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Introduction

Various intrinsic topologies which can be
introduced into a lattice have been defined by
Kantorovitch (5), Birkhoff (2) and Frink (L),
and it 1s with these that the present investigation
1s concerned. The thesis 1s divided into three
chapters. The first consists, for the most part, of
basic definitions and well known theorems concern-
ing lattice theory, general topology and intrinsic
topologles in lattices, while the second and third
chapters contain an exposition of the results of this
‘thesis. These results are summariged on pages 16 and 17
after adequate terminology has been introduced. Mainly
they deal with the Hausdorff charadter of the intrinsic
topologies.

The various numbered problems referred to are from
& list which has been compiled by Garrett Birkhoff and
appears in (1). This book also contains proofs of the
varlous assertions about lattice theory which are made
in Chapter I. It is the standard reference for the
subject. The numbers in parentheses refer to the
bibliography at the end. An expression of the type
{x] P(x)} » where x 1s an element of some given set E
and P(x) 18 a property of x, stands for the subset of E
consisting of all elements having property P.
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Chapter I Preliminary Results

A. Partly Ordered Sets and Lattices

A partly ordered set is a collection of elements

and a binary relation defined on these elements which 1s
reflexive, asymmetric and transitive. If we denote the
relation by < then the three axloms for a partly ordered
set are:

(£) x <x

(11) x <y and y < x imply x=y

(111) x <y and y < z imply x < z.
We may write y > x Instead of x <y and in this case we may
say y 1s over x or x is under y. If x < y and x#y ‘we

write x < y and say that x 1s properly under y. Given a

partly ordered set P we can construct another P!, called
the dual of P, bys aylng that x <y in P' If and only
if y<xin P. If x <y, xSy or y < X, we say that x and

Y are comparsable. Otherwise they are called incomparable.

Most partly ordered sets which have mathemsatical
significance satisfy certain other axioms. The least
restrictive of the axioms we shall consider is the com-
positive axiom of E. H. Moore. A partly ordered set 1is
compositive or directed, as we say nowadays, 1f given
x and y there exists 2z such that x <z and y < z. If a
directed set D is mapped into another set S by a mapping
f, we call the resulting pair (D,f) a directed system

taking values in S. A directed system is thus a gen-



pP.2

eralized sequence, and in fact the use of diredted
systems 1s essential if the usual convergence statements
concerning sequences on the real line are to be carried

over to falrly general topologilcal spaces. A terminal subset

T of a directed aeéais a collection of the type {x| x > a}
for some & € D.

If {a,}] 1s any collection of elements of a partly
ordered set P we say that u 1s sn upper bound of (a,]}

if a, < u for all a, . An element u 1s a least upper bound

(or lub) of {a,} 41if u is en upper bound and is under any
other upper bound. A lub 1s clearly unique., In a similar

manner we define lower bound and greatedt lower Bound

(glb). If a partly ordered set 1s such that any pair of
elements has a glb and a lub it i1s called a lattice.

In this case the glb and lub of x and y are denoted
respectively by x n yand x v J . Cleirly the operations
N gnd VU are idempotent, commutative, associative and
satisfy the absorption laws: x v (x N y)=x and x N (x U y)=x.
Algo x > y if and only if x v y=x or x n y=y. A one to one
mapping of one lattice onto another is called an isomor-
Phism if 1t preserves lub's and glb's. A lattice is

called complete 1f any collection {a,}] of elements has a
glb and a lub. These are denoted respectively by 4Aab

and Vab e In particular a complete lattice has a least
element, usually denoted by 0, and a greatest element,

usually denoted by I. In a lattice with O, x and y are
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called disjoint 1f x Ny = O. A lattice for which every
set having an upper bound has lub end similarly for

lower bounds 1is called conditionally complete. The real

line under the usual ordering is conditionally complete
but not complete. Any conditionally complete lattice can
be made complete by adjoining an O or an I or both.
Just as on the real line, we can define open and
closed intervali in a partly ordered set. The open _
interval (x,y) where x <y is {z|x <2 <y} and the
closed interval [x,y] 1s {z|x <2z <y} . Also we can define

semi-infinite intervals in the usual way. [x,®]} 1s {z | z > x)
and [-os,x] 1s {z|z <x} . In a lattice we can show
that the intersection of two closed intervals 1s a closed
intervals In fact if x € [a,b] and x € [c,d] , them
a<x<badc<x<deHence avo<x<bdbnad

orxe [@ue,bn d] and conversely this interval is
contained in each of the first two. It should be noted
that in general the intersection of two open intervals 1is
not an open interval and that in a partly ordered set the
interasection of two closed intervals need not be a closed
interval. In the future, unless otherwise stated, all
intervals will be assumed to be closed.

A lattice having the property that any two elements
are comparable is & chain and is referred to as being
8imply ordered. Any subset of a partly ordered set which
is a chain in the induced ordering 1s called a chain of
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the partly ordered set. An infinite chain not 1somorphic to

.the positive integers 1s called a transfinite sequence. To

see that a lattice 1is conditionally complete it is not nec-

essary to test every collection of elements for lub and glb.
Rennie has shown (6; p 387) that a lattice is conditionally

complete if any chain having lower bound has a glb. An atom

in a lattice having an O is an element x such that 0 <y < x
implies y=x. In this case we say that x covers O., In general
if 2 <y < x 1mplies y=x, we say that x covers z,.

Any lattice which satisfles the distributive laws:

xV(ynz)=(xuy)n(xvz) and xn(yvz)=(xny)v (xnz)

1s called distributive., It should be noted that either of

these laws implies the other . Any collection of sets satis-
fies these laws and in fact it can be shown that this exam-
ple includes all distributive lattices in the sense of
i1somorphism. A complete or conditionally complete lattice
may satlsfy either or both of the iInfinite distributive laws:
(1) av (A v, )=N(av,)
(11) an (V. )=V(anby).
Each of these implles both of the finite distributive laws

but a distributive lattice may satisfy el ther, none or

both of the infinite distributive laws. In a non-conditionally
complete lattice (1) and (11) will be said to hold if the
required upper and lower bounds exist and are equal. If

(1) or (11) holds, so does its extension to any finite

number of termss
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(1) (A jas U (A op)= A (ae v bp )

(11)7(V 8a )0 (Vb )=V plaun s ).
Here («, 8 ) ranges over the Cartesian product set (A,B).
Eash of these 1s a speclal case of the corresponding
doubly infinite distributive law but does not imply 1t.

(1).VC[AA1~ U'tw] =/\F[VC ut,Q(Y‘)]
a0 AV, u, ] “VelA ¢ Uy am)

Each Ay ={d ...} 1s the index set of a collection of
elements of the lattice and ¥ranges over a set C. F is
the class of all single valued functions ¢, assigning
to each ¥ €C a value@(¥)eAp, When C has two members,
(1)® and (11)™ reduce to (1) and (11) respectively.
Complete chains and the lattice of all subsets of any
given set are examples which satisfy (1)" and (11)".
Such lattices are called completely distributive.

In & lattice with O and I, an element x' 1s called
& complement of x 1f xNx'=0 and xU x'=] and a lattice
in which every element has a complement 1s called compl-
emented. A complemented distributive lattice is a

Boolean algebra. In a Boolean algebra the complements

are unigue and are orthocomplements ie (a')'=a. Any
Boolean algebra 1s isomorphic to a Boolean 8&lgebra of
subsets where finite glb and lub and complementation

have thelr usual set-theoretic interpretation.
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Next we shall define several methods for building
new partly ordered sets out of given ones. The simplest

process is ordinal addition. If L and M are (non-over-

lapping) partly ordered sets, then their ordinal sum L @ M
is constructed out of the sum of the two sets by putting
the elements of L and M in thelir given order and then
putting every element of L under every element of M. In
general this sum 1s non-commutative and always the ordinal
sum of two chains is a chain. This definition can be
extended to an arbitrary number on non-overlapping sum-
mands, If M={m, m', m"...} 1s a lattice and {Lm}is a
collection of lattices indexed by M we can definezM L,
as follows: 1' ,< 1" o if and only if m' < m" or m'=m" and
1' 1< 1", w in L ,. Later we will be interested in the
case where L and M are chains and in this casein L, 1s
clearly & chain too. The ordinal product LeM 1s defined on
the Cartesean product set and here we say (1',m')<(1%,m")
1f and only if 1'<1™ or 1'=1" and m'< m". Intuitively
for each point of L we “substitute™ the partly ordered
set M.

A lattice ordered group (l-group) is a set which is a

lattice and a group in which the group translations are
compatible with the order relation. In other words x <y
implies a+ x+ b < a+ y+ b for all a and b. The group
operation 1s usually denoted by + even though it may be
non-commutative. The real numbers under addition are one

example. Another 1s the set of all real valued continuous
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functions defined on the unit interval. Here f < g means
that f(x)< g(x) for all x in the interval.

Be Filters

Filters were introduced by H.Cartan to facilitate
techniques of general topology and recently J.Schmidt
(8) has started a series of papers which will develop
the theory of filters as a separate discipline. The
results presented here without proof can be found in
N.Bourbaki (3; pp 32-446) or in J.Schmidt (8). The
process used here to show the equivalence of filters
and directed systems 1s probably known but may not have
sppeared in print.

If E 1s any set, a filter F on E is a collection of
subsets of E having the following properties:

(1) the empty set @ does not belong to F

(11) any set containing a set of F belongs to F

(111) the intersection of any two sets of F belongs

to F.

Thus, for example, the collection of all subsets containing
a point x 1s a filter. It should be observed, however,
that the totality of all sets of a filter can have empty
intersection. Ordinarily when working with filters it 1s
convenient to make use of the concept of a filter base.
A collection B of sets of a filter F 1s called a base

of F 1f every member of F contains a set of B. In this
case F is the collection of all subsets of E, each of
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which contains some set of B. In the ahove example the
point x 1s a base for filter described. In order that an
arbitrary collection B of sets be a base for some filter
it 1s necessary and sufficient that the intersection of
any two sets of B 1s non empty and contains a set of B.
Under a mapping of E into any set X the image of a
fllter on E is in general a filter base on X. If E 1s
any directed set, the terminal subsets clearly form a

filter base, which is called the assoclated filter base.

A collection G of subsets of E 1s a system of generators

of a filter 1f the finite 1intersections of the sets of G
form a filter base. It 1s easy to see that this is the
case if and only if any palr of sets of G has non empty
interssection.

The set of all fllters on E can be partly ordered
in the following manner. We say that a filter F!' is
finer than F" and write F'> F" if every set of F" is a
set of F'., We say that a filter base B' is finer than
snother B® if every set of B" contains a set of B!,

Two fllter bases are called equivalent if they gilve

rise to the same filter. If{F,} 1s a collection of
filters on E, 1t can be verified that those sets which
appear 1n each F, form a filter and that £his filter,
called the intersection offF} , 1s the finest filter
which is coarser than each member of {F,} . This filter

intersection can be constructed in the following mamner.
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For each v pick eny set in F, and take the union of the
sets so chosen. The totality of these unions 1s exactly
the filter intersection. Under the above partial ordering
the set of all filters on E does not form a lattice, nor
even a directed set, since 1n general there need not be
any filter finer than two given ones. If F'!' and F" are
two filters, they have a common refinement if and‘only
if every set of F' has non empty intersection with every
set of F", and in fact these intersections form the
coarsest filter finer than F!' and F"., Two filters which
do not have a common refinement are disjoint.

Finally we establish a correspondence between dir-
ected systems and filters which will be used in Chapter III.
If E 1s a directed set and f is a mapping of E into a
set X then the images under f of the terminal subsets of
E form a filter base on X which we call the associated

filter base. We now show that any filter base B={b,} can

be obtained in this manner. Looking at the sets of B

as abstract elements, we say b <b,1f b contains b, as

a set, Let us denote this directed set by B! and form

the ordinal product B'ouJ=B"={(b,,Jz={ba,j}where J 1s an
integer. As usual wis the chain formed by the positive
integers under their usual ordering. Let by stand for

the subset b of X simply ordered in some manner. Then in
the directed setz:B. b;’J each element corresponds to a
point of X and the terminal subsets of the resulting

directed system are exactly the sets of our filter base B,
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We shall call this the assoclated directed system. If we

start with a transfinite sequence then the aséociated

filter base will be nested and conversely a nested filter
base has a transfinite sequence as assoclated directed system.
By a neated collectlion of sets we mean one for which every

set 1s comparable with every other set.

C. General Topology

The definitions and results used here are classical
although filters and directed sets have been employed
only since 1937. All of the results in this section
will be found in Bourbaki (3). A topological space is

defined to be a set E together witﬁ a colleétidn U of
its subsets, called open sets, which satisfies the fol-
lowing axioms:

(1) E and g are open

(11) the intersection of any two open sets 1s open

(111) the union of any collection of open sets 1s

open.

If a point 1s an open set it is called isolated. A
closed set 1s one whose compdement is open, and 1t is
easy to see that the closed sets have the following
properties:

(1) E and @ are closed

(2) the union of any two closed sets is closed

(3) the intersection of any collection of closed

sets 13 closed.
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We could have Jjust as easlly axiomatized the closed sets
by (1), (2) and (3), and then (1),(11), and (1i1) would
appear &s theorems 1f an open set were defined to be the

complement of a closed set. This duality permeates much
of general topology. Since we will be concerned mainly
with closed sets in the future, we state the lmportant
definitions of basis and sub-basis in terms of these.
The corresponding definitions for open sets can be ob-
tained by applylng the duality priénciple. A collection
{R] of closed sets 1s called a basis if any closed set
can be obtained by taking the intersection of suitable
members of {F‘} e In order that {F‘} be a basis for the
o6losed sets of some topology 1t 1s necessary and suf-
ficient that {F,} contain all finite unions of its mem-
bers. Thus starting with any collection of sets we can
get a topological space by first taking finite unions
and then arbitrary intersections. The collection of sets
we started with 1s called a sub-basis for the generated
topology. Needless to say, the tdpology will have little
mathematical significance unless there are sound a priori
reasons for the sets in the sub-basis to be closed.

The various topologies on a set E can be compared in
much the same manner as filters. We say that a topology T!
1s finer than T" if every open set of T is an open set
of T', Under this partial ordering it cean be shown that
the topologles form a complete lattice wherein the top
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~element 1is the discrete topology, for which every set
is open, and the bottom element has only E and & as
open sets.

For technical reasons it has been found convenient

to Introduce the idea of a neighborhood of a point x.

We say that U 1s a neighborhood (nbhd) of x if U contains
an open set which tontains x. It is clear that the nbhds
of x have the following properties:

(1) the totality of nbhds of x forms a filter

(11) every nbhd of x contains x.

(111) every nbhd U of x contains a nbhd V of x such

that U 1s a nbhd of every point of V.
Conversely 1f to each point of E we assign a collection of
sets satisfying (1),(11) and (1i1), we can call a set
"open®™ if it 1s a nbhd of each of its points and indeed
the r;sulting "open" sets do satisfy the open set axioms.
Property (111)-abové assures us that if we start with a
collection of nbhds, define open sets and then define
nbhds in terms of these open sets, the new nbhds will
be exactly those we started with.

We define convergence of a directed system in a
topological space in much the same manner.as we define
convergence of an ordinary sequence on the real line. If
A={a ...} is a directed set and x, a directed system, we
say that x, converges to x if each nbhd of x contains a
terminal subset of x, . A filter F on a topological space
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is sald to converge to x if it is finer than the filter
of nbhds of x, and a filter base B 1s defined to converge
to x if the derived filter converges to x. This is
equivalent to saying that every nbhd of x contalns a set
of B. It follows immediately from the definitions that

a directed system converges to x i1f and only if its
associated filter base does, and that a filter base
converges to x 1f and only if 1ts assoclated directed
system does,

One of the baslc properties of sequences on the real
line is that a limit 1s unique if it exlists, and further-
more it 1s easy to show that ali convergent directed
systems and all convergent filters have unique limits too.
In an arbitrary topological space if we want directed
systems and filters to have unique limitgfis necessary
and sufficlent that the open sets have the following
property: given any distinct points x and y, there exist
disjolnt open sets U and V each containing one of the points.
This property is called the Hausdorff axiom, and a top-

ologlcal space in which 1t 1s satisfied is called a
Hausdorff space. Obvlously any topology finer than a

Hausdorff topology is Hausdorff too. It should be noted
that 1n general the existence of unique limits for
sequences alone 1s not enough to insure that a space

be Hausdorff. Many of the spaces encountered in the
sequel will not be Hausdorff, but all of them will

satisfy the followlng weaker separation axiom: a point 1is
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& closed set. A space satisfying this exiom is called T

1l
Just as was the cass with lattices, 1t 1s possible to

combine the axioms for a topologlcal space with the group

axioms in a significant way. A topological group is a

set E which 18 a topologlical space snd a group and for
which the group operations are continucus in the topology.
That is if x«y=z and W is any nbhd of 2z there exist nbhds
U of x and V of y such that U*V is contained in W where
U‘Y={u°v\ue U and ve V). Also given a nbhd W of £ there

1 such that xfl is contained in W. One

is a nbhd X of z~
property of topological groups we will use is that 1f a

topological group 1s T, it 1s Hausdorff. This 1is easily

1
shown.

D. Togologz 12 Lattices

Now we shall introduce various intrinsic topologiles
into partly ordered sets and especlally lattices. It
is possible to define the ordinary topology of the real
line in several ways which depend only on the ordering.
First we can take the open intervals as & basis for the
open sets. Second we can tske the closed intervals as a
subbasis for the closed sets and finally we can introduce
order convergence of sequences in the followling manner.
A sequence J:.n order converges to x (xﬁ—é x) ir /\m\/n > mn—
x=\/ A X o It 1s easily seen that on the real line

m'n>mn
this 1s equivalent to ordinary convergence. A set X is
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called closed 1if xnex and X, =X imply x€X . We could

Just as easily have defined order convergence to x of

an arbitrary directed set x,by requiring that /\}Aisz,=x=
\/p /\asz“ and then we would say that a set X 1s closed
if x4,€6 X and xy —p ximply x¢ X. Both of these definitions
can be extended immediately to lattices. The statement

Xy —» X carries with 1t the taclit assertion that the
various infinite upper and lower bounds in the definition
exist.

The topology using ordinary sequences was first
investigated by Kantorovitch (5) in the special case of
Abelian l-groups. He discussed applications to conver-
gence in measure and functions of bounded variation.
Sometimes thils topology 1s named after him. The gen-
eralization to directed sets 1s due to Garrett Birkhoff
(2) and the topology so obtained is called the order
topology of a lattice. Clearly the Kantorovitch topology
is finer than the order topology. If we use transfinite
sequences iIn the above we get a third type of convergence
topology, finer than the order topology but coarser than
the Kantorovitch topology, which we call the sequential

order topology. Some of 1its properties have been det-

ermined by Rennie in (6) and (7).

As for the topologles based on open and closed in-
tervals, the former is discrete on the cardinal product
((x,y)<(x',y') if x<x' and y<y') of the real line with
1tself and apparentlylit has not been considered worth

investigating. The topology using closed intervals
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was introduced by Frink (L) and 1s known as the interval
topology. This topology has the rather interesting
property of being compact on complete lattices and further-
more 1t sgrees with the order topology on the product of
a closed line segment with itself and in other cases.
It 13 easy to see that a élosed interval of a lattice is
closed in the order topology, which means that the order
topology 1s always finer than the interval topology. #e
see at once that all of the topologles defined so far
are always Tl'

We are now in a position to describe the results
of the present investigation. Birkhoff's Problem Té
asks 1f the order and interval topologies agree in a
complete Boolean algebra. This is answered in the neg-
ative by an example of a Boolean algebra which is
Hausdorff in its order topology but not in the interval
topology. This problem has already been solved by Rennie (7).
Our approach first of all leads to & necessary condition
(Theorem 2.2) that the interval topology be Hausdorff and
this condition gives an easy (negative) answer to Problem
104: "Is any l-group a topological group and a topolog-
ical lattice in its interval topology %™ Also in Theorem 2.5
we find a necessary and sufficient condition that the
interval topology of a Boolean algebra be Hausdorff.
These 1deas further lead to a solution to part of Problem
2l, We find a necessary and sufficient canditdon that

an element of a lattice be isolated in the interval
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topology (Theorem 2.7). This completes the main results of
Chapter II.

Chapter III deals, for the most part with the Hausdorff
character of the order topology. Theorem 13 of Birkhoff
(1; p 60) asserts that the order topology is always
Hausdorff, but Profecsor Birkhoff has recently agreed
that the proof given is lnadequate and suggests that the
problem 1s an interesting open question. By the introd-
uction of order convergent filters we are led to a lattice
in which the sequentlal order topology is not Hausdorff.
Since this lattice is complete, the L. topology of Rennie
is non-Hausdorff too. This answers Problem 2. of Rennie
(6). We are abldé to show that at least in a complete,
completely distributive lattice the order topology 1is
always Hsusdorff. Finally as a side result we answer the
other part of Birkhoff's Problem 21, which is to find a
necessary and sufficient condition that an element be

isolated in the order topologye.
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Chapter II The Interval Topology

Pirst we shall investigate the Hausdorff character
of the interval topology in a general partly ordered set.
It follows at once from the definition of a basis for
open sets that 1f x and y are any two points in a Hausdorff
space and B 1s any basis for the open sets, then x and y
can be separated by open sets from B, say, U and V. Looking
at the complements of U and V we obtain the dual require-
ment that given any two distinct points, the space can be
covered by two closed sets each of which containg exactly one
of the points, and in addition we may select these sets
from any given basis for the closed sets. In particular;

Theorem 2.1. The interval topology of a partly

ordered set is Hausdorff 1f and only if given any two

distinct points there 1s a covering of the set by means

of a finite number of closed intervals such that no

interval contains both points.

To obtain a necessary condition that the interval
topology of a lattice be Hausdorff we look at any pair
of comparable elements, x < y, for which by Theorem 2.1
there is a covering of the lattice by a finite number
of closed intervals such that no interval contains [x,y].
Teking the trace (intersection) on [x,y] of each member
of the covering we obtain a covering of (x,y]by a finite
number of closed subintervals, no one of which 1is [x,y]
itself. In other words, if we exclude x and y, each

point of[x, y] 1s comparable with &t least one of the
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remaining end points of the subintervals. The same is
true 1i1f either x or y 1s infinite. Let us say that a
collection of elements {ai} 1s a separating set of the
interval (x,y] if x < 8, <75 for each &, and every
element of [x,y] 1s comparable with at least one of the
a,. If y covers x we willl agree that the empty set
separates [x;y] . Summafizing we have:

Theorem 2.2. A necessary condition for the interval

interval have & finite separating set (fss).

We are now 1n a position to prove:

Theorem 2.3. In & Boolean algebra without atoms, the

interval O,I has no fss,

Proof. If {al, 8,, eso &} 1s a fss, adjoin the

complements ai of the a, obtaining a new set B. For each

1
subset of B form the meet of its elements and f rom this
collection of meets let {cl, Coy eoe ck} be the non null
minimal ones. It 1s convenient to think in terms of sets
in which case the cy are a collection of disjoints sets
whose union intersects each LI and its complement. Now
for each 4 choose d1 so that O<d1 < oy and let

d = dIUda seevd, o Then since &, > dNa, we have d £ s,
and since dna} > 0, d £ e, . In other words d is not
comparable with any 8.

Remark. The lattice of all measurable subsets (modulo
sets of measure zero) of the ynit interval 1s a complete

Boolean algebra without atoms, so its interval topology
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is, by the preceeding theorem, not Hausdorff whereas
the order topology is (1; p 169 and p 80). Theorem 2.3
may be applied to the solution of problem 76 of (1). This
problem has already been solved by B.C. Rennie (7) using
a different method.

We might observe further, that an examination of the
proof of Theorem 2.3 shows that the following somewhat
more general result may be established.

Theorem 2.l . A distridbutive lattice without atoms,

in which each element (except I) has a non null disjoint

element, 1§ not Hausdorff in its lnterval topologye.

Theorem 2.5 . The interval topology of a Boolean

algebra 1s Hausdorff if and only if every element ig over

an stom,

Proof. If some element x i1s over no atom, then the
interval [0,x] 1s a Boolean algebra without atoms. Hence,
by Theorem 2.3, it has no fss and thus from Theorem 2.2
the topology 1s not Hausdorff. Assume then that every
element is over an atom and let x and y be any palr of
distinct elements. Since xny! and yn x' cannot
both be null there must be an atom & under, say, x but
not y. It follows at once that the intervals [a,I] and
[0,a'] are disjoint closed intervals which cover the
algebra, and the topology i1s Hausdorff (Theorem 2.l)y

Next we apply Theorem 2.2 to Problem 104 of (1),
which should read: "Is any l-group a topological group
and a topological lattice in its interval topology "
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Since the interval topology is Tl it must be Hausdorff

if the l=-group is to be a topological group. Now the
additive group of all contlnuous real valued functions
defined on the closed unit interval is an l-group using

the natural ordering (1; p 216). If £ denotes the function

0

£(x)=0 and £, denotes the function f(x)=1l, we show that

1
the interval [fo; £,] has no fss. If {ll eee 8 } wore

such a set, choose for each &, some point xy where
ai(xi)cl. Define a continuous function a(x) to be 1 at

each of the Xy and elsewhere to take on values between

0 and 1 so that its integral over the interval 1s less

than that of any ai. Clearly a(x) is not comparable with
any of the 8. It 1s 1Interesting o note that the set of

all real-valued functions does have a fss for any interval
and in fact (2) the interval topology 1s Hausdorff. Ye have

shown:

Theorem 2.6+ An l-group need not be & topological

group 1in its interval topology.

Finally we find a necessary and sufficient cdndition
for a point x to be 1solated in the interval topology
of a lattice L. This is part of Problem 21 of (1l). First
suppose that 0 < x < 1. If x 1s 1solated then L-x 1s a
closed set and in fact must be the union of a finite
number of closed intervals I, e L . Let P denote the
set of elements of L under x and take the trace of each
Ik on P, which 1s a closed interval. From the set of upper
endpoints of the traces seiect the meximal ones. These

form a non-empty finite set {x, ... x } , each x, 1s
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covered by x  and any element under x 1s under gome Xy
The same argument can be applied to the set of elements
over x. Looking at the lower endpoint of each Ik let us
replace it by =-0o(x) if it is under, (over) x. Then if an
upper endpoint is under (over) x replace it by x(»@).
Having done this we have a covering of L by a finite number
of closed intervals for which none of the endpoints

(except possibly x, O, or I) is comparable with x. In
'other words x belongs to & fss of L in which no other
member is comparsble with x, snd we have shown the

necessity of the conditions in the following

Theorem 2.7: The following conditions are necessary

and sufficient for an element x to be isolated in the

interval topology of a lattice L.

(a) x covers a finite number of elements and every

element under x 1is under an element covered by x.

(b) x 1s covered by a finite number of elements and

every element over x ;g over an element which

covers X.

comparable with x.

It 1s eany to see that the above conditions are
suffielent. If the fss is {x,al oo 8,} and 1f x covers
{bl cee bm} and if x 1s covered by {cl eee ¢ } them L-x
is the union of the following intervals:
[-»,a,] [a,,0] [—m,bij [c,,2] for all permissible values of 1.
If x 18 O or I then clearly (b) or (a) is necessary and

sufficient for x to be isolated.,
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We shall conclude our discussion of the interval
topology with an example which shows that the necessary
condition of Theorem 2.2 is not sufficient and that cond-
ition 3 of Theorem 2.7 is not a consequence of the first

two,.
I

0
The lattice is formed by all finite and iInfinite

sequences (sn) which teke values in a two element set,

say {x,y}, and a top element I. We say that (sn) < (tn )

ir (tn) is a continuation of (sn). The diasgram has been
arranced so that at any given term of a sequence an x means
®"take the left branch" and a y means ™ take the right
branch®. Thus the circled point stands for the finite
sequence (xyx). Let us call the points corresponding to
finite sequences,finite points, and those corresponding to
infinite sequences, infinite points. It is obvious that there

are an uncountable humber of infinite points over any

finite point, hence any finite collection of intervals
whose upper endpoint is I contalns a&ll infinite polints
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or does not contain an uncountable number of them.
Any other type of interval can cantain only a
countable number of elements. In other words if the
lattice is covered by a finite number of intervals in
any way, each infinite point 1s contained in an
interval whose upper end point is I. By Theorem 2,1
this means that no infinite point can be separated
from I by open sets, so the interval topology of this
lattice is not Hausdorff.

If we insert an element u between some infinite
point 2, say (x, X, +..), and I, we get a lattice in
which u satisfies the first two conditlions of Theorem 2.7
but not the third. Consider the elements not on the
chain [0,2] but which cover members of it. There are an
infinite number of these,{z }, none of which are com-
parable with z. Furthermore the intervals [z ,I] are
disjoint except for I (which cannot belong to a fss),
and any two intervals [O,zl;] and [O,zm'] have intersection
contained in the chain [0,z] . This means that the 2
are comparable with no finite collection of points, none
of which 1s on the chain [0,2] . Thus any fss of the
lattice must contain some point of [O,z] s hence & point

comparable with u.,
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Chapter III The Order Topology

When solving Birkhoff's Problem 76 (1; p 166) we
might have used our Theorem 2.5 together with Theorem 13
of Birkhoff (1; p 60 ) to get a large class of Boolean
algebras for which the order and interval topologles do
not sgree. This theorem asserts that the order topology
of any partly ordered set 1s Hausdorff. The argument
given there proceeds as follows. First it is noted that
if a directed set order converges, then the 1limit 1s
unique. This follows immediately from the uniqueness of
glb and lub. Secondly reference is made to the fact that
in any topological space, if directed systems have unique
limits, then the space 1s Hausdorff. Now in the order
topology, in general, there are convergent directed
systems which 4o not order converge and we must show that
these have unique limits too, 1f we are to argue in this
manner. It turns out however that the order topology
can have convergent directed systems with non-unique
limits, and hence need not be Hausdorff.

The main difficulty when working with the order
topology 1s that one must take into consideration not
only a large varlety of directed sets but also the
various ways each cen be mapped into the lattice.

Tukey (9) has shown that actually we need consider only
very speclal types of directed sets, but nevertheless

the direct attack on the Hausdorff character seems
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difficult to carry through. By the introduction of

order convergent filters snd use of the equivalence
between directed sets and filters we shall reduce the
problem to & discussion of the intervals on the lattice,
and describe a process whereby the Hausdorff character
may be determined in certain cases. Throughout we shall
denote filters, and collections of sets in general, by
script letters. Individual sets of a collection will

be denoted by caplital Roman letters and as usual small
Roman letters will stand for elements of a lattice.

By definition, a filter base B8={BJ} order canverges

to x 1f A j.=x=Vm, where Bu={xk}, J,=Vx:, snd m,=Axf .
Since any two sets of a fllter base have non'empty
intersection 1t is clear that every m, 1is under every

Jo - This implies that if a filter base order converges
to x then so does any filner filter base. The following
lemma is an immediate consequence of the definitions.

Lemma 3.1 A directed system order converges to x

if and only if the assoclated fllter base order converges

£o x. Also a fllter base order converges to x if and only

if the assoclated directed system order converges to x.

Now for each memeber of a filter base 8= {B,} order
converging to x, we define my and Jx &8 above and then
assign to B« the interval[ms, L], which contains R
Each interval contains x and the collection .of intervals
forms a system of generators for a new filter which

clearly order converges to x tooes If Bx , B B : then

ByN Bgc [m,, j.J N [mp, j’J -[m“u mg, J, N JPJ , Which tells
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us that the generated filter base 1s actually coarser
than B.
Summarizing we have
Lemma 3.2 Every filter base order converging to x
———
ds finer thep 8 filter base of lntervals, which likewlse

arder converges to x.

Let us call the intersection of all filters order
converging to x the filter of pseudo-neighborhoods of x .
Since every filter base order converging to x must
converge tox in the order topology, it follows that the
filter of pseudo-nbhds must converge in the order
topology. If the filter of pseudo-nbhds satisfied the
nbhd sxloms, it would indeed be the nbhd filter, but
there are cases where the nbhd filter 1s properly
coarser than the pseudo-nbhd filter. Using Lemma 3.2
we see that in order to obtain the pseudo-nbhd filter
cf x we need only consider the intersection of the
filter bases of intervals which order converge to x,
and 1t 1s easy to decide whether a filter base of
intervals order converges to ¥ .

Lemna 3.3 A filter base of intervals order
converges to x 1f and only i1f the intersection of all
the intervals is x.

A basis for the pseudo=-nbhd filter is formed than as
follows. From éach collection of intervals having the

finite intersection property (the intersection of any
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two intervals of the collection 1s a member of the
collection) whose intersection is x, select an interval
and form the union of the selected intervals. The
totality of all such unions is & basis for the pseudo-nbhd
filter.

Now in order that the order topology of a lattice
be Hausdorff it 1s necessary (but probably not sufficient)
thaf for any two distinct points x and y, their pseudo-
nbhd filters be disjoint. The next paragraphs will be
defoted to the construction of a lattlce where this
necessary condition 1s not satisfied, but first we note

Lemma 3.4 The filter1 of nbhds of x 1is disjoint

from any fllter base of intervals which order converges

to y.

Proof: We can pick any interval G of 3% which does
not contain x., Then if every set of U had non empty trace
on G these traces would form a filter base on G which
would converge in the order topology to x, but this 1is
impossible since G 1s closed in the order topology.

In a lattice, to show that every pseudo-nbhd of x
intersects every pseudo-nﬁhd of y, it 1s necessary and
sufficlent to find a collection of filter bases of
intervals, each order converging to x, such that no
matter how we select an lnterval from each base and
form the union, some filter base order converging to y
has non empty trace on‘this‘union. The necessity 1s ob-

vious.
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The sufficlency follows from the fact that each pseudo-
nbhd contains one of the above unions. If the filter
bases are nested, then the (transfinite) sequential
order topology will be non Hausdorff. Let us denote the

first uncountable ordinal number byw., and let A be the

1

dual ofWw., + 1. A 1s a complete chaln and for the sake of

1
convenience we denote 1ts first element by O. The set of

all ordinary sequences taking values in A with the natural
(componentwise) ordering 1s a compléte lattice and we

obtain a lattice with non Hausdorff sequentlal order

topology if we restrict ourself to those sequences for

which all but a finite number of values are O and then

adjoin a top element I. This lattice L 1s clearly condition-
ally complete and since 1t has a top element 1s complete.

Now we shall exhibit a collection of nested filter bases

of intervals, each order converging to the sequence (0,0 ¢..),
which we shall henceforth denote by O!'. The bases are of the
type {[(u,o,o,...),o{]} {[(ﬁ,e,o,o,...),o_‘]} , {[(r ,r,r,o,o,...),oj}
etc. Where{a,ﬁ,y,..t} range over A and are not 0. If we

pick one interval from each basls we shall have selected,

as upper end points, a countable collection of elements

of A. There 1s an element of A which 1s under each upper

end point and yet properly over O. Now each member of the

following sequence of elements of L 1s in the union of the

selected intervals
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(2,0,0,000)y (A32,0,0,00¢), (A,N,2,0,0,000)ce. and the
sequence order converges to I. The assoclated filter

base likewise order converges to I and has non empty trace
on the union, hence the sequential order topology is

not Haugdorff.,

Theorem 3.5 The sequential order topology of a

lattice need not be Hausdorff.

This example also provides an answer t o a problem posed
by Rennie (6; p L0O) as to whether the L-topology of
& lattice 1s always Hausdorff. He defines the

L-topology of a lattice by taking as a basis for the

open sets those sets which intersect each maximsal

chain in an open interval (of the chain) and are convex.
That 1s if a and b belong to a set, a < b, then all ¢
such that a < ¢ < b belong to the set. A maximal chain
is one which is cantained in no other chain. Rennie has
shown (7; p 20) that in a complete lattice the
L-topology 1s coarser than the (transfinite) sequential

order topology. Thus we have the

Corollary 3.6 The L-topology of & lattice need not

be Hausdorff.

The following somewhat more direct argument shows
that the sequential order topology of the above example
is not Hausdorff, If U is any nbhd of O we see by the
equivalence of directed sets and filters that it must
contain some interval out of every nested collection

whose intersection 18 0. Hence U cantains a sequence
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converging to I and any nbhd of I must intersect U.
The more roundabout argument 1s presented because
the concept of pseudo-nbhd enables us to describe a
process whereby the Hausdorff property may be
established in certain cases. It 1s easy to verify
the following lemma which relates pseudo=-nbhds to

open sets.

Lemma 3.7 A set 1is open in the order topology if

and only if it 1s a pseudo-nbhd of each of its points.

This means that any open set containing an element x
can be constructed in the following meanner. First take
& pseudo=-nbhd of x. Then choose & pseudo-nbhd of each of
its points and form the union U which will be called a
pz-nbhd of x. Having defined a pn-nbhd V of x, we define
a pn*l-nbhd by selecting for each point of V a pseudo-
nbhd and taking the union. The union of all the
pn-nbhds 1s clearly an open set.

Now we shall apply the ebove process to a complete,

completely distributive lattice, where we have

(1)* \/(_ [/\A; “t,a] = /\,.- [Vc “x,qvm-.) and
(11)"/\c [VA.- “‘b‘»“] =\/F [/\c “mm]

as stated on page 5. If C indexes the s et of filter
bases of intervals order converging x and the WUyy are
the upper (lower) endpoints of the filter base Ay

in (1)"((11)") then the left sides of (1)" and (11)"™ are
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x and we see that the pseudo-nbhds order converge to x
and have a basis of intervals. Since order c onvergent
filters have unique limits, this means that the
pseudo-nbhd filters are disjoint. So given any distinct
elements x and y we have dis joint pseudo-nbhds

[al,bl:l ,[cl,dl] of x and y respectively. Focusing
attention on the former, we see that if we select

& pseudo-nbhd [u,,v,] for each point of [al,blj and
form the union of these sets, this union is contalned
in the interval [Au,,Vv], which is a p,-nbhd of x
containing [a,,b;] « It follows from the infinite
distributive laws that the intersection all such
Po-nbhds i1s exactly [al,blj e« If each of these
pz-nbhda had non empty trace on [_'cl,dl s these traces
would form a filter base of intervals, for which the
sets would have non empty intersection since every
upper end point must be over every lower end point.
This 1s a contradiction so there must be some interval
[na,sz which 1s & p,-nbhd of x and is disjoint

from [cl,dlj o Then we apply the same argument to [cl,dl']
and get a pz-nbhd [ca,dz'_\ of y disjoint from [az,bﬂ.
Continuing in this menner we obtaln ascending

sequences of intervels whose unions will be disjoint
open sets oontaining x and y respectively. Thus we have
established

Theorem 3.8 The order topology of a complete




pP+33

completely distributive lattice 1s Hausdorff.

The first part of Birkhoff!'s Problem 21 (1; p 62)
is concerned with finding necessiry and sufficient
conditions that an element x be isolated in the
order topology. By Lemma 3.7 this will be the case 1if
and only if x 1s a pseudo=-nbhd of itself. In other
words [x,x] belongs to any collection of intervals
having finite interssection property whose intersection
1s x. This shows the necessity of the conditions in
the following

Theorem 3.9 In order that x be isolated in the

order topology of a lattice 1t 1s necesseary and

sufficient that any collection of elemepts whose
glb is x have & finlte subset whoge glb is x snd

dually that any collection of elements whose lub is

X have a finite subset whose glb is x.

Proof: To show sufficlency let {[a, ,b]} be a
collection of intervals whose intersection 1s x and
suppose that M and N are finite subsets such that
/\me=x= Van. Then the intervals whose upper endpoints
are the X together with those whose lower endpoints
are the x form a finite subcollection whose intersection
is x.

If the lattice is complete we can use a result
found in Viadyanathaswamy (10; p 39) to get much more
tractible conditions for x to be 1solated. An element
X 1s called & Jump element of a lattice if it 1s not



pe3l

the lub of any chain whose members are properly under x
and dually if it 1s not the glb of and chain whose elements
are properly over X.

Theorem 3.10 In & complete lattice the following

properties of sn element x are equivalent:

(1) x 1s 1solated in the order topology

(11) x is 1solated in the sequential order

topology
(111) x 1s a jump element

(1v) any collection of elements whose glb 1s x

has a finite subset whose glh is x and any

collection gg’elements whose lub lg X has

8 finite subset whose 1EE.l£ Xe

Proof: (1) implies (ii) since the second topology
is finer than the first. (4ii) implies (1i1) since any
chaln whose glb or lub 18 x gives rise to a transfinite
sequence order converging to x. The sbove cited result
of Viadyanathaswamy 1s essentially the statement that
(111) implies (iv) and it follows from Theorem 3.9
that (iv) implies (1).

One problem in this area, as yet unsolved, 1is to
declde whether the Kantorovitch topology is always
Hausdorff. This topology is finer than the others and
can be Hausdorff, for instance in the example of
Theorem 3.5, where the others are not. Theorem 72.3

of Valdyanathaswamy (10; p ?75) asserts that any
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sequential convergence scheme with unique limits gives
rise to a Hausdorff topology and would settle this
question if it were correct. However there exist
sequential convergence schemes having unique limits
whi.ch do not give rise to Hausdorff topologlies. By a

sequential convergence scheme having unique limits we

mean any process for assigning limits to sequences
(1f x is aesigned to x we write xn—)x) such that
(1) 1f x =x for all n then x —9x
(11) 1f x =y, for all but a finite number of n
then X and Yo have the same limit or do
not converge
(111)1r x —x and xn§ is a subsequence then xnj—)x
(iv) 1r x »x and x -7y then x=y
The derived topology is obtained by calling a set X
closed 1if {erex and x —x imply x € X.
Now let us re-define convergence on the closed
unit interval of the real line. As required we say that
x =x 1f x_=x for all but a finite number of n. If X
is monotone non-decreasing and does not converge by the
previous requirement we say xn—)l, and if X, is monotone
non=increasing and does not converge by the first re-
quirement we say xn—->0. It 1s easy to see that any open set
containing O but not 1 must have its complement well

ordered and hence countable., Similarly any open set

contalning 1 but not O must have bountable complement
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so 0 and 1 cannot be separated by open sets.

In conclusion we indlcate various extensions of
the results obtained here which might be expected.
First of all there 1s a large gap between the example
in Theorem 3,5 and the complete, completely distributive
lattices, so far the only extensive class for which we
have been able to verify the Hausdorff character. The
lattice of Theorem 3.5 18 distributive and in fact
satisfies the infinite distriobutive law (1) but not (1i).
Among the conditionally complete lattices satisfying
(1) and (11) we find the (conditionally complete)
Boolean algebras and l-groups, both of which are of
interest in certain applications. Thearem 18 of
Birkhoff (1; p 231) implies the Hausdorff character
in the latter case, but the proof seems open to the
same objections discussed here on page 25. In view of
the essentially negative results obtained, it seems
reasonable that future studiles of lattice topologies
will be frultful only if restricted to the lattices
which enter in the applications. So far none of the
lattice topologies has given much insight into the

structure of lattices in general,
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