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ABSTRACT

MULTTIPLICITY AND REPRESENTATION THEORY
OF PURELY NON-DETERMINISTIC STOCHASTIC
PROCESSES AND ITS APPLICATIONS

by vidyadhar S. Mandrekar

The study of the representation arises in the investigation

of linear prediction problem for multivariate stochastic
processes. Using an extension of the method of Hanner from

the point of view of the multiplicity theory (See A. I. Plessner
and V. A. Rohlin, Uspehi Mat Nauk 1946; G. Kallinapur and

V. Mandrekar, Tech. Report 49, University of Minn.), representa-
tions for multi-dimensional (including infinite-dimensional)
processes are obtained. The concept of multiplicity arising
here is shown to coincide with the rank introduced by Gladyshev
for continuous parameter multivariate (finite-dimensional)
processes. In Chapter II, explicit form of the kernel is
obtained for continuous parameter Markov and N-ple Markov

processes.
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Again, the pursit of knowledge has its
own pleasure, distiucc from the pleasures of
knowledge, as it is distinct from that of
consciously possessing it. This will be evident
at once if we consider what a vacuity and
depression of mind sometimes comes upon us on
the termination of an inquiry however success-
fully terminated, compared with the interest
and spirit with which we carried it on. The
pleasure of search like that of a hunt lies in
the searching and ends at the point at which
the pleasure of certitude begins.

John Henry Cardinal Newman,
A Grammar of Assent, 1870.
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Introduction: The main object of this thesis is to study the multiplicity

theory of a wide class of purely non-deterministic weakly stationary
processes and to show how this theory provides a natural means of obtaining
representations of continuous parameter processes that are extensions of
the well known result due to K. Karhunen [I.10]. Karhunen obtained his
representation of purely non-deterministic weakly stationary (univariate)
processes using spectral methods. Our work can be described as a unified
time domain analysis that applies equally to finite dimensional and certain
class of infinite dimensional stationary processes. The earliest time
domain analysis of a (univariate) continuous parameter weakly stationary
process was made by O. Hanner in giving an alternative derivation of
Karhunen's result [I.6]. More recently, in the light of the extensive
development of multidimensional stationary processes it has appeared
desirable to separate time domain studies from the spectral and consequently
interest in the former has revived. As an example we mention the paper

of P. Masani and J. Robertson [I.11] whose approach makes essential use of
the Cayley transform associate& with the unitary group of the process.

The extension of this method to finite-dimensional stationary processes

has been carried out by J. Robertson in his thesis [I.14]. The earlier
work of E. G. Gladyshev [5] also belongs to the sam; order of ideas.
Hanner's paper, nevertheiess, has remained an isolated piece of work and
his method has apparently given the impression of being ad hoc. 1In reality,
however, as shown by G. Kallianpur and the author [I.9], Hanner's work

is intimately related to multiplicity arguments. ihus the generalization
of Hanner's approach to multidimensional (including infinite dimensional)
processes is to be sought in the development of the multiplicity theory of

the process, i.e., in the study of the self-adjoint operator A of the



process (see Section I.2) and its spectral types. This is one of the
central problems studied here and its discussion is presented in Sections
b, 5 and 6 of Chapter I.
In recent years a theory of representation of purely non-deterministic
processes has been introduced by H. Cramer and also by T. Hida ([I.l],
[1.2], [1.3], [1.7]). 1In Sections I.2 and I.3, following the te;hnique
éf the iatter éuthor, we obtain an extension of the basie theorem of his
paper [I.7] to the processes considered by us. Our purpose in doing so is
to comﬁare the representation of the Hida-Cramer theory (Theorem 1.2.2)
with the result of Section I.5 which is independent of Sections 2 and 3.
The extension of Hanner's method leads to a definition of multiplicity
which is seen to be identical with the concept of multiplicity introduced
by Hida. Section I.6 brings to light the natural role of multiplicity as
a generalization of the rank of a stationary finite dimensional process.
In the concluding sections 7, 8 and 9 of Chapter I we consider in greater
detail Hilbert-space-valued processes. Strengthened versions (involving
random Hilbert-space-valued integrals of the representation theorems of
Section I.2 and I.5 are stated in Section I.9. The material in Chapter I
is the joint work of the author with Professor G. Kallianpur [see G. Kallianpur
and V. Mandrekar, "Multiplicity and representation theory of 5urely non-
deterministic stochastic processes," Tech. Report 51, University of Minnesota].
As an application of the theor& developed in Chapter I we study in detail
the representation of vector-valued wide-sense Markov and N-ple Markov
processes. This part of our work is presented in Chapter II and can be
regarded as a generalization of T. Hida's work on univariate processes of
multiplicity one. As a consequence of the representation of the wide-sense

Markov processes (Theorem II.2.1) we derive a more precise form of J. L. Doob's



well known characterization of continuous parameter multivariate stationary
Gaussian Markov processes [II.2]. Continuous parameter q-dimensional wide-
sense N-ple Markov processés are defined and their representations are
studied as an application of Sections I.2 and I.3. The kernel of the rep-
resentation of such a process is a matrix analogue of the Goursat kernel of
order N. The last section of Chapter IIL (Section 7) discusses the question

of determining this kernel in the stationary case.



CHAPTER I. MULTIPLICITY AND REPRESENTATION THEORY OF PURELY NON-DETERMINISTIC
STOCHASTIC PROCESSES

1. Second order processes on ¢. We consider stochastic processes of the

following kind.
Let & be a Hausdorff space satisfying the second countability axiom but
otherwise arbitrary. We shall say that X, (- < t <) is a stochastic

on ¢ if for each ¢ in 0, Et(@) is a complex-valued random variable with mean

zero and 8 lﬁt(@)le finite. The process {5t} (-w <t< w) on § is called

weakly stationary (or briefly, stationary) if for all ¢,y in ¢ and arbitrary

real numbers s, t and T we have

Elxpy (0) 2, (W] = Elx (0) (V)1 -

The covariance function é [zt@p) ESZVSI of the process depends on t-s, ¢ and y .

The definition of a discrete parameter process [5n] is similarly given. It

should be noted that the stationarity considered here is a temporal one and does
not involve ¢ . Nevertheless, it is sufficiently general and useful for our
purpose since it includes as special cases many stationary random processes of
practical interest. For instance, if ¢ is a q-dimensional euclidean (or

unitary) space and zt(m) is linear with respect to @ for each t, then the x, -

process can be regarded as a q-vector stationary process (see [15]*); if ¢

is an infinite dimensional locally convex linear space and ﬁt(@) is again
supposed linear in ¢ (with probability one), then X, is a weak stochastic

process on ¢&. On the other hand, stationary processes X, as defined above

include those that are not linear in ¢ (indeed ¢ itself need not be a linear

* ] .
The number here refers to the number in references to this chapter. References
for each chapter are given separately.



space). Such processes can serve as useful models for certain problems in
meteorology (e.g., see [8]).
Associated with the X, process (not assumed to be stationary) are the
following spaces:
(a) the (Hilbert) space of the process H(x), defined to be;ﬂ,[gt(@),
t € T, ¢ € &], the subspace of LE(JZ, P) generated by the family of
random variables Et(Q) as t and ¢ vary respectively over T and Q;

(b) the subspace H(x; t) of H(x) given by H(x; t) =Q§{§t(@), Tst,and ¢ € ¢]

for every real t.

We say that X, on ® is purely non-deterministic if H(E;-w) , the

intersection of the subspaces H(x; t) for all t e T is trivial.

The process x, 1is said to be deterministic if for each t H(x; t) = H(x;-»).



THE HIDA-CRAMER THEORY.

2. Representations of stochastic processes on ¢ .
Although our main interest will be in the study of continuous para-

meter weakly stationary processes we begln by considering representations
of arbitrary second order purely non-deterministic processes xt(Q) on O.
It can be easily seen that the results stated in this section contain as
special cases those of H. Cramér [2] and of T. Hida [7] (if Gaussian assump-
tions are made). They will, however, be stated without proof since they are
proved by following essentially the method of the latter author. Our only
reason for including them here is for the purpose of relating the repre-
sentatlon and the definition of multiplicity given in this section with
similar concepts for stationary processes obtained in Sections 5 and 6.
For the sake of completeness we begin with the following "Wold decomposition"
of p. S

Propositlon 2,1, 1f (zt, te T) is a stochastic process on @ ,

then

(1) ) + ££2)(w) for each @ ¢ ¢ where

x.(9) =5 (o
(1) {xél)] is a deterministic and [Kéz)] , & purely non-deterministic
process on ¢ 3 and
(11) H(x‘l)) is orthogonal to H(x(z)) .
Observe that the topological assumptions concerning ¢ 1n no way
enter into the proof of this result,
Writing J =T x¢, a=(t, 0), B=_(s,¥) (a,pcJ) define
K(a, B) = &[3%(¢) ggfﬁﬁj. Then, c¢learly, K 13 a covariance function
on J xJ . let us denote by H(K) , the reproducing kernel Hilbert-space

of functions defined on J whose reproducing kernel is K. Let
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H(K; t) =& [K(+, @) , ac Jt ], i.e. the subspace of H(K) generated
by {(K(+, a) , ae J.) where J = {(u, 9) , u<t and 9e &) . It
is well known that there exists an isometry, which we denote by V , from
H(K) to H(x) taking functions K(+, a) into the random variables zt(¢)
and such that VH(K; t) = H(x; t) .

The following assumptions (A) will be basic for our purpose:
(A.1) The space H(x) 1is separable;
(A.2) H(x; -o)= (0} .
Condition (A.2) is equivalent to the process { x,) being purely non-determin-

istic, while the following lemma gives sufficient conditions on the r.ws 3%(@)

for (A.1) to hold.

Lemma 2.1. Suppose that for eacht,(-o< t < o)
(i) gt(¢) is continuous in quadratic mean relative to the topology of ¢ ,
and
(ii) the random variables Kt—O(@) and x, ,~(p) exist (in quadratic mean)
for each 9 ¢ ¢ .
Then H(x) is separable.
This result is a generalization of a lemma due to Cramér [2] and takes
as its starting point the fact, proved there, that for each ¢ , the set

of all discontinuity points of the one-dimensional process { zt(¢) , te T

is at most denﬁmerable.

Proof. It suffices to prove that there exists a countable dense set HO
in {;t(¢) » teT, 9ead). Let ¢ = {wk] be a countable, everywhere

denge set in ¢ . The set ﬁ of discontinuities of the one-dimensional

k
process gt(@k) is at most denumerable. We shall show that Ho =

{zu(wk) P € Q0 ueﬁg Dk » or u rational} is a dense subset of
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{ gt(Q) teT, 9¢€d} . Since Ho has at most denumerable elements,
the proof of the lemma will be complete once we establish the preceding
assertion. For 1t and ¢ fixed, consider an element ;T(@) and let
£ be an arbitrary positive number. By (i), there exists a ? € O
such that 8[’—‘-1;(°P) - x (o, )| < €/2 . If < is a discontinuity point
of the one-dimensional process (Zt(@k )} (t € T), then since ;T(¢k )GP%,
the proof will be complete. On the other hand, if <t 1is not a discontinuity
point of [zt(¢k )} then there exists a rational number r such that
8'J_c,t(cpk ) - ;r(cpk )]2 < 8/2 . This implies that 8|£r(cp) - g;r(cpk )|2< 28

and since 5T(mk ) € HO the proof is complete.

It might be remarked in passing that if x(t) = [xl(t), cees xq(t)]
is a g-dimensional process such that the random variables xi(t—O) ,
xi(t+0) exist for i =1, ..., 9 , the conditions of Lemma 2.1 are ful-
filled if we take ¢ to be gq-dimensional Euclidean space and define gt(¢) =
1%1 xi(t) P, 5 O being the vector (@l, ceey @q) . In other words,
Lemma 1 of [2] is a special case of Lemma 2.1. In view of the isometry
. V between H(K) and H(x) , the assumptions (A) are equivalent to cor-
responding assumptions concerning the spaces H(K) and H(K; -o0) . Let
us introduce the spaces H*(K; t) = fﬁ H(K; t-k%) . We then have
H*(K; -0)={(0) and H(K) = H*(K; aﬁ—} the smallest subspace containing
all the H (K; t) .

The spaces H*(g; t) are similarly introduced. Let E(t) denote
the projection operator from H(K) onto H*(K; t) and E(t) the pro-
jection from H(x) onto H*(;; t) . It then follows easily that the
families {E(t) , -< t< o) and {E(t), == < t < ®} are right continuous

resolutions of the identity in the respective Hilbert spaces H(K) and H(x).



-8 -
The two results which follow are proved 48 in [7]. We omit the proof,
which is essentially based on the Hellinger-Hahn decomposition of the self-
adjoint operators R and A defined respectively on H(K) and H(x) by
the resolutions of the identity introduced above. Observe that while the
parameter set T of the process is always either the real line or the set
of all integers, the resolution of the identity (E(t)} determined by the

process is defined for all real t .

Theorem 2.1. Let assumptions (A) be satisfied. Then each element K(°:, @)

(¢ in J) of H(K) has the following representation

Mo, M,

K(+, a) = Z 6 (o, w) dE(u) £ + = £ a(a)g.
n=1 Y- * t,<t 2=l it jt

J
where the symbols introduced have the following meaning:
(a) (f(n)] is a sequence of elements in H(K) with the following
properties:
(1) The inner product (E(Al)f(n), E(A2)f(m)) = 0 whenever Al and b,

are disjoint intervals or m # n ;

(i1) For each n , Gn(a, °) € Lz(pn) where pn(u) = \IE(A)f(n)” 2 s
Mo )
z ~[ |Gn(a, u)| dpn(u) <o and py D> py, D> ... ete .
n=1

(b) For each j =1, 2, ... the sequence (gjz} (¢ =1, ..., Mj)
are the eigenvectors of the self-adjoint operator S corresponding to the

eigenvalue t, and such that

J

The elements [8JL} further, form a complete orthonormal system in the

subspace [E(tj) - E(t,-0)] H(K) with

J



(gy,s 81y) =0 if 177

For a = (t, ) writing Fn(@; t, u) = Gn(a, u) and bJ&(Q; t) =

L(a) we obtain the following representation for the process ° X, on ¢ .

~.

a
J
‘__Theo;em 2.2. If conditions (A) hold we have the following representation

for X . For each t and ¢ , with probability one
Mo t Mj
(2-l)x(cp)=2j F(p; t,u) dz (u)+ Z Z b,(e;t) &, ,
ot n=1 V-0 P n t4<t 421 3t Je
where )

(a) zn(u) (=o< u < @) for each n , is an orthogonal random function

with the further property that 8[zm(u) aniv)]= 0 for m#n and
Ei|zn(A)'2 = pn(u) . Further, the functions T, and Py satisfy the

conditions stated in the preceding theorem;
(b) The random variables Ej: (=1, ..., Mj and j =1, 2, ...)
are mutually orthogonal with

fo o] Mj

2 2 2 2
z 3 b, (g3 t)]° finite, where u, ° = .
PSR | o los t)]7 finite, uhere vy " = glgyl

Definition. The cardinal number M = max [MO, sup MB] is called the mul-
h|
tiplicity of the stochastic process X, on .

It is to be noted that M can be infinite, in which case of course
M 1is aleph null. The corresponding series that occur in our work are then
to be treated as infinite series.
" If T 1is the set of integers it is easy to see that Mo is neces-

sarily zero and tj =93 .
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3. Canonical and proper canonical representations.
The representation obtained in Theorem 2.2 has the following property.

For s <t ,
M M

(3.1)  E(s) x,(9) = >l:f (o5t Wz () + T 2 JUREAS
tj<s«:-l .
A representation satisfying (3.1) will be called canonical. From the
form of (2.1), it follows that H(x CEIH H(E t)]  where
H(E t) = @ ch’ 0= 1y 2y e, MJ, tj <t] . For applications of the

theory, however, 1t is more useful to consider canonical representations for

which,

(3.2) @[H t) Uy H(E t)] = H(x; t) for all t .

Following Hida, we refer to a representation with property (3.2) as proper
canonical. In [7], Hida was concerned with proper canonical representations
of multiplicity one. 1In order to be able to discuss the multiplicity theory
of the more general processes considered by us it is necessary to establish
the existence of a proper canonical representation of arbitrary multiplicity
equivalent to the one given by Theorem 2.2. This we do in Theorem 3.1.

For the representation of Theorem 2.2 define the processes Bn(u) as

follows:
(1) 1If both M0 and Sup MJ are infinite, then
J
Bn(u) = zn(u) + Z Ejn for n=1, 2, ... ad inf .
tJSp
(11) If M, is finite and M_ < Sup Mj y let
J
Bn(u) = zn(u) + tZ( (jn for n=1, 2, ... M,
jSu
= Z for M < n < Sup M, .
t,<u Ejn ° © B Jp J

J



(11i) In the remaining cases define

B (u) =2 (u) + £ &

n n tJSP J
= zn(u) S§p MJ <n S_MO .
With the above notation we rewrite (2.1) as

(n=1,2, ..., Sup M,)
3 J

n

M t
(3.3) z%(v) = nil !;) Gn(¢; t, u) dBn(u), where

M = max(Sup MJ’ Mo) . What the functions G stand for is clear from the

J
context.

Also, H(Bj t) =@[H(_z; t) U H(E; t)] . A representation of the
= .

form (3.3) will be denoted by (G» B}
1

M
Theorem 3.1. Let {G ’ Bn] be a canonical representation. Then there
1 M
exists a proper canonical representation [G ) B ) such that for every
1
(9, t) , -,z f G (93 t, u) dBn(u) with probability one.
n=l =

Proof. Let pn(A) = S[En(a)l . For each ¢ and t , and every measur-

able subset 8 of (~-w, t] , define the measure p§2>w)(5) =
)

j”‘G (o3 t, u |2 (1) + Then for each n , the measure p(n) given
by p(n)( g) = V péz) )(s) (see [7]) is absolutely continuous with
t,0) 2 (n) e
respect to p . Let N = (ul gﬁ;—— (u) 0} and Bn(s) be the random
n
set function with variance function p and defined by the stochastic
integral B j‘ Iy (1) ( ) + Further, set 5;(@3 ty, u) = Gn(m; t, u)

M rt ~
for all ¢, t and u and consider the sum, Xﬁ(¢) = £ .[ Ek(mzt,u)dBn(u) .
l
If M 18 infinite, the right hand side series is easily seen to be conver=
gent in quadratie mean. From the fact that

(n)
G (n)
.fl%;§l (u) i*=2= (u) ‘Gn(¢; t, u)|2 for each t, ® and n, it is

dp dpy
éagy to deduce that
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ft e . 2 4o (a) = 0

[11, u)] e, (05 t, w)|” dp (u) =0 .
-0 n

Thus for all t, ¢,

2
l

(3.4) g| x (o) -

From (3.4) we find that for every t and ¢

M t 2 2
=z [ -1y @ Pa ety Wl @ (w) =0 .
n=l - n

(3.5) Kt(<P) = I,t(cp) with probability one
and that
(3.6) H(x; s) =H(y; s) forall s T.

A similar argument also yeilds that for every measurable subset S

of (-0, t],

|
(T & e

M
(3.7) 2 j;l Gn(v;t.u)lzdpn(u) = !lGn 95ty g (u) .
n=

n=1

Since &[B ) B (8] 0 for 6#4' or n#m, we have

H(E; t) = 59 H(B 5 t)

Therefore, to establish that (En’ 'é'n] i3 proper canonical, it suffices
to show that H( t)C H(x; t) for all n and t . Now suppose that

there is a t and an n , such that

1By 0 @ H v

Then we can find a non-zero element =z & H(gn; t) which is orthogonal
to H(x; t) . Let s" ¢T be arbitrary and s £ s' <t . By the canonical
property of (Gn, B } , (3.5), (3. 6) and (3.7), the projection of ;_gs"(cp)

M
onto H(x; ') 4s given by Z Gn(cp; s", u) dBn(u) . But 2z L H(x;t)
1l
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and z = (u) dBn(u) with h & Lz(ﬁn) (see [4], pp. 426-28). Hence
S'
(3.8) f G _(p; s", u) h(u) dﬁ'n(u) =0 for all s", ¢

Using a similar argument with s we obtain
S'

(3.9) ]. én(¢; s", u) ha) dﬁh(u) =0 for all s" and ¢ .
5

Proceeding as in Theorem I.2 of [7], it can be shown that (3.9)
implies

p, (N(h) AN )= 0 where N(h) = (u] h(u) #£0)

Hence,

2 t 2.~ v 2 - 2 _
glzl® = :/;O | h(w)) dpn(u) = joo INn(u)|h(u)| dpn(u) = {1“'{115?121') dpn(u)—O,

contradicting the assumption that z # 0 .

Remarks. (i) The relation obtained in (3.5) is an equivalence relation. Hence

M
we shall refer to [én, Bn] as a proper canonical representation equivalent
M 1
to {Gn, Bn) . .
1 dp >

(ii) By definition of En and the fact that EEB'(u) = IN (u) 1if
n

5;15 0 , we obtain Ig (u) =0 a.e. p, + But this will imply (

4.(n) n 5 dp a.(®)
p_d=E¥— (u) >0} =0 . Hence |G (93 t, u)|° which equals

n dpn n dpn

)
dp
vanishes almost everywhere [pn], i.e., for every ¢ and t Gn(¢; t, u) =0

n
0)
bl (y) d—(u)

a.e. with respect to Pp » contradicting the fact that M 1is the multipli-
M
city of {Gn, Bn} . Thus the representation (En, gn] also has multipli-

1
city M.

(iii) Finally, from the definition of En we have
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B (5) fr()duw g
= u) dz_(u %
n s M n t.cNAs 97
() +s ¢
=z +

t.e S Jn

J
say, where Ejn = Ejn if tj € Nn » and O otherwise. Hence the proper

canonical representation obtained can again be put in the form of (2.1).



WEAKLY STATIONARY STOCHASTIC PROCESSES ON &

We now turn to the central task of this paper, the study of the multi-
plicity theory of weakly stationary processes on ¢ . As we shall see,
this theory applies also to a class of infinite dimensional stationary
processes and shows that in the study of the latter, the idea of multiplicity
naturally supplants that of rank.

Before proceeding to the discrete parameter case whose results we
shall need in Section é we make the following observations concerning the
Wold decomposition of continuous parameter stationary processes on ¢ . If

for every real h , we define

T, % (o) = x.,,(9) ,

where t 1is an arbitrary real number and ¢ ¢ ® , it is easy to see that
this definition can be extended so that Th becomes a unitary operator.
Indeed, {Th} (-0 h, +@) 1s a group of unitary operators and for all

real a and h

ThE(a) = E(a+h)Th .

Using this fact and proposition 2.1 we are able to state the following pro-
position:
If (;t} is a weakly stationary process on ¢ then there exist weakly

stationary processes on @ , {x(l% and (Kéz% such that

£
(1) x,0) =56 +x* ) for every t,

(2) (xéla is deterministic (xizh is purely non-deterministic, and

(3) H(x(l)) and H(g(z)) are orthogonal.



- 16 -

4. Discrete parameter processes. Let x (n =0, +1, ...) be a purely

non-deterministic stationary process on ¢ . Since we want H(x) to be
separable, we shall assume that for each n , ;cn(-) is continuous in
quadratic mean in the ¢-topology. If in Theorem 2.2, T 1is the set of
integers then the resolution of identity of the process is given by

E,. = Z(p, -p
tn<tn

n-l) where p_ ~ is the projection onto H(x; n)

The self-adjoint operator A then has a purely discrete spectrum, having
each integer as an eigenvalue and H(x; n) @4(x; n-1) as the invariant

subspaces. The multiplicity M of the process is therefore given by
M = Sup [dim {H(x; n) @ H(x; n-1)} ] .
n

The following two lemmas show that dim { H(x eH(x, n-1) is inde-
pendent of n . Let gn(<P)=2£n(<P) - Pn-lESn(CP)

Lemma 4.1. H(x; n)eH(_)g;n-l) =g[_gn(q)), peo]l (n=0,+1,...).
Lemma 4.2. For arbitrary integers m and n, there exists a unitary

operator TIn such that,

T.& (g (0),0c 0] =@Elg, (0),0c0e] .

To prove Lemma 4.1 it is enough to show that H(x;n) = H(x;n-1)@
@[gn(cp), ® = ®] . But this is true from the definition of gn(qa) .
For the proof of Lemma 4.2, we consider the group { Tm] of unitary

operators given by

x (9) = (p) for all n and 9 .

Zn+n
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It can be easily verified that
Tmpﬁ-l%(q)) =pm+n—13-m+n(¢’) » Hemce, T, gn(CP) - gm+n(q))
and the proof is complete;

For the process X, of this section we now have the following result.

M
Theorem 4.1 x_ (9) = 2 Z b, (¢; m-n) ¢,(m), where
S —————— -N L 'L
= msn
(i) M = dim[H(x; n) ©H(x; n-1)] is the multiplicity of the process,

(i1) For eacht , [Cl(m)] (m =0, +1, ...) has stationary orthogonal

increments and a[Ez (m) ey ] =0 if k #¢ . Furthermore,
2 2 o
N |b )l g IQ(m)' is finite and
L =1 m<0 )

(111) = @H(gig n) = H(x; n) for all n .
i=1

Proof: From Theorems 2.2, 3.1 and the remarks preceding Lemma 4.l about

the resolution of the identity in H(x) , we have
M M
(4.1) x(0) = = = b/(o; n,m) §'(m) with H(x n) = ZPH(E; n)
mn £4=1 1

By Lemma 4.1 and (4.1)

g[g ?) med, n=n)= H(x; n) = Z‘.@H n) .

In particular

SBeeiee ] =EI[g0), ¢t =1,2, .. M

Hence, if we define

(L(m) =T E!,'(O) , Wwe have

E[Cg(m), l,=' 1, 2, ... M] =@[Ez(m), L =1, 2, ... M] ,
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since

ng[z;,‘ 0), ¢=1,2, ... M] =T S[g,(0)s0 ¢)=@g,(0),pc¢ ].

Z .

Therefore, ZGE} E ; n) and hence
1
M
%,(9) = T = b (g5 m) g (m), with
=1 m<O0 *
M
A |b(ep, m) |? g|g<m
=1 <
M
x(9) =T x () = 2 Z b,(p; m) g (mtn)
e noo ¢=1m0 EL
-M
= 3z Z b ( ’ 'n) E&( )
£ =1 mn
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5. Continuous parameter, weakly stationary processes. We shall give in this

section the generalization of what we believe to be the essence of Hanner's ideas
underlying his time domain analysis of one-dimensional stationary processes. The
desired generalization will turn out to be based on a study of the properties of
the maximal spectral type of the operator A of the process and its multiplicity,
thus effecting a unity with the work pfesented in Sections 2 and 3.

It is convenient to recall at this point some of the terminology of multi-
plicity theory in a separable Hilbert space H. Let A be any self adjoint oper-

ator with spectral measure function E(.). For any element f in H let Pg

be the finite measure on the Borel sets of line (sometimes also called the spectral
function) given by Pe (a) = ||E(a)E||®. The family of all finite measures on

the line is divided into equivalence classes by the relation of equivalence be-
tween measures (equivalence here means mutual absolute continuity). If p 1is
used to denote the equivalence class to which the measuré Pe belongs, p will
be called the spectral type of f with respect to A. p 1is also referred to as

the spectral type belonging to A, If elements f and g are such that P & pg
’

they obviously have the same spectral type p. We shall say that the spectral
type p dominates the spectral type o (p >0 or ¢ < p) 1if any (and thus every)
measure belonging to ¢ 1s absolutely continuous with respect to any measure
belonging to p. p and o are said to be independent spectral types if for
any spectral type v such that v <p and v <o we have v = 0. An element
f 1s said to be of maximal spectral type p (with respect to A) if for every

g inH Pg << pg. The subspace G&(E(A)f, A ranging over all finite intervals)

1s called the cyclic subspace (with respect to A) generated by f. If this sub-
space coincides with H, £ 18 called a cyclic or generating element of A and A

is called cyclic. Also 1if f 1s a generating element of A, f 1is of maximal
spectral type and the latter is referred to as the spectral type of the (cyclic)

operator A, It is to be noted that if A 1s any self adjoint operator (since

H 4a sanarahla) rrave alwave oavicte 8 mavimal ermartral fune Ralanedne A A



=20-

Any system of mutuall& cyclic parts of A of type p 1is called an orthogonal
system of type p relative to A. An orthogonal system of type p which can-"
not be enlarged by adding to it more cyclic parts of A is called maximal, It
is a known result of this theory that all maximal systems of type p have the
same cardinal number. This uniquely determined cardinal number is defined to
be the multiplicity of the spectral type p with respect to A,

Finally we need the notion of a uniform spectral type. The spectral type
o] (*0) is said to be uniform if every non-zero type ¢ dominated by p has the
same multiplicity as p itself, Most of the above definitions have been taken
from the article by A, I. Plessner and V. A, Rohlin [12] to which the reader is
also referred for further details,

When dealing with continuous parameter processes, we assume not only that

X, (¢) is continuous in q.m. in the topology of ® but that for each ¢<®,

the complex valued univariate process [Et(¢)] (-0 < t € + w) i8 continuous in
q.m, in t. We shall refer to this as condition (C), It is easy to see that if
(C) holds, the assumptions of Lemma 2.1 are valid so that the separability con-
dition (A.1) is satisfied. 1In addition, it follows from condition (C) that the

group [Th] introduced in Section 4 is strongly continuous, We recall from Section L

[(5.1) T E(t) = E(t + h)T
for all real t, h. As in [9], (5.1) 4is the:' - . L
basic relation between the operator A and the unitary group of the process
which we propose to exploit in our time domain analysis, We shall prove the
central theorem on representation by means of a number of lemmas., The first
group of lemmas concerns the properties of spectral types,

Lemma 5.1 If f is any element of H(x) then, pg << ugthe Lebesque measure,
Proof: Let us define for every real t, and every measurable set S of the real

line pf(t) (8) = pf(S-t) = ||E(S - t)f]||2. From (5.1), however, pf<t)(S)

equals ||E(S) th||2. Hence by the strong continuity of the group (T.), pgt)(s)

converges to o.(S) as t =0, The assertion of the lemina now folii.ows from a
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"result-due-to N, Wiener and R. C., Young [See Saks [16], p.9l].

Let f(i) be a maximal element of A, i.e., an element of maximal spectral

type with respect to A, and u any positive number. If we define

(5.2) g: = (E(b) - E(a)) Ab/ﬂnrha(ao) f(l)dh, where AdC(O,u), A < a-u

B>Db and the integral is taken as in [6], we observe that g: can be ident-

ified with Hanner's z(Iab) with z = E(Ab\f(l) in the formula (3.2) of [6]

(p.166). We remark that g: does not depend on A and B as long as these
limits of integration satisfy the stated inequalities. We give here the proper-
ties of g: which follow from those of Z(Iab) (See [6], p.167]. For

a<b<c¢, we have

b

(5.3) g, +8 =8

(5.4) g: 1s orthogonal to gg,

and for arbitrary t,

(5.5) T, s = sl i .
It follows from (5.3), (5.4) and (5.5) that

(5.6) ||g:||2 ~ T(b-a) where T 18 a non-negative number that does

not depend on the interval (a,b].

Lemma 5.2, There exists a finite interval Acfio,u] such that gg as

defined in (5.2) is different from zero.

Proof: We follow Hanner closely in proving this lemma ([6], Proposition ¢).
Suppose gg = 0, then for every 2' ¢ H(x) and every %C(O,u],&[gg?] = 0,
Hence,if z = u(al,tl) and 2' = u(se,tg), where w(s,t) = (E(t) - E(a)]f(l)

for s < t, then from the fact that &[gg 2'] = 0, we have

, u
(51 [ GIne(se). GSE a0 (0< a8 e, 8 v,
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But for & such that 0< & < 3u, &iThw(O,u) w(d,u-5)] = 8,|Th w(d,u-8)|2
is a continuous function of h which converges, as h -0 to g|m(s, u-8)|2.
(r)
Now, (8, u-8) = O implies that [E(8) - E(u - 8)] £ = 0 and hence

[E(8) - E(u -8)] £ =0 for all f eH(x), sgiving H(x;8) @ H(x; u - 8) = (0}.

This contradicts the fact that the X, -Process is purely non-deterministic.

Therefore we can find a y (0 <y <u) such that

' T
L= b/\g;[Th w(O,u) w(d, u - 6)] dh § 0. Let to =8<t; <v.. <t =u-d
-r

be a finite subdivision of the interval (5, u - 8]. Then

- Ar
L=y [ &lr, w0, WEE)] b,
1 -r

n T+ (ti - ti-l)
Let M =Z f&[Th w(ti_l-r, £, + T) Wl iy ti)] dh
1 -r-(ti-ti_l)

n

+u
=Z f 8[Th w(ti_l-r, £, + T) witi_l, ti)] dh which is zero from (5.7).
-u
Now |M-L| s 2u]| w(O,u)Ilmawa(ti L ti)ll. But
1 -

(1) _ (1) and w(t, ,» t,) 1is
w(t, 1o £y + PH(E; n £17 = Ph (x; ' £ 1-1° 71

1 L
orthogonal to H(x; ti,u) £ ), Hence, ]|w(ti_1, ti)||2 = ”PH(x; ti-l’u)f( )||2

1) 1)
-||PH(§; ti’u) f( ) ||2 Since ||PH(§; t,u)f( ||2 is a continuous function

of t, we make ||u(ti_1, t:i) || as small as we please by taking a fine enough

subdivision. Hence M =1L. But M=0 and L 4 O. We arrive at a contradiction,

thus proving the lemma.
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Henceforth, Ab will denote a fixed subinterval of (O,u], such that

||gg]|2 4 0 where in (5.2) we take (a,b] = (O,u]. .

Suppose that 0 < b < u and consider gg = [(E(b) - E(0)] ‘j‘ T, E(A

(1)
)£'*/dn,
o oon

0

where A' < -y, B' > b, Since the definition of 83 is independent of this

particular choice of A', B', we have
B
b, [E(b) - E(0)] g~ = (E(b) - E(O)] fr E( )f(l)dh where A < -u and
o 0 ), h % ’

B > u. Also from (5.3) and (5.k4), gg = gg + g: with g; orthogonal to gg.
u 2 b ) Uy 2 b
Hence ||gO |12 = IIgOII + ||gb]| . 1f g,=0, we have from (5.6) that

ru=7(u - b) where T 4 O by Lemma 5.2, Since u and b are distinct pos-

itive numbers, the above relation is absurd and thus gg + 0. On the other hand,
b u b L. u
1f b> u then again (5.3) and (5.4) imply that B, = 8y + 8, With g, being
b b, u b, |2 b
orthogonal to g . Therefore ||g [[® = [[g ||® + || ||® thus giving gj { O

for all positive b. Finally if b'< 0, then from (5.5), T& gg. = gg where

B 0 b
B = -b', From previous arguments 8o * 0. Hence Bp ! + 0. Thus &, + o 1if
b> 0 and gg. $ 0 if b' < 0. We therefore obtain 40 in (5.6), since
d d-c
for any (c,d], T .8, = 8 $ o.

o)

I

Lemma 5.3, The spectral measure p = T4, (I = (a,b]), where

g,b

uI(S) = u(IAS) for every measurable subset S of the real line.
Proof: Let A be any finite interval. Then pgd (a) = ||E(A)gg ||2. There-
a

b

. ||?) which equals zero 1f ANT = @

fore, from (5.2), psb (a) = ||E(am1)g
a

and, from (5.6), is equal to T u (AA1) if AAL +¢ . The result follows

immediately from the definition of uI.
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The definitior of gg can obviously be adjusted to make T = 1. From
now on we shall assume that this has been done.

Temma 5.4. If p 1is the maximal spectral type of A, then p = .

Proof: It suffices to prove that if f(I) is a maximal element then p (1) = Mo
f

From the maximality of f(l) and the fact, shown in Lemma 5.3, that p b= pI
g
a

for an arbitrary interval I = (a,b], it follows that u << p (1) An appeal
f
to Lemma 5.1 completes the proof.

We next define a complex-valued process gl (a) for all real a, as follows:

g,(a) = -gg 1f a<o
£,(0) =0
gl(a) = gg if a> 0.

If we set gl(I) = gib) - gl(a) for every interval I = (a,b], it follows from

(5.3) and (5.4) that
(5.8) (1) =g .

It is easy to see that {gl(t)] (-« < t <+ o ) is a stochastic preocess with
stationary orthogonal increments and glgl (A)|2 = u(a). Let us write H(e,) =

(E;[gl(A), A ranging over all finite :gubintervals of Yeal line)} and
H(gl;t) = g(gl(A), A ranging over all finite intervals contained in (-, t]}.

Then by (5.5) it follows that for every real t, T ) = P If we

e Pu(e;) T FH(y) Teo

now define
(5.9) §t(1) (9) = PH(e, ) x (),

)

s+ t(cp) for all s and

then the zir) -process is stationary and Tt §(t$)= E(

¢. Furthermore, since ;1 is a process with orthogonal increments, we have

H(e) = H( 5t) @ @B (s, (8), AC(t, + =) = H(gl;t)@g(g:. t<asb<+ w
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from (5.8). But, by definition of g:, it(cP)-L g[s‘:,‘t < asb<w 8o that
_,_‘_t(q;) = Pu(gl;t) Et(cp) for all t, Q. S%nce from (5.8) and (5.2), _gl(A) € H(x;t)

1
for every finite interval A lying in (-», t], we have H(_:ﬁ( ); t) C H(x; t).

Hence the .’Et(i) -process is purely non-deterministic.
1 t
Lemma 5.5 For every real t and @ in 0, ft( )(cp) = f rl(q>; u - t)dgl(u)

! =00
0
where f |F1(cp; u)|2 du(u) < w.
=00

Proof: Since _:50(1)(cp) € H(gl; 0), it has the stochastic integral representation
(1) ° 0
xy (@) = f F,(p;u) dg (u) with f | Fl(cp;u)|2dp(u) finite (See [4], pp. 425-28).
0 o0

The x (1)-proceas is stationary and T, gl(A) = gl(A + t) from (5.5) and (5.8);

t

hence

0 t
3‘-1:(1)((9) = tho(l)(q’) = f Fo(psu) dg(u+t) = f F,(p; u-t)de,(u) .

W) - x.(9) - §t(1)(¢>)- Then

For every ¢ € & and t real, set Ye
T, z.(l)(cp) = X&-t):(q’) and H(z(l);t)CH(i;t). Hence the zt(l) -process 1is
also weakly stationary and purely non-deterministic. From (5.9) we have
zt(l) = gt(cp) - PH(EI) Et(cp) which implies that for all t, o, zt(l)(cp).LH(gl).
Since H(:_:_(l))CH(gl) it follows that for every t and 8
(5.10) H(_xu):-)_l_ H(g(l);t)

Lemma 5.6 H(x;t) = H(i(l);t)eﬂ(}:(l);t) for each t.

Proof: Since H(i(l);t)eH(y_(l);t) C H(x;t), we need to show only that

H(E(l);t)@H(z(l);t)C_H(i;t). But this follows from the fact that for

9 € 0, _&T(CP) = ETO‘ )(QD) + zT(l)(cp) which belongs to H(E(l);t)gl{(z(l);t) for

for ¢t 2 .
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.Lemma 5.7 Let a and b be arbitrary real numbers. If we write
H(E(i);a,b) = (1) ;b) SH(x (I) then
(5.11) H(f_(i);a,b) @&, a<asp=sb) - GUER) - E(a))g) a omgMuTD)

Proof: The second half of relation (5.11) is obvious since [E(B) - E(a)]g: = gg

for a<a=B = b. To prove the first part we proceed as follows: For

a<tsb ad oeo, x () - Pu(e(L) ) x. (1) - P 500 (P (R

?

From Lemma 5.6 and (5.10),
(1 1 :
% (o) - Pu(z(i);a)ft( (@) - Pu(g,se) Xe(® - Pu(xza) Pu(p se) Xe(0). Further-

more, for a s t, writing H(gl;a,t) = H(gl;t)eH(gl;a)

(5.12) H(g 3t) = H(g 5a) PH(g 3a,t) and x () LH(e 5a,t8).

The latter assertion follows from {5.8) and the definition of g:. Thus, we have

PH({;a) PH(el;t) = PH(_}E;a) {PH(El;a) +I (gl’a t)) H\x a) H(E]_’ a). Further,
since H(sl,a)CH(x a), we have
d (1)
)(¢) - P ( (1) sa) Xt (p) = PH(El;t) ft(q’) - PH(§133) it((p). Hence

H(i(i);a,b)(_‘_}{(sl;a,b) which from (5.8) is the same as
@{gg, a<asp s b}, To complete the proof we have only to observe, be-

B

cause of Lemma 5.5, that for a<aspB = b, 8y is in H(zc_;a,b) and is ortho-

1
gonal to H(_):(1 ) ;a,b).

(18
Let 8@) o) - P )'a) ﬁt(l)((p). From Lemma 5.7,it follows that
a<t=zb and 9 9.

t b

(5.13) gt(i) =J‘ F(p; t,u)d E(u)gz where f |F(@;t,u)|?du(u) is finite.

a a

(o)
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We are now in a position to prove the following result

Lemma 5.8 The operator A is reduced by H(E(I);a,b).

Proof: It suffices to prove that for a<t s b and 9 ¢ 0, Agt(l)(cp) € H(_:_c_<1);a,b)

N

since H(i(l);a,b) = @(g_t(l)(CP), Ppedac<t s'b}. From (5,13)

t
j Ag(l)(cp) = fu F(p; t,u)d E(u)gz where F(@; t,u) € Lg(pl). Hence
a

. b . I
2 W) ¢ Z(EE) -E@)d a<a<psb) since u F(pit,u) ¢ Ly(uh).
From the preceding lemma it now follows that AJ’_EC(‘I)(cp) € H(}_(l);a,b).

Lemma 5.9 H(i(l)) reduces the operator A.

Proof: From the properties of the resolution of the identity corresponding to A,

we have
(5.14) E(A)A = A E(p)
for every finite subinterval A = (a,b]. If w 1is any element belonging to

o&]\ nu(i(l)) (which is non—empty) where o@A is the domain of A, then from

Lemma 5.8 we have

E(A)Aw = A E(A)w = A PH(x(I);a,b) w € H(E( ;a,b)
Now letting a =n -1, b=n and An = (n -1, n] we obtain
-} [+.<]
SN '
Aw = z E(An)Aw € L @ H(E(l); nl, nn) = H(E(l))
n= -0 n=-00

Let A(I) be the reduction of A to H(E(l)). Then (Lemma 58) clearly

1) (1)

A( is reduced by H(ic_(i), a,b). We denote this operator on H(x "';a,b) by

AI(I) (1 = (a,b])s An immediate implication of Lemma 5.6 is that AI(I) is a

cyclic operator with generating element g:. We recall from Lemma ‘5.3 that .thel

spectral function of g: is given by p b= uI,

Ea
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Now let Ij = (aj,bj] (j = 1,2,...) be disjoint intervals whose union
(0

is the real line. If pj denotes the spectral type of the operator Aj .

1
(which we write here for A§ )) then it is easy to verify that the pj's are
j

independent spectral types. For let j and m be arbitrary (j % m) and suppose

that o is a measure whose spectral type is dominated by both pj and P’ For

all k 4 j since ij(Ik) = 0 we have oI
Im
to zero since u (I,) = O, Hence ¢ = 0., Summarizing all the above facts

i
(L)

we find that we have a representation of A" ! as the orthogonal sum of cyclic

k) = 0. But U(Ij) is also equal

(1
operators A(I) whose corresponding spectral types pj are independent.
j

It then follows that (}12] p. 192), A(’} itself is cyclic and since the spectral

I
function ] belongs to the type pj for each j we can conclude moreover

1
that the spectral type of A( )is equivalent to u. From Lemma 5.4 it follows

(1)

that the spectral type of A is equal to p, the maximal spectral type of A.

I ?
Let us recall that H(x) = H(f( ))éf}ﬂ(y( )) and the self-adjoint
1
operator A 1is reduced by H(E( )). Hence A can be written as the orthogonal

sum of the reduced operators, A = AH(x(ljy' + AH(y(l))

1
Now, AH(y(l))’ a self-adjoint operator on H(z6 )) is the operator of

1), .
the weakly stationary non-deterministic process {yt( ). y o < t <+ o}
I % !

.

We may, therefore, apply the above analysis to this process replacing H(i) by
H(z(i)) and A by Aﬁ(y(l')) . We then have, H(X(r») = H(E(a)j;@ﬂ(y_(a)\),

1)

where the x Qﬂ process s constructed from the Y.+  -process in the same

—t
: o)
way as the it(l) -process is obtained from the given X, -process. The Xt(b)

-process is stationary and purely non-deterministic. We also have the orthogonal



decomposition

(1), (2
A=A + A + {2,V »
Myl 2))
where A(i) = AH(x(i)) Continuing the above procedure we arrive at the follow

ing relations,

(5.15)  u(x) -sN@rhe. . @ua™).
(5.16) A= A(l) + A(e) . + A( )
(1)

where x ft(Q) and {Ei(u)’ ~-ow<u<+ o} are mutually

t ?) = PH(

£y)
orthogonal processes with stationary orthogonal increments. The operators A(i)
are cyclic, all having the same spectral type p (the maximal spectral type of A).
Further M 1is a cardinal number at most equal to F%%.

Also from Lemmas 5.5, 5.6 and 5.7, we have

t
511 x M) = [ 7 (eu-0) ag ()

\

with H M
- .

(5.18)  Hme) = > @ wxPie - Y@ .

i=1 n=1

Let f(i) be the generating element of A(i). Since

(E(b) - E(a)} f(i) = PH(f(iga,b) f(i), clearly H(z(i)) is the cyclic sub-
space generated by‘ fcil, i.e.,
(5.19) H(E(i)) = (EE@Q) f(i)’ A ranging over all finite subintervals

of the real line}., We also have pri).; u. From (5.15) and (5.19), we have

IZE i .
H(x) = > b 1~:{E(g)f( ’a .ranging over all finite subintervals) and

(5.20) pe(D) =) - - L g
Hence, it follows that M is the multiplicity of the X, —process. (See Sec-

tion 2 where this notion is defined). Assembling all the results of this
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section together we observe that we have established the following basic re-

presentation theorem.

Theorem 5.1 Let x, (<o < t < + ») be a weakly stationary, purely non-

deterministic process on ¢ satisfying (C). Then

(5.21) x (@ = 5 [ Fyesee) ar(w),

where,
(i) M 1is the multiplicity of the process,
(ii) each gi(u) is a process with stationary orthogonal increments (homo-

geneous process) and the gi's are mutually orthogonal. Furthermore,

M M 0

H(x;t) = J (&)H(gi;t) for every real t, and :E: \[~ IFi(w;u)|2du(u)
i-1 -

is finite.

It can be easily seen that the homogeneous processes gi,(i=1,2,...M) of

the representation (5.21) are uniquely determined upto a unitary equivalence,
The above theorem is a generalization of the Karhunen representation to

stationary stochastic processes X, on ®. This result also generalizes the

Rozanov-Gladyshev representation for q-dimensional stationary processes as
will be seen in the next section. The reader will observe that (5.21) has been
derived essentially independently of the Hida representation (2.1) and the
latter is referred to at the end of the proof only for the purpose of identi-
fying M as the multiplicity of the process. Indeed, the whole point of the
problem is to study the maximal spectral type and to construct the homogeneous
processes gi(u). Once (5.21) has been obtained, however, it is easy to dis-
cover the special properties that the representation possesses in this case,
e.g to see that all the elements f(i) occuring in it are equivalent, with a

common spectral type equivalent to pu. Moreover, starting with the gi s

one can construct without difficulty a sequence {f(l)] for the representation
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(2.1) of Section 2. This can be done as follows: It is clear that the elements

fi (i =1,...,M) occurring in the proof of Theorem 5.1 and with the property
that they have all the same) spectral type equivalent to p (see(5.19 and (5.20))

can be chosen as the elements in the Hida representation of x If we now set

.
P, -
L@ = [N ey
A du

it is easy to verify that the g, are mutually orthoganal random set functions

each having p as its wmeasure  function, and that (A being a finite interval)

b 5
Ba)t; = L) e ().

d
; AT

If we now make the appropriate substitution in (2.1) and compare it with the

representation (5.21) it follows that for each t and ¢

RE
F, (®3t,u) = F (9; u-t) Ld (u) (i=1,..,M)
33

a.e, with respect to u.

Thus, for stationary processes, the generalization of the approach of Hanner

given in Theorem 5.1 leads to a deeper analysis which includes the proof of

(5.19) and (5.20) and yields directly the representation we seek. It is inter-

esting to explore further the connection between p and M. The following dis-

cussion presents another aspect of the problem and provides additional information.
Thearem 5.2 :p 18 a uniform spectral type with (uniform) multiplicity M.

Proof: We use the ideas of Plessner and Rohlin [12]. It will first be shown

that p has multiplicity M, Let {Aé } be an orthogonal system of type
p and cardinality M', , i.e., a system of orthogonal cyclic parts AB' of the
operator A, the spectral type of each cyclic operator Aé being p. According to

to the terminology of [12] M 1is the multiplicity of p if we can prove that
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M' s M., Observe that neither M nor M' can exceed EQ;, for otherwise we would
arrive at a contradiction of the fact that H(E) is separable. Furthermore, there

is obviously nothing to prove if M =;€b . Thus the only case to be considered

is when M is a finite cardinal. If possible let M' > M. We shall show that this
leads to a contradiction. Let hi (i=1,...,M) be a generating element of the
subgpace H(i(l)) and hé (B=1,...,M') be similarly a generating element of

the cyclic subspace corresponding to Aé . Clearly, there is no loss of gener-
ality in supposing that all these elements have the same spectral function, say.

p'. From (£.1°) and (5.19) it follows that for each B we have

M
hé = Z fFiB(u) dE:(u)hi where Z f lFiB(u)Iz dp'(u) is
i=1 i

finite, For every measurable set A we obtain

M

g (e@mgny = [ Z Fip (w) FT6) do'(u).

A I=

The left hand side of the above relation is zero if B }y and equals

p'(A) if B = y. Hence for u not belonging to a set N of zero p'-measure

By
we have M ‘
52

z FiB (u) F;y(u)' = 887 .

i=1
Since M' is at most (", the set N =UN is measurable and p'(N) = 0.

By By

Chopsing a fixed point u, in the complement of N we see that

M
(5.22) z FiB(uO) _"(‘-F],L7 uo) = 8B7. for all B, .

i=1
1f we now set a, = { F1a(“o)"“’ FPB<UO)]’ the relations (5.22) imply that

the a, are M' orthonormal vectors in M dimensional unitary space. Hence M'

B
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cannot exceed M. In other words p has multiplicity M.
The proof that the spectral type p is uniform is achieved by a modification

of the above argument. The reader will no doubt, observe that the conclusion
about uniformity rests on the fact that the orthogonal system [A(i), i=1,...M" )
(1)

is not only maximal but that the orthogonal sums of the A is equal to A (see

(5.16)).
Let ¢ by any spectral type dominated by p. The only change we make in
the proof given above is to let {Aé} be an orthogonal system of type ¢ and

cardinality M'. Let h' be a generating element of the cyclic subspace of A'.

B B

Assuming, as we may that the h, have all the same spectral function p' and

i
that the hé have the same spectral function ¢' we obtain the relations
do' do'

(u) 8, , where u ¢ N and
dpl 67 dp'

M
(5.23) > ) T T -
i=1

is the Radon-Nikodyn derivative of ¢' with respect to p'. Since the set

S = {u:

(u) > 0} has positive p' -measure we can choose Y, in s N N©
dp'

when as before N is the set of zero p'.-measure., Substituting u, for u in

0]

the relations (5.23), we are again led to the conclusion that M's M. Thus it
has been shown that the multiplicity of any spectral type dominated by p is
equal to the multiplicity of o . Hence p is a uniform spectral type.

Remark: It follows at once from the theorem just proved that every
spectral type belonging to the operator A of the stationary process x, has
mltiplicity M,

To find the funtions F, and the value of M in the representation (5.21)
in specific instances one would have to consider, individually, concrete ex-
amples of spaces ® and purhaps have to assume additional properties of the

process x such as linearity in @, The study of some of these questions we

postpone to a later paper., However, since it is important to relate our work
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to recent developments in the theory of multidimensional stationary processes

we consider in the next section the case when ¢ is a q-dimensional unitary space.
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6. Multiplicity as a Generalization of Rank. 1In the theory of finite dimensional

weakly stationary processes the notion of rank plays a conceptually essential role.
Zasuhin, 1in 1941, was the first to define the rank of a q-dimensional, discrete
parameter stationary process as the rank of the (q X q) "error matrix™ (See [18]).
More recently, the definition of rank for a continuous parameter process has been
given by Gladyshev [5] to be the rank of the discrete parameter process associated
with the process. This point of view has been further explored in the recent
thesis of Robertson [14]. It is also well known in the literature that the rank
of the process is equal to the rank of the spectral density matrix. (See [15]
where the rank is defined this way and [14].)

We shall show in this section that the multiplicity M occurring in the
representation given in Theorem 5.1 constitutes a generalization of rank in the

following sense: If x_is a weakly stationary process on ¢ where ¢ may be

t
infinite dimensional (and 5t(¢) itself may or may not be linear in ¢) then M is
equal to the multiplicity of the associated discrete process (Theorem 6.1). In
the case where ¢ is a q-dimensional unitary space and 5t(@) is linear in @, so
that we are dealing with a q-dimensional stationary process, it is shown in
Theorem 6.2 that the multiplicity equals the rank of the process and the
representation of Theorem 5.1 coincides with that obtained in [5] and [14].

The connection between multiplicity and spectral theory for infinite dimen-
sional stationary processes X, will be considered in a later paper.

1f [gt) (-2 < t < +®) is a given stationary stochastic process on ¢

satisfying condition (C), then for each ¢, the one dimensional weakly stationary

40 |
process {gt(qp)] is continuous in q.m. and hence for fixed g, Et(q’) =-<‘:fo elt}‘d\@fk)go(:p)

where (G(A), = < A\ < + w} is a resolution of the identity of the unitary group

{Th) of the X, process.

With the process {Et(@)] (for fixed @) is associated a discrete parameter

process,
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~ T inp N -1
(6'1) ’_‘n(¢) = Je de(Zn.'t an "\) EO(qD)’ (n =0, s 1,...) [[&], [11]].
_‘F

Let us now write for each ¢ and t, H¢(x;t) =<E§XT(¢), T £t} and

\ HQ(?{’m) = @(?{

_n(¢), nsm} (many integer). We have for all g, H¢(x;+w)-=.H¢(§;+cn)

and H¢(i;@)f - H¢(§;O) (See [4], [11]). Therefore,

(6.2) H(x; +* ) = H(¥; += ) and H(x;0) = H(X;0) .

From stationarity and (6.2), the following lemma is immediate.

Lemma €.1: {gt - o< t <+ ®} is deterministic if and only if fZ;, n=0,+1,...}
3

1s deterministic.

We recall here two lemmas from [5] which will be frequently used in what follows.
It should be observed that in Lemma (G2) stated below the process can be infinite-
dimensional. Its proof, however, involves no change and is an easy consequence
of (6.2).

Lemma (Gl). If {qt] is a one-dimensional weakly stationary, continwous in

q.m., purely non-deterministic process, then the‘ﬁn- process is purely non-deter-

ministic.
Lemma (G2). If {n,) and ({ ) are stationary processes on ¢ satisfying

condition (€) and such that H(n;t)C H({;t) for all t, then H(T;m)C H(z;m) for

every m and conversely.

We shall now obtain from Theorem 5.1, a representation for thejgn- process.

The notation will be that of Section 5. Let us define for each i = 1,2...M,
(1) ;
(6.3) X, () = IF1(¢;u-t)dgi(u), where the right hand side expression is the
-0

term appearing in the representation (5.21) of 5t(¢). Consider now the process

t
h(i)(t) = fes-tdgi(s) (-0 < t < +®)., Then {h(i)(t)] is a one dimensional

=00

stationary stochastic process with Tth(i)(o) = h(i)(t). Furthermore, since
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g (8) - 5,(e) = ) - a4 15 (w)au (s < €), it follovs that

for all t
6.4)  m(ese) =rw(Pie) (1 =12,
The hgi)- process which is obviously continuous i1 q.m., is also purely non-deter-

400 (1) ] +o0
ministic, since from (6.4%), () H(h‘"/;t) =N H(gi;t)c:,f\ H(x;t). The discrete

(s .
parameter process (h(l)(m)} is thus purely non-deterministic and therefore has a

moving average representation given by
®©
T(1)
6.5)  BH@) = Dby (e)u(mer)
£=0 ' )

where '
(6.6) H(;(i);m) ==@§ﬂui(m-%), 0s ¢ < +x} and [ui(m)} (for fixed i) is a

process with stationary orthogonal increments. From (6.2), (6.4), (6.6) and the

mutual orthogonality of {gi(n)}, it follows that the processes [ui(n)] (i=1,2....M)

are mutually orthogonal. Also from (6.3) and (6.4), H(g(i);t)CZ H(h(i);t) for

each t. But from Lemma (G2) and (6.6), H(gﬁi);m) is a subspace of

Ggﬁui(m-b), ¢=0,1,2....}. Hence

€10 ) =D e@itdumt) .

1=0
Prom (6.3) the (xgi)(¢)} process is stationary and continuous in q.m. with

. )
Ttggi)(¢) = xgiz (). Hence zgl)(¢) = feitkdhc(x)géi)(¢). Furthermore,

M
(6.8) Et(cp) = Z};t(:i)(qp) for every t;
1 M
where the (possibly) infinite series converges in q.m., since :E: 8L§ti)(@)lz

1
is finite. Also,
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m .
~(1i iny, -1
(6.9)  Ei)(g) S it CCERURVROR
LSS -1
Since S= [ e d}\G(%—Wt an ")\) is a bounded linear (in fact, unitary) operator
=

on H(x) from (6.8) [with t=0], (6.9) and (6.1), we have

M .
(6.10)  E (o) = SEiNg) .
1

From (6.7) and (6.10) X (cp) Z Z C. (q),n L)u (&) From Theorem 5.1 and (6.4)

H(x;t) = 2@ H(gi;t) =Z$H(h(l);t). In other words
=)

i=1

(6.11) H(x;t) =g{h(i)(1), Tst,i=1,2,....M

From Lemma (G ), (6.11) and (6.6) we have
(6.12) H(x m) = Z@H(h ;m) = Z@@{u (m-z) L =0,1,2...} .
i=1

(6.11) and (6.12) imply (see Theorem L4.1) that

(6.13) M = dim(H(X;n) @H(X;n-1))
We summarize the above results.

Theorem 6.1. Let Et(-oo <t <+4®) be a stationary, purely non-deterministic

process satisfying condition (C). Then its multiplicity is equal to the common
dimension of the subspaces H(X;n) € H(X;n-1).

The above discussion pertaining to multiplicity is very general since we have
been dealing with weakly stationary processes on an arbitrary Hausdorff space,
satisfying the second countability axiom. It is instructive to consider the case
when @ is a finite dimensional unitary space and the process X, is linear on 9¢.
We have referred to the fact that some recent work of H. Cramér [2] can be

regarded as a special case of the results of Section 2. In [2], Cramér also
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includes a brief discussion of the stationary case and shows that the multi-
plicity of the q-dimensional process does not exceed q. We shall now deduce
from Theorem 6.1 that the multiplicity is actually equal to the rank of the
process. This corollary (Theorem 6.2), incidentally, provides an alternative
proof of a theorem due to Gladyshev {Theorem 1, [5]).

Suppose (e, ) (i=1,2,:...q) is an orthongrmalbasis in 0. qIf {x.) is a weakly

stationary process linear in ¢ then, if @ =i§:a e., A (p) -:E:aixi(t) where
1=1 i=1

xi(t) = zt(ei). Now, (xl(t), x2(t),....xq(t)) is a q-dimensional process which

is weakly stationary. Since {it} satisfies condition {C), (xi(t)} (i=1,2...q)

are continuous in q.m. Also, if (xl(t), x2(t),...,xq(t)) is a q-dimensional

weakly stationary process continuous in q.m. then there corresponds a stationary
process {x } on the q-dimensional unltary space ® which is linear in @ and

satisfies condition (C); [viz. ) X, (o) :E:a X, (t) if @ is the vector (al,az,...,a )].

i=1
Furthermore, H(x;t) =&[xi(u), us t, i =1,2,:..,q}.
Theorem 6.2. Let (xl(t),x2(t),...,xq(t)) be a continuous in q.m., purely

non-deterministic, weakly stationary process. Then

x (¢) = i fF (u-t)dg, (u)

u /71=1 -
where the gi-processes and the number M are as introduced in Theorem 5.1,
M
(§§[xi(u), ust, i=1,2,...,q9] = :E:(BI{(gi;t) and M is the rank of the process.
i=l

Proof: All the assertions of the theorem follow immediately upon setting®= e

in the representation obtained in Theorem 5.1. It remains only to show that M
is the rank of the process. From Theorem 6.1 and Lemma 4,1 it follows that
= dim[H(X;n) @ H{Zin-1)] = dim (GIE (p), ped]). Writing § =@[?€i(m), msS n,

. ~ ~ v .
integer, %=1,2,...,q] and g£n) = xi(n) - %é; xi(n) we find that
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q 1
gn(tp) = Zaigi(n). Therefore, M = dim@[gi(n), i=1,2,...,q9]. But the latter
il .

quantity is the rank of the q X q "error matrix" with elements Egk(o)g}(o),
(i,j = 1,2,...,9), i.e., the rank of the process (;1(n),;é(n),...;§;(n)) [[i8li.

Hence the multiplicity M of x -process (Theorem 5.1) equals its rank.

Theorems 4.1, 5.1 and 6.1, apply to weakly stationary processes X, ona
Hausdorff space ®. The only assumptions on the process is that it satisfies
condition (C) and is purely non-deterministic, while no condition is imposed on ¢
other than that its topology satisfy the second countability axiom. If, in part-
icular, ¢ is a locally convex linear space (e.g. if & is an infinite-dimensional
separable Hilbert space) with a countable basis (e;) and if Et(¢) is linear in
o (e.g. X, is a weak process on ®) then we may consider the X, -process as having
an infinite number of components xéi) =_xt(ei) (i =1,2,...,) . Thus we may
conclude from these results and Theorem 6.2 that for infinite-dimensional processes
the representation given in Theorem 5.1 is a generalization of the Karhunen-Gladyshev

representation and that the multiplicity is the appropriate generalization of rank.



HILBERT-SPACE VALUED PROCESSES

7. Preliminaries. In Theorem 2.2, and for the stationary case in Theorem 5.1

Qe obtained a representation of the purely non deterministic process on an

arbitrary Hausdorff space @¢. Suppose now that ¢ is a locally convex linear
space and that for each t, X, is a random variable taking values in @', the

dual space of ¢; 1i.e., for each t, there exists a mapping X, from Q to ¢' such

that (1) < X > [< ¢,9' > denotes the value of the functional ¢' at g] is
a random variable on @, and (2) for all ¢c0, 5t(¢) [w]l] = < 5t(w),¢2> with

probability one. As is well-known these assumptions are stronger than the ones
made in the concluding paragraph of Section 6 dealing with weak processes. We
shall call [Et] defined as above a process in ¢'. The definitions of deter-
ministic and purely non-deterministic processes in ¢' are the same as the ones
given in the Introduction.

By a representation of a purely non-deterministic process (Et) in ¢', we
mean a process {xt} in ¢' such that, X =Y, with probability one for each t

and Y, represents a "moving average' over the present and past of X, -process

analogous to what was obtained in Theorem 2.2. In this section we confine our
attention to the case in which ¢ is a real separable Hilbert space and refer
to {gt] as a process in ¢. Although this is the only case studied in detail
here, we feel that a similar theory can be developed to cover more general
situations, e.g., where 9 is a separable, reflexive Banach space or a nuclear
space. The last mentioned problem could well have points of contact with
recent work of K. Urbanik and others on the representation of purely non-
deterministic homogeneous generalized random fields ([17]).

We shall also make the stronger assumption that | 'Etl |2 is finite for

each t, with the help of which we are able to prove a strengthened form of the
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Wold decomposition stated in Section 2.

Proposition 7.1. Let (x.) be a process in ¢ with§ | Iﬁtl |# <w , for each

t. Then, with probability one we have X, = l‘.t(l) + ﬁt(Z)and it(l) i=1,2 which are

defined except possibly for an w-set of probability zero, have the following

properties:

(i
(1) {Et(l)] and {.’Et(g)} are processes in ¢ with &l |}_<t [|[2<w (i=1,2);

(2) H(g(l)) is orthogonal to H(E(g)), and

(1) (2)

(3) {Et } is deterministic and {Et } is purely non-deterministic.
Proof: The process gt(qp) = < X @ > 1is a stochastic process on ¢. Hence

Proposition 2.1 gives us gt(cp) ='_§'t(1)(cp) + gt(e)(cp). It suffices to show that

~ (3 . .
Et(l)@) =< Et(l), @ > (i =1,2) where {xgl)} are processes in ¢ with the above
mentioned properties. This is achieved by means of the following lemma.

Lemma 7.1. Let {Et] be a process in ® and let P be a projection operator onto

an arbitrary subspace M of H(ﬁ;t). Then there exists an almost everywhere weakly

measurable mapping X, p from Q to ¢ such that with probability one < X o, 9> =
H]

P

P<_:5t, ¢ > for every ¢ ¢ 0.

Proof: Let t be fixed. It is well~known that our assumptions on X, imply that
for all 9;, 9, in 0 §l < X5 P> <X, 0, >} = < B, 91> @, >, where B,

is an S-operator (see [13]). Choosing a complete orthonormal (C,0.N.) system of
eigenelements corresponding to the eigenvalues ﬁ‘n} of Bt and observing that Bt

[+ <]
has finite trace, we obtain Z [P < -}Et(w)’ ®, >]¥ < w. This implies.that. there
1

is an w--set N of zero probability such that

(7.1) EZ [P < Et(“)’ ?, >]% 1is finite, if w ¢ N.
1

For every ¢ € ¢ and w ¢ N, define
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(2]

(12) om0l = ) <o 0> [2<x (), o > ]

n=1

Then M p is an a.e. weakly measurable, bounded linear functional on ¢. Hence,
bl

n(e)lw] =< N lgm), @ > for wciN. Clearly, for each g,
t,p ’

g(p< 5t(w),<p>- < n, p(w),cp >]¥ =0 and from (7.1), ||n(w)]|® is finite.
’ t,p

If {xm] is any other C.O.N. system then following the above argument we obtain

an a.e. weakly measurable function ct B from Q@ to ¢ such that
3

< gt’p(w),cp> = P<§t(w),cp> , ||§t’p(w)||"<w and

Elp < §t(w),q> > - < ¢t p(w), o >} = 0 for every . Thus we have

(13 Hng,@) - @112 = SElen ) -t @) 132 = o
1

since for every @, &[ < qt,p(w),(p > - < ct,p(w)’(p >]12 = o. Letfz(Q,P) be

the space of weakly measurable functions g from Q to ¢, satisfying gl |g(w)] |2 < w
(strictly speaking, equivalence classes of functions, see Section 8). From (73)

we see that nt,p and ;t’p are elements of the same equivalence class, say, Et,p

belonging toQ(Q,P). Identifying X, b with any of its elements we have
b

<§t,p’°> = P<_}St,(p>.

(

(1) (o) = %(2)
Since X () = PH(g{_;-oo) <x,,¢> and X! () = PH(E;t)f\HtE:-w) <%0 >,

it follows from the lemma that there exist processes {Et(;l)]’ [§£2)} in ¢, defined

(1)

for each t, except possibly on a null w-set such that 'i't(:i)(qﬁ =<zx "0 >

for 1 = 1,2. Obviously, {_:_:_Ei)] satisfy all the other desired properties.

Before proving the representation theorem for purely non-deterministic pro-
cesses X, in ¢, we nee\d to introduce stochastic integrals taking values in ¢, which
we shall call Stochastic Pettis integrals.
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8. Stochastic Pettis integrals. Let (A,(\ , u) be an arbitrary o -finite

measure space and QCQ(A,p) be the set of all weakly measurable functions g
from A to & such that ~{~||g(a)||2dp.(a) is finite, It is well known that upon
identifying functions which are equal almost everywhere [p] (i.e., setting f = g
if ‘{]If(a) -g(a)||?du(a) = 0), oCEJqu) becomes a Hilbert space with inner

product given by

(310 %) £ aa) = [&(2): g(e) > auta).

The norm of g will be denoted by ||g]]| oLE(A,u)- It is easy to show that

g[;(A,u) is separable if the Hilbert space L2(A,p) of real functions square
integrable with respect to p is separable. 1In particular, if A = T, the real

line and p is a o0 -finite measure on Borel sets then the Hilbert space g[é(T,p)
is separable. In what follows we write olé(p) for u[é(T,u).

Lemma 8,1 Let z be a real orthogonal random set function with g[z(A)]2= o(p).
If g € 062(0). then there exists an a.e. [p] weakly measurable mapping J(g)
from Q to ¢ with the following properties:
(8.1) e e L0

if g,, 8, are any elements of °C2(p) and ¢ c, are real numbers then

1’
(8.2) J(clg1 + c2g2) = ¢ J(gl) + ¢, J(SE)’
the equality holding in the sense of .Cé(Q;R);

for every ¢ ¢ 9,

(8.3) < J(g),o> = JP< g(t),p > dz(t) with probability one, where the

right hand side integral is an ordinary stochastic integral.
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The element J(g) is called the Stochastic Pettis Integral of g(t)

with respect to z and is written fg(t)dz(t). We also have

(8.4) 8[<fgl(t)dz(t), fgg(t)dz(t) >1= f< g,(t), g,(t) > dp(t).
Proof: Let {cpk} be a C.0.N, system in ¢ and let g be any element of£2(p).

Strictly speaking, each g represents an equivalence class belonging tooce(p)

and it is clear that elements of this equivalence class give rise to the same

stochastic integral [<g(t) P > dz(t) since the latter is itself defined up

to an equivalence. Denoting it (more precisely, a random variaple belonging

to the equivalence class) by L(g, mk) we have

z ?, [L(g,q>k)]2 = z [ <g (t).cpk >2dp(t) < », 8o that
k=1 k=1

>

Z (L(g ,cpk)[w] ]2 < o except possibly when w {n a set N of
k=1

zero p- measure, If, for any ¢, we now set
©0
L(g ,9)[w] = Z <0, > L(s, 9) [w], (o ¢ N), it follows that
k=1
L(g, .)[w] 1is a bounded linear functional on ¢. Hence we obtain
L(ng)[w] = < Jl(g)[(ﬂ] » @ >1
where Jl(g)[w] € 0. It is further easy to see that Jl(g) [.] is a.e. weakly
measurable and that gl |J1(g)[w]| |2 is finite, It is evident that we have
relied on the choice of a particular C.0.N. system in our definition of Jl(g).
However, if (\jrm} is any other C.0.N system in & and Je(g) [.] 1is the cor-

responding a.e. weakly measurable mapping, then we have
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15

gl3,(8)w] - 3 (8)w]]|® = 0, 1.e., |]|3;(8) - Je(g-)||°L2(Q_a) - 0.

In other words, Jl(g) and Je(g) belong to the same equivalence class, say

J(g), of cCE(Q.E). Thus, the equivalence class J(g) in Jdg(Q,E) is unambiguously

defined for each g in OLQ(D) and further ||g|'°( (o) ~ |IJ(g)I|¢§,(Q R)"
2 UL

For every g € °L2(p)' the corresponding element J(g) of oCé(Q,P) will be

called the stochastic Pettis integral of g with respect to the orthogonal

process z and will be denoted by‘l. g(t)dz(t). The assertions (B8.2)-(8.4)

of the lemma are easy to verify.

If 2 2z, are orthogonal random set functions with measure functions Py and

1’ "2

respectively and are further mutually orthogonal then it can be shown that

BK [a(0)an (), [a,(t)az,() A= 0 for g ¢ o y(0)) and g, € dy(p).

The proof follows by the definition of the Pettis integral.

The following result will be useful in the next section.
Lemma 8.2. Let zk(k = 1,2...) be mutually orthogonal processes with ortho-

gonal increments and with respective measure functions pk. If gk eeikg(pk)

are such that

(8.4) z f”gk(t)||2 d.pk(t) is finite, then
k=1
ZE: j’gk(t)dzk(t) is an element of QLQ(QﬂP) (the series of
k=1

Stochastic Pettis integrals converging in the OL (uP) sense), and for every

Qe ?,

(8.5) <D [ g (ar (00> - > [< g (00> dan(6) wien
k=1 k=1
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Probability one.

Proof: It is clear from the definition of fgk(t)dzk(t) that {gm] where

m
¢ = ZI gk(t)dzk(t) is a Cauchy sequence of elements in OCQ(O’B))i since
1

(m'" > m), o

e~ all® ¢ (aupy = 2, [ Had®11a00) = o

m

by (8.4). Hence the limit (fin £2(Q,?) sense) of §m exists which we denote by

00
Z [ gk(t)dzk(t). The other conclusions of the lemma are similarly proved.
1
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9. Representation Theorems For Purely Non-deterministic Hilbert Space-valued

Processes. In this section we consider a purely non-deterministic process

x.} in ¢ , with £ ”-’Etl |2 finite. As in Section 2 we confine ourselves to
the continuous parameter case. The representation we seek for X, is obtained in

terms of Stochastic Pettis integrals, Since

£[<g§t,(p> -<x,V2 #s & |§t| |2 ||®-w] |2, it follows that X,
-process is continuous in the topology of ¢. Hence, from Lemma 2.1, the space
H(x) 1is separable provided the limits }_t_o((p) and X o (p) exist for each
@ € . We shall refer to this condition as assumption (B).

Theorem 9.1. Let {-’Et} be a purely non-deterministic process in ¢ with

E,' | |_’Et| |2 finite and satisfying assumption (B). Then for each t, with pro-

bability one

M M
——O t ~— 3
(9.1) X, = Z J: Fn(t,u)d zn(u) + /_ E bjt(t) Bt
1 tj s t =1

where MO’ th. the processes z and the random variables Ej!, have the same

meaning as in Theorem 2.2,
Furthermore, for each t,

(9.2) Fn(t,.) e L 2(pn), p, being the measure function of z , and

bj:,(t) € & for every j, ¢;

MO t
(9.3) > S lEew]]E g (w) <o 5
n=1 -
00 Mj
(9.4) D> b2 £(3) <=5 and
j=1 -1

(9.9) H(x;t) = (E(H(z;t) U H(g;t)) for every t, where
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H(z;t) = Blz (v) [ ust, n=1,..,M;] and H(g5t) =Gley, | L=1,...M, ., sel.

Proof: Since <§t,¢ > 1is a S.P. on ® Theorem 2.2 applies without any change
to it. Furthermore, it has been shown in Section 3 that the representation for
< X o > can be chosen to be proper canonical without changing the numbers

0

M. and Mj and hence without affecting the multiplicity M of the process.

This accounts for the conclusion (9.5) of the theorem. In order to prove the
remaining assertions we need to use the additional hypothesis in the present

case, viz,., that 8||§t||2 < o,

From Theorem 2.2, we obtain

M
0 g t

(9.6) > > f F 2(pit.u)dp (u) 8 & || x,]|2<w,  where
=1 k:l -00

[¢k] is a C.0.N, system in ¢. A fortiori, there exists a set An of p, - measure

zero such that for u ¢ A_,
n
(-]
(9.7) D> RZ Gpta) < e
k=1

= i that .

For @ € ¢ setting ¢, = <9, @ > we obtain from (9.7)that for u ¢ An':E:can(¢k,t,u)
=

converges and is in fact, equal to Fn(¢;t,u) a.e, [pn]. Hence Fn(¢;t,u) is a

bounded linear functional on & for u & An‘ We may therefore write

Fn(¢;t,u9 =< Fn(t,u),m >, where Fn(t,u) is an element of ¢ and moreover, Fn(t,-)

is an element of °C2(pn)‘ From (9.6) we have

Mb +o
(9.8) > f 1] F (6,0)] 240 (4) <.
n=1 -o

Since &||§t||2 is finite it follows that for all j and { there exists a

bounded linear functional bjL(t) such that for each t,
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(9.9) by (838) = (61,05 with P [[by,(6)] |20, <.
i,

By (9.8), Lemma 8.2 and (9.9), we have

Mb M,

n=

t
f Fn(t,u)d zn(u) + Z 2 bjl,(t)gj&

tjist =1

X =
1
The corresponding results for weakly stationary (see .Introduction for de-

finition of stationarity) ¢ -valued processes are stated below without proof.

Theorem 9.2, A discrete parameter weakly stationary, purely non deter-

ministic, process in ¢, with @] Iitl |2 < @, has the following representation.

n M
x,= D bylom) g(w).

00 L:l
Here M 1is the multiplicity of {En]
(1) the discrete parameter processes {{,(m)} ({=1,..,M) have orthogonal

increments and are mutually orthogonal;

M
(i1) H(x;n) = Z @H(gi;n) for each n,
i=1

0 M
(111) by(n-m) e & with Z ||bi(m)||2 g[ef(m)] <o,
1

m=-c0 =
The number M 1is the multiplicity associated with the Stqchastic process.

Theorem 9.3 Let {§ be a continuous parameter weakly stationary pro-

¢)
cess with values in ¢ satisfying the assumptions of Theorem 9.1 and condition

(C). Then for each t with probability one,

M t

(9.12) it:z f Fn(u-t)dgn(u).
n=1 -

In this representation

(1) the gn's are mutually orthogonal and each gn is a homogeneous orthogonal
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random set: function (with Lebesque measure p for its measure function),

M
(ii) H(x;3t) = Z @H(gi;t) for every t,
i=1

(iii) M is the multiplicity of the process, and

(iv) Fn(u-t) € ’0C2(U) (n=1,...,M) such that

M 0
S [ IR aw <o
n=1 -0



CHAPTER TI APPLICATIONS TO N-PLE MARKOV PROCESSES

Wide-Sense Marko& Processes

1. Preliminaries and notation. Throughout this chapter a q-dimensional

second order stochastic process will be denoted by {ﬁt} (-0 < t < w)

where for each t, x_ is a column vector (xl(t),...,xq(t))*. Associated

t
with (it} will be the following spaces:

(i) The space of the process up to t, L. (x;t) 1is the subspace@i{xi(T), TS t)

o

of L2(Q) generated by the random variables (xi(T)] (rst,1=1,2,...,q)

L2(5; -o) the intersection of L (x;t) for all real t and L2(§) is the

2
smallest subspace of L2(Q) containing all Lg(i;t) for each t.

(i1) For the processes with mutually orthogonal increments or those which are
wide-sense martingales the notation H( ; ) of Chapter I will be used.

(111) will denote the projection onto J( .

P
M

Definitions of deterministic and purely non-deterministic processes are the

same as in Chapter I. The following definition of a q-dimensional wide-sense

Markov process is due to F. J. Beutler ([1]).

Definition 1.1. A gq-dimensional process [5t} (-0 < t < + w) is wide-sense

Markov if for each i (i =1,2,...,q) P xi(t) = P xi(t),

L2(§5S) (XI(S),...,Xq(S)}
(s < t).

For our purpose we need the following definition of a q-dimensional wide-

sense martingale. The notion of a wide-sense martingale for q = 1 is due to Doob

([31, p. 16L).

Definition 1.2. u -process is called a wide-sense martingale if for each k,

(k = 1,2,...,q) P (t) = uk(s) with probability one for s = t.

H(u;s) “k
The assumption (D) given below will be used throughout this chapter.
(D.1) X -process is continuous in q.m.; i.e., each component process {xi(t)} is

continuous in q.m.
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(D.2) For all t,s real the covariance matrix function I'(t,s) is non-singular.

The assumption (D.2) and the definition of wide-sense Markov process imply

q
X
that PL2(§;S)xi(t) = /

j=1

aij(t,s)xj(s), where the matrix A(t,s) = (aij(t,s))

-1
is given by A(t,s) =TI(t,s) T (s,s) for s s t. It is easily verified that A(t,s)

is non-singular for each s,t (s s t). The function A(t,s) is called a transition
matrix function and is defined only for s = t. Beutler [1] has the following
theorem which furnishes an operative criterion for verifying the wide-sense Markov
property.

Theorem B ([1] Theorem 2). The following statements are equivalent

(1) x, is wide-sense Markov

(2) For sstsu A(u,s) = A(u,t) A(t,s)
(3) with A(t,s) = r(t,s) P-l(s,s) for ss tsu A(s,u) = A(s,t)A(t,u).

In the case of stationary processes A(t,s) = B(t-s) (s = t). Hence B(*)
can be considered as a function on non-negative real numbers. As will be shown
in Theorem 2.2, one can easily characterize wide-sense Markov processes in terms
of the transition matrix function B(:). We remark that (t =z 0) B(t) = A(t) =

r(t,o) r-l(o,o).
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2. Characterizations of the wide-sense Markov processes. We first consider the

non-stationary processes.

Theorem 2.1. If x, (0 < t < + w) is q-dimensional stochastic process

satisfying (D) then it is wide-sense Markov if and only if X, =\§(t)gt with

probability one, where for every t, V¥(t) is a non-singular q X q matrix and u,

process is a q-dimensional wide-sense martingale with H(y;t) = L2(53t)'

Further for all s,t the matrix J(t,s) = Q.ui(t) ujis)) is non-singular.

Proof. Sufficiency. Let x = E(t)gt where y(t) and (u.) are as described

above. Then for s £ t if we donate by Lg(iis)zt the column vector
* : . . . - . -
(PL2(§3S)§j(t)"°"PL2(§;S)§q(t))_ we have by definition of a wide-sense martin

gale, with probability one,

L (x58) e = PL(x5s) p(eduy = Pyiy;q) T(e)ue = 3ty
Since u_ = E_l(s)gs with probability one, we obtain that the transition matrix

function A(t,s) = y(t) il(s). The proof of sufficiency is now complete by
appealing to Theorem B, (2).
Necessity. Let X, -process be wide-sense Markov. Then denoting by A{t,s) the

transition matrix function we recall that for s s t

(2.1) FL (k35 e = A(t,slgs with probability one and for s £ t £ u
2 b

(2.2) A(u,s) = A(u,t)A(t,s).

Following Hida, we now define for every real t the function

Wt) = A(t,so) ifs st
-1 )
= A (so,t) if t<s

where s is a fixed real number. We shall show that for all s,t (s < t) real

(2.3)  Aft,s) =TT (s) -
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First of all if s<s_ st then (2.3) is a restatement of (2.2) i.e.,

A(t,s) = A(t,so) A(so,s). Secondly, if s s s <t, from (2.2) we have

. -1
A(t,s) A(s,so) = A(t,so) i.e. A(t,s) = A(t,s) A (s,so)
giving A(t,s) = ﬁ(t)@_l(s). Finally, if s <t <s_ we get A(so,s) = A(so,t)A(t,;

and hence A(t,s) = I(t)ﬁ-l(s). The fact that i(t) is non-singular follows from non-
singularity of A(t,s) and the definition of y(t). Therefore from (2.1) and (2.3),

for s< t

(2.4) P L \X ='E(t)£-1(s)§s with probability one.

If we define u, =y 1(t)5t , then

(2.5) Lg(ﬁ;t) = H(u;t) for every t.

Thus from (2.4) and (2.5) we get

(2.6) PH(g;s) u, = gs(with probability one).

Since I(t,s) = ¥(t)JI(t,s)¥*(s) and ¥(t) is non-singular for every t, we have
J(t,s) non-singular.
Corollary. If the continuous parameter process X, is continuous in q.m. then

so is u,_ and ixt) is a continuous function in the sense that each element of {t)
is continuous.

Proof. 1I1f Tij(t,s) denote the elements;bf-r(t,s) then by the continuity in q.m.

of the process {xi(t)} we get for every fixed = 3 tij? rij(t,s) = rij(to,s);
o

i.e., limr(t,s) = r(t,,s) . But by Theorem 2.1, I'(t,s) = V(t)3{s,s)y (s)
t-> t
o

(for s < t). Hence y(t)=r(t,s) [J(s,s) E%(s)]-l as a function of t is
continuous (note that s is fixed). To prove continuity in q.m. of u,; consider

ju(t,s);glui(t) -u (e )% = 345 (65t) = 3. (e Lt ) (t s t). Now
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J(t,t) = E-l(t)F(t,t)[ﬁ*(t)]-l and hence we get lim J(t,t) = J(to,to). We
- t-t
)

therefore have lim glui(t) - ui(to)lZ = 0. A similar argument gives
tl-t :
o

lim€ |u,(t) - u,(t )|? = 0, thus completing the proof.
t4t i it o
o

We now study stationary wide-sense Markov processes. In this case

(& [xi(t + h)-. ijt)]) for any h is a function of h. We denote it by R(h). By

Theorem 2.1 and properties of wide-sense martingale it is easy to see that for

every h 2 O and t real

(2.7) R(h) = y(t +h) I(t,t) §*(c) .

Let h = 0, we get

(2.8) R(0) = §(t) J(t,t) ¥y (t) .

With t = 0 in (2.7), one has

(2.9) R(h) = y(n) 3(0,0) v*(0).

Relations (2.7) and (2.9) imply for h2 O and t 2 O
(2.10) R(h) = R(t + h) [3(0,0) ¥¥(0)17" J(e,t) F¥(e) -
From (2.10), (2.9) and (2.8) for t, h z 0,

(2.11) R(h) = R(t + h) R *(t) R(O)

With Rl(t) = R(t) R'l(o) (2.11) reduces to

(2.12) Rl(t +h) = Rl(t) Rl(h) .

We prove the following theorem.

Theorem 2.2. If {x,) (-2 < t<+w) is a q-dimensional stationary process

satisfying assumption (D) then it is wide-sense Markov if and only if the trans-
ition matrix function B(t) = e for every t 2 O where Q is a uniquely determined
constant q X q matrix, none of whose eigenvalues has positive real parts.

Proof Necessity. We have already shown that for Rl(t) = R(t) R-l(O), equation (2.12)

holds. Further from (D.1) it follows that Rl(t) is a continuous function and
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therefore Rl(t) = ™ (t 2 0) is the solution of (2.12), where Q is a q X q
constant matrix. The assumption (D.2) in addition implies that Rl(t) is non-
singular and hence Q is uniquely determined by Rl(t). We recall that
B(t) = R(t) R—l(O) for t 2 0. Hence B(t) = et (t 2 0). The statement about
the eigenvalues will now be proved. Observe that for any non-negative integer n
B(n) = [B(1)]". Q has an eigenvalue with positive real parts if and only if
el (=B(1)) has an eigenvalue A with |A|> 1. Suppose that there is an eigenvalue A

with |A] > 1. Then

(2.13) lim Suplx(t)l = o where A(t) is an eigenvalue of B(t) corresponding to
t o»

the eigenvalue )\ of B(l). But

In(e)] s tr(B(t)B (¢))

1A

er(R1(0)[R ™1 (0)] crgn(c)n*(c))

@ HOERTOT (57 Ix (0],
1

[

Therefore for all t |A(t)| is bounded contradicting (2.13).
Sufficiency. Clearly A(t,s) = B(t -s) = e(t-s)Q(s s t) satisfies Theorem (B) (2).
The proof is now complete.

Theorem 2.2 is proved by Doob in his important paper [2] on elementary Gaussian
processes. One of the central problems of his paper is to characterize purely
non-deterministic stationary Gaussian Markov processes. We shall give an alter-
native proof of this result (in our notation) based on Theorems I.5.1 and 2.1.
First, we state Doob's theorem in its original form for the sake of comparison
with our derivation given in Theorem L.2.

Theorem D (Theorem 4.3 [2]). 1If X, is a continuous parameter non-degenerate,

continuous in q.m., purely non-deterministic, Gaussian Markov process then

t
(2.14) X, = ‘[ e(t-u)Q Sd¢(u) where (i) Q, a 9 X q matrix, having no positive

-0
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real parts is uniquely determined by R(t) (ii) (iﬂu)} is a Gaussian t-processes
(see [2] p. 263) with covariance matrix |u-v| U where U is a diagonal matrix
zero and 1 over diagonal (iv) R(t) = é?QR(éi for t 2 0 R(-t) = R(OjeFQf
(v) the matrix Q furnished a solution of the prediction problem (vi) the matrix
S is uniquely determined and measures the dispersion of X -process from its

u
predicted value i.e., the variance matrix of Xt ~ © QEc is equalto

R(0) - duQR(O)euQ* _ us® as u -»w» .

Clearly the assertions {(iv) (v) (vi) of Theorem D follow from (2.14). Hence
it suffices to obtain the representation (2.14) by means of our method.

In concluding this section we point out that the vector-valued stochastic
integral ‘/‘F(u)QE(u) where ¢(u) is a é-dimensional‘ifprocess is defined by
Doob ([2], p. 263) for continuous matrix-valued functions F. A complete and
rigorous definition of vector-valued stochastic integral is to be found in the

recent paper of M. Rosenberg [7]. This definition together with an explanation

of the notation employed is given in the next section.
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3. Vector Valued Stochastic integrals. If H is a Hilbert-space then H(q)

denotes the space of all q x 1 vectors h with hi € H. 1In H(q) is intro-

q
duced norm |||_ll| I |2 = Z Hhil IQH and an inner produce given by the Gramian

i-1
(q)

matrix [E,E’] for any h, h* ¢ H(q). A linear manifold in H is a non-void
subset oM of H(q) such that if h, h' ¢ c/%then Ah + Bh' GUM for all q x q

matrices A,B. A subspace of H(q) is a linear manifold closed under the top-
ology H[ IH For properties of the Gramian and further structural questions
we refer the reader to N. Wiener and P. Masani [19].

Let P,Q be any q x M matrix valued functions. Then we say that (P,Q) is
integrable with respect to an M x M hermitian matrix valued measure f if

the matrix function PP'Q* 1is integrable with respect to the trg . We then
define f Pdf’Q*:fP f"Q*dtr

P is said to be square integrable [f] if tr (defp*) is finite. If we denote
by o@(?) the class of all measurable P which are square integrable with re-

spect tofwhere functions P,Q with {P(u) - Q(u)} P '(u) = 0 a.e. [trf] are

identified. oC,)(f) has the norm | }P| lo(, (= tr [Pd P* and gramian
P, : ; [Pd *, for all P, € - ‘, { 1.

We shall call ¢ an orthogonally scattered random vector valued measure

of dimension M on the real line if for each B-‘CB);(B) € LéM)(Q) and for A,B €@
(¢ (a),e (B)] = P(ANB) where[ is a hermition matrix valued measure and

B the class of Borel sets on the real line. With this set up Rosenberg de-
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defines fP(u)di(u) for P e,fz(f’) in the same way as Doob does for M = q
~
{See J. L. Doob [3] p. 596). Further if one denotes by c{e(i) the subspace of

of qu)(n) generated by {Q(B),B € B} with q x M matrices as coefficients then

we have the following [See [7] Theorem 4.6]

Theorem R. The correspondence P - ‘f Pd ¢ is an isomorphism from

Lo(P) to ol (8).

Remark In the above discussion q and M are fixed positive integesgwith

(M = q) and the space oce(f) is complete in the norm defined.
4
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L, Purely non-deterministic wide-sense Markov processes. We first prove a

representation for the non-stationary case.
Theorem 4.1 If X, is a continuous parameter purely non-deterministic

process statisfying assumption (D) then it is wide-sense Markov if and only if

q M
(03
j=

k=1

t

f_fik(t) hkj(u)dzj(U) where (v, (t)}(i,k=1,...q) are
1 -

elements of a non-singular q x q matrix E (t), hkj(.) for each j belong to

to Le(fa) with zi’Fj having the same meaning as in Theorem I.2.2, M is the

M t
multiplicity and for ever k,z I lhkj(u)|2dpj(u) is finite. Also H(z;t)=H(x;t)
j:l -00

for t.

Proof, Necessity. As stated in Theorem 2.1 X, = ¥ (t)g_t with L (x;t) = H(u;t).

Also from Theorems 1.2.2 and 1.3.1 we have a representation for X, -process with

Lg(i;t) = H(z;t). Since u, 1is a wide-sense martingate and H(z3t) = H(ust)

M t
we haveuk(t) =Z f hk.(u)dzj(u). The result now follows, since
J
q J=1 ~00
xi(t) = :E: I;k(t)uk(t) for all t and VY(t) is a non-singular q x q matrix.

k=1

M t
Sufficiency. Define uk(t) ==§£ J' hkj(u)dzi(u). Clearly x = y(t)gt.
1 ~00

Therefore, to complete the proof it suffices to show that Y is a wide-sense
martingale. We note that since Y(t) is non-singular Lg(f;t) = H(u;t). As we
are given that Lg(i;t) = Le(g;t), we get Lg(g;t) = Lg(f;t) for every t. Con-

sider now for s < t,

M t
Pacuse) (8 - 9 ) = 2y 1) [ nwaz ()1 = o,
T - 1l s
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where the last inequality follows because z,'s are mutually orthogonal processes

A
with orthogonal increments. The proof is now complete.
For stationary purely non-deterministic processes we recall that M, the

multiplicity of the process does not exceed q [See Theorem 1.6.2]. Also from

Theorem 1.6.2 and the definitien of vector valued stochastic integrals we have

t

(4.1) X, = J[ F(t-u)@i(u)

=00

where F(t-u) is a q X M matrix-valued function and £(u) is an M-dimensional
orthogonally scattered measure. Also we have Lz(ﬁ;t) = Lg(g;t) for each t.
Using representations of Theorem 2.1 and an argument similar to that of Theorem

4.1 (Necessity), we obtain that u, =h/‘H(u)d£(u) where H(u) is a q X M matrix

-0

function and hence

t
(h2)  x = [¥(e) Bu) ag(u)

with L2(§9t) = H(g;t) for each t. We have the following theorem:

Theorem 4.2. Let §t(-m < t< +wo) be a stationary q-dimensional process
satisfying assumption (D). Then X, is wide-sense Markov and purely non-determin-

istic if and only if
t
t-
(4.3) X, =‘/. e( u)QCd_g‘_(u) , where
-00
(i) Q is a q X q constant matrix with properties described in Theorem 2.2

(ii) C is a q X M constant matrix where M equals the rank of the process

(1ii) §t is an orthogonally scattered random measure such that

[e(B), ¢(B')] = u(BAB')I where B, B' are real Borel sets, p Lebesgue measure

and I is an M X M identity matrix. Further L2(§5t) = Lg(g;t).

Proof. Necessity. From (4.2) and stationarity we have a q X M measurable
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matrix function G(t-u) such that for u s t

G(t-u) = ¥(t) H(u)
Since H(u) is given almost everywhere, if it is not defined at the origin,
completing its definition at zero we obtain for t 2z O

G(t) = ¥(t) H(0)

However since R(t) = etQR(O) from (2.8) and (2.9) we get for t 2 0
(h.4) 6(t) = ' y(0) H(O) i.e. G(t-u) = e EW gy s )

where C = y(0) H(O). Hence from (4.2) and (k.k),

© (t-u)q - . .
X, = J{ e Cdg(u) with L2(§,t) = H(E,t)

-00

t
Sufficiency: If we denote by u = j'éuQ d¢(u). Then obviously u, is a q-dimen-
-0

sional wide-sense martingale and therefore from Theorem 2.1 it follows that_zc_t

is wide-sense Markov since etQ = R(t)R-l(O) is invertible. The proof is complete
if we show that X, is purely non-deterministic. But this is obvious from the

fact

v M=

ME(x;t) =MH(EE) =/ @H(gi;t) = (0}
t t t
1

which follows because {gi(t)] (o< t<+w) (i =1,2,...,M)

are mutually orthogonal processes with stationary orthogonal increments.

Since the Gaussian wide-sense Markov processes are Markov processes, Theorem
4.2 reduces to Theorem D. The £, -process occuring in the expression (4.3) is an
M-dimensional orthogonally scattered measure where M is the rank of X, as defined
by E. G. Gladyshev [4]. 1Its covariance matrix function A(u,v) is of the form
Iu-le where I is the M X M identity matrix. Therefore Theorem 4.2 renders a

more precise form of Theorem D (ii).
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N-PLE MARKOV PROCESSES

In the study of representations of N-ple Markov processes we require

analytic conditions for proper canonical property.

5. An analytical characterization of a proper canonical representation.

Henceforth we shall assume M s q. Further we denote by acz(g;t) [z (+) is
a q-dimensional orthogonally scattered vector measure ] the subspacevof L(q)(Q)

generated by {z(B), B a Borel subset of (-o, tj} with coefficients q X M

matrices.

Lemma 5.1. H(q)(g;t) =°é(£;t) (-0 < t < +w).
Proof. A typical element of H(q)(g;t) is a column vector (yl,...,yq)* =
(yl,O,...,O)* + (O,y20,0,...,0)* + o+ (O,...,yq)* where y;e H(z;t).
It suffices therefore to prove that for each i, the vector (0,0,...,zi(B),O,...,O)*

for each Borel set B belongs to <{2(£;t). But this is obviously the case as is
seen by taking a diagonal q X M matrix with unity in the ith place in the diagonal
and zero everywhere else. The fact that ié(g;t)c: H(q)(g;t) follows by observing
that for each Borel set B in (-»,t] and q X M matrix A AE(B)GH(q)(g;t).

The following is a direct extension of Theorem I.7 of Hida [5], to gq-dimensional
processes with M = q. We shall denote a representation for such processes by
{F(t,u),dz(u)} where F(t,u) is a ¢ X M matrix function and z(B) is an M-dimensional
orthogonally scattered random vector measure with components zi(B) (i =1,2,...,M).

The notion of a proper canonical representation of arbitrary multiplicity M
has already been introduced in Chapter I. Under the assumption M = q we give
necessary and sufficient analytical conditions for a proper canonical representation.

Theorem 5.1. A canonical representation (F(t,u),dz(u)} is proper if and

only if for any real to

t 3
(5.1) j'P(U)d (u)F (t,u) =0 for t s t, implies P(u) = 0 a.e. [P]

-00
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where 1is the hermitian M X M matrix valued measure f (B) = [_z_(B), E(B)]

~

and P(u) is a square integrable q X M matrix-valued function on the real line.

Proof Sufficiency. Let (5.1) hold and let t, be such that H(E3to) += Lz(ﬁ;to)
and we know that L(zq>(§;to)c_ H<q)(3_;to). Therefore, there is a V $ 0 in
H(q)(g;to) such that [z,ﬁt] =0 for t st . Consider now H(q)(g;to) =£2(_E;to).

t
o
Then by Theorem R of Section 3 we have V =‘/.P(u)d (u) £ 0 such that for all

¢ -00
e(s t), fp(u)d (u) F(t,u) = 0. By (5.1) we get P(u) = 0 a.e. [(]

contradicting V + 0.

Necessity. Suppose that H(z;t) = LQ(E;C) for all t, and let t_ be a real number

such that
t

(5.2) f P(u)d (u) F'(t,u) = O for every t s t_.
-00

Observe that since from the proper cannonical property Léq)(ﬁ;to) = H(q)(ﬁto) =
t

o()(z;t) the vector V=f
e~ © -

-0

0P(u)d_z_(u) belongs to Léq)(i;to)° But (5.2) implies

that [V, ﬁt] =0 for all t s t, Hence V =0 giving P(u) =0 a.e. [P].

This proves the theorem.

The above criterion will be useful in our discussion of N-ple Markov processes.
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6. Finite dimensional wide-sense N-ple Markov processes. In the definition

of vector-valued wide-sense N-ple Markov processes we require the concept of
the projection on a subspace of Léq)(i) . We recall here a lemma due to

N. Wiener and P. Masani [10], which proves the existence of the projection

of an element h and gives its structure. The notation used is that of Section 3

_Igwa.vg’(Lemma 5.8 [10]). (a). IfNtis a subspace of H(q) there exists
a subspace c/Cof H such that Wt:u'.l,(q), whereu‘r{(q) denotes the Cartesian
product o%@é’{(ﬂ? @/%vith q-factors.e/% is a set of all components of all elem-
ents in/lt. (b). 1f/'tis a subspace of H(q) and heH(q), then there exists

a unique he V¥ such that ||h - E'HH(q) < || - g IH(q) for all gell}. For

this h', h! = P,,hi,-."l, being as in (a). An element h' satisfies the preceding

Cile

condition if and only if h - h'_l_]}t where orthogonality is in the sense of

the Gramian. (c). IfI'f,)1t are subspaces of H(q) and It (I}, then there exists

V4
a unique subspace 77"("(,—}2: such that 77: = 77?@77{“ and I} is orthogonal to M},
Parts (d) and (e) of Lemma 5.8 of [10] are not given here because they will

not be referred to. Following Wie;ler and Masani we give

Definition 6.1. The unique element h' of Lemma WM (b) is called the ortho-

gonal projection of h ontoNff and is denoted by (Eln;:).

Extending usual idea of linear independence, we give following definition

of linearly independent vectors 1_11 s 112, cee ,hNeH(q) .

Definition 6.2. The vectors Eieﬂ(q) (i =1,2,...,N) are linearly indep-

in 1¢e) . -
endent in H if for any q X q matrices Al"" ,A.N , ZAihi =0 and Aib-i

is different from the zero element of H(q) for at least one i implies that Ai

are zero matrices.
Now we define a q-dimensional real continuous parameter wide-sense N-ple
Markov process. For one-dimensional continuous parameter Gaussian processes

the definition is due to Hida [5] and for discrete Gaussian processes the



-67-

definition goes back to Doob [2].

Definition 6.3. We say that a q-dimensional continuous parameter process

is wide-sense N-ple Markov if for any sequence {ti] of N-real numbers

(t1 < t2 < ... < tN) and for to st the vectors (EtiILéq)(g;to)) are

. . 2 q . .
linearly independent in L2( )(E,to) and the vectors (§tilLéq)(§;to) are

linearly dependent if i =1,2,...,N+1 and tNt1> tN.

We now proceed to the extension of Theorem II.2 of Hida, to obtain a
representation for a q-dimensional (not necessarily stationary) wide-sense N-ple
Markov process using the theory of Chapter I.

Lemma 6.1. Let t and s (s < t) be any real numbers. If [I'(t,s) is

non-singular, then the vector (EtlLéq)(z;s)) is non-degenerate, i.e., its

covariance matrix is non-singular.

Proof. From Lemma WM with N% = Léq)(z;s) we get (EtlLéq)(Eﬁs)) is the

column vector (PL2(§;s)xl(t)""’PL2(5;s)xq(t))' First we observe that none
of the elements PL2(§3s)xi(t) (i =1,2,...,9) can be zero; for otherwise

' & = H = j = .o
gee) = & G (005 (0) = 80,08 By () = 0 for all g = 12,

contradicting the non-singularity of I'(t,s). If the vector is degenerate then

for some i, P

L2(§9S)xi(t) ’.Z 845 .(t). Also

P Lo\X
jhi 13 o)
PLz(x;s)xi(t) £ 0 . Hence there is at least one j such that a5 £ 0. Now

g (xi(t)xk(s)) = I aijZ,(xk(s)ﬁéfj(t)) thus T;k(t,s) = I aijg_PLz(E;s)xj(t)xk(s)

ifj

zoa,.l,
+- 1] ]

k(t’s), (k=1 :2,"',([)
i¥]
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This contradicts the non-singularity of I'(t,s) and the lemma is proved.

From the definition of wide-sense N-ple Markov processes it follows that

if (s} (s1 <s, <.l < SN) is a given sequence and T > s then for each

sO s Sl’ there exist q X q matrices AlST; sl,...,sN) such that

(x IL(q) X; s = a ; (a),. .
2l (_3 O)) kilAk(T’sls'--’SN) (§Sk|L2 (E,SO)). Taking a sequence

{tj} (tN > tN-l e > t1 > SN) we have

' N
6] G (170 00)) = 2 Ao apenny) G 11600 5)) -

th

~
Denote by A(t, s) the qN X qN matrix having Ak(tj; s ...,sN) for its (k,j)

1’
(9 x q) block matrix, (k,j = 1,2,...,N). Then we have the following lemma.

Lemma 6.2, If Et(-w < t<+w) is a g-dimensional wide-sense N-ple

Markov process satisfying assumption (D.2) then A(t, s) is non-singular.

Proof. We first prove that for any sequence {ti} (tN > tN-l > ie. > tl > so)
the set
(6.2) (P ) x,(t,)) i=1,2,...,q, j =1,2,...,N

Le(i’so) 1 J .

is linearly independent in L2(§). If not, then there exist aij not all zero

such that

iZjaij yi(tj) = 0 where we write yi(tj) = PLg(x;so)xi(tj) s

(so being fixed throughout the argument). Since from Lemma 6.1, for no pair

i,j yi(tj) = 0, letting aij + 0, we have
(6:3) yy(t;) = =¥ by, (tm)
k,m

where £*  denotes the summation over all k,m (k=1,...,q; m=1,...,N)
k,m
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such that no pair (k,m) = (i,j); though b depends on (i,j) we do not indicate

km

it here in order to keep the notation simple. Also since yi(t.) + 0
J
(Lemma 6.1) there is at least one (k,m) + (i,j) such that bkm + 0. We now

consider the following two possibilities.

Case I. Suppose bkj = 0 for all k(f i).

Then (6.3) has the form

(6.4) yi(tj) = kZ:bkm yk(tm5 .
(m¥)

Consider now q X q matrices AL (¢ =1,2,...,N) such that Aj = ((

S )

P
i) : ¢ L
and gnp = O otherwise; for f * j A, = ((ghg)) with gig = - pr for
d gz) herwise. Then £ 6.k h F 4
p=1,2,...,9q an np = 0 otherwise. en from (6.4) we have =& th= 0,
. c . 2 qy : -
ijtj+ 0 and Aj is not a zero matrix; i.e., the vectors (étLlLé )(5330))

-

(L - 1,2,...,N) are linearly dependent. This contradicts the definition of the
wide-sense N-ple Markov process.

Case II. There is a non-void subset JC{1,2,...,q) such that bkj 0 keJ (i J).
3f )

6. (t.)- £ b, . t.

(6.5)  y;(¢5) I g v (g5)

is zero then for v = 1,2,...,q we have 8 [yi(tj) yv(tj)] = kiJ bk;{?k(tj)7¢$ﬁ\m

-
But this contradicts Lemma €.1. Hence the element given by (6.5) is not zero.

We now rewrite (6.3) as

—-— * i

(6'6) yi(tj) - kze:J bkjyk(tj) = kz,:m bkmyk(tm)

- ¢
Now introduce the matrices A, = ((ahp)) where

_ ED - (9) (5) N

(i) ? =J,a =- bpj (ped), aj; =1 and a =0 otherwise;
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) @ (¢)
(11) % + j aip = 'bpl (p = l,2,...,q) and ahp = 0 otherwise.

Then (6.6) becomes

(6.7) A =0 .
ZL:.LX':&

Further Aj Y. + O since the element in (6.5) has been shown to be non-zero.
]

As in the concluding part of Case I, these facts imply a contradiction of the
N-ple Markov property.

Thus we have established the linear independence (in Lg(i)) of the set (6.2).
by a similar argument the set {yi(sk), i=1,2,...,q, k=1,2,...,N} is
linearly independent in L2(§). Also we can write (6.1) as .

T NP IR (5 IR CR IR ()

A

(6.8) - %
= A(E’ §) (yl(sl), y2(sl),...,yq(sl),...,yl(sN),...,yq(sN))

,\ .
Hence A(E, §s) is non-singular. This completes the proof of Lemma €.2.
We now state the main result of this section.

Theorem 6.1. Let (it} be a real continuous parameter purely non-deter-

ministic q-dimensional wide-sense N-ple Markov process with multiplicity M = q

and satisfying the assumption (D). Then
N

t
(6.9) x. = £ [ y;(t) 6 (u)dz(u)

i=]l -«

where for each i, E;(') is a q X q matrix-valued function such that for any N
points (t.] (t1 <t <.l < tN) the gN X qN matrix with (i,j)th q X q block
matrix [iiktj)} is non-singular and Gi(u) is a ¢ X M matrix valued function
in Lz(f) (“(B) ‘LE(B)» z(B)] LéM)(ﬁ) ). The functions {Gi(u)} are linearly

independent in L2(f;(-w,t]) i.e. for each t, and for any q X q matrices

N

A, il AiGi(u) = 0 (6;(:) restrieted to (-»,t]) and A6, (u) £ 0 for

1
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at least one i implies Ai = 0 for all i.

Proof. By Theorem I.2.2 and Theorem I.3.1, X has a proper canonical repres-
entation of multiplicity M. Since M = q this representation can be expressed

as {F(t,u), dz} where F(t, -) 1is a q X M matrix-valued function in L2(V).

Let {ti] be a sequence of distinct points with tN >t > ... >t

N-1 1
and T > tN. Then by the wide-sense N-ple Markov property for all ¢ = t1
there exist q X q matrices {Aj(T;tl""’tN)]j =1,2,...,N not all zero such
that
e - nA(mt,eoe) s, L 190) (o5 £)
=t j=1 jy 271" TN —té 2 ’ = "1

where orthogonality is in the Gramian sense. Hence for all ¢ = tl, we obtain

N o) N
*
0= [ET- jélAj(T;tl"°"tN)§tj’ x_] =-£[F(T,u) -jilAj(T;tl”"’tN)F(tj’u)]dL(u)F (o,u)

Hence by Theorem 5.1,
N
(6.10) F(T,u) = jElAj(T;tl’...’tN) F (tj,u) [3;(-f, t, 11,
since the representation (F(t,u), dz(u)} 1is proper canonical. (In (6.10)

[t (-, tl]] means almost everywhere [{'] on the interval (-w, tl].). If we have

another sequence {sk} (t1 > Sh > L0002 Sl) then from (6.10) we obtain

N
(6.11) F(tj,u) = kilAk(tj;sl,...,sN) F (sk,u) D:; (-f,sl]] .

Now from the definition of Ak(tj;sl,...,sN) (x,j = 1,2,...,N) and Lemma 6.2

A ~ -1
the matrix A(t,s) defined there is non-singular. Let B(s,t) = A (t,s)-

From (6.10) and (6.11) we deduce

(6.12) F(1;u) = .ZkAj(T;tl"'"tN)Ak(tj;sl""’SN)F(Sk’u) = iAk(T;sl,...,sN)F(sk,u)
3>

q;; (-w,sl)].
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Now (6.12) implies that

i (gAj(T;tl,...,tN) Ak(tj;sl,...,sN) - Ak(T;sl,...,sN)) F(sk,u) = 0 [i;(-w,sl]] ,
j } .

which can be rewritten as (with sequence {ti] {si] and number T fixed)
(6.13) z=c, F(s s5u) =0 [f;(-=,s.)].
Kk k™ Yk ~ !

Consider (ﬁs ILéq)(§;sl)). Since by the canonical property
k
M

q s
1 (a)
P . DIEEDY f..(s,,u) dz.(u) , we get (x |L X3S
L2(§;Sl) xl(Sk) = fm1 jel -o{ 1_]( k ) J( ) Lskl > (_ 1) =

S
oj;lF(sk,u)dg(u). Now if in (6.13) €, F(s,,u) =0 [’f;;(-o‘o,sl]] and C_ % 0

then we get Ck(is ILéq)(§351)) = 0. This contradicts Lemma &.1. Hence Ck is
k

a zero matrix for each k by the wide-sense N-ple Markov property and (6.13).

Hence

N
(6.14) A (T35 ,.een8y) = jilAj(T;tl,...,tN) Ak(tj;sl,...,sN) .

f
1f @{(T;g) denotes q X qN matrix with q X q block matrices Ak(T;Sl,...,SN), viz.,
oA (T;8) = {Al(T;sl,...,sN),...,AN(T;sl,...,sN)} then (6.14) can be expressed as

(6.15) ¢A (m38) =cA(rst) A(ts) -
Recalling that ‘%(g,g) = ﬁ-1(5,§) we define
(6.16) vy (1) =+ (rs8) B(s,t) .

] 1 1
If s1 < s2 < L. .00 < SN < sl vee < sy < t1 < ... < tN <rT then we get

(1) = ed(r5s') B(s',t) = :i(mss') B(s',s) B(s,t) since

RN

<

R(E,g') = A(t,s) K(§,g') from (6.15). Hence (6.15) and (6.1€) give G;.(T) =

(7).

Letzz be the set of all sequences s = {si} where $; < S, < Ll e < SN <T,

T being fixed throughout. For any two sequences s, s' 1in ¢ define the relationAi
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. ] . ] . . . .
as follows: s'< s if SN < Sl' It is easy to see that <\1s a direction on

the set,g‘of all such sequences. Further for each T the limit of the net

~
{ws(T), §e)} exists from the fact, proved above, that for §; <§§"'T
-~

N

?%(T) - Eén(T). Denoting this limit by ii(r) we find from (6.16), (6.15) and
the non-singularity of A(E,E) that the gN X gN matrix (ii(tj)} of the theorem
is non-singular where y.(7) denotes the 10 plock q Xq matrix'of EKT).

We write equation (6.10) as

(6.17)  F(r,u) =4 (m;t) % (t;u), [5 (=,tp1]

where ! (t,u) denotes the gN X Mmélt:rix (F(tl,u),...,F(tN,u))*. Let é(u,q,_g)
be the gN X M matrix ’%-1(5,5)[;(t,u). Then (6.17) takes the form

(6.18)  E(ru) = y(r) & (w,s,6)  ave. [ 3(=et,11 .

Let {ti'} (i = 1,2,...,N) and [sj'] (3 ; 1,2,...,N) be sequences in 2 with

E' <t ;hen

(6.19)  E(rou) = ¥(1)6(us'st") [ 5(en, 10

A

Now from equations (6.18), (6.19) and the non-singularity of (ii(tj)] we obtain
a(u,g,s) = G(u,s',t') [(; -~,t;] . Hence we may set |

(6.20)  G(u,s',t') = é(;), say, for all s',t'e °

Hence from (6.18) and (6.20)

N
ORI AGAO R FE A

for each t, < 1. Also lim l|F(t ,u) - F(T,u)|l" iy =0 .
1 t.— 1 2( )
1 T

Therefore

N
F(T,u) = ‘21 -!i(T)Gi(u) ["4’;(-00,'1‘]].



[
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Thus (with T replaced by t) we get

N t
xe=m B 1T (00, ()azle) -

To complete the proof we observe that for (u s t) F(t,u) ==z§£(t)ci(u);iF(tj,u)f
are linearly independent in fiz(f? for tj >t (j =1,2,...,N) and that the
matrix [E:i(tj)} invertible. This implies that [Gi(u)} restricted to (-o,t]
are linearly independent inriz(i) for each t.

Remarks. 1. 1If we define for each i
. t . . .
(6.21) )= [ o u)az(u) ehen wlt) - ulH) ) 1f8) @) <),

(orthogonality again in the Gramian sense). Hence Egl) is for each i is a wide-
sense q-dimensional martingale and

N
(6.22) X, = 'El Ei(t)Gi(u)

q .
Furthermore since L, x;t)Q:Gggy]F(g(l);t)}C: Lg(g;t) = Lg(ﬁ;t) from (6.21),
(6.22) and the proper canonical property, we get

N .
(6.23) H(x;t) = U H(ut)e))
iml ,

If N =1, this reduces to the representation of Theorem 2.1. However, the
result here is obtained for purely non-deterministic processes.
2. The assumption M = q is not very restrictive since it is satisfied

for stationary processes.
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7. Stationary Wide-sense N-ple Markov processes. From (6.22), (6.23) and

Theorem I.5.1 the corresponding representation for stationary purely non-

deterministic N-ple Markov processes satisfying (D) is given by

N t
(1.1)  x, = = [y (e)u (u)dg(u) .

i=] -

N _ N
Here I vy, (t)H,(u) is a function of t-u. In fact it is X G.(t-u)H.(O) (ust)
i i im] — i

iml —
— N —
where wi(-) is zero on the negative real line or Z !i(O)Hi(u-t) (ust) where
- i=1

Hi(-) is zero on the positive real line. The further determination of the

N _
kernel z ii(t)Hi(u) leads under certain conditions to a vector generalization
i=1

of continuous parameter Ornstein-Uhlenbeck processes. These purely non-determin-
istic processes also have rational spectral density matrices and are of importance
in multidimensional prediction problems (see A. M. Yaglom [9]). It is proposed

-

to study these questions in detail at a later time.
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