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ABSTRACT

ELECTRONIC STRUCTURE AND EXCITED STATE DYNAMICS OF
CHROMIUM(IIT) COMPLEXES

By
Joel Nicholas Schrauben
Interest in fundamental aspects of transition metal photophysics and
photochemistry stems from potential application of such systems to technologies
such as solar cells, photocatalysts and molecular machines. Chromium(III) offers
a convenient platform for the fundamental study of transition metal photophysics
due to its relatively simple ligand-field electronic structure. The work presented in
this dissertation deals with understanding the ground and excited state electronic
structure and dynamics of chromium(III) complexes, ranging from high-symmetry
derivatives of tris(acetylacetonato)chromium(IlI) (Cr(acac);) to low symmetry
chromium-semiquinone complexes of the form [(tren)Cr(III)-SQ]’L2 (where tren is
tris(2-aminoethyl)amine, a tetradentate amine capping ligand enabling only one
moiety of the orthosemiquinone (SQ) to chelate to the chromium(III) ion). This
effort can be thought of in terms of building up the additional interactions
(lowered symmetry and spin exchange) in a piecewise fashion by first considering
the electronic structure and dynamics of high-symmetry systems, then lowering
the symmetry while maintaining the quartet spin nature of the high-symmetry
system by studying the chromium(lll)-cateéhol systems. Finally, spin exchange

can be introduced via the chromium(III)-semiquinone system. In general, these



complexes represent dramatic changes from the high-symmetry complexes in
several ways: 1) the local symmetry of the chromium(III) ion is reduced from
high-symmetry, pseudo-octahedral ligation to a C,,-like N4O, coordination,
effectively breaking the degeneracy of the ligand field T and E states; 2) unpaired
spin of the semiquinone ligand interacts via Heisenberg spin-exchange with the
unpaired spins of the chromium(IIl) ion, resulting in substantial changes in the
absorption spectrum indicative of radically different electronic structure of both
the ground and excited states. Studies of the excited-state dynamics were first
carried out on derivatives of the archetypal complex Cr(acac); to gain an
understanding of correlations between electronic structure, geometry, and excited
state dynamics. These studies revealed an empirical correlation between low-
frequency modes of the molecule and the rate of ultrafast intersystem crossing in
the ligand field manifold. Efforts on the lower symmetry catechol and
semiquinone complexes are focused mainly on synthesis and characterization of
the electronic structure. The ground states of these systems are characterized
primarily using electron paramagnetic resonance techniques, revealing the rich
nature of these spin systems. For these studies, gallium(III)-semiquinones are
employed as a structural analog to study spin density distribution in the absence of
the chromium(III) ion. The concepts learned from these studies provide a useful
backdrop to the eventual study of the excited state dynamics of the aforementioned

chromium(1II)-catechol and -semiquinone complexes.
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Chapter 1: Introduction, Historical Perspective and Theory

1.1 Introduction

This dissertation concerns itself with fundamental questions underlying the
photophysical and physicochemical properties of transition metal compounds, and
employs chromium(III) as a platform for these studies. This chapter will present
the necessary background, both historical and theoretical, for understanding
excited state photophysical processes in transition metal systems, including an
overview of electronic structure and kinetics of chromium(III) complexes and
nonradiative decay theory. Other theories pertaining to electronic structure,

dynamics, and magnetism are covered throughout this dissertation as necessitated.

1.2 Historical Perspective

Rational design of applications such as solar cell technology, molecular machines,
and artificial photosynthesis demands a strong understanding of the electronic
structure and dynamics that constitute the photophysical properties of the
molecules employed in these applications.“2 The study of these fundamental
properties has a far reaching impact in the area of quantum chemistry and
spectroscopy. The rich photochemistry and photophysics of transition metal
complexes has attracted researchers for many years, with the oldest studies being
performed primarily on ionic solids, such as chromium(IIl) impurities. The

emission spectra of these salts were described by Becquerel in 1867, whose

. -



photochemical work on chromium salts was essential in the development of
photoengraving and lithography techniques."' Since then, chromium(IIl) has been
extensively studied and  characterized both  photophysically and
photochemically,s’6 and therefore makes an ideal probe for answering fundamental
questions about the electronic structure of transition metal complexes.

After the work of Becquerel the field essentially lay dormant until 1940
when Van Vleck analyzed the absorption spectra potassium chrome alum
(KCr(S0O4); -12 H,0) in terms of crystal field theory.7 Many more studies of this
type were carried out, most notably Sugano and Tanabe’s extensive study of
Cr(III) in A1203.8 Later on, after the advent of ligand field theory in the early
fifties, many studies of transition metal complexes in solution were carried out, but
it was not until the early sixties that the luminescence of a chromium(III) complex,
Cr(acac); (where acac is the monodeprotonated form of acetylacetone), was first
reported by Forster and DeArmond.” The assignment of the low-energy narrow
lineshape emission as originating from the lowest-energy ’E state was based in
part on single-crystal polarized absorption measurements on Cr(ox); (ox =
oxalate) carried out the previous year by Piper and Carlin,'® who also later carried
out the first polarized single-crystal spectrum of Cr(acac)3.” Many other studies

12,13
d,

were carried out, most notably by Forster and DeArmon as well as

theoretical advances such as the development of nonradiative decay theory that



began to lead to an understanding of the dynamical processes occurring in these
complexes.

Of course, technological advances also play a role in this story, most
notably with the development of the ruby laser by Ted Maiman in 1960'*—a
technological feat that not only changed the course of spectroscopy but also
ignited a large amount of interest in chromium(IIl) photophysics (the gain
medium, ruby, is chromium doped corundum—a form of aluminum oxide).
Several decades afterward, in the 1990’s, spectroscopy was again fundamentally
altered with the advent of ultrafast spectroscopy, which enabled the scientist to
observe chemical and photophysical events on the lifespan of molecular

vibrations. Many early studies focused on organic's'l8

or fully inorganic systems,
such as Zewail’s gas-phase experiments on iodine and salts of iodine.'*?® With the
development of a dye-sensitized solar cell in 1991 employing nanoparticle TiO,
by Gritzel, which employed complexes of ruthenium(II) as the dye species,

interest in transition metal photophysics expanded.”’28

In 1996, it was shown that
electron injection into the conduction band of a dye-sensitized solar cell occurred
with T < 500 £s.”° At this time ultrafast transition metal photophysics became
interesting not only from a purely scientific viewpoint, involving challenges in
spectroscopy and theory, but also in the realm of applications. [Ru(bpy)3]2+,
tris(2,2’-bipyridine)ruthenium(Il), eventually became the paradigm for ultrafast

spectroscopy of transition metal complexes, and has been extensively studied.’*



While the excited state dynamics of second and third row transition metal
complexes are concerned almost entirely with charge-transfer states, complexes of
first-row transition metal elements have ligand-field based states as their lowest-
energy electronic state. Therefore, unlike most other studies of excited state
processes, the dynamics of the complexes presented herein are occurring entirely
in the ligand field manifold, i.e. only d-orbital based multielectronic
wavefunctions play a role in the observed dynamics. Up to this point, the extent of
published ultrafast spectroscopic data of chromium(III) complexes has been

confined to a handful of studies on tris(acetylacetonato)chromium(lII),3(*39 as

40,41

described in chapter 3, as well as some photochemical and donor-acceptor

studies.*> Some unpublished results are also relevant, which are reviewed in
chapters 3 and 4.3 Indeed, the field of ultrafast dynamics of first row transition

metal complexes remains largely uncultivated.***

1.3 Electronic Structure, Kinetics, and Application of Nonradiative Decay
Theory to Complexes of Chromium(III).

1.3.1 Electronic Structure. Chromium(III) complexes of high symmetry are
ideal for the study of photophysics and photochemistry of transition metal
containing systems due to the simplicity of the ligand field manifold in an Oy
environment (compare, for example, the Tanabe-Sugano diagrams of d® and d°

transition ions, Appendix A).*’ Furthermore, the wealth of extant literature on



the photophysical properties™**

of this ion provides the researcher with an
invaluable resource for evaluation and context in which to place one’s results.
The Tanabe-Sugano diagram for a & species in an octahedral environment

is shown below in Figure 1-1. Using the common “one electron” molecular orbital

representation, the relevant electronic states of chromium(III) are highlighted.

80 4T19 2A29
* 1
e~ —— L
70 g 4
2A1q e 11 T,
60/ Ty BT T
o 501 4ng o
~ g _—
40 11 1 %
2F 2-|-29 tzg L
301 ,
T1g
20+
2 4P 2E9 eg* — —
101 g, 111 "%
aF 20 — — —
0 . . v : Ay
0 10 20 30 40 50
A/B

Figure 1-1: Tanabe-Sugano diagram for a d’ionin O symmetry.47 One-electron
representations of the relevant electronic levels in the ligand-field manifold of the

chromium(III) ion in an Oy, environment.



This representation is strictly not correct because the electronic states of any d > 1
species are in fact multielectronic wavefunctions, but this formalism remains
useful for gaining a qualitative understanding of the relevant electronic states.
Chromium(III) is a d® ion, with a 4A2 ((tzg)3 in an infinitely strong field) ground
state. The free-ion (no imposed crystal or ligand field potentials) ground state
term is *F, which splits into the aforementioned *A, state as well as the first spin-
allowed excited states, “T, or “T}, under pseudo-octahedral symmetry. Transition
from the ground state to the low-lying quartet excited states corresponds to the
orbital (“one electron”) transition (tzg)3 — (tzg)z(eg'). The final quartet ligand field
state, the upper lying *T,, derives from the ‘P term. Repulsion, which can occur
between states of the same irreducible representation, occurs between this state
and the lower-lying *T, (derived from ‘F), leading to the non-linear energy of
these electronic states as a function of the ligand field strength.

As can be inferred from the Tanabe-Sugano diagram, in the majority of
chromium(III) complexes the 2T| states lies about 500 cm™' above the *E state, so
that the states can be treated kinetically as a single state, which we will call 2p%
In general, if the symmetry of the molecule is O (the pure rotational subgroup of
Oy, so the subscripts g and u can be dropped) or can be approximated as such, two

cases can be considered: 1) if the energy of the intraconfigurational spin flip is

less than 10 Dq (the ligand field strength), then ’E lies below *T>, or 2) the ligand




field strength is small enough so that the energy of the spin flip exceeds the ligand
field strength, and 2E lies above 4T2.

Considering a chromium(III) ion under the influence of an octahedral
ligand field, one can see that from simple molecular orbital considerations that
formation of any quartet ligand field state must result in antibonding metal-ligand
character to be introduced. In an excellent review, Kirk describes the effect of
promotion of an electron to the e;* set (Figure 1-2), specifically dx, — dx2.y2, dx,
— dp.x2, and dy, — dy.y2 in the following manner: [the transition effectively]
“constitutes a rotation of charge distribution by 45° in one or another of the three
orthogonal planes containing the ligands. Because of the antibonding electron
density on two of the the Cr-L bonding axes in the quartet excited state, relaxation
will occur to a new geometry; a tetragonal distortion is suggested...some theories
have allowed for trigonal distortions.”®  That said, it is assumed from this model
that geometry distortions with respect to the ground state in the
intraconfigurational ’E state are negligible. The small geometrical change in this
state with respect to the ground state is in fact manifested by the narrow emission
spectrum from the ’E state (discussed in Chapter 3).

In 1978, Wilson and Solomon’s high-resolution polarized single-crystal
spectroscopic study of hexaamminechromium(Ill), and their tour-de-force
application of ligand field theory allowed for an estimation of the extent of the

Jahn-Teller distortion in the 4T2g state of this complex.48 They found, in
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Figure 1-2: Charge redistribution in d’ system as a result of promotion to an e,*
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Figure 1-3: Excited state (4T2) distortions of hexaamminechromium(III), as

determined by Wilson and Solomon.*®

accordance with the simplified picture presented above, that the equatorial
chromium-nitrogen bonds lengthened by 12 pm, while the axial bond lengths are
shortened by 2 pm from the ground state (and presumably ’E) geometry of 206
pm, representing a ~6 % change in the equatorial bond length. Furthermore, the

authors point out that their study required a low temperature single crystal, and




that the magnitude of the excited state distortions may increase in a solution
environment, as vibrational studies in the ground state have shown a 5-10%

49,50

decrease in the force constant in the solution phase. In an octahedral system,

distortions of both the A, and E; normal modes (Figure 1-3) contribute to the
excited state geometry distortions.
Forster provides an excellent overview of various kinetic processes that can

occur in chromium(III) systems.s""6

Upon excitation into the Frank-Condon state,
only a handful of kinetics processes can ensue to provide relaxation back to the
ground *A, state. A Jablonski diagram of the kinetic processes that can occur
within a photochemically stable chromium(III) species wherein the energy of the
’E state is below that of the *T is shown in Figure 1-4. Upon excitation into the
‘T, state a variety of processes ensue which dissipate the absorbed energy. From
the Frank-Condon state the lone radiative mechanism is fluorescence (FL),
emission between states of the same spin multiplicity. The nonradiative
mechanism of energy dissipation from this state include internal conversion (IC),
which is a nonradiative decay mechanism between states of the same spin
multiplicity, and intersystem crossing (ISC) an isoenergetic process between
electronic states of different spin multiplicity. Fluorescence and internal
conversion both lead to ground state formation, while intersystem crossing results

in the formation of the “E state, which is generally long-lived. If enough thermal

energy is present and the 4T2 and ’E states are close in energy, back intersystem



crossing (BISC) can occur. In a system where the *T, lies lowest in energy the
system will undergo internal conversion from this state to repopulate the quartet
ground state.

The 2E state can decay via phosphorescence (PH), a radiative emission
between states of different spin multiplicities, or by ISC into the ground ‘A,
manifold. These are the various processes that occur between different electronic
states. However, one must keep in mind that other nonradiative events
(vibrational cooling (VC), redistribution of vibrational energy) are occurring
within the electronic state before the formation of the thermalized, metastable

state. These processes will be discussed at great length later.
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Figure 1-4: Jablonski diagram of photophysical processes that occur in a d® ion

under O symmetry.

Finally, while various photochemical events can quench radiative (FL, PH) and
nonradiative (IC, ISC, VC) processes from the excited electronic states, we will
concern ourselves only with photophysical processes, i.e. those that cause no
chemical change to the system. This is, in fact, a good approximation given the
low photochemical quantum yields for the complexes employed in this study,51

although the researcher must be vigilant not to discount these mechanisms even in

11



seemingly photostable complexes. The rates of excited state decay are intimately
tied into the nuclear displacement (Q) and relative energies (Eq) of the potential
energy surfaces of the two states in question. All of these factors are dealt with

within the formalism of nonradiative decay theory.

1.3.2 Nonradiative Decay Theory. As described in the previous section, when a
system absorbs a photon, the ensuing processes that relax the molecule back to the
ground state can be classified as either radiative (fluorescence, phosphorescence)
or nonradiative (vibrational cooling, internal conversion, intersystem crossing,
quenching mechanisms). Nonradiative and radiative dynamics can be summarized

by Fermi’s “Golden rule” (equation 1.1).

k= 3}_11|H(‘)|2 o(E) 1.1

2
M
In this equation |H ’ quantifies the coupling of the participating vibrational

and electronic wavefunctions and p(E) is a density-of-states term. Starting from
Fermi’s Golden rule, nonradiative decay theory was developed in the 1960’s and
70’s through the work of Jortner, Freed, El-Sayed, and others.”>> An eventual
goal of this research program is ascertaining whether this theory is generally
applicable to ultrafast processes of transition metal systems.

A general treatment of nonradiative decay theory is presented here, and

several specific examples are presented later in the text. The Born-Oppenheimer

12



approximation allows one to decouple the electronic and nuclear components due
to the relative timescales on which they operate (this approximation has been
shown to breakdown for some ultrafast processes where strong vibronic coupling
is implicated, as discussed later in this dissertation). The resulting total
wavefunction for any electronic state is then the product of the electronic part, v,

and all 3N-6 vibrational modes, x. We consider two states, the initial (promoting)

and final (accepting):
3N-6 |
v =’ ] [ @ 12)
i=1
0 3N-6 5
vy =¥ (r)H 2P (13)
i=
Applying the Golden Rule of Fermi, the nonradiative rate takes the form
2r A 2
b == [v3 H e p(E) (1.4)

Note that the coupling term now takes the form of a transition moment integral.
As the Born-Oppenheimer approximation demands that the electronic and
vibrational wavefunctions are distinct, the operator is expanded to include separate

electronic and nuclear operators

H = H Elec+ Hvib 1.5)

13



A

A
where H Elec operates only on the electronic terms and Hvip operates on the
vibrational components. By putting the wavefunctions and operator in the full
form and rearranging, one obtains a form that includes both electronic and
vibrational transition moment integrals:

N—6
Iwz(r)HElec w,dr f H 1(2)(Q)HVbl—l[ 2M(Qydr

2

[ PE) (L6)

This equation can be simplified by eliminating non-participating terms, or by
considering a single accepting mode, continuum of modes, etc. Manipulation and
determination of this result is the work of all the theory on nonradiative decay
(again, except for those cases where the Born-Oppenheimer approximation fails).
The driving force for nonradiative decay can be understood by examining
equation 1.6, the basic equation governing this phenomenon. For nonradiative
decay the vibrational overlap between the participating states, called Frank-
Condon factors, which relate to the geometry of the system, is an important factor
determining the rate. The rate is proportional to the matrix element of the

vibrational Frank-Condon factors:
Kpr o <z,-|zf> (1.7)
Where X; corresponds to the vibrational mode (or modes) from which the

transition is originating, the so-called promoting mode, and Xz is the mode (or
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modes) to which the energy is transferred, called the accepting mode. The
vibrational overlap, in turn, depends on two different factors, the relative nuclear
displacements of the electronic states (AQ) and the difference in the zero-point
energies between the two states (AE). To understand this, we will employ some of
the terminology from Marcus’s theory of electron transfer and describe two
limiting cases of AQ positions, the “normal” region and the “inverted” region,
where changing AE while maintaining the same nuclear displacement results in
two opposing trends in the rate of k.

In the following discussion we will consider a single promoting mode and a
single accepting mode, however theories have been developed which consider
multiple promoting and accepting modes. The vibrational wavefunctions under
consideration are the lowest vibrational component of the upper state (the
promoting mode—assuming that this upper state is thermalized), and the
isoenergetic vibrational wavefunction of the lower potential (accepting mode).
Figure 1-5 shows two harmonic potentials corresponding to electronic potential
wells with the vibrational component wavefunctions superimposed on the
potentials. The upper potential is displaced with respect to the lower state along
the nuclear coordinate, Q. As the energetic separation of the two potential wells
decreases, the extent of vibrational overlap between the lowest component of the
upper well and the isoenergetic level of the lower well decreases; a concomitant
decrease in the rate of nonradiative decay between these two states results

according to equation 1.7. This describes the situation of the “normal” region,
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which arises due to the greater amplitude on the edges of the potential for higher-
energy component vibrational wavefunctions.

Figure 1-6 again shows two harmonic potentials, but now with minimal
relative displacement along the nuclear coordinate axis. In this case the dearth of
amplitude of upper lying vibrational wavefunctions in the center of the potential
leads to a poor overlap between the lowest-lying vibrational wavefunction of the
upper state and isoenergetic levels of the lower state. As the energetic separation
is reduced, vibrational overlap increases, and an associated increase in k,, occurs
according to equation 1.7. This situation is descriptive of the “inverted” region.

Finally, another general concept of nonradiative decay theory is the role of
entropy. Entropy plays an important role in driving nonradiative decay: the term
p(E) of equation 1.1 quantifies the density of states in the system. A final state
that has a greater density of vibrational levels will entropically drive the transition,
while under similar conditions a final state with a more dilute manifold of
vibrational states will have a correspondingly lower nonradiative rate. This
concept was proposed early on in the development of the theory.s"’55

The role of conformational changes (modifying AE and AQ) between the
ground and excited states on the rate of nonradiative decay has been studied
extensively. Some of the earliest studies on nonradiative dynamics involved
monitoring the formation of the ground state via the lowest-energy excited state, a

triplet state, in hydrocarbon systems. The majority of these systems operate in the
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Figure 1-5: Normal region—as AE is decreased the rate of electron transfer
decreases as a result of decreased vibrational overlap between component
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Figure 1-6: Inverted region—as AE is decreased the rate of electron transfer
increases as a result of increased vibrational overlap between component
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inverted region; a paper published in 1966 by Siebrand’® explains “a crude
correlation between t and the triplet energy Er has been noted and traced back to
the Franck-Condon factor F(« 1/7)of the transition...” A year later, through a
series of deuterated hydrocarbons, Siebrand et.al. showed that the nonradiative
decay from the triplet state occurs efficiently through the C-H (C-D) modes.”’

58,59

Later studies expanded the theory for hydrocarbons and there are also

noteworthy examples of studies of aromatic systems.6° Since these early studies,
the general concepts outlined above been applied to a broad range of chemical
systems for nonradiative transitions between the emissive, lowest-lying excited
state and the ground state. Several examples relevant to transition metal
photophysics are presented below.

Interesting examples of the role of conformational changes can be found in
organic and biological systems, where the phenomenon of ultrafast internal
conversion, radiationless decay between electronic states of the same spin
multiplicity, is particularly relevant. This has been observed in such biological
molecules as DNA and RNA nucleosides and the green-fluorescent protein (GFP)
chromophore.6l Kohler and coworkers®® found excited state lifetimes under 1 ps
for all nucleosides, and those nucleosides with faster internal conversion rates had
a lower propensity toward photochemical damage. They suggest that this property
likely played an essential role in the early evolution of life on earth. The GFP

chromophore is composed of two halves, and semi-empirical quantum mechanical
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calculations suggest that the two halves are planar in the ground S, state, while
they are perpendicular in the S, state.® This large conformation change means the
Sp and S; potential wells are displaced along the coordinate corresponding to the
axis of rotation, and correspond to the “normal region.” This displacement of the
wells results in a much larger Frank-Condon overlap (vibrational overlap) and thus
a much more efficient internal conversion than if the wells were in the Marcus
inverted region. This ultrafast decay is responsible for the stability and low
quantum yields for photochemistry. This suggests a means to controlling
photochemical and photophysical events by controlling the environment, and thus
the relative displacements of the electronic states involved, and ultimately the
Frank-Condon overlap. In fact, these large conformational changes in organic and
biological systems, and the associated rapid nonradiative rates, may be the bridge
between organic photophysics and transition metal photophysics, where large
conformational changes are quite common.**

The theory is expanded by considering the so-called “weak coupling limit.”

In this limit the nonradiative decay rate is the product of the electronic (By) and

vibrational overlap (F, Franck-Condon) factors (equation 1.8).

knr = ﬂoF (1.8)

B, = Clw, % (1.9)

F= ZHKZf ;(i>tz (1.10)
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The electronic factors includes the promoting mode, wk, from which the transition
originates, and a constant Cy, which includes contributions from vibronic
coupling, which acts to make formally symmetry-forbidden (LaPorte forbidden)
transitions allowed, and spin-orbit coupling, which increases the allowedness of
formally spin-forbidden transitions. For an intersystem crossing (spin-forbidden)
event a non-zero value of B is obtained only if spin-orbit coupling contributions
are considered. The vibrational factor, F, is accepting-mode dependent and will
take on different forms depending on the approximation: is there a single

. . 53,65
accepting mode, a continuum of modes, or a ladder

of modes? Note that
equations 1.8 through 1.10 effectively constitute the quantitative result of equation
1.7.

A popular model that has found success in describing nonradiative rates
between lowest-energy excited states and ground states is the so-called polaron
(also known as the spin-boson) model. In this model, many vibrational states are

playing a role in the nonradiative transition and the following equation for the

vibrational overlap factor, F, results:*®

i 172 £ i Z(AV )2
F=[ ] exp| -S,, -~ +(7+ ] 12 1.11)
ha, E ho,, |\ho, ) 16In2
7=ln[LJ—l (1.12)
SthM
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In equations 1.11 and 1.12 E is the energy separation between the two states, Sy is
the Huang-Rhys factor, which describes the displacement of the potential minima
of the promoting and accepting electronic states along the accepting mode
coordinate, my is the dominant accepting mode, and Av,; is the full width at half-
maximum of the emission spectrum. In the context of electron transfer one simply

needs to replace E with the corresponding quantities familiar to the theory of

electron transfer ;%6
_ 0
E—|AG |—10 (1.13)
2
(&) _ AgkesT (1.14)
16In2

Equations 1.13 and 1.14 form of the “Energy Gap Law” a limiting case of
nonradiative decay theory in the inverted region, which predicts a linear
relationship between the energy gap (E) and Ink,,. Meyer et al. have confirmed
the “Energy Gap Law” between the emissive state and the ground state in several

68.69

series of substituted Os(II), Ru(II), and Re(I) complexes. Employing the spin-

boson model, and considering only one vibrational mode (®) and an equilibrium

displacement (AQ), the reorganizational energy for this mode is:
f 2
,1,.=(? (Aq,) (1.15)

Where f = uw’ is the force constant. This is related to the Huang-Rhys factor,

also called the electron vibrational coupling constant, a dimensionless quantity
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that takes into account the equilibrium nuclear displacement (AQ) and the

reorganization energy:

o A _S(0) _ po(se) 016
ho 2ho 2h

Meyer et. al. have used the concepts outlined above to fit emission spectra of
Ru(II) and Os(II) polypyridyl complexes. From these fits, which utilize concepts
of nonradiative decay theory, they were able to obtain kinetic information on these

70-74
molecules.

1.3.3 Applications of Nonradiative Decay Theory to Complexes of
Chromium(III). The first theoretical application of nonradiative decay theory
specifically to transition metal complexes was carried out by Robins and Thomson
in 1973, wherein they applied a qualitative, symmetry-based approach to
nonradiative decay theory to describe the nonradiative ’E — *A, conversion in a
series of chromium(III) complexes previously studied by Forster and coworkers.
The majority of theoretical work in the field up to that point was concerned with

76-78 to

organic systems, however this theory had been applied in several papers
transition metal systems, with varying success. The approach adopted by Robins
and Thomson was motivated by the inherent high symmetry of many metal

complexes, such that symmetry-based selection rules likely play a large role in the

coupling terms affecting the rates of nonradiative relaxation. This concept arose a

22



few years prior via the work of Gardner and Kasha,” who suggested that
molecules that display slow radiationless decay are “vibrationally deficient,”
meaning that the molecules lack promoting and accepting modes of the same
symmetry to facilitate rapid nonradiative decay. Using this symmetry based
approached, they determined for octahedral and pseudo-octahedral complexes 1.)
that metal-ligand modes are likely not active in ’E — *A, nonradiative conversion
and 2.) that the rate of nonradiative decay was linearly dependent on the number
of hydrogen atoms attached to the diketonate skeletal framework: the more
hydrogen atoms bound directly to the nt system of the ligand, the faster the rate of
intersystem crossing. The authors also note that comparison with systems that
have aliphatic ligands suggests that coupling to the m system leads to more
efficient nonradiative decay. This result is likely not general for state changes in
transition metal systems, and probably reflects the intraconfigurational nature of
the state change that they were describing, where both states can be described in
terms of orbitals of = symmetry. These symmetry-based selection rules were later

. . . . o« L 4 4 . .
applied to describe internal conversion (radiationless "T, — “A, conversion) in

various chromium(III) doped glasses.so

From the 1970s onwards many studies appeared which attempted to address
the mechanism of decay of the lowest energy excited state in simple
chromium(III) systems. In general, at low temperatures (< 100 K), the relaxation

was insensitive to the matrix and temperature, however various studies showed
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that the decay depended on high frequency vibrations of ligated atoms, spin-orbit
coupling, as well as low-frequency modes?'® A separate regime of dynamics
was found at higher temperatures, where dynamics vary with temperature and

solvent, such that the decay of the ’E state is given by:
k=k;p+kyp(T) (1.17)

Where k; 1 = k; + kyr and kyp(T) is the temperature dependent additional dynamics

observed at higher temperatures.84

At the time, researchers were attempting to
determine a unified model for this so-called “thermally activated relaxation,” and
three mechanisms were put forth to account for the decay of the ’E state: 1.)
quenching of the excited doublet state by direct chemical reaction, 2.) back
intersystem crossing to a low-lying quartet state, which can undergo internal
conversion to form the ground state or 3.) crossing to the potential energy surface
of a “ground state intermediate,” facilitated by low-frequency solvent and/or
normal modes of the molecule (Figure 1-7).85 Many studies were interested in
determining the dominant mechanism in various systems; most of the major
studies of this time employed am(m)ine complexes of chromium(III). Early on,
quenching of the ’E state by direct reaction was the favored candidate for the
major relaxation pathway for most complexes of this type. This arose from studies
of trans-Cr(NH3)4XY and trans-(Cr[14]JaneN,)XY (where X and Y are simple

ligands such as SCN, CN and NH; and [l14]aneNs; is 1,4,8,11-

tetraazacyclotetradecane).86'88 These studies showed high yields of
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photosubstitution for the trans-Cr(NH3),XY type complexes but very low yields
of photosubstitution for the trans-(Cr[14]aneN,)XY complexes. This was
attributed to the closed ring structure of the [14]aneN, ligand (i.e. cyclam, Figure
1-8), which ostensibly prevented photosubstitution at the equatorial coordination
sites, bolstering support for the direct reaction quenching mechanism. Support for
the mechanism wherein state crossing was facilitated by low frequency modes
came mainly from variable temperature/solvent studies, which showed that
freezing of the skeletal vibrations of the molecule, that apparently acted as
promoting modes, hindered decay of the ’E state.”” This question was ultimately
addressed by Ramasami ef al. in a study where [Cr(en);]*" and [Cr(sep)]** (sep =
(S)-1,3,6,8,10,13,16,19-octaazabicyclo[6.6.6]eicosane, see Figure 1-8) were
compared.85 The sep ligand fully encapsulates the chromium(III) ion, so direct
reaction is completely discounted. If the direct reaction mechanism was the
dominant mechanism for °E decay then this complex would have a very long ’E
lifetime relative to the electronically similar [Cr(en)3]3+. Furthermore, the authors
note that the back intersystem crossing mechanism is anticipated to be highly
inefficient in this system because of the large energy gap. The authors found that
the lifetime of the ’E state of [Cr(sep)]3+ was only slightly longer than that of
[Cr(en)3]3+, making direct reaction an unlikely candidate and supporting
intersystem crossing as a deactivation pathway. Endicott et al. later noted that the

same mechanism, namely coupling of low-frequency modes, would account for

25



4'|'2

Energy
>

intermediate

v

Nuclear coordinate

Figure 1-7: Proposed mechanisms for thermally activated ’E state deactivation,
reproduced from reference 84. (a. = direct reaction, b. = back intersystem crossing

into the quartet manifold and c. = surface crossing to a ground state intermediate.)
both the direct reaction deactivation as well as intersystem crossing to the ground

state intermediate, and relative contributions of each pathway are determined by

nuclear conﬁguration.90 In this sense, they added that the direct reaction pathway
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should be considered a limiting case of a mechanism involving deactivation
promoted by low frequency normal modes or solvent modes.
The role of stereochemistry in these thermally activated relaxation events

91,92

was first proposed by Kane-Maguire et al. Theoretical aspects of this were

studied by Vanquickenborne and coworkers.”

They showed that trigonal
distortions, which lower the symmetry of the system, mix d-orbitals creating
microstates of doubly filled d-orbitals. These doubly filled d-orbitals decrease
electronic repulsion in the excited state, thus providing a facile mechanism of
achieving the ground state electronic configuration. Later, experimental evidence
began to arise which implicated trigonal distortions as playing an important role in

facilitating intersystem crossing: these studies compared amine complexes to

analogous constrained amine ligands, mostly derivatives of 1,4,7-
triazacyclononane (TACN) (see Figure 1.8). 82.84.94-96

In the 1990s, as a forerunner to this dissertation, ultrafast spectroscopy was
beginning to be applied to the study of chromium(III) photophysics.36'38 These
studies, which were carried out with ~ 100 fs optical pulses, are reviewed
extensively in chapters 4 and 5. For the archetypal complex Cr(acac); it was
found that intersystem crossing between the first spin-allowed *T, state and
lowest-energy 2E occurred with Kisc > 10'3, and an ~ 1 ps lifetime was observed

which was assigned as vibrational cooling within the ’E state. These dynamics

represented a new observation in field of chromium(III) photophysics: one of the
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rapidly evolving, non-thermalized state, explored in great detail in Chapter 3 of

this dissertation.

( > [NH NP

NH HN NHNHHN
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Figure 1-8: Sterically constraining ligands that helped to elucidate modes of ’E

deactivation.
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1.4 Dissertation Outline

The work presented herein will include studies on a variety of chromium(III)
complexes, including n-delocalized ligand systems, low-symmetry ligand fields,
and spin exchange systems. The aim of this work is to fully characterize the
electronic, magnetic, and geometrical structures of these complexes with the goal
of correlating these structural changes to the observed excited state dynamics,
which are nonradiative in nature. Studies on complexes of gallium(IIl), an
effective analog of chromium(III) which provides useful information in the
absence of unpaired spin, are also presented.  Finally, Heisenberg spin exchange
complexes of chromium(III) are explored. The outline of this dissertation is as
follows:

- In Chapter 2, the electronic and magnetic structures of the ground states of
various systems are explored via electron spin resonance techniques. Gallium
semiquinones will be explored and issues relevant to understanding and
controlling spin distribution in such systems will be discussed. The ground state
magnetic structures of quartet complexes of chromium(III) will also be explored,
and an extensive investigation of the effect of zero field splitting on the
appearance of spin resonance spectra is presented.

- Chapter 3 focuses on the electronic structure and excited state dynamics of high-
symmetry complexes of chromium(III). Spectroscopic techniques, both static and
time-resolved, are employed to characterize the excited electronic structure and

dynamics therein. This work includes ultrafast transient absorption results on
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high-symmetry chromium(III) complexes, which aims to address fundamental
questions vis-a-vis mechanisms of nonradiative decay in these systems. These
studies were carried out with various time resolutions, employing ultrafast optical
pulses typically of 100 fs duration.

- Chapter 4 explores the electronic structure and dynamics of spin exchange
complexes of chromium(III), employing the same techniques as those of Chapters
3 and 4. The results of the previous chapters are employed to aid in the
characterization of these systems.

- Chapter 5 highlights future work.
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