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ABSTRACT
THE LATE WISCONSIN AND HOLOCENE DEVELOPMENT OF THE ST.
JOSEPH RIVER DRAINAGE BASIN, SOUTHWEST MICHIGAN AND
NORTHERN INDIANA.

By
Kevin A. Kincare

The St. Joseph River and its tributaries drain approximately 11,137 km2 in
southwestern Michigan and northcentral Indiana. It originates from Baw Beese
Lake near Hillsdale, Michigan through a total length of 316 kilometers with a
head of 158.8 meters above base level in Lake Michigan at Benton Harbor,
Michigan.

Evidence for the events that shaped the St. Joseph River drainage basin is
seen in the longitudinal profile of the river which can be used as a proxy for
events that occurred in the drainage basin given a proper understanding of how
disequilibrium in the drainage basin changes the slope of the profile. The
longitudinal profile of the St. Joseph River has four nickpoints that divide the
profile into 5 distinct sections: a base-level affected section at the mouth, a
stream-capture section, a central section where proglacial lakes overflowed to
the south, a convex-upward section immediately downstream of flow loss due to
stream capture, and a final section that was a former tributary that became the
main stem due to the aforementioned stream capture.

The longitudinal profile shows evidence that the St. Joseph River drainage
basin was sequentially constructed from the distal areas to the proximal areas.

Glacial retreat added sections to the basin in step-wise fashion as the glacier



margin moved basinward. The accepted pattern of regional slope and stream-
network development corresponding to a pre-existing structural or stratigraphic
pattern in combination with continuous extension via headward erosion does not
apply. The drainage basin was constructed in discrete parts during glacial
retreat. Each discrete part has a distinct depositional history separate from each
subsequently added segment. The relative positions of the ice margins also
imparted controls on the volume of meltwater into the distal part of each basin.
In addition, the ancestral St. Joseph River contains underlying deglacial terrain
originating within the Lake Michigan, Huron/Erie, and Saginaw lobes that all
contributed to the final drainage-basin geomorphology.

Early deglacial drainage was initially south toward the Wabash River and
later west to the Kankakee River before attaining its final configuration draining to
Lake Michigan. Glaciers acted as dams and ponded water in proglacial lakes
that overflowed to the south. Post-glacial drainage basin development was
controlled by Holocene lake-level fluctuations, stream capture, and the inherited
hydraulic gradients of glacial flow regimes. Two major terraces document the
final meltwater pulses through the drainage basin both originated from the
Huron/Erie lobe. The St. Joseph River did not drain into the Lake Michigan basin
until the Calumet phase of glacial Lake Chicago, 1500 years after previously

thought.
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Chapter 1
INTRODUCTION AND SCOPE OF WORK

The St. Joseph River and its tributaries drain approximately 11,137 km2
(4,300 miles2) in southwestern Michigan and northcentral Indiana (Figure 1). It
originates at Baw Beese Lake, one kilometer southeast of Hillsdale, Michigan.
The river flows a total of 316 kilometers (196 miles) with a head of 158.8 meters
(521 feet) above its base level in Lake Michigan at St. Joseph, Michigan. The St.
Joseph River drainage basin encompasses an area that was occupied by three
separate lobes of the Laurentide ice sheet (Figure 2), the Lake Michigan,
Saginaw, and Huron/Erie lobes.

The St. Joseph River contains five sections with disparate characteristics of
gradient, sinuosity, terrace development, depositional history, geomorphology,
and discharge. These characteristics have not been researched adequately to
elucidate the causes of their distribution throughout the drainage basin. The
hypothesis being examined in this dissertation is that a description of the geology
of the drainage basin along with construction of the longitudinal profile of the river
and its terraces will allow the writer to interpret the development of the drainage
basin. A river in equilibrium has a characteristic concave upward profile that is
generally due to the decreasing depth/width ratio that causes progressive
flattening downstream (Hack 1957, Leopold et al. 1964). Interruptions in a
smooth longitudinal profile can be caused by a variety of agents both natural
(e.g. resistant outcrops, base level changes) and manmade (e.g. dams, hydraulic

mining). A profile interruption is known as "nickpoint” (Thornbury 1969, p. 110).
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Examining nickpoints in longitudinal profiles can yield important data on the
base level and depositional history of a river. The longitudinal profile of the St.
Joseph River (Figure 3) contains four nickpoints whose significance will be
examined in detail in Chapter 7. These nickpoints clearly demonstrate that the
river is not in equilibrium at four separate places along its course. It will be
demonstrated throughout these pages that the shape of the longitudinal profile is
a valuable predictive tool to interpret the events responsible for the deposits
through which the river flows. Furthermore, the shape of the longitudinal profile
indicates the type of disturbance to the profile. It shall be shown below that,
through an examination of the nickpoints and the geology, the two are linked and
the former can be used as a predictor of the latter.

The drainage basin was completely covered by ice during the last glacial
maximum (LGM) and therefore is not only a product of glacial processes but is
also, at least in its surficial geology, a very young basin. Early research (e.g.
Leverett and Taylor 1915) described synchronous advance and retreat of the
glacial lobes. Recently, asynchronous glacial advance and retreat has been
demonstrated between the Lake Michigan and Saginaw glacial lobes (e.g.
Kehew et al. 1999).

Initial deglaciation of the basin probably began when the Saginaw lobe
retreated from the LGM to the southern margin of the drainage basin about
20,000 calendar years B.P. As deglaciation proceeded, different ice-margin
locations controlled meltwater sources, outlets, and the configuration of

depositional environments. The drainage basin therefore, presents a unique
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opportunity to study the position and dynamics of the respective lobes through
the contribution of meltwater and resultant outwash and lacustrine deposits
throughout the basin.

Little more is known aboﬁt the St. Joseph River drainage basin than was
briefly described by Leverett (1908) and Leverett and Taylor (1915). Other than
the recognition that the basin was once part of the Kankakee River drainage
basin (Leverett 1908), the basin contained glacial Lake Dowagiac (Leverett
1908), and a description of landforms discernable at a scale of 1:1,000,000
(Leverett and Taylor 1915), few other details were available. This is unfortunate
because this northern outlet drainage basin had extensive boundaries with all
three glacial lobes that were responsible for the glacial landforms that exist
throughout southern Michigan, western Ohio, Indiana, and eastern lllinois. This
study was undertaken because a careful examination of the St. Joseph River
drainage basin would lead to important discoveries concerning the cross-cutting
relationships between glacigenic deposits of the three glacial lobes and therefore
yield a better chronology of deglaciation than currently exists for these glacial
lobes. The availability of 7.5 minute U.S. Geological Survey quadrangles and 30
m digital elevation model (DEM) data also provide an unprecedented ability to
reexamine landforms and deposits previously thought to be properly interpreted.
These will be discussed in Chapter 7.

Lakes are among the most ephemeral of geologic features (Thornbury
1969). Lacustrine conditions are often associated with glaciation, particularly

during glacial retreat when drainage is blocked by ice on one side and



constructional landforms of the previous ice stand on the other. Therefore, the
record of glacial retreat is important for establishing a sequence of glacial-lake
levels upon which a hypothesis can be based for the origin of observed erosion
and sedimentation features and their cross-cutting relationships. The series of
glacial lakes also provide the base level for fluvial systems that develop in a
drainage basin and knowledge of both further enhance our ability to provide an
event chronology. Chapter 3 provides a summary of the existing chronology of
glacial advances and retreats during the Pleistocene epoch. These advances
and retreats controlled the outlets (and therefore the levels) of the proglacial
lakes. Chapter 4 presents a summary of the current state of knowledge on the
extent and surface altitude of the proglacial and post-glacial Great Lakes. This is
the record of base-level changes for the St. Joseph River.

Chapter 5 presents a literature review summarizing the concept of base
level, affects of base-level changes to fluvial geomorphology, and a summary of
sedimentary features expected in deglaciated fluvial environments subjected to
base-level changes. This chapter also explains why the present state of
knowledge is inadequate to explain the development of drainage basins in
glaciated terrain. Chapter 5 presents new and compiled information on the
geology of the St. Joseph River drainage basin based on an examination of
nickpoints, sedimentology, and geomorphology. Chapter 6 summarizes and
discusses current theory regarding the development of drainage networks and
how it is inadequate to fully understand the manner in which glaciated drainage

basins are constructed.



Time reported in this text is in calendar years while that reported in
parentheses is in radiocarbon years BP (Before Present). Conversion from the
last 47,000 radiocarbon years to calendar years was achieved using a
radiocarbon calibration curve published by Fairbanks et al. (2005). Conversion
from 47,000 to 50,000 radiocarbon years to calendar years was achieved by

extrapolation of the radiocarbon calibration curve.



Chapter 2

METHODOLOGY

The process of adjusting to a new base level often causes an abrupt stream
gradient change or "interrupted profile" (Thornbury 1969, p. 109). A nickpoint is
the location on a longitudinal profile where the gradient changes. Where
nickpoints are not due to geologic or man-made structure, they typically mark the
headward or upstream limit of regrading to a new base level (Butcher 1989). The
presence and location of nickpoints in rivers can give an indication of base-level
history, provided that equilibrium has not been reached throughout the basin.

Longitudinal profiles of the St. Joseph River were drawn for both channel
and valley distance vs. altitude by using 7.5 minute USGS quadrangles.
Conversions were made for incompatible scales and measurement systems (e.g.
1:24,000 vs. 1:25,000 scales and english system vs. metric system). Profiles
were done by hand using a Brunton rolling map-measuring tool and checked
against the distance-measuring tool in ArcView 3.2. Topographic maps were
downloaded from the Michigan Center for Geographic Information
(www.michigan.gov/cgi) and projected in Michigan GeoRef meters. Graphs were
plotted using a computer spreadsheet. Locations of man-made structures were
noted on the profile.

The thickness and character of the cut and fill section in a river valley is also
an indicator of the duration and amplitude of the base-level event. The St.
Joseph River carved a 55 m (180 ft) deep valley which was subsequently filled

with 43 m (140 ft) of transgressive, valley-fill sediments (Kincare 2000). The fill



sediments of the terraces will be described in order to separate the cut and fill
sequences from other periods of lower lake levels from the Chippewa low.

Cores of the valley-fill sequence were obtained with split-spoon rods and
direct-push methods. Cores were logged for grain-size trends, presence of
organics (for datable material) and any evidence of depositional environment.
Cores were drilled in four locations along the axis of the drowned valley of the St.
Joseph River to recover sediments and place them in a chronological context.

Mapping of glaciofluvial and glaciolacustrine sediments in the St. Joseph
River drainage basin was performed to:

e show the areal distribution of surficial geologic units that cover areas
greater than 20 hectares,

e generate a lithologic description of all map units and their expected
range of variability.

The surficial geologic map of glaciofluvial and glaciolacustrine sediments
was produced by field investigation of surficial materials observed in natural
exposures, road cuts, building and construction excavations and hand-auger
holes dug by the investigator. In addition, use was also made of aerial

photography, topographic maps, and county soil surveys.
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Chapter 3

GLACIAL HISTORY OF THE GREAT LAKES REGION

Ever since T.C. Chamberlin (1883) published the first map to show the
extent of drift (glacial deposits) in the mid-continent region of North America,
glacial geologists have attempted to divide and subdivide the drift in order to
unravel the glacial history of the region. This work has lead to several time-
stratigraphic classifications of the last (Wisconsin) glaciation, most of which apply
to specific areas of the region. For example, Willman and Frye (1970) developed
a widely accepted classification for the Lake Michigan-lllinois area (Table 1)
based on the time-sequence stratigraphy of drift units, buried soils and **C
(radiocarbon) age determinations (chronostratigraphy). In their classification, the
last glacial stage is divided into five substages, some representing glacial and
some nonglacial conditions. Another widely accepted classification (Table 1), by
Dreimanis and Karrow (1972), applies to the eastern-northern Great Lakes area
and is also based on time-sequence stratigraphy of drift units and '*C age
determinations, but not buried soils. In this classification the last glacial stage is
divided into three substages that are further subdivided into stadials representing
glacial conditions and interstadials representing nonglacial conditions.

A difficulty inherent with the above classifications is that time intervals
(stages, substages, stadials, and interstadials) have time-parallel boundaries that
do not necessarily correspond to the timing of events across a large area. For
example, a glacial advance in the eastern Great Lakes area during the Port

Bruce Stadial may have resulted in a ~1,500 year interval of ice cover in southern
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Table 1. lllinois and Ontario Chronostratigraphic Classifications’

lllinois Ontario
(Willman and Frye 1970) (Dreimanis and Karrow 1972)
Wisconsin Stage Wisconsin(an) Stage
Valderan Substage2 late Wisconsin(an) Substage

Driftwood Phase or Stadial
North Bay Interval or Interstadial
Valders Phase or Stadial

Twocreekan Substage Two Creeks Interval or Stadial

Woodfordian Substage Port Huron Phase or Stadial
Mackinaw Interval or Interstadial
Port Bruce Phase or Stadial
Erie Interval or Interstadial
Nissouri Stadial

Farmdalian Substage middle Wisconsin(an) Substage
Plum Point Interstadial
Altonian Substage Cherrytree Stadial

Port Talbot Interstadial
early Wisconsin(an) Substage

Guildwood Stadial

St. Pierre Interstadial

Nicolet Stadial

1: After Karrow et al. (2000)
2: Renamed Greatlakean Substage by Evenson et al. (1976)
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Ontario, but the same advance may have resuited in only a ~500 year interval of
ice cover in northern Ohio. Likewise, a temporary retreat of the glacier margin in
the Lake Michigan-lllinois area during the Farmdalian Substage may have
resulted in a soil-forming interval in northern lllinois lasting several 1000 years,
but this same soil-forming interval may have lasted less than 1000 years in
eastern Wisconsin. To overcome this problem Johnson et al. (1997) and Karrow
et al. (2000) have recently proposed a time-stratigraphic classification system for
the last glaciation that includes diachronic-time divisions and better represents
the timing of events associated with what we know was a dynamic ice margin.

The Great Lakes before glaciation

Little is known about climate in the eastern part of the mid-continent prior to
Late Quaternary glaciations because much of the geologic record has been
removed by ice-sheet erosion or is now deeply buried beneath glacial sediments.
However, some clues remain. For example, in northern Indiana remnants of
Pliocene (5.3-1.8 Ma) frogs, pond turtles, fishes, birds, snakes, and small and
large mammals have been found in sinkholes buried beneath glacial deposits
(Holman 1998, Farlow et al. 2001). Collectively, these remnants indicate a dry,
open, prairie-like or savanna environment. In other areas, analyses of the
bedrock topography buried beneath glacial deposits indicate that during the
Pliocene major rivers flowed where the Great Lakes are today (Figure 4).

Age and extent of the glacial deposits

It is not known when the eastern part of the mid-continent was first

glaciated. However, evidence from Ohio, Indiana and lllinois suggests that
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o ﬂ}PreglaCIal Drainage in the
R Great Lakes Region

Figure 4. Preglacial drainage of the Great Lakes region during the late Cenozoic
before glaciation. Probable pattern is based on known bedrock structures and
geophysical reconnaissance of buried valleys. After Horberg and Anderson
(1956), Hough (1958), and Flint (1971).
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sometime prior to 780,000 years ago glacier ice extended, over much of the
Great Lakes area and dammed several northward-draining valleys in lllinois,
Indiana, and Ohio, forming lakes (Fullerton 1986, Johnson 1986).
Paleomagnetic data from some of the sediments deposited in these lakes are
magnetically reversed and therefore must predate 780,000 years ago
(Matuyama-Brunhes boundary) - when the Earth's magnetic field last reversed.
Also, oxygen-isotope records from deep ocean cores (Figure 5) suggest that
glaciations large enough to extend into the mid-continent occurred many times
over the last 800,000 years (Ruddiman and Raymo 1988, Shackleton et al.
1988). The ocean-core records also reveal that the penultimate glaciation
occurred sometime between about 202,000 and 132,000 years ago and that the
last glaciation occurred between about 79,000 and 10,000 years ago (Ruddiman
and Raymo 1988, Shackleton et al. 1988).

The penultimate glaciation in the eastern part of the mid-continent is
generally referred to as the lllinois glaciation (Chamberlin 1896, Leverett 1899)
and corresponds to Marine Isotope Stage (MIS) 6 of the marine oxygen-isotope
record (Follmer 1983, Curry and Pavich 1996). It probably reached its maximum
extent about 150,000 years ago and is represented by an extensive drift sheet, in
places exceeding tens of meters in thickness (Figure 6). Because glacial ice is
usually channeled through lowlands and major river valleys, the southern margin
of the drift sheet is generally lobate, except where uplands of the Appalachian
Mountains obstructed ice flow. Where exposed, the drift sheet is highly

weathered with soil development up to several meters in thickness (Ruhe 1974).
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Extent of Wisconsin Glaciation
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Figure 6. Extent of drift sheets in the eastern part of the mid-continent of North

America (after Ehlers and Gibbard 2004).
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In many places to the north, the weathered surface and associated soil lies
buried beneath drift of the last glaciation (Follmer 1978, 1983, Curry and Pavich
1996) and marks an especially warm interval known as the Sangamon
interglaciation (Leverett 1898) that corresponds approximately to MIS 5 (Follmer
1983, Curry and Pavich 1996).

The last glaciation is generally referred to as the Wisconsin glaciation
(Chamberlin 1894) and corresponds to MIS 2-4. In the eastern-northern Great
Lakes area it also may correspond to all or part of Ml substages 5a-5d (Karrow et
al. 2000). The glaciation reached its maximum extent about 23,900 years ago
(Fullerton 1986) and, like the lllinois glaciation, is represented by a thick,
extensive drift sheet (Figure 6) with a lobate margin. With the exception of
southern Minnesota, eastern Wisconsin, eastern Ohio, New York and places in
Pennsylvania, the drift sheet does not extend as far south as the drift sheet
associated with the lllinois glaciation. It also is not as weathered, with soil
development rarely more than 1 m thick.

Drift sheets older than those associated with Wisconsin and lllinois
glaciations also occur in the eastern part of the mid-continent (Figure 6).
However, their number and ages are uncertain (Hallberg 1986); therefore they
are not attributed to particular glaciations but collectively referred to as Pre-
lllinoian. In parts of Kansas, Nebraska, Wisconsin, lowa, and Missouri as well as
locally in southwestern Ohio, one or more Pre-lllinoian drift sheets extend beyond
the limits of the Wisconsin and lllinois glaciations and are characterized by a very

high degree of weathering (Willman and Frye 1970). In Pennsylvania this drift is
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generally very thin and patchy and often consists of only a few scattered erratic
boulders on bedrock. Highly weathered erratic boulders also have been reported
in northern Kentucky and their presence suggests that one or more Pre-lllinoian
glaciations must have extended into northern Kentucky (Teller and Goldthwait
1991).

Temporal record of the Wisconsin glaciation

The diachronic classification of the Wisconsin glaciation shown in Figure 7
was first proposed by Johnson et al. (1997) and Karrow et al. (2000) and has
been pieced together from a number of stratigraphic sections. The smallest time
division in the classification is a phase. It usually is applied locally and defined by
a referent such as a unit of till, outwash, lacustrine sediment, loess, peat, or
buried soil. The next higher order time division is a subespisode - applied more
regionally and defined by one or more referent units. The highest order time
subdivision is an episode. It applies throughout an entire region, in this case the
eastern part of the mid-continent, and is defined by one or more referent units.
Of particular importance are referent units such as buried soils, organic beds and
fossiliferous sediments because they can reveal valuable information about
climatic conditions during ice-free intervals. Also, they can be dated using the
C method as far back as about 53,000 years ago if they contain organic
materials such as wood, plant fragments, peat, and shells (Fairbanks et al.
2005). The discussion that follows highlights the important events of each of the
maijor time units in the eastern part of the mid-continent, as shown in Figure 7.

Sangamon Episode
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The Don Formation exposed near the city of Toronto, Ontario serves as the
referent for the Sangamon Episode (last interglacial) in the eastern-northern
Great Lakes area and probably represents a time span limited to MIS 5e - about
130,000-115,000 years ago (Karrow et al. 2000). It consists of fluvio-lacustrine
sediments and includes fossils that indicate a climate as warm or warmer than
present (Terasmae 1960, Eyles and Williams 1992). In the Lake Michigan-lllinois
area, on the other hand, the Sangamon Geosol (buried soil) exposed near the
city of Athens in central lllinois serves as the referent for the Sangamon Episode
(Johnson et al. 1997). It probably represents a time span limited to MIS 5 - about
130,000-75,000 years ago (Follmer 1983). Pedological analyses of the geosol
also suggest that the climate in the Lake Michigan-lllinois area during the early
part of the Sangamon Episode was warmer than present (Follmer 1983). The
lateral extent of the geosol is considerable and correlative buried soils have been
reported throughout much of the upper Mississippi River basin (Curry and
Follimer 1992, Hall and Anderson 2000), including northern lllinois. Recently,
'%Be data suggest a correlative buried soil in northern lllinois developed from at
least 155,000 to 55,000 years ago (Curry and Pavich 1996).

Wisconsin Episode

Eastern-Northern Great Lakes area

In the eastern-northern Great Lakes area, the Wisconsin Episode (last
glaciation) is divided into three subepisodes: Ontario, Elgin and Michigan (Figure
7). The Ontario is the oldest and is named after the province of Ontario where

the best stratigraphic evidence for the subepisode is located (Karrow et al. 2000).
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It includes three phases with material referents in the Toronto area, mainly tills
and glaciolacustrine sediments, and represents a time of cold climate and
extensive ice cover, probably corresponding to MIS 4 and perhaps part or all of
substages 5a-5d (Karrow et al. 2000; Figure 7). During the Greenwood Phase,
ice extended well into the Ontario basin but during the Willowvale Phase it
withdrew, probably into the eastern end of the basin (Karrow et al. 2000). During
the Guildwood Phase the ice margin readvanced westward across the Ontario
basin and possibly into the north-central part of the Erie basin (Dreimanis 1992).
Little is known about where the ice margin stood in the Huron basin during the
early part of the Greenwood and Willowvale phases, but during the Guildwood
Phase it probably extended into part or all of Georgian Bay.

To date, no Ontario Subepisode sediments have been reported in Michigan.
However, there are reports of buried organic material that have yielded infinite
4C dates (Eschman 1980, Winters et al. 1986). Some of this material may have
accumulated during the Ontario Subepisode when parts of southern Ontario were
covered by glacier ice, or earlier, e.g., during the Sangamon Episode.

The Elgin Subepisode (Figure 7) is named after Elgin County, on the north
shore of Lake Erie. Here, the best evidence for the episode occurs, mainly in the
form of lacustrine and organic sediments (Karrow et al. 2000). The Elgin
Subepisode includes the Port Talbot, Brimley and Farmdale phases and
represents a time of moderated (warmer) climate and significant ice contraction.
Of particular significance is the Port Talbot Phase, defined by pollen- and

macrofossil-bearing lacustrine sediments located near Port Talbot along the
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north shore of Lake Erie. Pollen from this site indicates initial warm and dry
climatic conditions (but cooler than an interglacial), followed by climatic cooling
and possibly a forest-tundra environment (Berti 1975). Peat and wood found
within the sediments have yielded a number of calibrated "C ages ranging from
about 51,200 to 47,300 years ago (Dreimanis et al. 1966, Dreimanis and Karrow
1972). Calibrated '“C ages of >49,000 years also have been obtained from a
buried soil and overlying fossiliferous sediments in the city of Guelph (Karrow et
al. 1982). Analyses of the fossils indicate a cooler and dryer climate than
present; it is possible that the buried soil and sediment is associated with the
Elgin Subepisode, or alternatively the Ontario Subepisode or some earlier time
(Karrow et al. 1982).

In Michigan, sites of buried organic material consisting of wood, muck, and
marl have yielded calibrated '*C ages ranging from about 51,900 to 42,300 years
ago (Eschman 1980, Winters et al. 1986). Of particular interest is material
reported near Kalkaska in northwestern Lower Michigan (Winters et al. 1986). It
includes a pollen record that shows vegetation evolving from a cold, open forest
into a closed boreal forest about 40,300 years ago and suggests a climate
possibly influenced by an ice margin in southern Ontario (Winters et al. 1986).
Also of interest is organic material exposed in the banks of the Black River in
southeastern Lower Michigan, which has been dated at about 51,900 years
(Eschman 1980). It contains a mixed terrestrial and aquatic fauna that clearly

has boreal affinities (Karrow et al. 1997). These buried organic materials confirm
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that Lower Michigan was not covered by ice during the Elgin Subepisode (Port
Talbot phase), although the ice margin was likely not far to the north.

The Michigan Subepisode (Figure 7) is the last subepisode of the Wisconsin
Episode and is so named because the landscape of Michigan is dominated by
glacial sediments deposited near the end of the Wisconsin glaciation (Johnson et
al. 1997, Karrow et al. 2000). The subepisode includes 11 phases defined
mainly by till units found in Michigan, Ohio, and Ontario. It marks a period of cold
climate and maximum expansion of ice, followed by warming and ice-margin
retreat. The Nissouri Phase at the beginning of the subespisode is of particular
significance because it was during this phase that the ice margin advanced
rapidly out of the Erie and Huron basins to cover all of Ontario and Michigan, as
well as much of Indiana and Ohio. Upon reaching its most southerly position
near Cincinnati, Ohio, the margin overrode and buried a forest that has yielded
several calibrated '“C ages that average about 23,700 years ago (Lowell et al.
1990).

Following the ice advance during the Nissouri Phase, the ice margin
retreated northward towards the Erie and Huron basins, only to periodically
readvance multiple times. The exact timing of these readvances is not well
known, mainly because of the paucity of in situ datable organic material,
especially wood, during this cold climatic interval. A notable exception, however,
is the readvance associated with the Onaway Phase. It buried a bryophyte
(moss) bed near Cheboygan, Michigan that has yielded several calibrated '“C

ages averaging about 13,600 years ago (Larson et al. 1994).
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Lake Michigan-lllinois area

In Lake Michigan-lllinois area, the Wisconsin Episode is subdivided into the
Athens and Michigan Subepisodes (Figure 7). The Athens Subepisode includes
the Alton and Farmdale phases and is based on a record of loess and buried
soils exposed near the city of Athens in central lllinois (Johnson et al. 1997). The
Michigan Subepisode has nine phases based mainly on till units found in lllinois,
Wisconsin, and northern Michigan (Hansel and Johnson 1992). In general, the
phases of the Michigan Subepisode are generally concurrent with those in the
eastern-northern Great Lakes area (Karrow et al. 2000).

The Alton Phase was a time of transition from interglacial to periglacial
conditions in central lllinois and its referent material is the Roxana Silt (Johnson
et al. 1997). Little is known about the ice margin position during the Alton Phase,
but it may have extended as far south as north-central Wisconsin and central
Minnesota, where it contributed massive quantities of silt into the upper-
Mississippi drainage system (Grimley 2000). The following Farmdale Phase was
a time of significant reduction in loess supply, probably because of ice margin
retreat from the upper-Mississippi drainage system (Grimley 2000) and a
concurrent return to a milder climate. The Farmdale Geosol and Robein Silt
exposed along the banks of Farm Creek, near Peoria, lllinois (Frye and Willman
1960), serve as the referent for the Farmdale Phase. Based on radiocarbon
dates at and near the exposure, the Farmdale Geosol is believed to have
developed from about 33,400 to 26,500 years ago (Willman and Frye 1970,

Johnson 1976). The geosol also is found at other localities in lllinois and western
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Indiana (Curry and Follmer 1992, Hall and Anderson 2000); in eastern Indiana
and Ohio it is referred to as the Sidney Soil (Hall and Anderson 2000).

At a number of localities in Lower Michigan buried organic material, in
places meters thick, has yielded calibrated '*C ages ranging from 51,000 to
28,700 years ago (Eschman 1980; Winters et al. 1986). The presence of this
material indicates that much of the Lower Peninsula was cool but ice-free during
the Alton and Farmdale phases and that climate at that time was probably wetter
than in central lllinois.

As in the eastern-northern Great Lakes area, the Michigan Subepisode in
the Lake Michigan-lllinois area marks a period of cooling and expansion of ice,
eventually followed by general warming and retreat of the ice margin. Maximum
glacier-ice expansion occurred early in the Michigan Subepisode during the
Shelby Phase. At that time the ice margin advanced out of the Lake Michigan
basin south to as far as Peoria, lllinois, where it overrode and buried a moss
layer that has yielded a calibrated *C age of about 23,500 years ago (Follmer
1979).

After advancing to Peoria, the ice margin began to slowly retreat northward,
though briefly readvancing a number of times. The exact timing of each
readvance is uncertain because of the paucity of in situ datable organic
materials. However, the timing of the readvance associated with the Two Rivers
Phase is well documented because advancing ice overrode and buried a forest

near Two Creeks Wisconsin that has yielded an average calibrated '*C age of
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about 13,600 years (Broecker and Farrand 1963, Leavitt and Kalin 1992, Kaiser
1994).

The timing of the readvance associated with the Marquette Phase is also
well established, because glacial sediments associated with that readvance
buried a forest near Marquette, Michigan that has yielded an average calibrated
“c age of about 11,500 years (Lowell et al. 1990, Pregitzer et al. 2000). The last
known ice readvance was the Cochrane readvance in northern Ontario about
9,400 years ago. After this, the ice sheet split into two large remnants east and
west of Hudson Bay and was entirely gone by about 6,800 years ago (Dyke and
Prest 1987).

Hudson Episode

Post glacial time is represented by the Hudson Episode (Figure 4), named
so because Hudson Bay is dominated by marine, fluvial and paludal sediments
deposited since deglaciation (Johnson et al. 1997, Karrow et al. 2000). As yet,
there is no particular referent for the Hudson Episode but a possible candidate is
marine sediments associated with the Tyrrell Sea that occupied Hudson Bay
after retreat and breakup of the last ice sheet (Shilts 1984, Dredge and Cowan
1989). In the eastern part of the mid-continent, deposits associated with the
Hudson Episode include lacustrine sediments deposited in the Great Lakes since
deglaciation (Colman et al. 1994b, Rae et al. 1994), as well as within smaller
inland lakes. Other deposits include loess, dune sand, fluvial deposits, and

organic accumulations in swamps and bogs.
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Chapter 4

RECORD OF PROGLACIAL AND POST-GLACIAL LAKES

Origin and development of lake basins

The Great Lakes are one of Michigan’'s most distinctive geographic features.
The familiar shape of the Great Lakes is however, a recent phenomenon. Their
present form is the result of a number of factors such as glacial erosion and
deposition, isostatic depression and subsequent rebound due to glacial-ice load,
distribution of glacial meltwater, and changing lake outlets. The shape and
location of each Great Lake has been largely determined by the underlying
geology. Most of the bedrock beneath each lake basin is easily-eroded
Paleozoic sedimentary deposits with the exception of Lake Superior which is a
structural basin underlain by complex Middle Proterozoic rocks (Hough 1958).
Therefore, prior to Late Cenozoic Ice Age, each lake basin was probably already
a river valley draining to an ancestral St. Lawrence River (Figure 4). The
structural bedrock highs of the Kankakee arch south of Chicago, and the Findley
arch on the west side of Lake Erie, would have effectively prevented the pre-
glacial Great Lakes drainage basin from draining south to the Mississippi River.

Recent evidence on climate, gleaned from cores of sea-floor sediment and
ice caps, indicate that at least 40 separate glaciations occurred during the last
2.75 million years (Ruddiman and Raymo 1988). Each glaciation that was
extensive enough to reach Michigan probably further eroded the lake basins and
altered the Great Lakes. Most of the glacial sediments in Michigan were

deposited during the Wisconsin Episode and the majority of these were
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deposited during the final phase of deglaciation (<20,000 years ago). Older
glacial sediments are found to the south of Michigan in lllinois, Indiana, and Ohio,
demonstrating that earlier glaciations advanced well to the south of Michigan.
However, we have not found any definitive evidence yet for older glacial deposits
in Michigan, although this may change with advances in dating techniques and
additional field research. Despite the glaciers being prone to erosion each time
they covered Michigan, it still has some of the thickest glacial deposits in North
America, up to 365 m thick in northern lower Michigan (Rieck and Winters 1993,
Soller 1998). Given this fact, further discussion below will center on deposits of
the late Wisconsin glaciation.

Glaciers and lakes

Leverett (1899) and Leverett and Taylor (1915) published the most detailed
compilations of field data on glacial-lake phases in the Great Lakes basin. Later
chronologies using new and reinterpreted data have been compiled by Hough
(1958), Fullerton (1980), Karrow and Calkin (1985), Schneider and Frasier
(1990), and Ehlers and Gibbard (2004). The implications of this work for
questions of fluvial responses to base-level change include looking at how far
inland the effect of base level is traceable. This can also be extended to
questions of sediment load and the formation of low-stand deltas.

Three major lobes of the Laurentide ice sheet moved across and covered
Michigan from out of the overdeepened lake basins and are named after those
basins, the Lake Michigan, Saginaw, and Huron/Erie lobes (Figure 8). The
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