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ABSTRACT

DISCRETIZED BOND-BASED PERIDYNAMICS FOR SOLID MECHANICS

By

Wenyang Liu

The numerical analysis of spontaneously formed discontinuities such as cracks is a long-

standing challenge in the engineering field. Approaches based on the mathematical frame-

work of classical continuum mechanics fail to be directly applicable to describe discontinuities

since the theory is formulated in partial differential equations, and a unique spatial deriva-

tive, however, does not exist on the singularities. Peridynamics is a reformulated theory of

continuum mechanics. The partial differential equations that appear in the classical contin-

uum mechanics are replaced with integral equations. A spatial range, which is called the

horizon δ, is associated with material points, and the interaction between two material points

within a horizon is formed in terms of the bond force. Since material points separated by a

finite distance in the reference configuration can interact with each other, the peridynamic

theory is categorized as a nonlocal method.

The primary focus in this research is the development of the discretized bond-based

peridynamics for solid mechanics. A connection between the classical elasticity and the dis-

cretized peridynamics is established in terms of peridynamic stress. Numerical micromoduli

for one- and three-dimensional models are derived. The elastic responses of one- and three-

dimensional peridynamic models are examined, and the boundary effect associated with the

size of the horizon is discussed. A pairwise compensation scheme is introduced in this re-

search for simulations of an elastic body of Poisson ratio not equal to 1/4. In order to enhance

the computational efficiency, the research-purpose peridynamics code is implemented in an



NVIDIA graphics processing unit for the highly parallel computation. Numerical studies are

conducted to investigate the responses of brittle and ductile material models. Stress-strain

behaviors with different grid sizes and horizons are studied for a brittle material model. A

comparison of stresses and strains between finite element analyses and peridynamic solutions

is performed for a ductile material. To bridge material models at different scales, a multiscale

procedure is proposed.

An approach to couple the discretized peridynamics and the finite element method is de-

veloped to take advantage of the generality of peridynamics and the computational efficiency

of the finite element method. The coupling of peridynamic and finite element subregions is

achieved by means of interface elements. Two types of coupling schemes, the VL-coupling

scheme and the CT-coupling scheme respectively, are introduced. Numerical examples are

presented to validate the proposed coupling approach including one- and three-dimensional

elastic problems and the mixed mode fracture in a double-edge-notched concrete specimen.

A numerical scheme for the contact-impact procedure ensuring compatibility between a

peridynamic domain and a non-peridynamic domain is developed. A penalty method is used

to enforce displacement constraints for transient analyses by the explicit time integration.

In the numerical examples, the impact between two rigid bodies is investigated to validate

the contact algorithm. The ballistic perforation through a steel plate is investigated, and the

residual velocities of the projectile are compared with the results by an analytical model.

Peridynamics is applied to study porous brittle materials. An algorithm is developed

to generate randomly distributed cubic voids and spherical voids for a given porosity. The

material behaviors at the macroscopic level including the resultant Young’s modulus and

the strength are studied with varying amounts of porosities. The degradations of Young’s

modulus and strength are compared with empirical and analytical solutions.
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Chapter1

Introduction

1.1 Overview of peridynamics

The analysis of problems involving discontinuities such as cracks is a long-standing challenge

in the engineering field. Fundamentals of linear elastic fracture mechanics were established

around 1960 [5]. The development of fracture mechanics provides a more reliable method-

ology than the traditional strength-based approach for engineering designs. However, the

primary concern of the classical fracture mechanics is related to problems with pre-existing

defects within a body, rather than spontaneous formations of discontinuities in the material.

With the advent of computers, the finite element method has been developed for solving a

wide range of engineering problems, for example, structural mechanics, heat transfer, and

fluid flows [11]. Despite the effectiveness and applicability of the finite element method in

many engineering analyses, it is difficult to use the finite element method for numerical pre-

dictions of crack growth and damage since the finite element formulations are based on the

partial differential equations in classical continuum mechanics.

Peridynamics [153] is a reformulated theory of continuum mechanics. In the peridynamic

theory, the partial differential equations that appear in the classical continuum mechanics

are replaced with integral equations. Specifically, the stress divergence term in the equation

of motion for a continuum is replaced with an integral function. Consider a body occupying
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the region R as shown in Figure 1.1. A spatial range, which is called the horizon δ, is

associated with a material point x in the reference configuration. The material point x can

interact with all material points within the horizon δ. The interaction between the material

point x and the material points x′ is formed in terms of the bond force . In the mathematical

framework, the total interacting force on the material point x is determined by integrating all

bond forces over the spatial domain Hx, which represents the neighborhood of the material

point x within the horizon δ. In dynamic analyses, the acceleration of the material point x

is determined by the total interacting force and applied external forces.

x

y

z

X

X’
f

�

Horizon δ

Figure 1.1: Schematic of peridynamics. (For interpretation of the references to color in this
and all other figures, the reader is referred to the electronic version of this dissertation.)

The main advantage of peridynamics is that it is directly applicable to represent discon-

tinuities. This is in contrast to approaches based on the mathematical framework of classical

continuum mechanics. Special techniques are needed to treat discontinuities in the classical
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approaches since the spatial derivatives in the equation of motion are undefined along dis-

continuities. For example, cohesive crack models [10, 44] were introduced to take account of

nonlinearity near crack tips. In order to incorporate cohesive zone models into finite element

analyses, interface elements are inserted a priori into the finite element mesh [39]. In the

extended finite element method [13], enrichment functions, which work as an additional set

of functions for the approximate displacement field, are added to the global displacement

field for simulations of crack propagation.

In local continuum models, material points can only interact with adjacent material

points by means of contact forces [113]. In contrast, materials points separated by a finite

distance in the reference configuration can interact with each other in the peridynamic the-

ory. Therefore, the peridynamic theory is categorized as a nonlocal method [153]. Although

a substantial amount of research on nonlocal methods has been done before the development

of peridynamics, most nonlocal modelings involve spatial derivatives [153]. Prior to the de-

velopment of peridynamics, research progress has been made on mesh free particle methods

[106] such as smoothed particle hydrodynamics and meshfree Galerkin methods. The dif-

ferences between peridynamics and meshfree particle methods deserve to be noticed. In the

smoothed particle hydrodynamics, for example, the acceleration of a particle is governed by

partial differential equations [124]. On the contrary, the motion of a node in peridynamics is

governed by an integral equation. In numerical implementations of peridynamics, a material

region is discretized into nodes. Since peridynamics is a continuum model in essence, it

might be considered as a continuum version of molecular dynamics [115].
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1.2 Research Objectives

Compared with the classical theory, peridynamics is a relatively new methodology. The

thrust of research on peridynamics is providing an alternative theory to the classical contin-

uum mechanics that is directly applicable for numerical simulations of spontaneously formed

discontinuities. In this dissertation, the primary focus is the development of the discretized

bond-based peridynamics for solid mechanics. The following research objectives are identi-

fied:

• Establish a connection between the classical elasticity and the discretized peridynamics

for one- and three-dimensional models.

• Investigate material behaviors of peridynamic models and the influence of the horizon.

• Develop a numerical scheme for peridynamic simulations of materials with Poisson’s

ratio not equal to 1/4.

• Develop an algorithm enabling optimal parallelization and implement the peridynamics

code in graphics processing units for high performance computing.

• Compare the macroscopic material behaviors of peridynamic models and finite element

analyses and propose a multiscale approach to bridge material models defined at the

different scales.

• Develop a coupling approach of discretized peridynamics and finite element method

to take advantage of the generality of peridynamics in the presence of discontinuities

and the computational efficiency of finite element method. For the validation of the

proposed coupling approach, elastic and fracture problems will be examined.
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• Propose numerical scheme for the modeling of contact between a peridynamic domain

and a non-peridynamic domain such as conventional finite elements and rigid bodies.

Rigid-body impact and perforation of thin plate will be investigated to validate the

numerical scheme for contact-impact problems.

• Develop an algorithm to generate voids for a given porosity in peridynamic models to

study the degradations of Young’s modulus and strength of porous brittle materials.

1.3 Scope

The dissertation is organized as follows: In Chapter 1, the overview of peridynamics and the

differences compared with the classical theory are summarized. In Chapter 2, the literature

review regarding numerical predictions of crack growth and the development of peridynamics

is provided. In Chapter 3, a connection between the classical elasticity and the discretized

peridynamics is addressed in terms of peridynamic stress. Micromoduli are determined nu-

merically for one- and three-dimensional simulations. A pairwise compensation scheme is

proposed for the simulations of materials with Poisson ratio other than 1/4. In Chapter 4,

peridynamics is employed to study brittle and ductile materials. In order to enhance the

computational efficiency, a peridynamics code is parallelized using an NVIDIA graphics pro-

cessing unit in the form of a high-level implicit programming model. A multiscale procedure

is proposed to bridge the peridynamic material model at the bond scale and the material

model at the macroscopic scale for finite element analyses. In Chapter 5, an approach to

couple discretized peridynamics with finite elements is proposed. An interface element is

introduced to couple peridynamic and finite element subregions, and two types of coupling

schemes are examined. The coupling approach is employed to study elastic deformations
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of one- and three-dimensional models and the mixed-mode fracture in a concrete specimen.

In Chapter 6, a contact-impact procedure is developed for the modeling of contact between

a peridynamic domain and a non-peridynamic domain such as conventional finite elements

and rigid bodies. The proposed procedure is applied to study the impact between two rigid

bodies and the ballistic perforation of a thin plate. In Chapter 7, porous brittle material is

studied using peridynamics. The effects of porosity on the degradation of Young’s modulus

and strength are investigated. The last chapter is the conclusion and descriptions of future

works.
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Chapter2

Literature review

Fracture is one of major concerns in engineering field for a long time, and researchers

have made substantial efforts in order to understand material failures and alleviate potential

dangers. Inglis, Griffith, and other researchers made contributions to the early development

of fracture analyses [5]. Irwin extended the Griffith approaches by developing the energy

release rate [5]. The fracture mechanics provides a more reliable methodology for engineer-

ing design than the traditional strength based approach. However, the classical fracture

mechanics has its limitations. For example, a pre-existing crack needs to be defined, and the

fracture process zone is required to be small compared to geometrical dimensions [86, 87].

2.1 Numerical predictions of crack growth

Numerical predictions of crack initiation and growth have been considered as a class of chal-

lenging problems. Approaches based on the mathematical framework of classical continuum

mechanics fail to be directly applicable to describe discontinuities since the theory is formu-

lated in partial differential equations, and a unique spatial derivative, however, does not exist

on the singularities. In order to model crack growth and material damage, a considerable

amount of research has been done.

Barenblatt [10] and Dugdale [44] first introduced the cohesive crack models, which address
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relationships between the cohesive tractions resisting the separation of cracks and the crack

opening displacement [151]. The cohesive zone models are incorporated into finite element

models using, for example, interface elements and contact surfaces. Numerous researchers

have adopted cohesive zone models in numerical simulations. For example, Foulk et al. [60]

implemented a cohesive zone model in nonlinear finite element formulations. Ruiz et al. [151]

studied dynamic mixed-mode fracture using three-dimensional cohesive models. Overviews

of cohesive crack models have been presented by Elices et al. [48] and Planas et al. [141].

The partition of unity finite element method (PUFEM) was presented by Melenk and

Babuska [120]. Belytschko and collaborators [13, 123, 167] investigated the partition of

unity principle for numerical simulations of fracture problems and introduced the extended

finite element method (XFEM) to alleviate shortcomings of the conventional finite element

method. XFEM allows the discontinuity not constrained to element boundaries, and it

can model the discontinuity without remeshing [35]. Moës and Belytschko [122] used the

extended finite element method to model the growth of arbitrary cohesive cracks. Sukumar

et al. [168, 83] implemented XFEM with Dynaflow and conducted crack growth simulations

of channel-cracking in thin films. Mariani and Perego [117] presented a method for the

simulation of quasi-static cohesive crack propagation using XFEM for quasi-brittle materials.

Cox [35] proposed enrichment functions to represent the discontinuity using an analytical

investigation of the cohesive crack problem. Considering a global level of minimizing the

total energy of the system, Meschke and Dumstorff [121] proposed a variational form of

XFEM for the propagation of cohesive and cohesionless cracks in quasi-brittle solids.

A large number of different techniques have been carried out by researchers. For example,

Ibrahimbegovic and Delaplace [85] used microscale and mesoscale discrete models to study

dynamic fracture. Kozicki et al. [98] showed a lattice based discrete approach to model
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fracture in brittle materials. Moslemi and Khoei [125] employed an adaptive finite element

analysis to model curved crack growth. Ooi and Yang [132] presented the scaled boundary

finite element method to study crack propagation problems. Citarella and Buchholz [33]

investigated crack growth by the dual boundary element method.

Different from FEA in which elements are connected by a topological mesh, meshfree

particle methods employ a finite number of discrete particles to describe the state of a sys-

tem [106]. The meshfree particle methods can be classified into microscopic, mesoscopic

and macroscopic meshfree particle methods according to the length scales [109]. The dif-

ficulties for simulating many engineering problems such as penetration and fragmentation

include remeshing and mapping the state variables from the old mesh to the new mesh [106].

Unlike finite element methods, meshfree particle methods eliminate mesh constraints, and

demonstrate advantages in many applications. Chen et al. [30] presented large deformation

analysis of nonlinear elastic and inelastic structures based on Reproducing Kernel Particle

Method (RKPM). The application of RKPM includes, for example, elastic-plastic deforma-

tion and hyperelasticity [111]. Meshfree particle methods [106] demonstrate capability for

numerical simulations of material failures. Molecular dynamics, for example, is capable of

investigating nonlinearities in the vicinity of cracks, the bond breaking between atoms, and

the formation of extended defects [150, 63, 25]. Holian et al. [78] simulated the opening-

mode fracture under the tensile loading using molecular dynamics. Research on coupling

finite element methods and meshless methods [108] has also been conducted. De et al. [37]

presented development of the method of finite spheres. Hong et al. [79, 80] used analytical

transformations before the numerical integration to improve the method of finite spheres and

proposed a technique to couple finite element and finite sphere discretizations.
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2.2 Peridynamics

Compared with the classical continuum mechanics, peridynamics is a relatively new devel-

opment. Researchers have studied the peridynamic theory, its convergence to the classical

theory, and numerical applications. In the following, the development of peridynamics and

some crucial articles are going to be reviewed.

The first paper on the topic of peridynamics was published by Silling [153]. The devel-

opment of peridynamic theory was motivated to propose an alternative theory of continuum

mechanics that is useful for solving problems involving spontaneous formations of discon-

tinuities without any special treatment on discontinuities. The main difference between

peridynamics and the classical theory and other nonlocal methods is that spatial derivatives

are eliminated in the peridynamic theory. The theory in [153] is specified as the bond-based

peridynamics since a pairwise force function is used to describe the interaction between two

material points.

The peridynamic formulation was used to study the deformation of an infinite elastic

bar by Silling et al. [161]. In this work, it is found that the peridynamic solution converges

to the classical solution as the horizon goes to zero. In addition, the solution shows some

special features of peridynamics that are not presented in the classical theory. For example,

the oscillation of the displacement field decays from the loading region and spreads out

to infinity. The same smoothness between the displacement field and the body force field

is found in the peridynamic theory. On the other hand, the displacement field is two-

order smoother in derivatives than the body force field in the classical theory. On the one-

dimensional bar problem, Bobaru et al. [20] discussed three types of numerical convergence

in peridynamics, the adaptive refinement, and scaling. Other theoretical works include
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the dynamic responses of a peridynamic bar [183] and the well-posedness and structural

properties in the peridynamic equation [50].

A generalized formulation of bond-based peridynamics was described by Silling et al.

[156], which is referred to as the state-based peridynamics. A force state similar to the stress

tensor in the classical continuum mechanics is introduced. Different from the bond-based

peridynamics, the interaction between two material points might not be along the direction

of the deformed bond in the state-based peridynamics. The convergence of peridynamic

state to the classical elasticity was studied by Silling and Lehoucq [157]. It is shown that the

peridynamic stress tensor convergences to a Piola-Kirchhoff stress tensor as the length scale

goes to zero. Using the state-based peridynamic method, elastic deformation and fracture

of a bar were studied by Warren et al. [181], and viscoplasticity was studied by Foster et al.

[58, 59]. Silling and Lehoucq [158] presented the development of peridynamic theory of solid

mechanics.

With the general applicability of peridynamics, many applications of the theory have

been studied. The first publication on the numerical simulation using the peridynamic

model was authored by Silling and Askari [155]. In their work, the bond-based peridynam-

ics is employed to study the numerical convergence in an opening-mode fracture problem

and the impact of a sphere on a brittle target. Dayal and Bhattacharya [36] studied the

kinetics of phase transformations using peridynamics without any additional kinetic relation

or the nucleation criterion. By adding pairwise peridynamic moments, Gerstle et al. [65]

proposed a micropolar peridynamic model. Demmie and Silling [40] reviewed the develop-

ment in peridynamics and conducted simulations of extreme loading on concrete structures

using peridynamics. Kilic and Madenci [93] studied structural stability and failure analysis,

and employed peridynamics to predict crack paths in a quenched glass plate [92]. Using
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the bond-based peridynamics, Ha and Bobaru [70, 69] reproduced dynamic fracture phe-

nomenon observed in experiments and found the source of asymmetry in the crack path in

a perfectly symmetric computational model. Silling et al. [160] proposed a material sta-

bility condition for crack nucleation in an elastic peridynamic body. By comparing with

experimental studies, Agwai et al. [3] conducted a comparative study of the extended finite

element method, cohesive zone model, and peridynamics. Peridynamics can be implemented

within the framework of molecular dynamics [134].

Peridynamics has also been applied to study composites. By introducing fiber bonds,

matrix bonds, and interply bonds, Xu et al. [8, 188] applied peridynamics to model damage

and failure in composites. Bonds break irreversibly when the bond stretch exceeds a critical

value. Kilic et al. [91] used a random number generator to determine fiber locations in a

lamina, and studied the damage in center-cracked laminates with different fiber orientations

using peridynamics. Hu et al. [81, 82] derived the critical stretches for fiber bonds and matrix

bonds considering intralamina fracture energy for longitudinal and transverse loadings, and

proposed a homogenized peridynamic description of fiber-reinforced composites.

Compared with the finite element method, peridynamics is computationally expensive.

Macek and Silling [115] compared computer wall-clock run times between the EMU and FEA

implementations of peridynamics. The FEA implementation is much faster than the direct

meshless method. Askari et al. [8] applied peridynamics to model material and structural

failures using the Columbia Supercomputer at NASA Advanced Supercomputing Division.

In order to take advantage of the general applicability of peridynamics and the efficiency of

the finite element method, Macek and Silling [115] used embedded nodes and elements to

couple the peridynamic domain and conventional meshes. Similar technique was employed

to study shock and vibration reliability of leadfree electronics [103]. Kilic and Madenci [94]
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proposed a coupling approach using overlapping regions in which both peridynamic and

finite element equations are utilized. From the perspective of energy equivalence, Lubineau

et al. [113] developed a morphing strategy for the coupling of non-local and local continuum

mechanics.

13



Chapter3

Discretized Peridynamics for Linear Elas-
tic Solids

3.1 Introduction

Peridynamics is a new development of continuum mechanics that can simulate fractures

and other discontinuities [153]. It reformulates the mathematical description of continuum

mechanics in the forms of integral equations rather than partial differential equations [159].

The essence of peridynamics is that it computes forces on a material point using integral

equations, and it might be considered as a continuum version of molecular dynamics [155].

The interacting forces between material points over certain distance render the methodology

in the category of the nonlocal theory [46, 49, 183]. Unlike classical continuum mechanics,

the definitions of the stress and strain have not been established in the peridynamic theory

due to the nonlocal interactions. Although some efforts have been made to introduce the

peridynamic stress [104], the complexity of the definition itself inhibits implementation in

numerical simulations.

The bond-based peridynamics has limitations in representing continuum material prop-

erties. It can only simulate materials with Poisson ratio of 1/4 due to the property of Cauchy

crystal that only involves two-particle interactions [155]. In order to extend the capability

of peridynamics to model various materials that have different material properties, a gen-
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eralized peridynamics was proposed, which directly incorporates a constitutive model from

conventional solid mechanics [156, 154, 181, 58]. Gerstle et al. [65] proposed the micropolar

peridynamics by adding rotational degrees of freedom in the links. However, straightforward

numerical schemes to model peridynamic materials of Poisson ratio other than 1/4 have been

under development.

In this chapter, micromoduli for one- and three-dimensional discretized peridynamic mod-

els are derived by equilibrating the peridynamic Young’s modulus and the conventional

Young’s modulus under constant strain condition. The peridynamic stress corresponds to

the stress in the classical (local) continuum theory, and the conventional constitutive law is

utilized to obtain the peridynamic Young’s modulus. Numerical studies are performed using

the numerically derived micromoduli for one- and three-dimensional simulations, respec-

tively. Comparisons of strain distributions between the peridynamic solutions and classical

(local) elasticity solutions are conducted, and we discuss the boundary effect observed in the

simulations. In addition, a new pairwise compensation scheme for discretized peridynamics

is proposed to model materials of Poisson ratios other than 1/4, and the methodology is

verified with a numerical example.

3.2 Theory

3.2.1 Peridynamic formulation

The equation of motion in the classical continuum mechanics is derived from the principle

of linear momentum that the rate of change of linear momentum equals the force applied on
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the body as [118]

ρü = ∇ · σ + b, (3.1)

where ρ is the density, ü is the acceleration vector, σ is the stress matrix, and b is the body

force vector. The formulation requires a unique spatial derivative which, however, does not

exist along discontinuities. In contrast, peridynamics uses integration to compute the force

on a material point, and the equation of motion of the material point at x in the reference

configuration at time t, as shown in Figure 1.1, is written as [135]

ρü(x, t) =

∫

Hx

f(η, ξ)dV
x
′ + b(x, t), (3.2)

where f is a pairwise force vector that the material point at x′ exerts on the material point

at x, and Hx is a neighborhood of the material point at x.
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Figure 3.1: (a) Relationships among relative position vector and the relative displacement
vector within a peridynamic horizon. (b) Pairwise force vector.

The relative position vector in the reference configuration shown in Figure 3.1 is expressed
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as [155]

ξ = x′ − x, (3.3)

and the relative displacement vector at time t is written as

η = u(x′, t)− u(x, t). (3.4)

For each material point, a scalar δ, called the horizon, is assumed to exist to determine

the interacting spatial range between the material point at x and the material point at x′

such that

f(η, ξ) = 0 ∀η, if ‖ξ‖ > δ. (3.5)

The pairwise force vector f has the direction of η + ξ, which connects the material point at

x and the material point at x′ in the deformed body, as

f(η, ξ) = f(η, ξ)
η + ξ

‖η + ξ‖ , (3.6)

where f is a scalar-valued pairwise force function, and ‖·‖ is the Euclidean norm. The force

vector f has following properties [153]: The first property is

f(−η,−ξ) = −f(η, ξ) ∀η, ξ, (3.7)

that describes the balance of linear momentum. The other property

(η + ξ)× f(η, ξ) = 0 (3.8)
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arises from the balance of angular momentum. It should be noted that the balance of angular

momentum is satisfied by the sum of force couples which produces zero moment [156]. For

the material point at x′ within the horizon of the material point at x, the scalar-valued

pairwise force function is expressed as

f(η, ξ) = c× s(t,η, ξ), (3.9)

where c is the micromodulus, and s is the bond stretch which possesses a similar concept of

the strain in elasticity. The bond stretch s is defined as

s(t,η, ξ) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖ , (3.10)

where ‖ξ‖ is the original bond length in the reference coordinate, and ‖η+ ξ‖ is the current

bond length. If the stretch s = 0, then there is no pairwise force f between material points.

To evaluate the interactive forces among material points and to solve peridynamic equa-

tion of motion, the material domain is discretized with a number of nodes as shown in

Figure 3.2. The distance between two adjacent nodes is ∆x in x−, y−, and z−directions.

All nodes have the same volume (∆x)3.

In order to consider the volume reduction of a node which has an intersection with the

horizon boundary as illustrated in Figure 3.3, a volume reduction scheme is introduced as

[135]

VJ (‖ξ‖) =







































(

δ−‖ξ‖
2rj

+ 1
2

)

VJ if (δ − rj) ≤ ‖ξ‖ ≤ δ

VJ if ‖ξ‖ ≤ (δ − rj)

0 otherwise

, (3.11)
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∆x

I

J

δ

∆x

Figure 3.2: Discretized domain for computation.

where (δ−rj) is the distance from which the volume is reduced, and rj is chosen to be half of

the grid spacing ∆x in numerical implementations. Figure 3.4 illustrates the volume change

of the node J as the distance between the node I and the node J increases.

δ

−

rj

rj

...

VJ

δ

V I

Figure 3.3: Volume calculation scheme for discretized peridynamics. The volume is reduced
on the boundary of a horizon.
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Figure 3.4: Volumetric ratio in a horizon. The ratio decreases to 1/2 at the border of a
horizon [135].

3.2.2 Micromodulus of elastic materials

A peridynamic material is considered to be microelastic if the bond force is defined as

[153, 189]

f(η, ξ) =
∂w

∂η
(η, ξ) ∀η, ξ, (3.12)

where w is the micropotential. Setting the strain energies of peridynamics and classical

linear elasticity identical, the constant micromodulus c̃1 for one-dimensional peridynamics

is obtained as [20]

c̃1 =
2E

Aδ2
, (3.13)

where A is the cross-sectional area, and c̃3 for three-dimensional models is [49, 50]

c̃3 =
18k

πδ4
, (3.14)

20



where k is the material bulk modulus. In the derivation, the Poisson ratio ν is a fixed value

of 1/4.

3.2.2.1 One-dimensional model

Consider a bar subjected to a uniaxial tension in the longitudinal direction as illustrated in

Figure 3.5. The distance between nearest nodes is ∆x, and each node has a constant volume

(∆x)3. The bonds can be considered as springs for elastic materials. Let L be the set of

bonds passing through or ending at the cross section AI of a node from the positive side.

The total force per unit volume acting through the cross section of the node I that has the

horizon δ = 2∆x is written as

fLV (xI) =
NL
∑

J=1

f(η, ξ)VJ

= fVJ +
1

2
fVJ +

1

2
fVJ = 2c1sVJ ,

(3.15)

where NL is the number of bonds in the set L. The force contribution is reduced to 50% if

the distance between two interacting nodes is equal to the horizon by applying the volume

reduction scheme in Equation (3.11).

The resultant force through the cross section of the node I is given by

F = 2c1sVJVI , (3.16)

and the peridynamic stress σx at the node I is calculated as

σx = 2c1sVJVI/AI = 2c1s∆x
4. (3.17)
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xI
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Figure 3.5: Pairwise forces acting through a cross section of a node for δ = 2∆x in a one-
dimensional domain. Each node, represented by a sphere, has a volume of (∆x)3.

By applying Hooke’s law, the corresponding peridynamic Young’s modulus Epd in one-

dimensional peridynamic models can be obtained in terms of the peridynamic stress and the

bond stretch as

Epd =
σx
s

= 2c1∆x
4. (3.18)

Setting the peridynamic Young’s modulus Epd equal to the Young’s modulus E of the

isotropic material, the micromodulus c1 for one-dimensional peridynamic models is obtained

as

c1 =
E

2∆x4
. (3.19)

The micromodulus c1 for different horizons in one-dimensional models are listed in Ta-

ble 3.1. We designate c as numerical micromodulus since the number of bonds passing

through the cross-sectional area of a node needs to be calculated numerically for different

horizons. Compared with the one-dimensional micromodulus given in Equation (3.13) which

is obtained from the elastic energy density in the classical theory, it can be shown that the

one-dimensional analytical micromodulus yields the numerical micromoduli summarized in
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Table 3.1 if j∆x (j = 2, 3, 4 and 5) is substituted to δ, and (∆x)2 is substituted to A in

Equation (3.13).

Horizon δ Micromodulus c1 (N/m6)

2∆x E
2∆x4

3∆x 2E
9∆x4

4∆x E
8∆x4

5∆x 2E
25∆x4

Table 3.1: Micromodulus c1 in one-dimensional domain.

3.2.2.2 Three-dimensional model

In the three-dimensional domain, an elastic body is subjected to the external force such that

the bond stretch is a constant value s in the domain. Let L be the set of bonds passing

through or ending at the cross section AI of a node from the positive side as shown in

Figure 3.6. The horizons of 2∆x, 3∆x, 4∆x, and 5∆x are selected since the horizon smaller

than 1∆x would lead to no peridynamic bonds within the horizon, and horizons larger than

5∆x will make the computation expensive. On the other hand, if δ = 1∆x, the peridynamic

model reduces to a truss-type system, in which each node is only connected to its nearest

neighbors. Figure 3.7 represents the number of bonds in the set L for different horizons.

The number of bonds is 11 for the horizon δ = 2∆x, and it increases to 631 for the horizon

δ = 5∆x.

The projection of the pairwise force f in x-direction is expressed as

fx = f
|xJ − xI |

‖ξ‖ , (3.20)

where f = c3s is the magnitude of the pairwise force between node I and node J , c3 is the
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δ

xI
n

AI

Figure 3.6: Pairwise forces acting through a cross section of a node for δ = 2∆x in a three-
dimensional domain. Each node, represented by a sphere, has a volume of (∆x)3.

micromodulus for the three-dimensional model, and |xJ − xI | is the distance between two

nodes in the x-coordinate. It should be noted that the bond force is reduced to 1/2 if it

passes through the edge of the cross section, and is reduced to 1/4 if it passes through the

corner of the cross section since the portion of the forces within the domain reduce by 50%

and 75%, respectively. Considering all nodes have the same volume (∆x)3, the peridynamic

stress σx on the cross section of the nodes I is given by

σx =
1

AI

NL
∑

J=1

(fxVJ )VI , (3.21)

where NL is the number of bonds in the set L, and the cross-sectional area AI = ∆x2 in the
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Figure 3.7: Number of bonds acting through a cross section of a node in a three-dimensional
domain.

uniformly discretized grid. Since the elastic body is subjected to the isotropic expansion,

the stresses in y− and z−directions are identical to the x−directional stress σx, expressed

as σy = σz = σx. By applying Hooke’s law of linear elasticity, the peridynamic Young’s

modulus Epd can be obtained as

Epd =
σx
s

− ν(σy + σz)

s
, (3.22)

where Poisson ratio ν = 1/4. By substituting Equations (3.20) and (3.21) to Equation (3.22)

and setting the peridynamic Young’s modulus Epd in Equation (3.22) equal to the Young’s

modulus of the material E, the micromodulus c3 can be calculated. For example, the mi-

cromodulus for the horizon δ = 2∆x is

c3 = 0.302942
E

(∆x)4
, (3.23)
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which has dimensions of force per unit volume squared. The micromoduli c3 for horizons

ranging from 2∆x to 5∆x are summarized in Table 3.2. Figure 3.8 compares the micromod-

uli c3 and c̃3 for an elastic material which has Young’s modulus E = 70 GPa and Poisson

ratio ν = 1/4. The numerically determined micromoduli c3 for discretized peridynamics are

larger than the analytical micromoduli c̃3. For the horizon δ = 2∆x, numerically determined

micromodulus c3 is 1.27 times larger than the micromodulus c̃3. As the horizon to grid spac-

ing ratio increases, the numerical micromodulus c3 converges to the analytical micromodulus

c̃3.

Horizon δ Micromodulus c3 (N/m6)

2∆x 0.302942 E
∆x4

3∆x 0.052385 E
∆x4

4∆x 0.017290 E
∆x4

5∆x 0.006819 E
∆x4

Table 3.2: Micromodulus c3 in three-dimensional domain.
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Figure 3.8: Micromodulus for different horizons (E = 70 GPa, and ν = 1/4).

26



3.2.3 Pairwise compensation scheme

For an elastic body which has Poisson ratio not equal to 1/4, we introduce a compensation

force f̂ for each node subjected to the pairwise force f due to the stretch of peridynamic bonds.

A set of compensation forces f̂ is superposed in the transverse directions perpendicular to

the direction of the force f , resulting in additional transverse deformations which simulate

the effect of Poisson ratios other than 1/4. It should be noted that two pairs of compensation

forces in y− and z−directions are added to nodes in three-dimensional domains.

If a node is enclosed completely in an elastic body, the added compensation forces f̂ are

balanced, and the resultant nodal force becomes zero. On the other hand, there exists a

force added to the nodes located at the boundary. Therefore, the direction of the resultant

force is towards inside of the body if Poisson ratio is larger than 1/4, as shown in Figure 3.9.

x

x

x

x

f̂

f̂
−f

f

’

’

f −f

−̂f

Figure 3.9: Pairwise compensation scheme.

Consider a three-dimensional rectangular bar, which has Young’s modulus E and Poisson

ratio ν. The bar is subjected to a uniaxial tension as shown in Figure 3.10. The compensation
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forces acting on the lateral surfaces are superposed on the nodes at boundaries as shown in

Figure 3.11. The peridynamic Young’s modulus Êpd needs to be determined such that

the strains in Figure 3.11 are identical to the strains in the configuration of Figure 3.10.

For Poisson ratio larger than 1/4, the modified peridynamic Young’s modulus Êpd should

be larger than Epd to keep the strain identical. The longitudinal strain in x−direction in

Figure 3.11 equals the strain in Figure 3.10, which is written as

σx
Epd

=
σx

Êpd
− 1

4

(

σ̂y

Êpd
+

σ̂z

Êpd

)

, (3.24)

where σ̂y and σ̂z are superposed stresses from the compensation forces for ν 6= 1/4. The

strains in y− and z−directions also need to be identical to the strains in the original peridy-

namic model shown in Figure 3.10. Therefore, the equilibrium of the strain εy is expressed

as

−ν σx
Epd

=
σ̂y

Êpd
− 1

4

(

σx

Êpd
+

σ̂z

Êpd

)

. (3.25)

Since the compensation forces are identical in all lateral directions perpendicular to the

pairwise force f , the lateral stresses are equal as

σ̂y = σ̂z. (3.26)

Solving Equations (3.24) to (3.26), the transverse lateral stresses in y− and z−directions are

obtained as

σ̂y =
1− 4ν

3− 2ν
σx, σ̂z =

1− 4ν

3− 2ν
σx. (3.27)

Substituting Equation (3.27) to Equation (3.24), the modified peridynamic Young’s modulus
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can be derived as

Êpd =
5

6− 4ν
Epd. (3.28)

Hence, the micromodulus ĉ3 corresponding to Êpd should be modified as

ĉ3 =
5

6− 4ν
c3, (3.29)

where c3 is the numerically determined micromodulus summarized in Table 3.2.

x

y

z

E
pd

 ,  νσx σx

Figure 3.10: Three-dimensional bar subjected to a tension.

x

y

z

σE
pd

 ,  ν=1/4

σ

σ̂

^

^y

xσx

z

Figure 3.11: Three-dimensional bar subjected to a tension. Lateral forces are added to take
account of ν 6= 1

4 .

29



3.3 Case studies

3.3.1 Numerical implementation

The material region is discretized isotropically in all the directions in space such that the

distance between two adjacent nodes is ∆x in x−, y−, and z−directions as shown in Fig-

ure 3.2. All nodes have the same volume (∆x)3. The equation of motion in Equation (3.2)

is rewritten as

ρütI =

NHI
∑

J=1

f(ηt, ξ)VJ + btI , (3.30)

where ütI is the acceleration of the node I at time t, f(ηt, ξ) is the pairwise force, NHI is

the total number of nodes within the horizon of the node I, and btI is the body force at

time t. The velocity-Verlet scheme [51] is used for the time integration to update positions,

velocities and accelerations as

x(t+∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2, (3.31)

v(t+∆t/2) = v(t) +
1

2
a(t)∆t, (3.32)

a(t) =
1

ρ
fV (t), (3.33)

v(t+∆t) = v(t+∆t/2) +
1

2
a(t+∆t)∆t, (3.34)

where x is the position vector, v is the velocity vector, a is the acceleration vector, and fV

is the scaled force vector which is defined as

fV =

NHI
∑

J=1

f(t)VJ . (3.35)
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The acceleration is calculated by dividing the scaled pairwise force fV , which has the unit

of force per volume, by the density ρ.

For the numerical simulation, peridynamics is implemented in the framework of LAMMPS

[135]. The research code is compiled and run in the parallel mode in a workstation which

has dual quad-core 64 bit CPU’s at 2 GHz, 16 GB memory and a 2 TB hard disk drive.

3.3.2 Comparison of peridynamics and analytical solution(ν = 1
4)

3.3.2.1 One-dimensional bar

Consider a one-dimensional bar subjected to a uniaxial tension. The length of the bar is

10 mm, and the size of the horizon is set to 1.0 mm. The grid spacing ∆x is 0.5 mm, which

corresponds to δ/∆x = 2. Young’s modulus E is 70 GPa, and the density ρ = 2700 kg/m3.

The magnitude of nodal force applied to the nodes at both ends is 87.5 N, and the force is

gradually increased for 1000 time steps, setting the time step dt = 5×10−8 sec. The classical

(local) stress σ = 87.5 N/(0.0005 m)2 = 350 MPa, and the classical (local) strain ε = 0.005.

Substituting Young’s modulus and the grid spacing to Equation (3.19), the micromodulus is

calculated as c1 = 5.6× 1023 N/m6.

Figure 3.12 shows the strain distribution from the middle (x=5.0 mm) to the right end of

the bar (x=10.0 mm). The strain in the middle of the bar (x=5.0 mm) is 0.00498, and the

strain increases to 0.00516 at the end of the bar. The strain distribution is very close to the

classical (local) elasticity solution. However, the boundary effect exists near the end of the

one-dimensional bar. The total force per unit volume acting through the cross section of the

bar fLV = 6.98 × 1011 N/m3. The resultant force obtained by multiplying the volume VI is

87.2 N. The peridynamic stress on the cross section is calculated as σ = 348.8 MPa. Dividing

31



the stress by the measured strain, the resultant Young’s modulus through back-calculation

is 70.043 GPa. The peridynamic results show good agreement in the strain and the resultant

Young’s modulus.
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0.008

0.010

 5  6  7  8  9  10

ε x

x (mm)

εx
analytical solution

Figure 3.12: Strain distribution of the one-dimensional bar in x-direction.

3.3.2.2 Three-dimensional bar

We examine material responses of a three-dimensional rectangular bar of dimensions 10 mm

×7 mm ×7 mm with horizons of 1.0 mm, 1.5 mm, 2.0 mm and 2.5 mm. The bar is discretized

with nodes distributed uniformly in a fixed 21× 15× 15 grid as shown in Figure 3.13. The

grid spacing ∆x is 0.5 mm, which leads the horizon to grid spacing ratios δ/∆x to be 2, 3, 4,

and 5. Young’s modulus E of the elastic material is 70 GPa, Poisson ratio ν = 0.25, and the

density ρ = 2700 kg/m3. Nodes at both ends of the bar are subjected to a tensile loading

gradually increasing up to 87.5 N. The corresponding classical (local) stress σ = 350 MPa,

and the analytical (local) strain εx = 0.005.

Figures 3.14(a) and (b) show the comparison of longitudinal strain εx along the center

32



Figure 3.13: Three-dimensional bar discretized by 21× 15× 15 nodes.

line of the bar using c3 and c̃3 in the numerical studies, respectively. With c3, as shown in

Figure 3.14(a), the longitudinal strain for δ = 2∆x is close to the classical (local) solution

εx = 0.005. The strain εx = 0.00486 in the middle of the bar (x = 5.0 mm), and the

strain εx = 0.00492 at the right end (x = 10.0 mm). As shown in Figure 3.14(b), the

strain obtained using the analytical micromodulus c̃3 in the simulation is larger than the

classical elasticity solution, and the increase of the horizon lowers the strain in all the domain

except the boundary. Therefore, the corresponding resultant Young’s modulus through back-

calculation is smaller than the Young’s modulus E of the material. The strain increases in

the three layers of the nodes close to the ends.
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Figure 3.14: Strain distribution along the x-axis in the three-dimensional bar. (a) Numerical
micromodulus c3 given in Table 3.2 is used for each horizon and (b) analytical micromodulus
c̃3 given in Equation (3.14) is used. The classical (local) elasticity solution of strain εx =
0.005.
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The strain and stress distributions on the cross section at x = 5.0 mm are shown in

Figures 3.15(a) and (b), respectively for the horizon δ = 2∆x. The numerical micromodulus

is utilized in the simulation. The strain is 0.00486 at the center of the cross section at x =

5.0 mm, and the strain is 0.00494 at the corner. The average of the strain over the cross

section at x = 5.0 mm is 0.00491. The total force per volume acting through the cross

section of the bar fLV = 1.53 × 1014 N/m3, and the peridynamic stress σx = 339.9 MPa.

The resultant Young’s modulus calculated by dividing the peridynamic stress by the strain

is 69.27 GPa in the middle of the bar (x = 5.0 mm). For the horizon δ = 2∆x, the average

strain at the end of the bar (x = 10.0 mm) is 0.00503, and the resultant Young’s modulus

through back-calculation is 69.58 GPa. In y−direction, the strain εy in the middle of the

bar is -0.00121, and the resultant Poisson ratio is ν =0.249. Figure 3.16 shows Poisson ratio

obtained from the longitudinal and transverse strains from the middle to the right end of

the bar.
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Figure 3.15: (a) Strain- and (b) stress-distributions on the cross section at x = 5.0 mm.
The classical (local) elasticity solution of strain εx = 0.005 and stress σx = 350 MPa. The
horizon δ = 2∆x, and the numerical micromodulus c3 is utilized in the simulation.

Figure 3.17 shows the strain distributions at the end of the bar (x = 10.0 mm) for

35



0.000

0.100

0.200

0.300

0.400

0.500

 5  6  7  8  9  10

ν

x (mm)

Figure 3.16: Poisson ratio along the three-dimensional peridynamic bar as shown in Fig-
ure 3.13. The given Poisson ratio of the material is ν = 1

4 . The horizon δ = 2∆x, and the
numerical micromodulus c3 is utilized in the simulation.

different horizons using the numerical micromodulus summarized in Table 3.2. As the horizon

increases, the strain also increases at the end of the bar. For the horizon δ = 2∆x, the strain

at the center of the cross section at the end is 0.00492, the strain is 0.00540 at the corner,

and the average strain over the cross section is 0.00503 as shown in Figure 3.17(a). For the

horizon δ = 5∆x, the strain at the center of the cross section at x = 10.0 mm is 0.00732,

and the strain increases significantly to 0.01580 at corners as shown in Figure 3.17(d). The

average strain over the cross section at the end of the bar for the horizon δ = 5∆x is 0.00893,

which is much larger than the classical (local) solution εx = 0.005.

Compared with the classical (local) elasticity solution εx = 0.005, the boundary effect

increases as the horizon increases since the larger horizon causes larger loss of bond contri-

bution near the ends of the bar where tractions are applied and near the lateral surfaces.

Consequently, the bond stretch s between those nodes close to the boundaries gets larger

due to the smaller fraction of the contributing bonds among the total number of bonds.
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Figure 3.17: Strain distribution at the end surface of the bar for different horizons using the
numerical micromodulus: (a) δ = 2∆x, (b) δ = 3∆x, (c) δ = 4∆x, and (d) δ = 5∆x. The
classical (local) elasticity solution of strain εx = 0.005.

It has been observed that the peridynamic solution converges to the classical (local)

elasticity solution as the horizon decreases in one-dimensional models [161, 20]. Similarly,

for the selected range of the horizons (2∆ to 5∆) of three-dimensional models, material

responses, using the horizon δ = 2∆x and the corresponding numerical micromodulus c3,

are very close to classical (local) solutions. However, the use of the micromodulus c̃3 = 18k
πδ4

yields larger responses in strains since the analytical micromodulus c̃3 is smaller than c3,

summarized in Table 3.2.
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It should be noted that a different horizon may be chosen for different types of problems

such as large-strain plastic response and fracture phenomena. For example, in crack branch-

ing problems, the horizon δ = 4∆x is proven to be effective [70, 69] since adequate number

of nodes inside the horizon are required for the development of crack path. On the other

hand, larger error from the use of larger horizons at the vicinity of the boundaries might

be alleviated by normalizing forces or adding correction factors as proposed by researchers

[115, 90].
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3.3.3 Comparison of modified peridynamics and analytical solu-

tion (ν 6= 1
4)

We introduce the concept of compensation force f̂ for each pairwise force f to extend the

discretized bond-based peridynamics to simulate materials that have Poisson ratios ν 6= 1
4 .

Consider a rectangular bar of dimensions 10 mm×7 mm×7 mm and choose the horizon

δ = 1.0 mm. The bar is discretized with the grid spacing ∆x = 0.5 mm so that the

peridynamic solutions might be close to the classical (local) elasticity solutions. Each node

on the ends of the bar is subjected to a tension of 87.5 N in the longitudinal direction. The

density ρ = 2700 kg/m3, Young’s modulus E = 70 GPa, and Poisson ratio ν = 0.3. The

applied traction on the ends is σ = 350 MPa, and the corresponding classical, local, elastic

strain εx is 0.005.

For each pairwise bond force on a node, two pairs of compensation forces are applied in

the perpendicular directions of the force vector f as shown in Figure 3.9. The compensation

forces are self-balanced for the nodes inside the body. Therefore, the resultant compensation

forces vanish. However, for the nodes on the boundary, the forces are superposed to the

surface normal direction.

Additional tractions are applied on all the lateral surfaces to simulate Poisson effect

as shown in Figure 3.11. The applied additional traction on lateral surfaces is given by

Equation (3.27). Substituting the target Poisson ratio ν = 0.3 and traction σx = 350 MPa

to Equation (3.27), we obtain σ̂y = -29.2 MPa. After multiplying the cross-sectional area

(∆x)2, the forces applied on each node on the lateral boundary surfaces are −7.289 N in y−

and z−directions.

Setting δ = 2∆x and substituting c3 = 0.302942 E/∆x4 given in Table 3.2 to Equa-
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tion (3.29), the micromodulus is modified to ĉ3 = 3.5343 × 1023 N/m6. Figure 3.18 shows

the strain and the resultant Poisson ratio calculated from the measured longitudinal and

transverse strains along the center line of the bar. The strain εx at at the center of the cross

section at x = 5.0 mm is 0.00502, and the average strain over the cross section is 0.00509.

The sum of forces acting through the cross section of the bar is 19842 N, and the corre-

sponding peridynamic stress σx on the cross section of the bar is calculated by dividing the

sum of forces by the cross-sectional area of the bar. The corresponding peridynamic stress

is 352.7 MPa, and the resultant Young’s modulus is 70.26 GPa through back-calculation.

Figure 3.18(b) shows the back-calculated Poisson ratio along the bar. Compared with

the Poisson ratio of the material ν = 0.3, the numerical results show good agreement. The

boundary effect is also observed in the distribution of Poisson ratio. Poisson ratio ν decreases

close to the end of the bar since the longitudinal strain increases at locations close to the

end of the bar.
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Figure 3.18: (a) Strain εx and (b) Poisson ratio ν along the bar by the modified peridynamic
formulation. The classical (local) elasticity solution of strain εx = 0.005, and the Poisson ra-
tio ν of the material is 0.3. The horizon δ = 2∆x, and the modified numerical micromodulus
ĉ3 for pairwise compensation scheme is utilized in the simulation.
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3.4 Summary

The one-dimensional micromodulus c1 and the three-dimensional micromodulus c3 are de-

rived for discretized peridynamic models. The micromoduli are calculated by introducing the

peridynamic stress corresponding to the classical (local) stress, calculating the corresponding

peridynamic Young’s modulus, and equilibrating the peridynamic Young’s modulus with the

conventional Young’s modulus. For three-dimensional models, the numerically determined

micromodulus c3 is larger than the analytically obtained micromodulus c̃3. The micromoduli

c3 and c̃3 converge as the horizon to grid spacing ratio δ/∆x increases.

Material responses of peridynamic bars with numerical micromoduli and conventional

analytical micromoduli are investigated. Compared with classical (local) elasticity solutions,

the peridynamic results of strain and the resultant Young’s modulus by back-calculation

show good agreement for the horizon δ = 2∆x using the numerical micromodulus. The

corresponding peridynamic solutions of strain using the analytical micromodulus are larger

than the classical (local) elasticity solutions. The errors due to the boundary effect are

almost negligible for the horizon δ = 2∆x, but increase in the results of strain as the horizon

δ increases. Therefore, the horizon δ = 2∆x can be recommended in the linear elastic regime

although larger horizons might be chosen for fracture problems [70, 69]. In the numerical

implementation, a horizon might be determined first, and then the grid spacing can be

selected considering the range of material behaviors.

To model materials that have Poisson ratios other than 1/4, a force compensation scheme

adding additional forces on each pairwise force between nodes is proposed for discretized peri-

dynamics. The numerical results match classical (local) solutions in the material responses

including the stress, the strain, back-calculated Young’s modulus, and Poisson ratio.
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Chapter4

Discretized Peridynamics for Brittle and
Ductile Solids

4.1 Introduction

Compared with macroscopic modeling such as FEA, three-dimensional peridynamic analyses

of large simulations are computationally intensive due to the nonlocal property of peridy-

namics. Macek et al. [115] compared computer wall-clock run times between the EMU

and FEA implementations of peridynamics. The FEA implementation is much faster than

the direct meshless method. Askari et al. [8] applied peridynamics to model material and

structural failures using the Columbia Supercomputer at NASA Advanced Supercomputing

Division.

In this chapter, a peridynamics code for three-dimensional simulations is implemented

using an NVIDIA Tesla C1060 GPU for parallel computing. A significant speedup over the

serial calculation in a CPU is achieved, varying with the number of discretization nodes in

peridynamic models. The effects of different horizons and grid sizes are investigated for a

brittle material. The stresses and strains of FEA and peridynamic solutions, respectively,

are compared for a ductile material. A multiscale procedure is proposed to bridge plastic

simulations at different scales. The results after applying the proposed procedure show good

agreements between FEA and peridynamics.
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4.2 Theory

The peridynamic formulations are introduced in Section 3.2, where elastic peridynamic mod-

els are examined. In this chapter, brittle and ductile materials are going to be investigated.

Figure 4.1(a) shows a brittle material model defined for peridynamics. In the elastic regime,

the bond force is a scalar-function of the bond stretch s. In order to simulate damage in

peridynamic models, a critical stretch for bond failure is introduced as s0. Once a bond

fails, it can not sustain force any more, which makes the peridynamic model hysteretic.

Figure 4.1(b) defines a ductile material model for peridynamics. A bond yields at the yield

limit sy, and shows perfect plasticity upto s0.
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Figure 4.1: (a) Bond force as a function of bond stretch in a brittle material model. (b)
Bond force as a function of bond stretch in a ductile material model.

For microbrittle materials, the bond force, which is a scalar function of the bond stretch

s, is expressed as

f(η, ξ) = c× s(t,η, ξ)× µ(t,η, ξ), (4.1)

where c is the micromodulus summarized in Tables 3.1 and 3.2 for one- and three-dimensional

models respectively, and µ is the scalar function to determine the bond failure. The scalar
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function µ is related with the critical bond stretch as

µ(t,η, ξ) =











1 if s(t′,η, ξ) < s0 for all 0 6 t′ 6 t,

0 otherwise.

(4.2)

The critical bond stretch s0 for microbrittle material is obtained by setting the work required

to break all the bonds per unit fracture area identical to the energy release rate Gf [155]:

s0 =

√

5Gf
9kδ

. (4.3)

By considering broken bonds, damage dependencies can be introduced into the critical bond

stretch [155, 69].

4.3 Computation

4.3.1 Numerical implementation

To calculate the bond forces on peridynamic nodes after discretization, a neighbor list is

created for each node in the reference configuration. In the subsequent calculations, the

neighbor list is referred to determine the total bond forces acting on a node. The velocity-

Verlet scheme [51] is used for the time integration to update displacements and velocities.

The procedures of the velocity-Verlet algorithm are explained in Section 3.3.1.

4.3.2 Implementing Peridynamics in GPU

GPUs, originally developed for the acceleration for graphics rendering, have a large number of

transistors devoted to data processing rather than data caching and flow control [131]. This
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advantage has been taken for numerical computations. GPUs have evolved for many data-

parallel and computing-intensive programs, and a variety of compilers have been developed.

Researchers have used GPUs for highly parallel computation. Harris [73] described a method

to simulate stable fluid using a GPU. Kruger et al. [101] introduced a framework for solving

sets of algebraic equations in GPUs. Manavski et al. [116] used GPUs as an accelerator

for Smith-Waterman sequence alignment. Phillips et al. [138] implemented a multi-block

turbulent flow solver in GPU processors.

We use a GPU, NVIDIA Tesla C1060, that has 4 GB memory and 30 multiprocessors,

and each multiprocessor has 8 cores. Therefore, 240 cores are available in total. Each core

can execute a sequential thread, and the clock rate is 1,296 MHz. Figure 4.2 shows the

block diagram of a GPU accelerator [186]. The GPU has its own memory which is called the

device memory, and the accelerator communicates with CPU using IO commands and DMA

memory transfer [186]. The data bandwidth is 512-bits wide. To port the peridynamics code

to a GPU platform, PGI Fortran Accelerator Programming Model [143, 142], a high-level

implicit programming model for the general purpose computation on GPUs, is utilized. A

set of compiler directives designed for GPUs is available to specify regions of the code to be

offloaded from the CPU to the GPU. The code implemented with accelerator directives is

portable even without a GPU unit since the directives are considered as comments by other

Fortran compilers.

A benchmark problem for multiplication of a matrix An×n and a vector bn×1 is written

with directives as:

!$acc region

do k=1,1000,1

do i =1,n
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Figure 4.2: NVIDIA Tesla Block Diagram [186].

r(i)=0

do j = 1,n

r(i)=r(i)+A(i,j)*b(j)

enddo

enddo

enddo

!$acc end region

In the fixed format, PGI Accelerator directives are specified with the sentinel !$acc. The

directive !$acc region defines the region to be compiled for execution in the GPU [142].

For benchmarking, the multiplication is repeated one thousand times, and the summation

is stored in a vector r. Figure 4.3 compares the wall-clock times by serial calculation in

the CPU and by the parallelized calculation in the GPU. For the matrix of size n smaller

than 5,000, the GPU calculation is merely a few times faster than the serial calculation.
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However, as the size of the matrix increases, the speedup of the GPU calculation over the

serial calculation increases significantly.
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Figure 4.3: A benchmark problem of matrix multiplication.

For the effective parallelization in GPUs, all the necessary information in the main mem-

ory is required to be transferred to the GPU memory for the calculation. We use the data

clauses to control the transfer of selected data between the CPU and the GPU, which reduces

the system overhead in copying data. The peridynamic model is initialized in the CPU, and

then variables and arrays are copied to the GPU for the calculation within the data region

using directives as

!$acc data region copyin(list), local(list)

!$acc updateout(list)

!$acc end data region

The clause copyin(list) is used to copy the listed variables and arrays from the CPU to the

GPU memory, and the clause local(list) declares local variables and arrays to be allocated

48



only in the GPU memory [142]. Calculation results in the GPU are copied to the main

memory once per multiple calculation steps using the directive !$acc updateout(list).

It should be noted that copying the whole array is faster than copying the noncontiguous

subarrays [186].

In the subroutine to calculate bond forces on each node in a discretized peridynamic

model, the conventional algorithm includes two dependent loops as shown in Table 4.1,

which is referred to as Algorithm 1. However, the loop dependency disables optimal paral-

lelization on GPUs. Thus the nested loops are separated into two independent loops as shown

in Table 4.2, which is referred to as Algorithm 2. Peridynamics codes using Algorithm 1 and

Algorithm 2, respectively, are compiled with PGFORTRAN v10.3 for the serial calculation

in the CPU. We compared the wall-clock time to calculate bond forces in a three-dimensional

peridynamic model, which has 4,725 nodes with the horizon δ = 2∆x. As summarized in

Table 4.3, it takes 13,113 milliseconds to complete 1 time-step using Algorithm 1 for bond

force calculations, and Algorithm 2 spends 21,080 milliseconds. By explicitly setting the

memory considering the maximum number of neighbors in the peridynamic model, Algo-

rithm 2 consumes more memory and time than Algorithm 1 if no GPU is utilized. Overall,

Algorithm 1 is 1.61 times faster than Algorithm 2 in the CPU.

do i = 1, all nodes

M = number of neighbors of the node i

{Calculate bond forces on the node i}

do j = 1, M

f(i) = f(i) + c*s

end do

end do

Table 4.1: Dependent loops (Algorithm 1).

For the comparison of the performance by the GPU enabled calculation using Algorithm
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N = all nodes

M = maximum number of neighbors of all nodes

{Calculate each bond force}

do i = 1, N*M

f_bond(i)=c*s

end do

{Sort bond forces to each node}

do j = 1, all nodes

f(j) = summation of f_bond sorted on the node j

end do

Table 4.2: Independent loops (Algorithm 2).

2 and the serial calculation executed in the CPU using Algorithm 1, three-dimensional peri-

dynamic simulations are conducted, and the wall-clock times are summarized in Table 4.4.

With the grid size ∆x = 0.5 mm, the first peridynamic model consists of 11× 8× 8 nodes,

the second model consists of 21×15×15 nodes, and the third model consists of 41×29×29

nodes. Young’s modulus E is 70 GPa, Poisson ratio is 0.25, and the critical bond stretch is

s0 = 0.004. The time-step is set to dt = 1×10−8 s. Each simulation is carried out for 500,000

time-steps. Figure 4.4(a) shows the wall-clock time to run the peridynamic models. For the

first peridynamic model which has 704 nodes, the GPU calculation takes 3.5 minutes while

the serial calculation spends 19.5 minutes in the CPU. The GPU calculation is 5.6 times

faster than the serial calculation of the peridynamics code. For the second peridynamic

model which has 4,725 nodes, the GPU calculation spends 10.5 minutes while the serial cal-

culation spends 144.0 minutes. For the third peridynamic model which has 34,481 nodes, the

GPU calculation spends 65.7 minutes while the serial calculation uses 1294.1 minutes. The

GPU calculation is 19.7 times faster than the serial calculation. In general, as the number

of nodes in a peridynamic model increases, the speedup of the GPU enabled version of the

peridynamics code over the serial version in the CPU increases as shown in Figure 4.4(b).
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Algorithm 4.1 Algorithm 4.2

Wall-clock time (millisecond) 13,113 21,080

Table 4.3: The wall-clock time to calculate bond forces for one time-step using a node in the
CPU. The three-dimensional peridynamic model has 4,725 nodes, the horizon δ = 2∆x and
∆x = 0.5 mm.

Number of nodes Time (minute) by the GPU Time (minute) by the CPU

11×8×8 3.5 19.5
21×15×15 10.5 144.0
41×29×29 65.7 1294.1

Table 4.4: The wall-clock time to run peridynamic models for 500,000 time-steps on GPU
and CPU, respectively. Peridynamic models have the horizon δ = 2∆x and ∆x = 0.5 mm.
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Figure 4.4: Comparison between the GPU enabled version of peridynamics code and the
serial version. (a) Wall-clock time and (b) the speedup of the GPU version over the serial
version.
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4.4 Case studies

4.4.1 Brittle material

In the peridynamic framework, a three-dimensional rectangular bar is modeled as shown in

Figure 4.5(a). The dimensions of the peridynamic bar are 10 mm× 7 mm× 7 mm. Boundary

conditions are set by imposing a constant velocity to a region of nodes on both ends of the

bar such that vx = −10 mm/s at the left-end boundary region and vx = 10 mm/s at the

right-end boundary region. For the material, Young’s modulus E is 70 GPa, and Poisson

ratio ν is 0.25. Time-step dt is set to dt = 5×10−8 s. To simulate brittle failure of materials,

the critical stretch s0 for bond failure is set as 0.01.

To study the response of the peridynamic bar for different horizons, the rectangular bar

is uniformly discretized with nodes distributed in a 21 × 15 × 15 grid. The grid size ∆x

is 0.5 mm, and the horizons δ of 2∆x, 3∆x and 4∆x are used in the model. In order to

calculate the cross-sectional stress, the summation of all interaction forces between peridy-

namic nodes passing through the cross section of the bar is projected on the x-axis. Then

the cross-sectional stress is obtained by dividing the resultant force by the sectional area.

The macroscopic engineering strain is measured by dividing the variation of the length by

the original length. Figure 4.6(a) shows the stress σx versus the strain εx on the cross sec-

tion at x = 5.0 mm for different horizons. By calculating the tangent of the stress-strain

curves for the horizon δ = 2∆x in Figure 4.6(a), the back-calculated Young’s modulus E is

70.46 GPa. Compared with the exact value E = 70.00 GPa of the material, the error by

the back-calculated Young’s modulus is 0.66%. For the horizon δ = 3∆x and δ = 4∆x, the

back-calculated Young’s moduli are smaller than the exact value as shown in Figure 4.6(a).
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Figure 4.5: (a) The geometry of a three-dimensional bar and the boundary conditions; (b)
Displacement of the boundary region versus time.

To investigate the effect of grid size, the peridynamic bar is discretized in a 21× 15× 15

grid with a grid size ∆x = 0.50 mm and in a 41×29×29 grid with a grid size ∆x = 0.25 mm,

respectively. Figure 4.6(b) compares the cross-sectional stress σx at x = 5.0 mm for the grid

size ∆x = 0.25 mm and ∆x = 0.50 mm, where the horizon δ is set as 2∆x. As evident

in Figure 4.6(b), the back-calculated Young’s modulus E for the grid size ∆x = 0.25 mm

is very close to the back-calculated Young’s modulus E for the grid size ∆x = 0.50 mm.

Since stresses and strains are not intrinsic variables in the peridynamic theory, the average

bond stretch within the grid width ∆x is calculated for each node as nodal strain. Strain

distributions at times t = 1.0 × 10−3 s, t = 1.6 × 10−3 s and t = 1.8 × 10−3 s denoted by
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I (no bond failure), II (a few bond failure) and III (massive bond failure) in Figure 4.6(b),

respectively, are plotted. As the strain contours demonstrate, strain εx is about 0.005 at

time t = 1.0× 10−3 s as shown in Figure 4.7. At time t = 1.6× 10−3 s, the cross-sectional

stress σx reaches its maximum value, and the strain εx near the boundary regions is larger

than 0.01 as shown in Figure 4.8(b). On the cross section at z = 3.5 mm, those nodes

having the nodal strain εx in the range of 0.007 to 0.010 form diagonal patterns as shown

in Figure 4.8(d). At time t = 1.8 × 10−3 s when the cross-sectional stress σx significantly

decreases due to massive bond failure, nodes having the nodal strain εx over 0.010 form an

elliptical distribution on the cross section at z = 3.5 mm as shown in Figure 4.9(b) and

Figure 4.10(b). On the cross section at x = 5.0 mm, interior nodes have the nodal strain

εx over 0.01, and a failure core is formed on the cross section as shown in Figure 4.9(c) and

Figure 4.10(c).
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Figure 4.6: Stress on the cross section at x = 5.0 mm for (a) different horizon δ with the
grid size ∆x = 0.5 mm and (b) different grid size ∆x with the horizon δ = 2∆x. εx is the
engineering strain imposed by the displacement at both ends of the bar.
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(a) (b)

(c) (d)

Figure 4.7: Strain εx at time t = 1.0× 10−3 s as denoted by I in Figure 4.6(b). The horizon
δ = 2∆x. (a) ∆x = 0.50 mm; (b) ∆x = 0.25 mm; (c) the cross section at z = 3.5 mm,
∆x = 0.50 mm; (d) the cross section at z = 3.5 mm, ∆x = 0.25 mm.
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(a) (b)

(c) (d)

Figure 4.8: Strain εx at time t = 1.6×10−3 s as denoted by II in Figure 4.6(b). The horizon
δ = 2∆x. (a) ∆x = 0.50 mm; (b) ∆x = 0.25 mm; (c) the cross section at z = 3.5 mm,
∆x = 0.50 mm; (d) the cross section at z = 3.5 mm, ∆x = 0.25 mm.
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(a) (b)

(c)

Figure 4.9: Strain εx at time t = 1.8×10−3 s as denoted by III in Figure 4.6(b). The horizon
δ = 2∆x, the grid spacing ∆x = 0.50 mm. (a) bird’s-eye view of bar; (b) the cross section
at z = 3.5 mm; (c) the cross section at x = 5.0 mm.
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(a) (b)

(c)

Figure 4.10: Strain εx at time t = 1.8 × 10−3 s as denoted by III in Figure 4.6(b). The
horizon δ = 2∆x, the grid spacing ∆x = 0.25 mm. (a) bird’s-eye view of bar; (b) the cross
section at z = 3.5 mm; (c) the cross section at x = 5.0 mm.
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4.4.2 Ductile material

We consider a rectangular bar subjected to a stretch by imposing a constant velocity on

nodes located at the boundary regions such that vx = −10 mm/s at the left-end boundary

region and vx = 10 mm/s at the right-end boundary region as shown in Figure 4.5(a). The

dimensions of the bar are 10 mm in length, 7 mm in width, and 7 mm in thickness. The bar

is uniformly discretized with nodes in a 21×15×15 grid, and the horizon δ = 2∆x. Young’s

modulus E is 70 GPa, Poisson ratio ν is 0.25, and the density ρ is 2700 kg/m3. Peridynamic

bonds are assumed to yield at the bond stretch sy = 0.004, and the critical stretch for bonds

to break is set as s0 = 0.02. The calculation time-step is dt = 5× 10−8 s.

The peridynamics results are compared with the results by the finite element analysis

(FEA) using a commercial FEA software, LS-DYNA [112]. In the FEA, the identical bound-

ary conditions to the peridynamic model are imposed, and the time-step dt is automatically

calculated. The material model used in the FEA is identical to the material model in peri-

dynamics: Young’s modulus E is 70 GPa, and Poisson ratio ν is 0.25. The yield stress

σy is 280 MPa obtained by multiplying the yield bond stretch sy = 0.004 and Young’s

modulus. The limit strain is set to be 0.020, and the corresponding plastic strain is 0.016.

Figure 4.11(a) shows the material properties implemented in LS-DYNA.

Figure 4.11(b) compares the average stress on the cross section at x = 5.0 mm by

peridynamics and the finite element analysis. After the yielding, the cross-sectional stress

continues to increase as the boundary displacement ux increases in the peridynamic model

while the FE model shows almost perfect plasticity. The cross-sectional stress demonstrates

a trilinear response in the peridynamics. As shown in Figure 4.11(b), the end of the second

piecewise linear line approximately corresponds to the displacement ux = 0.017 mm, and
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the stress is σx = 420 MPa. For the stress of a node in the peridynamic model, the total

bond forces acting through the cross section of a node are calculated. Figure 4.11(c) shows

the comparison of the stress σx of the element which has a node at the center of the bar

(x = 5.0 mm, y = 3.5 mm and z = 3.5 mm) and the stress σx of the peridynamic node located

at the center of the peridynamic bar. Similar to the average stress on the cross section, the

stress of the peridynamic node at the center of the bar shows a trilinear response while the

stress in the element in the FEA has a bilinear response. It is noticed that the outer bonds of

a node yield earlier than the inner bonds in the peridynamic model, and the stiffness of the

peridynamic model gets closer to the value of the FE model after all the bonds yield, as shown

in Figure 4.11(c). The nodal strains εx at the center of the bar (x = 5.0 mm, y = 3.5 mm and

z = 3.5 mm) obtained by peridynamics and FEA are compared in Figure 4.11(d). The cause

of the differences might be the scales at which the material model is defined. Therefore, to

bridge the different scales, it is proposed to modify the scheme to define the material in the

finite element analysis rather than using the identical material model to peridynamics. The

material response obtained in Figure 4.11(b) is interpolated to a trilinear line as shown in

Figure 4.12(a). The point B is determined from the macroscopic response of the peridynamic

model.

A piecewise linear plastic model available in LS-DYNA [112] is used in the FE simulation

in which the effective stress versus effective plastic strain ε
p
eff curve is defined, where the

effective plastic strain is given as ε
p
eff =

∫ t
0

√

2
3 ε̇
p
ij ε̇

p
ijdt [72]. The plastic strain starts to

increase after the strain reaches the yield strain ε = 0.004. The effective plastic strain can

be approximated by integrating the strain rate after yielding, imposed by displacements at

both ends. By evaluating the integration, the effective plastic strain ε
p
eff corresponding to

σx = 420 MPa is obtained as ε
p
eff = 0.0037 . The average stress on the cross section at
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x = 5.0 mm and the stress at the center point of the section are plotted in Figures 4.12(b)

and (c). The nodal strains at the center of the bar are compared in Figure 4.12(d), and the

results show good agreement. As shown in Figures 4.12(b) to (d), the differences between

the solutions by peridynamics and FEA are reduced substantially. The developed scheme

can bridge the simulations at different scales at which the material model is defined. First, a

mesoscale modeling is performed using peridynamics, and material properties are retrieved

from the macroscopic material response. Then the properties are described as a modified

material model at the macroscale for the FEA. Strains εx by peridynamics and FEA when

the displacement at the boundary ux = 0.025 mm (t = 2.5 × 10−3 s) are compared in

Figure 4.13, and the distribution of strains shows almost identical results.
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Figure 4.11: A comparison between peridynamic and FEA solutions. (a) The material model
used in FEA which is identical to the constitutive for bonds in peridynamics; (b) Stress σx on
the cross section at x = 5.0 mm; (c) Stress σx on an element which has a node at the center
of the bar (x = 5.0 mm, y = 3.5 mm and z = 3.5 mm) and the stress σx on the peridynamic
node at the center of the bar; (d) Strain εx at the center of the bar (x = 5.0 mm, y = 3.5 mm
and z = 3.5 mm). ux is the displacement of the boundary region as shown in Figure 4.5.
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Figure 4.11 (cont’d)
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Figure 4.12: A comparison between peridynamic and FEA solutions. (a) The modified
material model used in FEA to incorporate retrieved macroscopic material properties from
the peridynamic model; (b) Stress σx on the cross section at x = 5.0 mm; (c) Stress σx on an
element which has a node at the center of the bar (x = 5.0 mm, y = 3.5 mm and z = 3.5 mm)
and the stress σx on the peridynamic node at the center of the bar; (d) Strain εx at the
center of the bar (x = 5.0 mm, y = 3.5 mm and z = 3.5 mm). ux is the displacement of the
boundary region as shown in Figure 4.5.
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Figure 4.12 (cont’d)
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(a)

(b)

Figure 4.13: Strain εx when the boundary displacement ux = 0.025 mm. (a) LS-DYNA and
(b) peridynamics.
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4.5 Summary

A peridynamics code is developed for three-dimensional simulations using numerical micro-

moduli for discretized peridynamic models. To enhance the efficiency in the calculation,

we use the PGI Accelerator Programming model on an NVIDIA Tesla C1060 GPU for the

parallelization. A benchmark problem of matrix multiplication is conducted to compare the

wall-clock time between the parallelized algebraic computation on the GPU and the serial

computation on the CPU. In order to eliminate the loop dependency in the peridynamics

code for efficient parallelization, an algorithm that separates nested loops into independent

loops is adopted in the GPU implementation. We compared the wall-clock times of the

parallelized calculation in GPU and the serial calculation in CPU for different peridynamic

models. As the number of nodes in the peridynamic model increases, a significant speedup

over the serial calculation is achieved in the GPU.

The responses of the peridynamic model for the horizon δ of 2∆x, 3∆x and 4∆x are

investigated for a brittle material. For the horizon δ = 2∆x, the back-calculated Young’s

modulus matches the exact value of the material. On the other hand, for the horizon larger

than 2∆x, the back-calculated Young’s moduli are smaller than the exact value. With the

horizon δ = 2∆x, the responses of the peridynamic bar discretized with different grid sizes

(∆x = 0.50 mm and ∆x = 0.25 mm) are compared, and numerical results of the back-

calculated Young’s modulus show good agreements. The strain distributions at different

times in the simulations are demonstrated. After a large number of bonds reach the critical

stretch, a failure core is formed inside the peridynamic model.

For a ductile material, the peridynamic stresses and strains are compared with the results

by FEA using LS-DYNA. When the material model used in FEA is identical to that of the
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peridynamic model, the stresses of FEA show bilinear responses while the peridynamic model

demonstrates trilinear responses with the horizon δ = 2∆x. The nodal strains by FEA and

peridynamics at the center of the bar are not identical. Therefore, to bridge material models

at different scales, the material properties are retrieved from the macroscopic response of

the peridynamic model. These retrieved properties are used to modify the material model in

FEA. By applying the proposed procedure, the differences between FEA and peridynamic

solutions reduce substantially. This proposed scheme will be useful for coupling peridynamics

and FEM. Instead of directly applying the material model defined for peridynamic bonds

to FEA in a coupled model, which may not lead to an accurate result, the plastic material

model in FEA might be obtained from the macroscopic responses of peridynamic models.
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Chapter5

Coupling of Discretized Peridynamics
with Finite Element Method

5.1 Introduction

As a reformulated theory of continuum mechanics, peridynamics eliminates the spatial

derivatives, and it is valid regardless of discontinuities [153, 159]. Therefore, peridynam-

ics is useful to solve problems involving spontaneously emerged discontinuities. Compared

with the finite element method (FEM), peridynamics is computationally expensive. Macek

and Silling [115] implemented peridynamics in a commercial finite element analysis code,

ABAQUS, using truss elements. The conventional FE mesh is coupled with the peridynamic

truss mesh using the embedded element feature available in the finite element analysis code.

Lall et al. [103] used the peridynamics based finite element model to study shock and

vibration reliability of electronics. Kilic and Madenci [94] presented a coupling approach

using overlapping regions in which both peridynamic and FE equations are utilized. Agwai

et al. [2] and Oterkus [133] employed the submodeling approach to couple the FEM with

peridynamics. In their approach, the global analysis by means of finite element analysis

is performed first, and then peridynamics is used for submodeling. A morphing strategy

based on the energy equivalence was proposed by Lubineau et al. [113]. In this chapter,

we introduce a coupling approach of discretized peridynamics with finite elements. Differ-
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ent from the approach in [115, 103] implementing peridynamic model in the framework of

the conventional FEM and the submodeling approach [2, 133], the peridynamic subregion

is directly coupled to the finite element subregion in the present approach. An interface

element is introduced to calculate coupling forces instead of using overlapping regions [94] or

the morphing strategy [113] to couple peridynamic and FE subregions. Depending on how

coupling forces are divided to FE nodes of an interface element, we further discuss two types

of coupling schemes.

A great deal of research effort has been made to study many fracture problems. One

common benchmark problem characterized by the mixed mode fracture is the test of a

double-edge-notched concrete specimen conducted by Nooru-Mohamed et al. [130]. The

test of Nooru-Mohamed was adopted by De Borst [38] in the discussion of computational

modeling of concrete fracture. For the analyses, the finite element smeared-crack approach

with the gradient Rankine plasticity model, Cruch-Crack model, and Ottosen’s model has

been used for numerical studies of Nooru-Mohamed’s experiment by Di Prisco et al. [41].

A comparative study of three-dimensional constitutive models for the double-edge-notched

test was performed by Pivonka et al. [140]. Gasser and Holzapfel [64] employed the cohesive

crack model with the PUFEM for the numerical modeling of the test. The XFEM was uti-

lized by Cox [35], Meschke and Dumstorff [121], and Unger et al. [174] for the simulations.

An adaptive mesh refinement technique applied to a nonlocal version of anisotropic damage

model was employed by Patzák and Jirásek [136]. Réthoré et al. [146] used a hybrid an-

alytical and XFEM to study the propagation of curved cracks in the double-edge-notched

concrete specimen.

The remainder of this chapter is organized as follows. In Section 5.2, the finite element

formulations are summarized. In Section 5.3, we present two types of coupling schemes de-

72



pending on the distributing schemes of coupling forces to FE nodes of interface elements, and

the inverse isoparametric mapping that is essential in the coupling approach is summarized.

In Section 5.4, numerical examples under quasi-static conditions are provided to validate the

proposed coupling approach including one- and three-dimensional elastic problems and the

mixed mode fracture in a double-edge-notched concrete specimen. The results by applying

two types of coupling schemes for numerical simulations are discussed. In the last section,

concluding remarks are summarized.

5.2 Theory

5.2.1 Finite element formulations

The equation of motion in the conventional continuummechanics is derived from the principle

of linear momentum. The temporal change rate of linear momentum is equal to the force

applied on the body as [118]

ρüi = σij,j + fBi in Ω, (5.1)

where ρ is the density, üi is the acceleration field, σij is the Cauchy stress tensor, and fBi

is the body force density field. The essential boundary condition Γu and natural boundary

condition Γf are defined, respectively, as [11]

ui = Ui on Γu, (5.2)

σijnj = F si on Γf , (5.3)
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where the surface of the body Γ = Γu ∪ Γf , Γu ∩ Γf = 0, and nj means the components of

the unit outer normal vector on Γ. The constitutive equation for continuum is stated as

σij = Cijklεkl, (5.4)

where Cijkl is the elastic constitutive coefficient, and the components of strains are defined

as

εij =
1

2

(

ui,j + uj,i
)

. (5.5)

Applying the principle of virtual work to Equation (5.1), we have

∫

Ω
(σij,j + fBi − ρüi)δuidΩ = 0, (5.6)

where δui is the virtual displacement. After integrating by parts and applying the divergence

theorem, the weak formulation is obtained as [110]

−
∫

Ω
σijδui,jdΩ +

∫

Γ
σijnjδuidS +

∫

Ω
fBi δuidΩ−

∫

Ω
ρüiδuidΩ = 0. (5.7)

Considering the symmetry of the stress tensor (σij = σji) and applying the boundary con-

ditions, we have

∫

Ω
ρüiδuidΩ +

∫

Ω
σijδεijdΩ =

∫

Γf

F si δuidS +

∫

Ω
fBi δuidΩ. (5.8)
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Substituting the constitutive law in Equation (5.4) into Equation (5.8), we obtain the finite

element formulation

∫

Ω
ρüiδuidΩ +

∫

Ω
CijklεklδεijdΩ =

∫

Γf

F si δuidS +

∫

Ω
fBi δuidΩ. (5.9)

In the finite element analysis, the displacements within each element are interpolated by

means of shape functions as [11]

u(e) = H(e)U(e), (5.10)

where H(e) is the displacement interpolation matrix, the superscript e represents the element

e, and the nodal displacement vector U(e) is expressed as U(e)T = {u1 v1 w1 · · · un vn wn}

for an element of n nodes. The strain vector is evaluated by

ε(e) = B(e)U(e), (5.11)

where B(e) is the strain-displacement matrix which is written as

B(e) =


























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








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∂x

∂h1
∂z

∂h1
∂y

∂h1
∂z

∂h1
∂x

· · ·

∂hn
∂x

∂hn
∂y

∂hn
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





















. (5.12)
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Substituting Equations (5.10) and (5.11) into Equation (5.9), we have the weak formulation

in matrix form as

MÜ+KU = F, (5.13)

where M is the mass matrix, K is the stiffness matrix, and F is the force vector. The

assembled matrices following the convention of direct stiffness method [11] are summarized

as

M =
∑

e

M(e), M(e) =

∫

Ω(e)
ρ(e)H(e)TH(e)dΩ(e), (5.14)

K =
∑

e

K(e), K(e) =

∫

Ω(e)
B(e)TC(e)B(e)dΩ(e), (5.15)

F =
∑

e

F
(e)
s +

∑

e

F
(e)
B ,

F
(e)
s =

∫

Γ
(e)
f

H(e)TFS(e)dS(e), F
(e)
B =

∫

Ω(e)
H(e)T fB(e)dΩ(e).

(5.16)

5.3 Coupling between the peridynamic and finite ele-

ment subregions

5.3.1 Coupling schemes

To gain the efficiency from finite element analyses and exploit the generality of peridy-

namics in the presence of discontinuities, a domain is partitioned into a conventional FE

subregion and a peridynamic subregion as shown in Figure 5.1. With the coupling approach,

the subregion where failure is expected can be modeled using peridynamics. The overall

computational cost is reduced by using FEM for the remainder of the domain.
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FE subregion PD subregion

conventional element

Interface element

PD node

Figure 5.1: Partition of the domain. The FE subregion and the peridynamic (PD) subregion
are bridged by interface elements.

In the conventional FE subregion, the lumped mass matrix is formed by distributing the

total element mass to nodes of the element [11]. The internal forces on FE nodes can be

calculated as

Fint =
∑

e

Fint(e) =
∑

e

K(e)U(e), (5.17)

where K(e) is the element stiffness matrix. The equation of motion of an FE node is obtained

as

MIÜI = FextI − FintI , (5.18)

where MI is the lumped mass of node I, ÜI is the acceleration vector field, FextI is the

external force applied on the node I by evaluating the corresponding components of F in

Equation (5.16), and FintI is the internal force vector of the node I. Because the mass matrix

is diagonal, Equation (5.18) can be solved without factorizing a global stiffness matrix.

To bridge the FE subregion and the peridynamic subregion, we introduce an interface

element. A three-dimensional interface element consisting of eight FE nodes is illustrated

in Figure 5.2. In an interface element, a number of peridynamic nodes are embedded for

the calculation of coupling forces. The interacting forces between embedded peridynamic
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Figure 5.2: Interface element for the coupling of FE subregion and peridynamic subregion.

nodes and peridynamic nodes out of interface elements are called coupling forces. It is

worth noting that interactions between embedded peridynamic nodes are not considered as

coupling forces. The number of embedded peridynamic nodes is determined by the size of

the horizon, and there should be sufficient embedded nodes within the horizon of nodes near

the interface of the peridynamic subregion and the FE subregion as shown in Figure 5.2. To

evaluate coupling forces, each embedded peridynamic node represents a material volume of

(∆x)3 inside an interface element. However, embedded peridynamic nodes are not involved

in the global equation. In other words, the displacements of embedded peridynamic nodes

are not calculated by solving the equation of motion. Therefore, the mass of an interface

element is equally distributed to FE nodes of the interface element. Consider an embedded

peridynamic node subjected to the coupling force fcp as shown in Figure 5.3, the coupling

force is then divided to FE nodes of the interface element by means of shape functions as

f
cp
i = φi(ξ, η, ψ)f

cp, i = 1, · · · , 8, (5.19)
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where φi is the shape function of the node i belonging to the interface element, (ξ, η, ψ)

are the natural coordinates of the embedded node in the interface element, which should

be determined by the inverse isoparametric mapping. We designate this coupling scheme

as the VL-coupling scheme since the whole volume of the interface element is subjected

to coupling forces. On the other hand, different from the VL-coupling scheme, we might

divide coupling forces only to the FE nodes on the interface segment as shown in Figure 5.4.

Therefore, FE nodes not on the interface segment are subjected to internal forces arising from

the element stiffness only. Since the interface between the peridynamic and FE subregions

is similar to a contact surface, the scheme demonstrated in Figure 5.4 is designated as

the CT-coupling scheme. To implement the CT-coupling scheme, interfaces between the

peridynamic subregion and the FE subregion have to be defined prior to analyses. Coupling

forces on embedded nodes are divided to those FE nodes on the interface segment as shown

in Figure 5.4 by

f
cp
i = φi(ξc, ηc)f

cp, i = 3, 4, 7, 8, (5.20)

where φi is the shape function on the interface segment, and (ξc, ηc) are the natural coordi-

nates of the projection of an embedded node onto the interface segment.

In general, the equation of motion for FE nodes of an interface element is written as

MIÜI = FextI − F̂intI , (5.21)

where FextI is the external force by evaluating Equation (5.16), and the internal force is given

as

F̂intI = FintI + f
cp
I =

[

∑

e

K(e)U(e)

]

I

+ f
cp
I , (5.22)
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Figure 5.3: VL-coupling scheme that divides a coupling force fcp among FE nodes comprising
the interface element.
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Figure 5.4: CT-coupling scheme that divides a coupling force fcp among FE nodes comprising
the interface segment.

in which [·]I denotes the corresponding components of a vector associated with the node I

of the interface element, and f
cp
I is the summation of coupling forces on the node I. The

explicit algorithm is employed for the transient dynamic analyses. Nodal accelerations are

calculated first, and nodal velocities and displacements are updated subsequently. After the

displacements of FE nodes of the interface elements are calculated, the displacements of
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embedded peridynamic nodes are then determined by

Ueb = φi(ξ, η, ψ)Ui, i = 1, · · · , 8, (5.23)

in which (ξ, η, ψ) are the natural coordinates of an embedded peridynamic node in the

interface element, and Ui is the nodal displacement of an interface element. For peridynamic

nodes out of the interface elements, Equation (3.30) is used to update nodal accelerations.

5.3.2 Inverse isoparametric mapping

To couple peridynamic subregions with finite element subregions, a certain number of peridy-

namic nodes are embedded in the interface elements. If the Cartesian coordinates of an em-

bedded peridynamic node are known, the natural coordinates of the embedded peridynamic

node in an interface element should be determined by the inverse isoparametric mapping,

which is essential especially for random discretizations. However, the inverse isoparametric

mapping from the Cartesian coordinates to the natural coordinates is nontrivial since equa-

tions to be solved are nonlinear. Murti and Valliappan [127] presented a numerical technique

by bisecting a line passing a point and a node of known natural coordinates, and this method

was extended to the three-dimensional space by Murti et al. [128]. However, the bisection

method has its limitations [31]. A more generalized approach for the inverse isoparametric

mapping is presented by Chinnaswamy et al. [31]. For the inverse mapping of an embedded

peridynamic node with known Cartesian coordinates (x̂, ŷ, ẑ), the equation to be solved is
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written as

f =
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









































=



























0

0

0



























, (5.24)

where (ξ, η, ψ) are the natural coordinates of an embedded peridynamic node in an interface

element to be determined. By expanding the vector f in Taylor’s series and omitting the

second and higher order terms, it can be shown that [31]
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where I0 = [ξ0, η0, ψ0]
T is an approximate solution, and f0 is the vector f evaluated at the

approximate solution I0. Equation (5.25) can be rewritten as

I = I0 −
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, (5.26)

and it can be simplified as

I = I0 +∆I, (5.27)
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where

∆I =
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The updated solution of I is used as the value of I0 in Equation (5.27) for the next iteration.

A few iterations are performed till the solution of I converges.
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Figure 5.5: Projection of an embedded peridynamic node on an interface segment.

If the CT-coupling scheme is employed, coupling forces on embedded peridynamic nodes

are only distributed to FE nodes on the interface segment as shown in Figure 5.4. Hence, the

natural coordinates of the projection of an embedded peridynamic node onto the interface

segment have to be determined. Let t be the position vector of an embedded node ns, and

the projection of ns onto the interface segment is denoted by ns′ as shown in Figure 5.5.

The position vector r of the point ns′ on the interface segment can be expressed as

r = f1(ξc, ηc)e1 + f2(ξc, ηc)e2 + f3(ξc, ηc)e3, (5.29)
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where (ξc, ηc) are the natural coordinates of the point ns′ on the interface segment, and

fi(ξ, η) =
4
∑

j=1

φjx
j
i , (5.30)

in which φj is the shape function of the node j on the interface segment. The natural

coordinates (ξc, ηc) of the point ns′ on the interface segment must satisfy [72]

∂r

∂ξ
· (t− r) = 0, (5.31)

∂r

∂η
· (t− r) = 0. (5.32)

However, there is no analytical solution to Equations (5.31) and (5.32). To solve numerically,

a few iterations of the least-squares projection are used to generate an initial guess as

ξ0 = 0, η0 = 0, (5.33)
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, (5.34)

ξi+1 = ξi +∆ξ, ηi+1 = ηi +∆η. (5.35)

With an initial guess, Newton-Raphson method is then utilized to find the solution of Equa-

tions (5.31) and (5.32) as [187]
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ξi+1 = ξi +∆ξ, ηi+1 = ηi +∆η. (5.38)

The solutions of ξi+1 and ηi+1 are used to update the value of the position vector r, and

then Equation (5.36) is evaluated again for the next iteration. The converged solutions of

ξi+1 and ηi+1 are the natural coordinates of the point ns′ on the interface segment.

5.4 Numerical applications

5.4.1 One-dimensional bar

For benchmarking, the present coupling approach of peridynamics with FEM is employed

to study the axial deformation of a one-dimensional bar. The length of the bar is 9.5 mm,

and dimensions of the cross section are 0.5 mm by 0.5 mm. Young’s modulus E of the bar is

70 GPa, and the density is 2700 kg/m3. Figure 5.6 shows the multiscale discretization of the

bar. The finite element mesh size is 1.5 mm, and the conventional bar elements are utilized.

The stiffness of a bar is k = EA
L , where A is the cross-sectional area and L is the length of

the bar. The peridynamic grid spacing is 0.5 mm, which is equal to the width of the bar.

By setting the horizon to 2∆x, the one-dimensional micromodulus c1 is 5.6 × 1023 N/m6.

Two interface elements are used to couple peridynamic and finite element subregions, and

each interface element has two embedded peridynamic nodes for the calculation of coupling

forces as shown in Figure 5.6.
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Figure 5.6: Discretization of a one-dimensional bar.

A tensile loading with the magnitude of F = 175 N is applied on both ends of the bar un-

der the quasi-static condition. The force is gradually increased during 50, 000 steps with the

calculation time step dt = 5×10−8 s, which is less than the critical time step for the explicit

time integration. Figure 5.7(a) shows the displacement along the bar using the VL-coupling

scheme. Nodal displacements in the peridynamic subregion show good agreement with the

quasi-static solution. The displacements of the FE nodes, however, show small discrepancies.

The reason is that coupling forces in an interface element are divided among all FE nodes of

the element using the VL-coupling scheme so that FE nodes at the interfaces of subregions

(x = ±1.75 mm) only receive partial coupling forces. FE nodes at the other end of the

interface elements (x = ±3.25 mm) receive the rest of coupling forces, and are also subjected

to internal forces contributed by the element stiffness. Consequently, the displacements of

FE nodes at the interfaces are slightly overestimated, and displacements of other FE nodes

are underestimated as indicated in Figure 5.7(a). In contrast, the solution using the CT-

coupling scheme, which distributes coupling forces only to FE nodes at interfaces, is almost

identical to the quasi-static solution as shown in Figure 5.7(b). Hence, for the calculation of

axial displacement, the CT-coupling scheme is more effective than the VL-coupling scheme

to achieve the coupling between the peridynamic subregion and the finite element subregion.
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Figure 5.7: Axial displacement along the bar using (a) VL-coupling scheme and (b) CT-
coupling scheme.
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5.4.2 Three-dimensional bar

A three-dimensional bar subjected to tension is examined to compare the solutions of the

present coupling approach and the classical (local) elasticity solutions. The dimensions of

the bar are taken to be 10 mm in length, 7 mm in width, and 7 mm in thickness as shown

in Figure 5.8. The three-dimensional model is partitioned into two FE subregions and

one peridynamic subregion. Each FE subregion consists of four eight-node solid interface

elements, and the mesh size of the interface element is 3.5 mm. The peridynamic subregion

is uniformly discretized with the grid spacing ∆x = 0.5 mm, and the size of the horizon is

set to δ = 1.0 mm. In the interface element, two additional layers of peridynamic nodes

are embedded along the longitudinal direction to ensure sufficient nodes in the horizon of

peridynamic nodes near the interfaces. Tractions at both end surfaces are gradually applied

up to σx = 700 MPa during 100, 000 steps as quasi-static loading, and the calculation time

step is set to dt = 5× 10−8 s. Young’s modulus of the bar is 70 GPa, Poisson ratio is 0.25,

and the density is 2700 kg/m3.

We first examine the numerical solutions using the VL-coupling scheme. The longitudi-

nal displacements ux at three measuring positions are compared to the quasi-static results

as shown in Figure 5.9(a). The displacement ux at the position p1, which is the at the

end surface, is underestimated compared with the quasi-static solution. On the other hand,

the displacement at p2, which is at the interface of the peridynamic subregion and the FE

subregion, and the displacement at p3, which is inside the peridynamic subregion, show

good agreement with the quasi-static solutions. To look into Poisson effect, the transverse

displacements measured at different positions are plotted in Figure 5.9(b). The transverse

displacement q1 at the end surface is smaller than the quasi-static value since the longitudinal

88



Interface element PD subregion

7
 m

m

7
 m

m

σxσx

   3 mm3.5 mm 3.5 mm

x

y

z

Interface element

Figure 5.8: Three-dimensional bar subjected to tension.

displacement at the end surface is underestimated. Nevertheless, the transverse displacement

q2 at the interface demonstrates close agreement with the quasi-static solution, which indi-

cates that Poisson effect is preserved at the interface. The transverse displacement at q3,

which is inside the peridynamic subregion, also matches the quasi-static solution.

For the comparison of two types of coupling schemes, the CT-coupling scheme, which

achieves coupling by considering the interfaces of subregions similar to contact surfaces, is

then employed to study this quasi-static problem. As shown in Figure 5.10(a), the longitudi-

nal displacement p1 at the end surface is close to the quasi-static solution with the error less

than 2%. The longitudinal displacements at interface and inside the peridynamic subregion,

denoted by p2 and p3 respectively in Figure 5.10(a), are almost identical to the quasi-static

solutions. The transverse displacements measured at different positions are plotted in Fig-

ure 5.10(b). With the improved solution of longitudinal displacement at the end surface,
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the transverse displacement q1 at the end surface turns to be very close to the quasi-static

solution. On the other hand, the transverse displacement q2 at the interface is overesti-

mated. This phenomenon occurs due to the reason that decompositions of coupling forces

in the transverse direction are divided only among FE nodes at the interface. By comparing

Figures 5.9 and 5.10, it is observed that the CT-coupling scheme is effective in resolving dis-

placements normal to the interface of peridynamic and FE subregions. On the other hand,

the VL-coupling scheme, which divides coupling forces among all FE nodes comprising the

interface element, is capable to preserve Poisson effect at the interface.

Figure 5.11 shows the longitudinal displacement along the edge of the bar solved by

the CT-coupling scheme. It is noted that a smooth curve can be obtained if the nodal

displacements are connected, which is different from the results in [94] where a jump in

displacement is observed at the interface. The strain εx distributions on the bar and at the

interface are plotted in Figure 5.12. Nodal strains in the FE subregions are obtained by

evaluating Equation (5.5), and nodal strains in the peridynamic subregion are calculated as

the average bond stretch within the grid width ∆x. Considering the quasi-static condition,

the analytical value of strain εx is 0.01. The strain of the coupling model is in the range of

0.0099 to 0.0105 as shown in Figure 5.12, which agrees with the quasi-static solution.

The essence of coupling forces is interactions between nodes in the peridynamic subregion

and material volumes of an adjacent continuous body (i.e. interface elements) represented

by embedded peridynamic nodes. Therefore, the ratio of the grid spacing of peridynamic

nodes to the mesh size of interface elements should not have affect the results. To illustrate

this point, Figure 5.13 shows the summation of coupling forces in the longitudinal direction

on the interface elements at the left end of the bar as the applied traction increases. As

indicated by the comparison in Figure 5.13, differences in the results using the grid spacing
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∆x = 1.0 mm and ∆x = 0.5 mm are insignificant.
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Figure 5.9: Displacements (a) ux and (b) uy at different locations using the VL-coupling
scheme. Coordinates of the measuring position are given in parenthesis.

92



0.00

0.01

0.02

0.03

0.04

0.05

  0 100 200 300 400 500 600 700

D
is

pl
ac

em
en

t (
m

m
)

Applied traction (MPa)

quasi-static solution
coupling model

p1(5,0,0)

p2(1.5,0,0)
p3(0.25,0.25,0.25)

(a)

-0.009

-0.006

-0.003

0.000

  0 100 200 300 400 500 600 700

D
is

p
la

c
e
m

e
n
t 
(m

m
)

Applied traction (MPa))

quasi-static solution
coupling model

q1(5,3.5,0)
q2(1.5,3.5,0)

q3(0.25,0.25,0.25)

(b)

Figure 5.10: Displacements (a) ux and (b) uy at different locations using the CT-coupling
scheme. Coordinates of the measuring position are given in parenthesis.
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Figure 5.12: Strain εx distributions (a) on the bar and (b) on the interface when the applied
traction σx = 700 MPa. The CT-coupling scheme is used in the simulation.
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5.4.3 Mixed mode fracture in a tension-shear specimen

A benchmark problem of mixed mode crack propagation in a concrete specimen has been

investigated experimentally by Nooru-Mohamed et al. [130]. The double-edge-notched spec-

imen is illustrated in Figure 5.14(a). The dimensions of the specimen are taken to be

200 mm in both length and height, 50 mm in width, and two notches at edges are 25 mm

in length, 5 mm in height, and 50 mm in width. For the numerical study, the specimen

is partitioned into two finite element subregions and one peridynamic subregion as shown

in Figure 5.14(b). The FE subregion is discretized with two mesh sizes, 10 mm× 10 mm×

16.25 mm and 10 mm× 10 mm× 13 mm, respectively. The peridynamic subregion is dis-

cretized with the grid spacing ∆x = 5.0 mm, which is 1/10 of the specimen thickness, and

the horizon is set to δ = 1.0 mm. The notches in the peridynamic subregion are introduced

by deleting nodes along two notches and removing all bonds across the notches. Since the

ratio of the horizon to the grid spacing is equal to two, two layers of peridynamic nodes ad-

jacent to interfaces are embedded in interface elements for the calculation of coupling forces.

Young’s modulus, Poisson ratio, and fracture energy were not measured in the experiments.

Therefore, we adopt the material properties E = 30 GPa and Gf = 110 J/m2 as in [35]. For

Poisson ratio, it is estimated as ν = 0.2 in the numerical studies in [121, 35] and ν = 0.3

is used in [125]. In the present study, Poisson ratio ν = 0.25 is assumed. The density is

calculated from the concrete composition given in [130] as ρ = 2265 Kg/m3. By applying

Equation (4.3), the critical bond stretch is obtained as s0 = 5.5277 × 10−4. The brittle

material model illustrated in Figure 4.1(a) is utilized for the peridynamic subregion, and the

linear elastic model is employed for the remaining FE subregions, where material parameters

E = 30 GPa and ν = 0.25 are used.
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Figure 5.14: Mixed mode fracture test: (a) geometry of the specimen; (b) subregions of the
coupling model.
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For the comparison, the load-path 1b (specimen 46-05) in [130] is considered. A hori-

zontal shear force of 10 kN is applied first, and then the vertical displacement un is applied

on the top and bottom of the specimen as shown in Figure 5.14(a). For the numerical cal-

culation, the time step is set to dt = 1 × 10−7 s, which is less than the critical time step

for the explicit time integration. The vertical displacement un is applied by imposing a

constant velocity of 10 mm/s as quasi-static loading. We first examine the numerical pre-

dictions of crack paths using the VL-coupling scheme. The cracks initiate near the notches

as shown in Figure 5.15(a), and propagate along the horizontal direction for about 50 mm.

As the boundary displacement increases, the direction of propagation changes as shown in

Figures 5.15(b) and 5.15(c). At the boundary displacement un = 0.09 mm, two cracks are

connected as shown in Figure 5.15(d). The numerical prediction of crack paths using the

VL-coupling scheme shows differences with the experimental observations in [130].

We then apply the CT-coupling scheme for the numerical simulation. Interfaces are

predefined in the reference configuration, and there are 280 interface segments with the given

mesh sizes. Natural coordinates of the projections of embedded nodes onto interface segments

are saved to a list. In the subsequent calculations, the natural coordinates of projected points

are referred, and the coupling forces on embedded peridynamic nodes are divided among FE

nodes at interface segments. The damage evolution is shown in Figure 5.16. Crack initiation

occurs at the left and right notches as shown in Figure 5.16(a), and materials ahead of crack

tips are damaged for the length of around 15 to 20 mm. Due to the angle change of the

principle stress, cracks propagate with an angle as shown in Figure 5.16(b). As the boundary

displacement increases, two curvilinear crack paths are clearly observed in Figure 5.16(c). An

enclose area is gradually formed between two curvilinear cracks as indicated in Figure 5.16(d).

The numerical prediction of cracks shows agreement, especially for the lower crack, with

99



the experimental observation presented in [130], which is illustrated using the solid line in

Figure 5.16(d). The small discrepancies appeared in Figure 5.16(d) might be caused by the

perfectly brittle material model adopted in the numerical simulation. More investigation

of material models for concrete in the framework of peridynamics is required in the future.

Note that the numerically predicted crack paths are in perfect symmetry. On the contrary,

the cracks in the experiments do not show perfect symmetry, and we might speculate on

symmetry breaking caused by the slight differences in the loading condition and material

heterogeneity.

Compared with the numerical results using the VL-coupling scheme, the results using the

CT-coupling scheme demonstrate better agreement with the experimental observation. The

reason for the inferiority of the VL-coupling scheme in this mixed mode fracture problem is

that the horizontal displacement at edges caused by the constant shear loading is underesti-

mated after the applied vertical displacement at boundaries reaches the critical value for the

crack initiation at two notches. Consequently, the opening-mode fracture dominates, and

the large area ahead of crack tips is damaged in the plane of notches. After the intact region

in the middle of the specimen becomes relatively small, rotations of crack paths then take

place as shown in Figure 5.15.
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(c) (d)

Figure 5.15: Numerical prediction of crack paths using the VL-coupling scheme. Boundary
displacement: (a) un = 0.0220 mm; (b) un = 0.0225 mm; (c) un = 0.03 mm; (d) un =
0.09 mm.
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(a) (b)

(c) (d)

Figure 5.16: Numerical prediction of crack paths using the CT-coupling scheme. Solid
curves are crack paths observed in the experiments from [130]. Boundary displacement: (a)
un = 0.0220 mm; (b) un = 0.0225 mm; (c) un = 0.03 mm; (d) un = 0.09 mm.
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5.5 Summary

A coupling approach of discretized peridynamics with FEM is presented in this chapter.

To bridge conventional FE subregions and peridynamic subregions, an interface element is

introduced. The proposed coupling approach is different from other methods in the sense of

direct coupling via interface elements. Depending on the size of the horizon, a number of

peridynamic nodes are embedded in an interface element. The embedded peridynamic nodes

are not involved in the global equation, but essential in the calculation of coupling forces.

The coupling forces describe interactions between embedded peridynamic nodes in interface

elements and peridynamic nodes in peridynamic subregions. Two types of coupling schemes

are introduced. In the VL-coupling scheme, coupling forces on embedded peridynamic nodes

are divided to FE nodes of interface elements. On the other hand, coupling forces are divided

only to FE nodes on interface segments in the CT-coupling scheme. The inverse isoparametric

mapping techniques to determined the natural coordinates of embedded peridynamic nodes

in the interface elements and the natural coordinates of projected points on the interface

segments are summarized.

Numerical simulations are conducted to compare the computational results using the

coupling approach to the classical elasticity solutions. The axial deformation of a one-

dimensional bar under quasi-static loading is studied. It is found that the displacements at

interfaces of subregions are slightly overestimated, and the displacements in the FE subre-

gions are underestimated using the VL-coupling scheme. On the other hand, the numerical

solution using the CT-coupling scheme is almost identical to the quasi-static solution in all

subregions and interfaces. For three-dimensional simulations, a bar subjected to quasi-static

tension is partitioned into a peridynamic subregion and two FE subregions consisting of
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eight-node interface elements at both ends of the bar. By measuring displacements at dif-

ferent positions, the CT-coupling scheme is found to be effective in resolving displacements

normal to the interface of peridynamic and FE subregions, and the VL-coupling scheme is

capable to preserve Poisson effect at the interfaces. Longitudinal strain distributions in the

bar and at the interface using the CT-coupling scheme demonstrate good agreement with

the quasi-static solution.

The last numerical example is the mixed mode fracture in a concrete specimen subjected

to quasi-static loading. The region where failure is expected is modeled using peridynamics,

and the remaining region is modeled using conventional FEM to reduce the computational

cost. Numerical predictions of crack paths using the VL-coupling scheme and the CT-

coupling scheme are studied. Two independent curvilinear crack paths are observed in the

results using the CT-couping scheme, and the numerical predictions of crack patterns are

close to the experimental observations presented in [130].
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Chapter6

Discretized Peridynamics for Contact-
Impact Problems

6.1 Introduction

Impact, which involves the collision of two or more objects, encompasses a wide range of phe-

nomena such as automobile accidents, drop of electric devices, and even molecular collisions

[66]. When bodies collide, the contact force is developed to prevent them from overlapping

in material regions. A compatible contact surface enveloping the initial contact points is

formed by the reaction force [165]. The stress waves developed by the collision travel away

from the region of contact [66]. As the initial velocity increases, penetration of targets occurs.

Penetration involves perforation, embedment, and ricochet [9].

Although the dynamic behavior of materials in the process of impact is complicated,

only a few highly influential mechanisms play the governing roles [145]. Therefore, it is

possible to use relatively simple analytical models to describe the impact process. Bishop

et al. [17] first studied the analytical methods for penetration mechanics. Recht and Ipson

[145] developed analytical equations of ballistic perforation dynamics, and confirmed the

proposed analytical models by comparing with experimental data. Tate [170, 171] modified

the hydrodynamic theory to incorporate strength effects for the prediction of the deceleration

of a long rod penetrating into a target, and studied the deformation of a soft rod striking
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a rigid target. Jones et al. [88] modified the one-dimensional penetration theory proposed

by Tate by taking account of mass transfer and the mushroom strain into the analysis.

Cinnamon et al. [32] presented a one-dimensional analysis to predict penetration depths and

profile hole diameters for rod penetrators in semi-infinite targets. Grace [68] proposed a one-

dimensional model to predict the penetration of long rods into targets. Warren and Forrestal

[179] presented penetration models using the spherical cavity-expansion approximation for

rigid spherical-nosed rods that penetrate aluminum targets. Analytical models that describe

forces and penetration depths for rigid long rod and aluminum targets were developed by

Forrestal et al. [55, 54, 57]. In addition, Forrestal et al. [52, 53] proposed a dimensionally

consistent empirical equation for the depth of penetration into concrete targets based on

experimental data, and studied the deceleration of penetration in concrete targets. An

empirical relationship describing the penetration hole diameter in thin plate was proposed

by Hill [76]. A review of simplified analytical models for ballistic penetration into different

media was presented by Ben-Dor et al. [16].

Most research progress on penetration has been made in experimental investigations, and

a large number of studies can be found. Stock and Thompson [164] studied the penetration

of aluminum alloys by projectiles and showed that the formation of bands of intense shear

reduces the ability of the material to withstand further penetration. Calder and Goldsmith

[27] studied the plastic deformation and perforation of thin plates subjected to projectile

impact using a high speed framing camera. Doyle [42] performed experimental measure-

ments of the contact force during the transverse impact of an aluminum plate using dynamic

strain gage, and comparisons were made with the finite element analysis. Bless et al. [19]

studied hypervelocity penetration of ceramics and penetration phenomena, which are depen-

dent on ceramic properties. The penetration of hard layers by rod projectiles was analyzed
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by Bless and Anderson [18]. The penetration of long rod into aluminum was investigated

under different impact velocities by Hohler et al. [77]. Trucano and Grady [173] presented

experimental, analytical, and computational techniques to study impact shock and penetra-

tion in low density media. Subramanian et al. [166] conducted reverse impact experiments

for aluminum penetrations to study the penetration rate, consumption velocity, and total

penetration. Rosenberg et al. [148] carried out ballistics experiments of ceramic tiles and

studied a simplified Johnson-Holmquist failure mode for brittle materials. Murr et al. [126]

studied the low velocity to hypervelocity penetration transition in metal targets. Frew et

al. [62, 61] conducted depth-of-penetration experiments of steel projectile into concrete, and

conducted experiments in which penetration depths of limestone targets were measured and

compared to an analytical penetration equation. Piekutowski et al. [139] performed depth-

of-penetration experiments using steel projectiles and aluminum targets. Similarly, Forrestal

and Piekutowski [56] conducted penetration experiments with 6061-T6511 aluminum targets

and spherical-nose steel projectiles. Lundberg et al. [114] studied the interaction of a metal-

lic projectiles and a ceramic target. Gomez and Shukla [67] performed an experimental

study of projectile penetration into concrete. Warren and Poormon [180] presented experi-

mental, analytical, and numerical results of penetration of aluminum targets by ogive-nosed

projectiles at oblique angles. Børvik and colleagues [24, 21, 23, 22] examined the ballistic

penetration of steel plates by cylindrical projectiles by experimental, analytical, and numer-

ical investigations, and studied a constitutive model for non-linear finite element analyses.

Behner et al. [12] experimentally studied the penetration and failure of glass by rod impact.

Anderson et al. [7] investigated the failure and penetration response of glass impacted by

short rods so that there is no steady driving stress.

Due to the complexity and the experimental cost in laboratory tests, researchers resort
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to effective numerical methods for the analyses of contact-impact problems. Wilkins [185]

investigated influence of material properties on perforation of targets using a finite difference

program. Anderson et al. [6] used Eulerian wave propagation program to examine the long-

rod penetration as a function of impact velocity. Taylor et al. [172] used the hydrocode

modeling to study hypervelocity impact on brittle materials. Warren and Tabbara [182]

performed simulations of penetration without the need for discretizing the target and the

need for a contact algorithm. Heinstein et al. [75] proposed a method for the contact-impact

modeling of large deformation in explicit transient dynamics. Rosenberg and Dekel [147]

presented two-dimensional simulations to investigate penetration of rigid short projectiles

into semi-infinite targets and perforation of thin metal plates.

As a well-established method for analyzing a wide range of engineering problems, the

finite element method has been employed to study contact and impact problems. Hughes et

al. [84] presented the theory and numerical implementation of the finite element method for

contact-impact problems using a node-to-node scheme. A numerical method for the analysis

of contact between three-dimensional bodies was presented by Chaudhary and Bathe[29].

Belytschko and Lin [14] presented an algorithm for three-dimensional impact simulations,

and Belytschko and Neal [15] developed a pinball algorithm as a simplified contact-impact

algorithm that can be readily vectorized. Carpenter et al. [28] developed an approach

for the fulfillment of surface contact conditions in the transient non-linear finite element

analysis. Anderheggen et al. [4] introduced a numerical contact algorithm with an explicit

time integration scheme in the finite element method. Hahn and Wriggers [71] proposed an

explicit multi-body contact algorithm. Elabbasi et al. [47] addressed reliability issues that

are necessary for analyzing the accuracy and effectiveness of engineering designs involving

contact conditions.
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The primary focus in this chapter is the numerical scheme for the modeling of contact

between a peridynamic domain and a non-peridynamic domain such as conventional finite

elements and rigid bodies. Macek and Silling [115] presented a plate perforation example,

in which the peridynamic model is implemented using truss elements and a kinetic contact

algorithm available in the commercial FEA package is employed. Littlewood [107] imple-

mented contact modeling between the peridynamic and finite element portions by an iterative

approach. The contact algorithm utilized in [107] has to work with planar facets, and conse-

quently each peridynamic node is represented by an icosahedron. Different from approaches

in [115, 107], the contact between a discretized peridynamic domain and a non-peridynamic

domain is directly modeled as a node-to-surface type in the present research, and a penalty

method without iterations is used for transient analyses by the explicit time integration.

The remainder of this chapter is organized as follows. First, a short-range force model

is introduced into the peridynamic theory. The inverse isoparametric mapping, which is

useful to determine whether a peridynamic node penetrates into an element, is summarized.

A contact algorithm for the calculation of the contact point and the penetration depth

is then explained. For the transient analyses by the explicit time integration, a penalty

method is employed to enforce displacement constraints on the contact surfaces. In the

numerical examples, the material behavior of a peridynamic model is examined. Then the

impact between two rigid bodies is presented to validate the contact algorithm. The last

numerical example is a steel plate, which is modeled using peridynamics, perforated by a

blunt-nosed cylindrical rigid projectile, and the residual velocities are compared with the

analytical values.
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6.2 Theory

6.2.1 Peridynamic short-range forces

In the peridynamic theory introduced in Section 3.2, material points interact through pre-

defined bonds. However, in applications involving damage, two material points, which are

beyond the horizon of each other in the reference configuration, might come into contact. In

order to consider contact forces between material points, a short-range force model [115] is

incorporated into the peridynamic theory as

fs =
η + ξ

‖η + ξ‖min

{

0, cs

(‖η + ξ‖
ds

− 1

)}

, (6.1)

where cs is the spring constant for contact forces, and ds is a constant such that the contact

force is nonzero if the distance between two material points is smaller than ds. In numerical

implementations, cs is set to be 15c as in [115], and ds is chosen to be ds = 0.9∆x, where

∆x is the grid spacing for the discretization.

The peridynamic equation of motion after discretization is written as

ρütI =

NHI
∑

J=1

fVJ +

Ns
∑

K=1

fsVK + btI , (6.2)

where ütI is the acceleration of the node I at time t, NHI is the total number of nodes within

the horizon of the node I in the reference configuration, Ns is the number of nodes within

the contact force range ds of the node I, V is the nodal volume, and btI is the body force at

time t.
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6.2.2 Inverse isoparametric mapping

The isoparametric finite element compared to the generalized coordinate finite element is

more effective in evaluating element matrices [11]. The physical element is mapped into a

reference element that is a square or a cube, and there exists a one-to-one mapping between

the Cartesian coordinate system (x, y, z) and the natural coordinate system (ξ, η, ψ) [34].If

the natural coordinates of a point in an element are known, the Cartesian coordinates can

easily be calculated as

x =
n
∑

i=1

Ni(ξ, η, ψ)xi, (6.3)

where Ni are shape functions, and xi represent the Cartesian coordinates of the node i.

However, the inverse isoparametric mapping from the Cartesian coordinates to the natural

coordinates is nontrivial, and it is often required in the dynamic analyses due to, for example,

the remeshing in the crack propagation [127]. In the contact-impact problems, the inverse

isoparametric mapping is useful to determine whether a node penetrates into an element.

The details of three-dimensional inverse isotropic mapping are introduced in Section 5.3.2

s2 s1

s3 s4

ms

ns

z
y

x

Figure 6.1: Slave node and four master segments.
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6.2.3 Contact algorithm

Consider a slave node ns lies above a master surface as shown in Figure 6.1, and the master

surface consists of four segments s1, s2, s3, and s4. In order to find the contact point and

the corresponding master segment, the first step is to search for the master node ms that is

nearest to the slave node ns. The vector beginning at ms and ending at ns is denoted by g

as shown in Figure 6.2. Vectors c1 and c2 are along edges of a segment, and point outward

from the master node ms. The unit normal vector of the segment can be calculated by

m =
c1 × c2
|c1 × c2|

, (6.4)

and the projection of the vector g onto the segment is expressed as

s = g − (g ·m)m. (6.5)

A slave node ns lies on the segment if the following criteria are satisfied [72]:

(c1 × s) · (c1 × c2) > 0, (6.6)

(c1 × s) · (s × c2) > 0. (6.7)

However, if the slave node is above the intersection of two master segments as shown in

Figure 6.3, the criteria given in Equations (6.6) and (6.7) would fail to be satisfied. Instead,

the segment intersection on which the slave node lies can be determined by finding the
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Figure 6.2: Projection of the vector g onto a master segment.

maximum value of the following expression [72]:

g · ci
|ci|

, i = 1, 2, · · · , n, (6.8)

where n is the number of segment intersections at ms. In the case shown in Figure 6.3, the

value of n is 4.
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Figure 6.3: Slave node projected on the intersection of two master segments.

Assume that a master segment has been detected for the slave node ns as shown in

Figure 6.4. Then the contact point ns′ , which is the nearest point on the master segment to

the slave node, needs to be determined. The method to find the contact point is the same

as the technique introduced in Section 5.3.2
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Figure 6.4: Location of a contact point.

Penetration of the slave node ns through the master segment occurs if

l = n · (t− r) < 0, (6.9)

where l is the penetration depth, and n is the unit normal vector of the master segment

containing the contact point.

6.2.4 Penalty method

For transient analyses by the explicit integration, the penalty method is employed to en-

force the displacement constraints at contact surfaces. The contact between a peridynamic

domain and a non-peridynamic domain can be conveniently treated as a node-to-surface

contact. The nodes in the discretized peridynamic domain are assumed to be slave nodes,

and the surfaces of the non-peridynamic domain, which might come into contact with the

peridynamic domain, are considered as master surfaces. The standard penalty formulation

[72] is usually utilized to calculate the contact force, which is dependent on material con-

stants. However, the standard penalty formulation is mainly suitable for similar materials

coming into contact. For contact between dissimilar materials, the segment-based penalty
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formulation [72] is recommended, and the contact stiffness is given as

kcs = 0.5× Ξp ×



























Ξs

or

Ξm



























m1m2

m1 +m2

1

dt2
, (6.10)

where Ξp is the penalty scale factor which is 0.1 by default, Ξs and Ξm, which are 1.0 by

default, are scale factors of slave and master penalty stiffnesses respectively, m1 is the nodal

mass of the slave node, and m2 is the segment mass which can be taken to be half of the

element mass [72].

If the slave node ns penetrates the master segment, i.e. l < 0 in Equation (6.9), a

penalty force is then applied to the slave node and the master segment. The force, which is

proportional to the penetration depth, is given by

Fp = (kcs × l)n, (6.11)

and the penalty force applied to each node of the master segment can be determined using

shape functions as

Fip = φi(ξc, ηc)Fp, (6.12)

where i indicates nodes that comprise the master segment.

Nodal accelerations are calculated by considering the internal forces, external forces,

and contact forces. Subsequently, nodal velocities and displacements are updated using the

Velocity-Verlet algorithm. The flowchart of the explicit algorithm for transient dynamic

analyses is summarized in Table 6.1, which is similar to the scheme presented in [15].
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1. Initialize.
2. Calculate the external forces.
3. Calculate the internal forces.

(a) In the peridynamic domain, compute the internal forces from bond forces.
(b) In the non-peridynamic domain, e.g. finite elements, compute the internal

forces arising from the element stress.
4. Calculate the contact forces.
5. Assemble external forces, internal forces, and contact forces into a force array.
6. Compute nodal accelerations.
7. Integrate the accelerations to calculate the nodal velocities and displacements.
8. Go to step 2 for the next time step.

Table 6.1: Explicit contact algorithm.

target d shear zone

projectile

Figure 6.5: Perforation of a thin plate by a blunt projectile.

6.3 Ballistic limit

The perforation of a plate depends on the geometry and the strength of material [145].

Ballistic limit velocity is the minimum perforation velocity [145]. During perforation of a

plate, damage develops in the shear zone surrounding the projectile as shown in Figure 6.5,

and a plug in the target plate is formed by indentation. The residual velocity of a blunt
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projectile after perforating a thin plate is expressed as [145]

vr = a(v
p
i − v

p
bl)

1/2, (6.13)

where vi is the initial velocity, vbl is the ballistic limit velocity, the constant p is equal to 2,

and the mass ratio is

a =
mp

mp +mt
, (6.14)

where mp is the mass of the projectile, and mt is the mass of the plug formed by perforation.

The value of mt can be approximated by [24]

mt ≈
π

4
d2ρtht, (6.15)

where d is the diameter of the cylindrical projectile, ρt is the density of the target plate, and

ht is the thickness of the plate. On the other hand, constants a and p in Equation (6.13)

can also be determined by fitting the experimental data [24].
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Figure 6.6: Peridynamic bar subjected to tension.
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6.4 Numerical studies

6.4.1 Material behavior and modeling

Consider a peridynamic bar subjected to tension as shown in Figure 6.6. The dimensions of

the bar are taken to be 31.5 mm in length, 22.5 mm in width and thickness. The boundary

regions shown in Figure 6.6 are subjected to a constant velocity vx in the longitudinal direc-

tion. Magnitudes of the velocity vx are 10 mm/s for both boundary regions, but directions

are opposite. The horizon is set to δ = 3.0 mm, and the bar is discretized with the grid

spacing ∆x = 1.5 mm. The material model defined for peridynamic bonds is shown in Fig-

ure 6.7(a), which demonstrates perfect plasticity at the bond level. The density of the bar

is 8000 kg/m3. Setting Young’s modulus E = 200 GPa, we can calculate the micromodulus

c = 1.1968× 1022 N/m6. The computational step is set to 5× 10−8 s, which is less than the

critical time step for the explicit time integration.

The macroscopic material behavior of the peridynamic bar is shown in Figure 6.7(b), in

which σx is the cross-sectional stress in the middle of the bar and εx is the strain imposed

by the boundary displacements. As indicated in Figure 6.7(b), the peridynamic bar yields

at the value very close to the yield stress 490 MPa, which is calculated by multiplying

Young’s modulus by the yield stretch. Unlike the material model at the bond level that

shows perfect plasticity after yielding, the cross-sectional stress σx at the macroscopic level

continues increasing till the value of around 930 MPa as shown in Figure 6.7(b). The reason

is that peridynamic bonds do not yield at the same time. After reaching the value at around

σx = 930 MPa, most bonds yield and the peridynamic bar demonstrates a small amount of

strain hardening as shown in Figure 6.7(c), and the cross-sectional stress starts to decrease
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at the strain εx = 0.3.

Figure 6.7(d) shows the comparison of peridynamic material behavior at the macroscopic

level to the experimental result of Weldox 460 E steel presented in [21]. The Weldox 460

E steel has Young’s modulus E = 200 GPa and the yield stress of 490 MPa, which are

the same as the values that we use to define the material model for peridynamic bonds.

The peridynamic model demonstrates close agreement with the experimental results before

yielding, but the flow stress of the peridynamic model is larger than the experimental results

due to the scale of the constitutive model defined at the bond level for peridynamics. Strain

εx distributions by calculating the average bond stretches within the grid width ∆x as nodal

strains are plotted in Figure 6.8. As the displacements at boundary regions increase, bonds

in the peridynamic model first yield and then break as the bond stretch reaches the critical

value s0 = 0.5. Note that if the state-based peridynamics [156, 181, 58, 59] is used with a

proper constitutive model in the classical theory, better agreement with the experimental

results in the macroscopic material properties might be obtained.
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Figure 6.7: (a) Constitutive model defined for peridynamic bonds; (b) macroscopic material
response of the peridynamic bar (strain εx in the range of 0.00 to 0.05); (c) macroscopic
material response of the peridynamic bar; (d) comparison of peridynamic material behavior
at the macroscopic level to the experimental result of Weldox 460 E steel (strain rate in the
range of 0.00074 s−1 to 1522 s−1) presented in [21].
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Figure 6.7 (cont’d)
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(a) (b)

(c) (d)

Figure 6.8: Strain εx contour: (a) boundary displacement ux = 0.12 mm; (b) boundary
displacement ux = 0.50 mm; (c) boundary displacement ux = 1.00 mm; (d) boundary
displacement ux = 2.50 mm.
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rigid wall
x

projectile

y

Figure 6.9: Impact between two rigid bodies.

6.4.2 Rigid-body impact

In order to verify the contact algorithm, a rigid-body impact problem shown in Figure 6.9

is examined. The length of the cylindrical projectile is 80 mm, and the diameter is 20 mm.

The mass of the rigid projectile is 0.197 kg, and the initial velocity is vi = −120 m/s.

For the sake of detecting penetration and calculating the penetration length, the cylindrical

projectile is modeled with eight-node solid elements, and the bottom surface of the projectile

is comprised of 48 quadrilateral segments. The rigid wall is discretized into nodes with a

uniform Cartesian grid of 1.5 mm in width. The nodes in the rigid wall after discretization,

which serve as slave nodes, are constrained in all degrees of freedom during the calculation,

and the calculation time step dt is set to 5× 10−8 s.

The displacement of the projectile is plotted in Figure 6.10(a). The maximum penetration

depth into the rigid wall is around 0.20 mm, and then the projectile is gradually bounced

up by the contact forces. As indicated in Figure 6.10(b), the final velocity of the projectile

after impact is v = 120.01 m/s, which is very close to the analytical value v = 120 m/s by

considering the conservation of kinetic energy. Hence, the proposed contact-impact procedure
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is validated for this rigid-body impact problem.
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Figure 6.10: (a) Displacement of the projectile and (b) velocity of the projectile.
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6.4.3 Ballistic perforation

The ballistic penetration of a plate impacted by a blunt-nosed cylindrical projectile is ex-

amined for benchmarking. The blunt-nosed cylindrical projectile has the mass of 197 g,

diameter of 20 mm, and length of 80 mm. The plate dimensions are taken to be 60 mm

in length, 60 mm in width, and 12 mm in thickness. The density of the steel plate is

8000 kg/m3, Young’s modulus is 200 GPa, and the yield stress is 490 MPa, which are the

same as material properties of Weldox 460 E steel. The ballistic penetration of Weldox 460

E steel is studied in [24], where a 12 mm thick plate is clamped in a rigid frame with the

inner clamp diameter of 500 mm. Due to the high computational cost, we cannot afford

modeling of the plate with the same in-plane dimensions as in the experiment in [24].

Figure 6.11: Modeling of a peridynamic plate impacted by a cylindrical projectile.

The target steel plate is modeled using peridynamics as shown in Figure 6.11. The
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constitutive model at the bond level is defined as perfect plasticity such that the yield

stretch sy is 0.00245, and the critical stretch s0 is set to 0.5. The horizon is chosen to be

δ = 3.0 mm, and the grid spacing is ∆x = 1.5 mm. A finer grid spacing might be utilized, but

the corresponding computational cost will increase significantly. The projectile is modeled as

a rigid body with 48 eight-node solid elements as shown in Figure 6.11. In the simulations,

four lateral surfaces of the plate are constrained in x, y, and z directions. The computational

step is set to dt = 1× 10−7 s.

Initial velocity vi Residual velocity vr

265 m/s 33.12 m/s
280 m/s 68.67 m/s
300 m/s 114.97 m/s
330 m/s 161.47 m/s
370 m/s 232.75 m/s
400 m/s 254.84 m/s

Table 6.2: Numerical results of residual velocities.

Displacements of the projectile with different initial velocities are shown in Figure 6.12(a).

With the initial velocity vi = 250 m/s, the projectile indents the plate without perforation.

The maximum indentation depth is 6.2946 mm at the time t = 67 µs, and then the projectile

bounces back . The indentation formed by impact is shown in Figure 6.13, and a large part

of the plate is deformed by the indentation.

By performing a set of numerical experiments, the ballistic limit velocity is found to

be 261.4 m/s, which is larger than the value of 184.5 m/s determined by the experiments

presented in [24]. A few reasons can be considered herein. First, it has been found that the

ballistic limit velocity is sensitive to the mesh size in the finite element analysis [21], and

the numerically determined value of the ballistic limit velocity converges to the experimental

value as the number of elements over the plate thickness increases [21]. Therefore, we might
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anticipate that the numerically determined ballistic limit velocity would be closer to the

experimental result if a smaller grid spacing ∆x is used, which, however, would incur excessive

computational cost. Second, as indicated in Figure 6.7, the bond-based peridynamic model

demonstrates a larger increase in the flow stress beyond the yield point than the experimental

result. To yield better agreement with the experimental result in the ballistic limit velocity,

further investigation of the material model using the state-based peridynamics is required

in the future. Third, the in-plane dimensions of the plate in the numerical simulations are

different from those in the experiments by [24].

For the perforations by blunt projectiles, the analytical model [145] has been proven to

be effective to estimate residual velocities. To compare numerical results with analytical

solutions of the projectile residual velocity, the approximated mass ratio a given in Equa-

tion (6.14) is calculated to be 0.87. By substituting a = 0.87 and vbl = 261.4 m/s into

Equation (6.13), analytical values of the residual velocity can be obtained. The numerically

determined residual velocities for the projectile with different initial velocities are summa-

rized in Table 6.2, and the comparison of the numerical results to the analytical solutions

of the residual velocity is plotted Figure 6.12(b). Since the analytical model is derived by

considering the conservation of energy and momentum, the numerical results of residual ve-

locities for the projectile with the initial velocities beyond the ballistic limit still demonstrate

good agreement with the analytical model, regardless of the higher ballistic limit velocity in

the numerical simulations.
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Figure 6.12: (a) Projectile displacement and (b) residual velocity.
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(a) (b)

Figure 6.13: Indentation formed by the projectile with an initial velocity vi = 250 m/s: (a)
bird’s-eye view of the plate; (b) lateral view of the plate.
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The deformed target plates during perforation are plotted in Figures 6.14 and 6.15 for the

initial velocities vi = 300 m/s and vi = 400 m/s, respectively. The overall physical behavior

of the perforation process is captured by the numerical simulations. In the first phase, the

projectile indents the target, and the bending of the plate dominates. Then, the mass in

front of the projectile is accelerated by the contact forces. Subsequently, damages occur

near the shear zone surrounding the projectile after the peridynamic bond stretches reach

the critical value. In the last phase, a plug is formed after severe indentation. The shape

of the plug in numerical simulations is similar to the typical experimental observations. By

comparing Figures 6.14 and 6.15, it is observed that as the initial velocity increases, the

bulge on the rear side of the plate becomes localized, and the radius of deformation outside

of the indented area is reduced. This observation agrees with the investigation presented in

[24].
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Perforation of the plate by the projectile an the initial velocity vi = 300 m/s:
(a) t = 30 µs, bird’s-eye view of the plate; (b) t = 30 µs, lateral view of the plate; (c)
t = 70 µs, bird’s-eye view of the plate; (d) t = 70 µs, lateral view of the plate; (e) t = 120 µs,
bird’s-eye view of the plate; (f) t = 120 µs, lateral view of the plate.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15: Perforation of the plate by the projectile an the initial velocity vi = 400 m/s:
(a) t = 30 µs, bird’s-eye view of the plate; (b) t = 30 µs, lateral view of the plate; (c)
t = 70 µs, bird’s-eye view of the plate; (d) t = 70 µs, lateral view of the plate; (e) t = 120 µs,
bird’s-eye view of the plate; (f) t = 120 µs, lateral view of the plate.
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6.5 Summary

In this chapter, a numerical scheme is proposed for the modeling of contact of a peridynamic

domain and a non-peridynamic domain (e.g. conventional finite elements and rigid bodies)

under high velocities. Starting with the peridynamic theory, an approach for the three-

dimensional inverse isoparametric mapping based on Taylor’s series is then summarized.

The inverse isoparametric mapping is effective to determine whether a slave node is within a

solid element by determining the natural coordinates of the slave node. A contact algorithm

for the calculation of the contact point and the penetration depth is then explained. For

transient analyses by the explicit time integration, a penalty method is employed to enforce

displacement constraints on the contact surfaces. The contact forces applied on the slave

node and the master segment are proportional to the penetration depth.

The contact-impact problems are investigated numerically. First, the material behavior

of a three-dimensional peridynamic model is examined. The results indicate that the macro-

scopic material behavior of a peridynamic bar is different from the material model defined

at the bond level for peridynamics. Then the impact of a rigid projectile into a rigid wall

is studied. By comparing the kinetic energy before and after impact, the proposed numer-

ical scheme for the contact-impact procedure between two rigid bodies is validated. The

last numerical example is the perforation of a steel plate by a blunt-nosed cylindrical rigid

projectile. The plate, where severe damage develops during perforation, is modeled using

peridynamics. Indentation is formed if the initial velocity of the projectile is smaller than

the ballistic limit velocity, and the value of ballistic limit velocity is determined by running

a set of numerical experiments. Compared with the ballistic limit velocity to perforate the

plate investigated by experiments in [24], the numerically determined value of the ballistic
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limit velocity is larger due to the differences in the macroscopic material properties and the

geometry of the target plate. For the projectile with an initial velocity beyond the ballistic

limit velocity, a comparison of numerical results to the analytical solutions of the residual

velocity is conducted, and good agreement is observed. The overall physical behavior of

the perforation process is captured by the numerical simulations employing the proposed

contact-impact procedure.
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Chapter7

Modeling of Porous Brittle Solids us-
ing Peridynamics

7.1 Introduction

Heterogeneous materials consist of more than one materials, insoluble in one another [26].

A finite and heterogeneous solid made of m subdomains is shown in Figure 7.1. Heteroge-

neous materials have been widely used throughout human history from concrete, the earliest

application of which was by Romans [119], to composites used by the aircraft industry.

Typical heterogeneous materials include, for example, metal alloys, polycrystalline, compos-

ites, and porous media. The macroscopic material behaviors of heterogeneous materials are

determined by the size, shape, properties, and spatial arrangement of constituents [96].

Ω Ω

Ω
Ω

1 2

n
m

Figure 7.1: Finite and heterogeneous solid [169].

As a type of heterogeneous material, porous materials comprise a solid phase and pores
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[105]. It has been found that the porosity has a significant effect on the elastic modulus of

materials. Spriggs [163] proposed an empirical equation describing the effect of porosity on

the elastic modulus of solids. Wang [177, 178] obtained a theoretical relationship between

the porosity and Young’s modulus by considering a cubic stacking pattern and Young’s

modulus of porous alumina with different pore structures. Phani and Niyogi [137] derived a

semi-empirical equation for the porosity dependence of Young’s modulus of brittle solids.

Similarly, the porosity also has significant effects on the strength of materials. In a com-

mentary on the investigations by Ryshkewitch [152], Duckworth [43] suggested an expression

for the influence of porosity on the strength. Considering the combined effect of porosity

and grain size, Knudsen [95] developed an empirical equation. Hasselman [74] proposed

relations between effects of porosity on the strength and Young’s modulus of elasticity of

polycrystalline materials. Vardar et al. [175] investigated the effect of spherical pores on the

strength of a ceramic material, and compared the experimental results of brittle strength

and the predictions using the Weibull probabilistic approach. Krstic [99, 100] proposed an

analytical model describing the strength degradation of brittle solids containing spherical

pores and annular flaws, and developed a unified approach to determine the effect of mi-

crostructure on fracture of brittle materials. An evaluation of strength-porosity relationships

was presented by Dutta [45], and a semi-empirical relationship for the assessment of strength

by Young’s modulus was proposed. Wagh et al. [176] proposed an analytical model incorpo-

rating connected-grain model to describe the dependence of flexural strength of ceramics on

the porosity. Nielsen [129] studied relations between the stiffness and the strength of porous

materials considering the pore geometry. Kearsley and Wainwright [89] studied the effect

of porosity on the strength of foamed concrete. Rössler and Odler [149] investigated the

relationships between the porosity and the strength for a series of cement paste specimens.
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Kumar and Bhattacharjee [102] experimentally studied the in situ concrete, and presented

an empirical model relating in situ strength of concrete with the porosity, pore size distri-

bution, and binder content. Weiler et al. [184] used the X-ray tomography to examine the

magnesium alloy, and found that the tensile properties are mainly determined by the local

areal fraction of porosity.

In many engineering applications, it is necessary to determine the macroscopic charac-

teristics of heterogeneous materials. However, the complexities in the material properties

and microstructural characteristics make it difficult to study heterogeneous materials. The

simplest method is to homogenize properties of a heterogeneous material as an average over

the properties of the constituents [96]. With the development of computational methods, re-

search progresses for the analyses of heterogeneous materials have been made. For example,

Sumi and Wang [169] used the finite element method to study the growth of non-collinear

cracks in a two-dimensional heterogeneous solid. Due to the length scales involved in het-

erogeneous materials, it is not possible to generate meshes that can accurately represent the

microstructure. Therefore, multi-scale modelings are promising alternative approaches. For

example, the spatially periodic representative volume element has been applied to study the

large-strain mechanical responses of voided polycarbonate [162]. Kouznetsova et al. [96, 97]

presented a micro-macro strategy for the modeling of heterogeneous materials at large de-

formations.

In this chapter, peridynamics is employed to study brittle materials containing pores.

First, analytical and empirical equations describing the effect of porosity on Young’s mod-

ulus and strength of solid materials are summarized. A few numerical examples are then

presented. Specimens containing randomly distributed cubic voids with varying amounts

of porosity are studied. The degradation of Young’s modulus and strength with increasing
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porosity in the numerical results is compared with analytical and empirical models. Brit-

tle solids containing spherical voids are studied for different porosities, and a comparison

between numerical results and analytical solutions is conducted.

7.2 Theory

For porous brittle solids, the porosity P can be described using the volume fraction porosity

as

P =
Void volume

Total volume
. (7.1)

The empirical equation, proposed by Spriggs [163], for the prediction of Young’s modulus at

the porosity value of P has been widely used as

E = E0e
−bP , (7.2)

where E0 is the zero-porosity Young’s modulus, and b is an empirical constant. Considering

the densification of spherical particles in a simple cubic array, Wang [177, 178] derived the

theoretical solution of Young’s modulus of porous materials. The relative density X, which

equals 1− P , is described by [177]

X(θ) =



















π
12

(

9
cos2θ

− 3− 4
cos3θ

)

, for θ 6 45◦

(tan2θ − 1)1/2 + 1
4cos3θ

∫ sin−1(
√
2cosθ)

θ [sin3φ(π − 4α + 2sin2α)]dφ, for θ > 45◦
,

(7.3)

where θ is the angle of coalescence, and α = cos−1(cosθ/sinφ). θ = 0◦ if the sphere is

inscribed within the unit cell, and θ = 54.74◦ for the 100% density. For the ideal case in
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which the load is applied on a perfect cubic array, the normalized Young’s modulus is given

as [177]

E

E0
(θ) =



















1
4cosθ

[

1
π ln

tan(π/4−θ/2)
tan(θ/2)

+
∫ π/2
π/2−θ

dφ
sinφ(π−4α+2sin2α)

]−1
, for θ 6 45◦

[

(tan2θ − 1)1/2 + 4cosθ
∫ sin−1(

√
2cosθ)

θ
dφ

sinφ(π−4α+2sin2α)

]−1

, for θ > 45◦
.

(7.4)

Figure 7.2(a) shows the value of the relative density that is a function of the angle of coa-

lescence, and Figure 7.2(b) shows Young’s modulus of porous materials as a function of the

relative density by numerically evaluating Equations (7.3) and (7.4), respectively. Based on

the theoretical solution, Wang [177] proposed an approximated solution as

E = E0e
−(bP+cP2), (7.5)

where b and c are material constants.

The dependence of strength on the porosity has been represented by a few empirical

equations. Based on experimental data by Ryshkewitch [152], Duckworth [43] described the

relationship as

σf = σ0e
−bP . (7.6)

where σ0 is the zero-porosity strength, and b is a constant. Dutta et al. [45] proposed an

empirical equation as

σf = σ0(1− P )m, (7.7)

where m is a constant. Krstic [99] derived the strength of a solid containing spherical voids
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Figure 7.2: (a) Relative density versus angle of coalescence and (b) theoretical solution of
Young’s modulus of porous materials.
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as

σf =

√

πγE0

D(1− ν2)(1 + s/R)

×
{

1 +
4P (1− ν2)

π
×
[

2(1 + s/R)3 +
3

2(7− 5ν)(1 + s/R)2
+

(4− 5ν)

2(7− 5ν)

]}−1/2

,

(7.8)

where γ is the fracture surface energy of a crack which equals Gf/2 for ideally brittle mate-

rials [5], D and R are the diameter and radius of spherical pores respectively, and s is the

annular flaw size as shown in Figure 7.3.

s D s

Figure 7.3: Spherical pores with annular flaws [99].

7.3 Numerical implementation

For numerical simulations, voids are generated on the discretization grid of a peridynamic

domain. First, the Fortran intrinsic function random_seed is used to initialize the random

seed based on the system’s time. Then the Fortran intrinsic function random_number is
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invoked to return an array consisting three numbers from the uniform distribution over the

range of 0 to 1. By multiplying the number of discretization nodes in x, y, z directions and

rounding to integers, we can obtain the position to generate a void in the discretization grid.

A spherical void can be generated by deleting peridynamic nodes within the spherical radius

with the center determined by random numbers. A number of iterations are performed till

the volume fraction is close to the desired value of porosity within a tolerance. The algorithm

to generate spherical voids is summarized in Table 7.1.

1. Discretize the peridynamic domain.
2. Call random_seed to initialize the random seed.
3. Call random_number to generate three random numbers in the range of 0 to 1.
4. Determine the center to generate a spherical void in the discretization grid.
5. Determine the distance to the nearest void and specimen boundaries.
6. Go to step 3 if the distance determined in step 5 is less than the predefined

value.
7. Delete all nodes within the radius of the spherical voids.
8. Calculate the volume fraction.
9. Go to step 3 to generate additional spherical pores if the volume fraction is

less than the desired value of porosity.

Table 7.1: Algorithm to generate randomly distributed spherical voids.

7.4 Case studies

7.4.1 Cubic voids

Peridynamics is employed to study material behaviors of a porous brittle material. The

material properties of the non-porous body are taken to be Young’s modulus E0 = 70 GPa

and the critical bond stretch s0 = 0.05. Consider a three-dimensional model of dimensions

25.5 mm × 25.5 mm× 25.5 mm. The size of the horizon is set to δ = 1.0 mm, and the
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peridynamic model is discretized with the grid spacing ∆x = 0.5 mm, which ends up with

51×51×51 peridynamic nodes. The horizon to the grid spacing ratio is selected to be 2 since

it is good to match the macroscopic material behavior in the elastic range. The numerical

simulations are conducted on a workstation with an NVIDIA C1060 GPU. A constant ve-

locity of 10 mm/s is applied on boundary regions at both ends of the specimen for tensile

loading, and the width of each boundary region is 2.5 mm. For the numerical calculation,

the time step dt is set to be 5× 10−8 s.

In order to introduce cubic voids into the peridynamic model, the random number gen-

erator is utilized to select a number of peridynamic nodes so that the volume fraction of

selected nodes equal to the desired porosity as described by Equation (7.1). The flowchart

is similar to the algorithm described in Table 7.1. Voids can be introduced by either delet-

ing the selected peridynamic nodes or deleting all peridynamic bonds connecting to those

nodes. In the algorithm to generate randomly distributed cubic voids, it is prescribed that

no adjacent peridynamic nodes are deleted simultaneously. Therefore, only cubic voids are

generated in the peridynamic model. Figure 7.4 shows the specimen that contains 5% cubic

voids.

Porosity Young’s modulus (GPa) Tensile strength (MPa)

0% 71.7742 281.3537
5% 67.1853 236.0355
10% 62.1410 210.6670
15% 57.7252 188.7893
20% 52.7812 165.6249

Table 7.2: Young’s modulus and tensile strength of specimens containing cubic voids.

The cross-sectional stresses are plotted in Figure 7.5 for peridynamic models with varying

amounts of porosity. For the nonporous model, the resultant Young’s modulus by calculating
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Figure 7.4: Cubic voids in a specimen of dimensions of 25 mm×25 mm×25 mm. Porosity
P = 5% .

the tangent of the stress-strain curve is E = 71.87 GPa, which is close the exact Young’s

modulus of the material. The strength of the nonporous model is σf = 280.97 MPa. As the

porosity P increases, both Young’s modulus and strength decrease as shown in Figure 7.5.

Young’s moduli and strengths for different porosities are summarized in Table 7.2. The effect

of porosity on Young’s modulus is plotted in Figure 7.6(a). For the comparison, the empirical

equation given in Equation (7.2), the approximate solution presented in Equation (7.5), and

the theoretical solution given in Equation (7.4) are utilized. As indicated in Figure 7.6(a),

the numerical results are in good agreement with empirical, approximate, and theoretical

solutions. Similarly, the effect of porosity on the strength is plotted in Figure 7.6(b). The

numerical results are compared with the solutions by fitting empirical models given in Equa-

tions (7.6) and (7.7) to the numerical data. Close agreement between the numerical results

and empirical models is observed in Figure 7.6(b).
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Figure 7.5: Cross-sectional stress versus strain of specimens containing cubic voids.
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Figure 7.6: (a) Normalized Young’s modulus and (b) normalized tensile strength of specimens
containing cubic pores.
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7.4.2 Spherical voids

In the following, peridynamic models that contain spherical pores are examined for different

porosities. The dimensions of the peridynamic model are 55 mm in length, 35 mm in width,

and 35 mm in thickness. The grid spacing ∆x is 0.5 mm, and the horizon δ is set to be 2∆x.

Spherical pores are randomly generated within the boundary of peridynamic models, and

specimens containing 5%, 10%, 15%, and 20% porosities are demonstrated in Figure 7.7.

The diameter of spherical pores is set to D = 11∆x. Young’s modulus of nonporous body

is E0 = 70 Gpa, and Poisson ratio is 0.25. For the computation, time step dt is set to be

5× 10−8 s. A constant velocity of 10 mm/s is applied on boundary regions at both ends of

specimens for tensile loading, and the width of each boundary region is 2.5 mm.

Figure 7.8 shows the cross-sectional stress versus strain imposed by the boundary dis-

placement for models of different porosities. The resultant Young’s modulus of the non-

porous model is 71.65 GPa, and the strength is σf = 266.56 MPa. As the porosity increases,

both Young’s modulus and strength decrease as shown in Figure 7.8. Young’s moduli and

strengths of peridynamic models for different porosities are summarized in Table 7.3. In Fig-

ure 7.9(a), the normalized Young’s modulus is compared with the theoretical solution given

in Equation (7.4) and the fitted curves by Spriggs’ empirical relation given in Equation (7.2)

and Wang’s approximated solution given in Equation (7.5). As indicated in Figure 7.9(a),

Young’s moduli of peridynamic models for different porosities show close agreement to the

theoretical solutions and the fitted curves using empirical and approximate models. The

tensile strength of peridynamic models containing spherical pores is compared to the theo-

retical solution given in Equation (7.8). Note that a flaw size of s is assumed at pore edges

in Equation (7.8). Theoretical solutions considering flaw sizes of 0, ∆x and 2∆x are plotted
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in Figure 7.9(b). Since the horizon δ = 2∆x is utilized for the peridynamic model, we might

anticipate that s = ∆x might yield the best agreement to the theoretical solution, which is

confirmed in Figure 7.9(b).

Porosity Young’s modulus (GPa) Tensile strength (MPa)

0% 71.6015 272.1414
5% 66.0444 167.2611
10% 63.1007 159.1419
15% 57.8934 145.0795
20% 54.2525 138.0373

Table 7.3: Young’s modulus and tensile strength of specimens containing spherical voids
within the boundary.

Similar to the case that spherical voids are generated within the boundary as shown in

Figure 7.7, the spherical voids intersecting with boundaries can also be generated as shown

in Figure 7.10. The stress-strain curves with different porosities in the peridynamic model

are plotted in Figure 7.11, which indicates that both Young’s modulus and strength decrease

as the porosity increases. The resultant Young’s modulus and strength are summarized in

Table 7.4. Figure 7.12(a) shows the comparison of the numerical results to the analytical and

empirical models in the degradation of Young’s modulus, and good agreement is observed.

The trend of decreasing strength with increasing porosity is plotted in Figure 7.12(b). The

numerical results are compared with the theoretical values by solving Equation (7.8). As

demonstrated in Figure 7.12(b), the numerical results are close to the theoretical values

considering the annular flaw size in the range of s = 1∆x to s = 2∆x.

By comparing Tables 7.2 and 7.3 which summarize Young’s moduli and tensile strengths

for solids containing cubic and spherical voids respectively, the effect of the shape of voids on

material properties can be found. The difference in Young’s modulus of models containing

cubic and spherical pores is inconsiderable. On the other hand, tensile strengths of models
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Porosity Young’s modulus (GPa) Tensile strength (MPa)

0% 71.6015 272.1414
5% 66.8800 164.3560
10% 62.9406 138.5337
15% 59.0915 136.4608
20% 54.3961 129.4621

Table 7.4: Young’s modulus and tensile strength of specimens containing spherical voids
intersecting with boundaries.

containing spherical pores decrease. Similarly, by comparing Tables 7.3 and 7.4, we can

notice that the difference in Young’s modulus of specimens containing spherical pores in-

tersecting with boundaries is insignificant compared to the results of spherical pores placed

within the boundaries. On the other hand, the strength decreases if spherical pores having

intersections with the boundaries as indicated by comparing Figures 7.9(b) and 7.12(b).
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(a)

(b)

(c)

(d)

Figure 7.7: Spherical pore distributions in the specimen and distributions at the cross section
along the longitudinal direction. Porosities (a) P = 5%, (b) P = 10% , (c) P = 15%, and
(d) P = 20%. Pores are generated within the specimen boundaries.
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Figure 7.8: Cross-sectional stress versus strain of specimens containing spherical pores within
the boundary.
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Figure 7.9: (a) Normalized Young’s modulus and (b) tensile strength of specimens containing
spherical pores within the boundary.

153



(a) (b)

(c) (d)

Figure 7.10: Spherical pore distributions in the specimen. Porosities (a) P = 5%, (b)
P = 10% , (c) P = 15%, and (d) P = 20%. Pores intersect with specimen boundaries.
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Figure 7.11: Cross-sectional stress versus strain of specimens containing spherical pores
intersecting with boundaries.
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Figure 7.12: (a) Normalized Young’s modulus and (b) tensile strength of specimens contain-
ing spherical pores intersecting with boundaries.
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7.5 Summary

In this chapter, peridynamics is employed to study brittle materials containing pores. Start-

ing with analytical and empirical equations describing the effect of porosity on Young’s

modulus and the strength of solid materials, an algorithm is then introduced for generating

cubic and spherical voids in discretized peridynamic models using the pseudorandom number

generator.

Several numerical examples are given next. Specimens containing randomly distributed

cubic voids with different porosities are studied. As the value of porosity increases, Young’s

modulus decreases, and the trend of degradation shows close agreement with the empirical

models and the analytical solutions derived by considering the simple cubic stacking pattern.

The degradation of strength with increasing porosity conforms to the empirical models.

Brittle solids containing spherical voids are then studied with varying amounts of porosity.

Two cases, spherical pores distributed inside the specimen boundaries and pores having

intersections with the boundaries, are examined. A comparison of numerical results to the

empirical models and the analytical solutions in the degradation of Young’s modulus is

conducted, and the differences are within a few percent. The degradation of strength in the

solids containing spherical pores is compared with the analytical solutions considering the

effect of pore size and pore volume fraction. It is found that numerical solutions are close

to analytical values if the size of the horizon is considered as the annular flaw extending

from the void surface. In general, peridynamics is successfully implemented to study porous

brittle solids.
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Chapter8

Conclusions and Recommendations

8.1 Conclusions

The primary focus of this research is development of the discretized peridynamics for solid

mechanics. The thrust of research on peridynamics provides an alternative theory to the

classical continuum mechanics that is directly applicable for numerical simulations of spon-

taneously formed discontinuities. The merit of peridynamics comes from the integration

used for the calculation of forces on material points. This is in contrast to the classical

theory in which partial derivatives are involved in the governing equation, and consequently

approaches based on the framework of classical continuum mechanics fail to be directly

applicable in the presence of singularities.

Chapter 3, Chapter 4, Chapter 5, Chapter 6, and Chapter 7, each has a different area

within the framework of bond-based peridynamics. First, a connection between the classi-

cal elasticity and discretized peridynamics is established. By introducing the peridynamic

stress corresponding to the classical (local) stress, calculating the corresponding peridynamic

Young’s modulus, and equilibrating the peridynamic Young’s modulus with the conventional

Young’s modulus, micromoduli for one- and three-dimensional models are derived. The mi-

cromoduli derived in this research are referred to as numerical micromoduli since the value

of micromodulus for a given horizon size is determined by numerical calculations on a dis-
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cretization grid. The numerical micromoduli are different from the analytical micromoduli

presented in [20, 49, 50] in that a finite number of peridynamic bonds are considered within

the horizon of a node in the numerical micromoduli. It is found that the one-dimensional

analytical micromoduli can yield the numerical micromoduli by substituting discretization

parameters into the analytical micromoduli. For three-dimensional models, numerical mi-

cromoduli converge to the analytical micromoduli as the ratio of the horizon to the grid

spacing increases. In the bond-based peridynamic theory, Poisson ratio ν is a fixed value of

1/4. For numerical simulations of an elastic body which has Poisson ratio not equal to 1/4,

a pairwise compensation scheme is introduced in this research. Compensation forces f̂ are

superposed in the directions perpendicular to the direction of the bond force f , resulting in

additional transverse deformations to simulate the effect of Poisson ratio other than 1/4. The

numerical results applying the proposed pairwise compensation scheme match the classical

(local) solutions in the material responses including the stress, the strain, back-calculated

Young’s modulus, and Poisson ratio.

The research-purpose peridynamics code is implemented in the NVIDIA graphics pro-

cessing unit (GPU) Tesla C1060 for the highly parallel computation. To the best of our

knowledge, it was the first implementation of peridynamics on a GPU. An algorithm sepa-

rating nested loops into independent loops is introduced to eliminate the loop dependency

in the peridynamics code for the efficient parallelization. For three-dimensional problems, a

significant speedup over the serial calculation on a CPU is achieved. With the high compu-

tational efficiency of GPU, numerical studies are conducted to investigate the responses of

brittle and ductile material models. Stress-strain behaviors with different grid sizes and hori-

zons are studied for a brittle material model. A comparison of stresses and strains between

finite element analyses and peridynamic solutions is performed for a ductile material. To
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bridge material models at different scales, a multiscale procedure is proposed. First, material

properties are retrieved from the macroscopic responses of the peridynamic model. These

retrieved properties are then used to modify the material model for finite element analyses.

By applying the proposed procedure, the differences between finite element analyses and

peridynamic solutions reduce substantially.

An approach to couple the discretized peridynamics and FEM is proposed to take advan-

tage of the generality of peridynamics and the computational efficiency of FEM. The coupling

of peridynamic and finite element subregions is achieved by means of interface elements. The

proposed method in this research is different from the coupling method implementing peri-

dynamics in a conventional finite element analysis code [115], the approach using overlapping

regions [94], the submodeling approach [2, 133], and the morphing strategy [113]. Depend-

ing on how coupling forces are subdivided to FE nodes in an interface element, two types

of coupling schemes, the VL-coupling scheme and the CT-coupling scheme respectively, are

discussed. In the VL-coupling scheme, coupling forces are subdivided among all FE nodes

comprising the interface elements. In the CT-coupling scheme, interfaces between peridy-

namic subregions and finite element subregions are defined in the reference configuration,

and coupling forces are subdivided only among FE nodes at interfaces. For one-dimensional

simulations, it is found that the CT-coupling scheme yields the solution very close to the

analytical solution in all the domain including the finite element subregion, peridynamic sub-

region, and interfaces. For three-dimensional simulations, it is observed that the CT-coupling

scheme is effective in resolving displacements normal to the interface of peridynamic and FE

subregions. On the other hand, the VL-coupling scheme is capable to preserve Poisson effect

at the interfaces. The proposed coupling approach is used to model the mixed mode fracture

in a double-edge-notched concrete specimen, and numerical predictions of crack paths show
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good agreement with the experimental result of crack patterns presented in [130].

A numerical scheme for the contact-impact procedure ensuring compatibility between a

peridynamic domain and a non-peridynamic domain is developed. The contact between a

discretized peridynamic domain and a non-peridynamic domain is modeled as a node-to-

surface type. A penalty method is used to enforce displacement constraints, and dynamic

analyses are performed by an explicit algorithm without iterations, which is different from

the contact method used in [115, 107]. In the numerical examples, the impact between two

rigid bodies is presented to validate the contact algorithm. The ballistic perforation of a

steel plate is investigated numerically. Good agreement between the numerical simulations

and the analytical model is found in the results of residual velocities. The physical process

of perforation is well captured in the simulations using the proposed contact-impact scheme.

Peridynamics is applied to study porous brittle materials. An algorithm is developed

to generate randomly distributed cubic voids and spherical voids for a given porosity. The

material behaviors at the macroscopic level including the resultant Young’s modulus and the

strength are studied for varying amounts of porosity. The comparison of numerical results to

the empirical models and the analytical solutions in the degradation of Young’s modulus is

conducted, and the differences are within a few percent. The degradation of strength in the

solids containing spherical pores is compared with the analytical solution in which the effect

of pore size and pore volume fraction are considered. It is found that the numerical solution

is close to the analytical value if the horizon size is considered as the annular flaw extending

from the void surface. In general, peridynamics is successfully implemented to study porous

brittle solids.
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8.2 Contributions

The contributions in this dissertation are summarized in the following:

• Connection between the classical elasticity and discretized peridynamics is established

in terms of peridynamic stress.

• Numerical micromoduli for one- and three-dimensional discretized models are derived.

• A pairwise compensation scheme is introduced for numerical simulations of materials

with Poisson ratio not equal to 1/4.

• The research-purpose peridynamics code is implemented in a GPU for highly parallel

computation, and a significant speedup is achieved.

• A multiscale procedure is proposed to bridge material models at different scales.

• An approach to couple the discretized peridynamics and the finite element method is

proposed, and two types of coupling schemes are investigated.

• The mixed-mode crack pattern is investigated using the proposed coupling approach.

• A numerical scheme for the contact-impact procedure ensuring compatibility between

a peridynamic domain and a non-peridynamic domain is developed.

• The physical process of perforation is well captured using the proposed contact-impact

scheme.

• Peridynamics is employed to study porous brittle materials.
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8.3 Recommendations for future research

Compared with the classical theory, peridynamics is a relatively new development. While this

research has served to advance the development of peridynamics in establishing a connection

between the discretized peridynamic models and classical continuum mechanics, the high

performance computation of peridynamics, bridging material models at the peridynamic

bond level and the macroscopic level for finite element analyses, coupling peridynamics with

the conventional finite element method, the contact-impact procedure between a peridynamic

domain and a non-peridynamic domain, and applications on porous brittle materials, there

is considerable further research to be undertaken. The following are some aspects for further

research of peridynamics.

First, the focus in this research is the bond-based peridynamics. Since constitutive models

are defined at the bond level, the macroscopic material behavior might be different from the

material behavior at the bond level especially for plastic materials. In Chapter 4, a multiscale

approach is proposed to define a constitutive model for the finite element analysis based on

the macroscopic material behavior of a peridynamic model. But it is difficult to recast a

material model at the bond level based on the constitutive model in the classical theory, which

is dependent on the stress tensor. A generalized formulation of the bond-based peridynamics

is proposed by Silling et al. [156], which is referred to as the state-based peridynamics. A

force state T, which is similar to the stress tensor, is proposed, and constitutive models in

the classical theory are more likely to be implemented in the state-based peridynamic theory.

The force density acting on the material point x is defined by T−T′, where T′ is the force

state on the material point x′. Note that the direction of the force state T might be different

from the direction of the force state T′ in the state-based peridynamic theory as shown in
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Figure 8.1.

x
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Figure 8.1: State-based peridynamics [156].

The coupling approach of peridynamics with the finite element method has been proven

to be effective in Chapter 5. The numerical examples are validated under the quasi-static

condition. It is interesting to study coupling models subjected to the dynamic loading. Since

the stress waves have influence on the fracture behavior, particular attention is deserved

on the stress waves at interfaces of coupling models. Furthermore, the coupling approach

presented in Chapter 5 and the contact-impact procedure presented in Chapter 6 can be

combined together to further reduce the computational burden. For example, a hybrid

model discretized by peridynamic regions and finite element regions subjected to the impact

of another body can further take advantage of the generality of peridynamics in the presence

of continuities and the efficiency of FEM.

Most research efforts in the area of peridynamics have been concentrated on metals.

In Chapter 5, the mixed mode fracture in a concrete specimen is studied, and numerical

predictions of crack patterns are compared with experimental results. In the peridynamic
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model, the concrete specimen is modeled using an ideally brittle material model. With the

framework of porous materials presented in Chapter 7, a more realistic model of concrete

using peridynamics can be developed. In the modeling of porous materials, randomly dis-

tributed voids are generated by deleting peridynamic bonds. Instead, voids can be treated

as aggregates by introducing corresponding material properties, and bonds acting on voids

can be considered as interactions between aggregates and cement if weak bond forces are

introduced accordingly.
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AppendixA

Derivation of Three-dimensional Micro-
modulus

Applying the volume reduction scheme, we have

VJ = βJVJ = βJ (∆x)
3. (A.1)

The peridynamic bond force is a function of the bond stretch s as

f = c3s. (A.2)

The projection of bond force f into the x axis is given as

fx = f
|xJ − xI |

‖ξ‖ = c3s
|xJ − xI |

‖ξ‖ . (A.3)
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The peridynamic stress is expressed as

σx =
1

AI

NL
∑

J=1

(fxβJVJ )VI

=
1

AI

NL
∑

J=1

(

c3s
|xJ − xI |

‖ξ‖ βJVJ

)

VI

=
1

(∆x)2

NL
∑

J=1

(

c3s
|xJ − xI |

‖ξ‖ βJ (∆x)
3
)

(∆x)3

=

NL
∑

J=1

(

c3s
|xJ − xI |

‖ξ‖ βJ

)

(∆x)4.

(A.4)

Since the elastic body is subjected to the isotropic expansion, the stresses in y− and

z−directions are identical to the x−directional stress σx, we have

σy = σz = σx. (A.5)

By applying Hooke’s law of linear elasticity, the peridynamic Young’s modulus Epd can be

obtained as

Epd =
σx
s

− ν(σy + σz)

s

=
σx
s

− 2σx
4s

=
σx
2s

=
1

2s





NL
∑

J=1

(

c3s
|xJ − xI |

‖ξ‖ βJ

)

(∆x)4





=
c3
2





NL
∑

J=1

( |xJ − xI |
‖ξ‖ βJ

)

(∆x)4



 .

(A.6)
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Setting peridynamic Young’s modulus equal to the exact Young’s modulus of the material,

we have

Epd = E. (A.7)

The three-dimensional micromodulus c3 is obtained as

c3 =
2E





NL
∑

J=1

( |xJ − xI |
‖ξ‖ βJ

)

(∆x)4





. (A.8)
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AppendixB

Derivation of Modified Peridynamic Young’s
Modulus

The modified peridynamic Young’s modulus Êpd should be determined based on Epd to

keep the strain identical. The longitudinal strain in x−direction in Figure 3.11 equals the

strain in Figure 3.10, which is written as

σx
Epd

=
σx

Êpd
− 1

4

(

σ̂y

Êpd
+

σ̂z

Êpd

)

. (B.1)

The strains in y− and z−directions also need to be identical to the strains in the original

peridynamic model shown in Figure 3.10. Therefore, the equilibrium of the strain εy is

expressed as

−ν σx
Epd

=
σ̂y

Êpd
− 1

4

(

σx

Êpd
+

σ̂z

Êpd

)

. (B.2)

Since the compensation forces are identical in all lateral directions perpendicular to the

pairwise force f , the lateral stresses are equal as

σ̂y = σ̂z. (B.3)
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Substituting Equation (B.3) into Equation (B.1), we have

σx
Epd

=
σx

Êpd
− 1

2

σ̂y

Êpd
. (B.4)

By multiplying Êpd on both sides, Equation (B.4) is written as

Êpd
σx
Epd

= σx −
1

2
σ̂y. (B.5)

Substituting Equation (B.3) into Equation (B.2), we have

−ν σx
Epd

=
3

4

σ̂y

Êpd
− 1

4

σx

Êpd
. (B.6)

By multiplying Êpd on both sides, Equation (B.6) is written as

−Êpdν
σx
Epd

=
3

4
σ̂y −

1

4
σx. (B.7)

Substituting Equation (B.5) into Equation (B.7), we have

−ν
(

σx −
1

2
σ̂y

)

=
3

4
σ̂y −

1

4
σx. (B.8)

The transverse lateral stress is expressed as

σ̂y =
1− 4ν

3− 2ν
σx. (B.9)
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By substituting Equation (B.9) and Equation (B.3) into Equation (B.1), the modified peri-

dynamic Young’s modulus is obtained as

Êpd =
5

6− 4ν
Epd. (B.10)
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AppendixC

Nonlinear Least Squares Method

Consider a data set consisting of n points (xi, yi), i = 1, 2, · · · , n. The model function is

given as f(x,β), where β consists of m adjustable parameters. A residual [1] is defined as

ri = yi − f(xi,β), (C.1)

and the least squares method is to the find the minimum of

S =
n
∑

i=1

ri
2. (C.2)

Since there is no analytical solution to a nonlinear least squares problem, the solution of the

adjustable parameter β needs to be determined by successive iterations as

βj
k+1 = βj

k +∆βj . (C.3)
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At each iteration, the model function can be linearized using the first-order Taylor’s series

about βk as

f(xi,β) = fk(xi,β) +
m
∑

j=1

∂f(xi,β)

∂βj
(βj − βj

k)

= fk(xi,β) +
m
∑

j=1

Jij∆βj ,

(C.4)

where Jij is the Jacobian matrix. The residual given in Equation (C.1) can be written as

ri = yi − fk(xi,β)−
m
∑

j=1

Jij∆βj

= ∆yi −
m
∑

j=1

Jij∆βj .

(C.5)

To find the minimum of the sum of squares of ri, the gradient of Equation (C.2) is set to

zero as

∂S

∂βj
= 2

n
∑

i=1

ri
∂ri
∂βj

= −2
n
∑

i=1

∂f(xi,β)

∂βj
ri

= −2
n
∑

i=1

Jij



∆yi −
m
∑

j=1

Jij∆βj





= 0.

(C.6)

Rearranging Equation (C.6), we obtain m linear equations

n
∑

i=1

m
∑

k=1

JijJik∆βk =
n
∑

i=1

Jij∆yi, (C.7)
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which can be written in the matrix form as

JJT∆β = JT∆y. (C.8)
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AppendixD

Newton-Raphson Method for Multi-dimensional
Nonlinear Systems

A multi-dimensional nonlinear system with N variables is given as

Fi(x1, x2, · · · , xN ) = 0 i = 1, 2, · · · , N. (D.1)

Using a vector x to denote values of xi and F to denote functions Fi, each function can be

expanded using Taylor’s series as [144]

Fi(x+ δx) = Fi(x) +
N
∑

J=1

∂Fi
∂xj

δxj +O(δx2). (D.2)

The matrix of partial derivatives is the Jacobian matrix as

Jij =
∂Fi
∂xj

. (D.3)

The Equation (D.2) can be rewritten in matrix form as

F(x+ δx) = F(x) + J · δx+O(δx2). (D.4)
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By keeping only the first order term and setting F(x+ δx) = 0, a set of linear equations to

calculate the increment of x can be obtained

J · δx = −F. (D.5)

The solution of x is updated by

xnew = xold + δx. (D.6)
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