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ABSTRACT

HOW MANY FISH ARE THERE AND HOW MANY CAN WE KILL? IMPROVING
CATCH PER EFFORT INDICES OF ABUNDANCE AND EVALUATING HARVEST

CONTROL RULES FOR LAKE WHITEFISH IN THE GREAT LAKES

By
Jonathan J. Deroba

My dissertation has two main objectives: 1) to explore alternative ways to use
commercial lake whitefish fishery catch per effort (CPE) data as an index of abundance
in 1836 Treaty-ceded waters of the Great Lakes, and 2) to evaluate alternative harvest
control rules for lake whitefish. Chapter 1 was directed at exploring alternative ways to
use commercial lake whitefish fishery CPE data, while Chapters 2 and 3 covered topics
related to harvest control rules.

Fishery CPE data is often used to assess relative fish abundance, and assessments
used in 1836 Treaty-ceded waters of the Great Lakes assume that commercial CPE (i.e.,
ratio of aggregate catch to aggregate effort in each year) from gill-net and trap-net
fisheries is proportional to abundance. However, CPE may change due to factors other
than abundance. In Chapter 1, I developed general linear mixed models (GLMMs) to
account for sources of variation in CPE unrelated to abundance, and used the least-
squares means (LSMs) for each year as an alternative to the current index of abundance.
Effects such as license holder, boat size, and month accounted for much of the variation
in CPE. LSMs and the current CPE index displayed different temporal trends among

years in some areas, suggesting the importance of adjusting fishery CPE for effects like

boat size, season, and license holder.



Harvest policies use control rules to dictate how fishing mortality or catch and
yield levels are determined. Common control rules include constant catch, constant
fishing mortality rate, and constant escapement. The “best” control rules for meeting
common fishery objectives (e.g., maximizing yield) is a source of controversy in the
literature, and results are seemingly contradictory. In Chapter 2, I conducted a detailed
review of the relevant harvest control rule literature to compare control rules for their
ability to meet widely used fishery objectives and identify potential causes for
contradictory results. The relative performance of control rules at meeting common
fishery objectives was affected by: fishery objectives, whether uncertainty in estimated
stock sizes was included in analyses, whether the maximum recruitment level was varied
in an autocorrelated fashion over time, how policy parameters were chosen, and the
amount of compensation in the stock—recruit relationship. More research is needed to
compare control rules while considering these and related factors.

In Chapter 3, I used an age-structured simulation model that incorporated
stochasticity in life history traits and multiple uncertainties to compare the current harvest
control rule for lake whitefish (constant fishing rate; CF) with a range of alternative
control rules, including conditional constant catch (CCC), biomass-based (BB), and CF
and BB rules with a 15% limit on the interannual change in the target catch. The CF and
BB rules simultaneously attained higher average yield and spawning stock biomass than
other control rules, while the CCC rule and limiting the target catch changes by 15% had
the lowest yearly variability in yield. The low yearly variability in yield provided by
limiting target catch changes to 15% comes at the cost of frequently reducing biomass to

low levels, so that in many situations other control rules would be preferred.
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INTRODUCTION AND SUMMARY

Many fisheries are managed by using estimates of abundance and other
parameters from model-based stock assessments (e.g., fitted statistical catch at age
models) for setting annual fishery harvest quotas. Stock assessments are often fit to an
index of abundance, and so the estimates from the stock assessments can critically rely on
the accuracy of both the index and a measure of uncertainty for the index (Maunder and
Starr, 2003). Harvest control rules are often used to set a quota as a function of the
current estimate of the system state (e.g., an abundance estimate from an assessment).
These topics, indices of abundance and harvest control rules, were the main foci of my
research.

1. Indices of Abundance

Catch per effort (CPE) is usually used as the index of abundance for most
fisheries, and the common assumption is that CPE changes in proportion to abundance,
which is also referred to as “constant catchability” (Quinn and Deriso, 1999). Violations
of this assumption can lead to inaccurate estimates of abundance from stock assessments,
and consequently ineffective management, which sometimes results in fishery collapse
(Rose and Kulka, 1999; Harley et al., 2001). To avoid violations of this assumption, CPE
indices of abundance are ideally based on fishery independent survey data (e.g., Helser et
al., 2004). Such surveys are not available for many fisheries and so many indices of
abundance used in assessments are based on fishery dependent data. Fishery dependent
data is more likely to violate the constant catchability assumption due to things such as

systematic changes in characteristics of the fishing fleet (e.g., technological
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advancements, entrance and exit of individual vessels), non-random search effort, and the
spatial distribution of the fish stock (Rose and Kulka, 1999; Harley et al., 2001; Maynou
et al., 2003; Battaile and Quinn, 2004; Bishop et al., 2004; Campbell, 2004). Even stock
assessment models that allow for some temporal changes in catchability will tend to work
better when such temporal variation is lower (Wilberg and Bence, 2006; Wilberg et al.,
2008).

To account for some of the variation in CPE not attributable to changes in
abundance, and provide a more accurate index, CPE data can be “standardized” by fitting
statistical models to the catch and effort data, and then using “year-effect” estimates as
the index of abundance (Maunder and Punt, 2004; Venables and Dichmont, 2004). Year-
effect estimates are commonly used because detecting trends in abundance over time is
usually the objective (Maunder and Punt, 2004). Frequently, some form of general or
generalized linear model is used to standardize the CPE data (Maunder and Punt 2004).
1.1. Chapter 1: Improving indices of abundance for lake whitefish

My main objective in Chapter 1 was to produce standardized indices of
abundance for lake whitefish in 1836 Treaty-ceded waters of Lakes Huron, Michigan,
and Superior, but this work also allowed me to develop expertise in statistical techniques
(e.g., miXed models) that I used to parameterize the simulation model of chapter 3.
Currently, statistical catch at age assessments are fit in each of 18 management units, and
a quota is also set for each unit. The assessments are fit using two separate CPE indices
of abundance from gill-nets and trap-nets, with CPE estimated as the ratio of sum of
aggregate catch to sum of aggregate effort in each year. I developed general linear mixed
models (GLMM) for each gear type to standardize the fishery CPE data. Factors
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included in the GLMMSs were fixed effects of year, month, and boatsize (gill-net fishery
only), and random effects of license holder (i.e., analogous to boat captain), grid (i.e.,
location), and all two and three way interactions. The effect of the standardization by
using the GLMM method was evaluated by examining the temporal trends in the
proportional difference (PD) between the least squares means for each year (LSM) and
CPE (i.e., aggregate catch divided by aggregate effort for each year). Since both the
LSMs and CPE are relative indices, changes in PD over time were of interest and not
whether average PD differed from 1.0. Factors that were particularly influential in the
GLMM models were month, boat size, and license holder, which was similar to factors
important for marine commercial fisheries where standardization is more widely applied
than in freshwater systems. The proportional difference between the LSMs and CPE
trended through time in some management units, suggesting that adjusting fishery CPE
for effects such as boat size, season, and license holder was important. So, I concluded
that model-based indices of abundance should replace non-standardized CPE in some
lake whitefish stock assessment models, especially those management units where the
proportional difference trended through time. In management units where the
proportional difference did not trend through time, using a model-based index of
abundance may still be beneficial. Accounting for variability due to random effects led
to year specific estimates of uncertainty (e.g., the standard errors for the LSMs) that were
not available when using non-standardized CPE. Using improved years-specific
estimates of uncertainty to weight the influence of indices of abundance can increase the

accuracy of stock assessment estimates (Helser et al., 2004; Maunder and Starr, 2003).



2. Harvest Control Rules

Harvest control rules are guidelines that specify an amount of catch, fishing effort,
or fishing mortality as a specific, and usually simple, function of a current estimate of the
system state (e.g, spawning biomass; Deroba and Bence, 2008). Common control rules
include constant catch, constant fishing mortality rate, constant escapement, or a few
variations of these. Each control rule is also defined by a number of policy parameters.
For example, the constant fishing mortality rate control rule is defined by one policy
parameter, the target level of fishing mortality. Ideally, a harvest control rule is chosen
because it meets fishery objectives (e.g., maximize yield, minimize interannual variability
in yield). However, which rules are best at meeting certain fishery objectives is a source
of controversy in the literature. Furthermore, the relative performance of control rules
depends on specific characteristics of the fishery and underlying population dynamics
that are incorporated into an evaluation. Consequently, selecting a harvest control rule
and policy parameters can be a difficult task.
2.1. Chapter 2: A review of harvest control rules

In Chapter 2 I reviewed the harvest control rule literature with two objectives: 1)
to compare and contrast the relative performance of various control rules at meeting
common fishery objectives, and 2) to identify reasons for what seem to be contradictory
results. The findings were also relevant for designing the harvest control rule evaluation
of Chapter 3 (see below). I found that the relative performance of control rules at
meeting common fishery objectives was affected by: the given fishery objective, whether
uncertainty in estimated stock sizes was included in analyses (i.e., assessment error),

whether the maximum recruitment level (e.g., the asymptote of a Beverton—Holt stock—
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recruit function) varied in an autocorrelated fashion over time, and the amount of
compensation in the stock-recruit relationship. Also, few studies have compared control
rules using optimal parameters (e.g., those that maximize some objective function) that
were found while including assessment error. More commonly, parameters that are
optimal without assessment error are used in a comparison of control rules that includes
assessment error. This approach can produce misleading results. Lastly, more research is
needed to compare control rules when accounting for uncertainty in key population
parameters, when stock—recruitment or other population dynamic parameters vary over
time, and for fisheries with non-yield-based or competing objectives.
2.2. Chapter 3: Evaluating harvest control rules for lake whitefish

Chapter 3 addressed some of the harvest control rule research needs identified in
Chapter 2, and was based on a simulation analysis with the objective of evaluating the
ability of alternative control rules to meet fishery objectives for lake whitefish in 1836
Treaty-ceded waters. Currently, a quota is set for each management unit so that total
annual mortality rate equals 65% for ages experiencing the highest levels of fishing
mortality. Because assessments in these waters assume a constant natural mortality rate
across ages and time (Ebener et al., 2005), this is equivalent to a constant fishing
mortality rate (constant-F) control rule. The constant-F control rule and the parameter
for the control rule (i.e., 65% total annual mortality rate) are based on analyses conducted
over 30 years ago (Healey, 1975), and so may not be optimal for meeting fishery
objectives.

Lake whitefish stocks in 1836 Treaty-ceded waters are characterized by temporal

and spatial variation in various population parameters. For example, lake whitefish
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growth in some areas of the Great Lakes declined during the 1990s and 2000s, coincident
with declines in an important prey source, Diporeia (Hoyle et al., 1999; Pothoven et al.,
2001; Mohr and Nalepa, 2005), but similar declines have not occurred everywhere
despite similar ecosystem changes (e.g., Cook et al., 2005; Lumb et al., 2007). Growth
rates, maturity ogives, natural mortality, and stock-recruit relationships also likely differ
spatially among some of the management units (e.g., Wang et al., 2008).

Drawing from my experiences with GLMMs from Chapter 1 and partially based
on the results of Chapter 2, I developed a stochastic age-structured simulation model that
incorporated stochasticity in life history traits, uncertainty in future lake whitefish
growth, and other sources of uncertainty to compare the current harvest control rule with
a range of alternative control rules, including conditional constant catch (CCC), constant-
F, biomass-based (BB), and constant-F and BB rules with a 15% limit on the interannual
change in the target catch. Separate sets of growth parameters were estimated for fast
and slow growth stocks, and separate sets of simulations were done for these two
categories of individual stocks. Furthermore, I developed two variants of a growth model
to represent alternative hypotheses about future lake whitefish growth; one with
temporally autocorrelated changes in growth and another where growth remained similar
to more recent patterns. Uncertainty in the stock-recruitment relationship was
incorporated by drawing stock-recruit parameters for each simulation from a set of
possible values, which were based on data from each management unit and estimated
using a GLMM (i.e., similar statistical model used in Chapter 1). The simulations also
included assessment and implementation error. Some of the model features mentioned

above were included because the results of Chapter 2 indicated that these can affect
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relative control rule performance, in particular, accounting for uncertainty in the stock-
recruit relationship and assessment error. Each control rule was evaluated over a range of
the policy parameters that define the control rules. The performance of the control rules
was evaluated by examining trade-off plots of spawning stock biomass (SSB) versus yield
(Y), interannual variability in yield (Yvar) versus the proportion of years that SSB fell
below 20% of the unfished level (SSBg-¢), Y versus Yvar, and Y versus the proportion of
years that SSB fell below 20% of SSBg-o.

While treating future growth as known, the rank order performance of the control
rules for each of the performance metrics was generally robust to sources of uncertainty.
For example, the constant-F and BB rules simultaneously attained higher average yield
and spawning stock biomass than all other control rules. The CCC rule and limiting the
constant-F or BB rules to a 15% change in target catch had the lowest yearly variability
in yield. The low yearly variability in yield provided by limiting target catch changes to
15%, however, came at the cost of frequently reducing biomass to low levels, so that in
many situations other control rules would be preferred.

The sensitivity of results to uncertainty about future lake whitefish growth was
control rule specific and depended on whether stock growth was fast or slow. For fast
growth stocks, selecting control rules and policy parameters by incorrectly assuming that
future growth will be autocorrelated resulted in little cost from the optimum levels
relative to the alternative of incorrectly assuming future growth will be similar to recent
levels. For slow growth stocks, however, the robustness to choosing policy parameters
based on an erroneous assumption about future lake whitefish growth depended on the

control rule and trade-off plot. The decision about how best to select control rules and
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policy parameters will ultimately depend on how competing fishery objectives are
weighted relative to each other. Generally, however, control rules and policy parameters
for fast growth stocks should likely be selected assuming future growth will be
autocorrelated, but a universal recommendation for slow growth stocks is less clear (i.e.,
depends on the control rule and fishery objectives).

Depending on how important different fishery objectives are, a control rule and
policy parameters other than the one currently in use (i.e., constant-F based on a total
annual mortality rate of 65%) may be worth considering. For example, a BB control rule
with appropriately selected policy parameters could likely produce nearly the same or
more yield, spawning stock biomass, and less risk with little cost in variability in yield
relative to the currently used policy. Similarly, the CCC control rule can likely provide
less variability in yield, but at the cost of yield. So, if maintaining low variability in yield
is more desirable than maximizing yield, a CCC control rule may want to be considered.
3. Overall Conclusions and Future Directions

The results of this dissertation have implications for the improved management of
lake whitefish in the Great Lakes, but the results are also more generally applicable. In
Chapter 1, I found that model-based indices of abundance should likely replace non-
standardized indices in fitting stock assessment models. The factors important to the
standardization process also seem to be consistent among systems, and so should be
considered when standardizing CPE data for most fisheries. Likewise, updating stock
assessments for most fisheries to include standardized indices of abundance and
associated measures of uncertainty would likely produce more accurate estimates of

abundance and other population parameters, and so reduce assessment error, which in
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Chapter 2 was shown to affect relative control performance. In addition to assessment
error, Chapter 2 highlighted several other characteristics and uncertainties of harvest
policy evaluations that have affected control rule performance, and so should be
considered when developing harvest policy analyses for any fishery. The results of
Chapter 2, however, also revealed that little research has historically considered these
characteristics. Chapter 3 added to the body of research that has considered factors
important to control rule performance. The CCC control rule, which was first published
in an analysis of Pacific halibut Hippoglossus stenolepis, had never been evaluated while
considering assessment error (Clark and Hare, 2004). Similarly, few published analyses
have considered control rules with limits on the interannual change in target catch. Lake
trout Salvelinus namaycush in 1836 Treaty-ceded waters are managed with such a
restraint, but given the generally poor performance of these control rules another option
may be warranted. Chapter 3 also evaluated the sensitivity of relative control rule
performance to one form of time-varying growth that had never been considered before,
and time-varying population parameters have been shown to affect control rule
performance (Chapter 2). The results in regards to the rank order and sensitivity of the
control rules to this source of uncertainty are likely generally applicable to any fishery

experiencing similar conditions.
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CHAPTER 1

Deroba, J.J. and J.R. Bence. 2009. Developing model-based indices of lake whitefish
abundance using commercial fishery catch and effort data in Lakes Huron,
Michigan, and Superior. North American Journal of Fisheries Management 29:
50-63.

The content of this chapter is intended to be identical to the cited publication and is based
on the accepted manuscript with changes that reflect corrections made during copy
editing. Any differences should be minor and are unintended.
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Abstract

Fishery catch per effort (CPE) is often used to assess relative fish abundance, and
in many Great Lakes and other freshwater applications this is based on either an average
or the ratio of sum of aggregate catch to sum of aggregate effort. In particular,
assessments used to estimate the abundance of lake whitefish and recommend harvest
quotas in the 1836 Treaty-Ceded waters of Lakes Huron, Michigan, and Superior assume
that commercial CPE from gill-net and trap-net fisheries is proportional to abundance,
but CPE may change due to factors other than abundance, leading to violations of this
assumption. To account for sources of variation in CPE not attributable to abundance,
general linear mixed models (GLMMs) were developed for each management unit, and
least squares means (LSMs) for each year were used as the index of abundance. The
effect of the standardization by using the GLMM method was evaluated by examining
the temporal trends in the proportional difference between the LSMs and CPE (i.e.,
aggregate catch divided by aggregate effort for each year). Of the random effects
included in the final GLMM for the gill-net fishery, license holder accounted for the most
variation. The fixed effect of boat size category on CPE depended on lake, where on
average in Lake Superior there was little difference, but in Lakes Michigan and Huron
large boats had lower CPE than medium and small boats. CPE was on average higher
from October to December than in other months. The proportional difference between
the LSMs and CPE trended through time in some management units, suggesting that
adjusting fishery CPE for effects such as boat size, season, and license holder is
important. Factors influential to lake whitefish commercial fishery CPE are similar to
factors that have been shown to be important in marine commercial fisheries.
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Introduction

Lake whitefish, Coregonus clupeaformis, has supported a historically important
fishery for Native American bands and a highly valued commercial fishery in the upper
Great Lakes (Lakes Huron, Michigan, and Superior). In the late 1800s and early 1900s,
lake whitefish were often the most highly valued commercial species and usually
comprised the greatest proportion of total yield from each of the upper Great Lakes
(Koelz 1926; Brown et al. 1999). Lake whitefish stocks collapsed in each of these lakes
in the 1930s and 40s due to overexploitation, sea lamprey, Petromyzon marinus,
predation, and pollution (Smiley 1882; Koelz 1926; Jensen 1976; Brown et al. 1999;
Ebener and Reid 2005). From the 1960s through the 1980s, lake whitefish stocks
rebounded in each of the lakes largely due to improved management of commercial
harvest, sea lamprey control, pollution remediation, and the introduction of salmonines
that reduced the abundance of the invasive alewife, Alosa pseudoharengus, and rainbow
smelt, Osmerus mordax (Ebener 1997; Mohr and Ebener 2005a). In the 1990s, lake
whitefish once again became the main commercial species, particularly in Lake Huron
where the species comprised over 80% of the total commercial yield (Mohr and Ebener
2005b).

In 1979, the rights of Native American bands to fish in the Michigan waters of the
upper Great Lakes, as reserved in a treaty signed in 1836, were reaffirmed by U.S. federal
courts. Since the reaffirmation of treaty fishing rights, periodic stock assessments have
been conducted for stocks within spatially defined management units, with the fishery
data and harvest from within each management unit treated as applying to a

reproductively isolated stock (Figure 1; Ebener et al. 2005). Stock assessments are
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conducted and harvest recommendations based on the assessments are made annually for
each individual management unit. Within each management unit commercial fishery
catch and effort data are reported on a 10-minute by 10-minute statistical grid basis,
which allows for some spatial resolution within management units.

Since 2000, guidelines for the management of lake whitefish have been set
according to a Consent Decree. The 2000 Consent Decree created a Technical Fisheries
Committee (TFC) and its Modeling Subcommittee (MSC) to conduct stock assessments
and specify total allowable catches (TACs) and harvest regulating guidelines (HRGs, see
below). TACs are limits to catch, and are used in management units where some yield is
allocated to the state licensed fishery and some to the tribal fishery. HRGs are targets for
yield used to guide regulations for lake whitefish in units where all yield is allocated to
the tribal fishery.

The MSC fits statistical catch-at-age (CAA) models to commercial fishery data to
estimate population numbers, mortality rates, fishery harvest, and other population
parameters of interest. The estimates of the population parameters are then used to
project each stock’s abundance into the future, and then a TAC or HRG is calculated by
applying a reference mortality rate to the estimate of the next year’s abundance.

The CAA models use fishery effort data and an assumed relationship between
fishing mortality and fishery effort. Age (a) and year (y) specific fishing mortality rates
(F) are estimated as the product of age specific selectivity (S) and year specific “fishing

intensity” ( f) for each of two fishery gears, gill-nets and trap-nets:
Fia,y=Si,afi,y; ()

where i denotes gear type and,
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fi,y = Ei,yqi y&i,y ;s (2)
where E is fishery effort specific to each gear type, g is catchability, and € is
multiplicative observation error. The details of the CAA models have been described in
Ebener et al. (2005). Equation 2 is equivalent to assuming that the commercial fishery
catch per effort (CPE), estimated as the ratio of sum of aggregate catch to sum of
aggregate effort in each year, is on average proportional to average abundance over the
fishing year, and that deviations from this average relationship are independent variations
from year to year.

Violations of the assumption that CPE is proportional to average abundance can
occur due to changes in fishing power of gear, or if the spatial and temporal distribution
of fishery effort is non-random (Quinn and Deriso 1999). Violations of this assumption
are called hyperdepletion when CPE declines faster than abundance at high stock sizes,
and hyperstability when CPE does not decline as drastically as abundance at high stock
sizes (Quinn and Deriso 1999). For example, an increase in the number of fishing
operations could cause some fishermen to operate in lower quality habitat. Thus, CPE
could decline even if fish abundance did not, resulting in hyperdepletion. Hyperstability
is the more common occurrence and leads to overestimation of biomass and
underestimation of fishing mortality, which has too often gone unrecognized and led to
fishery collapses (Rose and Kulka 1999; Harley et al. 2001).

To account for some of the variation in CPE not attributable to changes in
ablmdﬁlﬂce, and improve assessments and associated fishery management, CPE can be

“standardized” by fitting statistical models to the catch and effort data, and then using

“year -effect” estimates as the index of abundance (Maunder and Punt 2004; Venables and
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Dichmont 2004). Commonly, some form of general or generalized linear model is used
to standardize the CPE data (Maunder and Punt 2004). Year is usually included as one of
the explanatory variables because detecting trends in abundance over time is usually the
objective (Maunder and Punt 2004). Other explanatory variables often include a spatial
element or some measure of individual vessel fishing power (e.g., boat size) (Battaile and
Quinn 2004; Bishop et al. 2004).

Our objectives were (1) to standardize lake whitefish CPE data in the upper Great
Lakes to attain an index of abundance that more accurately reflected changes in lake
whitefish biomass than CPE; (2) gain an improved understanding of factors that influence
commercial fishery CPE for lake whitefish; and (3) compare the factors that are
important for this fishery with those found to influence CPE in other fisheries of the
world. Currently for lake trout, Salvelinus namaycush, in these waters, indices of
abundance are based on the least squares means (LSMs) for each year from a general
linear mixed model (GLMM; Deroba and Bence in press). Consequently, we explored
the use of a similar GLMM for lake whitefish, and compared the temporal trends in the
LSMs for each year to that of the CPE. Our concern here is that the LSMs account for
sources of variation in CPE not considered when CPE is estimated as a ratio of sum of
aggregate catch to sum aggregate effort in each year, and might reveal substantially
different interannual trends in apparent relative abundance.
Methods
Study Area

Our study area was the waters relevant to the 1836 Treaty, which encompassed
the majority of Michigan waters of Lakes Superior, Huron, and Michigan (Figure 1).
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These waters were stratified into 18 management units with individual surface areas
ranging from 69,000 to 733,000 ha, and a total surface area of 5.8 million ha (Figure 1;
Ebener et al. 2005). Analyses were done separately for each management unit because
these are treated as reproductively isolated stocks and define the resolution of spatial
stratification used to manage lake whitefish (see introduction; Ebener et al. 2005).
Data and Analyses

Data were collected from commercial fishing operations as part of a requirement
for all licensed vessels to submit monthly reports that describe for each day of the month
the weight of fish landed, the amount of gear lifted, the 10-minute by 10-minute
statistical grid where the catch and effort occurred, and other auxiliary information
(Ebener et al. 2005). Monofilament large-mesh gill-nets with > 114-mm stretched mesh
and 6-14 m tall trap-nets accounted for nearly 100% of the lake whitefish commercial
harvest, and analyses were only conducted on these two gear types. The range of years
included in this study differed by management unit and gear type, and some years are
missing because no catch or effort was reported (Table 1). Analyses were only
conducted on 12 of the 18 management units for the gill-net fishery, and 10 of the 18
management units for the trap-net fishery because few or no observations were recorded
within most years for some management units and gears.

CPE was estimated separately for gill-nets and trap-nets as the ratio of sum of
aggregate catch to sum of aggregate effort in each year, as is currently used in the CAA
models. Catch was measured as the round mass of whitefish for both gears, while effort

was measured in 1000s of feet of net for gill-nets, and number of lifts for trap-nets.
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GLMMs were fit separately for gill-nets and trap-nets, with loge (CPE+1) as the
dependent variable. We applied a log, transformation because examination of the
distribution of the data showed that this was necessary to meet the assumption of
normality for general linear models (McCulloch and Searle 2001; Gelman and Hill 2007).
We added 1.0 to all CPE observations prior to transformation to address the (infrequent,
~0.001% for both gear types) occurrence of zero CPE observations. This added constant
represents a low CPE for gill nets and the lowest possible CPE for trap nets, and more
than 99% of CPE values exceeded 1.0 (the constant) for both gear types.

Our initial full model for gill-nets included fixed effects of year, month, and boat
size, and random effects of license holder, grid, and all possible two and three way
interactions. In preliminary analyses, interactions of a higher order than three ways were
not estimable for any management units, and so were excluded from further
consideration. Because not enough individual license holders fished with multiple boat
sizes, license holder and boat size were confounded when two and three way interactions
with license holder and two and three way interactions with boat size were included in
the same model. Furthermore, in preliminary analyses interactions with license holder
were only estimable for two management units, while interactions with boat size were
estimable in all management units. Consequently, all interactions with license holder

were also excluded from further consideration. Thus, the new “full” model included fixed

effects of year (0,), month (ﬁ,,,), boat size (Yp), and random effects of license holder (¢)),
grid (kg), and all two and three way interactions except those with license holder:

loge(CPE+1)=p+ay+PBm+yp+cl+kg +0ym+Pyb+dyg +Imb +Smg

+pg +Umbg +dgmy +hgyb + jymb + Eiymbgl;
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where  is the overall mean, 0),, is the interaction of year and month, p,; is the
interaction of year and boat size, g, is the interaction of year and grid, 7, is the
interaction of month and boat size, Sy, is the interaction of month and grid, #; is the
interaction of boatsize and grid, ¥, is the interaction of month and boat size and grid,
dg,,,y is the interaction of grid and month and year, hgyb is the interaction of grid and year

and boat size, J,mp is the interaction of year and month and boat size, and Eiymbgl is

residual error for each observation, i. This model assumes that the random effects and
residual error are all independent and identically distributed as normal with a mean of
zero. Boat size was a categorical effect and sizes were defined as: small (< 20 ft),
medium (20-30 ft), and large (> 30 ft).

The full model for trap-nets included fixed effects of year and month, and random

effects of license holder, grid, and all two and three way interactions:

loge (CPE+1)= p+ay + By +cj+kg +0ym +Vyl + Wiyl +Smg +Xgl +qyg
+Zymi +dgmy +aygl +emgl +Eiymgl;

where V) is the interaction of year and license holder, w,; is the interaction of month
and license holder, Xg; is the interaction of grid and license holder, Zy is the interaction
of year and month and license holder, @, is the interaction of year and grid and license

holder, €,g; is the interaction of month and grid and license holder, and all other terms

are defined as for gill-nets. In four of the 10 management units analyzed for the trap-net
fishery, all of the observations came from one boat size category, and so this effect was

not evaluated.
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Final models for both gear types were determined by evaluating which effects
could be removed using corrected Akaike’s information criterion (AICc) (Burnham and
Anderson 2002). Our model selection approach was to first consider which random
effects would be removed from the final model while keeping all fixed effects in the
model (Ngo and Brand 1997). Random effects were selected prior to fixed effects so that
the final models had the simplest error structure possible (i.e., a random effect would be
eliminated rather than a fixed effect that explained similar sources of variation). Our
approach to selecting random effects was to drop each random effect one at a time, while
keeping all other effects in the model. Once a random effect was removed, AAICc was
then calculated by subtracting AICc for the reduced model from AICc for the full model.
If AAICc was greater than 2.0 (Burnam and Anderson 2002), the factor not present in the
reduced model was eliminated from the final model, otherwise the factor was retained.
We followed this approach because with 22 management unit and gear combinations and
12 potential random effects to consider for each, fitting and comparing all possible
models was not practical. A random effect was also dropped from the final model if the
variance estimate for that factor was zero. Restricted maximum likelihood (REML) was
used for model fitting when comparing models with different random effects, given its
superior performance in estimating random effects (McCulloch and Searle 2001).

Once the best set of random effects was selected, the best set of fixed effects was
selected by comparing AICc values for all possible combinations of fixed effects.
Models were fit using maximum likelihood (ML) instead of REML because comparisons
with AICc based on REML are not valid when comparing models with different fixed
effects (SAS 2003). During this process the previously determined best random effects
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portion of the model was used. Year (Q,) was not evaluated during model selection

because the objective is to estimate a yearly index of abundance, and so year must be
retained in the final model. The AAICc values are not reported in the results because this
would require reporting a value for each factor that was included in the full models for
each management unit and gear type (i.e., 298 values). Rather, we report the AAICc
values between a means model (i.e., a model with only a year effect) and the final model
(AAICc = AICc means model — AICc final model) to quantify the likely improvement
that the final models offer over the current indices of abundance that do not account for
factors other than year.

Generally, the same effects were included in the final model for each management
unit, but the models for some management units could be improved by the elimination of
an effect that improved model fit for the majority of the management units, or inclusion
of an effect that did not improve model fit for the majority of the management units. For
the simplicity of reporting results in these analyses, we eliminated an effect in all
management units if it only improved model fit in a minority of management units.
LSMs for each year were calculated by summing the overall mean (p), the coefficient
estimate for each year (a.,), and the average of the coefficient estimates over all levels of
fixed effects other than year in the final models (SAS 2003). The LSMs for each year
from the final model, as determined by the majority, were nearly identical to the LSMs
from other models that improved model fit for a minority of management units.
Consequently, we believe that the conclusions of these analyses are robust to this

approach. However, if the estimated uncertainty (e.g., standard errors) associated with
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LSMs (or alternatively year effects or other functions of model parameters) is important,
as in fitting stock assessment models to indices of abundance where the standard errors
are used to weight the indices of abundance relative to other data (e.g., Maunder 2001;
Maunder and Starr 2003), a different model than that reported as the final model here
may be warranted for some management units.

Differences in the back-transformed LSMs for each year and CPE+1 were
qualitatively examined by plotting the proportional difference (PD) between the two
measures across years for each management unit included in this analysis. PD was
calculated as:

D= (CPE +1)
exp(LSM)

The PD is a measure of how much larger or smaller CPE is than the LSMs. For example,
if PD=2 then the CPE is two times larger than the index of abundance based on the mixed
model. Since both the LSMs and CPE are relative indices, changes in PD over time are
of interest and not whether average PD differs from 1.0. Consequently, if PD varied
without trend we concluded that the two approaches generally suggested similar trends in
abundance through time, although differences may have existed for a given year.
Conversely, if PD trended through time we concluded that the index of abundance
provided by the two approaches suggested different temporal trends.

The relative effect of factors included in the final model on CPE was determined
by averaging coefficient estimates across management units and comparing the average
values. For random effects, the variance component estimates for each effect were used

in estimating the average; while for fixed effects, the coefficient estimates for each level
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of a factor were used. For boat size, the averages were estimated separately for each lake
because different boat sizes may perform differently in each lake.
Results
Gill-net Fishery

The final model for the gill-net fishery included fixed effects of year, month, and
boat size, and random effects of license holder and the interaction of year and month:

loge (CPE+1)=p+ay + By +yb +cl +0ym + Eiymbgl -

The final model improved model fit over a means model in all but one management unit,
with an average AAICc value of 362.5 and values ranging from -10 to 2514 (Table 2).
The final model may not have improved fit over a means model in WFM-06 because this
management unit had the smallest sample size (N=308; mean N=1452), which may not
provide enough data to adequately capture the variability in CPE caused by the various
factors. Of the random effects, the license holder effect accounted for the most variation
in CPE (Table 3). The effect of boat size depended on lake (Table 4). In Lake Superior,
CPE did not vary much among boat size classes. On Lake Huron, small and medium
boats had similar CPE, which was less than that for large boats. On Lake Michigan, CPE
ordered as medium > small > large boats. CPE was generally low during January
through September, highest in October and November, and intermediate between these
levels in December (Figure 2).

The index of abundance provided by the GLMMs suggested different temporal
patterns than CPE (i.e., PD trended through time) over some or all of the time series in
some management units for the gill-net fishery (Figure 3). In Lake Huron, the PD for

management units WFH-01 and WFH-04 generally varied without trend, while in WFH-
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02 PD declined during 1982-1983, but varied without trend for the remainder of the time
series. In Lake Michigan, PD in WFM-02 increased during 1987-1988 and then
decreased. In WFM-03, PD increased in variability over the time series and increased
during 1999-2001. PD in WFM-04 generally declined through time. In WFM-05, PD
generally varied without trend, but declined during 1997-1999 and then increased. In
WFM-06, PD declined during 1993-1997. In Lake Superior, the PD in WFS-05, WEFS-
06, WFS-07, and WFS-08 generally varied without trend, except during 1999-2001 in
WFS-05 when PD declined.
Trap-net Fishery

The final model for the trap-net fishery included fixed effects of year and month,
and random effects of the interactions of month and year, year and license, and month
and year and license:

log (CPE+1)=p+ay + By +kpy +Vy1 + Pyt + Eiymi -

The final model improved model fit over a means model in all management units by an
average AAICc value of 170.1, with values ranging from 2.2 to 478.2 (Table 2). Of'the
random effects, the interaction of year and license holder accounted for the most variation
in loge(CPE+1), even more than residual error (Table 3). CPE was generally low during
January through September, with the exception of May, highest in October and
November, and intermediate between these levels in December (Figure 2).

The index of abundance provided by the GLMMs showed different temporal
trends than CPE (i.e., PD trended through time) over all or some of the time series in
some management units for the trap-net fishery (Figure 4). In Lake Huron, the PD in

WFH-01 and WFH-02 generally varied without trend, while the PD in WFH-04 varied
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without trend until 1998 when PD increased to 2000 and then decreased. In Lake
Michigan, the PD in WFM-01, WFM-02, and WFM-03 generally varied without trend,
except during 2000-2001 in WFM-01 when PD increased. In WFM-04 and WFM-05,
PD varied cyclically with a period of approximately two years in WFM-04 and six years
in WFM-05. In Lake Superior, the PD in WFS-07 generally varied without trend, while
the PD in WFS-08 increased during 1984-1986, but varied without trend during the few
other years of data.
Discussion

CPE is often assumed to be proportional to abundance, but CPE can change due
to factors other than abundance that cause violations of this assumption (Quinn and
Deriso 1999; Battaile and Quinn 2004). Violations of the assumption of proportionality
can lead to inaccurate estimates of abundance from stock assessments, and in particular
hyperstability can increase the risk for fishery collapse (Rose and Kulka 1999; Harley et
al. 2001). Indices of abundance based on commercial fishery catch and effort data are at
an especially high risk of violating the assumption of proportionality due to things such
as systematic changes in characteristics of the fishing fleet (e.g., technological
advancements, entrance and exit of individual vessels), non-random search effort, and the
spatial distribution of the fish stock (Rose and Kulka 1999; Harley et al. 2001; Maynou et
al. 2003; Battaile and Quinn 2004; Bishop et al. 2004; Campbell 2004). For these
reasons, fishery CPE data from many major marine fisheries are now often standardized
using various statistical models (e.g., general linear mixed models, generalized linear
models) that account for some of the variation in CPE not attributable to abundance, so
that the “year-effect” becomes a more accurate index of abundance (Maunder and Punt
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2004; Venables and Dichmont 2004). Factors commonly included in models used to
standardize CPE data include factors for time (usually year), location (e.g., grid in this
study), individual vessels, characteristics of vessels that affect catchability (e.g., vessel
size, horsepower, GPS), among other factors (Maunder and Punt 2004).

The temporal trends exhibited by standardized CPE data (e.g., LSMs) have
differed from that of non-standardized CPE data (e.g., ratio of aggregate catch to
aggregate effort in each year) in other studies (Maynou et al. 2003; Battaile and Quinn
2004), as was true for some management units in our evaluation of Great Lakes whitefish
fisheries. Thus, we believe that model-based indices of abundance should replace non-
standardized CPE in some lake whitefish stock assessment models, especially those
management units where PD was shown to trend through time. Converting to the use of
model-based indices of abundance in the stock assessment models for these management
units would likely produce more accurate estimates (e.g., abundance estimates) than the
current approach of treating raw effort as an index of fishing mortality (equivalent to
using CPE as an abundance index). This outcome would also likely hold true for other
freshwater systems, where model based methods for standardizing CPE data have not
been used as frequently as in marine systems.

The reason for the changes in PD in this study can be partially explained by when
most fishing occurred and who fished in each year. For example, in 1988 in the WFM-02
gill-net fishery, fewer observations were made in the spring (i.e., when CPE is lower
relative to other times of year) and more observations were taken from license holders
with relatively high CPE than in other years, which may explain the spike in PD.
Similarly, in the WFM-04 trap-net fishery, peaks in PD occurred in years when more
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observations came from license holders who did well in that year relative to other license
holders. Consequently, indices of abundance based on CPE in these and other areas
would most likely be driven by differences in the number of observations taken among
seasons or from difference license holders, and not due to changes in abundance as is
being assumed in stock assessments.

In addition to providing a more accurate index of abundance, the use of mixed
effects models also allows the uncertainty around the indices of abundance to be more
accurately quantified for each year, and this can be especially important if these estimates
of uncertainty are used to weight the importance of the yearly CPE indices in stock
assessment models (Helser et al. 2004, Maunder and Starr 2003). Maunder and Starr
(2003) describe methods for how yearly indices of abundance can be weighted by their
coefficient of variation in fitting stock assessment models, and also found that stock
assessment estimates (e.g., abundance estimates) can be less accurate when each yearly
index of abundance is weighted equally, instead of using a year specific weight.
Furthermore, Helser et al. (2004) found that ignoring the variability due to random
effects, including vessel and the interaction of vessel and year, similar to the effects of
license and the interaction of license and year in this study, may lead to an
underestimation of uncertainty in indices of abundance. Thus, if the CPE data used in
fitting lake whitefish stock assessment models were replaced with model-based
standardized CPE indices and an associated estimate of uncertainty for each year (e.g.,
the standard errors around the LSMs), uncertainty in the indices of abundance would be
more accurately quantified and CAA stock assessment estimates would also likely be

more accurate. This benefit would accrue even in areas where CPE and model-based
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indices showed similar temporal patterns (i.e., PD did not show any trends or systematic
temporal patterns).

We do not believe that calculating a fishery CPE index, by combining CPE each
year over strata defined based on statistical modeling, provides a viable alternative to the
use of indices directly derived from model-based methods. This conclusion applies
especially in the presence of the types of random effects we saw for Great Lakes lake
whitefish data and that appear to be common to fishery CPE data from marine systems.
A large advantage of a model-based approach is that the complex correlated error
structure resulting from such random effects can be parsimoniously accounted for. The
studies cited above suggest that a stratification approach would either underestimate
uncertainty in the indices of abundance and lead to inaccurate stock assessment results by
ignoring variability attributable to random effects, or would require so many strata with
so few observations per stratum that the resulting indices would be poorly estimated. For
example, our model for the gill-net fishery would suggest strata need to account for
seasonality, boat size, and individual license, but available data only consist of monthly
summaries by license. Even if data were combined over similar months, few
observations would be available per stratum. Perhaps in some situations (e.g., if random
effects were less important), data from each year could be post-stratified into relatively
few strata. In such a situation, calculating indices based on combining raw results over
strata might be a viable approach, with the advantage of not requiring refitting of
statistical models each time a new year of data is collected.

An alternative approach to using model-based output as an index of abundance in
stock assessments is to integrate the standardization process into the estimation procedure
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of the stock assessment models (Maunder 2001; Maunder and Langley 2004). Such an
approach still models CPE data in the same way as in our analysis here, but integrates the
CPE model as a sub-model of the overall assessment. Maunder (2001) found that
integrating the CPE standardization into the estimation procedure of the stock assessment
model provided a more accurate representation of th'e uncertainty in stock assessment
parameter estimates. The reason for this result, however, was unclear, and so more
research is needed in this area, especially given the programming and data management
challenges associated with integrating complex GLMM and related models for fishery
CPE into assessment models.

Standardization techniques used for fishery CPE data cannot ensure that all
sources of variation in CPE not attributable to changes in abundance have been
considered. For example, changes that are confounded with year and universally affect
the fishing fleet, or density dependent changes in catchability, cannot be accounted for
using model based standardization methods. Factors left untreated by standardization
methods should be addressed in the stock assessments where the CPE indices of
abundance are used, for example by allowing for time-varying catchability (Wilberg and
Bence 2006).

The factors in the final models for both the gill-net and trap-net fishery were
similar to models developed for other fisheries (Maynou et al. 2003; Battaile and Quinn
2004; Bishop et al. 2004; Helser et al. 2004). This commonality suggests that similar
factors are likely to be important and necessary for consideration when standardizing
CPE data for most fisheries. Year is usually included as one of the explanatory variables

because detecting trends through time is often the objective for developing indices of
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abundance, as in this study (Maunder and Punt 2004). Temporal factors on a finer scale
than year have also been included in statistical models used for CPE standardization in
order to account for systematic temporal patterns in fish abundance or catchability
(Battaile and Quinn 2004). Battaile and Quinn (2004) used a fixed effects analysis of
variance to standardize CPE data for the eastern Bering Sea walleye pollock, Theragra
chalcogramma, trawl fishery, and found a significant effect of time of day (i.e.,
categorical variable for daylight versus nighttime hours), with higher catch rates during
the daylight hours. They suggested that catch rates were higher during daylight hours
because walleye pollock school during those times, but spread out to feed during
nighttime, which reduces catchability. In this study, month was included in the final
model for the gill-net and trap-net fisheries, with higher catch rates from October to
December. The higher catch rates in those months were likely caused by an increase in
the catchability of lake whitefish facilitated by spawning aggregations, which usually
occurs during those times in most areas of the Great Lakes (Becker 1983). The results of
these studies suggest that temporal factors that account for systematic changes in fish
aggregating behaviors should be considered in models used to standardize CPE data
whenever possible

Various measures of vessel “power” have also been included in models used for
standardizing CPE data. Vessel “power” is any measure of the boat or crew that likely
affects catchability, and so affects the indices of abundance that result from CPE data
taken from those vessels. In the eastern Bering Sea walleye pollock trawl fishery, longer
vessels tended to have higher catch rates than shorter vessels as indicated by the

coefficient estimates for each vessel participating in the fishery (Battaile and Quinn
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2004). For the trawl fishery directed at Norway lobster, Nephrops vorvegicus, and deep-
water red shrimp, Aristeus antennatus, in the northwestern Mediterranean Sea,
generalized linear models used for CPE standardization included measures of the gross
tonnage of vessels, engine horsepower, and total length (Maynou et al. 2003). Generally,
longer more powerful vessels had higher catch rates. In the absence of direct measures of
vessel power, some surrogate could also be used. For example, Punt et al. (1996)
included the number of crew on the vessel as a surrogate for vessel length in generalized
linear models used to standardize albacore, Thunnus alalunga, longline CPE data. For
the lake whitefish fishery in this study, a categorical effect of vessel length was used for
the gill-net fishery as a measure of vessel power, but the affects on CPE were inconsistent
across lakes. This inconsistency makes broad conclusions about the relative success of
various vessel sizes difficult, but the explanation may be in the characteristics of the lakes
themselves. The depth gradient of Lake Superior is relatively steep and permits access to
fishing grounds by all boat sizes, and so all boat sizes performed similarly. Conversely,
Lake Michigan offers more shallow fishing grounds that are more accessible to small and
medium sized boats, and this may have resulted in higher catch rates than longer boats in
that lake. The reason for the relative performance of each boat size in Lake Huron,
however, is not clear.

A factor for individual vessel, such as license holder in this study, is also
commonly included in models for CPE standardization (Maynou et al. 2003; Battaile and
Quinn 2004; Bishop et al. 2004; Cooper et al. 2004; Helser et al. 2004). Similar to results
here, an individual vessel factor explained the most variability in CPE in the eastern

Bering Sea walleye pollock trawl fishery (Battaile and Quinn). Generalized linear
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models that included vessel also explained the most variation in CPE for the deep-water
red shrimp trawl fishery in the Mediterranean (Maynou et al. 2003). Cooper et al. (2004)
and Helser et al. (2004) also found that individual vessel and interactions with vessel
should be included in the final models used to standardize U.S. west coast groundfish
bottom trawl surveys. The results of Cooper et al. (2004) and Helser et al. (2004) suggest
that even with survey data, standardizing CPE may be necessary, and the availability of
model-based indices should not replace the use of consistent survey sampling.

The consistent inclusion of an individual vessel effect indicates that individual
vessel may serve as a “catch all” for characteristics of boats not included in models
(Battaile and Quinn 2004). For example, Maynou et al. (2003) suggested that the
inclusion of individual vessel likely accounts for the expertise of individual fishers or
unmeasured technical characteristics, such as investment in technology. The large
amount of variation explained by the random effect of license holder and interactions
with license holder in this study for both fishery gears also suggests that this factor is
accounting for the effects of some unmeasured characteristics, such as those suggested by
Maynou et al. (2003).

Making inference about the causal or biological mechanisms for some of the two-
and three-way interactions included in the final models in this study is not
straightforward. However, as Battaile and Quinn (2004) note, identifying causal
mechanisms is not required when standardizing CPE data, because the purpose is to
account for effects coincident with the variables included in the model. So, the specific

higher order interactions may not be indicative of anything biologically meaningful, only
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that CPE varies coincident with combinations of those factors, either due to those factors
themselves or other variables that co-vary with them.

The random effect of grid was not included in the final models for either the gill-
net or trap-net fisheries, which is surprising considering that typically there is spatial
variation in fish density or fishing success. Campbell (2004) found that non-randomly
sampled locations led to biased indices of abundance, unless the total habitat area of the
stock was spatially stratified and each CPE observation was weighted by the relative
amount of sampling effort in the strata from where the observation was taken. This result
suggests that not accounting for spatial variation in sampling effort can lead to biased
indices of abundance. The effect of grid in this study may have not been included in final
models because the analyses were already run on spatially stratified stocks delineated by
management unit. However, the results of Campbell (2004) and the spatial variability
that likely exists in fish density and fishing success for most fisheries suggests that spatial
effects should always be considered when standardizing CPE data.
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Figure 1.— 1836 Treaty-ceded waters and lake whitefish management units in Lakes

Superior, Huron, and Michigan (Ebener et al. 2005).
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Figure 2.—Average coefficient estimates (£ SE representing uncertainty resulting from
variability among management units) for the effect of month from a general linear mixed
effects model standardizing catch per effort (catch = aggregate round mass of lake
whitefish) for the lake whitefish gill-net fishery (top panel; effort = aggregate length of
net in 1000s of feet) and trap-net fisheries (bottom panel; effort = number of lifts) in the
1836 treaty-ceded waters of Lakes Superior, Huron, and Michigan. Coefficient estimates
were averaged across various years (generally 1981-2001) and lake whitefish
management units included in this analysis.

40



Figure 3.—Proportional difference between the index of abundance from a general linear mixed model (i.e., least squares means for
each year) and catch per effort (ratio of round mass of lake whitefish to aggregate feet of length of net for each year) from a gill-net
lake whitefish fishery for various years (generally 1981-2001) and lake whitefish management units in the 1836 treaty-ceded waters of

Lakes Superior, Huron, and Michigan included in this analysis.
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Figure 4.—Proportional difference between the index of abundance from a general linear mixed model (i.e., least squares means for
each year) and catch per effort (ratio of round mass of lake whitefish to aggregate number of lifts for each year) from a trap-net lake
whitefish fishery for various years (generally 1981-2001) and lake whitefish management units in the 1836 treaty-ceded waters of

Lakes Superior, Huron, and Michigan included in this analysis.
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Figure 4 (cont’d)
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Table 1.—Years and lake whitefish management units included in this analysis

for the gill-net and trap-net fisheries of the 1836 treaty-ceded waters of Lakes Superior,

Huron, and Michigan.
Gear Type
Gill-net Trap-net
Management Unit  Years Included Years Included
WF H-01 1981-2001 1981-1982; 1986-2001
WFH-02 1982-2001 1983; 1986-1987; 1989-2001
WF H-04 1981-2001 1981-1982; 1984-2001
WFM-01 - 1981-1985; 1995-1998; 2000-2001
WF M-02 1986-2001 1986-2001
WFM-03 1986-2001 1986-2001
WFM-04 1981-2001 1989-2001
WFM-05 1981-2005 1981-2001
WF M-06 1985-1989; 1993-2001 -
WF S-05 1986-2001 -
WF S-06 1985-2001 -
WF S-07 1981-2001 1981; 1985-2001
WFS-08 1981-2002 1981-1982; 1984-1986; 1996-2001
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Table 2.—Differences between AICc values between final models and a means
model (i.e., model with only a year effect) for the lake whitefish gill-net and trap-net
fisheries in the 1836 treaty-ceded waters in the management units of Lakes Superior,

Huron, and Michigan included in these analysis. Differences are reported as A AICc =

AICc from means model — AICc from final model.

Gear Type
Gill-net Trap net

Management
Unit A AICc A AlICc
WFH-01 536.1 281.3
WFH-02 173.9 3248
WFH-04 508.1 121.9
WFM-01 - 95.1
WFM-02 93.5 284
WFM-03 677.7 478.2
WFM-04 556.4 212.4
WFM-05 320 22
WFM-06 -10.2 -
WFS-05 61.1 -
WFS-06 118.2 -
WFS-07 993.5 111.8
WFS-08 3221 444
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Table 3.—Average variance component estimates for residual error (ogjm bel ),

license holder (0'12 ), and month and year (o ,%,y) for the lake whitefish gill-net fishery,

and random effect estimates of residual error (aém ;)» year and license holder (0'51 )

month and year (0',2,,y ), and month and year and license holder (a’iyl ) for the lake

whitefish trap-net fishery of the 1836 treaty-ceded waters of Lakes Superior, Huron, and
Michi gan. Variance component estimates were averaged across lake whitefish

mana gement units included in these analyses.

Gear Type
Gill-net Trap-net
Variance Mean Variance Mean
Component Estimate Component Estimate
2 2
O iymbgl 0.47 T iyml 0.17
2 2
o) 0.22 Ty 0.29
2 2
Omy 0.05 Omy 0.09
2
- ; T myl 0.09
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Table 4.—Average estimates of the coefficients for different size classes of boat
for the gill-net fishery for lake whitefish on the 1836 treaty-ceded waters of Lakes
Superior, Huron, and Michigan. Boats were classified as small (< 20 ft), medium (20-30

ft), and large (> 30 ft). Coefficients were averaged across lake whitefish management

units included in these analyses for each lake.

Boat Lake Lake Lake

size Superior  Huron Michigan
Large 0.03 0.11 -0.28
Medium 0.05 -0.03 0.09
Small 0.00 0.00 0.00
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CHAPTER 2

Deroba, J.J. and J.R. Bence. 2008. A review of harvest policies: Understanding relative
performance of control rules. Fisheries Research: 94: 210-223.

The content of this chapter is intended to be identical to the cited publication and is based
on the accepted manuscript with changes that reflect corrections made during copy
editing. Any differences should be minor and are unintended.
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Abstract

Harvest policies use control rules and associated policy parameters to dictate how
fishing mortality or catch and yield levels are determined, and are necessary for rational
management. Common control rules include constant catch, constant fishing mortality
rate, constant escapement, or a few variations of these. The “best” among these control
rules for meeting common fishery objectives (e.g., maximizing yield) is a source of
controversy in the literature, and results are seemingly contradictory. To compare the
ability of control rules to meet widely used fishery objectives and identify potential
causes for these apparently contradictory results, we did a detailed review of relevant
literature. The relative performance of control rules at meeting common fishery
objectives is affected by whether uncertainty in estimated stock sizes is included in
analyses, and whether the maximum recruitment level (e.g., the asymptote of a Beverton-
Holt stock-recruit function) is varied in an autocorrelated fashion over time. Relative
performance of control rules also depends on fishery objectives and the amount of
compensation in the stock-recruit relationship. The influence of assessment error on the
relative performance of control rules depends upon whether policy parameters are fixed
using those that perform best without errors or not. Ideally, selection of a control rule
and policy parameters is done within the framework of a stochastic simulation that
considers key uncertainties. If this is not feasible, an alternative option is to “borrow”
control rules from a similar fishery and set policy parameters based on biological
reference points developed for a species with similar taxonomy and life history traits.

More research is needed to compare control rules when accounting for uncertainty in key
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population parameters, when stock-recruitment or other population dynamic parameters
vary over time, and for fisheries with non-yield-based or competing objectives.
1. Introduction

Rational management of fish stocks requires determination of harvest or yield
levels that are consistent with management objectives. Historically, the “rules” for
setting harvest levels have been vague or non-existent (NRC, 1994). In many cases, this
resulted in forsaking long-term objectives for short-term gains. Consequently, examples
of fish stock declines and collapses are widespread (Myers and Worm, 2005). To prevent
future stock collapses, and allow rebuilding of stocks that are already depleted, more
explicit guidelines are required on how harvest levels should be set. Such guidelines are
referred to as harvest policies. When these guidelines specify the amount of catch, effort,
or fishing mortality by a specific, and usually simple, function of the current estimate of
the system state (e.g., the amount of spawning biomass) they are called control rules.

Fishery objectives partially determine the relative performance of different
control rules and are represented quantitatively in simulations and analyses through the
use of objective functions. Selection of objectives or objective functions can affect which
control rule is preferred, and thus it is critical to ensure resource user preferences and
broader societal goals for sustainability of the resource are incorporated into the chosen
objectives. The use of an objective that conflicts with the interests of the fishery could
cause mistrust from the fishing industry, br even fishery collapse. For example, in a
recreational fishery, where high catch rates and the size of harvested fish are likely to be

important, using a maximum yield objective function would be inappropriate. Although
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this is true, most harvest policy work emphasizes yield-based objectives, and hence by
necessity, much of this review evaluates these.

Several methods are used to evaluate control rules for meeting given fishery
objectives. A variety of analytical methods can be used to show that a given control rule
performs better than all other candidates (i.e., is optimal) at achieving a given objective
(e.g., Gatto and Rinaldi, 1976). While these methods can provide quite general results,
they are feasible only for simple models of fishery systems that often are deterministic or
ignore key uncertainties. Stochastic dynamic programming is an efficient method for
selecting an optimal strategy at each time step, so that the result over the entire time-
horizon best meets a specified objective (e.g., Walters and Parma, 1996). While the
method can be analytical or numerical, most fishery applications are numerical. This
method is useful when one is interested in considering more flexible policies than a
simple control rule that remains constant over time. The computational cost of searching
over a wide range of strategies has also generally limited this approach to relatively
simple models. Much of the recent harvest policy literature considers models too
complex for the above methods, and often the focus is on tradeoffs among different
measures of performance, rather than finding the policy that is optimal for a single
objective. Consequently, much harvest policy work uses Monte Carlo simulations to
evaluafe the performance of a specified control rule (function) and policy parameters for
the control rule (e.g., Eggers, 1993). Typically, multiplicative annual process error is
included in the stock-recruit relationship, which may or may not include autocorrelation.
Alternatively, or additionally, annual process error can be added to specific model

parameters. Other random error terms are often included to model assessment or
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implementation error. When these simulations attempt to model uncertainty associated
with the stock assessment process and implementation of the control rule, this is called a
Management Strategy Evaluation (MSE; Polacheck et al., 1999). Typically, a range of
different policy parameters are considered. In some cases a wide enough range of policy
parameters is considered that this essentially constitutes a grid search, and optimal results
for a given control rule and objective can be identified. In rare cases, usually for very
simple stochastic models, an automated numerical search is done for parameters that
maximize an objective function. The results obtained by these “brute force” simulation
approaches are limited to the specific policy parameters (and other assumptions) chosen
for inclusion in simulations, and thus cannot prove that a particular control rule is optimal
for a given objective over a broad range of conditions. However, we believe induction
based on these studies, combined with consideration of results known from analytical
studies, can be very useful.

In many fisheries, managers must decide on a level of yield each fishing season,
ideally by using a harvest policy that is chosen because it meets fishery objectives (i.e.,
produces a large value for the objective function). Theoretically, a harvest policy could
be to set yield each year so that the objective function is maximized given the
information available at that time (Ricker, 1958; Larkin and Ricker, 1964; Tautz et al.,
1969). Such a policy would generally mean that yield is determined in a complex way by
current stock assessment results and other information (e.g., using stochastic dynamic
programming; Frederick and Peterman, 1995). In practice, determination of such optimal
policies can be a daunting or an infeasible computational task. Furthermore, such an

approach can lack appeal to managers and stakeholders because the intuitive basis of the
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policy and why the current year’s allowable catch has changed from the previous year
may not be apparent. Perhaps as a consequence, nearly all harvest policies are based on
relatively simple control rules that can be viewed as relating fishing mortality to stock
abundance (usually biomass; Figure 1). However, which rules are best at meeting certain
fishery objectives is a source of controversy in the literature. Furthermore, the relative
performance of control rules depends upon the specific characteristics of the fishery and
underlying fish population dynamics that are incorporated into an evaluation.
Consequently, selecting an appropriate control rule can be an arduous task.

The objectives of this review are to (1) compare and contrast the performance of
various control rules for meeting common fishery objectives, and (2) identify potential
reasons for what seem to be contradictory results. First, we discuss a range of control
rules and objectives that are used in harvest policy studies. Second, we consider the
performance of different control rules when perfect knowledge is assumed about the
fishery, after which we examine the effect of imperfect information on stock size, which
is a feature of harvest policy analyses that has a particularly strong affect on control rule
performance. Other features of harvest policy analyses also affect policy performance,
such as the level of compensation in the stock-recruit relationship and whether certain
stock-recruit parameters are autocorrelated through time, and these are addressed within
the framework of the perfect and imperfect information sections. Third, we consider
approaches to choosing catch levels, fishing mortality rates, or thresholds necessary for
implementation of control rules. Finally, we offer conclusions and suggestions for

interpreting harvest policy analyses and identify future research needs.
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2. Common control rules

We describe common control rules as background for our review of their relative
performance. Most rules can be categorized into three main types (Figure 1) or a few
modifications of these (Figure 2), and explicitly or implicitly specify a relationship
between fishing mortality and stock abundance. We choose to specify control rules in
terms of fishing mortality because how this per capita mortality rate varies with
abundance summarizes the compensatory or depensatory effect of the rule. A constant
catch control rule removes the same number or biomass of fish each year, and is
depensatory in that it leads to high fishing mortality at low stock sizes (Figure 1; Quinn
and Deriso, 1999). A constant fishing mortality rate (also called a constant harvest rate)
uses the same fishing mortality regardless of stock abundance (Figure 1), and hence
harvest is proportional to biomass (Quinn and Deriso, 1999). When fishing mortality is
assumed to be directly proportional to fishing effort, constant fishing mortality rate rules
are also referred to as constant effort. A constant or fixed escapement control rule takes
all biomass over some specified target level. Control rules such as this are also referred
to as “bang-bang” policies in the resource economics literature, because when modeled in
continuous-time, harvest is intense above the threshold and zero otherwise (Figure 1;
Nostbakken, 2006). This type of control rule is often used when fishing anadromous fish,
where a specified number of fish are allowed to pass a weir or other observation location
and the remainder of the run is removed. In open-ocean or lake fishing, such a control
rule is usually interpreted as allowing harvest of all fish over a threshold abundance or
biomass, so that fishing mortality is zero up to that threshold and then increases thereafter
(Figure 1).
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Each of these basic control rules has a number of variants, many of which have
been suggested to retain what are viewed as positive features of a rule while addressing
some of its weaknesses. Here we review some of these important variants (Figure 2).
The conditional constant catch (CCC) control rule, a variant of constant catch, removes
the same number or biomass of fish each year unless removing that amount would exceed
some pre-determined maximum fishing mortality rate. If the constant catch amount
would cause fishing mortality to exceed this rate, then the rule reverts to a constant
fishing mortality rate at the pre-determined maximum (Figure 2B ; Clark and Hare,
2004). This control rule attempts to avoid the high fishing mortality rates that occur at
low stock sizes under a constant catch rule but retains the benefit of stable catches at high
stock sizes. Murawski and Idoine (1989) and Hjerne and Hansson (2001) suggest similar
control rules where the amount of harvest is reduced to a new low level (potentially zero)
when biomass falls below a threshold (Figure 2C).
Threshold control rules are suggested as modifications to constant fishing rate
rules and specify a biomass below which no fishing is permitted (the threshold), but a
constant fishing mortality rate is used otherwise (Figure 2A; Quinn and Deriso, 1999).
Variations of this basic form have also been suggested, such as decreasing fishing
mortality gradually below the threshold and increasing fishing mortality gradually above
the threshold, to produce compensatory and potentially stabilizing fishing mortality
F igure 2E; Quinn et al., 1990; Eggers, 1993; Sigler and Fujioka, 1993; Quinn and
Deﬁso, 1999; Ishimura et al., 2005). Control rules that scale fishing mortality or catch
do""l'l\avard when the population is below a threshold are known as biomass-based or

adj .
4 WUsStable rate rules, and fishing mortality or catch is usually adjusted in proportion to
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population size (Figure 2E; Quinn and Deriso, 1999). Whether fishing mortality or catch
is adjusted with changes in biomass affects the relationship between fishing mortality and
biomass (Figures 2E and 2F) and thus has potentially different performance
characteristics. The “40-10” rule, which is used to manage U.S. west coast groundfish, is
an example of the latter type of biomass-based rule. Catch is reduced linearly as
spawning biomass declines below an upper threshold (40% of the unfished level) so that
no harvest is allowed when spawning biomass is below a lower threshold (10% of the
unfished level) (Hilborn et al., 2002; Punt, 2003; Punt, this issue). The result is that for a
40-10-like rule fishing mortality decreases nonlinearly (Figure 2F). Engen et al. (1997)
suggest a variation of a constant escapement rule called “proportional threshold
harvesting”, which has been used to manage U.S. west coast pelagic species since the
early 1980s (Pacific Fishery Management Council, 1998; Barange et al., in press). With
this control rule, only a fraction of the surplus above the threshold is harvested. The
resulting nonlinear relationship between fishing mortality rate and biomass can be viewed
as a biomass-based control rule, and appears similar to a 40-10-like rule (Figure 2D).

Proportional threshold harvesting is a special case of a 40-10-like rule with the upper
threshold set infinitely high (e.g., a “00-10” rule). So, for both control rules catch

increases linearly with biomass above a lower threshold, but for a 40-10-like rule the
slope of the relationship changes above an upper threshold.
3. Common fishery objectives

Fishery objectives are represented in harvest policy analyses using objective
functions, and these are used to compare the relative performance of control rules. A

frequently-used objective function is cumulative harvest over some fixed time horizon, or
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the sum of annual values of a utility function over a time horizon, where the utility
function relates annual harvest to some economic, biological, or social construct (Quinn
and Deriso, 1999). Maximizing cumulative harvest is considered a risk neutral approach,
because performance is measured only by the total over the time horizon, with the
frequency of low and high annual values playing no role (Reed, 1979; Quinn and Deriso,
1999). More risk-averse objective functions penalize for extreme harvests in an effort to
avoid boom-or-bust fisheries (Walters and Pearse, 1996; Lande et al., 1997; Quinn and
Deriso, 1999). One risk-averse objective function is to maximize the long-term logarithm
of harvest, and this tends to avoid extreme harvests by placing an infinite penalty on zero
harvests (Ruppert et al., 1985). This objective function, however, is criticized as being
risk-averse only in terms of economic risk to the industry, and not biological risk to the
resource (Lande et al., 1997). Another risk-averse objective function is to maximize a
linear combination of average yield (?) and the negative of the standard deviation (SD)
of yield over a given planning horizon (e.g., max[(1- A) Y -ASD]; Quinn et al. 1990;
Collie and Spencer 1993). This approach is relatively flexible in that the relative
influence of average yield and the standard deviation of yield can be controlled using the
weighting term, A. An alternative, but less commonly used type of risk averse objective
accounts for how frequently or over what duration biomass or harvests have been at or
below a threshold (Enberg, 2004; Irwin et al., this issue)

Other objective functions have been formulated to maintain biomass or harvest at
predetermined target levels (Hightower and Grossman, 1987). This stability can be
accomplished by minimizing the sum of squared deviations between biomass or harvest

and the predetermined target levels. However, Hightower and Grossman (1987) criticize
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objective functions that only consider maintaining harvest near a target because two
values of fishing mortality could result in the same equilibrium harvest. When rebuilding
a stock from a depleted state, the optimal fishing mortality is the higher of the two
equilibrium points, which also results in maintaining lower equilibrium abundance.
Another criticism of only considering harvest is that, for an age-structured population, the
same harvest is obtained for multiple age-structures. Consequently, when stock sizes
decline, maintaining harvest near the target requires increasing fishing mortality, which
can be destabilizing in terms of abundance and yield, creating a negative feedback
(Beddington and May, 1977, Lowe and Thompson, 1993). To remedy these problems,
Hightower and Grossman (1987) suggest using an objective function that simultaneously
minimizes the deviations of both harvest and biomass from target levels. Similarly, the
maximum harvest objective can also be combined with a constraint that requires the
biomass at the end of the planning horizon to be near a target level (Hightower and
Grossman, 1987). More generally, objective functions can be defined as even more
complex functions of multiple performance measures (e.g., Katsukawa, 2004).
Bioeconomic objective functions that aim to maximize profits have also been
developed (Clark, 1973). In a simple bioeconomic model, revenue R is assumed to be a
linear function of harvest and is found as the product of price (amount paid per unit fish)
P and harvest H:
R=PH;
(Clark, 1973; Reed, 1979; Quinn and Deriso, 1999). Costs C are incorporated into the
model as the product of the cost per unit of fishing effort L and total effort E:
C=LE.
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Net profit Q is the difference of the revenues and costs:

O=R-C.
Costs can also be modeled as a function of stock size (Reed, 1979). Costs are most often
modeled as a decreasing function of abundance, which requires the assumption that catch
per effort (CPE) increases with abundance (Clark, 1973; Reed, 1979). Whether the
decrease in cost as abundance increases is linear will depend upon whether catchability
also varies with abundance (Reed, 1979). Bioeconomic objective functions can also
incorporate discount rates, where the value of capital invested in the current time
diminishes in the future due to inflation (Clark, 1973; Reed, 1979; Quinn and Deriso,
1999; Quinn and Collie, 2005). Objective functions incorporating discount rates are
referred to as maximizing the expected present value (Reed, 1979). “High” discount
rates have been blamed for the demise of some fish stocks, where the future value of
capital approaches zero, so that economically, the optimal course of action is to fish the
stock quickly to collapse (Clark, 1973). The use of negative discount rates is suggested
by some conservation groups as a way to conserve stocks because capital actually
increases in value in the future (Quinn and Deriso, 1999). Bioeconomic objective
functions that maximize profits also tend to favor larger stock sizes than maximum yield
objective functions (Clark, 1973; Deriso, 1987). Consequently, increasing effort beyond
the point that attains maximum profits in order to achieve maximum yield is not only
inefficient but can also incur other risks associated with smaller population sizes.
4. Relative performance with “perfect” information

4.1. Comparing control rules
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Analyses of harvest policies often assume that decisions are made with “perfect”
information (i.e., no uncertainty or error), in terms of knowing the underlying dynamic
system model and its parameters, in knowing the current state of the system (e.g.,
biomass), and in being able to implement regulations to achieve a desired result.
Assuming perfect information allows for greater ease of computation, and likely reflects
the common practice of setting harvest quotas based on a point estimate of abundance
(Frederick and Peterman, 1995). Although many would agree that this is an unrealistic
assumption for most stocks (e.g., Engen et al., 1997), the results of studies based on
perfect information are still used as a guide, because they are viewed as likely to reflect
qualitative differences and outcomes that can be expected from the application of various
control rules under situations of “imperfect” information.

Assuming perfect information, constant escapement rules generally perform best
for maximizing cumulative yield, mean annual yield, or profits, usually followed in
performance by threshold or biomass based rules, constant fishing mortality rate rules,
and lastly constant catch rules, although this general conclusion may also depend on
assuming that maximum recruitment levels (i.e., the asymptote of a Beverton-Holt stock-
recruit function) are temporally independent (Table 1; Table 2). For semelparous stocks
(e.g., pacific salmon Oncorhynchus tshawytscha), Ricker (1958) shows that constant
escapement control rules produce 24-57% higher long-term average harvest than constant
fishing mortality rate rules, depending on the shape of the stock-recruitment curve, when
both the escapement level and fishing mortality rate are set to attain the maximum
average yield. This general result is also supported by additional research on iteroparous

species and for a broad range of conditions (e.g., various stock-recruit relationships)
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(Table 2). With surplus production models, a type III functional response, and
autocorrelated consumption rate, threshold rules can produce greater than 100% higher
average yield, higher sum of discounted yields, and higher sum of discounted rents than
constant fishing rate control rules, depending on the level of autocorrelation in
consumption rates (Collie and Spencer, 1993; Spencer, 1997). Constant fishing mortality
rate control rules, however, can outperform constant catch rules in terms of yield by 29%
or more (Jacobson and Taylor, 1985). Furthermore, even with catch set at maximum
sustainable yield (MSY) or the level that maximizes net revenue, several other studies
show that constant fishing mortality rate and biomass based control rules provide higher
long-term yield and profits (Table 2). Similarly, constant harvest rate rules can produce
the same or modestly higher average yield than the various CCC control rules (Hjerne
and Hansson, 2001; Clark and Hare, 2004).

In contrast to some of these studies, Walters and Parma (1996) show, using
stochastic optimal control methods, that constant escapement control rules are inferior to
constant fishing mortality rate control rules in terms of maximizing yield when the
asymptote parameter (maximum level of recruitment) of a Beverton-Holt stock-recruit
model is autocorrelated. This discrepancy likely occurs because optimal constant
escapement control rules are highly sensitive to the maximum level of recruitment (Lande
etal., 1997). When maximum recruitment is autocorrelated, controls on spawning
biomass exert imperfect control on expected recruitment. Walters and Parma (1996) also
report that with autocorrelated maximum recruitment, constant fishing mortality rate
control rules attain at least 85% of the theoretical maximum long-term yield (not

constrained by a constant control rule) for most populations. This result also holds true
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when other stock recruitment parameters (i.e., slope near the origin) are simultaneously
autocorrelated with the asymptote parameter, but does not hold true when other stock-
recruitment parameters are autocorrelated by themselves. Few other studies evaluate the
effect of autocorrelated recruitment on the relative performance of harvest policies (Table
2), and none systematically evaluate the influence of additional alternatives for the form
of such autocorrelation.

Escapement and threshold control rules were developed to prevent over-
exploitation and maintain spawning biomass, and so such rules often maintain higher
biomass, lower variation in biomass, and result in less chance of over-exploitation than
other control rules (Table 1; Getz and Haight, 1989). Escapement and threshold control
rules maintain more consistent levels of biomass than other control rules, because other
rules allow some harvest regardless of the level of stock biomass, which can be
destabilizing in terms of abundance and yield (Beddington and May, 1977; Lowe and
Thompson, 1993). The destabilizing nature of continued fishing as abundance declines is
also made worse with depensation at low abundance (Collie and Spencer, 1993; Eggers,
1993; Walters and Parma, 1996), and this is one reason why some authors argue against
control rules like constant fishing mortality rates (Lande et al., 1997). Several studies
show that constant catch control rules consistently result in the maintenance of less
biomass and more instances of stock collapse than other rules that provide the same or
higher average harvest, likely because a constant catch control rule leads to high levels of
fishing mortality at low abundance (Figure 1; Table 2). Potter et al. (2003) conclude that
if maximizing revenues or yield are not high priorities, as in a recreational fishery, a
constant catch control rule may be useful to meet other fishery objectives (e.g., high
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recreational catch rates), but the catch level should be set low to prevent stock collapse.
Alternatively, the CCC control rule of Clark and Hare (2004) can maintain higher
average spawning stock biomass than a constant harvest rate control rule, but this
depends on the constant catch level and ceiling harvest rate. Thus, the CCC control rule
may be effective at preventing the high fishing mortality rates at low stock sizes that
occur with a strict constant catch control rule.

As a consequence of fishery closures, threshold and biomass based control rules
are also usually the optimal rule for quick rebuilding of depleted stocks (Table 1; Quinn
et al., 1990). Median rebuilding times to equilibrium biomass under a threshold control
rule are shorter than a constant fishing mortality rate control rule (Quinn et al., 1990).
Hightower and Grossman (1987) also show that the optimal rebuilding strategy is to
cease fishing until the threshold biomass level is reached, and use constant fishing
mortality above the threshold.

Relatively high yields and stable biomass almost always appear to come at the
cost of higher variability in yield (Ricker, 1958; Gatto and Rinaldi, 1976; Reed, 1979;
Lande et al., 1995; Lande et al., 1997). Constant escapement control rules usually result
in the highest variability in yield, followed by threshold and biomass based control rules,
constant fishing mortality rates, and then constant catch (Table 1; Table 2, but see
Enberg, 2004). The high variability of yield in constant escapement and threshold
control rules is caused by fishery closures in years when biomass is not above the
predetermined level (Lande et al., 1997; Lillegard et al., 2005). Constant fishing
mortality rate control rules do not require fishery closures, and so usually have less

variability in yield than constant escapement and threshold control rules, but also lead to
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greater variability in population abundance. Constant fishing mortality rate control rules
also perform best at maximizing logarithm of yield, an objective function that places in
infinite penalty on zero harvest (Walters and Parma, 1996; Walters and Pearse, 1996;
Lande et al., 1997). Intuitively, a constant catch control rule will have zero variability in
catch, except in cases when abundance drops below the predetermined level of catch and
requires closing the fishery, or management cannot react quickly enough to close the
fishery after the catch limit has been attained (Koonce and Shuter, 1987; DiNardo and
Wetherall, 1999). However, the stability in yield of the constant catch control rule comes
at the cost of foregoing high yields at times when abundance is high, and the highest
variability in population abundance and hence risk of fishery collapse (Beddington and
May, 1977; Jacobson and Taylor, 1985; Quiggin, 1992; Potter et al., 2003). If consistent
yields and a stable market have a “much higher priority” than maximizing revenue, yield,
or minimizing risk of fishery collapse, then a constant catch control rule will be a
competitive option (Quiggin, 1992; Steinshamn, 1993; Potter et al., 2003).

The differences among control rules in catch/yield variability can be substantial.
In a simulation based on the northwestern Hawaiian Islands lobster fishery, mean yearly
percentage change in catch was less for a constant catch control rule (yearly variation in
catch for the constant catch rule was caused by fishery closures) than a constant fishing
mortality rate control rule (about 43% and 156%, respectively) across a range of catch
and fishing mortality rate levels (DiNardo and Wetherall, 1999). The various CCC
control rules maintain some of the benefits of a constant catch control rule; they can
produce less yearly variability in catch than a constant harvest rate strategy, with the

relative difference in variability depending on the values used for the CCC control rule
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parameters (i.e., constant catch level and maximum harvest rate) (Hjerne and Hansson,
2001; Clark and Hare, 2004). Constant fishing mortality rate control rules can also
produce standard deviations in annual yield half that of threshold control rules (Collie
and Spencer, 1993), and Walters and Parma (1996) show that the advantage of constant
fishing mortality over constant escapement in terms of yield constancy is enhanced when
maximum recruitment is autocorrelated. The biomass-based “40-10" control rule also
maintains much lower standard deviation of average annual catch than an optimal
constant escapement control rule (Ishimura et al., 2005).
4.2. Effect of the stock-recruit relationship

The relative performance of harvest policies, and the results of some studies
discussed above, can depend on the form of stock-recruit relationship used, and
particularly the extent of compensation in the relationship, particularly for threshold
control rules. Consequently, caution should be used when interpreting analyses that
compare various harvest policies because the results may depend on the amount of
compensation assumed to exist in the stock-recruit relationship. When recruitment is
highly compensatory (i.e., recruitment is weakly dependent on stock size), the potential
benefits of a threshold control rule (i.e., maximum yield or revenue) fail to materialize
because maintaining a given level of spawning stock no longer produces benefits in terms
of recruitment, but yield is generally still more variable than other control rules due to
fishery closures. Hightower and Lenarz (1989) assume recruitment decreases by 10%
when the spawning stock is reduced by 50% from the pristine level, making recruitment
highly compensatory, and show that a constant escapement control rule produces only

2% greater mean harvest than a constant effort control rule, but CV of harvest is 49%
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higher. For South African anchovy Engraulis capensis, Butterworth and Bergh (1993)
assume recruitment varies around a constant level independent of stock size and show
that a constant fishing mortality rate control rule produces the same yield as a constant
escapement control rule, but with less yearly variability in yield and less risk of the stock
falling below 20% of unfished biomass. Other studies that assume highly compensatory
stock-recruit relationships, where recruitment is independent of stock size over a broad
range, also report similar results for “40-10”, constant catch, and constant fishing
mortality rate control rules relative to threshold control rules (Steinshamn, 1998;
Ishimura et al., 2005). If these analyses had included a weaker compensatory response in
the stock-recruit relationship, the results likely would have been different, and the
benefits of threshold control rules (maximum yield or revenue) may have been preserved.
S. Relative performance with “imperfect” information

In reality, management must be conducted with “imperfect” information (i.e.,
uncertainty), and intuitively, this uncertainty should dictate more conservative or robust
harvest policies (Parma, 1993; Frederick and Peterman, 1995; Punt et al., 2002b; Quinn
and Collie, 2005). Most work on the effect of such uncertainty on harvest policy
performance is focused on the influence of errors in stock biomass estimates. Estimate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>