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ABSTRACT
CONTINUOUS NEAR-HOMOGENEITY
by Hudson Van Etten Kronk

In a recent paper {1}, P. Doyle and J. Hocking intro-
duced the concept of continuous invertibility and inves-
tigated 1ts application to continua. The first part of
this thesis deals with the analogous but weaker concept
of continuous near-homogeneity. The object here being
to generalize the results 111(1] to continuously near-
homogeneous spaces and also to study continuously near-
homogeneous plane continua as & special case, Among the
main results obtained are:

(1) A compact set in EB*l 13 ean n-sphere if it is con-
tinuously near-homogeneous and contains an n-sphere,

(2) Every decomposable continuously near-homogeneous
plane continuum is & simple closed curve,

(3) Every proper subcontinuum of & continuously near-
homogeneous plane continuum is an arc.

(4) Every continuously near-homogeneous plane continuum
separates the plane.

As & by-product of this part of the investigation, several
properties of the continuous orbits in a continuously near-
homogeneous indecomposable plane continuum are established.

In particular, such orbits are identical with the composants
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of such a continuum and each such orbit is the image of

the real line under & one-to-one continuous transformation.
The second part of the thesis is concerned with the

localization of continuous near-homogeneity. The principal

result obtained is a characterization of those plane Peano

continua which are continuously near-homogeneous at one or

more points,

REFERENCE
i, P.H. Doyle and J.G. Hocking, Continuously invertible
spaces, Pacific J. Math., Vol. 12 (1962) pp. 499-503.
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SECTION 1 INTRODUCTION

In [10] P. Doyle and J. Hocking introduced the concept
of continuous invertibility and investigated its applications
to continua. The first part of this thesis deals with the
analogous but weaker concept of continuous near-homogeneity
which was introduced in [11]. The object here is to gen-
eralize the results in [10] to the case of a continuously
near-homogeneous space and also to study continuously near-
homogeneous plane continua as a special case. Some of the
principal results obtained are:

Theorem 3.10: A compact set in En+l is an n-sphere
if it is continuously near-homogeneous and contains an
n-sphere.

Theorem 4.12: Every decomposable continuously near-
homogeneous plane continuum is a simple closed curve.

Theorem 4.1%: Every proper subcontinuum of a contin-
uously near-homogeneous plane continuum is an arc.

Theorem 4.18: Every continuously near-homogeneous
plane continuum separates the plane.

(Concerning this last result, 1t is an open question to
determine precisely the number of complementary domains
which a continuously near-homogeneous plane continuum can
have.) As a by-product of this first part of the thesis,
several properties of the continuous orbits in a contin-
uously near-homogeneous indecomposable plane continuum are
established. For instance, such orbits are identical with

1



the composants of such a continuum and each such orblt is
an image of the real line under a one-to-one continuous
transformation.

The second part of this thesis investigates the con-
cept of local continuous near-homogeneity which was intro-
duced in [11]. In particular, the following characterization
of plane Peano continua which are continuously near-homo-
geneous at one or more points 1s obtained: Let K be a
plane Peano continuum with non-empty CN(K). If K is one-
dimensional, then K is the union of (at most) a countable
number of simple closed curves having only one point p in
common and all but a finite number of these simple closed
curves have diameter less than any previously assigned
positive number. Moreover, K is a simple closed curve 1if
and only if CN(K) contains more than one point. If K is
two-dimensional and CN(K) contains more than one point,
then K is a closed disc. If CN(K)=p and if p is a non-cut
point of K, then K is a closed singular disc and, finally,
if CN(K)=p and p is a cut point of K, then K is a union
of a countable number (>2) of continua of the types already

described.



SECTION 2 FUNDAMENTAL DEFINITIONS

In this section we present those definitions which
are basic to continua theory and which are used in this
thesis.

A topological space S is said to be connected if the
only two subsets of S that are simultaneously open and
closed are S itself and the empty set @#. A subset X of
S is connected if 1t 1s connected with respect to the
relative topology. Each point x of S belongs to a unique
maximal connected subset of S called a component of x. The
components of a space constitute a partition of the space
into maximal connected closed subsets. If X is a closed
proper subset of S, then every component of S-X(the com-

plement of X in S) is called a complementary domain of X.

If each two points of S can be joined by an arc (the homeo-

morphic image of the unit interval I=[0,1]) in S, then S

is said to bte arcwlse connected. An arc component of S is

a maximal arcwise connected subset of S,

A compact connected set containing at least two points
is called a continuum. There are two quite different types
of continua, the decomposable and the indecomposable. A

continuum is decomposable if it is the union of two proper

subcontinuaj otherwise it is indecomposable. If p is a

point of a continuum M, then the union of all proper sub-

continua of M that contain p is called a composant of M.
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If a Hausdorff continuum is indecomposable, then its com-
posants are equivalence classes and are uncountable in
number. A continuum is indecomposable of index n if 1t is
the union of n continua such that no one of them is a sub-
set of the union of the others and it is not the union of
n+l such continua. A proper subcontinuum K of a continuum
M 18 called & continuum of condensation 1f every point of
K 18 a 1imit point of M-K. It 1s easy to show that a
Hausdorff continuum is indecomposable if and only if each
of its proper subcontinua 18 & continuum of condensation.

A space S is sald to be locally connected at & point
p€S 1f each open set U of p contalns an open connected set
V of pe A space S 18 sald to be aposyndetic at péS if for
each point q€S distinct from p, there exists a closed
connected set H and an open subset U such that 8-qDHDUDp.
A space 1s sald to be locally connected (aposyndetic) if 1t
is locally connected (aposyndetic) at each of its points.

A continuum M is said to be hereditarily locally connected
provided every subcontinuum of M 1s locally connected,

A locally connected metric continuum is called a Peano
continuum. A fundamental result concerning Peano contimua
is the Hahn-Mazurklewicz Theorem; which states that a nec-
essary and sufficlient condition that a space be a Peano
continuum is that it be the image of the unit interval under
a oontinuous mapping into a Hausdorff space. Every Peano

continuum is arcwise connected. A Peano continuum that
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doesn't contain a simple closed curve (the homeomorphic
image of the unit circle) is called a dendrite,

A cut point of a connected space S 1s & polnt pe€S
such that S-p 1s disconnected; otherwise p 1s a non-cut

point of S. A point pE€S i1s sald to be a weak cut point of

S if there exists two points q,r€S-p such that every closed
connected subset of S that contains both q and r also con-
tains p. In general a weak cut point is not a cut point,
however, the two concepts are equivalent for Peano continua.
A point p of a connected space S 18 a local cut point of S
if it is a cut point of an open connected subset U of S,

A space S 13 said to be cyclicly connected provided

that every two points of S lie together on some simple closed
curve in S, A Peano contlnuum 1s cyclicly connected if and
only if it has no cut points (Cyclic Connectivity Theorem).

A continuum M is sald to be of order less than or equal
Yo n at pEM if for each open set V of p, there exists an
open set U of p with UCV and such that the boundary of U
contains at most n points of M. If M is of order<n at peM,
but not of order<n-1, then M 1s said to be of order n at p.

A branch point of a continuum is a point of order greater

than two,

A space S 18 homogeneous if for each palr of its points

PsQ, there exists a homeomorphism of S onto itself which

carries p into q. A space S is locally homogeneous if for

each palr of its points p,q, there is a homeomorphism be-



tween two open subsets of S, one contalning p, the other
containing q, such that p is mapped into q. A space S is

near-homogeneous (invertible) if for each point p¢S (proper

closed set C of S) and each non-empty open set U of S there
exists a homeomorphism of S onto itself which carries p (C)
into U,



SECTION 3 CONTINUOUSLY NEAR-EHOMOGENEOUS SPACES

This section deals with the general continuously near-

homogeneous space.

We use the symbol G(S) to denote the group of all homeo-
morphisms of the topological space S onto itself.

Definition 3.1 An isotopy of a topological space S is a

continuous map H:S¥XI-—p»S with the properties:
(1) If we define hy:S—>S by setting hy(x)=H(x,t), then
for all teI,hteG(S).
(2) ho(x)=x for all xeS, i.e., hg is the identity mapping
of S onto itself.
Usually, we shall use ht to designate the isotopy.
We remark that most authors omit property (2) in defin-
ing an isotopy of S.
Definition 3.2 A homeomorphism heG(S) is said to be a defor-
mation of S if there exlsts an 1lsotopy hg of S with hj=h.
The set of all deformations of S is denoted by H(S).
It is easy to verify that H(S) forms a normal subgroup of
G(s).
Definition 3.3 The set of all images of a point xeS under
deformations of S 1is called the continuous orbit of x and
is denoted by P(x).
The continuous orbits of a space S are invariant under
deformations of S, i.e., if heH(S), xeS, then h(P(x))=P(x).

Also, if x and ¥y are any two points of S, then either P(x)=



P(y) or P(x)\P(y)=@, 1.e., the continuous orbits of S are

equivalence classes, These properties follow directly from
the fact that H(S) forms a group.

Definition 3.4 The isotopy path of a subset XCS under an

isotopy H of S 1s the image of XXI under H,
Definition 3.5 A topological space S 1s continuously near-

homogeneous 1f, for each point x€S and each non-empty open

set U of S, there is a deformation h€H(S) such that h(x )€U,
Obviously, & continuously near-homogeneous space is

near-homogeneous., The concepts of a continuously invertible

space and a continuously homogeneous space are defined in

an analogous manner, It is clear that a space S is con-
tinuously near-homogeneous if and only if each of its con-
tinuous orbits 1s dense in S and 1s continuously homogeneous
if and only if it has exactly one continuous orbit,

Before stating any results, we first mention some
examples. Euclidean n-space; En, is an example of a con-
tinuously homogeneous space. For let, a=(aj,855...,8,) and
b=(b1,b25e445b ) be any two points in E®. Define H:ERXxI—>
ER by setting

H(xl,...,xn,t)=(xl+t(b1-al),...,xn+t(bn-an)).
The map H 18 easily seen to be an isotopy of ER and
H(al,...,an,l)=(bl,b2,...,bn). More generally, it can be
shown that any n-manifold (a separable connected metric
space each of whose points has a neighborhood homeomorphic

to EB) is ocontinuously homogeneous. For example, if M is



a l-manifold and a and b are any two points in M, then a
sultable isotopy may be constructed as follows: Since M
is a manifold, there exists in M a closed 1l-cell V contain-
ing a and b in its interior. Let g be a homeomorphism from
V onto [0,1] and assume without loss of generality that
O<g(a)<g(b)<l. There exists an isotopy hy of I such that
(1) h,y(gla))=g(b)
(2) hg(0)=0,hy(1)=1 for all tel.

Define hy by setting

hy(x)= (1-t)g(a)+te(b)y if 05 x<g(a) and
gla)

hylx)= Llat)alaltbal(b) l-1(x-1)+1 11 g(a)sxsl.

The desired isotopy ft of M is obtained by setting
ft(x)=g-lhtg(x) for xeV and
fo(x)=x 1if xeM-V.
We remark that the general case is treated in the same
manner and uses lsotopies 1like ht'

The n-sphere s® 1s also continuously invertible and
is the only invertible n-manifold [8, Theorem 1]. The
solenoid [12, Example 5, p.30] is an example of a homo-
geneous, continuously invertible continuum which is not
continuously homogeneous. In [4], R.H. Bing describes a
plane continuum which is continuously near-homogeneous, btut
not homogeneous. This continuum will be discussed 1in Sec-
tion 4,

We proceed now to develop some of the basic properties
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of continuous orbits.

Theorem 3.1 The continuous orbit P(x),xeS, is a contin-

uously homogeneous subspace of S,

Proof: Let p and q be any two points in P(x). Then,
by definition of P(x), there exists deformations f,geH(S)
such that f(x)=p and g(x)=q. Since H(S) is a group, gf-l
is in H(S) and gf-l(p)=q. Since P(x) is invariant under
deformations of S,gf'l|P(x), the restriction of gf~ 1 to
P(x), 1s a deformation of P(x) and carries p into q.

Theorem 3,2 The continuous orbit P(x),xeS, is a connected

subspace of S,

Proof: Let y be any point P(x) and let h, be an
isotopy of S with hl(x)=y. Then H(xxI), the isotopy path
of x under H, is the continuous image of a continuum and
hence is connected. Therefore, P(x) is a union of connected
sets, each contalning the point x, and hence 1s a connected
subspace of S.

Theorem 3.3 In a (non-degenerate) continuously near-homo-

geneous Hausdorff space S, each continuous orbit P(x) is
arcwise connected and each voint in such an orbit 1is an
interior point of an arc in the orbit.

Proof: Let p and q be any two distinct points in P(x)
and let ht be an isotopy of S with hl(p)=q. The isotopy
path of p under H is the continuous image of the unit inter-
val in a Hausdorff space. Hence, by the Hahn-Mazurklewicz

Theorem, the 1isotopy path is a Peano continuum. Since every
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Peano continuum is arcwise connected, there is an arc in
the isotopy path (and hence in S) joining p and q.

That every point in P(x) 1s an interior point of an
arc in P(x) follows from the homogeneity of P(x).

Theorem 3.4 Every continuously near-homogeneous space 1is

connected.

Proof: As remarked earlier, in a continuously near-
homogeneous space the continuous orbits are dense. Since
the closure of a connected set is connected [12, Corollary
1-36], the result follows from Theorem 3.2.

As a consequence of Theorems 3.1-3.4, it follows that
every continuously near-homogeneous (non-degenerate) Haus-
dorff space 1s the union of non-degenerate, dense, disjoint,
arcwise connected, continuously homogeneous subspaces. The
solenold is a good exampvle of this. The continuous orbits
of the solenoid are the composants of the solenold and are
uncountable in number (since the solenoid is indecomposable).

The next theorem implies that a continuously near-homo-
geneous space either has no cut points or each of its points
is a cut point. The real line is an example of continuously
near-homogeneous space in which every point is a cut point.
It is not known,in generzl, if this is the only space having
this property.

Theorem 3.9 If S 1s a continuously near-homogeneous T;-space

and has a cut point x, then P(x)=S.

Proofs Let S-x=UUV be a separation of S, Since S 1is
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a Tl-space, both U and V are open in S. Let p be any
point in V and let h, be an isotopy of S such that hl(p)eU.
Clearly, for some t,0<t<l, we must have ht(p)=x. But then
we must have xeP(p)e. Since this relation is an equivalence
relation, we also have peP(x). An identical argument holds
for each point gqeU. Therefore P(x)=S.
Corollary 3,6 No continuously near-homogeneous Tl-continuum
has a cut point.

Proof: Every T,-continuum always has at least two
non-cut points [12, Theorem 2-18]. Thus the existence of
a cut point would contradict Theorem 3.5.

Corollary 3.7 Every continuously near-homogeneous Peano

continuum M contains a simple closed curve.

Proof: By Corollary 3.6, M has no cut points. Hence,
by the Cyclic Connectivity Theorem every two points of M
lie on a simple closed curve in M.

Theorem 3.8 Let S be a continuously near-homogeneous sep-
arable metric space. If S 1is locally Euclidean of dimension
n at any point peS, then S is an n-manifold.

Proof: S is connected by Theorem 3.4. Let X be any
point of S and let U be an open n-cell neighborhood of the
point pe There is a deformation h of S such that h(x)eU.
Then h-l(U) is an open n-cell neighborhood of x. Hence S
1s an n-manifold.

The next theorem is a generalization of one of the

principal theorems in [10]. In tne proof of this theorem
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we need to use the following result from [15].

Ienmma 3.9 Let X be a compact subset of En+1 separating
the points p and q. ILet H:XXI-4>En+1 be a continuous map
such that H|(XXt) is a homeomorrhism of XXt into EM*1, ror
all teI. If H(XXI) doesn't contain either p or q, then p
and q are serarated bty H(XXt), for all tel.

Theorem 3.10 Let M be a compact continuously near-homo-

geneous subspace of EM*Ll, If M contains an n-sphere S,
then M=S.

Proof: Assume that M-S is not empty. Without any
loss of generality, we may assume that there exists a point
p of M in the bounded component A of En+1-S=ALJB. ILet q be
any point of S and U an open nelighborhood of p such that
SM\U 1is empty. Since M 1s continuously near-homogeneous,
there 1is an isotopy ht of M such that hl(Q)eU.

Now consider the intersection V of A and the unbounded
component of En+1-hl(S). Clearly V is not empty. Either
V lies entirely in the isotopy path of S or there is a
voint x in V not covered by H(SXI). In the latter case,
the point x and a point y in Bf\(En+1-M) are separated by
S, but they are not separated by hl(S). This contradicts
Lemma 3.9 since the isotopy vath of S doesn't contain either
X or Ye On the other hand, if V lies entirely in the iso-
topy vath of S, then V lies in M and hence M contains an
open (n+l)-cell. Thus by Theorem 3.8, M would be a compact
(n+1)-manifold embedded in EP*1l, This is known to be

impossible. Having been led to a contrzdiction in either



14

case, 1t follows that the point p is non-existent and
hence M=S.

Corollary 3.11 The only continuously near-homogeneous

plane Peano continua are the simple closed curves.

Proof: By Corollary 3.7, such a space contains a
simple closed curve (a l-sphere) and hence, by Theorem
3.10, 1s a simple closed curve.

Corollary 3.12 Let M be a continuously near-homogeneous

plane continuum other than a simple closed curve. Then
every two points in a continuous orbit of M are Jjolned by
a unique arc in the orbit.

Proof: By Theorem 3.3, each two points in the same
continuous orbit are joined by an arc. If there were another
arc Joining them, then M would contain (and hence be) a
simple closed curve.

Corollary 3.11 is similar to Mazurkiewicz's result
[(17] that every homogeneous plane Peano continuum is a
simple closed curve. This result was later generalized by
H.J. Cohen [7], who showed that one need only require the
homogeneous continuum to contain a simple closed curve.
Cohen's result is thus similar to a special case of our
Theorem 3.,10. In connection with these remarks, it should
be noted that there do exist near-homogeneous plane con-
tinua other than simple closed curves. A well known example
of such a continuum is the universal plane curve (the con-

tinuum obtained by considering a square and successively
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deleting first the (open) middle-ninth of that square,
second the middle-ninths of each of the eight squares
remaining, third the middle-ninths of each of the sixty
four squares remaining, etc.). A proof of the near-
homogeneity of the universal plane curve is given in [9].

C.E. Burgess has shown [6] that, if a metric continuum
is homogeneous and hereditarily locally connected, then it
is a simple closed curve. The last theorem of this section
shows that the corresponding theorem for continuously near-
homogeneous, hereditarily locally connected metric continua
1s also true.

Theorem 3,13 If the metric continuum M is continuously near-
homogeneous and hereditarily locally connected, then M is a
simple closed curve.

Proof:t Every hereditarily locally connected metric con-
tinuum is separated by some countable set [20,p. 99]« Any
countable set that separates M contains a local cut point
x of M [20, Corollary 9.41, p. 62]. Hence, M contains a
continuous orbit P(x) of local cut points and since all but
a countable number of the local cut points of any metric
continuum are points of order two [20, Theorem 9.2, p. 61],
every point of P(x) 1s of order two. This, however, implies
that P(x) is the only continuous orbit of M and thus every
point of M is of order two. K. Menger has shown [18] that
a simple closed curve 1s the only metric continuum, each of

whose points 1is of order two.






SECTION 4 CONTINUOUSLY NEAR-HOIMOGENZOUS PLANE CONTINUA

In [4], R.H. Bing describes an indecomposable plane
continuum K, each of whose proper subcontinua is an arc,
such that K is near-homogeneous but not homogeneous. This

continuum is pictured in Figure 4.1.

Figure 4.1

The example K intersects the x-axis in a (topological)
Cantor set and 1is the union of semicircles with ends on this
Cantor set. The continuum K is obtained by starting with a
punctured disc D with three holes and digging canals (in
the manner described on pages 222, 223 of [4]) into the

disc from the four complementary domains of D. The continuum

16
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X has the properties that each arc component 1is dense in
K and each arc in K lies in an open subset homeomorphic
with the Cartesian product of the Cantor set and an open
interval. On the basis of these two properties, Bing noted
that K 1s near-homogeneocus. To see that these two proper-
ties also imply that K 1is continuously near-homogeneous,
we proceed as follows: We first observe that if (a,bl),
(a,b,)eCXI, where C denotes the usual Cantor set, then
there is an isotopy ht of CXI such that

(1) hl(a,b1)=(a,b2)

(2) ht(x,0)=(x,0), ht(x,1)=(x,1) for all tel.

(ht can be defined in the same manner as we defired the
isotopy ht of [0,1] on page 9) Now let p be any point in
K and let U be any non-empty open subset of K. Since the
arc compornent of p is dense in K, there exists an arc pq
in K such that qeU. Let V te a open neighborhood of this
arc homeomorphic to the Cartesian product of the Cantor
set and an open interval. Clearly V contains a closed set
W homeomorphic to CXI and such that p and q are interior
points of We Let g:W—»CXI denote this homeomorphism. As
mentioned above, there exists an isotopy ht of CXI such
that

(1) hy(g(p))=glq)

(2) hi(x,0)=(x,0),ht(x,1)=(x,1) for all tel.
Finally, the desired isotopy ft of K is obtained by setting



18

(1) ft(x)=g'1htg(x) for all xeW and

(2) fo(x)=x for all xeK-W,tel.
It would be nice to know if the continuum K is also con-
tinuously invertible, tut this appears to be a difficult
open questlon.

Motivated by this example, we proceed now to inves-
tigate continuously near-homogeneous plane continua. We
recall from Section 3 that the only such Peano continua are
the simple closed curves. We shall eventually prove the
much stronger result that the only decomposable continuously
near-homogeneous plane continua are the simple closed curves.

R.E. Bing has shown [4, Theorem 1] that every homo-
geneous plane continuum that contains an arc is a simple
closed curve. Since a continuously near-homogeneous plane
continuum obviously contains an arc, we have the following
result.

Theorem 4.1 If M is a homogeneous, continuously near-homo-
geneous plane continuum, then M is a simple closed curvee.

We next show that no continuously near-homogeneous

plane continuum can contain a simple triod. (A gimple triod

1s a continuum formed by three arcs px, ry, and pz such
that each palr of these arcs have just the point p in common;

the point p is called the emanation point of the triod.)

Our result is similar to Cohen's result [7, Corollary 2.12]
that no locally homogeneous plane continuum can contain a

simple triod. There do exist, however, near-homogeneous
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plane continua containing simple triods, e.g., the universal
plane curve,

Theorem 4.2 No continuously near-homogeneous plane continuum

M contains a simple triod.

Proof: Assume that M did contain a simple triod T
with emanation pointf{ Since a triod is obviously not near-
homogeneous, M-T is not empty and is an open subset of M.
Let hy be an isotopy of M such that hl(p)cM-T. It follows
from the Hahn-lMazurkiewicz Theorem that the 1sotopy path
of T 1s a Peano continuum. If the isotopy path of T con-
tained a simple closed curve, then by Theorem 3.10, M would
be a simple closed curve contradicting our assumption that
M contains a simple triod. Therefore, the isotopy path of
T i1s a dendrite. But the isotopy path of the emanation
point p contains an uncountable number of branch points in
the isotopy path of Te. This is impossible since no dendrite
contains more than a countable number of branch points
[20, Theorem 1.2, pe 89].

This theorem has several immediate corollaries. The
first is a generalization of Corollary 3.11 and is similar
to Cohen's result [7, Theorem 3] that every homogeneous
arcwise connected plane continuum is a simple closed curve.

Corollary 4.3 Every arcwise connected, continuously near-

homogeneous plane continuum M is a simple closed curve.
Proof: We observe that M cannot have two continuous

orbitse. For if it did, there would exist an arc Joining
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these orbits. Recalling that each point in a continuous
orbit is an interior point of an arc in the orbit, it
follows that M would contain a simple triod contradicting
Theorem 4.2, Thus M contains just one continuous orbit
(and hence is homogeneous) and Theorem 4.1 applies.

Corollary 4.4 The arc componants and continuous orbits of

a continuously near-homogeneous plane continuum M are the
same.,

Froof: Let x be any point of M and let A denote the
arc component of M containing x. It follows from Theorem
3.3, that P(x) is contained in A. If there were a point
p in A-P(x), then by definition of A, there exists an arc
P x in M. This, however, implies that M ccntains a simple
triod. Therefore A-P(x) is empty and thus A=P(x).

Corollary 4,53 If M is a continuously near-homogeneous

plane continuum, then every proper Peano subcontinuum of
M is an arc.

Proof: Let N be a proper Peano subcontinuum of M.

By Theorem 3.10, N doesn't contain a simple closed curve.
Thus N 1s a dendrite and every dendrite other than an arc
contains a simple triod.

We now prove the very useful result that no proper
subcontinuum of a continuously near-homogeneous plane
continuum separates the plane. In [10], Doyle and Hocking
used the corresponding theorem for continuously invertible
plane continua to show that every proper subcontinuum of a

continuously invertible plane continuum is an arc; from
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which 1t followed that every continuously invertible
plane continuum other than a simple closed curve is
indecomposable. We shall eventually prove these same
results for continuously near-homogeneous plane continua,
tut in the opposite order. Their proof that every sub-
continuum of a continuously invertible plane continuum is
an arc makes strong use of invertibility, which we aren't
assuming.

In proving Theorem 4.6, we again make use of Lemma 3.9
for E2 and the proof 1s analogous to the proof of Theorem
3610,

Theorem 4.6 No proper subcontinuum of a continuously near-

homogeneous plane continuum separates the plane.

Proof: Assume that X is a proper subcontinuum of M
that separates the plane. Without loss of generallty, we
may assume that there exists a point p of M in a bounded
complementary domain B of X. Let q be any point of X and
let ht be an isotopy of M such that hl(q)eU, where U 1s an
open neighborhood of p such that UNX=@. Since hl(X) is
homeomorphic to X, hl(X) also separates the plane.

Consider the intersection V of B and the unbounded
complementary domain of hl(X). Clearly V is not empty and,
as in Theorem 3.10, there are two cases to consider. Either
V lies entirely in the isotopy path of X or there is a point
X in V not covered by the path. In the first case, M would

contain an open 2-cell which is clearly impossible. The
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second case 1s also impossible, since then x and any point

¥ in the unbounded complementary domzin of X and not in

the 1lsotopy path of X would be sevarated by X, but not by
hl(X). This contradicts Lemma 3.9. Hence the only sub-
continuum of M that can separate the plane is M itself.
Corollary b.z Every continuously near-homogeneous plane
continuum M is the common boundary of each of its complemen-
tary domainse.

Proof: Since M is a nowhere dense subset of the
plane, this is clearly true if M doesn't separate the plane.
(Later we will show that this case can't occur.) Assume
then that M separates the plane and let B be the boundary
of a complementary domain of M. It is shown in [19] that
B i1s a subcontinuum of M and since 1t is the boundary of
a domain, 1t separates the plane. By Theorem 4.6, this is
only possible if B=M.

In connection with Corollary 4.7, we remark that the
universal plane curve 1is near-homogeneous and not the
boundary of each of its complementary domains. However,
it is true that every homogeneous plane continuum 1s the
boundary of each of its complementary domains [6, Theorem 2].

K. Kuratowski has shown [16, Theorem 3] that every
plane continuum which is the common boundary of three or
more complementary domains is indecomposable or is lndecom-
posable of index 2. Burgess has shown [5, Theorem 2] that

the latter type can't be near-homogeneous. The following
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result, which will later be generalized, is then immediate.

Theorem 4.8 Every continuously near-homogeneous plane

continuum which has three or more complementary domains is
indecomposable.

Definition 4.1 Let M be a continuously near-homogerieous
plane continuum other than a simple closed curve and let

p and q be two distinct polnts in the same continuous orbit
of M. The union of all the arcs in M that have p as an end
point and contain q 1is called a ray starting at p.

A ray in the above sense differs from an ordinary ray

of the plane in that it is neither straight nor closed.
However, it has a starting point and as a consequence of
the next lemma 1s the image of an ordinary ray under a one-
to-one continuous transformation.
Lemma 4,2 Let M be a continuously near-homogeneous plane
continuum other than a simple closed curve and let R be a
ray in M with starting point p. Then R is the union of a
countable nunmber of arcs PP1s DPP2y DPP3sece such that (1)

for each 1 and J either ppi(:ppJ or pp,C PP, and (2) each

arc ppi is a proper subset of some ppjf
Proof: Let {pisbe a countable dense subset of R.
Then R is the union of the arcs ppl, pp2, ppj,..., since
if there were a point r of R not in any PPy s then consider
the arc pr. By Theorem 3.3, the arc pr may be extended to

an arc ps such that r 1s contained in the interior of pse.

Since M contains no simple triod, each p; belongs to the
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arc pre. But then {pigwould not be dense in R, since no Py
1s near s. That the sequence of arcs {ppi&satisfies (1)
follows directly from Corollary 3.12., Property (2) follows
from the denseness of the Py

Lemma 4,10 Let M be a continuously near-homogeneous plane

continuum other than a simple closed curve. Then for each
point x of M, P(x) is the union of two rays L,R, starting
at x such that LfYR=x. Hence P(x) 1s the image of El under
a one-to-one continuous transformation.

Proof: By Theorem 3.3, X 1s an interior point of an
arc ab in P(x). It follows from the fact that M contains
no simple triods that P(x) is the union of two rays starting
at x and going through a,b respectively. Since M contailns
no simple closed curve, these rays intersect only at x.

Since P(x) is the one-to-one continuous image of El,
its points can be simply ordered in an obvious way. If
P(x)=L{UR, where L and R are rays starting at p and passing
through a and b respectively, then we will always order P(x)
such that a<b,
Lemma 4,11 Let M be a continuously near-homogeneous plane
continuum other than a simple closed curve and let a and b
be two points of the same continuous orbit such that a<b.
Then under any 1sotopy hy of M, hl(a)<h1(b).

Proof: If under hy it turned out that hl(a)>hl(b),
then for some value of %,O<§<l, we would have hE(a)=hE(b)‘
This obviously contradicts the fact that hy is a homeomorphism

t
of M,
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Theorem 4,12 Every continuously near-homogeneous plane

continuum M other than a simple closed curve is indecom-
posable,

Proof: Assume that M 1s decomposable. Then M con-
tains a subcontinuum K that is not a continuum of conden-
sation. Let xeK and let L and R be rays starting at x
and passing through a and b respectively such that P(x)=
LUR, LMR=x. We break our argument up into two cases:

Case (1) Either L=M or R=M. Suppose without any loss
of generality that R=M. Let ¥y and z be two points in
BM(M-K) such that y is interior to the arc xz. Such points
exlist, since M-K is open and R is dense in M. Let Rl be
the ray starting at y and going through z. Clearly 31C;R
and ﬁi:)K. Since K contalns an open subset of M, Rl con-
tains points of K. Let q be one of theme Then the sub-
continuum consisting of K together with the arcs xy and yq
is a proper subcontinuum of M which separates the planee.
This contradicts Theorem 4.6,

Case (2) Both M-L and M-R are non-empty. Since P(x)
=LUR and is dense in M, it foliows that T\JR=M. Hence
the ray R must be dense in the open set M-L. Let r and s
be points of Rf\(M—f) such that r 1s interior to the arc
Xse If the ray ch:R starting at r and going through s
intersects f, then, as in Case (1), M would contain a proper
subcontinuum separating the plane. Assume then that R2 and

T have no points in common. Let t be a point of RZ such
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that s is interior to the arc rt and let R3 be the ray

starting at s and passing through t. From the denseness
of R in M-L, it follows that there exists a sequence of
points Ty Tp» r3,... on R, with r_.>r_>r_>°*‘®and having

3 17273
r as a limit point. Now let h, be an isotopy of M such

t
that hl(r)=u, where u is any voint in LMN(M-R). Since
hl is a homeomorphism of M, the sequence of points hl(rl)’
hl(rZ)’ hl(rj)"'° should have u as a limit point. By
Lemma 4.11, the isotopy ht preserves the order of points
so that hq(r)=u>h;(s)>hy(r{)>h1(r,)>""*. This, however,
implies that the set of points hl(rl), hl(rz),... can't
have u as a limit point unless the ray R2 returns to L
which 1s contrary to our assumptione.

Having been led to a contradiction in both cases, it
follows that M must be indecomposablee.

F.B. Jones has shown [13] that a homogeneous plane
continuum 1s a simple closed curve if it 1s either apo-
syndetic at some point or contains a non-weak cut point,
Since an indecomposable continuum is not aposyndetic at
any of its points [14] and consists entirely of weak cut
polnts, the analogous result for continuously near-homo-
geneous plane continua follows directly from Theorem 4.12.
Corollary 4,13 A continuously near-homogeneous plane con-
tinuum is a simple closed curve if it is either aposyndetic
at some point or contains a non-weak cut point.

We now use Theorem 4.12 to show that every proper sub-
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continuum of a continuously near-homogeneous plane con-
tinuum is an arcj; thus generalizing Corollary 4.5.

Theorem 4,14 Every vroper subcontinuum of a continuously

near-homogeneous plane continuum M is an arce.

Proof: Clearly this is true if M is a simple closed
curvees If M is other than a simple closed curve, then by
Theorem 4.12 M is indecomposable and hence every proper
subcontinuum of M is a continuum of condensation. Assume
that K is a proper subcontinuum of M other than an arce.

Let x be a point of K that is a limit point of points in

K not in the continuous orbit of x. Such a point exists,
since K is not an arce. Let ht be an isotopy of M such that
hl(x)=x' i1s a point of the open set M-K. It follows from
the continuity of h1 and the choice of x that there exists
a point y in K-P(x) such that hl(y)=y' also belongs to M-K,
Let L be an irreducible subcontinuum of M between x and y
[12, Theorem 2-10] and let hl(L)=L'. This subcontinuum L
is unique and is contained in K. To see this, assume that
N is another irreducible subcontinuum of M between x and ye.
Then LNN must be connected, since otherwise L\UN would
separate the plane (this follows from the well known

Janisz ewski-Mullikan Theorem [19, Theorem 22, pe 175]).

But by Theorem 4.6,this would be possible only if LIUIN=M,
This in turn would imply that M is decomposable, wnich 1is
contrary to our assumption. Consider now the proper sub-

continuum of M formed by L,L' and the arcs xx' and yy'.
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This subcontinuum is the union of two subcontinua B and D,
where B consists of L, xx', and yy' and D consists of L',
xx', and yy'. Now BMD must be disconnected, since other-
wlse it would be a proper subcontinuum of L containing x
and y, which contradicts the fact that L was chosen to be
irreducible between these two points. But if BMAD 1is dis-
connected, then by the JanisZewski-Mullikan Theorem B\UD
would separate the plane. As we have previously observed,
this is not possible by Theorem 4.6 and the fact that M is
indecomposable. Having arrived at a contradiction, we can
conclude that every proper subcontinuum of M is an arc.

Corollary 4.15 Let M be a continuously near-homogeneous,

indecomposable plane continuum. Then the composants of M
and the continuous orbits of M are identical.

Proof: Let x be any voint of M and let C be the com-
posant of M contzining x. By definition C is the union of
all proper subcontinua of M containing x and hence P(x)
is a subset of C. If C were not a subset of P(x), then
there would exist a proper subcontinuum of M Joining x to
a point in C-P(x). But by Theorem 4.14, this subcontinuum
is an arc and hence M would contain a simple triod which
is impossible.

We conclude this section by showlng that every con-
tinuously near-homogeneous plane continuum has at least two
complementary domains. Before proving this, however, we

need a couple of lemmas.
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Lernma 4,16 Let a and b be any two points in the same con-

tinuous orbit of an indecomposable, continuously near-homo-
geneous plane continuum M. Then there exists a continuous
map HsMXI-=—=3»M with the vroperties:

(1) 1I1r hy :M—3M is defined by hi(x)=H(x,t), then, for

all tel, hteG(M)

(2) hg(a)=a, hyla)=D

(3) H(axI)=ab.

Frcof: Let G be an isotopy of M such that gl(a)=b.
Clearly it 1s sufficient to show that there 1s a subinterval
[t1,t,] of I such that gtl(a)=a,gt2(a)=b, and G(ax[ty,t,])=
ab. Assume that the continuous orbit of a is ordered such
that a<b. Then for some tl’ o< ¢t

1
for =all te[tl,l]. Otherwise there would exist sequences {ti},

<1, gtl(a)=a and gt(a)za

Y}, tis tieI, such that lim t,=1im t}=1 and lim G(a,t,)=a,

i
1im G(a,t&)zb. This obviously contradicts the continuity

of G. It now suffices to let t, be the smallest value of
te[tl,l] for which gi(a)=b. Then gi(a)<b, for all telty,t;,]
and hence G(aX[tl,t2])=ab.

Definition 4.2 Let albl’ a,bs, a3b3,...be a sequence of

arcs in the plane converging to an arc xy. The seguence

is called a folded sequernce converging to xy if the sequence

cf points aj,bi,22,bt2,... converges to either x or y.
Leqma 4,17 Let M be a contiruously near-homogeneous plane
continuum other than a simple closed curve. Then M doesn't

contain a folded sequence of arcs converging to an arc.
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Proof: Assume that a1by, asbsy... is a folded
sequence of arcs in M convergirg to an arc xy such that
al’bl’aZ’b2’°" converges to Xe Let z be a point of M
such that y 1s interior to the arc xz. By Lemma 4.16,
there exists a continuous map H:MXI-—=>M such that ho(y)=y,
h,(y)=z, and H(yxI)=yz. Then hgy(ajby), holapba),... is
a folded sequence of arcs converging to the arc ho(xy)=
ho(x)y such that hO(al)’hO(bl)’ho(aZ)’hO(bz)"‘° converges
to ho(x). If P(x) is ordered such that x<y, then by Lemma
b,11 ho(x)<y. let T,U, and V be open sets of M such that
yeT,zeUshq (xy)eV,UNV=g, and hy(T)CU. Let fe3} , cyenplayby),
be a sequence of points converging to y. It is not diffi-
cult to see that there exists a positive interger N such
that n>N implies that ho(anbn)ev and also hy(cq)eU. If n2N,
then (since UNV=g) the isotopy path of c, must contain
elther ho(an) or ho(bn). But this 1s impossible, since H
is continuous and H(yXI)=yz.

The proof of the last theorem in this section is based
upon R.H. Bing's result [3, Theorem 6] that a plane con-
tinuum K is tree-like if no subceontinuum of K separates the
plane. In order to define the concevt of being tree-like,
it is convenient to associate with any open covering G of
a subset of the plane a one-complex C(G), called the l-nerve
of G, such that there 1s a one-to-one correspvondence tetween
the elements of G ard the vertices of C(G) and two elements

of G intersect if and only if the corresponding vertices of
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C(G) are joined by a one-simplex in C(G).

Definition 4.3 A plane continuum M is tree-like if for

each positive number ¢ there is an open covering G of
M, each of whose elements is of diameter no more than ¢,
such that the l-nerve of G contains no simple closed curve.

G 1s called a tree-chain covering of M.

Theorem 4,18 Every continuously near-homogeneous plane

continuum M separates the plane.

Proof: Since a simple closed curve separates the
plane, we shall assume that M is other than a simple closed
curve and doesn't separate the plane. Hence by Bing's result
[3, Theorem 6], M is a tree-like continuum. For each posi-
tive irterger i, let Dy be a 1/i tree-chain covering of M.
There exists in M an arc aibi’such that both ends of a;by
lie in the same 1link of D1 and

dismeter M/4—1/i< diameter a;b;< diameter M/2.

Such an arc may be found as follows: Let xy be an arc in
M such that diameter xy> diameter M/4—1/1i and both ends

of xy lie in the same link & of Dy. If diameter xy£ dla-
meter M/2, then we reduce this arc by throwing away the
part of it in O and consider one of the larger components.
of the remainder. These components are arcs and at least
one of them, say x'y', must have diameter greater than dia-
mneter M/4- 1/i. For otherwise, it would follow that dia-
meter xy<l/i+2(diameter M/4e=1/i)=diameter M/2- 1/i. The

end points of x'y' lie in tre same lirkBof Di’ sirnce 1if
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they didn't ¥ wouldn't be tree-like. If the arc x'y'
doesn't suffice, then we reduce it by throwing away the
part of it not in and consider one of the larger com-
ponents of the remainder, etc. Eventually we shall either
obt=2in an arc of the desired diameter or one ﬁaving a sub-
arc of the desired diameter. The sequence of arcs {g1b13
has a convergent subsequence [20, Theorem 7.1, p. 11] and
the limit of this subsequence is a closed, connected sub-
set of M [20, Theorem 9.11, p. 15]. Clearly the 1limit con-
tains at least two points and thus 1is a proper subcontinuum
of M. By Theorem 4.14, this subcontinuum is an arc ab.
However, there is a folded sequence of arcs (each in one of
the aibi's) converging to a subarc of ab. This contradicts
Lemma 4.17.

Thus a continuously near-homogeneous plane continuum
must hove at least two complementary domairs. The exact
number of complementary domains such a continuum can have

remzins an open question.



SECTION 5 LOCAL CONTINUOUS NEAR-HOMOGENEITY

In this section we consider the concept of a space
being continuously near-homogeneous at a point and apply
this concept to plane Peano continua.

Definition 5.1 A topologlicel space S is said to be con-

tinuously near-homogeneous at & point p if for each point

q€S and each open neighborhood U of p, there exists a
homeomorphism h€H(S) such that h(q)€U. If we only require

h to be in G(S), then S 1s said to be near-homogeneous at p.

The set of points at which S is continuously near-homo-
geneous (near-homogeneous) 1s denoted by CN(S) (N(S)).
Evidently, & space S 1s continuously near-homogeneous if
and only if CN(S)=S and near homogeneous if and only if N(S)=S.

fhe first few preliminary results of this section
appeared in [11]. We give proofs here for the sake of com-
pleteness., For the first five results of this section on
CN(S), the corresponding result for N(S) (using G(S) in place
of H(S)) 1s also true and 1s proved in an analogous manner,

Theorem 5.1 For any space 3, the set CN(S) is carried onto

itself by each hEH(S).

Proof: Let p be any point of CN(S) and let heH(S).
We want to show that h(p)€CN(S). Let U be any open neigh-
borhood of h(p) and let q be any point in S. Then h’l(U)
is an open neighborhood of p and hence there exists a de-

formation g€H(S) such that g(h~1(q))éh~1(U). Then hgh~1(q)eU

33
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and hgh™leH(S). FHence, by definition h(p)eCN(S).

Theorem 5.2 The set CN(S) is a closed subset of S.

Proof: Let p be a limit point of CN(S) and let U
be any open neighborhood of p. By definition of limit
point, there is a point gq#p in CN(S)\U. Thus for any
point xeS, there exists a deformation h of S such that
h(x)eU. It follows that peCN(S) and hence CN(S) is closed.

Theorem 5.3 The set CN(S) is a continuously near-homo-

gerieous subsvace of S.

Proof: Let p and q be any two points in CN(S) and let
V be an open neighborhood of p in the subspace topology of
CN(S). By definition of the subspace topology, there is
an open neighborhood U of p (open in S) such that V=UMCN(S).
Let h be a deformation of S such that h(q)eU. By Theorem
5.1, h[CN(S)]=CN(S) and hence h|CN(S) is an element of H(CN(S))
which carries the point q into UMNCN(S)=V. Thus CN(3) is
continuously near-homogeneous.

In order to have an example or two on hand, we note
that, for the closed n-cube In,n>1, CN(I™) is a topological
(n-1)-sphere. An example in which CN(S) consists of exactly
one polnt is pictured in Figure 5.1. It consists of the
tangent circles x2+(y-1/21)%=1/2°" n=1,2,...,. We will
later show that every one-dimensional plane Peano continuum
having exactly one point in CN(S) may be homeomorphically
embedded in this continuum. We remark that such Peano con-

tinua are often called rcses.



35

Figure 5.1

Theorem 5.4 If CN(S) contains a non-empty open subset of

S, then S is continuously near-homogeneous.

Proof: Surpose that CN(S) contains an open set U of
S. Since U is an open neighborhood of a point in CN(S),
each point xeS can be carried into U by a deformation h of
S. This implies that h(x) (a2nd hence x) is in CN(S). There-
fore CN(S)=S.

Thus for any space S, the set CN(S) is either all of
S or is a closed, nowhere dense subset of S, The next re-
sult is of interest in examples where CN(S) is a proper sub-
set of S containing more than one point.

Theorem 5.5 Let S be a space with non-empty CN(S). Then

CN(Q) is also non-empty, where Q denotes the quotient space
S/CN(S).
Proof: Let p:S—»Q be the natural projection map and

let p(CN(S))=w. We show that w belongsto CN(Q). Let U be
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an open neighborhood of w in Q and let q be any point of
Q. If g=w, the identity map of CN(Q) carries q into U.
If q#w, then p-l(q)=qu. By definition of the quotient
topology, p-l(U) is an open neighborhood of CN(S) in S.
Hence there exists heH(S) such that h(q)ep‘l(U). Since
CN(S) is invariant under elements of H(S), the composition
php-1 is a one-to-one transformation of Q onto itself and
is a homeomorpnism because php_1 and (php-l)-lzph-lp-l are
both closed. Then php TeH(Q) and carries q into U. Hence
weCN(Q).

Theorem 5.5 gives rise to an interesting unsolved ques-
tion. For each positive interger n>1l, let Sn denote the

quotient space S /CN(Sn_l) and let Sl=S/CN(S). Does there

n-1
always exist an interger N such that for all n>N, the spaces
Sn are all homeomorphic? An example for which N=3 is pic-
tured in Figure 5.2. For this example, CN(S)=S1 and S/CN(S)
=D, a (topological) 2-disc. Hence D/CN(D)=8! and si/cN(s?)

is a single point.

Figure 5.2
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Theorem 5.6 If S is a Hausdorff space, then CN(S) has 0,1

or an uncountable number of points.

Proof: Suppose that there are two points p and q in
CN(S). Let U be an open neighborhood of p not containing
qd. The isotopy path of q under an lsotopy of S carrying q
into U is a non-degenerate continuous image of the unit

interval in a Hausdorff space and hence is a FPeano continuum.

Every non-degenerate Peano continuum contains uncountably
many points. Finally, it is evident that each point in this
isotopy vath is in CN(S).

In analogy to Theorem 3.4, we have the following two
results.

Theorem 5.7 If CN(S) is non-empty, then S is connected.

Proof: Let peCN(S). Since the continuous orbit P(x)
of each polint xe3 contains a point in every open neighbor-
hood of p, it follows that peﬁT—T. Therefore S=L}§T§7 is
a union of connected sets, each containing the point p,
and hence 1s connected.

Theorem 5.8 For each space 3, the set CN(S) is connected.

Proof: This follows immediately from Theorems 5.3 and
5.7

The next theorem 1s a slight generalization of Theorem 8
of [11].

Theorem 5.9 Let S be a T,-continuum with non-empty CN(S).

1
Then if S has a cut point p, 1t is the only cut point of S

and CN(S)=p.
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Proof: We show that CN(S)=p, by showing that each
point geS-p is not in CN(S). Assume that q#p is in CN(S).
Since p is a cut point of S, S-p=UUV, where U and V are
disjoint, non-empty open sets in S. Assume without 1loss
of generality that qeU. For each point xeV, there 1s an
isotopy ht of S such tnat hl(x)eU. But then there must be
some t,,0<ty<l, such that hto(x)=p. This implies that x
is a cut point of S too. Since every point of V is a cut
point of S, it follows that the non-cut points of S must
lie in U, This, however, implies that U\Up 1s a proper sub-
continuun of S containing all the non-cut points of S. This
contradicts Theorem 2-19 of [12]. Therefore CN(S)=p. The
same type of argument applies to show tnat p 1s the only
cut point of S.

Theorem 5.10 Let S be a Peano continuum with non-empty CN(S).

Then S contains a simple closed curve.

Proof: If S contains no cut points, then the theorem
follows from the Cyclic Connectivity Theorem.. If S has a
cut point p, then by Theorem 5.9, p is the only cut point
of S. Since every dendrite is known to contain an uncountable
number of cut points [20, Theorem 1.3, p. 89], S is not a
dendrite. Therefore S contains a simple closed curve.  In
fact, p and each point q#p in S lie together on a simple
closed curve in S [20, Corollary 2, p. 79].

We next show that every one-dimensional plane Peano

continuum K having CN(K)=p is the union of a finite (>2) or
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countably infinite number of simple closed curve, each two
having only p in common, and such that only a finite number
of these curves have diameter greater than any previously
assigned positive number. In [2], T.C. Benton characterized
such continua as being the only plane Peano continua that
are homogeneous except for one point.

Theorem 5.11 Let K be a one-dimensional plane Peano con-

tinuum with CN(K)=p. Then K is the union of a countable
number (>2) of simple closed curves, each two having only
p in common, and all but a finite number have dliameter less
than any given positive number €>0.

Proof: As we noted in the proof of Theorem 5.10, p
and each point g#p in K lie together on a simple closed
curve in K. Since CN(K)=p, it follows that K contains at
least two simple closed curves. HMoreover, all simple closed
curves in K contain the point p. For otherwise, we could
apply Lemma 3.9 and the type of argument used in Theorem
3.10 to arrive at a contradiction of the fact that K is
one-dimensionales Now let R and S be any two simple closed
curves in K. We want to show that RM\S=p. Assume that there
did exist another point qeRMS. Without loss of generality,
we can assume that q 1s the emanation point of a simple triod
T in K. Let U be an open neighborhood of p not containing

Py

q and let h, be an isotopy of K such that hl(q)eU. Since

t
the point p remains fixed throughout the isotopy, the iso-

topy path of T is a Peano continuum in K which doesn't contain
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p. It follows that the isotopy path of T is a dendrite,
Since otherwise K would contain a simple closed curve not
containing p. But the isotopy path of T contains an un-
countable number of branch points and this 1s known to be
impossible. Hence K is the union of simple closed curves,
each two of which have only p in common. If S is any simple
closed curve in K, then S-p is a comvonent of K-p. Since
an oven subset of a Peano continuum contains only a count-
able number of components, it follows that K consists of a
countable number of simple closed curves. By Theorem 3.9
of [12)], only a finite number of the simple closed curves
in K have diameter greater tnan any positive number e€>0O.

As an immediate corollary to the proof of Theorem 5.11,
we get a result analogous to Theorem 4.2.

Corollary 5.12 Let M be a one-dimensional plane continuum

with CN(M)=p. Then M-p contains no simple triod.

Theorem 5.13 Let K be a plane one-dimensional Peano con-

tinuum such that CN(K) contains at least two points. Then
K is a simple closed curve.

Proof: Since CN(K) is closed and connected, it is a
subcontinuum of K. By Theorem 5.10, K contains a simple
closed curve S. Now CN(K) is a subset of S, for if there
existed a point peCN(K)-S, we could apply Lemma 3.9 to show
that K contained an open 2-disc contrary to the assumption
that K is one-dimensional. Since CN(X) is continuously near-

homogeneous and is a continuum, it follows that CN(K)=S.
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Clearly S is the only simple closed curve in K and thus K=S.
P, Alexandroff has shown [1] that the isotopy path of
a simvle closed curve S in E3 is at least two-dimensional
provided that, under the isotopy ht’ hl(S)#ho(S)=S. This
result can be used to extend Theorems 5.11 and 5.13 to one-
dimensional Peano continua in E3. The proofs would be iden-
tical, except for the using of Alexandroff's result in place
of Lemma 3.9.

Theorem 5.14 1ILet K be a two-dimensional plane Peano con-

tinuum such that CN(K) contains at least two points. Then
K is a closed 2-disc,

Proof: Since CN(K) contains at least two points, it
follows from Theorem 5.9 that K has no cut points. Hence
by [19, Theorem 46, p. 199], the boundary of each complemen-
tary domain of K is a simple closed curve. Let S be the
simple closed curve which is the boundary of the unbounded
complementary domain. We show that CN(K)C:S and hence that
CN(K)=S. Assume there did exist a point peCN(K)-S and let
qeS. We can carry q by a deformation h of S into an open
neighborhood U of p, where UMS=@. The isotopy path of S
under this isotopy would have to be two-dimensional by Lemma
3e9. This is a contradiction, since we would be mapping
boundary points into interior points. Thus CN(K)=S and
hence K has only one complementary domain. Being two-dimen-
sional, it follows that K is a closed 2-disc.

Suppose now that K is a plane Peano continuum with CN(K)
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=p, Where p is a non-cut point of K., It follows from
Theorem 5.9 that K has no cut point. As noted in the proof
of Theorem 5.14, this implies that the boundary of each com-
plementary domain of K is a simple closed curve contalning
P. We denote the union of these simple closed curves by L.
Evidently, L contains at least two simple closed curves

and each two have only p in common, If S€L is the boundary
of any bounded complementary domain of K, then since p is

a non-cut point of K, there are ne points of K in the bounded
component of Ez-s. Since p is a non-cut point of K, K does
contain each point in the intersection of the bounded com-
ponent of the unbounded complementary domain with the un-
bounded compenents of the bounded ocomplementary domains,

If we call this set of points M, then K=LL/M. We shall call
a continuum of this type a closed singular disc. The
“pinched annulus®, Figure 5.3, is the simplest example of

& closed singular diso,
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Theorem 5.15 Let K bte a plane Peano continuum with CN(K)

=p, where p is a non-cut proint of K. Then K is a closed
singulsr disc.
Before completing the classification of plane Peano

continua K with non-empty CN(K), we state three lemmas.

ILemma 5.16 Let K te a T,-continuum with CN(K)=p, where p
is a cut point of K. If C is a component of K-p, then
C\Up is carried onto itself under isotoplies of K.

Proof: Let ht be an isotopy of K. Since p is the
only cut point of K, it remains fixed under ht‘ Now let
X be any point of C. Since p is the only cut point of K,
the 1sotopy path of x under ht lies in K-p. But the iso-
topy path of x is connected and since C is a component of
K-p, the path must lie in C. Therefore ht(x)ec, for all
tel.

Lemma 5.17 Let K be as in Lemma 5.16. Then for each com-

ponent C of K-p, peCN(CUDP).

Prcof: Let V be an open nelghborhooed of p in C\up
and let xeC\JUp. Then V=UN(C\Jp), where U is an open sub-
set of K. There exists an isotopy H of K such tkat hl(x)eU.
By Lemma 5.16, H|(C\Jp) 1is an isotopy of CUDP and hll(CL)p)
carries x into V.
Lenma_5.18 1Let K be as in Lemma 5.16. If C is a component
of K-p, then C\Up has no cut points.

Proof: By Lemma 5.17, peCN(C\Jp) and hence the only

possible cut point of C\Up is p itself. Since (CUPp)-p=C,
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p 1s a non-cut point of C p.

Theorem 5.19 Let K bte a plane Peano continuum with CN(K)

=p, where p is a cut point of K. Then K is the union of
a countable number (>2) of continua of the types character-
ized in Theorems 5.13, 5.14, ard 5.15, each two of which
have only the point p in common.
Prcof: Let C be a component of K-p. Then CUPp is
a Peano subcontinuum of XK. By Lemmas 5.17 and 5.18, peCN(CUDp)
and C\Up has no cut points. Since we have characterized
such continua previously in Theorems 5.13, 5.14, and 5.15,

it follows that K is characterized.
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