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ABSTRACT

CONTINUOUS NEAR-HOMOGENEITI

by Hudson.Van Etten Kronk

In a recent paper [1], P. Doyle and J. Hocking intro-

duced the concept of continuous invertibility and inves-

tigated its application to continua. The first part of

this thesis deals with the analogous but weaker concept

of continuous near-homogeneity. The object here being

to generalize the results in [1] to continuously near-

homogeneous spaces and also to study continuously near-

homogeneous plane continua as a special case. Among the

main results obtained are:

(1) A compact set in En+1 is an n-sphere if it is con-

tinuously near-homogeneous and contains an n—sphere.

(2) Every decomposable continuously near-homogeneous

plane continuum is a simple closed curve.

(3) Every proper subcontinuum of a continuously near-

homogeneous plane continuum is an arc.

(a) Every continuously near-homogeneous plane continuum

separates the plane.

is a by-product of this part of the investigation, several

prOperties of the continuous orbits in a continuously near-

homogeneous indecomposable plane continuum are established.

In particular, such orbits are identical with the composents



Hudson Van.Etten Kronk

of such a continuum and each such orbit is the image of

the real line under a one-to-one continuous transformation.

The second part of the thesis is concerned with the

localization of continuous near-homogeneity. The principal

result obtained is a characterization of those plane Peano

continua which are continuously near-homogeneous at one or

more points.
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SECTION 1 INTRODUCTION

In [10] P. Doyle and J. Hocking introduced the concept

of continuous invertibility and investigated its applications

to continua. The first part of this thesis deals with the

analogous but weaker concept of continuous near-homogeneity

which was introduced in [11]. The object here is to gen-

eralize the results in [10] to the case of a continuously

near-homogeneous space and also to study continuously near-

homogeneous plane continua as a special case. Some of the

principal results obtained are:

Theorem 3.10: A compact set in En+1 is an n-sphere

if it is continuously near-homogeneous and contains an

n-sphere.

Theorem 4.12: Every decomposable continuously near-

homogeneous plane continuum is a simple closed curve.

Theorem 4.1M: Every proper subcontinuum of a contin-

uously near-homogeneous plane continuum is an arc.

Theorem 4.18: Every continuously near-homogeneous

plane continuum separates the plane.

(Concerning this last result, it is an open question to

determine precisely the number of complementary domains

which a continuously near—homogeneous plane continuum can

have.) As a by-product of this first part of the thesis,

several properties of the continuous orbits in a contin-

uously near-homogeneous indecomposable plane continuum are

established. For instance, such orbits are identical with

l



the composants of such a continuum and each such orbit is

an image of the real line under a one-to-one continuous

transformation.

The second part of this thesis investigates the con-

cept of local continuous near-homogeneity which was intro-

duced in [11]. In particular, the following characterization

of plane Peano continua which are continuously near-homo-

geneous at one or more points is obtained: Let K be a

plane Peano continuum with non-empty CN(K). If K is one-

dimensional, then K is the union of (at most) a countable

number of simple closed curves having only one point p in

common and all but a finite number of these simple closed

curves have diameter less than any previously assigned

positive number. Moreover, K is a simple closed curve if

and only if CN(K) contains more than one point. If K is

two~dimensional and CN(K) contains more than one point,

then K is a closed disc. If CN(K)=p and if p is a non-cut

point of K, then K is a closed singular disc and, finally,

if CN(K)=p and p is a cut point of K, then K is a union

of a countable number (22) of continua of the types already

described.



SECTION 2 FUNDAMENTAL DEFINITIONS

In this section we present those definitions which

are basic to continua theory and which are used in this

thesis.

A topological space S is said to be connected if the

only two subsets of S that are simultaneously open and

closed are S itself and the empty set C. A subset X of

S is connected if it is connected with respect to the

relative topology. Each point x of S belongs to a unique

maximal connected subset of S called a component g£_;. The

components of a space constitute a partition of the space

into maximal connected closed subsets. If X is a closed

proper subset of S, then every component of S-X(the com-

plement of X in S) is called a complementapy_domain of X.

If each two points of S can be joined by an app (the homeo-

morphic image of the unit interval I=[o,1]) in s, then s

is said to be arcwise connected. An arc component of S is

a maximal arcwise connected subset of S.

A compact connected set containing at least two points

is called a continppm, There are two quite different types

of continua, the decomposable and the indecomposable. A

continuum is decomposable if it is the union of two proper

subcontinua; otherwise it is indecomposable. If p is a

point of a continuum M, then the union of all proper sub-

oontinua of N that contain p is called a composant of M.
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If a Hausdorff continuum is indecomposable, then its com-

posants are equivalence classes and are uncountable in

number. A continuum is indecomposable 23‘;ggggwg if it is

the union of n continua such that no one of them is a sub-

set of the union of the others and it is not the union of

n+1 such continua. A.proper subcontinuum K of a continuum

H is called a continuum.g§ condensation if every point of

K is a limit point of H-K. It is easy to show that a

Hausdorff continuum is indecomposable if and only if each

of its proper subcontinua is a continuum of condensation.

A space S is said to be locally connected ggflg,pgig§

p§§,if each open set U of p contains an open connected set

'V of p. A space S is said to be apcsygdetic 52 Egg if for

each point th distinct from p, there exists a closed

connected set H and an open subset U such that S-q‘DHDU‘Dp.

A space is said to be locally connected (aposygdetic) if it

is locally connected (aposyndetic) at each of its points.

A continuum H is said to be hereditarily locally connected

provided every subcontinuum of H is locally connected.

A.1oca11y connected metric continuum is called a 23332

ccntinugg. .A fundamental result concerning Peano continua

is the HathMazurkiewicz Theorem; which states that a nec-

essary and sufficient condition that a space be a Peano

continuum is that it be the image of the unit interval under

a continuous mapping into a Hausdorff space. Every Peano

continuum.is arcwise connected. A Peano continuum that



doesn't contain a simple closed curve (the homeomorphic

image of the unit circle) is called a dendrite.

A 922 pgigg of a connected space S is a point péS

such that S-p is disconnected; otherwise p is a non-cut

pgggg of S. A point pES is said to be a Eggg_gg§'pg;g§ of

S if there exists two points q,r€S-p such that every closed

connected subset of S that contains both q and r also con-

tains p. In general a weak cut point is not a cut point,

however, the two concepts are equivalent for Peano continua.

A point p of a connected space S is a lgggl‘gg§,pgip§ of S

if it is a cut point of an open connected subset U of S.

A space S is said to be cyclicly connected provided

that every two points of 8 lie together on some simple closed

curve in S. A Peano continuum is cyclicly connected if and

only if it has no cut points (Cyclic Connectivity Theorem).

A continuum H is said to be of M 1333 M 93 Eggs};

‘gg‘g 35 pg! if for each open set V of p, there exists an

open set U of p with UCV and such that the boundary of U

contains at most n points of II. If H is of orderSn at pen,

but not of orderSn-l, then M is said to be of o_r_de__r g g}; 2.

A branch point of a continuum is a point of order greater

than two.

A space S is homogeneous if for each pair of its points

p,q, there exists a homeomorphism of 3 onto itself which

carries p into q. A space S is locally homogeneous if for

each pair of its points p,q, there is a homeomorphism be-



tween two open subsets of 8, one containing p, the other

containing q, such that p is mapped into q. A space S is

near-homogeneous (invertible) if for each point pES (proper

closed set C of S) and each non-empty open set U of S there

exists a homeomorphism of S onto itself which carries p (C)

into U.



SECTION 3 CONTINUOUSLY NEAR-HOMOGENEOUS SPACES

This section deals with the general continuously near~

homogeneous space.

We use the symbol C(S) to denote the group of all homeo-

morphisms of the topological space S onto itself.

Definition 3.1 An isotopy of a topological space S is a

continuous map H:SXI-€>S with the properties:

(1) If we define ht:s—+>s by setting ht(x)=H(x,t), then

for all teI,hteG(S).

(2) h0(x)=x for all xeS, i.e., ho is the identity mapping

of 8 onto itself.

Usually, we shall use ht to designate the isotopy.

We remark that most authors omit property (2) in defin-

ing an isotopy of S.

Definition 3.2 A homeomorphism heG(S) is said to be a ggfpp-

mation of S if there exists an isotopy ht of S with hl=h.

The set of all deformations of S is denoted by H(S).

It is easy to verify that H(S) forms a normal subgroup of

6(3).

Definition 3.} The set of all images of a point ch under

deformations of S is called the continuous orbit of x and

is denoted by P(x).

The continuous orbits of a space S are invariant under

deformations of S, i.e., if heH(S), ch, then h(P(x))=P(x).

Also, if x and y are any two points of S, then either P(x)=



P(y) or P(x)f\P(y)=¢, i.e., the continuous orbits of S are

equivalence classes. These properties follow directly from

the fact that H(S) forms a group.

Definition 3.“ The isotopy path of a subset XCIS under an

isotopy H of S is the image of XII under H.

Definition 3.5 A topological space S is continuouply Egg;-

homogeneous if, for each point x€S and each non-empty open

set U of 3, there is a deformation h6H(S) such that h(x)£U.

Obviously, a continuously near-homogeneous space is

near-homogeneous. The concepts of a continuously invertible

space and a continuously homogeneous space are defined in

an analogous manner. It is clear that a space S is con-

tinuously near-homogeneous if and only if each of its con-

tinuous orbits is dense in S and is continuously homogeneous

if and only if it has exactly one continuous orbit.

Before stating any results, we first mention some

examples. Euclidean n-space, E”, is an example of a con-

tinuously homogeneous space. For let, a=(a1,a2,...,an) and

b=(b1,b2,...,bn) be any two points in En. Define H:EnII"’

En by setting

H(xl,...,In,t)=(11+t(b1-31),...,Xn+t(bn-Cnl)-

The map E is easily seen to be an isotopy of En and

H(al,...,an,l)=(bl,b2,...,bn). More generally, it can be

shown that any n-manifold (a separable connected metric

space each of whose points has a neighborhood homeomorphic

to E”) is continuously homogeneous. For example, if H is



a l-manifold and a and b are any two points in M, then a

suitable isotopy may be constructed as follows: Since M

is a manifold, there exists in M a closed l-cell V contain-

ing a and b in its interior. Let g be a homeomorphism from

V onto [0,1] and assume without loss of generality that

O<g(a)<g(b)<l. There exists an isotopy ht of I such that

(1) hl(s(a))=g(b)

(2) ht(O)=O,ht(l)=l for all teI.

Define ht by setting

ht(x)= l-t a +t b x if 05 xgg(a) and

g a

ht(X): 1-; a al+t b -1(x-1)+1 if 3(a)gxgi.

The desired isotopy ft of M is obtained by setting

ft(x)=g-lhtg(x) for er and

ft(x)=x if xeM-V.

We remark that the general case is treated in the same

manner and uses isotopies like ht'

The n-sphere Sn is also continuously invertible and

is the only invertible n-manifold [8, Theorem 1]. The

solenoid [12, Example 5, p.30] is an example of a homo-

geneous, continuously invertible continuum which is not

continuously homogeneous. In [4], R.H. Bing describes a

plane continuum which is continuously near-homogeneous, but

not homogeneous. This continuum will be discussed in Sec-

tion 4.

We proceed now to develop some of the basic properties
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of continuous orbits.

Theorem 3.1 The continuous orbit P(x),xeS, is a contin-
 

uously homogeneous subspace of S.

3392:: Let p and q be any two points in P(x). Then,

by definition of P(x), there exists deformations f,geH(S)

such that f(x)=p and g(x)=q. Since H(S) is a group, gf-l

is in H(S) and gf-l(p)=q. Since P(x) is invariant under

deformations of S,gf-1|P(x), the restriction of gf-l to

P(x), is a deformation of P(x) and carries p into q.

Theorem 3p2, The continuous orbit P(x),xeS, is a connected

subspace of S.

Eyppgs Let y be any point P(x) and let ht be an

isotopy of S with hl(x)=y. Then H(xxI), the isotopy path

of x under H, is the continuous image of a continuum and

hence is connected. Therefore, P(x) is a union of connected

sets, each containing the point x, and hence is a connected

subspace of S.

Theorem 3.3 In a (non-degenerate) continuously near-homo-

geneous Hausdorff space S, each continuous orbit P(x) is

arcwise connected and each point in such an orbit is an

interior point of an arc in the orbit.

2399;: Let p and q be any two distinct points in P(x)

and let ht be an isotopy of S with hl(p)=q. The isotopy

path of p under H is the continuous image of the unit inter-

val in a Hausdorff space. Hence, by the Hahn-Mazurkiewicz

Theorem, the isotopy path is a Peano continuum. Since every
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Peano continuum is arcwise connected, there is an arc in

the isotopy path (and hence in S) joining p and q.

That every point in P(x) is an interior point of an

arc in P(x) follows from the homogeneity of P(x).

Theorem 3.u Every continuously near-homogeneous space is
 

connected.

23293: As remarked earlier, in a continuously near-

homogeneous space the continuous orbits are dense. Since

the closure of a connected set is connected [12, Corollary

1-36], the result follows from Theorem 3.2.

As a consequence of Theorems 3.1-3.4, it follows that

every continuously near-homogeneous (non-degenerate) Haus-

dorff space is the union of non-degenerate, dense, disjoint,

arcwise connected, continuously homogeneous subspaces. The

solenoid is a good example of this. The continuous orbits

of the solenoid are the composants of the solenoid and are

uncountable in number (since the solenoid is indecomposable).

The next theorem implies that a continuously near-homo-

geneous space either has no out points or each of its points

is a cut point. The real line is an example of continuously

near-homogeneous space in which every point is a cut point.

It is not known,in general, if this is the only space having

this property.

Theorem 3.5_ If S is a continuously near-homogeneous Tl-space

and has a cut point x, then P(x)=S.

Proof: Let S-x=U\JV be a separation of S. Since S is
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a Tl-space, both U and V are open in S. Let p be any

point in V and let ht be an isotopy of S such that hl(p)eU.

Clearly, for some t,O<t<l, we must have ht(p)=x. But then

we must have xeP(p). Since this relation is an equivalence

relation, we also have peP(x). An identical argument holds

for each point qu. Therefore P(x)=S.

Corollary 3L6 No continuously near-homogeneous Tl-continuum

has a cut point.

2399;: Every Tl-continuum always has at least two

non-cut points [12, Theorem 2-18]. Thus the existence of

a cut point would contradict Theorem 3.5.

Corollarl_3.2, Every continuously near-homogeneous Peano

continuum M contains a simple closed curve.

2299;: By Corollary 3.6, M has no out points. Hence,

by the Cyclic Connectivity Theorem every two points of M

lie on a simple closed curve in M.

Theorem 3.8 Let S be a continuously near-homogeneous sep-

arable metric space. If S is locally Euclidean of dimension

n at any point peS, then S is an n-manifold.

2229;: S is connected by Theorem 3.4. Let x be any

point of S and let U be an open n-cell neighborhood of the

point p. There is a deformation h of S such that h(x)eU.

Then h-1(U) is an open n-cell neighborhood of x. Hence 8

is an n-manifold.

The next theorem is a generalization of one of the

principal theorems in [10]. In the proof of this theorem
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we need to use the following result from [15].

En+ 1

Lemma 3.3, Let X be a compact subset of separating
 

the points p and q. Let H:XXI--=‘>En+1 be a continuous map

such that H|(XXt) is a homeomorphism of XXt into En+1, for

all tsI. If H(XXI) doesn't contain either p or q, then p

and q are separated by H(th), for all teI.

Theorem 3.10 Let M be a compact continuously near-homo-
 

geneous subspace of En+l. If M contains an n-sphere S,

then M=S.

£3922: Assume that M-S is not empty. Without any

loss of generality, we may assume that there exists a point

p of M in the bounded component A of En+l-S=ALJB. Let q be

any point of S and U an open neighborhood of p such that

Sf\U is empty. Since M is continuously near-homogeneous,

there is an isotopy ht of M such that hl(Q)eU.

Now consider the intersection V of A and the unbounded

component of En+1-hl(S). Clearly v is not empty. Either

V lies entirely in the isotopy path of S or there is a

point x in V not covered by H(SXI). In the latter case,

the point x and a point y in BfW(En+l-M) are separated by

S, but they are not separated by h1(S). This contradicts

Lemma 3.9 since the isotopy path of S doesn't contain either

x or y. On the other hand, if V lies entirely in the iso-

topy path of S, then V lies in M and hence M contains an

open (n+l)-ce11. Thus by Theorem 3.8, M would be a compact

(n+1)-manifold embedded in En+l. This is known to be

impossible. Having been led to a contradiction in either
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case, it follows that the point p is non-existent and

hence M=S.

Corollary 3.11 The only continuously near-homogeneous

plane Peano continua are the simple closed curves.

2392;: By Corollary 3.7, such a space contains a

simple closed curve (a l—sphere) and hence, by Theorem

3.10, is a simple closed curve.

Corollary 3.12 Let M be a continuously near-homogeneous

plane continuum other than a simple closed curve. Then

every two points in a continuous orbit of M are joined by

a unique arc in the orbit.

Epggg: By Theorem 3.3, each two points in the same

continuous orbit are joined by an arc. If there were another

are joining them, then M would contain (and hence be) a

simple closed curve.

Corollary 3.11 is similar to Mazurkiewicz's result

[17] that every homogeneous plane Peano continuum is a

simple closed curve. This result was later generalized by

H.J. Cohen [7]. who showed that one need only require the

homogeneous continuum to contain a simple closed curve.

Cohen's result is thus similar to a special case of our

Theorem 3.10. In connection with these remarks, it should

be noted that there do exist near-homogeneous plane con-

tinua other than simple closed curves. A well known example

of such a continuum is the universal plane curve (the con-

tinuum obtained by considering a square and successively
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deleting first the (open) middle-ninth of that square,

second the middle-ninths of each of the eight squares

remaining, third the middle-ninths of each of the sixty

four squares remaining, etc.). A proof of the near-

homogeneity of the universal plane curve is given in [9].

C.E. Burgess has shown [6] that, if a metric continuum

is homogeneous and hereditarily locally connected, then it

is a simple closed curve. The last theorem of this section

shows that the corresponding theorem for continuously near-

homogeneous, hereditarily locally connected metric continua

is also true.

Theorem 3.13 If the metric continuum M is continuously near-

homogeneous and hereditarily locally connected, then M is a

simple closed curve.

2292;: Every hereditarily locally connected metric con-

tinuum is separated by some countable set [20,p. 99]. Any

countable set that separates M contains a local cut point

x of M [20, Corollary 9.41, p. 62]. Hence, M contains a

continuous orbit P(x) of local cut points and since all but

a countable number of the local cut points of any metric

continuum are points of order two [20, Theorem 9.2, p. 61],

every point of P(x) is of order two. This, however, implies

that P(x) is the only continuous orbit of M and thus every

point of M is of order two. K. Menger has shown [18] that

a simple closed curve is the only metric continuum, each of

whose points is of order two.





SECTION 4 CONTINUOUSLY NEAR-HOMOGENEOUS PLANE CONTINUA

In [4], R.H. Bing describes an indecomposable plane

continuum K, each of whose proper subcontinua is an are,

such that K is near-homogeneous but not homogeneous. This

continuum is pictured in Figure 4.1.

A B ‘ C .__x-qx05

Figure 4.1

The example K intersects the x-axis in a (topological)

Cantor set and is the union of semicircles with ends on this

Cantor set. The continuum K is obtained by starting with a

punctured disc D with three holes and digging canals (in

the manner described on pages 222, 223 of [4]) into the

disc from the four complementary domains of D. The continuum

l6
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K has the properties that each arc component is dense in

K and each arc in K lies in an open subset homeomorphic

with the Cartesian product of the Cantor set and an open

interval. 0n the basis of these two properties, Bing noted

that K is near-homogeneous. To see that these two proper-

ties also imply that K is continuously near-homogeneous,

we proceed as follows: We first observe that if (a,bl),

(a,b2)cCXI, where C denotes the usual Cantor set, then

there is an isotopy ht of CXI such that

(l) hl(a,bl)=(a.b2)

(2) ht(x,0)=(x,0), ht(x,l)=(x,l) for all teI.

(ht can be defined in the same manner as we defined the

isotopy h of [0,1] on page 9) Now let p be any point in
t

K and let U be any non-empty open subset of K. Since the

arc component of p is dense in K, there exists an arc pq

in K such that qu. Let V be a open neighborhood of this

are homeomorphic to the Cartesian product of the Cantor

set and an open interval. Clearly V contains a closed set

W homeomorphic to CXI and such that p and q are interior

points of W. Let g:W-—)CXI denote this homeomorphism. As

mentioned above, there exists an isotopy ht of CXI such

that

(1) hl(s(p))=s(q)

(2) ht(X,O)=(x,0),ht(x,l)=(x,l) for all tel.

Finally, the desired isotopy f of K is obtained by setting

t
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(l) ft(x)=g‘lhtg(x) for all er and

(2) ft(x)=x for all xeK-W,teI.

It would be nice to know if the continuum K is also con-

tinuously invertible, but this appears to be a difficult

open question.

Motivated by this example, we proceed now to inves-

tigate continuously near-homogeneous plane continua. We

recall from Section 3 that the only such Peano continua are

the simple closed curves. We shall eventually prove the

much stronger result that the only decomposable continuously

near-homogeneous plane continua are the simple closed curves.

R.H. Bing has shown [4, Theorem 1] that every homo-

geneous plane continuum that contains an arc is a simple

closed curve. Since a continuously near-homogeneous plane

continuum obviously contains an arc, we have the following

result.

Theorem 4.1 If M is a homogeneous, continuously near—homo-

geneous plane continuum, then M is a simple closed curve.

We next show that no continuously near~homogeneous

plane continuum can contain a simple triod. (A simple triod

is a continuum formed by three arcs px, py, and pz such

that each pair of these arcs have just the point p in common;

the point p is called the emanatipp_ppint of the triod.)

Our result is similar to Cohen's result [7, Corollary 2.12]

that no locally homogeneous plane continuum can contain a

simple triod. There do exist, however, near-homogeneous
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plane continua containing simple triods, e.g., the universal

plane curve.

Theorem 4.2 No continuously near-homogeneous plane continuum

M contains a simple triod.

Epppi: Assume that M did contain a simple triod T

with emanation pointfz Since a triod is obviously not near-

homogeneous, M-T is not empty and is an open subset of M.

Let ht be an isotopy of M such that hl(P)eM-T. It follows

from the Hahn-Mazurkiewicz Theorem that the isotopy path

of T is a Peano continuum. If the isotopy path of T con-

tained a simple closed curve, then by Theorem 3.10, M would

be a simple closed curve contradicting our assumption that

M contains a simple triod. Therefore, the isotopy path of

T is a dendrite. But the isotopy path of the emanation

point p contains an uncountable number of branch points in

the isotopy path of T. This is impossible since no dendrite

contains more than a countable number of branch points

[20, Theorem 1.2, p. 89].

This theorem has several immediate corollaries. The

first is a generalization of Corollary 3.11 and is similar

to Cohen's result [7, Theorem 3] that every homogeneous

arcwise connected plane continuum is a simple closed curve.

Corollary 4.3. Every arcwise connected, continuously near-

homogeneous plane continuum M is a simple closed curve.

2322:: We observe that M cannot have two continuous

orbits. For if it did, there would exist an are joining
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these orbits. Recalling that each point in a continuous

orbit is an interior point of an arc in the orbit, it

follows that M would contain a simple triod contradicting

Theorem 4.2. Thus M contains just one continuous orbit

(and hence is homogeneous) and Theorem 4.1 applies.

Corollary_4.4 The arc componants and continuous orbits of

a continuously near-homogeneous plane continuum M are the

same.

£3291: Let x be any point of M and let A denote the

arc component of M containing x. It follows from Theorem

3.3, that P(x) is contained in A. If there were a point

p in A-P(x), then by definition of A, there exists an arc

p>xa in M. This, however, implies that M contains a simple

triod. Therefore A-P(x) is empty and thus A:P(x).

Corgllary_4p5 If M is a continuously near-homogeneous

plane continuum, then every proper Peano subcontinuum of

M is an arc.

£3992: Let N be a proper Peano subcontinuum of M.

By Theorem 3.10, N doesn't contain a simple closed curve.

Thus N is a dendrite and every dendrite other than an arc

contains a simple triod.

We now prove the very useful result that no proper

subcontinuum of a continuously near-homogeneous plane

continuum separates the plane. In [10], Doyle and Hocking

used the corresponding theorem for continuously invertible

plane continua to show that every proper subcontinuum of a

continuously invertible plane continuum is an arc; from
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which it followed that every continuously invertible

plane continuum other than a simple closed curve is

indecomposable. We shall eventually prove these same

results for continuously near-homogeneous plane continua,

but in the opposite order. Their proof that every sub-

continuum of a continuously invertible plane continuum is

an arc makes strong use of invertibility, which we aren't

assuming.

In proving Theorem 4.6, we again make use of Lemma 3.9

for E2 and the proof is analogous to the proof of Theorem

3.10.

Theorem 4.6 No proper subcontinuum of a continuously near-

homogeneous plane continuum separates the plane.

£3923: Assume that X is a proper subcontinuum of M

that separates the plane. Without loss of generality, we

may assume that there exists a point p of M in a bounded

complementary domain B of X. Let q be any point of X and

let ht be an isotopy of M such that hl(q)eU, where U is an

open neighborhood of p such that UT\X;¢. Since h1(X) is

homeomorphic to X, hl(X) also separates the plane.

Consider the intersection V of B and the unbounded

complementary domain of hl(X). Clearly V is not empty and,

as in Theorem 3.10, there are two cases to consider. Either

V lies entirely in the isotopy path of X or there is a point

x in V not covered by the path. In the first case, M would

contain an open 2-cell which is clearly impossible. The
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second case is also impossible, since then x and any point

y in the unbounded complementary domain of X and not in

the isotopy path of X would be separated by X, but not by

hl(X). This contradicts Lemma 3.9. Hence the only sub-

continuum of M that can separate the plane is M itself.

Corollary 4.7 Every continuously near-homogeneous plane

continuum M is the common boundary of each of its complemen-

tary domains.

2329;: Since M is a nowhere dense subset of the

plane, this is clearly true if M doesn't separate the plane.

(Later we will show that this case can't occur.) Assume

then that M separates the plane and let B be the boundary

of a complementary domain of M. It is shown in [19] that

B is a subcontinuum of M and since it is the boundary of

a domain, it separates the plane. By Theorem 4.6, this is

only possible if B=M.

In connection with Corollary 4.7, we remark that the

universal plane curve is near-homogeneous and not the

boundary of each of its complementary domains. However,

it is true that every homogeneous plane continuum is the

boundary of each of its complementary domains [6, Theorem 2].

K. Kuratowski has shown [16, Theorem 3] that every

plane continuum which is the common boundary of three or

more complementary domains is indecomposable or is indecom-

posable of index 2. Burgess has shown [5, Theorem 2] that

the latter type can't be near-homogeneous. The following
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result, which will later be generalized, is then immediate.

Theorem 4.8 Every continuously near—homogeneous plane
 

continuum which has three or more complementary domains is

indecomposable.

Definition 4.1 Let M be a continuously near-homogeneous

plane continuum other than a simple closed curve and let

p and q be two distinct points in the same continuous orbit

of M. The union of all the arcs in M that have p as an end

point and contain q is called a ray starting g3 p.

A ray in the above sense differs from an ordinary ray

of the plane in that it is neither straight nor closed.

However, it has a starting point and as a consequence of

the next lemma is the image of an ordinary ray under a one-

to-one continuous transformation.

Lemma 419» Let M be a continuously near-homogeneous plane
 

continuum other than a simple closed curve and let H be a

ray in M with starting point p. Then R is the union of a

countable number of arcs ppl, pp2, pp3,... such that (l)

for each i and j either ppiQppJ or ppJCppi and (2) each

arc ppi is a proper subset of some ppj.

2399:: Let {pisbe a countable dense subset of R.

Then R is the union of the arcs ppl, pp2, pp3,..., since

if there were a point r of R not in any ppi, then consider

the arc pr. By Theorem 3.3, the arc pr may be extended to

an arc ps such that r is contained in the interior of ps.

Since M contains no simple triod, each pi belongs to the
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are pr. But then {piSwould not be dense in R, since no pi

is near 8. That the sequence of arcs {ppi33atisfies (1)

follows directly from Corollary 3.12. Property (2) follows

from the denseness of the pi.

Lemma 4.10 Let M be a continuously near—homogeneous plane

continuum other than a simple closed curve. Then for each

point x of M, P(x) is the union of two rays L,R, starting

at x such that Lr‘st. Hence P(x) is the image of El under

a one-to-one continuous transformation.

Egggg: By Theorem 3.3, x is an interior point of an

arc ab in P(x). It follows from the fact that M contains

no simple triods that P(x) is the union of two rays starting

at x and going through a,b respectively. Since M contains

no simple closed curve, these rays intersect only at x.

Since P(x) is the one-to-one continuous image of El,

its points can be simply ordered in an obvious way. If

P(x)=LLJR, where L and R are rays starting at p and passing

through a and b respectively, then we will always order P(x)

such that a<b.

Lemma 4.11 Let M be a continuously near-homogeneous plane

continuum other than a simple closed curve and let a and b

be two points of the same continuous orbit such that a<b.

Then under any isotopy ht of M, hl(a)<hl(b).

2399;: If under ht it turned out that hl(a)>hl(b),

then for some value of g,0<t<1, we would have ht(a):ht(b)°

This obviously contradicts the fact that h? is a homeomorphism

of M.
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Theorem 4.12 Every continuously near-homogeneous plane

continuum M other than a simple closed curve is indecom-

posable.

2222;: Assume that M is decomposable. Then M con-

tains a subcontinuum K that is not a continuum of conden-

sation. Let xeK and let L and R be rays starting at x

and passing through a and b respectively such that P(x)=

LL/H, LFWR=x. We break our argument up into two cases:

Case (1) Either LsM or H%M. Suppose without any loss

of generality that EéM. Let y and 2 be two points in

Rf\(M—K) such that y is interior to the arc xz. Such points

exist, since M-K is open and R is dense in M. Let Bl be

the ray starting at y and going through 2. Clearly RlCLR

and Hi:)K. Since K contains an open subset of M, Rl con-

tains points of K. Let q be one of them. Then the sub-

continuum consisting of K together with the arcs xy and yq

is a proper subcontinuum of M which separates the plane.

This contradicts Theorem 4.6.

Case (2) Both M-L and M-H are non-empty. Since P(x)

=LKJR and is dense in M, it follows that LIJH¥M. Hence

the ray R must be dense in the open set M-Lt Let r and s

be points of Ram-l?) such that r is interior to the arc

xs. If the ray RZCZR starting at r and going through 3

intersects L, then, as in Case(1), M would contain a proper

subcontinuum separating the plane. Assume then that R2 and

L have no points in common. Let t be a point of R2 such
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that s is interior to the arc rt and let R3 be the ray

starting at s and passing through t. From the denseness

of R in M-L, it follows that there exists a sequence of

points r1, r2, r3,... on B3 with rl>r2>r3>"'and having

r as a limit point. Now let h be an isotopy of M such

t

that hl(r)=u, where u is any point in Lf\(M?H). Since

hl is a homeomorphism of M, the sequence of points hl(rl),

h1(r2), hl(r3),... should have u as a limit point. By

Lemma 4.11, the isotopy ht preserves the order of points

so that hl(r)=u>h1(s)2h1(r1)>hl(r2)>"°. This, however,

implies that the set of points hl(rl), hl(r2),... can't

have u as a limit point unless the ray R2 returns to L

which is contrary to our assumption.

Having been led to a contradiction in both cases, it

follows that M must be indecomposable.

F.B. Jones has shown [13] that a homogeneous plane

continuum is a simple closed curve if it is either apo-

syndetic at some point or contains a non-weak cut point.

Since an indecomposable continuum is not aposyndetic at

any of its points [14] and consists entirely of weak out

points, the analogous result for continuously near-homo-

geneous plane continua follows directly from Theorem 4.12.

Corollary 4gl3. A continuously near-homogeneous plane con-

tinuum is a simple closed curve if it is either aposyndetic

at some point or contains a non-weak cut point.

We now use Theorem 4.12 to show that every proper sub-
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continuum of a continuously near-homogeneous plane con-

tinuum is an arc; thus generalizing Corollary 4.5.

Theorem 4.14 Every proper subcontinuum of a continuously

near-homogeneous plane continuum M is an arc.

2239;: Clearly this is true if M is a simple closed

curve. If M is other than a simple closed curve, then by

Theorem 4.12 M is indecomposable and hence every proper

subcontinuum of M is a continuum of condensation. Assume

that K is a proper subcontinuum of M other than an arc.

Let x be a point of K that is a limit point of points in

K not in the continuous orbit of x. Such a point exists,

since K is not an arc. Let ht be an isotopy of M such that

hl(x)=x' is a point of the Open set M-K. It follows from

the continuity of hl and the choice of x that there exists

a point y in K-P(x) such that hl(y)=y' also belongs to M-K.

Let L be an irreducible subcontinuum of M between x and y

[12, Theorem 2-10] and let hl(L)=L'. This subcontinuum L

is unique and is contained in K. To see this, assume that

N is another irreducible subcontinuum of M between x and y.

Then LfNN must be connected, since otherwise LLJN would

separate the plane (this follows from the well known

Janiszewski-Mullikan Theorem [19, Theorem 22, p. 175]).

But by Theorem 4.6,this would be possible only if LLJN=M.

This in turn would imply that M is decomposable, which is

contrary to our assumption. Consider now the proper sub-

continuum of M formed by L,L' and the arcs xx' and yy'.
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This subcontinuum is the union of two subcontinua B and D,

where B consists of L, xx', and yy' and D consists of L',

xx', and yy'. Now Bf\D must be disconnected, since other-

wise it would be a proper subcontinuum of L containing x

and y, which contradicts the fact that L was chosen to be

irreducible between these two points. But if BFWD is dis-

connected, then by the Janiszewski-Mullikan Theorem B\JD

would separate the plane. As we have previously observed,

this is not possible by Theorem 4.6 and the fact that M is

indecomposable. Having arrived at a contradiction, we can

conclude that every proper subcontinuum of M is an arc.

Corollary 4.15 Let M be a continuously near-homogeneous,

indecomposable plane continuum. Then the composants of M

and the continuous orbits of M are identical.

2399;: Let x be any point of M and let C be the com-

posant of M containing x. By definition C is the union of

all proper subcontinua of M containing x and hence P(x)

is a subset of C. If C were not a subset of P(x), then

there would exist a proper subcontinuum of M joining x to

a point in C-P(x). But by Theorem 4.14, this subcontinuum

is an arc and hence M would contain a simple triod which

is impossible.

We conclude this section by showing that every con-

tinuously near-homogeneous plane continuum has at least two

complementary domains. Before proving this, however, we

need a couple of lemmas.
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Lemma 4.16 Let a and b be any two points in the same con-
 

tinuous orbit of an indecomposable, continuously near-homo-

geneous plane continuum M. Then there exists a continuous

map HzMXI-—)M with the properties:

(1) If ht:M-+;M is defined by ht(x)=H(x,t), then, for

all th, hteG(M)

(2) ho(a%aa,kh}eizb

(3) H(ex1)=eb.

3399;: Let G be an isotopy of M such that g1(a)=b.

Clearly it is sufficient to show that there is a subinterval

[tl,t2] of I such that gtl(a)=a,gt2(a)=b, and G(ax[tl,t2])=

ab. Assume that the continuous orbit of a is ordered such

that a<b. Then for some t1,

for all te[tl,l]. Otherwise there would exist sequences {t1},

Og_tl<l, gtl(a)=a and gt(a)3a

{ti}, ti, tieI, such that lim t =lim t1=1 and lim G(a,ti)=a,
1

lim G(a,t3)=b. This obviously contradicts the continuity

of G. It now suffices to let t2 be the smallest value of

te[t1,1] for which gt(a)=b. Then gt(a)gb, for all te[t1,t2]

and hence C(aXEtl,t2])=ab.

Definition 4.2 Let albl’ a2b2, a3b3,...be a sequence of
 

arcs in the plane converging to an arc xy. The sequence

is called a folded sequence converging to xy if the sequence

of points al,bl,a2,b2,... converges to either x or y.

Lemma 4.l7 Let M be a continuously near-homogeneous plane

continuum other than a simple closed curve. Then M doesn't

contain a folded sequence of arcs converging to an arc.
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3322:: Assume that albl’ a2b2,... is a folded

sequence of arcs in M converging to an arc xy such that

a1,b1,a2,b2,... converges to x. Let 2 be a point of M

such that y is interior to the arc xz. By Lemma 4.16,

there exists a continuous map H:MXI-—>M such that hO(y)=y,

hl(y)=z, and H(yxl)=yz. Then hO(albl), hQ(a2b2),... is

a folded sequence of arcs converging to the arc ho(xy)=

hO(x)y such that h0(al),ho(bl),h0(a2),h0(b2),... converges

to ho(x). If P(x) is ordered such that x<y, then by Lemma

4.11 ho(x)<y. Let T,U, and V be open sets of M such that

ycT,ch,nO(xy)cv,Unv=¢, and hl(T)CU. Let {c1} , cieh0(aibi),

be a sequence of points converging to y. It is not diffi-

cult to see that there exists a positive interger N such

that BEN implies that h0(anbn)eV and also hl(cl)eU. If nzN,

then (since Uf\V=¢) the isotOpy path of on must contain

either ho(an) or hO(bn). But this is impossible, since H

is continuous and H(yXI)=yz.

The proof of the last theorem in this section is based

upon B.H. Bing's result [3, Theorem 6] that a plane con-

tinuum K is tree-like if no subcontinuum of K separates the

plane. In order to define the concept of being tree-like,

it is convenient to associate with any open covering G of

a subset of the plane a one-complex C(G), called the l-nerve

of G, such that there is a one-to—one correspondence between

the elements of G and the vertices of C(G) and two elements

of G intersect if and only if the corresponding vertices of



31

C(G) are joined by a one-simplex in C(G).

Definition 4.3 A plane continuum M is tree-like if for

each positive number 6 there is an open covering G of

M, each of whose elements is of diameter no more than e,

such that the l-nerve of G contains no simple closed curve.

G is called a tree-chain covering of M.
 

Theorem 4.18 Every continuously near-homogeneous plane

continuum M separates the plane.

£3993: Since a simple closed curve separates the

plane, we shall assume that M is other than a simple closed

curve and doesn't separate the plane. Hence by Bing's result

[3, Theorem 6], M is a tree-like continuum. For each posi—

tive interger i, let D1 be a l/i tree-chain covering of M.

There exists in M an arc aibi such that both ends of aibi

lie in the same link of D1 and

diameter M/4-l/i< diameter aib1< diameter M/2.

Such an arc may be found as follows: Let xy be an arc in

M such that diameter xy> diameter M/4-—l/i and both ends

of xy lie in the same link 0‘ of D1. If diameter xyif dia-

meter M/2, then we reduce this arc by throwing away the

part of it inO< and consider one of the larger components.

of the remainder. These components are arcs and at least

one of them, say x'y', must have diameter greater than dia-

meter M/4- l/i. For otherwise, it would follow that dia-

meter xy_<_l/i+2(diameter M/4-l/i)=diameter M/2- l/i. The

end points of x'y' lie in the same linkB of Di’ since if
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they didn't M wouldn't be tree—like. If the arc x'y'

doesn't suffice, then we reduce it by throwing away the

part of it not in and consider one of the larger com-

ponents of the remainder, etc. Eventually we shall either

obtain an arc of the desired diameter or one having a sub-

arc of the desired diameter. The sequence of arcs {albig

has a convergent subsequence [20, Theorem 7.1, p. 11] and

the limit of this subsequence is a closed, connected sub-

set of M [20, Theorem 9.11, p. 15]. Clearly the limit con-

tains at least two points and thus is a proper subcontinuum

of M. By Theorem 4.14, this subcontinuum is an arc ab.

However, there is a folded sequence of arcs (each in one of

the albi's) converging to a subarc of ab. This contradicts

Lemma 4.17.

Thus a continuously near-homogeneous plane continuum

must have at least two complementary domains. The exact

number of complementary domains such a continuum can have

remains an open question.



SECTION 5 LOCAL CONTINUOUS NEAR-HOMOGENEITY

In this section we consider the concept of a space

being continuously near-homogeneous at a point and apply

this concept to plane Peano continua.

Definition 5.1 A topological space S is said to be 922:

tinuously near-homogeneous at 5 221g; 2 if for each point

q€S and each open neighborhood U of p, there exists a

homeomorphism h€H(S) such that h(q)éU. If we only require

h to be in 6(3), then S is said to be near-homogeneous at p.

The set of points at which 3 is continuously near-homo-

geneous (near-homogeneous) is denoted by CN(S) (N(S)).

Evidently, a space S is continuously near-homogeneous if

and only if CN(S)=S and near homogeneous if and only if N(S)=S.

The first few preliminary results of this section

appeared in [11]. We give proofs here for the sake of com-

pleteness. For the first five results of this section on

CN(S), the corresponding result for N(S) (using 6(8) in place

of H(S)) is also true and is proved in an analogous manner.

Theorem 5.1 For any space S, the set CN(S) is carried onto
 

itself by each h€H(S).

2322;: Let p be any point of CN(S) and let h£H(S).

we want to show that h(p)€CN(S). Let U be any open neigh-

borhood of h(p) and let q be any point in S. Then h'1(U)

is an open neighborhood of p and hence there exists a de-

formation gems) such that g(h'1(q))€h'1(U). Then hgh'1(q )QU

33
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and hgh-leH(S). Hence, by definition h(p)eCN(S).

Theorem 5.2 The set CN(S) is a closed subset of S.
 

2392:: Let p be a limit point of CN(S) and let U

be any open neighborhood of p. By definition of limit

point, there is a point q¥p in CN(S)/WU. Thus for any

point xeS, there exists a deformation h of S such that

h(x)cU. It follows that peCN(s) and hence CN(S) is closed.

Theorem 5.3 The set CN(S) is a continuously near-homo—

geneous subspace of S.

Eggggz Let p and q be any two points in CN(S) and let

V be an open neighborhood of p in the subspace topology of

CN(S). By definition of the subspace topology, there is

an open neighborhood U of p (open in S) such that V=Uf\CN(S).

Let h be a deformation of s such that h(q)eU. By Theorem

5.1, h[CN(S)]=CN(S) and hence h|CN(S) is an element of H(CN(S))

which carries the point q into UFNCN(S)=V. Thus CN(S) is

continuously near-homogeneous.

In order to have an example or two on hand, we note

that, for the closed n-cube In,n>l, CN(In) is a topological

(n-l)-sphere. An example in which CN(S) consists of exactly

one point is pictured in Figure 5.1. It consists of the

tangent circles x2+(y-l/2n)2=l/22n,n=l,2,...,. We will

later show that every one-dimensional plane Peano continuum

having exactly one point in CN(S) may be homeomorphically

embedded in this continuum. We remark that such Peano con-

tinua are often called roses.
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Figure 5.1

Theorem 5.4 If CN(S) contains a non-empty open subset of

S, then S is continuously near-homogeneous.

3399;: Suppose that CN(S) contains an open set U of

S. Since U is an open neighborhood of a point in CN(S),

each point ch can be carried into U by a deformation h of

S. This implies that h(x) (and hence x) is in CN(S). There-

fore CN(S)=S.

Thus for any space S, the set CN(S) is either all of

S or is a closed, nowhere dense subset of S. The next re-

sult is of interest in examples where CN(S) is a proper sub-

set of S containing more than one point.

Theorem 5L5 Let S be a space with non—empty CN(S). Then
 

CN(Q) is also non—empty, where Q denotes the quotient space

S/CN(S).

Proof: Let p:S-—)Q be the natural projection map and

let p(CN(S))=w. We show that w belongsto CN(Q). Let U be
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an open neighborhood of w in Q and let q be any point of

Q. If q=w, the identity map of CN(Q) carries q into U.

If q#w, then p-1(q)=qu. By definition of the quotient

topology, p-1(U) is an open neighborhood of CN(S) in S.

Hence there exists heH(S) such that h(q)ep-1(U). Since

CN(S) is invariant under elements of H(S), the composition

php-1 is a one-to-one transformation of Q onto itself and

is a homeomorphism because php-1 and (php-l)-1=ph-1p-l are

both closed. Then php-leH(Q) and carries q into U. Hence

weCN(Q).

Theorem 5.5 gives rise to an interesting unsolved ques-

tion. For each positive interger n>l, let Sn denote the

quotient space Sn_l/CN(Sn_l) and let Sl=S/CN(S). Does there

always exist an interger N such that for all nZN, the spaces

Sn are all homeomorphic? An example for which N=3 is pic-

tured in Figure 5.2. For this example, CN(S)=Sl and S/CN(S)

=D, a (topological) 2-disc. Hence D/CN(D)=sl and Sl/CN(Sl)

is a single point.

 
Figure 5.2
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Theorem 5.6 If S is a Hausdorff space, then CN(S) has 0,1

or an uncountable number of points.

Egggg: Suppose that there are two points p and q in

CN(S). Let U be an open neighborhood of p not containing

q. The isotopy path of q under an isotopy of S carrying q

into U is a non—degenerate continuous image of the unit

interval in a Hausdorff space and hence is a Peano continuum.

Every non-degenerate Peano continuum contains uncountably

many points. Finally, it is evident that each point in this

isotopy path is in CN(S).

In analogy to Theorem 3.4, we have the following two

results.

Theorem 5,? If CN(S) is non-empty, then S is connected.
 

£3993: Let peCN(S). Since the continuous orbit P(x)

of each point xeS contains a point in every open neighbor-

hood of p, it follows that peFTET. Therefore S=LJFT§7 is

a union of connected sets, each containing the point p,

and hence is connected.

Theorem 5.8 For each space S, the set CN(S) is connected.
 

Proof: This follows immediately from Theorems 5.3 and

5.7.

The next theorem is a slight generalization of Theorem 8

of [11].

Theorem 5.9 Let S be a T -continuum with non-empty CN(S).
1

Then if S has a cut point p, it is the only cut point of S

 

and CN(S)=p.
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2322:: We show that CN(S)=p, by showing that each

point qu-p is not in CN(S). Assume that q¥p is in CN(S).

Since p is a cut point of S, S-p=ULJV, where U and V are

disjoint, non-empty open sets in 3. Assume without loss

of generality that qu. For each point er, there is an

isotopy ht of S such that h1(x)eU. But then there must be

some tO,O<tO<l, such that hto(x)=p. This implies that x

is a cut point of S too. Since every point of V is a cut

point of S, it follows that the non-cut points of S must

lie in U. This, however, implies that ULJp is a proper sub-

continuum of S containing all the non-cut points of S. This

contradicts Theorem 2-19 of [12]. Therefore CN(S)=p. The

same type of argument applies to show that p is the only

cut point of S.

Theorem 5.10 Let S be a Peano continuum with non-empty CN(S).

Then S contains a simple closed curve.

2399:: If S contains no out points, then the theorem

follows from the Cyclic Connectivity Theorem.. If S has a

cut point p, then by Theorem 5.9, p is the only cut point

of S. Since every dendrite is known to contain an uncountable

number of cut points [20, Theorem 1.3, p. 89], S is not a

dendrite. Therefore S contains a simple closed curve._ In

fact, p and each point q¥p in S lie together on a simple

closed curve in S [20, Corollary 2, p. 79].

We next show that every one-dimensional plane Peano

continuum K having CN(K)=p is the union of a finite (32) or
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countably infinite number of simple closed curve, each two

having only p in common, and such that only a finite number

of these curves have diameter greater than any previously

assigned positive number. In [2], T.C. Benton characterized

such continua as being the only plane Peano continua that

are homogeneous except for one point.

Theorem 5.11 Let K be a one-dimensional plane Peano con-
 

tinuum with CN(K)=p. Then K is the union of a countable

number (22) of simple closed curves, each two having only

p in common, and all but a finite number have diameter less

than any given positive number e>0.

23922: As we noted in the proof of Theorem 5.10, p

and each point q¥p in K lie together on a simple closed

curve in K. Since CN(K)=p, it follows that K contains at

least two simple closed curves. Moreover, all simple closed

curves in K contain the point p. For otherwise, we could

apply Lemma 3.9 and the type of argument used in Theorem

3.10 to arrive at a contradiction of the fact that K is

one-dimensional. Now let R and S be any two simple closed

curves in K. We want to show that Rf\S=p. Assume that there

did exist another point qufWS. Without loss of generality,

we can assume that q is the emanation point of a simple triod

T in K. Let U be an open neighborhood of p not containing

q and let h be an isotopy of K such that hl(q)eU. Since

t

the point p remains fixed throughout the isotopy, the iso-

topy path of T is a Peano continuum in K which doesn't contain
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p. It follows that the isotopy path of T is a dendrite,

since otherwise K would contain a simple closed curve not

containing p. But the isotopy path of T contains an un-

countable number of branch points and this is known to be

impossible. Hence K is the union of simple closed curves,

each two of which have only p in common. If S is any simple

closed curve in K, then S-p is a component of K—p. Since

an open subset of a Peano continuum contains only a count-

able number of components, it follows that K consists of a

countable number of simple closed curves. By Theorem 3.9

of [12], only a finite number of the simple closed curves

in K have diameter greater than any positive number e>0.

As an immediate corollary to the proof of Theorem 5.11,

we get a result analogous to Theorem 4.2.

Corollaryi5.12 Let M be a one—dimensional plane continuum

with CN(M)=p. Then M-p contains no simple triod.

Theorem 5.13 Let K be a plane one-dimensional Peano con-

tinuum such that CN(K) contains at least two points. Then

K is a simple closed curve.

3329;: Since CN(K) is closed and connected, it is a

subcontinuum of K. By Theorem 5.10, K contains a simple

closed curve S. Now CN(K) is a subset of S, for if there

existed a point peCN(K)-S, we could apply Lemma 3.9 to show

that K contained an open 2-disc contrary to the assumption

that K is one-dimensional. Since CN(K) is continuously near-

homogeneous and is a continuum, it follows that CN(K)=S.
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Clearly S is the only simple closed curve in K and thus Kss.

P. Alexandroff has shown [1] that the isotopy path of

a simple closed curve S in E3 is at least two-dimensional

provided that, under the isotopy h hl(S)#hO(S)=S. This
t!

result can be used to extend Theorems 5.11 and 5.13 to one-

dimensional Peano continua in E3. The proofs would be iden-

tical, except for the using of Alexandroff's result in place

of Lemma 3.9.

Theorem_5.l4 Let K be a two-dimensional plane Peano con-
 

tinuum such that CN(K) contains at least two points. Then

K is a closed 2-disc.

nggf: Since CN(K) contains at least two points, it

follows from Theorem 5.9 that K has no out points. Hence

by [19, Theorem 46, p. 199], the boundary of each complemen-

tary domain of K is a simple closed curve. Let S be the

simple closed curve which is the boundary of the unbounded

complementary domain. We show that CN(K)C:S and hence that

CN(K)=S. Assume there did exist a point peCN(K)-S and let

qu. We can carry q by a deformation h of S into an open

neighborhood U of p, where U(\S=¢. The isotopy path of S

under this isotopy would have to be two-dimensional by Lemma

3.9. This is a contradiction, since we would be mapping

boundary points into interior points. Thus CN(K)=S and

hence K has only one complementary domain. Being two-dimen-

sional, it follows that K is a closed 2-disc.

Suppose now that K is a plane Peano continuum with CN(K)
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2p, where p is a non-cut point of K. It follows from

Theorem 5.9 that K has no out point. As noted in the proof

of Theorem 5.14, this implies that the boundary of each com-

plementary domain of K is a simple closed curve containing

p. we denote the union of these simple closed curves by L.

Evidently, L contains at least two simple closed curves

and each two have only p in common. If 86L is the boundary

of any bounded complementary domain of K, then since p is

a non-cut point of m, there are no points of K in the bounded

component of Ez-S. Since p is a non-cut point of K, K does

contain each point in the intersection of the bounded com-

ponent of the unbounded complementary domain with the un-

bounded compenents of the bounded complementary domains.

If we call this set of points x, then KsLLJM. We shall call

a continuum of this type a closed singular $332. The

“pinched annulus”, Figure 5.3, is the simplest example of

a closed singular disc.
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Theorem 5.15, Let K be a plane Peano continuum with CN(K)
 

=p, where p is a non-cut point of K. Then K is a closed

singular disc.

Before completing the classification of plane Peano

continua K with non-empty CN(K), we state three lemmas.

Lemma 5.16 Let K be a Tl-continuum with CN(K)=p, where p
 

is a cut point of K. If C is a component of K-p, then

ijp is carried onto itself under isotopies of K.

£2991: Let ht be an isotopy of K. Since p is the

only cut point of K, it remains fixed under ht' Now let

x be any point of C. Since p is the only cut point of K,

the isotopy path of x under ht lies in K-p. But the iso-

topy path of x is connected and since C is a component of

K-p, the path must lie in C. Therefore ht(x)eC, for all

teI.

Lemma 5.17 Let K be as in Lemma 5.16. Then for each com—

ponent C of K-p, peCN(CLJp).

nggf; Let V be an open neighborhood of p in ijp

and let xeCk/p. Then V=Uf\(C\Jp), where U is an open sub-

set of K. There exists an isotopy H of K such that h1(x)cU.

By Lemma 5.16, H|(C\Jp) is an isotopy of ijp and hl|(CLJp)

carries x into V.

Lemma 5.18 Let K be as in Lemma 5.16. If C is a component

of K-p, then CKJp has no out points.

2392;: By Lemma 5.17, peCN(C\Jp) and hence the only

possible cut point of CLJp is p itself. Since (CLJp)-P=C.
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p is a non-cut point of C p.

Theorem 5.19 Let K be a plane Peano continuum with CN(K)

=p, where p is a cut point of K. Then K is the union of

a countable number (22) of continua of the types character-

ized in Theorems 5.13, 5.14, and 5.15, each two of which

have only the point p in common.

Egggf: Let C be a component of K—p. Then Cka is

a Peano subcontinuum of K. By Lemmas 5.17 and 5.18, peCN(CLJp)

and Cka has no out points. Since we have characterized

such continua previously in Theorems 5.13, 5.14, and 5.15,

it follows that K is characterized.
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