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Introduction

Various intrinsic topologies which can be

introduced into a lattice have been defined by

Kantorovitdh (5), Birkhoff (2) and Frink (h),

and it is with these that the present investigation

is concerned. The thesis is divided into three

chapters. The first consists, for the most part, of

basic definitions and well known theorems concern-

ing lattice theory, general topology and intrinsic

tepologies in lattices, while the second and third

chapters contain an exposition of the results of this

’thesis. These results are summarized on pages 16 and 17

after adequate terminology has been introduced. Mainly

they deal with the Hausdorff charadter of the intrinsic

topologies.

The various numbered problems referred to are from

a list which has been compiled by Garrett Birkhoff and

appears in (1). This book also contains proofs of the

various assertions about lattice theory which are made

in Chapter I. It is the standard reference for the

subject. The numbers in parentheses refer to the

bibliography at the end. An expression of the type

{II P(x)} , where x is an elanent of some given set E

and P(x) is a property of x, stands far the subset of E

consisting of all elements having property P.
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Chapter I Preliminary Results

A. Partly Ordered Sets and Lattices

A partly ordered set is a collection of elements

and a binary relation defined on‘ these elements which is

reflexive, asymmetric and transitive. If we denote the

relation by 5 then the three axioms for a partly ordered

set are:

(i) x _<_ 1

(ii) 15 y and y5 1 imply x=y

(iii) 15y andy5z implyx5z.

We may write y _>_ 1: instead of x 5 y and in this case we may

sayyisgzggxorxisgggggy. Ifx5yandxfy'we

write x < y and say that x is properly £13335 y. Given a

partly ordered set P we can construct another 1”, called

the dual of P, bys aying that 1 5y in P' if and only

ify511n P. Ifx5y, x=y ory5x, we saythatxand

y are comparable. Otherwise they are called incongaarable.

Most partly ordered sets which have mathematical

significance satisfy certain other axioms. The least

restrictive of the axioms we shall consider is the com-

positive axiom of E. H. Moore. A partly ordered set is

compositive or directed, as we say nowadays, if given

1 and y there exists 2 such that x 5 z and y 5 2. If a

directed set D is mapped into another set S by a mapping

f, we call the resulting pair (D,f) a directed system

taking values in S. A directed systan is thus a gen-
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eralized sequence, and in fact the use of diredted

systems is essential if the usual convergence statements

concerning sequences on the real line are to be carried

over to fairly general topological spaces. A terminal subset

T of a directed setais a collection of the type {1| 1 Z a}

for some a 6 D.

If {y} is any collection of elements of a partly

ordered set P we say that u is an pppg; pgu_r_1_d of {at}

if a, 5ufor all a, . Anelementuisalpggppppeppgufl

(or lub) of {at} if u is an upper bound and is under any

other upper bound. A lub is clearly unique. In a similar

manner we define lpggg; pgpgd and greatest 2.9.15.1: 19311:;

(glb). If a partly ordered set is such that any pair of

elements has a glb' and a lub it is called a lattice.

In this case the glb and lub of x and y are denoted

respectively by x n y and x u y . Clearly the Operations

n and U are idempotent, commutative, associative and

satisfy the absorption laws: 1 u (x n y)==x and x n (x u y)=x.

Also xgy if and only ifxu y=x or an y=y. Acne to one

mapping of one lattice onto another is called an isomor-

phic}. if it preserves lub's and glb's. A lattice is

called complete if any collection {at} of elements has a

glb and a lub. These are denoted respectively by Aa.

and Vat . In particular a complete lattice has a least

element, usually denoted by O, and a greatest element,

usually denoted by I. In a lattice with O, x and y are
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called disjoint if x n y = O. A lattice for which every

set having an upper bound has lub and similarly for

lower bounds is called conditionally gemplete. The real

line under the usual ordering is conditionally complete

but not complete. Any conditionally complete lattice can

be made complete by adjoining an O or an I or both.

Just as on the real line, we can define cpen and

closed intervals in a partly ordered set. The _o_p_e_;_1__

interval (x,y) where x < y is {2 l x < s < y) and the

closed interval [x,y] is {2 l x 5 z 5 y} . Also we can define

semi-infinite intervals in the usual way. [1,03] is {z I z __>_ x}

and [-0 ,x] is {2| 2 5 x} . In a lattice we can show

that the intersection of two closed intervals is a closed

interval. In fact if x 5 [a,b] and x E [c,d] , then

a5x5b andc5x5d.HenceaUc5x5bnd

or x e [a u c,b n (B and conversely this interval is

contained in each of the first two. It should be noted

that in general the intersection of two open intervals is

not an open interval and that in a partly ordered set the

intersection of two closed intervals need not be a closed

interval. In the future, unless otherwise stated, all

intervals will be assumed to be closed.

A lattice having the property that any two elements

are comparable is a 93513; and is referred to as being

simply ordered. Any subset of a partly ordered set which

is a chain in the induced ordering is called a chain of
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the partly ordered set. An infinite chain not isomorphic to

_the positive integers is called a transfinite squence. To

see that a lattice is conditionally complete it is not nec-

.essary to test every collection of elements for lub and glb.

Ronnie has shown (6; p 587) that a lattice is conditionally

complete if any chain having lower bound has a glb. An gpgg

in a lattice having an O is an element x such that O < y'5 x

implies y=x. In this case we say that x covers 0. In general

if s < y.5 x implies y=x, we say that x covers 2.

Any lattice which satisfies the distributive laws:

xu (yn z)=(xu y)n (xv z) and xn (yu z)=(xn y)u (xnz)

is called distributive. It should be noted that either of
 

these laws implies the other. Any collection of sets satis-

fies these laws and in fact it can be shown that this exam?

ple includes all distributive lattices in the sense of

isomorphism. A complete or conditionally complete lattice

may satisfy either or both of the infinite distributive laws:

(i) so (A b‘)=/\(aubd)

(11) .n(vb.)=V(.nb,).

Each of these implies both of the finite distributive laws

but a distributive, lattice may satisfy either, none or

both of the infinite distributive laws. In a non-conditionally

complete lattice (i) and (11) will be said to hold if the

required upper and lower bounds exist and are equal. If

(i) or (ii) holds, so does its extension to any finite

number of terms:



p-S

(1)'(AA‘s)U(ABbp)=AAB(Ia U be)

.(111'tha. )n (VBb. )=Vu(a.n b. ).

Here (at, B ) ranges over the Cartesian product set (A,B).

Each of these is a special case of the corresponding

doubly infinite distributive law but does not imply it.

(“H/cling um] =AFlVC unwifl

(11)"AC[V A: um] =VF[A C Huang

Each A; ={0l ...} is the index set of a collection of

elements of the lattice and B‘ranges over a set C. F is

the class of all single valued functions 1, assigning

to each 3‘ £0 a value?“ )e Ar, When C has two members,

(1)” and (11)" reduce to (i) and (ii) respectively.

Complete chains and the lattice of all subsets of any

given set are examples which satisfy (1)" and (11)”.

Such lattices are called completely distributive.

In a lattice with O and I, an element x' is called

a complement of x if xnx'=0 and xu 1'=I and a lattice

in which every element has a complement is called compl-

emented. A complemented distributive lattice is a

Boolean algebra. In a Boolean algebra the complements

are unique and are orthocomplements ie (a')'=a. Any

Boolean algebra is isomorphic to a Boolean algebra of

subsets where finite glb and lub and complementation

have their usual set-theoretic interpretation.
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Next we shall define several methods for building

new partly ordered sets out of given ones. The simplest

process is ordinal addition. If L and M are (non-over-

lapping) partly ordered sets, then their ordinal sum L am

is constructed out of the sum of the two sets by putting

the elements of L and M in their given order and then

putting every element of L under every element of M. In

general this sum is non-commutative and always the ordinal

sum of two chains is a chain. This definition can be

extended to an arbitrary number on non-overlapping sum-

mands. If M={m, m', m"...} is a lattice and {Lmlis a

collection of lattices indexed by it we can define:M I'm

as follows: l'm,5 I'm. if and only if m' < m" or m'=m" and

l'n,5 l'm. in I‘m" Later we will be interested in the

case where L and M are chains and in this case}:M In is

clearly a chain too. The ordinal product L0H is defined on

the Cartesean product set and here we say (l',m')5(l',m")

if and only if l'<l' or l'=l' and ml5 m”. Intuitively

for each point of L we “substitute” the partly ordered

set M.

A lattice ordered g_r_o_up (1-group) is a set which is a

lattice and a group in which the group translations are

compatible with the order relation. In other words x. _<_ y

implies a+ x+ b 5 a+ y+ b for all a and b. The group

operation is usually denoted by + even though it may be

non-commutative. The real numbers under addition are one

example. Another is the set of all real valued continuous
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functions defined on the unit interval. Here f'5 g means

that f(x)5 g(x) for all x in the interval.

B-nnsm

Filters were introduced by H.Cartan to facilitate

techniques of general topology and recently J.Schmidt

(8) has started a series of papers which will develop

the theory of filters as a separate discipline. The

results presented here without proof can be found in

N.Bourbaki (5; pp 52-h6) or in J.Schmidt (8). The

process used here to show the equivalence of filters

and directed systems is probably known but may not have

appeared in print.

If E is any set, a filter F on E is a collection of

subsets of E having the following preperties:

(i) the empty set D does not'belong to F

(ii) any set containing a set of F belongs to F

(iii) the intersection of any two sets of F belongs

to F.

Thus, for example, the collection of all subsets containing

a point x is a filter. It should be observed, however,

that the totality of all sets of a filter can.have empty

intersection. Ordinarily when working with filters it is

convenient to make use of the concept of a filter base.

A collection B of sets of a filter F is called ‘.22£2

of.F if every member of F contains a set of B. In this

case F is the collection of all subsets of E, each of
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which contains some set of B. In the above example the

point x is a base for filter described. In order that an

arbitrary collection B of sets be a base for some filter

it is necessary and sufficient that the intersection of

any two sets of B is non empty and contains a set of B.

Under a mapping of E into any set X the image of a

filter on E is in general a filter base on X. If E is

any directed set, the terminal subsets clearly form a

filter base, which is called the associated filter 2353,

A collection G of subsets of E is a system 9; generators
 

of a filter if the finite intersections of the sets of G

form a filter base. It is easy to see that this is the

case if and only if any pair of sets of G has non empty

intersection.

The set of all filters on E can be partly ordered

in the following manner. we say that a filter F' is

_fipgp than F" and write Ft: F' if every set of F” is a

set of F'. We say that a filter base B' is finer than

another B” if every set of B” contains a set of B'.

Two filter bases are called equivalent if they give

rise to the same filter. If{F.,} is a collection of

filters on E, it can be verified that those sets which

appear in each.F1 form a filter and that this filter,

called the intersection «(DJ , is the finest filter

which is coarser than each member of {13“} . This filter

intersection can be constructed in use following manner.
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For eachl.pick any set in.F; and take the union of the

sets so chosen. The totality of these unions is exactly

the filter intersection. Under the above partial ordering

the set of all filters on E does not form a lattice, nor

even a directed set, since in general there need not be

any filter finer than two given ones. If F' and F" are

two filters, they have a common refinement if and only

if every set of F' has non empty intersection with every

set of F", and in fact these intersections form the

coarsest filter finer than F' and F". Two filters which

do not have a common refinement are disjoint.

Finally we establish a correspondence between dir-

ected systems and filters which will be used in Chapter III.

If E is a directed set and f is a mapping of E into a

set X.then the images under f of the terminal subsets of

E form a filter base on X which we call the associated
 

filter:pgpg.'We now show that any filter base B={ba} can

be obtained in this manner. Looking at the sets of B

as abstract elements, we say by 5baif b, contains b, as

a set. Let us denote this directed set by B' and form

the ordinal product B'ouJ=B"={(ba,Jfi={ba,j}where j is an

integer. As usualieis the chain.formed by the positive

integers under their usual ordering. Let bf stand for

the subset.bg of I simply ordered in some manner. Then in

the directed setEZB. bg,J each element corresponds to a

point of x.and the terminal subsets of the resulting

directed system are exactly the sets of our filter base B.
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We Shall call this the associated directed system. If we

start with a transfinite sequence then the associated

filter base will be nested and conversely a nested filter

base has a transfinite sequence as associated directed system.

By a nested collection of sets we mean one for which every

set is comparable with every other set.

C. General Topology

The definitions and results used here are classical

although filters and directed sets have been employed

only since 1937. All of the results in this section

will be found in Bourbaki (3). A topological ppggg is

defined to be a set E together with a collection U of

its subsets, called open sets, which satisfies the fol-

lowing axioms:

(i) E and E are cpen

«(11) the intersection of any two open sets is cpen

(iii) the union of any collection of cpen sets is

open.

If a point is an cpen set it is called isolated. A

closed set is one whose compbement is cpen, and it is

easy to see that the closed sets have the following

properties:

(1) E and D are closed

(2) the union of any two closed sets is closed

(3) the intersection of any collection of closed

sets is closed.
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We could have just as easily axiomatized the closed sets

by (l), (2) and (3), and then (i),(ii), and (iii) would

appear as theorems if an open set were defined to be the

complement of a closed set. This duality permeates much

of general topology. Since we will be concerned mainly

with closed sets in the future, we state the important

definitions of basis and sub-basis in terms of these.

The corresponding definitions for cpen.sets can be ob-

tained by applying the duality principle. A collection

{’3 of closed sets is called alpgppg if any closed set

can be obtained by taking the intersection of suitable

members of In} . In order that {a} be a basis for the

closed sets of some topology it is necessary and suf-

ficient that {F‘} contain all finite unions of its mem-

bers. Thus starting with any collection of sets we can

get a topological space by first taking finite unions

and then arbitrary intersections. The collection of sets

we started with is called a.§ppfpgpip for the generated

topology. Needless to say, the topology will have little

mathematical significance unless there are sound a priori

reasons for the sets in the sub-basis to be closed.

The various topologies on a set E can'be compared in

much the same manner as filters. is say that a topology T'

is 3322; than T' if every open set of T” is an open set

of T'. Under this partial ordering it can‘be shown that

the tepologies form a complete lattice wherein the top
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_element is the discrete topology, for which every set

is open, and the bottom element has only E and fi'as

cpen sets.

For technical reasons it has been found convenient

to introduce the idea of a neighborhood of a point x.
 

We say that U is a neighborhood (nbhd) of x if U contains

an open set which tontains x. It iscflear that the nbhds

of x have the following properties:

(i) the totality of nbhds of x forms a filter

(ii) every nbhd of x contains x.

(iii) every nbhd U of x contains a nbhd V of x such

that U is a nbhd of every point of V.

Conversely if to each point of E we assign a collection of

sets satisfying (i),(ii) and (iii), we can call a set

"open? if it is a nbhd of each of its points and indeed

the resulting "open" sets do satisfy the cpen set axioms.

Property (iiifabove assures us that if we start with a

collection of nbhds, define open sets and then define

nbhds in terms of these open sets, the new nbhds will

be exactly those we started with.

We define convergence of a directed system in a

topological space in much the same manner as we define

convergence of an ordinary sequence on the real line. If

A?{d ...} is a directed set and x‘ a directed system, we

say that xu,converges to x if each nbhd of x contains a

terminal subset of x“ . A filter F on a t0pological space
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is said to converge to x if it is finer than the filter

of nbhds of x, and a filter base B is defined to converge

to x if the derived filter converges to x. This is

equivalent to saying that every nbhd of x contains a set

of B. It follows immediately from.the definitions that

a directed system converges to x if and only if its

associated filter base does, and that a filter base

converges to x if and only if its associated directed

system does.

One of the basic properties of sequences on the real

line is that a limit is unique if it exists, and further-

more it is easy to show that all convergent directed

systems and all convergent filters have unique limits too.

In an arbitrary topological space if we want directed

systems and filters to have unique limitggis necessary

and sufficient that the cpen sets have the following

property: given any distinct points x and y, there exist

disjoint open sets U and V each containing one of the points

This preperty is called the Hausdorff axiom, and a top-
 

ological space in which it is satisfied is called a

Hausdorff gpace. Obviously any topology finer than a

Hausdorff topology is Hausdorff too. It should be noted

that in general the existence of unique limits for

sequences alone is not enough to insure that a space

be Hausdorff. Many of the spaces encountered in the

sequel will not be Hausdorff, but all of them will

satisfy the following weaker separation axiom: a point is
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a closed set. A space satisfying this axiom is called T1.

Just as was the case with lattices, it is possible to

combine the axioms for a tepological space with the group

axioms in a significant way. A topological group is a
 

set E which is a topological space and a group and for

which the group operations are continuous in the topology.

That is if xay=z and W is any nbhd of it there exist nbhds

U of x and V of y such that U-V is contained in I where

U‘Y={u'vlue U and vs V}. Also given a nbhd W of 2 there

1 such that X-1 is contained in W. Oneis a nbhd X of 2.

property of tepological groups we will use is that if a

topological group isTl it is Hausdorff. This is easily

shown .

D. Topology _i_r_i Lattices

Now we shall introduce various intrinsic topologies

into partly ordered sets and especially lattices. It

is possible to define the ordinary topology of the real

line in several ways which depend only on the ordering.

First we can take the open intervals as a basis for the

cpen sets. Second we can take the closed intervals as a

subbasis for the closed sets and finally we can introduce

order convergence of sequences in the following manner.

A sequence xn order converges to x (xn-a x) if Amvn > mxn=

x=V A x . It is easily seen that on the real line
m n _>_ m n

this is equivalent to ordinary convergence. A set x is



p-15

called closed if xnex and xnfax imply'xsx . We could

Just as easily have defined order convergence to x of

an arbitrary directed set xuby requiring that \A*meg=xe

\/8 Aasz“ and then we would say that a set x is closed

if xas X and x, _.,x imply xe X. Both of these definitions

can be extended immediately to lattices. The statement

x.e-§.x carries with it the tacit assertion that the

various infinite upper and lower bounds in the definition

exist.

The tOpology using ordinary sequences was first

investigated by Kantorovitch (5) in the special case of

Abelian l-groups. He discussed applications to conver-

gence in measure and functions of bounded variation.

Sbmetimes this tOpology is named after him. The gen-

eralization to directed sets is due to Garrett Birkhoff

(2) and the tOpology so obtained is called.the 2392p

tepology of a lattice. Clearly the Kantorovitch topology

is finer than the order t0pology. If we use transfinite

sequences in the above we get a third type of convergence

topology, finer than the order topology but coarser than

the Kantorovitch topology, which we call the sequential
 

pgggg topology. Sbme of its properties have been det-

ermined by Ronnie in (6) and (7).

As for the tepologies based on open and closed in-

tervals, the former is discrete on the cardinal product

((x,y)5(x',y') if x5x' and y5y') of the real line with

itself and apparently it has not been considered worth

investigating. The topology using closed intervals
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was introduced by Frink (h) and is known as the interval

topology. This tepolcgy has the rather interesting

property of being compact on complete lattices and further-

more it agrees with the order tepology on the product of

a closed line segment with itself and in other cases.

It is easy to see that a closed interval of a lattice is

closed in the order topology, which means that the order

tepology is always finer than the interval topology. we

see at once that all of the topologies defined so far

are always T1.

We are now in a position to describe the results

of the present investigation. Birkhoff's Problem 76

asks if the order and interval t0pologies agree in a

complete Boolean algebra. This is answered in the neg-

ative by an example of a Boolean algebra which is

Hausdorff in its order topology but not in the interval

tOpology. This problem has already been solved by Rennie (7).

Our approach first of all leads to a necessary condition

(Theorem 2.2) that the interval tepology be Hausdorff and

this condition gives an easy (negative) answer to Problem

10h: I'Is any l-group a topological group and a topolog-

ical lattice in its interval tepology ?' Also in Theorem.2.5

we find a.necessary and sufficient condition that the

interval tepology of a Boolean algebra be Hausdorff.

These ideas further lead to a solution to part of Problem

21. We find a necessary and sufficient condition that

an element of a lattice be isolated in the interval
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topology (Theorem 2.7). This completes the main results of

Chapter II.

Chapter III deals, for the most part with the Hausdorff

character of the order topology. Theorem 15 of Birkhoff

(l; p 60) asserts that the order topology is always

Hausdorff, but Professor Birkhoff has recently agreed

that the proof given is inadequate and suggests that the

problem is an interesting open question. By the introd-

uction of order convergent filters we are led to a lattice

in which the sequential order topology is not Hausdorff.

Since this lattice is complete, the In.t°P01°8y 0f Rennie

is non-Hausdorff too. This answers Problem 2. of Rennie

(6). We are abld to show that at least in a complete,

completely distributive lattice the order t0pology is

always Hausdorff. Finally as a side result we answer the

other part of Birkhoff's Problem 21, which is to find a

necessary and sufficient condition that an element be

isolated in the order tepology.
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Chapter II The Interval Topology

First we shall investigate the Hausdorff character

of the interval t0pology in a general partly ordered set.

It follows at once from the definition of a basis for

open sets that if x and y are any two points in a Hausdorff

space and B is any basis for the cpen sets, then x and y

can be separated by open sets from B, say, U and V. Looking

at the complements of U and V we Obtain the dual require-

ment that given any two distinct points, the space can be

covered by two closed sets each of which contains exactly one

of the points, and in addition we may select these sets

from any given basis for the closed sets. In particular:

Theorem 2.1. The interval tepology‘pf'g partly
 

 

ordered set 23 Hausdorff £2 and only if given any two
 

distinct points 311353 lg _a_ covering fling £93 ‘91 BEES:

ofug finite number pf closed intervals such‘ppg£_no

interval contains pppp point .

To obtain a necessary condition that the interval

topology of a lattice be Hausdorff we look at any pair

of comparable elements, x < y, for Which by Theorem 2.1

there is a covering of the lattice by a finite number

of closed intervals such that no interval contains [x,y].

Taking the trace (intersection) on [x,y] of each member

of the covering we obtain a covering of [x,y] by a finite

number of closed subintervals, no one of which is [x,y]

itself. In other words, if we exclude x and y, each

point offix, i] is comparable with at least one of the
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remaining and points of the subintervals. The same is

true if either x or y is infinite. Let us say that a

collection of elements {a1} is a separating set of the

interval [x,y] if x < a1 < y for each a1 and every

element of [x,y'] is comparable with at least one of the

a1. If y covers x we will agree that the empty set

separates [x,y] . Summarizing we have:

Theorem 2.2. g necessary condition for the interval
 
 

 

togology 2f a lattice 1:2 333 Hausdorff _ig that every closed

 

interval have _a finite separating set {res}.

We are now in a position to prove:

Theorem 2g. In _a_ Boolean algebra without atoms, the

 

interval 0,1 has no fss.

Proof. If {a1, a ... an} is a fee, adjoin the2:

complements ai of the a1 obtaining a new set B. For each

subset of B form the meet of its elements andfrom this

collection of meets let {or c2, ... ck} be the non null

minimal ones. It is convenient to think in terms of sets

in which case the c1 are a collection of disjoints sets

whose union intersects each ak and its complement. Now

for each‘ci choose d1 so that 04d1 < c1 and let

d=d uda ...ucik . Then since a > dna we have dial
1 i i

and since dnai > 0, d ,4 a1‘ . In other words d is not

comparable with any a1.

Remark. The lattice of all measurable subsets (modulo

sets of measure zero) of the unit interval is a complete

Boolean algebra without atoms, so its interval t0pology
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is, by the preceeding theorem, not Hausdorff whereas

the order t0pology is (l; p 169 and p 80). Theorem 2.5

may be applied to the solution of problem 76 of (1). This

problem has already been solved by B.C. Rennie (7) using

a different method.

We might observe further, that an examination of the

prnof of Theorem 2.5 shows that the following someWhat

more general result may be established.

Theorem 2.h_.'§ distributive lattice without atoms,
 

 

22 which each element (except I) has 2 non null disjoint

element,.i§ not Hausdorff Ea its interval topology.

Theorem 2:5 . The interval topology gf‘g Boolean

 

algebra i5 Hausdorff if and only if every element :3 over
 

£9. 2.322.

Proof. If some element x is over no atom, then the

interval[0,i] is a Boolean algebra without atoms. Hence,

by Theorem.2.5, it has no fss and thus from.Theorem 2.2

the t0pology is not Hausdorff. Assume then that every

element is over an atom and let x and y be any pair of

distinct elements. Since xr\y' and yrxx' cannot

both be null there must be an atom a under, say, 1 but

not y. It follows at once that the intervals [a,I] and

[0,af] are disjoint closed intervals which cover the

algebra, and the t0pology is Hausdorff (Theorem 2.1L

Next we apply Theorem 2.2 to Problem 10h of (l),

which should read: '18 any l-group a topological group

and a tepolcgical lattice in its interval t0pology 2'
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Since the interval t0p010gy is T1 it must be Hausdorff

if the 1-group is to be a tOpological group. Now the

additive group of all continuous real valued functions

defined on the closed unit interval is an 1-group using

the natural ordering (l; p 216). If fo denotes the function

f(x)=0 and f denotes the function f(x)=1, we show that
1

the interval [f0, f1] has no fss. If {a1 ... an} were

such a set, choose for each ai some point x1 fliers

a1(x1)<1. Define a continuous function a(x) to be l-at

each of the x1 and elsewhere to take on values between

0 and 1 so that its integral over the interval is less

than that of any a1. Clearly a(x)is not comparable with

any of the a1. It is interesting‘to note that the set of

all real-valued functions does have a fss for any interval

and in fact (2) the interval tepology is Hausdorff. We have

shown:

Theorem 2.6.Iég 1-group need n22.23‘g topOlogical
 

 

groug‘gg its interval togology.

Finally we find a necessary and.sufficient condition

for a point x to be isolated in the interval topology

of a lattice L. This is part of Problem 21 of (1). First

suppose that 0 < x < 1. If x is isolated then er is a

closed set and in fact must be the union of a finite

number of closed intervals I1 ... Ik . Let P denote the

set of elements of L under x and take the trace of each

Ik on P, which is a closed interval. From the set of upper

endpoints of the traces select the maximal ones. These

form a non-empty finite set {x1 ... xn} , each x1 is
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covered by x. and any element under x is under some x1.

The same argument can be applied to the set of elements

over x. Looking at the lower endpoint of each Ik let us

replace it by amtx) if it is under, (over) x. Then if an

upper endpoint is under (over) x replace it by xt”).

Having done this we have a covering of L'by a finite number

of closed intervals for which none of the endpoints

(except possibly x, O, or I) is comparable with x. In

'other words x belongs to a fss of L in.which no other

member is comparable with x, and we have shown the

necessity of the conditions in the following

Theorem 2.1: The following conditions are necessary
 

 

 

interval tepology‘gg‘g lattice L.

(a) x covers 3 finite number 2; elements and every

covers Xe

(c) 1: belongs £3 3 fss if. L in which pg other member 1.3

comparable with 1.

It is ealy to see that the above conditions are

sufficient. If the fss is {x,a1 ... ak} and if x covers

{b1 ... bm} and if x is covered by {cl ... on} then.L~x

is the union of the following intervals:

['“5‘13 [81,00] [-m'bi] [01,00] for all permissible values of i.

If x is O or I then clearly (b) or (a) is necessary and

sufficient for x to be isolated.
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We shall conclude our discussion of the interval

tepolOgy with an example which shows that the necessary

condition of Theorem 2.2 is not sufficient and that cond-

ition 5 of Theorem 2.7 is not a consequence of the first

two 0

o

The lattice is formed by all finite and infinite

sequences (an) which take values in a two element set,

say {x,y}, and a t0p element I. We say that (an) 5 (tn )

if (tn) is a continuation of (an). The diagram has been

arranged so that at any given term of a sequence an x means

”take the left branch" and a y means ” take the right

branch”. Thus the circled point stands for the finite

sequence (xyx). Let us call the points corresponding to

finite sequences,finite points, and those corresponding to

infinite sequences, infinite points. It is obvious that there

are an uncountable number of infinite points over any

finite point, hence any finite collection of intervals

whose upper endppint is I contains all infinite points
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or does not contain an uncountable number of them.

Any other type of interval can contain only a

countable number of elements. In other words if the

lattice is covered by a finite number of intervals in

any way, each infinite point is contained in an

interval whose upper end point is I. By Theorem.2.l

this means that no infinite point can be separated

from I by open sets, so the interval topology of this

lattice is not Hausdorff.

If we insert an element u between some infinite

point 2, say (1, x, ...), and I, we get a lattice in

which u satisfies the first two conditions of Theorem.2.7

but not the third. Consider the elements not on the

chain [0,2] but which cover members of it. There are an

infinite number of these,{2n}, none of which are com-

parable with 2. Furthermore the intervals [2n,I] are

disjoint except for I (which cannot belong to a fss),

and any two intervals [mag and [c,zm] have intersection

contained in the chain [0,2] . This means that the 2n

are comparable with no finite collection of points, none

of which is on the chain [0,2] . Thus any fss of the

lattice must contain some point of [0,2] , hence a point

comparable with u.
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Chapter III The Order Topology

When solving Birkhoff's Problem 76 (1; p 166) we

might have used our Theorem 2.5 together with Theorem 13

of Birkhoff (1; p 60 ) to get a large class of Boolean

algebras for which the order and interval topologies do

not agree. This theorem asserts that the order topology

of any partly ordered set is Hausdorff. The argument

given there proceeds as follows. First it is noted that

if a directed set order converges, then the limit is

unique. This follows immediately from the uniqueness of

glb and lub. Secondly reference is made to the fact that

in any tOpological space, if directed systems have unique

limits, then the space is Hausdorff. Now in the order

topology, in general, there are convergent directed

systems which do not order converge and we must show that

these have unique limits too, if we are to argue in this

manner. It turns out however that the order topology

can have convergent directed systems with non-unique

limits, and hence need not be Hausdorff.

The main difficulty when working with the order

topology is that one must take into consideration not

only a large variety of directed sets but also the

various ways each can be mapped into the lattice.

Tukey (9) has shown that actually we need consider only

very special types of directed.sets, but nevertheless

the direct attack on the Hausdorff character seems



p.26

difficult to carry through. By the introduction of

order convergent filters and use of the equivalence

between directed sets and filters we shall reduce the

problem to a discussion of the intervals on the lattice,

and describe a process whereby the Hausdorff character

may be determined in certain cases. Throughout we shall

denote filters, and collections of sets in general, by

script letters. Individual sets of a collection will

be denoted by capital Roman letters and as usual small

Roman letters will stand for elements of a lattice.

By definition, a filter base 8.={B,} order ccnvergps
 

to x if AJ¢=x= Vm. where B¢=fx:}, ja=Vx:, and mat-'Ax: .

Since any two sets of a filter base'have non empty

intersection it is clear that every up is under every

1,. This implies that if a filter base order converges

to x then so does any finer filter base. The following

lemma is an immediate consequence of the definitions.

Lemma 5.1 A directed system order converges tg'x
 

 

 

‘if and only if the associated filter base order converges
 

_t_9_ x. mg _a_ filter p_s_1_s__e_ 933g converges _1_;_o_ _x .i_f_ gig _o_n_l_y

[if the associated directed gystem order convepges 32 x.

New for each memeber of a filter base 63.: {Bl} order

converging to x, we define m6 and J“ as above and then

assign to Ba the interval [111.” L] , which contains B...

Each interval contains x and the collection of intervals

forms a system of generators for a new filter which

clearly order converges to x too. If B... , 8,6 B then

Bdn BpC [m,, 1,3 0 [m,, 1,] nL‘m‘u mfi, Ln 3,] , which tells
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us that the generated filter base is actually coarser

than B.

Summarizing we have

Lemma .2 Evepy filter base order converginggtg_ x

.is.finar.than.s filter basa.af.interxals, which.1lkewlas

order converges tgfix.
 

Let us call the intersection of all filters order

converging to x the filter of pseudo-neighborhoods of x‘.

Since every filter base order converging to x must

converge tox in the order t0pology, it follows that the

filter of pseudo-nbhds must converge in the order

topology. If the filter of pseudo-nbhds satisfied the

nbhd axioms, it would indeed be the nbhd filter, but

there are cases where the nbhd filter is properly

coarser than the pseudo-nbhd filter. Using Lemma 5.2

we see that in order to obtain the pseudo-nbhd filter

of x we need only consider the intersection of the

filter bases of intervals which order converge to x,

and it is easy to decide whether a filter base of

intervals order converges t o it .

Lemma §;3_ g.filter base 9;,intervals ggdgr
 

 

oonverggs §p_x i£.and only_i__§h9_intersegtion_g£,gll

tha.intazlals.is.x.

A basis for the pseudo-nbhd filter is formed than as

follows. From each collection of intervals having the

finite intersection prOperty (the intersection of any
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two intervals of the collection is a member of the

collection) whose intersection is x, select an interval

and form the union of the selected intervals. The

totality of all such unions is a basis for the pseudo-nbhd

filter. '

Now in order that the order topology of a lattice

be Hausdorff it is necessary (but probably not sufficient)

that for any two distinct points x and y, their pseudo-

nbhd filters be disjoint. The next paragraphs will be

devoted to the construction of a lattice where this

necessary condition is not satisfied, but first we note

Lemma 1.1; The filterugg nbhds if x _ig disjoint
 

from any filter basefigf intervals which order converges
   

£2.y-

Proof: We can pick any interval G ofib which does

not contain x. Then if every set of”u had non empty trace

on G these traces would form a filter base on G which

would converge in the order topology to x, but this is

impossible since 0 is closed in the order topology.

In a lattice, to show that every pseudo-nbhd of x

intersects every pseudo-nbhd of y, it is necessary and

sufficient to find a collection of filter bases of

intervals, each order converging to x, such that no

matter how we select an interval from.aaoh base and

form.the union, some filter base order converging to y

has non empty trace on this union. The necessity is ob-

vious.



p.29

The sufficiency follows from the fact that each pseudo-

nbhd contains one of the above unions. If the filter

bases are nested, then the (transfinite) sequential

order topology will be non Hausdorff. Let us denote the

first uncountable ordinal number byid and let A be the
1

dual ofLJl +-l. A is a complete chain and for the sake of

convenience we denote its first element by O. The set of

all ordinary sequences taking values in A with the natural

(componentwise) ordering is a complete lattice and we

obtain a lattice with non Hausdorff sequential order

topology if we restrict ourself to those sequences for

which all but a finite number of values are 0 and then

adjoin a top element I. This lattice L is clearly condition-

ally complete and since it has a top element is complete.

Now we shall exhibit a collection of nested filter bases

of intervals, each order converging to the sequence (0,0 ...),

which we shall henceforth denote by 0'. The bases are of the

type {[(a,o,o,...),o']} {[(ma,0,o,...),oj} , {flr,r,r,o,o,...),o_']}

etc. Where{a,p,y,...} range over A and are not 0. If we

pick one interval from each basis we shall have selected,

as upper end points, a countable collection of elements

of A. There is an element of A which is under each upper

end point and yet properly over 0. Now each member of the

following sequence of elements of L is in the union of the

selected intervals
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(A,o,o,...). (A,A,o,o,...), (z,),7.,o,o,...)... and the

sequence order converges to I. The associated filter

base likewise order converges to I and has non empty trace

on the union, hence the sequential order topology is

not Hausdorff.

Theorem 5:5 The sequential order topology gf‘g

 

lattice pggg‘ggt_pg Hausdorff.

This example also provides an answertzo a problem posed

by Rennie (6; p too) as to whether the L-topology of

a lattice is always Hausdorff. He defines the

L-t0pology of a lattice by taking as a basis for the
 

Open sets those sets which intersect each maximal

chain in an open interval (of the chain) and are convex.

That is if a and.b belong to a set, a < b, then all c

such that a §,c'5 b belong to the set. A maximal chain

is one which is contained in no other chain. Rennie has

shown (7; p 20) that in a complete lattice the

Lntopology is coarser than the(transfinite)sequential

order topology. Thus we have the

Corollaryg3.6 The L-topology'gfflg lattice need not
 

1E2 Hausdorff.

The following somewhat more direct argument shows

that the sequential order tOpology of the above example

is not Hausdorff. If U is any nbhd of 0 we see by the

equivalence of directed sets and filters that it must

contain some interyal out of every nested collection

whose intersection is 0. Hence U contains a sequence
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converging to I and any nbhd of I must intersect U.

The more roundabout argument is presented because

the concept of pseudo-nbhd enables us to describe a

process whereby the Hausdorff property may be

established in certain cases. It is easy to verify

the following lemma which relates pseudo-nbhds to

cpen sets.

Lemma 5.] A set i open i3 the order topology if
  

 

 

This means that any open set containing an element x

can be constructed in the following manner. First take

a pseudo-nbhd of x. Then choose a pseudo-nEUd of each of

its points and form the union E whith will be called a

pZ-nbhd of x. Having defined a pn-nbhd V of x, we define

a pngfI-nbhd by selecting for each point of V a pseudo-

nbhd and taking the union. The union of all the

pn-nbhds is clearly an open set.

Now we shall apply the above process to a complete,

completely distributive lattice, where we have

m-\/,,.[/\...u.,..] =/\F[vc um] and

(11)'/\c [Viv “33“] =VF [Ac ”3344”)

as stated on page 5. If C indexes the set of filter

bases of intervals order converging x and the u” are

the upper (lower) endpoints of the filter base A;

in (i)'((ii)9) then the left sides of (1)” and (ii)“ are



p.32

x and we see that the pseudo-nbhds order converge to x

and have a basis of intervals. Since order convergent

filters have unique limits, this means that the

pseudo-nbhd filters are disjoint. So given any distinct

elements x and y we have disjoint pseudo-nbhds

[a1,b1],[c1,dl] of x and y respectively. Focusing

attention on the former, we see that if we select

a pseudo-nbhd [uuvtj for each point of [a1,b1] and

form the union of these sets, this union is contained

in the interval [Ant , VvJ , which is a pz-nbhd of x

containing C‘ybfl . It follows from the infinite

distributive laws that the intersection all such

p2-nbhds is exactly [‘l'blj . If each of these

pZ-nbhds had non empty trace on [c1 ,d1] , these traces

would form a filter base of intervals, for which the

sets would have non empty intersection since every

upper end point must be over every lower end point.

This is a contradiction so there must be some interval

[a2,b2] which is a pZ-nbhd of x and is disjoint

from [31,le . Then we apply the same argument to [c1,d1]

and get a pz-nbhd [c2,d2] of y disjoint from [a2,b2].

Continuing in this manner we obtain ascending

sequences of intervals whose unions will be disjoint

Open sets containing x and y respectively. Thus we have

established

Theorem 1.8 TE order topology pf _a_ complete
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completely distributive lattice is Hausdorff.

The first part of Birkhoff's PrOblem 21 (l; p 62)

is concerned with finding necessary and sufficient

conditions that an element x be isolated in the

order topology. By Lemma 5.7 this will be the case if

and only if x is a pseudo-nbhd of itself. In other

words [x,x1 belongs to any collection of intervals

having finite intersection property whose intersection

is x. This shows the necessity of the conditions in

the following

Theorem 5.9 _Ir_1_ order that x pp 119131251 _ip _tpg

 

order topology pf‘g lattice ;§_;§ negessgry and_

sufficient that any collegtiop of,elements ghgse_

glb ing have 2 finite subset whose glb ig’x.and

dually that any collection pf elements whose lub ig

x hgyg g finite subset ghppg.glp.ip_x.

Proof: To show sufficiency let {Eat ,bg} be a

collection of intervals whose intersection is x and

suppose that M and N are finite subsets such that

Auxm=x= Van. Then the intervals whose upper endpoints

are the xm together with.those whose lower endpoints

are the x.n form a finite subccllection whose intersection.

is x.

If the lattice is complete we can use a result

found in Viadyanathaswamy (10; p 59) to get much more

tractible conditions for x to be isolated. An element

x is called a jpmp.element of a lattice if it is not
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the lub of any chain whose members are properly under x

and dually if it is not the glb of and chain whose elements

are prOperly over x.

Theorem 5.10 .IEME complete lattice thprollowing
 

 

 

properties p£_pp element x are equivalent:
 

(i) x is isolated in the order tOpology

(ii) x is isolated in the sequential order
  

topology

(iii) x is 3. jump element
 

(iv) any collection pf elements whose glb ig’x
  

has a finite subset Whose glh is x and any

  

Proof: (1) implies (ii) since the second topology

is finer than the first. (ii) implies (iii) since any

chain whose glb or lub is x gives rise to a transfinite

sequence order converging to x. The above cited result

of Viadyanathaswamy is essentially the statement that

(iii) implies (iv) and it follows from.Theorem 5.9

that (iv) implies (1).

One problem in this area, as yet unsolved, is to

decide Whether the Kantorovitch topology is always

Hausdorff. This tOpology is finer than the others and

can be Hausdorff, for instance in the example¢of

Theorem 5.5, where the others are not. Theorem.72.5

of Vaidyanathaswamy (10; p 275) asserts that any
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sequential convergence scheme with unique limits gives

rise to a.Hausdorff topology and would settle this

question if it were correct. However there exist

sequential convergence schemes having unique limits

which do not give rise to Hausdorff topologies. By a

sequential convergence scheme having unique limits we

mean any process for assigning limits to sequences

(if x is seeigned to x.n we write xnfex) such that

(i) if xh=x for all n.then.xnf)x

(ii) if xn=yn for all but a finite number of n

thenx.n and yn have the same limit or do

not converge

(iii)if xn-ex and xnj is a subsequence then xnj-Qx

(iv) if xn-)x and xn—sy then x=y

The derived topology is obtained by calling a set X

closed if {xgex and xn-+x imply xe X.

Now let us re-define convergence on the closed

unit interval of the real line. As required we say'that

thexiif xn=x for all but a.finite number of n. If x.n

is monotone non-decreasing and does not converge by the

previous requirement we say xd—wl, and if xn is monotone

non-increasing and does not converge by the first re-

quirement we say xfi—90. It is easy to see that any Open set

containing 0 but not 1 must have its complement well

ordered and hence countable. Similarly any cpen set

containing 1 but not 0 must have bountable complement
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so 0 and 1 cannot be separated by open sets.

In conclusion we indicate various extensions of

the results obtained here which might be expected.

First of all there is a large gap between the example

in Theorem 5.5 and the complete, completely distributive

lattices, so far the only extensive class for which we

have been able to verify the Hausdorff character. The

lattice of Theorem 5.5 is distributive and in fact

satisfies the infinite distributive law (1) but not (ii).

Among the conditionally complete lattices satisfying

(1) and (ii) we find the (conditionally complete)

Boolean algebras and l-groups, both of which are of

interest in certain applications. Theorem 18 of

Birkhoff (1; p 251) implies the Hausdorff character

in the latter case, but the proof seems open to the

same objections discussed here on page 25. In view of

the essentially negative results obtained, it seems

reasonable that future studies of lattice tOpologies

will be fruitful only if restricted to the lattices

which enter in the applications. So far none of the

lattice topolOgies has given much insight into the

structure of lattices in general.
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