissertation presents a manually annotated corpus of implicit arguments that

complements the only other currently available corpus (Ruppenhofer et al., 2010). Analyses

of this data reveal a number of insights.

First, one finds a correspondence between a verb and its nominal form in terms of implicit

arguments. For the predicates considered in this dissertation, if an argument is required by

the verb form and missing from the nominal form, then it is likely that the argument is

present in the discourse that surrounds the nominal form. Second, the data show that

implicit arguments contribute a substantial amount of novel information to the text. This

information is not provided by arguments to verbs, which are another primary source of

semantic information. Third, implicit arguments tend to be located in or nearby the sentence

containing the predicate of interest. This is an important property when implicit argument

identification is considered; without it, the search space could easily become unmanageable.

6.1.3 A novel model for implicit argument identification

Researchers formulated the task of implicit argument identification more than two decades

ago; however, the task has received relatively little attention since that time. This disser-

1Please contact the author at gerber.matthew@gmail.com for more information.

129

tation presents a novel model for the implicit argument identification task and evaluates

the model using the manually constructed corpus described above. The model draws evi-

dence from a variety of sources, many of them created specifically for the task. In general,

the most informative features are derived from semantic sources instead of the syntactic

sources commonly used by standard SRL systems. Using this information, the system is

able to recover implicit arguments with an overall F1 score of 50%. This result represents

the state-of-the-art, as there are no other results to compare it to.

Lastly, this dissertation contributes a preliminary exploration of joint modeling for im-

plicit arguments. The other models in this dissertation assume that arguments are inde-

pendent, regardless of whether they are implicit or not. The joint implicit argument model

re-ranks the output of the independent model using knowledge extracted from millions of

Internet webpages. This knowledge helps to identify likely joint occurrences of implicit argu-

ments. Overall gains from this approach are small; however, the experiments and discussion

constitute a starting point for future work in this direction.

6.2 Summary of future work

The models in this dissertation (with the exception of the model described in Chapter 5)

apply an argument independence assumption. Under this assumption, each argument can

be identified independently of each other argument. A wide range of psycholinguistic ev-

idence suggests that this assumption does not reflect the true nature of human sentence

comprehension, which builds up joint semantic structures at the sentence and discourse level

(see Section 4.2 for details). Experimentally, researchers have found that joint models of

semantic arguments can improve automatic identification for verbal predicates. Based on

these findings, it seems natural to formulate a joint model for nominal SRL (the standard,

non-implicit task described in Chapters 2 and 3).

The implicit argument model described in Chapter 4 can be improved in a variety of

ways that are not directly related to joint modeling. As shown in Section 4.6, many implicit

130

argument identification errors were caused by the absence of true implicit arguments within

the set of candidate constituents. More intelligent windowing strategies in addition to al-

ternate candidate sources might offer some improvement. Although I consistently observed

development gains from using automatic coreference resolution, this process creates errors

that need to be studied more closely. It will also be important to study implicit argument

patterns of non-verbal predicates such as the partitive percent. These predicates are among

the most frequent in the TreeBank and are likely to require approaches that differ from the

ones we pursued.

The implicit argument model developed in Chapter 4 is not generally applicable. It

is limited to the ten predicates for which there exist manually annotated training data.

Additional data will be required in order to extract implicit arguments for all predicates.

An entirely manual annotation project is feasible; however, it will be complicated by the

fact that implicit argument annotation is labor intensive and potentially error prone. This is

because the annotation process requires both argument and coreference identification, each

of which is difficult by itself. Thus, it might be productive to combine additional manual

implicit argument annotation with semi-supervised learning from labeled and unlabeled data.

Similar approaches have been applied to the standard verbal SRL task (for recent examples,

see Lang and Lapata (2010), Fürstenau and Lapata (2009), Deschacht and Moens (2009),

Abend et al. (2009), and Swier and Stevenson (2004)).

Regardless of the training corpus size, the implicit argument model will inevitably en-

counter previously unseen predicates. The negative effects of these predicates can be mit-

igated by designing features that transfer well. For example, recall Feature 11 (p. 138).

This feature has a value of true when the candidate implicit argument is an argument to

a predicate that is in the same VerbNet class as the predicate being filled. This particular

feature does not depend on the exact predicates under consideration; it only checks whether

they are in the same class. As such, this feature would transfer well to predicates that were

not observed in the training data. VerbNet, with its verb classes and network structure, is

131

likely to be a good source of information.

The joint implicit argument model developed in Chapter 5 produced reasonable gains

for two of the predicates, but overall results showed smaller gains. Additional work will be

required in order to fully understand the potential of joint modeling for implicit arguments.

The model will need to be extended to argument positions other than iarg0 and iarg1.

This, in turn, will require a method of evaluating the possible assignments of candidates to

more than two argument positions - a potentially intractable problem if done by brute force.

Dynamic programming and heuristic search are possible answers to this problem.

As mentioned in the preceding section, it is possible to evaluate the standard nominal SRL

model (no implicit arguments) on textual resources other than the Wall Street Journal, upon

which this dissertation is based. The implicit argument model can be evaluated similarly, as

long as the test cases involve only the ten predicates for which the model is designed. Such

experiments are important because they test the ability of the model to generalize across

domains. Domains with specialized vocabularies - biomedicine, for example - will pose

significant challenges. Many of the features used throughout this dissertation are lexical in

nature; that is, they depend on the actual word content of a phrase. Specialized vocabularies

will not be accounted for in the training data. A genre such as standard news reporting will

pose less of a problem, but one should expect performance to drop nonetheless. Domain

adaptation techniques such as those presented by Daumé et al. (2010) should have something

to offer in this respect.

132

APPENDIX

133

A.1 Support verb identification

Support verbs link long-distance arguments to nominal predicates. For example:

(A.1) [Arg0 John] [Support took] a [Predicate walk].

In Example A.1, took does not have the usual meaning of forcibly changing possession;

rather, this verb’s purpose is to bring in John as the Arg0 (walker) of walk. I created a

binary logistic regression model to automatically identify support verb tokens. The model

uses the features shown in the table at the end of this page. I set the LibLinear model

parameters as follows: bias=1, c=4, w+ = 1. A prediction threshold of t = 0.294 was used

at testing time. Overall support verb F1 for this model was 53.36%.

Feature value description

1 First word subsumed by n.
2 Semantic head of n’s right sibling.
3 Context-free grammar rule that expands n’s right sibling.
4 Syntactic head of n’s left sibling.
5 Context-free grammar rule that expands n’s grandparent.
6 Context-free grammar rule that expands n’s parent.
7 Last word of n’s right sibling.
8 Head word of n’s right sibling.
9 Context-free grammar rule that expands n’s left sibling.
10 The object head of the prepositional phrase that follows n.
11 Parse tree path to nearest passive verb.
12 Part of speech (POS) of the head word of n’s right sibling.
13 The POS of n’s parent’s head word.
14 n’s parent’s head word.
15 The syntactic category of n’s right sibling.
16 n’s syntactic category.
17 The POS of the syntactic head word of n’s left sibling.
18 Context-free grammar rule that expands n’s great-grandparent.

Table A.1: Features used for support verb identification, sorted by feature selection rank.
All features were based on automatically identified syntactic parse trees.

134

A.2 Nominal predicate features

Feature value description

1* n’s ancestor grammar rules.
2 n’s stemmed text.
3 Syntactic category of n’s right sibling.
4 First word of n’s left sibling.
5* Parse tree path from n to previous nominal, with lexicalized source.
6 The stemmed content words in a one-word window around n.
7 n’s morphological suffix.
8 Parse tree path from n to closest support verb, with lexicalized destination.
9 Parse tree path to nearest passive verb.
10 Number of left siblings of n.
11 Parse tree path to previous predicate node, with lexicalized source.
12 Semantic head word of n’s right sibling.
13 Parse tree path from n to previous nominal with lexicalized source and destination.
14 Syntactic head word of n’s parent.
15 Head word of n’s left sibling.
16* PropBank markability score.
17 Signed token distance between n and nearest support verb.
18 Parse tree path from n to previous nominal.
19 The object head of the prepositional phrase that follows n.
20 Whether or not n is followed by a prepositional phrase.
21 Semantic head word of n’s left sibling.
22 Whether or not n surfaces before a passive verb.
23 Parse tree paths from n to each support verb, including the support verb.
24 Syntactic category of n’s left sibling.
25 Context-free grammar rule of n’s left sibling.
26 Whether or not n is the head of it’s parent node.
27 Whether or not the previous term in the lexicon is the previous predicate.
28 Context-free grammar rule of n’s grandparent.
29 Parse tree path from n to previous nominal, with lexicalized destination.
30 Number of right siblings of n.
31 First word of n’s right sibling.
32 Last word of n’s right sibling.
33 Signed token distance between n and the previous predicate.
34 Part of speech of the syntactic head of n’s right sibling.

Table A.2: Nominal predicate features, sorted by gain in selection algorithm. & denotes
feature concatenation. Features marked with an asterisk are explained on page 45. Johansson
and Nugues (2008) used features similar to 2 and 26.

135

A.3 Nominal argument features

Feature value description New

1 12 & 26.
2 Position of n relative to p (beingfore/after) & 26. *
3 First word subsumed by n.
4* 12 & Position of n relative to p (before/after).
5 12 & 14.
6 Head word of n’s parent.
7 Last word subsumed n.
8 n’s syntactic category & length of 26.
9 First word of n’s right sibling. *
10* Context-free grammar rule that expands the parent of p.
11 Head word of the right-most NP in n if n is a PP.
12 Stem of p according to a Porter stemmer.
13 Parse tree path from n to the lowest common ancestor (LCA) of n and p.
14 Head word of n.
15 12 & n’s syntactic category.
16 Context-free grammar rule that expands n’s parent. *
17* Parse tree path from n to the nearest support verb. *
18 Last part of speech (POS) subsumed by n.
19 Context-free grammar rule that expands n’s left sibling. *
20 Head word of n, if the parent of n is a PP.
21 The POS of the head word of the right-most NP under n if n is a PP.
22 Last word of n’s left sibling.
23 Syntactic category of n.
24 Whether or not n comes before a passive verb. *
25 Context-free grammar rule that expands n’s right sibling. *
26* Parse tree path from n to p.
27 Whether or not n is under an NP headed by p.
28 First POS subsumed by n.
29 Whether or not n is an NP headed by p and is also adjacent to a VP.
30 Signed token distance from n to p. *
31 Tree depth of the LCA of n and p. *
32 Syntactic category of the LCA of n and p. *

Table A.3: Nominal argument features, sorted by gain in selection algorithm. n indicates the
candidate argument node being classified. p indicates the predicate under consideration. &
denotes feature concatenation. Features marked with an asterisk are explained on page 29.
Asterisks in the last column indicate features that were not used by Jiang and Zhai (2006)
or Liu and Ng (2007).

136

A.4 Role sets for the annotated predicates

Listed below are the role sets for the ten predicates used in Chapters 4 and 5.

Role set for bid :

Arg0: bidder

Arg1: thing being bid for

Arg2: amount of the bid

Role set for sale:

Arg0: seller

Arg1: thing sold

Arg2: buyer

Arg3: price paid

Arg4: beneficiary of sale

Role set for loan:

Arg0: giver

Arg1: thing given

Arg2: entity given to

Arg3: loan against (collateral)

Arg4: interest rate

Role set for cost :

Arg1: commodity

Arg2: price

Arg3: buyer

Arg4: secondary commodity

Role set for plan:

Arg0: planner

Arg1: thing planned

Arg2: beneficiary of plan

Arg3: secondary plan

Role set for investor :

Arg0: investor

Arg1: thing invested

Arg2: thing invested in

Role set for price:

Arg0: seller

Arg1: commodity

Arg2: price

Arg3: secondary commodity

Role set for loss :

Arg0: entity losing something

Arg1: thing lost

Arg2: entity gaining thing lost

Arg3: source of loss

Role set for investment :

Arg0: investor

Arg1: thing invested

Arg2: thing invested in

Role set for fund :

Arg0: funder

Arg1: thing funded

Arg2: amount of funding

Arg3: beneficiary

137

A.5 Implicit argument features

Table A.4
Feature value description Score

1 For every f , pf & argf & p & iargn. 8.2

2 Sentence distance from c to p. 4.0
3 For every f , the head word of f & the verbal form of p & iargn. 3.6
4 Same as 1 except generalizing pf and p to their WordNet synsets. 3.3

5 For every f , the WordNet synset for the head of f & the verbal form of p
& iargn.

1.0

6 Whether or not c and p are themselves arguments to the same predicate. 1.0
7 p & the semantic head word of p’s right sibling. 0.7
8 Whether or not any argf and iargn have the same integer argument po-

sition.
0.7

9* Frame element path between argf of pf and iargn of p in FrameNet (Baker
et al., 1998).

0.6

10 Percentage of elements in c′ that are subjects of a copular for which p is
the object.

0.6

11* Whether or not the verb forms of pf and p are in the same VerbNet class
and argf and iargn have the same thematic role.

0.6

12 p & the last word of p’s right sibling. 0.6
13* Maximum targeted PMI between argf of pf and iargn of p. 0.6

14 p & the number of p’s right siblings. 0.5
15 Percentage of elements in c′ that are objects of a copular for which p is

the subject.
0.5

16 Frequency of the verbal form of p within the document. 0.5
17 p & the stemmed content words in a one-word window around p. 0.5
18 Whether or not p’s left sibling is a quantifier (e.g., many, most, all, etc.).

Quantified predicates tend not to take implicit arguments.
0.4

19 Percentage of elements in c′ that are copular objects. 0.4
20 TF cosine similarity between words from arguments of all pf and words

from arguments of p.
0.4

21 Whether the path defined in 9 exists. 0.4
22 Percentage of elements in c′ that are copular subjects. 0.4
23* For every f , the VerbNet class/role of pf/argf & the class/role of p/iargn. 0.4

24 Percentage of elements in c′ that are indefinite noun phrases. 0.4
25* p & the syntactic head word of p’s right sibling. 0.3
26 p & the stemmed content words in a two-word window around p. 0.3
27* Minimum selectional preference between any f and iargn of p. Uses the

method described by Resnik (1996) computed over an SRL-parsed version
of the Penn TreeBank and Gigaword (Graff, 2003) corpora.

0.3

Continued on next page. . .

138

Table A.4 (cont’d)
Feature value description Score

28 p & p’s synset in WordNet. 0.3
29 Same as 27 except using the maximum. 0.3
30 Average per-sentence frequency of the verbal form of p within the docu-

ment.
0.3

31 p itself. 0.3
32 p & whether p is the head of its parent. 0.3
33* Minimum coreference probability between argf of pf and iargn of p. 0.3

34 p & whether p is before a passive verb. 0.3
35 Percentage of elements in c′ that are definite noun phrases. 0.3
36 Percentage of elements in c′ that are arguments to other predicates. 0.3
37 Maximum absolute sentence distance from any f to p. 0.3
38 p & p’s syntactic category. 0.2
39 TF cosine similarity between the role description of iargn and the con-

catenated role descriptions of all argf .
0.2

40 Average TF cosine similarity between each argn of each pf and the cor-
responding argn of p, where ns are equal.

0.2

41 Same as 40 except using the maximum. 0.2
42 Same as 40 except using the minimum. 0.2
43 p & the head of the following prepositional phrase’s object. 0.2
44 Whether any f is located between p and any of the arguments annotated

by NomBank for p. When true, this feature rules out false positives be-
cause it implies that the NomBank annotators considered and ignored f
as a local argument to p.

0.2

45 Number of elements in c′. 0.2
46 p & the first word of p’s right sibling. 0.2
47 p & the grammar rule that expands p’s parent. 0.2
48 Number of elements in c′ that are arguments to other predicates. 0.2
49 Nominal form of p & iargn. 0.2
50 p & the syntactic parse tree path from p to the nearest passive verb. 0.2
51 Same as 37 except using the minimum. 0.2
52 Same as 33 except using the average. 0.2
53 Verbal form of p & iargn. 0.2
54 p & the first word of p’s left sibling. 0.2
55 Average per-sentence frequency of the nominal form of p within the doc-

ument.
0.2

56 p & the part of speech of p’s parent’s head word. 0.2
57 Same as 33 except using the maximum. 0.2
58 Same as 37 except using the average. 0.1

Continued on next page. . .

139

Table A.4 (cont’d)
Feature value description Score

59* Minimum path length between argf of pf and iargn of p within VerbNet
(Kipper, 2005).

0.1

60 Frequency of the nominal form of p within the document. 0.1
61 p & the number of p’s left siblings. 0.1
62 p & p’s parent’s head word. 0.1
63 p & the syntactic category of p’s right sibling. 0.1
64 p & p’s morphological suffix. 0.1
65 TF cosine similarity between words from all f and words from the role

description of iargn.
0.1

66 Percentage of elements in c′ that are quantified noun phrases. 0.1
67* Discourse relation whose two discourse units cover c (the primary filler)

and p.
0.1

68 For any f , the minimum semantic similarity between pf and p using the
method described by Wu and Palmer (1994) over WordNet (Fellbaum,
1998).

0.1

69 p & whether or not p is followed by a prepositional phrase. 0.1
70 p & the syntactic head word of p’s left sibling. 0.1
71 p & the stemmed content words in a three-word window around p. 0.1
72 Syntactic category of c & iargn & the verbal form of p. 0.1
73 Nominal form of p & the sorted integer argument indexes (the ns) from

all argn of p.
0.1

74 Percentage of elements in c′ that are sentential subjects. 0.1
75 Whether or not the integer position of any argf equals that of iargn. 0.1

76 Same as 13 except using the average. 0.1
77 Same as 27 except using the average. 0.1
78 p & p’s parent’s syntactic category. 0.1
79 p & the part of speech of the head word of p’s right sibling. 0.1
80 p & the semantic head word of p’s left sibling. 0.1
81 Maximum targeted coreference probability between argf of pf and iargn

of p. This is a hybrid feature that calculates the coreference probability
of Feature 33 using the corpus tuning method of Feature 13.

0.1

Table A.4: Features for determining whether c fills iargn of predicate p. For each mention f
(denoting a f iller) in the coreference chain c′, pf and argf are the predicate and argument
position of f . Unless otherwise noted, all argument positions (e.g., argn and iargn) should
be interpreted as the integer label n instead of the underlying word content of the argument.
The & symbol denotes concatenation; for example, a feature value of “p & iargn” for the
iarg0 position of sale would be “sale-0”. Features marked with an asterisk are explained
in Section 4.4.2 (p. 84). The Score column gives a heuristic ranking score for the features
across all evaluation folds (see page 103 for discussion).

140

A.6 Per-fold results for implicit argument identification

Baseline Discriminative (LibLinear) Oracle
Fold Features F1 (%) c w+ t F1 (%) F1 (%)

1 1, 2, 3, 11, 32, 8, 27, 22, 31, 10, 20, 53, 6, 16, 24, 40, 30, 38,
72, 69, 73, 19, 28, 42, 48, 64, 44, 36, 37, 12, 7

31.7 0.25 4 0.39260 47.1 86.7

2 1, 3, 2, 4, 17, 13, 28, 11, 6, 18, 25, 12, 56, 29, 16, 53, 41, 31,
46, 10, 7, 51, 15, 22

32 0.25 256 0.80629 51.5 86.9

3 4, 3, 2, 8, 7, 6, 59, 20, 9, 62, 37, 39, 41, 19, 10, 15, 11, 35, 61,
44, 42, 40, 32, 30, 16, 75, 33, 24

35.3 0.25 256 0.90879 55.8 88.1

4 1, 2, 5, 13, 8, 49, 6, 35, 34, 14, 15, 18, 36, 28, 20, 45, 3, 43,
24, 48, 10, 29, 12, 30, 33, 65, 31, 22, 61, 16, 27, 41, 60, 55, 64

27.8 0.25 4 0.38540 45.8 86.5

5 1, 2, 26, 3, 4, 23, 5, 63, 55, 6, 12, 44, 42, 65, 7, 71, 18, 15, 10,
14, 52, 34, 19, 24, 50, 58

25.8 0.125 1024 0.87629 45.9 88

6 1, 3, 2, 14, 23, 38, 25, 39, 16, 6, 21, 68, 70, 58, 9, 22, 18, 31,
60, 10, 64, 15, 66, 19, 30, 51, 56, 28

34.8 0.25 256 0.87759 55.4 90.8

7 1, 2, 4, 3, 47, 54, 43, 7, 33, 9, 67, 24, 36, 50, 40, 12, 21 22.9 0.25 256 0.81169 46.3 87.4
8 1, 3, 2, 4, 9, 7, 14, 12, 6, 46, 30, 18, 19, 36, 48, 42, 37, 45, 60,

56, 61, 51, 15, 10, 41, 40, 25, 31, 11, 39, 62, 69, 34, 16, 33, 8,
38, 20, 78, 44, 55, 80, 53, 50, 52, 49, 24, 28, 57

27.1 0.0625 512 0.92019 47.4 87.2

9 1, 5, 2, 4, 3, 21, 27, 10, 15, 9, 57, 35, 16, 25, 37, 33, 45, 24,
46, 29, 19, 34, 51, 50, 22, 48, 32, 11, 12, 58, 41, 8, 76, 18, 30,
40, 77, 6, 66, 44, 43, 79, 81, 20

23 0.0625 32 0.67719 54.1 85.5

10 4, 3, 2, 17, 1, 13, 29, 12, 11, 52, 10, 15, 6, 16, 9, 22, 7, 21, 57,
19, 74, 34, 45, 20, 66

28.4 0.0625 512 0.89769 53.2 88.5

1 2 3 4 5 6 7 8

Table A.5: Per-fold results for implicit argument identification. Columns are defined as follows: (1) fold used for testing, (2)
selected features in rank order, (3) baseline F1, (4) LibLinear cost parameter, (5) LibLinear weight for the positive class, (6)
implicit argument confidence threshold, (7) discriminative F1, (8) oracle F1. A bias of 1 was used for all LibLinear models.

141

A.7 Examples of implicit argument identification

Below, I provide two additional examples of implicit argument identification. The examples

are drawn from the output of the implicit argument model described in Chapter 4.

Example 1: Within-sentence implicit argument using preference information

Consider the following sentence from article wsj 0308 in the Penn TreeBank:

(A.2) Sea Containers Ltd., in a long-awaited move to repel a [Purpose hostile takeover]
[Predicate bid], said it will sell $1.1 billion of assets and use some of the proceeds to
buy about 50% of [iarg1 its common shares] for $70 apiece.

This sentence is describing a situation in which Sea Containers is being pursued by an outside

company. The outside company is considering making an unsolicited bid for shares of Sea

Containers. This move would effectively transfer ownership of Sea Containers to the outside

company, and Sea Contains is trying to avoid this by purchasing a large number of its own

shares.

With respect to the bid predicate in sentence A.2, we are looking for the iarg1 (the

entity being bid for). The answer, although present in the same sentence as the predicate,

is not local to the predicate and is not identified by the standard nominal SRL system.

Identification of its common shares as the iarg1 relies primarily on selectional preference

information: shares are often bid for. This fact is observed when training the selectional

preference model.

Example 2: Inter-sentence implicit argument using coreference information

Consider the following sentences from article wsj 0286 in the Penn TreeBank:

(A.3) Nissan has increased earnings more than market share by cutting costs and by
taking advantage of a general surge in Japanese car sales.

(A.4) But Nissan expects to earn only 120 billion yen in the current fiscal year, a modest
increase of 4.7%.

142

(A.5) The big reason: For all its cost-cutting, [iarg0 Nissan] remains less efficient than
Toyota.

(A.6) In its last fiscal year, Nissan’s profit represented just 2.3% of [Predicate 1 sales],
compared with 4.3% at Toyota.

These sentences are describing a situation in which Nissan has increased sales but has not

experienced a commensurate increase in profit due to its inefficiencies.

With respect to the sale predicate in sentence A.6, we are looking for the iarg0 (the entity

performing the selling). The implicit argument model has identified Nissan from A.5 as the

filler of this argument position. This is an interesting inference because sentence A.5 does

not contain much supporting evidence. The key is coreference: the system has identified

many coreferent mentions of Nissan throughout the text, and these mentions participate in

events (e.g., earn in A.3 and A.4 and profit in A.6) that are related to the sale event in the

final sentence.

143

A.8 Forward floating feature subset selection algorithm

F : set of n features to select from
T : set of training instances containing all n features
V : set of validation instances containing all n features

Algorithm
B ← {} # Best feature subset from F
ScoreB ← −∞ # Score of best feature subset
P ← {} # All features used in previous round
while |F | > 0 do
b← null;Scoreb ← −∞ # Track best new feature
for all f ∈ F do
Scoref ← eval(P ∪ {f}, T, V) # Evaluate using previous/new feats.
if Scoref > Scoreb then
b← f ;Scoreb ← Scoref # Update best new feature/score

end if
end for
P ← P ∪ {b};ScoreP ← Scoreb # Update previous features
F ← F − {b} # Remove best feature from pool
if ScoreP > ScoreB then
while |P | > 1 do
r ← null;Scorer ← ScoreP # Track best feature to remove
for all f ∈ P do
Scoref ← eval(P − {f}, T, V) # Evaluate after removing feature f
if Scoref > Scorer then
r ← f ;Scorer ← Scoref # Update best feature to remove

end if
end for
if Scorer > ScoreP then
P ← P − {r};ScoreP ← Scorer # Remove feature and update score
F ← F ∪ {r} # Return removed feature to pool

else
break # No improvement from backtracking

end if
end while
B ← P ;ScoreB ← ScoreP # Update best feature subset

end if
end while
return B # Return best feature subset

144

REFERENCES

145

REFERENCES

Abend, O., Reichart, R., and Rappoport, A. (2009). Unsupervised argument identification
for semantic role labeling. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, pages 28–36, Suntec, Singapore. Association for Computational
Linguistics.

ACE (2007). The ACE 2007 Evaluation Plan. NIST, 1.3a edition.

ACE (2008). The ACE 2008 Evaluation Plan. NIST, 1.2d edition.

Adger, D. (2003). Core Syntax. Oxford.

Baker, C., Fillmore, C., and Lowe, J. (1998). The Berkeley FrameNet project. In Boitet,
C. and Whitelock, P., editors, Proceedings of the Thirty-Sixth Annual Meeting of the
Association for Computational Linguistics and Seventeenth International Conference on
Computational Linguistics, pages 86–90, San Francisco, California. Morgan Kaufmann
Publishers.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007). Open
information extraction from the web. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence.

Banko, M. and Etzioni, O. (2008). The tradeoffs between open and traditional relation
extraction. In Proceedings of ACL-08: HLT, pages 28–36, Columbus, Ohio. Association
for Computational Linguistics.

Berger, A., Pietra, V., and Pietra, S. (1996). A maximum entropy approach to natural
language processing. Computational Linguistics, 22:39–71.

Bhagat, R., Pantel, P., and Hovy, E. (2007). LEDIR: An unsupervised algorithm for learning
directionality of inference rules. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 161–170, Prague, Czech Republic. Association for Computa-
tional Linguistics.

Bikel, D. M., Schwartz, R., and Weischedel, R. M. (1999). An algorithm that learns what’s
in a name. Mach. Learn., 34(1-3):211–231.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022.

146

Bos, J. (2005). Towards wide-coverage semantic interpretation. In Proceedings of the Sixth
International Workshop on Computational Semantics, pages 42–53.

Burchardt, A., Frank, A., and Pinkal, M. (2005). Building text meaning representations
from contextually related frames - a case study. In Proceedings of the Sixth International
Workshop on Computational Semantics.

Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2:121167.

Carpenter, P. A., Miyake, A., and Just, M. A. (1995). Language comprehension: Sentence
and discourse processing. Annu. Rev. Psychol., 46:91–120.

Carreras, X. and Màrquez, L. (2004). Introduction to the conll-2004 shared task: Semantic
role labeling. In Proceedings of the Conference on Computational Natural Language
Learning.

Carreras, X. and Màrquez, L. (2005). Introduction to the CoNLL-2005 shared task: Semantic
role labeling.

Chambers, N. and Jurafsky, D. (2008). Unsupervised learning of narrative event chains. In
Proceedings of the Association for Computational Linguistics, pages 789–797, Columbus,
Ohio. Association for Computational Linguistics.

Charniak, E., Goldwater, S., and Johnson, M. (1998). Edge-based best-first chart parsing.
In Sixth Workshop on Very Large Corpora, pages 127–133.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and maxent dis-
criminative reranking. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics.

Chen, B., Su, J., and Tan, C. L. (2010). Resolving event noun phrases to their verbal men-
tions. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 872–881, Cambridge, MA. Association for Computational Linguistics.

Chen, Z. and Ji, H. (2009). Graph-based event coreference resolution. In Proceedings
of the 2009 Workshop on Graph-based Methods for Natural Language Processing
(TextGraphs-4), pages 54–57, Suntec, Singapore. Association for Computational Linguis-
tics.

Chinchor, N., Lewis, D. D., and Hirschmant, L. (1993). Evaluating message understanding
systems: An analysis of the third message understanding conference. Computational
Linguistics, 19(3):409–450.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1):3746.

Copestake, A. and Flickinger, D. (2000). An open-source grammar development environment
and broad-coverage english grammar using hpsg. In Proc. LREC-2000.

147

Dahl, D. A., Palmer, M. S., and Passonneau, R. J. (1987). Nominalizations in pundit. In
Proceedings of the 25th annual meeting on Association for Computational Linguistics,
pages 131–139, Morristown, NJ, USA. Association for Computational Linguistics.

Dang, H. T., Kelly, D., and Lin, J. J. (2007). Overview of the trec 2007 question answering
track. In TREC.

Daumé, H., Deoskar, T., McClosky, D., Plank, B., and Tiedemann, J., editors (2010).
Proceedings of the 2010 Workshop on Domain Adaptation for Natural Language
Processing. Association for Computational Linguistics, Uppsala, Sweden.

Deschacht, K. and Moens, M.-F. (2009). Semi-supervised semantic role labeling using the La-
tent Words Language Model. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 21–29, Singapore. Association for Computational
Linguistics.

Di Eugenio, B. and Glass, M. (2004). The kappa statistic: a second look. Comput. Linguist.,
30(1):95–101.

Dowty, D. (1991). Thematic proto-roles and argument selection. Language, 67:547–619.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall,
New York.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR:
A Library for Large Linear Classification. Journal of Machine Learning Research, 9:1871–
1874.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database (Language, Speech, and
Communication). The MIT Press.

Fillmore, C. (1968). The case for case. In Bach, E. and Harms, R., editors, Universals in
Linguistic Theory. Holt, Rinehart, and Winston.

Fillmore, C. (1976). Frame semantics and the nature of language. In Harnad, S., Steklis,
H., and Lancaster, J., editors, Origins and Evolution of Language and Speech. The New
York Academy of Sciences.

Fillmore, C. and Baker, C. (2001). Frame semantics for text understanding. In Proceedings
of WordNet and Other Lexical Resources Workshop, NAACL.

Fürstenau, H. and Lapata, M. (2009). Graph alignment for semi-supervised semantic role la-
beling. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, pages 11–20, Singapore. Association for Computational Linguistics.

Gerber, M. and Chai, J. (2010). Beyond NomBank: A study of implicit arguments for
nominal predicates. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 1583–1592, Uppsala, Sweden. Association for Computa-
tional Linguistics.

148

Gerber, M., Chai, J., and Meyers, A. (2009). The role of implicit argumentation in nominal
SRL. In Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages
146–154, Boulder, Colorado. Association for Computational Linguistics.

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Computational
Linguistics, 28:245–288.

Gildea, D. and Palmer, M. (2001). The necessity of parsing for predicate argument
recognition. In ACL ’02: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, pages 239–246, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Gillick, D. (2009). Sentence Boundary Detection and the Problem with the U.S. In
Proceedings of NAACL: Short Papers.

Girju, R., Nakov, P., Nastase, V., Szpakowicz, S., Turney, P., and Yuret, D. (2007). Semeval-
2007 task 04: Classification of semantic relations between nominals. In Proceedings of the
4th International Workshop on Semantic Evaluations.

Gordon, A. and Swanson, R. (2007). Generalizing semantic role annotations across syntac-
tically similar verbs. In Proceedings of ACL, pages 192–199.

Gorn, S. (1967). Explicit definitions and linguistic dominoes. In Hart, J., editor, Systems
and Computer Science, pages 77–115. University of Toronto Press, Toronto Canada.

Graesser, A. C. and Clark, L. F. (1985). Structures and Procedures of Implicit Knowledge.
Ablex Publishing Corporation.

Graff, D. (2003). English Gigaword. Linguistic Data Consortium, Philadelphia.

Grosz, B. J., Joshi, A. K., and Weinstein, S. (1995). Centering: A framework for modeling
the local coherence of discourse. Computational Linguistics, 21(2):203–225.

Gruber, J. (1965). Studies in Lexical Relations. PhD thesis, MIT.

Hajič, J., Ciaramita, M., Johansson, R., Kawahara, D., Mart́ı, M. A., Màrquez, L., Meyers,
A., Nivre, J., Padó, S., Štěpánek, J., Straňák, P., Surdeanu, M., Xue, N., and Zhang,
Y. (2009). The CoNLL-2009 shared task: Syntactic and semantic dependencies in mul-
tiple languages. In Proceedings of the Thirteenth Conference on Computational Natural
Language Learning (CoNLL 2009): Shared Task, pages 1–18, Boulder, Colorado. Associ-
ation for Computational Linguistics.

Harris, Z. (1985). Distributional structure. In Katz, J. J., editor, The Philosophy of
Linguistics, pages 26–47. New York: Oxford University Press.

Heim, I. and Kratzer, A. (1998). Semantics in Generative Grammar. Blackwell, Oxford.

149

Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Padó, S., Pennacchiotti,
M., Romano, L., and Szpakowicz, S. (2010). Semeval-2010 task 8: Multi-way classification
of semantic relations between pairs of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 33–38, Uppsala, Sweden. Association for Com-
putational Linguistics.

Hirst, G. (1987). Semantic Interpretation and the Resolution of Ambiguity. Cambridge
University Press.

Hsu, C.-W., Chang, C.-C., , and Lin, C.-J. (2010). A practical guide to support vector classi
cation. Technical report, National Taiwan University.

Hull, R. and Gomez, F. (1996). Semantic interpretation of nominalizations. In Proceedings
of AAAI.

Iida, R., Komachi, M., Inui, K., and Matsumoto, Y. (2007). Annotating a Japanese text
corpus with predicate-argument and coreference relations. In Proceedings of the Linguistic
Annotation Workshop in ACL-2007, page 132139.

Imamura, K., Saito, K., and Izumi, T. (2009). Discriminative approach to predicate-
argument structure analysis with zero-anaphora resolution. In Proceedings of the
ACL-IJCNLP 2009 Conference Short Papers, pages 85–88, Suntec, Singapore. Associa-
tion for Computational Linguistics.

Jiang, J. and Zhai, C. (2006). Exploiting domain structure for named entity recognition. In
Proceedings of the main conference on Human Language Technology Conference of the
North American Chapter of the Association of Computational Linguistics, pages 74–81,
Morristown, NJ, USA. Association for Computational Linguistics.

Jiang, Z. and Ng, H. (2006). Semantic role labeling of nombank: A maximum entropy ap-
proach. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing.

Johansson, R. and Nugues, P. (2008). Dependency-based syntactic–semantic analysis with
propbank and nombank. In CoNLL 2008: Proceedings of the Twelfth Conference on
Computational Natural Language Learning, pages 183–187, Manchester, England. Coling
2008 Organizing Committee.

Joshi, M., Pakhomov, S., Pedersen, T., Maclin, R., and Chute, C. (2006). An end-to-end
supervised target-word sense disambiguation system. In Proceedings of the Twenty-first
National Conference on Artificial Intelligence, pages 1941–1942.

Kaisser, M. and Webber, B. (2007). Question answering based on semantic roles. In ACL
2007 Workshop on Deep Linguistic Processing, pages 41–48, Prague, Czech Republic.
Association for Computational Linguistics.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic. Kluwer, Dordrecht.

150

Kingsbury, P. and Palmer, M. (2003). Propbank: the next level of treebank. In Proceedings
of Treebanks and Lexical Theories.

Kipper, K. (2005). VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis,
Department of Computer and Information Science University of Pennsylvania.

Kipper, K., Dang, H. T., and Palmer, M. (2000). Class-based construction of a verb lexi-
con. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial Intelligence, pages 691–696.
AAAI Press / The MIT Press.

Krippendorff, K. (1980). Content Analysis: An Introduction to Its Methodology. Sage
Publications.

Kučera, H. and Nelson, F. W. (1967). Computational Analysis of Present-day American
English. Brown University Press, Providence, RI.

Lang, J. and Lapata, M. (2010). Unsupervised induction of semantic roles. In Human
Language Technologies: The 2010 Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages 939–947, Los Angeles, California.
Association for Computational Linguistics.

Lapata, M. (2000). The automatic interpretation of nominalizations. In Proceedings of
the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence, pages 716–721. AAAI Press / The MIT
Press.

Levin, B. (1993). English verb classes and alternations: A preliminary investigation. Chicago
University Press.

Lin, D. and Pantel, P. (2001). Discovery of inference rules for question-answering. Nat.
Lang. Eng., 7(4):343–360.

Liu, C. and Ng, H. (2007). Learning predictive structures for semantic role labeling of nom-
bank. In Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, pages 208–215, Prague, Czech Republic. Association for Computational Lin-
guistics.

Liu, X., Han, B., Li, K., Stiller, S. H., and Zhou, M. (2010). SRL-based verb selection for
ESL. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 1068–1076, Cambridge, MA. Association for Computational Linguistics.

Macleod, C., Grishman, R., Meyers, A., Barrett, L., and Reeves, R. (1998). Nomlex: A
lexicon of nominalizations. In Proceedings of the Eighth International Congress of the
European Association for Lexicography.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of English: the Penn TreeBank. Computational Linguistics, 19:313–330.

151

May, J. and Knight, K. (2007). Syntactic re-alignment models for machine translation.
In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 360–
368, Prague, Czech Republic. Association for Computational Linguistics.

Meyers, A. (2007a). Annotation guidelines for NomBank - noun argument structure for
PropBank. Technical report, New York University.

Meyers, A. (2007b). Those other nombank dictionaries. Technical report, New York Univer-
sity.

Meyers, A., Macleod, C., Yangarber, R., Grishman, R., Barrett, L., and Reeves, R.
(1998). Using nomlex to produce nominalization patterns for information extraction.
In Proceedings of the COLING-ACL Workshop on the Computational Treatment of
Nominals.

Mooney, R. J. (2007). Learning for semantic parsing. In Proceedings of the 8th International
Conference, CICLing.

Moschitti, A., Pighin, D., and Basili, R. (2008). Tree kernels for semantic role labeling.
Comput. Linguist., 34(2):193–224.

Nielsen, L. A. (2004). Verb phrase ellipsis detection using automatically parsed text.
In COLING ’04: Proceedings of the 20th international conference on Computational
Linguistics, page 1093, Morristown, NJ, USA. Association for Computational Linguistics.

Nielsen, L. A. (2005). A corpus-based study of Verb Phrase Ellipsis Identification and
Resolution. PhD thesis, King’s College.

Nivre, J. (2003). An efficient algorithm for projective dependency parsing. In Proceedings
of the 8th International Workshop on Parsing Technologies (IWPT), pages 149–160.

Padó, S., Pennacchiotti, M., and Sporleder, C. (2008). Semantic role assignment for event
nominalisations by leveraging verbal data. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling 2008), pages 665–672, Manchester, UK.
Coling 2008 Organizing Committee.

Palmer, M. S., Dahl, D. A., Schiffman, R. J., Hirschman, L., Linebarger, M., and Dowding,
J. (1986). Recovering implicit information. In Proceedings of the 24th annual meeting on
Association for Computational Linguistics, pages 10–19, Morristown, NJ, USA. Associa-
tion for Computational Linguistics.

Pantel, P., Bhagat, R., Coppola, B., Chklovski, T., and Hovy, E. (2007). ISP: Learning in-
ferential selectional preferences. In Human Language Technologies 2007: The Conference
of the North American Chapter of the Association for Computational Linguistics;
Proceedings of the Main Conference, pages 564–571, Rochester, New York. Association
for Computational Linguistics.

152

Pantel, P. and Ravichandran, D. (2004). Automatically labeling semantic classes. In Su-
san Dumais, D. M. and Roukos, S., editors, HLT-NAACL 2004: Main Proceedings, pages
321–328, Boston, Massachusetts, USA. Association for Computational Linguistics.

Pizzato, L. A. and Mollá, D. (2008). Indexing on semantic roles for question answering.
In Coling 2008: Proceedings of the 2nd workshop on Information Retrieval for Question
Answering, pages 74–81, Manchester, UK. Coling 2008 Organizing Committee.

Pradhan, S. S., Ward, W., and Martin, J. H. (2008). Towards robust semantic role labeling.
Comput. Linguist., 34(2):289–310.

Prasad, R., Lee, A., Dinesh, N., Miltsakaki, E., Campion, G., Joshi, A., and Webber, B.
(2008). Penn discourse treebank version 2.0. Linguistic Data Consortium.

Pudil, P., Novovicova, J., and Kittler, J. (1994). Floating search methods in feature selection.
Pattern Recognition Letters, 15:1119–1125.

Punyakanok, V., Roth, D., and tau Yih, W. (2005). The necessity of syntactic parsing for
semantic role labeling. In International Joint Conference on Artificial Intelligence.

Punyakanok, V., Roth, D., and Yih, W.-t. (2008). The importance of syntactic parsing and
inference in semantic role labeling. Comput. Linguist., 34(2):257–287.

Pustejovsky, J. (1995). The Generative Lexicon. The MIT Press.

Resnik, P. (1996). Selectional constraints: An information-theoretic model and its compu-
tational realization. Cognition, 61:127–159.

Ritter, A., Mausam, and Etzioni, O. (2010). A latent dirichlet allocation method for se-
lectional preferences. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics.

Ruppenhofer, J., Sporleder, C., Morante, R., Baker, C., and Palmer, M. (2009). Semeval-
2010 task 10: Linking events and their participants in discourse. In Proceedings of
the Workshop on Semantic Evaluations: Recent Achievements and Future Directions
(SEW-2009), pages 106–111, Boulder, Colorado. Association for Computational Linguis-
tics.

Ruppenhofer, J., Sporleder, C., Morante, R., Baker, C., and Palmer, M. (2010). Semeval-
2010 task 10: Linking events and their participants in discourse. In Proceedings of the
5th International Workshop on Semantic Evaluation, pages 45–50, Uppsala, Sweden. As-
sociation for Computational Linguistics.

Sagae, K. (2009). Analysis of discourse structure with syntactic dependencies and data-
driven shift-reduce parsing. In Proceedings of the 11th International Conference on Parsing
Technologies (IWPT’09), pages 81–84, Paris, France. Association for Computational Lin-
guistics.

Sagae, K. and Lavie, A. (2005). A classifier-based parser with linear run-time complexity.
In Proceedings of the International Workshop on Parsing Technologies.

153

Sanford, A. J. (1981). Understanding Written Language. John Wiley & Sons Ltd.

Sasano, R., Kawahara, D., and Kurohashi, S. (2004). Automatic construction of nominal
case frames and its application to indirect anaphora resolution. In Proceedings of Coling
2004, pages 1201–1207, Geneva, Switzerland. COLING.

Schank, R. C. and Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding: an
Inquiry into Human Knowledge Structures. L. Erlbaum, Hillsdale, NJ.

Surdeanu, M., Johansson, R., Meyers, A., Màrquez, L., and Nivre, J. (2008). The CoNLL
2008 shared task on joint parsing of syntactic and semantic dependencies. In CoNLL 2008:
Proceedings of the Twelfth Conference on Computational Natural Language Learning,
pages 159–177, Manchester, England. Coling 2008 Organizing Committee.

Swier, R. S. and Stevenson, S. (2004). Unsupervised semantic role labelling. In Lin, D. and
Wu, D., editors, Proceedings of Empirical Methods in Natural Language Processing, pages
95–102, Barcelona, Spain. Association for Computational Linguistics.

Szpektor, I., Tanev, H., Dagan, I., and Coppola, B. (2004). Scaling web-based acquisi-
tion of entailment relations. In Proceedings of Empirical Methods in Natural Language
Processing.

Taboada, M. and Mann, W. C. (2006). Rhetorical structure theory: looking back and moving
ahead. Discourse Studies, 8:423–459.

Tonelli, S. and Delmonte, R. (2010). Venses++: Adapting a deep semantic processing sys-
tem to the identification of null instantiations. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 296–299, Uppsala, Sweden. Association for Com-
putational Linguistics.

Toutanova, K., Haghighi, A., and Manning, C. D. (2005). Joint learning improves semantic
role labeling. In ACL ’05: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, pages 589–596, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Toutanova, K., Haghighi, A., and Manning, C. D. (2008). A global joint model for semantic
role labeling. Comput. Linguist., 34(2):161–191.

van Dijk, T. A. (1977). Semantic macro structures and knowledge frames in discourse
comprehension. In Just, M. A. and Carpenter, P. A., editors, Cognitive Processes in
Comprehension, pages 3–32. Lawrence Erlbaum.

van Dijk, T. A. and Kintsch, W. (1983). Strategies of Discourse Comprehension. Academic
Press.

Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Katz, G., and Pustejovsky, J. (2007).
Semeval-2007 task 15: Tempeval temporal relation identification. In Proceedings of the
Fourth International Workshop on Semantic Evaluations (SemEval-2007), pages 75–80,
Prague, Czech Republic. Association for Computational Linguistics.

154

Versley, Y., Ponzetto, S. P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X., and
Moschitti, A. (2008). BART: A modular toolkit for coreference resolution. In Proceedings
of the 6th International Conference on Language Resources and Evaluation, Marrakech,
Morocco.

Weischedel, R. and Brunstein, A. (2005). Bbn pronoun coreference and entity type corpus.
Linguistic Data Consortium.

Whittemore, G., Macpherson, M., and Carlson, G. (1991). Event-building through role-
filling and anaphora resolution. In Proceedings of the 29th annual meeting on Association
for Computational Linguistics, pages 17–24, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Wilson, N. L. (1974). Facts, events, and their identity conditions. Philosophical Studies,
25:303–321.

Wu, Z. and Palmer, M. (1994). Verb semantics and lexical selection. In Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics, pages 133–138,
Las Cruces, New Mexico, USA. Association for Computational Linguistics.

Xue, N. and Palmer, M. (2004). Calibrating features for semantic role labeling. In
Proceedings of EMNLP.

Yang, X., Su, J., and Tan, C. L. (2008). A twin-candidate model for learning-based anaphora
resolution. Comput. Linguist., 34(3):327–356.

Yi, S., Loper, E., and Palmer, M. (2007). Can semantic roles generalize across genres? In
Proceedings of NAACL HLT.

Zanzotto, F. M., Pennacchiotti, M., and Pazienza, M. T. (2006). Discovering asymmetric
entailment relations between verbs using selectional preferences. In ACL-44: Proceedings
of the 21st International Conference on Computational Linguistics and the 44th annual
meeting of the Association for Computational Linguistics, pages 849–856, Morristown, NJ,
USA. Association for Computational Linguistics.

155

