-3'$.""‘ ”MO“. . -..- . ' - — SUMS OF DISTENCT DIVISORS OF BATEONAL INTEGERS AND sums OF DESTINCT DIVISORS OF QUADRATIC INTEGERS Thesis for the Degree of PhD. MICHIGAN STATE UNIVERSITY Bernard Jacobson 1956 I : LIBRARY «Michigan State University This is to certify that the thesis entitled Sums of Distinct Divisors of Rational Integers and Sums of Distinct Divisors of Quadratic Integers presented by Bernard Jacobson has been accepted towards fulfillment of the requirements for Doctor of Philosophy dqpmgnlrmthematics fiM $2M Major professor Date June 11, 1356 0-169 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. T____________. DATE DUE DATE DUE DATE DUE Msr‘l-JM AN STATE Ui‘ ‘ > ., ,. g- -- - " i "V _—_—_———_|L MSU Is An Affirmative Action/Equal Opportunity Institution emu“ Bernard Jacobson candidate for the degree of Doctor'of Philosophy Final examination, June 1, 1956, 5:00 P.M., Physics- Mathematics Building Dissertation: Sums of Distinct Divisors of Rational Integers and Sums of Distinct Divisors of Quadratic Integers . Outline of Studies Undergraduate Studies, Western Reserve University 19u8-l951 Major-Subject: Mathematics Minor Subject: Chemistry Graduate Studies, Michigan State University 1951-1956 Major Subject: Mathematics (algebra) Minor Subjects: Mathematics (analysis, tOpology, applied mathematics) Biographical Items born, April 7, 1928, Cleveland, Ohio Military Service, United States Army l9h6-l9h7 Experience: Graduate Assistant, 1951-1955 Instructor, 1955-1956 Michigan State University Member of Phi Society, Pi Mu Epsilon, Sigma Xi, Mathematical Association of America, American Mathematical Society SUMS OF DISTINCT DIVISOfiS OF RATIONAL INTEGERS AND SUMS 0F DISTINCT DIVISORS OF QUADRATIC INTEGERS BY BERNARD JACOBSON A THESIS Submitted to the School of Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mathematics 1956 ACKN Oh LEDG 1'.th T The author wishes to express his sincere thanks to Professor B.M. Stewart, who suggested this problem and under whose supervision this investigation was undertaken. 0‘ SUMS 0F DISTINCT DIVISORS OF RATIONAL INTEGERS AND SUMS OF DISTINCT DIVISORS OF QUADRATIC INTEGERS By Bernard Jacobson AN ABSTRACT Submitted to the School of Graduate Studies of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of DOCTOR or PHILOSOPHY Department of Mathematics Year 1956 Approved A 744. yw ABSTRACT In a recent paper B.M. Stewart [6] discussed sums of distinct positive divisors of rational integers. In this dissertation these results are generalized. Let 0((M) be the number of positive integers n Which can be written in the form.n =1Ed, where the d are distinct positive or negative divisors of M. The author has proved that “((M) = 0(M) if and only if n is of the form b c k ‘11 n = 2 3 3:; p1 where b and c are not both zero, ... b c 5 < Pl < P2 < pk, p1 g 20(2 3 ) + 1 and pj+1 é b c 3 ‘1 20(2 3 Trp1 )+ 1 for J = 1, 2, ..., k-l. The i=1 function o((M)/0(M) is everywhere dense on the interval 0 to 1. In the quadratic fields x + yvé and x + yJS every integer in the field can be written as a finite sum of distinct units, the algorithm produced depending upon the representation of each integer of the field as a lattice point in the plane. In any real quadratic field there exist infinitely many integers n, having the ‘property that every integer in the field can be written as a finite sum of distinct divisors of n. Explicitly if a + me is the unit of smallest absolute value for which a > 0 and b > 0, then any integer 2t+llm Where at > a satisfies this condition. The proof again depends upon the representation of each integer of the field as a lattice point in the plane. For the imaginary quadratic fields the set A(m) is defined where an integer n belongs to A(m) if and only if there exists a rational integer n' such that every integer of the form.x + y m where -n' g x g n' and -n' § y § n' and no other integer can be represented as a sum of distinct divisors of n. It is shown that for m = -2 numbers of the form RJ-Z belong to A(-2) Where a R 217131 1, p1 5 2, 5 or 7 mod 8 and 0((R) = 0(R)- When m = -1, numbers of the form R = Trp1 1 belong to A(-l), Whore r, E 5 mod n and uL(R) = 0(a). When m < -2 and m.£ 1 mod 4, integers of the form ZtJm belong to A(m). If m < -2 and m E 1 mod 4, then the set A(m) is empty. TABLE OF CONTENTS page INTRODUCTION 00.0.00.........OOIOOOOOOO.000...... 1 CHAPTER I CHAPTER II CHAPTER III CHAPTER IV CHAPTER V CHAPTER VI CONCLUSION THE RATIONAIJ FIEIOD 00.000.000.00... 2 SPECIAL QUADRATIC FIELDS .......... 8 EIBESB 2 .0.........OOOOOOOOOOOOOOOOOO 9 ......OOOOOOO00.00.000.000... 17 ......OOOOOOOOOOOO0.0.0.0.... 22 7 COOOOOOOOOOOOOO00.000.000.00. 28 REAL QUADRATIC FIELDS ............. 5h m>7andm~320r5modl+ RE m. m m ALQUADRATIC FIELDS MI > 1 mod h 5 00.0.0000.........OOOOOOOOOOC 1+5 5 #9 THE GAUSSIAN FIELD ................ 61 IMAGINARY QUADRATIC FIELDS 61+ m.£ 1 mod h m=-2 eoeeeeeeeeeeeeeeeeeeeeeeeeee 65 m<-2 eeeeeeeeeeeeeeeeeeeeeeeeeeee 67 eeeecoeeeeeoeeeeeeeeeeeeeeeeeeeeeee 69 BIBLImRAPM ......OOOOOOOO.......OOOOOOOOOOOOOO 70 INTRODUCTION In a recent paper B.M. Stewart [6] discussed sums of distinct positive divisors of rational integers. .In this dissertation these results are generalized and extended. In Chapter I these results are extended to sums of distinct divisors of rational integers where the divisors may be positive or negative. In Chapters II throughlv sums of distinct divisors of integers in the real quadratic fields are discussed. Sums of distinct divisors of integers in the imaginary quadratic fields are investigated in Chapters v and v1. In each case a maximal set A or A(m) is defined and the problem is to find which integers of a given field belong to this set. For several fields a complete characterization of the integers belonging to this set is given. For the remaining fields we show that the set A(m) is not empty by exhibiting infinitely many integers which do belong to A(m). CHAPTDR I THE RATIONAL FISLD For a given rational positive integer n let¢((n) be the number of positive integers which can be written as the sum of distinct divisors of n. The divisors may be positive or negative. Let A‘be the set of all integers for which<((n) = a(n). LEMMA 1. If (n,2) = l, (n,5) = l and n f 1, then n does not belong to A. Lemma 1 is true because o(n)-5 cannot be written as a sum of distinct divisors of n. LEMMA 2. If n=2t, then n belongs to A. Lemma 5. If n = 5t, then n belongs to A. PROOF: The lemma is true for t = 1. Assume that the lemma is true for t = k-l. Let t = X. Every divisor of 5k-1 is a divisor of 5k. by the induction hypothesis 5 - can be written and thus as divisors every integer between 1 and 0(5 as a sum of distinct divisors of 5k-l k , k k k k of 5 . bvery integer from 5 -l + l = 5 +1 = 5 -(5 -l) to 5k can be written as 5k minus a sum of distinct k-l divisors of 5 . Every integer from 5k to 0(5k) = k+1 5 -l = 5-5k-l = 5k+ 5:-1 = 5k + 0(5k-1) can be written 4 as 5k plus a sum of distinct divisors of 5k-1. Thus by induction n belongs to A. LEMMA 4. If n belongs to A and p is an odd prime with (n,p) = 1, then np belongs to A if and only if o(n) g -le PROOF: Suppose that n belongs to A and o(n) < 2-1. The numbers 2-1 and 2+1 cannot be represented as sums of distinct divisors of np since the largest number which can be represented without using p is 0(n) < 2-1. The smallest number which can be represented, using p, is p-o(n) > p- 2-1 = 2+ . Thus the condition is necessary. We now prove that the condition is sufficient. Suppose that n belongs to A and that o(n)§ p-l. Let r be any integer such that 0 g r g 0(n). Every integer between rp and rp + 0(n)can be written as pZ d + Z. d'. Now d/n d'/n let r be any integer such that 0 g r+l g a(n). Every integer from rp + 2-1 +1 = (r+l)p - (2-1) to (r+l)p can be written as p d.-.2L.d'. Thus np belongs to A. d n d'/n LEMMA 5. If n belongs to A and (n,p) = 1, then npt belongs to A if and only if c(n) g 2-1. PROOF: The condition is necessary in order to represent -1 and 2+ . Suppose that o(n) g 2-1. The lemma was proved true for t = l in Lemma A. Let us assume that the lemma is true for t = k-l and prove it true for k-l t = k by induction. Every divisor of np is a divisor of npk. Thus by the induction hypothesis every integer k-l) can be written as a sum of distinct kel) from 1 to o(np divisors of npk. Every integer from pk - e(np to pk can be written as pk - -ld° However we have that d/np k k’l k-I k o(np ) + l = l + o(n)o(p ) 2 l + (p-l)(p -12 = 2 +1 = pk - 2k-12 = pk - 2-1)(pk-l) 2 pk- 0(n)o(pk-1) = p- pk - 0(npk-l). Thus every integer up to pk - 0(npk-l) can be represented. Let r be any integer such that 0 g r § o(n). Every integer from rpk to rpk + o(npk-1) can be written as kad + Z d'. Now let r+l g o(n). d/n d'/np Every integer from (r+l)pk - 0(npk-1) to (r+l)pk can be written as kad - _ld'. This proves the lemma d/n d'/np since rpk + o(npk-l) +1 g (r+l)pk - o(np k-l) t LEMMA 6. Let n = -%-p11, where p1 < pJ for i pk and all s > O. PROOF: Let n.j = ifiOpi for j _5_ k. Let p0 = r10 = l. Since n does not belong to A there must be a smallest integer 3 such that n does belong to A and n does not J j+l belong to A. By Lemmas 2, 5, and 5, 0(n3) < (pJ+l- l)/2. Let R be the sum of all divisors of n greater than or equal to pj+1. We will show that R - (pj+1- l)/2 cannot be represented as a sum of distinct divisors of n. If all. the divisors of n which are greater than or equal to p1+1 are used positively, the smallest integer which can be represented is R - o(nJ) > R - (pj+l- l)/2. If any divisor d g pJ+l is not used positively, the largest number which can be written as a sum of distinct divisors 5? n is R - d + 0(nj) < R - pJ+1 + (pj+l-l)/2 < R - (pj+l - l)/2. As a direct result of Lemmas .1 through (5, we can now state the following theorems: . THEOREM 1. An even integer belongs to A if and only if it has one of the two following factorizations as a product of primes: at, for all t g o. t t k i ii) n = 2 p i=1 1 i) n with pr < pa for r < s; t g l, THEOREM 2. An odd integer belongs to A if and only if it has one of the two following factorizations as a product of primes: i) n = at for all t g o. t k t1 ii)n—51Elpi with5 20(T) + 1, then aL(pT) = 2-((T)[O((T) + l]. PROOF: Every positive sum of distinct divisors of pT can be written as n = nlp + n2 where n1 is zero or any positive number which can be written as a sum of distinct divisors of T and n2 is zero or any positive or negative integer which can be written as a sum of distinct divisors of T. The maximum value for n2 is 0(T). Since nlp + 0(T) < nlp + (2-1) = (n1+l)p - p + 2-1 = (nl+1)p - (3+1; < (n1+l)p - (2-1) < (n1+1)p - 0(T), there is no overlapping. We have B&(T)+l] choices for nl and ZKIT) + 1 choices for n2 except when n1 is zero. If n1 is zero, then n2 must be positive. Thus we have 0((p'r) = [OUTHIHZOUTHI] - [0((T)+l] = 2°< 20(M) +1. By Lemma 7 s(R) = s(pM) = 20(M)[O(M)+l! = 2[o(M)+l]. We seek an p+ o p+1 integer M and a prime p satisfying the above conditions and such that l’< +1 <.l° Let u = 1, u(l+£) = l ymfifinx 3? 2’ and v = 2u[o(M)+l]. .We know by Theorems 1 and 2 that we can find an M belonging to A which is arbitrarily large so that v = 2u[o(M)+l] can-be made arbitrarily large. By the Cahen-Stieltjes theorem L1] we know that for sufficiently large v there exists a prime p such that v - l < p < (v-1)(l+£)== v(l+£) -l -£.< v(1+£) - 1. We now have (v-l) < p < v(1+E) - l. v < p + l 2 the set A'(m)is empty. m = 2 In this field u = 1 + wa, u2 = 5 + 2J2,-oo. Let 1 a1 be the rational part of u and b be the coefficient 1 i . _ k 01 J2 in ui. Let Bk - fgibi. Since the integers of D(2) are given as x + y¢2 where x and y are both rational integers we may consider any integer P of D(m) as a lattice point P in the plane. We will fill the plane with concentric squares whose centers are the origin and whose diagonals are the coordinate axes. The length of the diagonal of the k square is Ask. It will be shown that every integer lying in the k square can be represented as a sum of distinct units belonging to the first k sets SO,Sl,°°°,Sk. LEMMA 1. a = k+l ak + 2bk and b = + b . k+l “k k PROOF: ak+l +bk+l¢2 = uk+l = uk(1+¢2) = (ak+ka2)(l+J2) = (ak+2bk) + (ak+bk)¢2. Therefore ak-l = ' = + ak + 20k and bk+l ak bk. 10 LLMhA 2. ak + bk g “Bk-l for all k g 5. PROOF: The lemma is true for k = 5 and k = h. We will assume that the lemma is true for 5 g k g n and prove the lemma true by induction. Let k = n + l.Using pan-l + 7bn-l Lemma 1 we have: an+1 + bn+1 = 2an + 5bn +an - “bn-l + Obn-l = an-l “‘Dn-l + bn). Using the induction hypothesis we find that the extreme right hand side of the equation is less than or equal to “fin-2 + “(bn-l + bn) = th. l PROOF: ak ak_ PROOF: The lemma is true for k = 1. Assume that the lemma is true for k = n. an+l + b = an +2bn + an + bn By the induction hypothesis the right hand side of the equation is greater than or equal to 2bn + 2Bn-l = 2Bn. THEOREM 1. The integer 1 belongs to Mi). PROOF: By inspection it can be seen that every integer in the first three squares can be represented as a sum of distinct units in the sate-30,81,82 and S5. Let us assume that every integer in the first k-l squares can 11 be written as a sum of distinct units in the first k sets of units, 30,8 --°,Sk_1 and prove the theorem by induction. 1, Consider any point inside the k square. Since the square and all sets of units are symmetric with respect to both axes, there is no loss in generality by assuming that the point lies in the first quadrant, on the positive x axis or on the positive y axis. If the point lies inside the k-l square a required representation is assured by the induction hypothesis. Therefore consider a point with rectangular coordinates (x,y) which lies in the first quadrant, in the k square but not in the k-l square. Thus we have: 25 < x + y g 23 k-l k’ y 2 O, x O. IN We divide the possibilities into three cases. In Case 1 the point lies above the line y - x = 2(bk - Bk-l)' In Case 2 the point lies below the line y-x=2(Bk_l-ak). In Case 5 the point lies on or between these two lines. Case 5 actually exists because Lemma h implies that b - 5 k k-l é bk-I ' ak' Case 1. Zbk-l < x + y g 23k: y - x > 2(bk - Bk-l)’ ng, X 00 "V If we subtract 2bk from y, we obtain a point P' with 12 1 4 A... 4‘Vov A... .6 . TH... 4... .A «.q p ... . .. o r 99?. Avbc AL. . u . ..Le.n .. . . . .... ... . .A: .. . ..AA .... ....‘A.'..~ A A . 4 .§AA o A o t . . .. . A . . AA u e f . A . e A . e . . . . . . v p A A 0 vi 6 r .t . y I . v . u . . . . . . . . . . . A . . . , . . . . . . . . . . . . . . . . A . . A A A . A .e.« Al... 5.. A . acA$ .VA. A. .. . a». . .0 A Di eKVoo aIAO.T+40 . e A ..A... .. . . . A ...o . .. .. ? ... . A. .... ... ...» o... $.ovaA$.. .90 . 4 . .oe¢ ..A. A. .v . ... o u r ..AtiAQca ’7. o v o .c Av- A. . . ... .A.. ....... ... . . , . .. o .... o...Ao..o b y A» a. 0+.. ..A e A . a. ..A? .c IV - .... 1 .e - ..AAr $V5. at. A. A A‘veba .. A A aA Ya..v .... . I . .A. .. . . . .A.. A .. ‘.-e.xooo.n ...; .t.. r.. . A Av—A i AAVAo .e AA . ... . .. . . .Avu fiiio '- YA . A A. 9.. .A . . ... .... A-.A . i . .... .. . . .. ... H.... ..v .voO IA-..- oobuivlwo . . A. .A A.IO .. A. . ... o .. v e ot..lT¢I..r A .. A O a. of. .. . . ... 0.. ....v .. i . ..A A . . . ....no... o... ..A. .... -.Ai... A . . ..A A. .. ... A. . fin...AnAAAA ... A ... ... A.. .. .. .Aor..A,+...A.A. A. . .A .. . .. . .A .... ..A .vA. 7... 4.x... A . . c o. e. v. ..A t . v I A... e. 7+0. .7 v a .. A.. A. o .vA .ooP. A... A. i A .... VA A A .e . i .. o .. A... at .--- &.A A . AL.» A .u s. . ... ... . o A... ¥ aY‘... A VA. .v ..A . . . ...o .A . A... A. A . ..A. A. . . .... >.AA ... v .v .. fi.ow..AYio. o A . A.. .. 9. Avv.e . .. é . .J.. .YIA... q A . .. ... o. . vi ...i v1.5.i.£L.. 91 . A... A. . . .> .... ..A. ..A. ..v.. y > .J . i 1 9A.: ...: Ace o . . Acae .. v.c A ... A.oYV . 914 AAAx... b . .. ..A .A . o 9 A A.‘. A0»; ..A o... .A A u ...A..- net. vo-e ..‘. ...v-H .0.- co. . . . ..A. .e . ... . A v. . to hf... .en . 9.. o. ... .e . . -.. ..... V... . . .0 .. . . ..Y...Oi....vn..u. ...n QAv. vAchO.O . . ’4 040- o §.A vfei. A 0A.}iA 4 uAeAA-vv. ... . . . J ... .. v o 1A. .4.. AT... .. 1 . ..A. . A .- ..AI A.. A. .....eA.vo a >r P . ... . A. .A.. 7... .. ...... . .. .1... .-. . . .. A. . A... .. . . A. . ,., . . ... . +. ...«‘ ..v >.. A. ..iA. o... .. . o.. < .. ...A a... .. . ... . .. v.. A... ... A . A. .. . . ..A A... .A.+A , ..A. ..A A... .A.. .e ...v . ... . A . A .o +...9¢ A. . e . . .. .. . .Aenwl... A. ., A . .. . A .. .. A... ..A .. v ton: . 4 0 1". O‘A9.- A t-A rue . in .A re. I!‘e Aia i I u O eA v. A 0'. in. . . h A . b. A t ‘A >¢OIAY300Q7 Atr '.I. ..... ..A ... A A........ .. .. A .A _. A A .... unv. .A . .. A. A. ... .. . ... , . . . . A ...vo.¢ ...OAI. AA V... .v . +1 ... . A... .... .. .o i. . 1A,.AA ....V... . . A. .. . . ..v .... ,4 .A.. . A .v...,. .A .A... vi... ..A.V.A| .-. . . .. A... .n.A .0 .n . ..A .. . . A... AA. A.. . . . .. .. A ... .AA. ... . LA ..A. .A . A .- ...A.AAI.I.'.A. .. ..Aa .. . Y...» ..A. .. . . ..A ,. . A A.Av...o4v. . . .. . .. .. . ... ... . ... .. .... .v ... 9A.. ..A. AA..A .. .... A . . .A...- ..A. ., .. . .A . .. . . ..-. .-.. ~ .. . . .. A . .. .. . . . .. . .. .... ..A. .... .. A c.» . . .. A .. .... .. A., . . . ...A, .... A.. . . . . .... A . . l. . .A. AvAvi. . ....AA...AA .AA. V . 1|.A .A A... ..A . . .A .A.V A... v. . A ..AA. .A.. e. . A . .v. .. . . ..A A. .. .. . .Ar..v. .....A..A - .. . .... to. . .. .... f. A .e .. ... .... . A... .... A.. . . , .. .. .. .. .A. .... . . . .. .e . A. ..AA . .A . .. . .. . .... ..9 . .. ...... .. . .. . ... . .. . .... ... . . . .. . . . . . .... . . 9 A. . no .. .1... ...v .. A .. .... .A. . . .. ..AAi.... A. . .A. o .a . n... .o . av. r1 . . A . A .. . ... .v . . .9 .# ..Tv A.V .A.... .....1. It .AA. 1 . F ..A. .... ..A . ..i.... .A.A . .. . AA. . .u A . ... ...L ..A v . .. .... . .. . ., ... .. .A . A .. AAI. .... A.A. f... ... .-.. ... . ..i.... .... . .. A ... . .. . . .. .... .c . A A . ... .. A e .A .-., A . . . . .A. .. .1.A ..AA A.AA ...A ...t .. .. ... . . .. ..A. .. . ., .. A ... .. . c .A . ..A. A . . . . A ..A -.. . . ... .. . A v . . A ... A.i.... ..A. -...A...A ... .... ... . . -. .... .... . c. .L... . .. A . ... A.£. aé . . q .. ... 1 A. A.. ...v .. v .vA..x .Virib.vYAuo| A... ilk . . .AA. ... A . . .... ... A. . . .AA . .. . . .... .. A.. Y. . .A ... A. . t ..A e. .L . . .YAVAAX. ix.4AiA.AVi..9.A .. . .. . . . . .A .... . . .A . e ... A .A A . .... e . ..¢ ¢ . . . o u. . AA ...A A . .\l\ . . A . . ~ A.YA0A.A?AAAIOIA.V ...... .. A . . 1 . . .... . A. .A. .- . ..A . .. . .... . . .AA u . . 1.... .. A aA.. .. . . . . o..A -...QIA... ..o. I . . . A.-.. .. .. . .. A .. . . ..A. .. A.-. . .. -. . -. .. ,. L i A. .. .-....AAITQAA... .... .... ... u .- .o .A.. .A s. . ... . .4 . . ...» eA. A. o . . .. ... .A .. ... c I .. . . 06" A...Av (OI... OI... . . . .. .. . . .. . .... A .. . 0.. . A. . ..A . . e A . .. n p . u. . AA A A J . . . .. A o. AvOe i... .... ...o ... . A . . .. a . .. .. .. . ... e .o . A .- .'~ .. . . . .. ... .. a A A. . . , . . . u A AfA iAooe .... . . ..A .AA . . .A . . . .. . .AA. .viv A A.. v... A... . . YA .AA A. A A .A .y . . v .....iA-.A A19... 4 .. ....Y... . A 1.. ., . .. . A... A . . ...Ai..-. ..A . . ., .. ... .. A .. . r . . .. ..A ..AOXA...$ . .. .. o . A . u ..A . . .. A .. v ... v. . A .. o 10.. ..o . . A A0 ... a. . . . . . . A . .. . IVA ... -. o-A.A ..v» . A .... ... . a . .. . A. .. A .A. . .. . 1 Q... .... ..A n P .A ..A .. A .. . ... .A A . . . . . A .A- gvVolAa v..Ai ...A ..A. A.» e 4 . . . .. .. .. o AA. . .. A .0... 76.. cw. i . . AYJ.? .A. v . .v .. A. A f . .IA . Auv..‘I.v . 'bll 0". ... I i n I A at s V I b I u 0 .OJA. ole\t ‘.A u - .DA‘11 .a o e 4'. art'leaa . v Vt. .- e “ 1'10! lit '0'.‘ Ole. .... ..A A .. . . .. ,. .. . A . . ..A. ..t. .. . . .... .. . ... .... ... . Y . . . ... AA..+A. TiAu. . .T .... ..A. ... . . ..\ .. . , . . . . .... . . .. .. ., .... . .. A . -, . . .A ..A ....iv.... .A.. ....A ...v.o.. . AK. . . .. . .. . . .... A... .A ... .. .. .. .. .... ... . . . v .A . . A. .9 . ..A.i.e.A9...A. ...; A... ..v . .. I .. .. . . .. A . .A . A... . . .. . . . . . . A . ... A... . . .... u o A . . .Axn..A . AA A... v... .-.! .A. . IQ. A L.. .. . A A. . A .... A .. . . o . ..D A. u .a 5A.. .A.A . v . ..A.. A. .AA .Ai eat AAA. .11. .... .&.e A... ... . . A.\ A ... . ... A . A .. ... .. .. .9. ...o. . . .... .. A . . A.¢?. .... A A... ......a... . . . .. .. ... .. . .... ... .. , A . .. . .. . ..A . .. A e . ., . ...: .... .... ... eAAti..Avi. . . . . , . .. . ... . . .. ... .. . ..A .. . ... .. . .. . A . .... . . .. ..-.i....i. .. .-.. .... ... . . . \ .. . .. . .. . . .A . .. . .w. .. . . . ... .... . . . . ,A . .... o.-.¢|.... .. . .... .o . .. . ... . . A. . .v- .A . .... .... ..A n .. q .. . ... .... .. . . a ....A .. .. ....‘v...w...A ... .v.. . . . .. . . .. . .. ., .. . . .. ... . .. ... . .. ... ... _. . . ..... . . . ...A ...A ...A A . .... .. .- . . .. . . .. . ... . . , ... .... ... A .. .. .. . ... -A.. . . A. . . ...A . A . A .AA. .....+T.A.iA... A.. .A . .. . . .. ... .. ., ... .. . .... o¢.. . .—. . .. . .. . .. . . . e. . . .. ....VA... .... . . u A .1.. ha. . c oh A i. . . .. . . . A. Ave. A .M. Q A . A. A A. . A A . A. taut I... :Isl .. . . .... ... . . .... . .. ... . . . .... ... . .. .. .. .. , , ... . .. . .. .. . . ... A... .... ... .... . .. .. . A . . ... .. ... , A. .. .. .. . .. . .. . . .... A. . ... ...Ara..AA.. ... .... .. . . . . A. .. . . , .. u... . . . A . A. . . . . .. .. A. . . ..7. .. A... ..A. ... . . .. . . . A. .. . ... . . .. A. . .. . . ., .. . ... ..A. ..A .... ... . . . .. . .. .... . . . .... . . . . ,. AAA. ..oA .... .. .... ... . .A.. . .. . . .. A . A. . . A .. A. . , .. ..A .... A... .... .. . . . . .. . . . , .. . . i .A .. .. . .... .. .. . .T.... .....A.. . _, .. ..... . . . . .. .. A .. . . . .. .. . .... v... .... A , . .. . A .. .. — . .. .. . .A.. . . ... . . .... .... .A.- .... A» A . . .. .... .. V . . .. . . ... .. .. .. . . A ... . A . ... .... .... . .. .P .. . . .A-l... .. . . .. . ..,. ..A .. .. .A ... . A,.. .... . .. .... ... . . A. .. v..A .. ... . . . . .. .. .. . . . .. . . . A. .. . . ,.... ... ...: . . A ... ., . . . .. . .. . .... .. ... ... .. . ... ... . .. . A , .... A... .. A . .... ..t . . .... . . .. . . .... . .. . . . .A .. . .. .. .. . . . ... . .. .... .A.. . . .. . .. A .... .. ,. . . . . .. ..... ,. ... .. . . . . . . .. .. .. ... .... I A . .. .. . .. . ... . . . . .... .. . , . . . .. .. .. A ... . . . .. . .. . . AA . .. . . .a n... . ... . A . .. . A. . . . ... .. . . , . . ... . . . .. .. . . .... . A... ..... . .... . . ... . . . . . . .... .. A . AA . .. ... ... . .A. .... ...A.... . .... V A . . . ._ . . . A... we. 1.. V . . .. A . . . . .... . . .. ..w. .A. . . own. . . .. . . . . ..A.. . A . . .. , . . e . .. .. . . ... ... .... .. AIYAA-i ._ . . ., . .. . . . . . . . .. .. A . . ., AI. . ..A. .. .. . A... A.. . ..A . A . . ... . ,. . . A .. .A .. v . .. .. .... .. . . ..v.... ..A .. A ...A9 ... , . . . ,. .. . . . .. .. . .. .. . .. A .A ... . A . .ci..o. AA . A. .... . . .. . A... .. . .. . . ... .. .A. . ., ...A.Y,. ..-. .A . .A,.i r.. . . . . . . ..q L A .... . . . A . . . .. .. . A .... .1 . . .vAx.AiA ... ... . x lrll A-l 15 rectangular coordinates x' = x and y' = y - 2bk. Thus r. u. f = ' — h - ~ -r‘ =-- ‘ x' + y' g dbk dbk ZBk-l’ y x' g 4(bk bk-l) dbk 25k-1, x' g 0. Thus the point P' lies inside the k-l square and by the induction hypothesis can be represented as a sum Ok-l of distinct units in the first k sets of units. P'=Ok_l P' = P - ankle. Thus P = Ok-l +2ka2= ok-l + (ak+bk/2) + (-ak+ka2) and the theorem is proved in Case 1. Case d. aBk-l g x + y g 2Bk, y-x IIA 2(Bk-l-ak) 9 y g 0, x g 0. If we subtract Zak from x,we obtain a point P' with coordinates x' = x - 2ak and y' = y. Thus we have: x' + y' g 2Bk - Zak g ZBk - 2bk = ZBk-l' Y' ‘ x’ é akBk-l-ak) + 23k : in-l’ y' g 0. Thus the point P' lies inside the k-l square and can be represented as a sum Ok-l of distinct units in the first k sets S "°,S 0' k-l'P' = °k-1’ P' = P - 2a . Thus P = + = k 2a o~ °k~1 k K-l + (ak+ka2) * (ak-bk/Z). Thus the theorem is proved for Case 2. Case 5. 23k_l g x + y g 23k. 2(bk-Bk_l) g y - x 3 2(Bk_l-ak). ‘04 o t .0. A ¢ "A 15 If we subtract ak from x and bk from y we obtain a point P' whose coordinates are x' = x - ak and y' = y-b . k Using lemma 2 we obtain the following inequalities: u t - - - “ = - x + y 2 2bx-1 3k bk é ZBk-l 45k-i 2Bk-l’ x' + y' § 25k - ak - bk 5 abk - 2bk = 2Bk-l’ y, -x' IN N m k-l "ak ' bk + ak E aBk-l ' ak ' bk E “aBk-i' y'ux' "A n) U' I h) u: I O‘ + m N m + C" l R) U? IM ‘k-l “Bk-1 ' 2Bk-1 = aBk-l' Thus the point P' lies inside the k-l square and can be represented as a sum 0 of distinct units in the k-l first k sets of units. P' = Ok-l' P' = P - (ak+ka2). Thus P = Ok-l + (ak+ka2) and the theorem is proved. COROLLARY 1. Every integer in DLZ) is in A12). THEOREM 2. The only integers in A'(2) are units. PhOOF: It was proved in theorem 1 that the units belong to A'(2LLet X be any integer which is not a unit and let Y be any integer which can be represented as a sum of distinct associates of x. Using norms we obtain from Y = 2X1 = 530.11 = xzui the following equation: N(Y) = szu1) = N(X)N(Zui). If the norm of x does not divide the norm of Y, the required representation is not possible. BA BB I) k 4 4 .7 .4 1 , _ v4.1 .Ielel... ..a.. I... .ear0Y.... .9... .o.. .... ...O ...-1... v.0 4.9??vl .... ....a .... .Volol ..J. .... ... ....b I. .o 4.. .91»... . . ..-. . 1%....0 .01. .... .... -.. ....§ v YAIIO o.v ..o.¢..... -.v. ..-. r...i.... ... .... ....Abo wt-..ll..... . .-.. .. .0... .$A.I.o.. ..Y..¢..o .-.. .Ivr4bllo-.4 h... ..90. ....6 00.0»L.>IO. ..--.l... ....i..... ......l ......1. .. ... a... .-.. 6.0...1..To..- .... .... .... ....Vv ..4.1.¢.0A09‘e .... t‘JoI...JL.I.o .. . .....i.-...LOVO. .. D > > }_ r _ . 4 4 4 4 4 0<.a .v. .... e... .... u. I-.. q... ..A. .94. ..OoovOI.v. ..A.. It... .9‘. ..00 .00. v... 000. ... o... .v... v-1... .. o... . ... .... .v.. . . I...Y... .l... v.4. 1.0.9 ......‘4. ot.‘ V.'T..... .... 0609A..I..... ....Y....Y.-.o .4 ..v- ... .... .... .... .. n.5t ..I. ..v .19. wovuvnoo. o... .veov..vo ..OchI.r....elee.. .... .... 1.1.3.-.. 99 . .... .... ... .... . . ..-. . .. ..4. .o.. -... $.44 -... I-...v€v.ev..eo tut. .. e .... 00?. .... .|.vv.T...oio. b l i > r r 4.4 4 4 -u. .....v....... ... .... so -... .. A$..o. .... .... .9-.. 9.9504..1.: ..evi..v' .-.. .... .... .... Y'TTYithV... T. v..... .... . .. .... ... . . v... ..now.vov ...u .0. ....i .te. ...- .009 ...I .0.. we... .99.... v.I6|1vO|ol.ri1..¢ -v - .... ..vv .-. ...6k... .v .....-v'? o... .. o .... ov.9.iY§§o. .... .'.9 .... r... .... ..Q' tl.£YO..eov.o...vi.- . V.... ...o .... .Vo ..Ov .. ..vewOv.oo .o.. o... .Io‘+AVvJ> .4.9ov ufid.%v‘.’¢ a... O... n 50.1-09‘t 1.6. .‘?b ..-...9450 r .r II) I r r I r 4 4 IIIA T4 .1 .4 44 ..v .... 4..V. v..- .4 o.-. .... O.v ..v .v.. ...e To... ... .VOv. ..e' .o.v...o.l... .v‘! 9... 4.». ...¢ ..¢.. Y-o .0. 0.. .VIO- ....I .l.—-.. o .... a e. ..V. ....v+.v§~ .. ..vo .... .06. .OOOl .A . .Ivo ..oo ...: ...v ..O‘. .0 .9 it. QVv. unit .00; De-.- J... hr. 00-! -tIO .u 0A-... a 0. CD’5 .0... c... p. Q .0- Vet .. o .‘I. not t.-| .. - ......4... ..-. .. -.-. .. . -.- .... .... .-oo.10v.¢ ..q .... ...e . .. .fo. I-. .... .... .T.. .vQOAOOQ. .. t I . ... . ..A.... .... .... . . .. ..-. ...v..... ... .... o. .. .,.. .... .... .... . . .. . . .... . . .. .. . --.. .. ... .... .... .... .... ...YAe... . . . .. .. . . ...-... .. v ... . t. . . ...;..o. ...v. ... ...IA.... .I. . .v. . . V..- I .A I-.. .l -.. vol. .. ..= .... d'.. o. . v. -... . ....4..O. .. ..QHV ... ... ... ...! .... .. .... evI . v. a . . - .. . ..Av.,.. v. ... .0 .. . .otvo o. .. . ..... 10.. ... ... .o.. . .. ..Y. h. .. .... -.6. .... u. . .-.. v... .. .4.. .-. .. . ..v .-.i-..- -.O....- ..0.i .... .--. r I r.. .. . . . a-.. ...- nos. 1... «40. . .. .. o a... .... .. .i9.4. ..OL.. . o... .... .... . .v .e . ...-n . ... .. .1..4...-. .603. .. $-1I... 10v 0... ... . 3.... ... ....450. . . .. v-..oi...o I... ....fi..... ...9 . . .... ..o. ... .... e... .... ...-. ... V.. . ..VVOoQAe nellv‘l.vn...¢1‘0. ... ... .... .. .... ... .-A.... . . .. .vo. .... .... -ov. .... -. . .. ... .. . . . .. . .. . .. i. .- ...I ..... ..V... . .. o... .v.. .... .... -.vv. .... .....- .... ... o...I. . .... ..-..u... ..-. .-.. .. .... ... .. .... i.. . ....A.... .... ... .. .L...v 96?... .... AIIOAVOOI.‘ > y r 4 1 4 4 Q ... .... .... ...‘ .... .... --.. ..-. ... ... .... 4... .I.. . .. .... .... .-. . .... o.... rt. . . .. ... . . I... .4...v.09¢. -...1'-.. oOIl . b 0.. . .90! . ..0. . 9.. ....v.. . ..-. .. a . . w. . ....v... ... . Y. ..I. ...4 ..41 ... .... .. . . .. . . ....A...v ...IL... '. ‘Lv ..v DvIIA .. -. ..VO. . .. . .. .... .... . .94 . . .... ....... .... .I.. .. ... . .o . .i . .Aofi.. ..- 0.9. .--. OAICL...... V... . ... ..lt. .1 .v.. .... v... . .. .... . . ..v. .e.. ... .... .... v .. .... . .... q . .. . ..A . .... 99 ‘ 0.9.. .5. +4. , cult». } 4 ... I .-.. .. .... .. . or. b.. ... . . . .4 ... ... . c... . .. ...I ... I... 4 . . .. .. u. . .‘. ¢.V..o ..A.-.VIA‘...YVQO|0A.I.Y A. vote. I . . . .-.. . u .. . . v C . . _ .... .... .. . v..: c o... u . . .... .. . e I . I. YII. a... 0.‘ ‘ ...-v-'t. .6.v .. 4. . .. . . .. v... .. ... . . . . . . ... . . .. . . fl .. .. . . . . . o . 0.... .. .T'O......VAV--.. .... c ..-. . .. .-...... ... .... .. . .. . ... 09.. ... .9 . .... . ,- .... .... . . . . . .v - .. V6,. ..III.A.9... ..-...Aviv‘v. ...v t . v ... .... _ . .. .. . .... . .. .. .. .. 9.. .... ... v<.. 1 ..L.... u. ..f... . .. ... . I. n . ..v 0... YI‘Q $1.. VOV.-A0.0|0.A ... ... l. .. .. .... .... .... . . .. . I .. .-.. .v . ... ......... . .. .-.. . . o . . . O .1. .... ..-.A..-.A.Y4I.IA‘..I 4 . ..vb . . . .... .. . . I . o . . . . . ... u . ... ..Io ...14 -.ev....... . . . . u . 1 . - . -.Vo ..'.fi..-..oi.6?0.VAVl.. .vv... . .... ... .... v..v .... _. . .. o .. ...O on. .6 ..YIO... v... OIO- .... ... 00.. .. . .. V . I .e 0.0.4 ...v.-"t .... ... .... .... .... .. .... ... .. .. .. .. .. .. .. .... ....A.. .... ..-. ... -... ... . .. . . . O. ...».....Oi..ovo. ..voi ... .... .... .. . . . .. . .. . . . . o . . . . 07.. . ....v.... .. . .-.. .... .... . . .- . . . . . - . . .. -. ..O‘AIO... ..91 , . . ... . . .. . ... . . . . o . . . . . . .i. . .... 0.. .. v..... ....i.... ... . . . . b A. . . .... -1939 .«o..L...Iv . ..oo .... .. a 4.. 7... o. .. o I . .t . .o 9". ... O... ... . 0' -... A. .. . .a . .. tOCQAv9‘O.¥IIvv .Oie. .-. .... . .... .., .. .. .. .v .. . cu .. .... .. ....L.... . ...... . . .. . . . ... .. 0.... ..v v04.-lvo... . .. . .. ... .. ... . . . . . . . . . . . . .... . .. .... ... .... .. ... o. . 4 . . . .. . 6 .o Y6..A..§II ...! . . . ... .... ....r. . . . . . . 0. ~ . . . 6 .... .. a o... .... .... _. . .... . . .c v u . . e . oc.-.¢l>§l. .... .. .... .. .... .... . .. . v . . v. e... ... .... «... e-.. c . cone .. . v t. to . o. u . OIeAvIQ.-. .... t .' Iv ... . .. . .... .. .... .. . .. . . .. ...? . .fi . .. ..., .... . .. .... . . . . . 4 .. .. ..- . .. .... .. ... . . . . . v . . .... ..t. .... ... o... .... .. . . . . . . v . .. . . .... ... . . . . . . . v . . . . . .... o...Av.ne ... .oo- .. .fiu. . . .0 . e o . v , . 0.. IO. 0. v. t It. 0... ... e. p O, . l ol‘.fi.'0‘ v...Yll.v CVII 0“: D Q A. 0' I | . v .0 4 4 vs .. . . ..4 ...o .... .... .. . .. v. ...A ... .v.. . .. b .. .... .. . .... .o .9 . v .. ... .... .. .. . .. A . . .. . . . . . . i.... ......1 . .. . .. .... .... .... .- . .. .. .. . . . ..4 s... ...O . .. v. . .... . .. . . v . . .... ...- Que. ... .... ... . ......» .. v I 9 a . I .0 4 o . . D II... . .0. .. . .. .... .... .. . .... . ... . . .... .. . ... ... .... . ... .. .Io. _ e .. . u. . .. 9..- .... .. . .... .... . . . .. . . . . o. . .... ... . .. .. .. .. .... .v . o . . . . . . . .. . .. ....fi ... ... .. . .. .. . . . .... ..... ._ .. . .. _. . .. .... .. . . . I . . . . 0......v. .. .... .o.. .o.. ... . . . .. .... ....fi..t. . .. .... .. . . a. .0. v. . .... .. . .. . .o 4 I . II J ..v. ... .... a... .... ... . .. ..L . . .... o. 4 . ... . ... ... ...... . .... . . .1. . .. ‘ .... .u.. .... ..-. ... .. . .... .... .. . .... .. ... ... . . ., ....r. . . . .-. . . ..... ... . . . , o . . . ..-o .... .. . ..... ... . .o .... .... .. . .. . . .. . . .. .... ... . .. .... .... .. .... . . . . v . . . . .. -6¢.i.... . .i-...o. ... .. .. v .0. ...v 9.. .e.. ... . . ... . .... ... .. . .... .... . ..A 7" .. ... .. ... . .. . . ov . .v . ......OI.¢00.0.5 O ...l .1 b L. c. . .. . .. . .... .. . . . .. . .. .... . .. .... .. . . .. ... . . .... .. . .. . . . .. ... .. . ...... . . . . . . .. . .... ... .. . . ... .. .. . . . ... .... .... ,, . . .. . .. . . . . .. . ...ka.... ... - . .. .. .. .. .. . . ,. . . . .... .. i . . .... .... . . ..A .. .. ... . . . o . . .. ... ...... ..Qol..-‘ . ... 0.. n .. ...: .... .... ... . . .... .... ._ ... ... 4.0. .... ... o... I. . .... . . .... .. . . .n . v cetv- 0-..? 0.00LVI0103A0... .. . . . ... .. . . ... .... .... ... .... .... .... v... ... .... .... . . .. . .. . u. ., .... . . ..v' ...-..n.9. o .. .. .. .... .... . .. . . . . .. .. .. . . .. .. .. . .... ... . . . . . .... ...- ..-. I. K... .... .. . ... . . .. .. . .. ... o. .. . w... . . . . . I... . .. . . . . . .. . . . . u -. ...vAwIOY'. ...... 9v. .,. .. .... . . .. .. . .... ... .. . ... .. . . . .. .... ... .. . . . ... . . . . .... ..quv.v.v .... .r I >|D|>|rlb ... .... .... ... . ... .. . ... . ... .. . . .o . . .. . .. . .. . ., . . .. 4. ..-. ... . no . .... .-.A.vlo .. ... .... ... . . .. . .... ... .. .... .. . .. ... . . . . .... . . .... . ....Lvo.oa ....- v.. . . . o I . ... . C v. . . n . .. . I. .. 1 I . . . o .. . a v. .. A . .4!.YOI|.. OI ... .. . . .... . .. .. . . .. . .. .. .. . .. . . . . .. . . . . . ..I. v........A-o... .. ... .. .. . . . .. . . .. .... . . . . .... . . . .... .. . .... ......Ae.. .. . ... .v . . .. . . . . .... .. . . .o . . .... . . .. .... v... .. . .... .V4. ... .... . .. . i . . . . n i 4 . .0. , . . 0.1 on: . 1- I IUOl ....vet’b '6', . . . . . .. .. . . .... . . . .... . .. .. . .. .. . . . .. . v. .... 9... .... . . ... . ... . . i. .. . .. ... .... .... .... .. . .. I... u. . .. . .... .... .bv. ....J ... . .. .... .... ... . . .. .... . . .. .. . .. .... .... .... ... . . . ... .... .... . . o. . ......... .... .. .. . .. .. . .... . , . 9... . u . . . . ... O. . .. n so. u u. .0a. .... > i r} ... .. . ... .. . .... . . . .. ... .... '... .. .. .. .. . .. . .. . .. .. . . . ... . .. ... .. . .. ... ...o .....4... ... ... .. ... .. . .. .. . . .. . . .... .... .... . I... .. . ... . . . . . _ . . . . .. ... . ... .... ...4. ... . . . .. . .. . .... .. . . . . . .... .... . n . .. ... ...v ...! .. . .. . . . .. .. v... .... . . .. . ...- v. .r..... .00.! P 4 i .. . ... . . . .. . . . . .. . ... . .... ... . . ... .... .... .... . . .... .... . . . . .. .... ... .... .... ..4. ovTILO‘..Y .v. .. .. . .. .. ... . . ... .. . . .... ... ... .. . .... .... 9... ... .. ... . o. . .. .... ’A on. .. . . .... .. . .... .. ...-. . . . .... o4 ... .v . . .4. .... .. . n .. . . 4 p . 4... 4; L 4 4 do. .. ..I. ... . .... .... .... .... ... . .. l. . u .. .. ... . . . .... ... .... .... . v4...e.n .. . .. e. . .. n. . . ... .. . .. .... .... .... .... o. . ... . v .. . . ... .... I... L.... .....l... ... .. .- .. ... . .. ... . . .... .... .... ... .... .. . .... .... , . . -,.. .. . .... ...-A.... t... 4|! .1 . .. ..9 .4. .... .... . .... ... .... .... ... ...... ... ... . .... ... _. .. A... v .. .... .... .IHL...6._ o .. ...n .... .. . ..~.4. .. . .... .... .... o. . .... .-.OI. .... ... .... ... .... ..A.I. .A.... 0-0. ...... 4?.Ii..... 4 .. ... .l. .... . .. v . .... ... .... a... a... . C. . .... .... ... .. . . . ..A-VD. o... Avoi. otu : ..Q‘...? TO.V.0 . .4. ...u .00. .... .... . .... ... .... . .. ...... ...A .n.. . . a... .... .. - . .... .... a... .AOnewo.t T m. Tr... . . L LI. r . 17 m = 5 In this field u1 = 2 + .5, u2 = 7 + Warn. Let b be the coefficient of a 1’1 1 be the rational part of u 1 and Bk = ééibi' We will first prove that the ‘x/Einu units do not belong to A(3). LEMMA 1. 2bk > ak for all k > 1. PROOF: dbk = dak_1 + “bk-l > 2ak_l + ak - 2ak_l = ak. k-l LEMMAZ. ak>22a1+ 3fork>2. i=1 PROOF: The theorem is true for k = 5. Let us assume that the theorem is true for 2 < k g n-1 and prove the lemma by induction. Let k=n. Using Lemma 1 we obtain n-2 n-1 + 5bn-l > dan-l + an-l > 2an-l + ZEEiai + 5 : THEOhhM l. The numbers 2 and -2 cannot be written as a sum of distinct units of D(5). PROOF: We can see by inspection that neither 2 nor -2 can be written as a sum of distinct units in S S 0’ 1'52 and S alone. Assume that 2 can be represented, 2 =Zv1 5 where the vi are units. If vi and -v;l both appear in the summand their sum is a multiple of‘JB and contributes nothing to the rational part. Therefore there must exist a greatest positive integer 3 such that v1 is in the set 83’ 18 v1 appears in the summand, and neither -v1 nor -v1'-1 appear in the summand. Lemma 2 tells us that j g 2 and the theorem is proved. We will now show that the prime p = (l + J5) belongs to a(5). Let c2t + d2t¢5 = at + bivfi and °2t+1 + d2t+iJm = pult. We now separate the divisors of p into the sets Vk = [(ck+de5).(ck-dk/5).(-ck+de5),(-ck-ko3)1- Every divisor of p belongs to exactly one of these sets. Each set contains exactly one divisor c + dkyfi, with both k ck and dk non negative. Let Dk = fgldi' We will make use of the following equations: a II R 2°k-2 + 5dk-2 and dk = ck_2 + 2dk-2 for all k > 1; and d = c + d a ll 0 + 5d when k is odd; k k-l k-l k k-l k-l c1‘ = %1°k-l + Bdk-l] and dk = %[°k-l + dk-l] for k even. mm 50 CR + dk g k-lo PROOF: The lemma is true for k = 2 and k = 5. Let us assume that the lemma is true for k g n and prove that the lemma is true for k = n + 1. We have °n+1 + dn+1 = 3°n-1 + 5dn-1 g °n-1 + dn-l + “an-1 + 2°n-1‘ Noting that 2cn_1 < hdn, and making use of the induction hypothesis we see that the right hand side of the equation hD n- is "A 2 + “fin-l + hdn = hpn and the lemma is proved. 19 1‘ r. LEMMA 40 Cl{ + Cik > 2yk’l. PBCCF: The lBMLL is true for k = 2 and k = 5. Let us asaune that the lemma is true for k g n and prove the lemma by induction. Let k = n + l. + = + ’ °n+1 dn+1 cn-l dn-l + acn-l + “dn-l > 2Dn-2 + 2dn-1' THEOREM 2. l +‘J5 belongs to A(3). PROOF: We construct concentric squares with center at the origin and with diagonal lengths equal to auk. Because both the sets of divisors and the squares are symmetric with respect to both coordinate axes there is no loss in generality by considering only those points in the first quadrant, on the positive x axis or on the positive y axis. By inspection we can see that every integer in the first square can be written as a sum of distinct divisors in the sets V0 and V In order to l. ' prove the theorem by induction we assume that every point in the first k - 1 squares can be represented as a sum of distinct divisors taken only from the first k sets V ---,V 0’ k-l' Let P be any point with coordinates (x,y) which lies inside or on the boundaries of the k square. If P lies in the k - 1 square, the theorem is proved. If P does not lie in the k - 1 square, we have the following inequalities: 2Dk_l < x + y é ZDk’ KEG, ngo 20 We divide the possibilities into three cases. In Case 1 the point lies on or above the line y - x = 2dk - 2Dk-l' In. Case 2 the point lies on or below the line y - x - -2ck + 2Dk-1 and.in Case 5 the point lies between these lines. Lemma.h assures us that Case 3 actually exists. Case 1. 2D -1 < x + y é 2D k k’ y - x g 2dk - 2Dk-l’ XEOO If we subtract 2dk from y we obtain a point P' with rectangular coordinates y' = y - de and x' = x. x' + y' g 2Dk - 2dk = 2Dk-l’ -I .’ - :. y' x g 2dk de-l de 2Dk-l' x' g 0. The resulting point P' lies inside the k - 1 square and can be represented as a sum Ok-l of distinct divisors in the first k sets V ;O-,V 1. P' = P - 2d and O k-l k +2d r. P' = ok-l' Solving for P we obtain P = ok-l k ok-l + (ck + ko5) + (-0k + kofi). This completes Case 1. Case 2. de-l < y + x < 2D y - x g -2c + 2D y g 0. 21 If we subtract 2ck from x we obtain a point P' with rectangular coordinates y' = y and x' = x - 20k. 1 I "' a. ' - = y + x g 20k 20k < 2Dk 2dk 2Dk-l’ y' - x' g ~2ck + de-l + 20k = 2Dk_1, y' g 0. The resulting point P' lies inside the k-l square and can be represented as a sum 0 of distinct divisors k-l in the first k sets of divisors vhf..’Vk-l' P' = P - 20k. P' = Solving for P we obtain P = o + 2c = °k-1° k-l k ok-l +(ck + de5) + (ck - de5). This completes Case 2. Case 5. 2Dk-l < y + x g 2Dk, ~20 + 2D x < 2d - 2D k k-l < y ’ k k-l' If we subtract dk from y and ok from x we obtain a point P' with coordinates y' = y - d and x' = x - ck. k y' + x' g 2Dk - ck - dk < 2Dk - 2dk = ZDk-l' Applying lemma 5 to each of the following inequalities we obtain: y' + x' > 2Dk-l ' ck ‘dk E 2Dk-l ’ ”Du-1 = ’2Dk-1' Y' - x' < 2d - 2D + c - d = c + d -'2D 22 The resulting point P' lies inside the k-l square and can be represented as a sum On-l of distinct divisors in the first k sets VO’VP'.°’Yk-l° P' = P - ck - deB. I = . a - = ‘ P Solving Ior P we obtain P ok_l + ck + dkvj. ok-l' This completes Case 5 and the theorem is proved. COROLLARY. If x + yJ} is an integer in D(5) with x a y modulo 2, then x + yd} belongs to A(§). Pacer: x + = (x - 3y) + (y - x)v3 . If we I‘?*5%fi -2 have x E y modulo 2, then the right hand side is an integer and x + yv3 is divisible by 1 +-¢5. It then follows from Theorem 2 that x + y VB belongs to A(5). m = o In this field u1 = 5 + 2Vb, u2 = 49 + 2o¢6,--o. Let bi be the coefficient of V% in ui and a1 be the rational part of ui. We will first prove that the units do not belong to A(6). . LEMMA 1. 2 divides bk. PROOF: The lemma is true for k = 1. Let us assume that the lemma is true for k = n-1 and prove the lemma by induction. bn = Sbn-l + 2an-l' by the induction hypothesis 2 divides bn-l and thus divides theright hand Side of the equation. Therefore 2 divides bn. 23 THEOREM 1. The units do not belong to A16). PROOF: Lemma 1 tells us that in every sum of units the coefficient of M0 is even. x + be can not be represented as a sum of units when y is odd. I We will now show that the integer 2 belongs to AK5)- Let us separate the divisors of 2 into sets V as follows: 1 v0 = [1, -l, 2, ~21 v1 = [2+Vo, 2~¢o, -2~Jo, ~2+Jol -l -1 V2 = [“1' ul ' 'ul' ”“1 1 s -1 , , -1 V5 = [2u1, dul , -2ul, -2ul ] v4_= [(2+vt)ul=22+9¢o, 22 ~9Vo, -22+9V6,-22-9¢6] In every set Vk (k>0) there exists exactly one divisor ok + dkvb with both ok and dk positive. The divisors in the set Vk are ck + dkyh, ck - deb, ~ck - deb k and -c + d V%. Let D = 5:.d . We will make use of the k k k i=1 1 following equations: ck = 2ck_l and dk = 2dk_l when k : 0 mod 5, and k f O, c = c if k E l or 2 + R 3d and dk = ck_1 + d .2... and 5dk > Ok for k > 1. k-l k-l k-l moaulo 5. In either case 2dk < 0k LEMMA 2. ok + 2dk < 8Dk -1. PROOF: The lemma is true for k = 5. Let us assume that the lemma is true for k = n-1 and prove the lemma true by induction. Let k=n. If k = n E 0 mod 3: 0n + 2an = con-l + udn-l < cn-l + 7dn-l z cn-l + 2dn-l + 5on_l < 8D _2 + son-l < 8Dn_l. If k = n s 1 or 2 mod 5, on + eon = 2cn_1 + 9on_l < cn_l + 8d _1 - cn_1 + 2d -1 + Odn-l < 8Dn-2 + 0Qn_l < 8Dn_10 LEMMA 5. 0k + 2dk > th_1. PROOF: The lemma is true for k = 2. Let us assume that the lemma is true for k = n-1 and prove the lemma true by induction. Let k = n. If k = n e 0 mod 3, 0n + 2dn = 20n-l +.udn-l > cn-l + 0dn-l = cn-l + 2dn-l + ”fin-l > th_2 + #dn-l = an-l' If k = n E l or 2 mod 5, on + 2dn = 20n-l + 5dn-l > cn-l + 7dn-l = cn-l + 2dn-l + 5dn-i > “uh-2 + 5dn-i > “Dn-i‘ Thachsn 2. 2 belongs to A(6). PROOF: We construct concentric diamonds with centers at the origin, whose sides are given by the equations 2y + x = :qu and 2y - x = thk. because the sets of divisors and the diamonds are both symmetric to both coordinate axes there is no loss in generality by considering only those points lying in the first quadrant, on the positive x axis or on the positive y axis. By inspection we can see that every point in the first two (iiamonds can be represented as a sum of distinct divisors 25 in the sets V0, V1 and V2. In order to prove the theorem by induction we assume that every point in the first k-l diamonds can be represented as a sum of distinct divisors in the first k sets of divisors V0, Vl,°°',V Let P k-l' be any point with coordinates (x,y) which lies inside or on the boundaries of the k diamond. If P lies in the k-l diamond, the theorem is proved. If P does not lie in the k-l diamond, we have the following inequalities: uDk-1 < 23 + x g th, KEG, yEOO We divide the possibilities into three cases. In Case 1 the point lies on or above the line 2y - x = adk - uDk-l' In Case 2 the point lies on or below the line 2y - x = -ck + th_l. In.Case 5 the point lies between these lines. Lemma 5 assures us that Case 5 actually exists. Case 1. “DR-l < 2y + x g th, 2y - X g ”dk " wk-lt KEG. If we subtract 2dk from ylwe obtain a point P' with rectangular coordinates y' = y - 2dk and x' = x. 2y' + X' < ubk - 4dk " uDk-l. x' g 0. 2y' ‘ x' 2 ”Gk “bk-1 “Gk “bk-1° 26 The resulting point P' lies inside the k-l diamond and thus can be represented as a sum Ok-l of distinct divisors in the first k sets of divisors V0, Vl,°°°, Vk-l’ P' = P -2dk/o and P' = Ok-l’ Solving for P we obtain P = Ok-l + 2deb = Ok-l + (0k + kob) + (-ck + deb). This completes Case 1. Case 2. th_l < 2y + x g nDk, 2y - x g ~2ck + uDk-l’ ngo If we subtract 20k from x we obtain a point P' with rectangular coordinates y' = y and x' = x - 2ck. 2y' + x' é ”Bk ' 20k < “Bk ’ “dk = LLDk-i' 2y' ‘ x' -ch + ”pk-1 * 20k.= “pk-1’ "A y' g 0. The resulting point P' lies inside the k-l diamond and thus can be represented as a sum of distinct divisors in the first k sets of divisors V0, V1, °--,Vk_l. P"== P - 20k and P' = Ok-l’ Solving for P we obtain P = c: +-2c = ok-l + (ok + dKVb) + (ok - dkyo). This completes Case 2 . Case 5. uDk-l < 2y + x_§ th, 520k + th_1 <‘2y - x < hdk - th_l. 27 If we subtract c from x and d k k from y we obtain a point P' with coordinates y' = y - (1k and x' = x - ck. 23'+ x' é “Bk ' de ' ck ‘ “Dk ' “fix 3 4Dk-i' Applying Lemma 2 we also obtain the following inequalities; 2y' + x' > “DR-l - 2dk - ck > -th_1, 2y' ' x' < “dk ' “Bk-1 ' de + ck = Ck + 2dk ' “Dk-l < l“Die-1' 2y' - x' > -2ck + “Bk-l -2dk + 0k - ”DR-l - ck - 2dk > LDk_1. The resulting point P' lies inside the k-l diamond and thus can be represented as a sum ok-l of distinct divisors in the first k sets of divisors V V ",V O’ l’ k-l' P' = P - c k Solving for P we " de6 and P' = ok‘l. ootain P = Ok-l + 0k + deb. This completes Case 5 and the theorem is proved. COROLLARY. If x 5 y E O modulo 2, then the integer x + be belongs to A(b). 28 m = 7 In this field u1 = 8 + 3J7, u2 = 127 + g8/7 .... Let a1 be the rational part of u1 and b1 be the coefficient of J7 in ui. We will first prove that the units do not belong to A(7)o LEMMA 1. 5 divides bk for all k. PROOF: The lemma is true for k = 1. Let us assume that the lemma is true for k = n-1 and prove that the lemma is true by induction. When k = n, we have bn = 8bn_l + 5an_l. 5 divides bn-l and thus 5 divides the right hand side of the equation. Therefore , 5 divides bn' THEOREM 1. The units do not belong to A(7). PROOF: In every sum of units the coefficient of V7 is divisible by three and thus x + y¢7 cannot be represented if y 5 l or 2 moaulo 5. We will now show that the integer 2 belongs to A(7). .Let us separate the divisors of 2 into the sets Vk as .follows: v = [1, -l, 2, -2] = is + V7. 5 - M7. -5 - V7. -5 + V7] V2 = [111, -ul, nil, -u;l] V5 [2u1, ~2ul, 2uil, -2uI V = nah/7W1 = 45 + 1N7. kWh/7. 46-11”, -t5+11\/7l 0 V1 11 N 29 In every set Vk (k>0) there exists exactly one divisor ck + dRVW with both 0k and dk positive. The divisors in the set Vk are ok + dk/7, ck - ko7, -ck - de7 and -ck + dk/7. Let Dk = fiidi. We will make use of the following equations: ck = ZCk-l and dk = 2dk_l when k f O modulo 5, ok = (5ok_1 + 7dk_l)/2 and dk=(ck_l+ 5ok_l)/2 if ssh mod5. Lemma 2. bdk < 20k ed “A k. PROOF: The lemma is true for k = 1. Let us assume that the lemma is true for k = n-1 and prove that the lemma is true for k = n. then k = n E 0 mod 5 we have: pdn = lOdn_l < 40 = 2cn = Re g 12d = bdn. n-1 n-1 When k = n E l or 2 modulo 5 we have: pdn = (jcn-l + 15dn_l)/2 < (bcn-J + l5dn_l)/2 < 2cn = 5°n-1 + 7dn-l < 5°n-1 + 9dn-l = bdn' < 20D k'l for k > 20 LEMMA 5. 2ck + 5dk PROOF: The lemma is true for k = 5. Let us assume that the lemma is true for k = n-1 and prove that the lemma is true by induction. For the case k = n and n E 0 mod 5 we apply Lemma 2 and the induction hypothesis to obtain 2cn + an = hon-l + lOdn-l = 20n_1 + Sdn-l + 2cn_l + jdn-l < 20Dn_2 + lldn_1 < 20Dn_l. 50 When k = n i l or 2 modulo 5, we apply Lemma 2 and the induction hypothesis to Obtain: zen + son = (11on_l + 29on_l)/2 g (“ch-1 + 50dn_l)/2 = 2cn_1 + Sdn-l + 20dn_l < 20Dn_2 + 20dn_l = ZODn-l' LEMMA a. 20k + jdk > lODk_l. PROOF: The lemma is true for k = 2. Let us assume that the lemma is true for k = n-1 and prove that the lemma is true by induction. For the case k = n 5 O mOdulo 5, we apply the induction hypothesis and Lemma 2 to Obtain 2cn + Bdn = “en-l + IOdn-l > lODn_2 + 1°dn-1 = lODn-l' when k = n f O modulo 5, we apply Lemma 2 and the induction hypothesis to obtain: 2g + jdn = (llc + 29dn_l)/2 = 20n_1 + Bdn-1 + n n-l ('(cn_1 + l9dn_l)/2 > lODn_ +iodn = lODh 2 -1 -1° THEOREM 2. The integer two belongs to 8(7). PROOF: We construct concentric diamonds with centers at the origin, whose sides are given by the equations 5y + 2x = thDk and By - 2x = t 10Dk. Since the sets of divisors and the diamonds are symmetric to both coordinate axes there is no loss in generality in considering only those points lying in the first quadrant, on the positive x axis or on the positive y axis. By inspection we can see that every point in the first two 51 diamonds can be represented as a sum of distinct divisors in the sets V0, V1 and V2. In order to prove the theorem by induction we assume that every point in the first k-l diamonds can be represented as a sum of distinct divisors in the first k sets of divisors V0, V '--,V Let P l’ k-l' be any point with coordinates (x,y) which lies inside or on the boundaries of the k diamond. If P lies in the k-l diamond, the theorem is proved. If P does not lie in the k-l diamond, we have the following inequalities; 10D 1 < jy + 2x g 10D k- k’ x g 0, y E O. We divide the possibilities into three cases. In Case 1 the point lies on or above the straight line 5y - 2x = 10dk - 10D . In Case 2 the point lies on k-l or below the line 5y - 2x = ~4ck + lOD In Case 5 k-l' the point lies between the two lines. Lemma h assures us that Case 5 actually exists. Case 1. 10D < 5y + 2x g 10D k-l k’ 5y - 2x g 10dk - lODk-l’ XEO. If we subtract 2dk from y we obtain a point P' with rectangular coordinates y' = y - 2dk and x' = x. by' + 2x' g 10Dk - lOdk = lODk-l' xi g 0, .|_! - - :- 5y 2x g 10dk lODk_l 10dk lODk-l‘ 52 The resulting point P' lies inside the k-l diamond and thus can be represented as a sum 0 of distinct k-l divisors in the first k sets of divisors V V ---,V o’ 1' k-l' P' = P - 2dk/7 and P' = 0 Solving for P we obtain kfl. P = Ok-l + adkw = Ok-l + (ck + ek-m + (-ck + dkx/7). This completes Case 1. Case 2. 10D 1 < jy + 2x g 10D k- k’ 5y - 2x g -hck + lODk-l’ ng. If we subtract 2ck from x, we obtain a point P' with rectangular coordinates y' = y and x' = x - 2ck. applying Lemma 2 we obtain: Sy' + 2x' g lODk - hck < lODk - 10dk = lODk-l’ Sy' - 2x' g ~uck + lODk_1 + hck = lODk_1. y. a O. The resulting point P' lies inside the k-l diamond and thus can be represented as a sum Ok-l of distinct divisors in the first k sets of divisors V V O, P' = P -2c and P' = k ok-l' Solving for P we obtain 2 r = - c- l P ok-l + 2ck Ok-l + (0k + dkv7) + (CR de7)- This completes Case 2. 55 Case 5. 10Dk_l < 5y + 2x g lODk, -4ck + lCDk_l < 5y + 2x < 10ok - lODk_l. If we subtract ck from x and dk from y we obtain a point P' with rectangular coordinates y' = y - dk and x' = x - ck. applying Lemma 2 we obtain: "I "I '-'~“ —" -. : 9y + 2x g 10Dk )dk 20k < 10Dk 10dk lODk-l° applying Lemma 5 to the following, we obtain: 'r' ' -r“-" -" .1. 5y + 2x > lODk_l )dk 20k > lODk-l CODk-l lODk-l' 5y! - 2x' < 10dk - lCDk-l - Sdk + 2ck = 2ok + Sdk 'lODk-l < 20Dk_l - 109k-1 = lODk-l’ 5y. _ 2x. > -uck + 10Dk_l + ask - Sdk = lODk_l - 20k - Sdk > lODk_1 - 20Dk_1 = -10Dk-1- The resulting point P' 1163 inside the k-l diamond and thus can be represented as a sum ok-l of distinct divisors in the first k sets of divisors V V '°°,V O’ l’ k-l' P' = P - c - de7 she P' = k Solving for P we ok-l' obtain P = Ok-l + 0k + de7. This completes Case 5 and the theorem is proved. COROLLARY. If x E y - O modulo 2, then the integer x + yJ? belongs to A(7). 3h CHAPTER III REAL QUADRATIC FIELDS ' m > 7 and m E 2 or 5 mod 4 In this chapter we will focus our attention upon the integers in the quadratic fields R(m) where m is square free, greater than seven and not congruent to one modulo four. We will show that if the norm of ul [N(ul)] equals -1, then the number T = 2tvn belongs to A(m) and if = +1, then the number T = 2t+l¢m belongs to A(m) t+l N(u1) where t is chosen so that 2t § a2/al < 2 Let us separate the divisors of T into the sets V0,Vl,°°' where VO = 80 and Vk = 2rsh+1 where h g 0, 0 g r g t and k = h(t+l) + r + 1. In every set Vk there exists exactly one divisor ck + dkvm with both ok and dk non-negative. A divisor of T belongs to at most one set. ‘ I I = + We will make use of the fact that ak alak_ l blbk-l m = + and bk albk-l blak-l° We will first prove a series of lemmas for the fields where N(ul) = ~l. t LEMhA l. 2 > a1 + l/2a1. . t _ 2 2 _ 2 PROOF. 2 > a2/2al - (a1+b1m)/2a1 - (2a1+1)/2a1. LENLIMX Z. bl/al > bk/ak for k > 10 2 ,, 2 _ _ _ PROOP. Since a1 - blm l and bk-l > O, we have 2 2 0 > (8.1 "' blm)bk_lo 35 2 _ . 2 alblak-l + blbk-lm > a1018191 + albk-l° bl(alak-l + blbk-lm) ’ al(blak-l + albk-1)' bl‘k > albko LEMMA 5. ak/bk < 5a1/b1 for all k. 2~b2m+2s‘:-) + 2a PROOF: o < bk_1(a1 1 ibi‘k-1° + Dab 2 blak-l 1 k-lm < 5aibk-1 + Balblak-l' a1 bl(alak-l + blbk-lm) < 581(aibk-1 + blak-l)’ blak < 5albk. LEMMA 4 (2b a -b )a /a < 5(2t+l-l)b for k>1 ' ° 1 1 1 k-l 1 k-l ' PROOF: By Lemma 5 we know that blak-l < aalbk-l' Since 2al - l > O, we may multiply both sides by 2a -1, l . . 2 2 and obtain (2alol ol)ak-l< 5(2al-al)bk_l< 5(2a1-a1+l)bk_l. Since al > O, we may divide both sides by a1 and obtain , t+l (2blal-bl)ak_l/al < 5(2alf% l)bk-l < 5(2 -l)bk_1. l Lshhn 5 b + b a < M2t+1 -1)s when k 1 ° k 31 k = k-l ? ° 1 . PROOF: If k = 2 we have that bk + flak = . a1 , 2 _ -t t+1_ dalbl + b1(2al + l) - Libl(al + l ) < h(2 )bl < h(2 1)b1. 3'; Hal Let us assume that the lemma is true for k g n-1 and prove the lemma by induction. Let k = n. 56 For k = n we have that bn + b a is equal to ..l n 81 _ 2 a'lbn-l + blan-l + b y‘al n- -l+ bl bn-lm) — bn-1(al+blm) + 81 81 dtklan-l = bn_l(2a1tal) + 2blan_l. By Lemma 1 the right 1 s . t+1. , _ t+1_ 138u1d side is less than 2 bn-l + ablan-l - (2 l)bn-1 + t51_1 +blan~l + an_l(2albl-bl)/al. Using Lemma h and the ET' 1 idmduction hypothesis we find that the right hand side is .< (2t+1-l)bn_l + h(2t+l-1)Bn_2 + 3(2t+1-1)bn_1. The Zlatter is exactly h(2t+1- -l)i:sn.l which completes the proof. to“ -r r t+1 ~ r l PROOF: If k = 1 and r = 1 the lemma is true. When I? = l and k > 1, we use Lemmas 5 and 5 to see that t+1 . _ t+1_ fabk + 2b1ak < h(2 -1)sk_l + bk + 5bk - h(2 1)Bk-l + T1 l“bk. Thus the lemma is true for all values of k when r =1. lLet us assume that the lemma is true for r g n-1 and prove the lemma by induction. Using Lemma 5 and the induction n - n-l n- --lb hypothesis: 2 bk + 2 k - 2(2 ka + 213k) g 181 ElD1 + - , -1 -1 _ tiat 1 - 1)sk_1 + 4(2n1-l)bk + 2n bk + 2n (5bk) - t+l n . #(2 - l)Bk_1 + h(2 - l)bk. This completes the proof of the lemma. 37 k Let Dk = §Egdi and s = bl. We can now summarize a1 thee results of Lemmas 1 through 6 as follows: LElUIVU't 70 d + SC k g “Bk-l and s > dk/ck for k > 1. k We now turn our attention to the fields in which N(L11) = +1 and prove the analogous lemmas. We will let 8 == Wm)"l and note that s > bk/ak for all k LEMIJLA 80 2t > 8.1 "' 1/281. t . 1 r _ 2 2 , _ r 2 \ PROOP: 2 > a2/2al- (a1+blm)/2al - (dal'l)/2al. LEMMA 9. sak O. . 2 2 _ 2 PROOF. ak - bkm - 1 < Ebkm. 2 2 ak <.2bkm. a ak < 5bk\/m . 2 LFHMA.10 2a2 - a < (2a2 - a - ’) “ ' l l g 1 1 .3 ° 5 PROOF: Since m g 10 we have that ai = l + mbi > 10 which implies that al > 5 and o < 2a? - al - 4- Thus 2 , 2 . re 2 l" 2 I ‘ 2a - a < (2a - a - 5). 1 l .3 1 1 3 q . t+l LbdhA ll. bk_1/al + (2al-l)sak_1 < 5(2 -l)bk_1 for k>l. PROOF: Making use of Lemmas 9 and lo, we have: 37 k Let Dk = §Egdi and 8 2.3l. We can now summarize 81 the results of Lemmas 1 through 6 as follows: LEMMA 7. d + sc k g uDk-l and s > dk/ck for k > 1. k We now turn our attention to the fields in which N(u = +1 and prove the analogous lemmas. We will let 1) s = (Jm)-l and note that s > bk/ak for all k LEMMA 8. 2t > a1 - l/2al. ., w t _ 2 2 , _ r 2 . PROOP: 2 > a2/2a1- (al+blm)/2al - (2a1-1)/2a1. LRMMA 9. sak O. PROOF: a KN 2 _ 2 - bkm — l < Ebkm. < ibim o d KN ak < gbkvm. ._H. , 2 _ . 2 _ _ ~ Lehmn lO. 2&1 al 10 HNW PROOF: Since m g 10 we have that a which implies that al > 5 and O < 2a? - al - 4. Thus 2 , 2 . hal - 2al < cal - 5al - a. , 2 2 - 2a - a < (2a - a -5}. 1 1 g, l l 5 ‘1‘... - t+l- LadmA 11. bk_l/al + (2al l}sak_l < 5(2 l)bk_l for k>l. PROOF: Making use of Lemmas 9 and 10, we have: 58 2 . x ,, 2 . 2 . S‘Zal-al)ak-l < 9/4‘3a1'al7%)bk-l < 5(231'a17%)Dk-1' If we divide both sides of the inequality by a1, we obtain - l bk-l‘ Using Lemma 8 s(2a1-1)ak_l < 5(2al-lfé )bk_l a l l we have bk-l/al + s(2al - l)ak_l < 5(2al - 1 - l)bk_l < a1 -ht+l 5‘4 l)bk_lo LEMMA 12 b + sa < m2“l - 1)s for k > 1 o k k = _ k']. 0 PROOF: When k = 2 we have that b2 + sa2 = 2 2 , 2 2albl + s(al+b1m) 2albl + s(l+2blm) = 2 b al 1 + ZbEJm + s = 2a1bl(ltb£¢m) + s < haltl + s = hbl(al- l ) + 2b1 + 3. al a1 a1 Applying lemma 8 we see that the right hand side is t+l t . t . <: abl(2 ) + 2bl/al + s < 401(2 ) +.5s < nb1(2 - 1). This proves the lemma for k = 2. Let us assume that the lemma is true for k g n-1 and prove the lemma by induction. bn + 88n z a1°n-1 + blan-l + 8(alan-l+blbn-lm) z bn_l(al+blvm) + (bl+sal)an_1 < 2albn_l + Zsalan_l. By Lemma 8 the right hand side is less than t+l _ t+l_ a a l 1 as + s(2a -l)a = (2t+l-l)b + b + as + n-l l n-1 n-1 n-1 n-1 bn-l/al + (2al-l)san_l. Making use of Lemma 11 and the 39 induction hypothesis we find that the right hand side is t+l nt+1 _ , _ t+l_ less than (2 l)bn_l + 4(2 1)Bn_2 + 3(2 l)bn -1 = M2“ -l)bn_l which proves the lemma. t+l 1.” r r a _ . _ Lanna 15. 2 bk + 2 sak g 4(2 l)bk~l + m2r 1)bk for all r when k > 1 and r > 1 when k = 1. PROOF: Lemma 9 tells us that sal < bl which implies that hbl + hsa1 < n°5bl and the lemma is proved for k =1 and r = 2. If k > 1 and r = 1, then we have‘ 0 ,t+l_ - t+l_ 20k + 288k < 4(2 l)Bk_l + bk + gbk < 4(2 1)Bk-l + hbk. Let us assume that the lemma is true for r = n-l and prove the lemma by induction. Using the induction hypothesis and n-1 n ,n “ ,n-l Lemma 9 we have 2 ok + 2 sak - 2(2 bk+2 sak) < u<2t+1-1)sk_l + u(2“'1-1)bk + 2n‘1bk + g(2n'1)bk < t+1 . . n-l ‘ n-l - 4(2 -l)3k_l + 4(2 -l)ok + u<2 )bk - 4(2t+1-l)bk_1 + 4(2n - l)bk. Thus the lemma is proved. We can now summarize the results of Lemmas 8 to 15 as follows: LEMMA 14. (1k + sck g th-l’ and s > dk/ck' The first part of the lemma is true only for k g 5. We will now proceed to show that the units do not belong to AK“) and T does belong to Aim). It is obvious that if bl # l, the units do not belong to A, for bl bk 1+0 implies that the coefficient of (m in any sum of units is congruent to zero modulo bl' We make use of the following lemma to show that the units do not belong to A(m) if b = l. l K- LEMMA 15. ak > 2221a1 + 3 for k > 1. t3! PROOF: ai = :1 + m g m - l g 9 implies that algfi. If k = 2, then a2 = a + blm > 2&1 + 3. Let us assume that the lemma is true for k = n-1 and prove the lemma by m-L induction. a - alan-l + b m > Ban-l > 2an_l + 2§a1 +5 n n-l '0'! = 223 + 50 LN i THEOREM 1. The units do not belong to A(m). PROOF: We have shown that when b1 # l, the theorem is true. By Lemma 15 no unit in Sj for j > 1 can be used to represent the number two. It can be seen by inspection that the number two cannot be represented using only units in S and $1. Therefor the number two cannot be written 0 as a finite sum of distinct units. THEOREM 2. The number T belongs to the set Ann). PROOF: We may consider every integer P of D(m) as a lattice point P in the plane with rectangular coordinates x and y. We will fill the plane with concentric diamonds with centers at the origin and whose diagonals are the coordinate axes. The y intercepts of the sides of the k diamond are 2Dk and --2Dk and the x intercepts are 2Dk/s and -2Dk/s. For every point in the k diamond we have: g y + sx g 2Dk, -2D g y - sx § 2Dk. Let V-l be the set 1,2,u,°°°, T ,Jm,2¢m,---,T . m It will be shown that every integer lying in the k diamond can be represented as a sum of distinct divisors in the first k+l sets V_1,V1,Va,~--,Vk. Since the divisors in Vj and the diamonds are symmetric with respect to both coordinate axes there is no loss of generality by considering only points in the first quadrant on the positive x axis and on the positive y axis. If N(u1) = -1, then we have .t+l 2t > a1 and a - 1 > 2a - 1 > 2b1 - 1 > 2b - 1. l 1 Thus every integer in the first diamond can be written as a sum 01 of distinct divisors in the sets V_l and V1. , a ,t+2 If h(ul) = +1, we have a - 1 > ual - 1 > ubl - 1 > s nt+2 ubl - l and 2al + 2 - l > 6al - l > 6bl - 1. also 8 as + 2t+2 1 6 , ' l - > bl - 1. Thus every integer in the second diamond can be represented as a sum 02 of distinct divisors in the sets V_1,Vl and V2. Let us assume that every integer P' = x' + yivm in the first k-l diamonds can be represented as a sum of distinct divisors c of T without using any divisors in k-l 1.42 the sets Vj for j > k-l and prove the theorem by induction. Let P be any point (x,y) in the k diamond. If P lies in the k-l diamond, then the theorem is proved. If P is not in the k-l diamond we have 2Dk-l < y + sx g 2Dk’ x g 0 and y g 0. We divide the possibilities into three cases. In Case 1 the point lies on or above the line y - sx = 2dk - 2D .In Case 2 the point lies on or below the k-l line y - ex = -2sck + 2Dk-1' In Case 3 the point lies between these two lines. Case 1. 2Dk-l < y + sx g 2Dk, y - sx g 2dk - 2Dk-l’ x g 0, y g 0. If we subtract 2dk from y we obtain a point P' with rectangular coordinates x' = x and y' = y - 2dk. y' + sx' g 2DK - 2dk = de-l' y' - sx' g 2dk - 2DK_l - 2dk = 'ZDk-l' Since x' = x g 0, the point P' lies in the K-1 diamond and P' = Ok-l' Since P' = P - 2kom, we have P = ok-l + 2dkdm = Ok-l + (0k + dk/m) + (-ck + dk/m) and the theorem is proved for Case 1. Case 2. 2D < y +sx § 2Dk’ k-l y - sx g 2Dk_l - deck, y g 0, x g 0. #3 If we subtract Zak from x we obtain a point P' with rectangular coordinates x' = x - 2ck and y' = y. l + l 9 - " O _ “‘ = “P y sx é “Bk dsck < ‘Dk 20k (“k—1' '- -’ ' :. y sxf g 2Dk-l 28ck + 230k 2Dk-l' Since y' = y g 0, the point P' lies in the k-l diamond and P' = ok_1. From P' = P - 20k we obtain P = ok-l + 20K — Ok-l + (0k + dkvm) + (0k - dkvm) and the theorem is proved in Case 2. Case 5. 2D k-l < y + 8x g 2D 1," -2sc + 2D k < y - sx < 2dk - 4D k-l k-l' If we subtract d from y and c from x we obtain k k a point P' with coordinates x' = x - CR and y' = y - dk’ making repeated use of Lemmas 7 and 14, we obtain: y' + sx' é 2DK - d < 2Dk _ d - d = 2D k ‘ sck k k k-l’ ,- y' + sx' > de-l - dk - sok g ‘Dk-l - “bk-l =n2Dk_1. y' - sx' < 2d -2D k l - d + sc g -2D + ”bk-l = 2D k- k k k-l k-l’ - d + so -‘Dk-l' , _ , _h , y sx p> csck + de-l k k 2 Thus the point P' lies inside the'k-l diamond and P' = Since P' = P - c - dKVm, we have that °k-1' k P = 0‘ + (c K-l + kom) and the theorem is proved in Case R 5. This completes the proof of the theorem. CHAPTER IV REAL QUADRATIC FIELDS E l modulo h In this chapter we will focus our attention upon the integers in the quadratic fields R(m),where m is square free, greater than zero and congruent to one modulo four. The domain of integers D(m) of R(m) is the set of numbers of the form x + yvm, where x and y are both rational integers or halves of odd rational integers. The units are those numbers of D(m) where x2 - my2 = +1. Each field has an infinite number of units and one basic such that if u = a unit 111 l 1 + bivm.is the unit of smallest absolute value for which both x and y are positive, then every unit in the field can be written tu? for n = 0, fl, :2, --° . Let uj = ui for j = O, 1, 2, °°° . In this way we = [+1, -1] of two -1 ui’uil] may divide the units into one set SO units and infinitely many sets S1 = [u1, -u1,- of four units each. Every unit belongs to exactly one set. DEFINITION: A(m) is the set of integers {n} in the field R(m) which have the following property; n belongs to a(m) if and only if every integer in the domain D(m) can be written as a sum of distinct divisors of n. We will show that for all m the set A(m) is not #5 empty and that for m = 5 every integer belongs to A w‘ m = 5 In this field ul =(1 + V5)/2, u2 = (5 +-¢5)/2, u} = 2 + V5, °°' . Let a1 be the rational part of 111 and . 7.- _ k b1 be the coefficient of J) in ui. Also let Bk - fElbi. The integers of D(B) may be considered to be those points in the plane for which x and y are rational integers or halves of odd rational integers. We will fill the plane with concentric squares with centers at the origin, whose diagonals are the coordinate axes and whose sides are given by the equations x + y = :2 B k and y - x = :ZBR. It will be shown that every integer lying in the k square can be represented as a sum of distinct units belonging to the first k + 1 sets S 000’s 0’ k° We will make use of the following equations: ak = (Bk-l + 5bk_1)/2 and bk = (ak-l + bk_l)/2. 1.13le% 10 8k + bk é “Bk-.10 PROOF: The lemma is true for k = 1. Let us assume that the lemma is true for k = n-1 and prove the lemma true by induction. Let k = n. 8n + bn = an-l + 3bn-l = an-l + bn-l + an-l < th-2 + 2bn-l < uBn-l' hb - ‘ " P + LblVlflA do ak bk > 2B k-l' PROOF: The lemma is true for k = 2. Let us assume that the lemma is true for k = n-1 and prove that the lemma is true by induction. Let k = n. a + b = a n n + 5b = a + ' n-l bn + 2b n-l -1 n-l = 2B > 2311- + 2b 11-10 2 n-l THEOREM 1. The units belong to A(5). PROOF: We can see by inspection that every integer in the first square can be represented as a sum of distinct units in S0 and 81' Let us assume that every integer in the first k-l squares can be written as a sum of distinct units taken from the first k sets of units, SO’ 81’ °°',Sk_1 and prove the theorem by induction. Consider any point inside the k square. Since the square and the sets Sk are symmetric with respect to both axes there is no loss in generality in considering only points in the first quadrant, on the positive x axis and on the positive y axis. If the point lies inside the k-l square, the required representation is assured by the induction hypothesis. Therefore we may consider only points in the first quadrant, in the k square and not in the k-l square. Thus we have; 25 < x + y g 23 k-l y g 0, x IN 0 o 1+? We divide the possibilities into three cases. In Case 1 the point lies on or above the line y - x = 2b ~28 k k-l' In Case 2 the point lies on or below the line y-x = -2ak + ZBk-l° In Case 5 the point lies between these two lines. Lemma 2 tells us that Case 5 actually exists. Case 1. ZBk-l < x + y g 2Bk, y - x g 2bk - 2B k-l’ x g 0. If we subtract 2bk from y we obtain a point P' with rectangular coordinates x' = x and y' = y - 2bk’ x' t y' g 2B - 2bk = 23 k k-l’ y' - x' g 2bk - Zbk-l - 2bk = '25k-1’ x' g 0. The resulting point P' lies in the k-l square and thus by the induction hypothesis it can be represented as a sum Ok-l of distinct units in the first k sets of units SO, 31' °°', Sk-l' P' = Ok-l and P' = P - ZbEVS' Thus P = Ok-l + 2bkv5 = ok-l + (ak + bk\/5) + (-8k + 1319/?)- This completes Case 1. Case 2. 25k~1 < x + y g 28k, _ -2ak + 2Bk-l’ ¢< l N IA 1+8 If we subtract 2a from x we obtain a point P' with k rectangular coordinates x' = x,- 2ak and y' = y. ' ' r c n - = x + y g 28k 2ak < 23k 2bk 2Bk-l’ y' - x' g --2ak + dBk-l + Zak = ZBk-l’ y'g00 The resulting point P' lies in the k-l square and thus by the induction hypothesis it can be represented as a sum Ok-l of distinct units in the first k sets of units and P' = P - 2a . Therefore 3 S P' = k 000’s ok—l (ak + kas) + (ak - bkyt). This 0’ l’ k-l' + P = Ok-l + Zak = Ok-l completes Case 2. Case 5. ZBk-l < x + y g 23k, 2B - 28 < y - x < 2b - EB k-l k k k-l' If we subtract ak from x and bk from y, we obtain a point P' with coordinates x' = x - ak and y' = y - by. I 0 - c. ' - :7. x + y g 2Bk bk ak < 25k 2bk ZBk-l’ Applying Lemma 1 we obtain the following inequalities: x' + y' > ZBk-l - ak - bk g -2Bk_1, y. - x' < 2b - 2 25 k Bk-l k ”A - b + ak = ak + bk - 28k_1 k-l’ y' - x' > aBk-l - Zak - bk + ak = ZBk-l - ak - bk g ~2Bk_l. The resulting point P' lies in the k-l square and h9 thus by the induction hypothesis can be represented as a sum Ok-l of distinct units in the first k sets of units " coo '= '= - u- I S , S P ok-l and P P ak bky5. o' 31' k-l' Solving for P we obtain P = o + a + kaS. This k-l k completes Case 5 and the theorem is proved. m > 5 In this section we will show that if N(ul) = -1, then the number T = 2t-1(1+Jm) belongs to A(m) and if N(ul) = +1, then the number T = 2t(1+¢h) belongs to A(m), t t+l where t is chosen so that 2 § a2/al < 2 . In either case 2t divides T. Let us separate the divisors of T into the sets V = 30’ and V .. P .. 0 - 2 sh+l where k - h(t + l) + r + 1, k h g 0, and 0 g r g t. In every set Vk there exists + dkvm with both c and d non- exactly one divisor c k k k negative. A divisor of T belongs to at most one set. alak-l + blbk-lm‘ We will make use of the fact that ak = and bk = blah-l + albk_1. We will first prove a series of lemmas for the fields in which N(ul) = -1. LEMMA 5. 2t > a1 + l/2a1. t _ 2 2 _ 2 PROOF: 2 > a2/2a1 - (a1 + blmJ/Za1 - (2al + l}/2a1. LEMMA u. bl/al > bk/ak for k > 1. SO PROOF: Since ai - him = -l and bk-l > O, we have 0 > (a? - blm)bk-l° b2b m > a b a 2 alblak-l + 1 k-l 1 1 albk- k-l + 1' + a b + b b m) > al(blak-l l k-l)o bl(alak-l 1 k-l blak > albk. Lawns a. ak/bk < 5al/b1 for all k > 1. 2 2 2 PROOF. O < bk_l(al - blm + 2&1) + 2a1blak_l. 2 ' 2 alblak-l + blbk-lm < aalbk-l + 5a1b lak-l' b1(“13k-1 + lek-lm) < 531(“1bk-1 + blak-1)° blak-l < 5a1°k~1° Lfimma 0 (2b a -b )a /a < 5(2t+1-l)b for k>1 ' 1 l l k-l l k-l ' PROOF: From Lemma 5 we have blak-l < 5a1bk_1. because (2al - l)/al > O, we may multiply both sides of the above inequality by (2al - l)/al and obtain the following. t+l _ 1)b (2a1bl-bl)ak_1/al < 5(2al + % - l)bk-l < 5(2 k-l' l LEMMa 7 b + b ak/a s m2t+l - 1)s for k > 1 ' k l l - k-l - PROOF: When k = 2 we have that bk + blak/a1 = . 2 _ , t t+1_ + 01(2a1+1)/a1 - Lib1(al + 18‘ ) < h 2 b1 < h(2 1)b1. 1 2albl Let us assume that the lemma is true for k g n - 1 and 51 prove the lemma true by induction. Let k = n. bn + blan/al = albn-l + blah-l + b1(a1an-1 + blbn-lm)/al _ 2 - - bn_l(al + blm) + Zblan-l - bn-l(2a1 +‘% ) + ablan-l' a1 1 By.Lemma 5 the right hand side is less than 2t+lb + 2b 2t+1 n-l lan-l = ( ’1)bn-1 + bn-l + blan-l/al + an_l(2a1bl - bl)/al. applying Lemma b and the induction hypothesis we find that the right hand side is less than t+l t+l t+1 (2 - 1)bn_l + u(2 - 1)Bn-2 + 3(2 - l)bn_ l. l - .r. r t+l r LsMMA 8. a bk + 2 blak/al g u(2 -1)sk_1 + h(z -1)bk. PROOF: The lemma is true when k =n2 and r = 1. When r = l and k;> 2, we apply Lemmas 5 and 7 to obtain , , t+1 2bk + 2blak/a1 < 4(2 - 1)sk_1 + bk + 5bk t+1 . 11(2 dusk”1 + hbk. Thus the lemma is true for all values of k > 1 when r = 1. Let us assume that the lemma is true for r n - l and "A prove the lemma true by induction. Let r = n. Applying Lemma 5 and the induction hypothesis we obtain n _ . n-1 n-1 2nbk + 2 blak/al - 2(2 bk + 2 blak/al) g 11(2t+l - 1)sk_1 + h(an'l - 1)bk + en'lbk + 2n‘1(3bk) = “(2t+l - l)bk_1 + 4(2n - l)bk. This completes the proof. Let Dk = (11 and s = bl/al. We can now summarize i=1 52 the results of Lemmas 5 through 8 as follows: LEMMA 9. d sc g “pk-l and s > dk/ck for k > 1. k + k we now turn our attention to the fields where N(u1) = + 1 and prove the analogous lemmas. We will let s = (Vh)'1 and note that s > bk/ak for all k. t LEMMA 10. 2 > al - l/2al. .A.,. t = 2 2 = 2 _ PROOF. 2 > a2/2al (a1 + blm)2al (2al 1)/2al. LEMMA ll. sak < 5bk/2 for k g l. . 2 _ 2 PROOF: bkm - 1 < 5bk m/u. spm a < 9bim/u- KN 2 LEMMA 12 2a2 - a < (2a2 - a -‘3) ° 1 1 g 1 1 ' 5 ... 2 _ 2 PROOF: For m g 15, al — l + mb1 > h implies a > 2 which in turn implies O < 2a? - al - h. Therefore 2 . 2 gal - 2al < oal - 5al - h. 2 2 t+l LhMMA l5. bk-l/al + (2a1-l)sak_l < 5(2 -l)bk_l. PROOF: Applying Lemmas 11 and 12, we obtain: 3(2ai - al)ak_1 < E(2a§ - a1 - %)bk-l < 3(2af - a1 - %)bk-l' Dividing both sides of the inequality by a1, we obtain: s(2al - l)ak~l < 5(2a1 -l -‘% )bk-l - bk_1/a1. 1 53 Applying Lemma 10 we obtain: t+l bk-l + s(2al -1)ak_l < 5(2al - % -1)bk-l < 5(2 -1)bk_l. a1 1 LEMMA 14 b + as < 11(2t+l - 1)B for k > 1 ' k k = k-l ' PROOF: When k = 2, we have that b2 + sa2 = 2a1bl , 2 2 r 2 2 2albl + s(a1 + blm) = 2albl + s(l + 2b1m) + 2bIVh + s. = 2albl(l + b1 ) + s < dalbl + s = Libl(al - l ) + 2b + s. als Applying Lemma 10 we see that the right hand side is < t+l sol(2t) + 2bl/al + s < sb1(2t) + 53 < ab1(2 - 1). This proves the lemma for k = 2. Let us assume that the lemma is true for k g n-1 and prove the lemma by induction. bn + 83n = a1bn-1 + blan-l + 8(alan-l + blbn-lm) = bn_l(al + bIVh) + (D1 + sal)an_1 < 2albn-l + 2salan_l. Applying Lemma 10, the right hand side is less than Ft+l . t+l : - + (2 + % )bn-l + 2salan_1 (2 l)bn_l +(l +‘% )bn-l l 1 __ r t+1 - ‘ Ban-l + s(2al - 1)an__l — (2 l)bn_l + bn-l + Ban-l + bn-l/al + (2al - 1)san_l. Applying Lemma 15 and the induction hypothesis, the right hand side is less than - + t+1 t+‘ (2t 1 - l)bn_l + 4(2 - l)bn-2 + 5(2 * - 1)bn = ~l . . + uk2t l - l)bn_l. This completes the proof of the lemma. »..v _ .r r -t+l 2r anmA 13. 2 bk + 2 sak g 4(2 -1)bk_l + h(2 -l)bk for all r when k > 1 and r > 1 when k = l. 5h PROOF: Lemma ll tells us that 321 < bl which implies that hbl + heal < h(5bl) and the lemma is proved for k = l and r = 2. If k > 1 and r = 1, then we have t+1 t+1 2bk + 2ssk < u(2 - 1)Bk-l + bk egbk < h(z -1)Bk_1 + hbk. Let us assume that the lemma is true for r = n-1 and prove the lemma by induction. Let r = n. Applying Lemma 11 and the induction hypothesis we obtain: 2nb + 2nssk = 2(2n‘1b + 2n‘lsak) < k t+l k 4(2 - 1)sk_1 + h(an‘l - 1)bk + 2n'1bk +£(2n‘1nk < M2t+l - 1)Bk_1 + 11(2’1”1 - 1)bk + h(zn‘1)bk = t+l n h(2 - new1 + h(z - 1)bk. We can now summarize Lemmas 10 to 15 as follows: LEMMA 16. :1k + sok g th-l and s > dk/ck for k g 3. We will now proceed to show that the units do not belong to A(m) and that the integer T does belong to A(m). It is obvious that if b1 # 1/2, then the units do not belong to A(m). We make use of the following lemma to show that the units do not belong to A(m) when b1 = 1/2 k-l LEMMA 17. ak > 2 a1 + 5 when k > 1, m g 21 =1 and b1 = 1/2. 55 im : l g m/u - l > h implies al > 2. a2 = a: + bim > 2al + h > 2al + 5. Therefore the lemma is true for k = 2. Let us assume that the lemma is true for k g n-1 and prove the lemma true by induction. Let k = n. For m g 21 we have the following inequalities: Li - m < ~11 < ~Li/mb;_l. 2 2 2 L‘Imbn-l - m bn‘1 < ”(+0 " 2 2 2 .2 2 dag-l - bn-lm = ”an-l - Limbn_l + Limbn_l - mzbfr1 < h-h = O. &n_l < (bn_lm)/20 a = Elan-l + blbn-lm > 2an-1 + (b n m)/2 > 2am n—1 -1 + an-1° Applying the induction hypothesis to the right hand side ' m-a. n-y we obtain: an > 2an_l + 22ai 4- 5 = 22311 + 5. L3: L5] THLORBM 2. The units do not belong to A(m). PROOF: If D1 = 1/2 and m g 21, then Lemma 17 tells us that no unit in SJ for j > 1 can be used to represent the number two as a sum of distinct units. It can be seen by inspection that the number two cannot be written and S . as a sum of distinct units using only units in S0 1 «a > 2§:a when k = 15 we have that a k ...1 + b for k > 5. Thus no unit in Sj for j > 5 can be used in the representation of the number five. By inspection it can be seen that the number five cannot be represented using only units in 30’ 31: 32 and S}. This completes the proof. THEOREM 5. The number T belongs to A(m). PROOF: ,We may consider every integer P of D(m) as a point P in the plane with rectangular coordinates x and y where x and y are either integers or halves of odd integers. We will fill the plane with concentric diamonds whose diagonals are the coordinate axes. The y intercepts of the sides of the k diamond are : 2Dk and the x intercepts are :ZDk/s. For every point in the k diamond we have: k g y + sx g 2Dk’ I n) U A k=y-SX§2Dko Let V be the set of all divisors of T which are not contained in V for some 3 > 0. It will be shown that 3 every integer lying in the k diamond can be written as a sum of distinct divisors of T contained in the first k + 1 sets v, v v --~,v 1’ 2’ k' The divisors in V3 and the diamonds are symmetric with respect to both coordinate axes. Thus there is no loss in generality by considering only points in the first quadrant, on the positive x axis and on the positive y axis. Let us first consider a representation for every integer in the first diamond in the case where N(u1) = -l. 2t+1 Because - l > 2al - l > 2b1/s - 1 > 2bl - 1, every rational integer between 0 and 2b1 and between 0 and 2bl/s can be written as a sum of distinct divisors of 2t. Thus 57 every integer in the first diamond can be written in the form: 25.2”(1 +\/m)/2 1%:22. Let us now consider a representation for every integer in the second diamond in the case where N(u1) = +1. 2t+2 - l > hal - l > hbl/s - 1 > hbl - l. 2al + 2t+2 - 1 > bal - 1 > 6bl/s - 1. 2bl + 2t+2 - 1 > 6bl - 1. Applying the above inequalities we see that every integer in the second diamond can be written either as 2r(1 +‘vsi/2 t 22 or as (2r + 2b1)(l +-¢h)/2 t 2z :261- Therefore when N(ul) = - 1, every integer in the first diamond can be written as a sum 01 of distinct divisors in the sets V and V1. When N(ul) = + 1, every integer in the second diamond can be written as a sum of distinct divisors in the sets V, V and V . 1 2 Let us assume that every integer P' = x' + ytvm in the first k-l diamonds can be represented as a sum °k-1 of distinct divisors of T without using any divisors in the sets V3 for J > k-l, and prove the theorem by induction. Let P be any point (x,y) in the k diamond where x and y are either rational integers or both halves of odd rational integers. If P lies in the k-l diamond, then the theorem is proved. If P does not lie in the k-l diamond, then we have the following inequalities: 58 < y + sx § 2Dk, x g 0, y g 0. We divide the possibilities into three cases. In Case 1 the point lies on or above the straight line y - sx = 2dk - 2Dk-l' In Case 2. the point lies on or below the straight line y - ex = -23ck + 2Dk-l' In Case 5 the point lies between these two lines. Case 1. ZDk-l < y + sx é 2Dk, y " 8X .2- 2dk -2Dk‘l, x g 0’ y g 00 If we subtract 2dk from y we obtain a point P' with rectangular coordinates x' = x and y' = y - de. y' + sx' é 2D k - de = 2D k-l’ y' - sx' g de - 2Dk-1 - 2dk = -‘Dk-l’ X'=X§Oo The resulting point P' lies in the k-l diamond and thus can be written as a sum ok-l of distinct divisors in the first k sets of divisors V, V1, °--, Vk-l’ P' - Ok—l’ P' = P - ZdRJm. Solving for P we obtain the following: P = Ok-l + adkvh = Ok-l + (°k + dkvh) + ('°k + dkvm)' This completes the proof of the theorem for Case 1. 59 Case 2. 2Dk-l < y + sx 5 2D y - sx ; aDk-l - 2sck, y g 0, x g 0 If we subtract 2ck from x,we obtain a point P' whose rectangular coordinates are x' = x - 2ck and y' = y. I V - .. :g y + 8x g 2Dk 2sck < 2Dk 2dk 2Dk-l' y' - sx' g 2Dk-l - 2sck + 25ck = 2Dk-1’ y'=yg0. The resulting point P' lies in the k-l diamond and thus it can be represented as a sum Ok-l of distinct divisors in the first k sets of divisors V, V -°°,V 1' k-l' P' = P - 20 . Solving for P we obtain: °k-1' k P-= ok-l + 20k = ak_1 + (ck + dka) + (ck - kom). Thus the point P can be represented as a sum of distinct divisors taken from the sets V, V1, 00°,Vk. This completes the proof of the theorem for Case 2. Case 5. ZDk-l < y + BK § 2Dk' -28ck + 2Dk-l < y - sx < 2dk - 2Dk-l' If we subtract dk from y and ck from x, we obtain a point P' whose rectangular coordinates are x' = x - ck andy'=y-dk. 60 Applying Lemmas 9 and 15, we obtain: ' V r - - b = y + sx g 2Dk dk sck < 2Dk 2dk 2Dk-l' ' - - - ‘ = - y' - sx' < 2dk - 2Dk-l - dk + sck g th_1 - 2Dk-l = 2Dk-l' y' - sx' > -2sck + 2Dk-l - dk + sck = 2Dk-l - d - sc 2 2Dk-i ‘ “Du-1 = 'ZDk-1° The resulting point P' lies inside the k-l diamond and thus it can be represented as a sum Ok-l of distinct divisors in the first k sets of divisors V, V1, "',Vk_1. I: I: .- — o P Ok-l' P P ck dkvm. Solving for P we obtain. P = Ok-l + ck + dkvm. Thus the point P can be represented as a sum of distinct divisors taken from the sets V, -°- , Vk' This completes Case 5 and the theorem is proved. 61 CHAPTER V THE GAUSSIAN FInLD In this chapter we will focus our attention upon the domain of integers G in the Gaussian field. The integers in C are numbers of the form x + iy, where x and y are rational integers and i =‘J-1. The units of G are the numbers +1, -1, i and -i. because we have only four units in G it is impossible to represent every integer in G as a sum of distinct divisors of any one integer n of G. However we can define a set A of integers in G whose properties are analogous to the properties of the rational integers belonging to the set A defined in chapter one. DEFINITION: A is the set of all integers {n} in G which have the following properties: n belongs to A if and only if there exists a rational integer n' such that every integer x + iy in'G satisfying the inequalities -n' g x'g +n' -n' g y g +n' and no other integer in G, can be represented as a sum of distinct divisors of n. If we represent every Gaussian integer as a lattice point in the plans we can see that geometrically we have a situation analogous to the situation in Chapter I . In Chapter I we represented every integer on the real line between -a and +a as a sum of 62 distinct divisor of a rational integer. Here we are going to represent as a sum of distinct divisors of a Gaussian integer every lattice point inside a square whose center is at the origin and whose sides are given by the equations, y = :n' and x = tn'. LEMMA 1. If n belongs to A and d divides n, then d is either real or pure imaginary. PROOF: Let n be a Gaussian integer belonging to A. Let dj = a3. + ibj be the divisors of n. IfZZaJ = n', every divisor lying in the first or fourth quadrants or on the positive x axis must be included in the summand. If E bj = n', every divisor lying in the first or second quadrants or on the positive y axis must be included in the summand. Thus the integer n' + in' cannot be represented unless every divisor lying in the first quadrant is used twice. THEOREM 1. A Gaussian integer n belongs to A if and only if n is an associate of a rational integer having one of the following factorizations as a product of primes: i) n = 5t for all t g 0. t k t3 ii) n = 5 17-pj with 5 < pr < ps for r < s, t g l 1‘1 “A 0 ti g l, p. f 5 mod A and pi-l J T- fori = l, 2,...,k0 J PROOF: By Lemma l,n must be a rational integer and all divisors of n must be rational integers or the associates of rational integers. If we factor n as a product of primes in the Gaussian field, each prime factor must be a rational prime which is also a prime in G. Thus if n belongs to A, it has the form 1) or ii). If n has one of these forms, then.Theorem 2 of Chapter I tells us that every rational integer between -o(n) and +c(n) can be represented as a sum 2:dj of distinct rational divisors of n. Every number of the form iy for -o(n) < y < +o(n) can be represented as ide, where the C11: are distinct rational divisors of n. If we let 0(n) = n', every number in the square can be written as Zdj + iidk = 2dj +£idk. THEOREM 2. There exist arbitrarily large square free rational integers in A. _ _ _ k PROOF. Let nl — 5, r12 -21 and nk fg1p3 be the prouuct of the first k rational primes which are congruent + 2 or n to 5 modulo 4. Either n + h is congruent to k k 5 mooulo u and therefore divisible by a prime q which is congruent to 5 modulo b. However (h,pj) = 1 implies that (PJ,Q) = 1. Thus for k > 1 we have; "A q nk + h = nk + 5 + l < 0(nk) < 20(nk) + l. “A pk+1 When k = l we have, 7 < 8 + 1 = 20(5) + 1. Thus nk belongs to A for all k. 6h CHAPTER VI ItaGINARY QUADRATIC FIELDS m.# l modulo 4 In this chapter we will focus our attention upon the integers in the quadratic fields R(m), where m is square free, less than -1 and congruent to two or three modulo four. The domain of integers D(m) in R(m) is the set of numbers of the form x + yvm, where x and y are both rational integers. The only units in D(m) are t 1. DEFINITION: A(m) is the set of all integers {n} in D(m) which have the following properties: n belongs to A(m) if and only if there exists a rational integer n' such that every integer x + me in D(m) satisfying the inequalities -n' g x g n' and -n' g y g n' and no other integers in D(m) can be represented as a sum of distinct divisors of n. We shall identify with every integer x + me a point P = (x,y) in the plane. An integer n in D(m) belongs to A(m) if and only if every point in a square, whose center is the origin and whose sides are parallel to the coordinate axes, and no point outside of this square can be represented as a sum of distinct divisors of n. By using exactly the same argument as that used in 65 Lemma 1 of Chapter V"we can prove the following lemma. LEMMA 1. If n belongs to A(m) and d divides n, then either d = x or d = yVh, where x and y are rational integers. m = -2 Every integer in D(-2) can be factored uniquely as a product of primes in D(-2). Lemma 1 tells us that if k n belongs to A(-2), then n = ZtTT'pivm, where each p1 is i=1 a rational prime which is also a prime in D(-2). Therefore J p E 5 or 7 modulo 8. Let n = ZtIT'p for l 5 J 5 k- 1 J 1:1 1 - The largest positive rational integer which can be written as a sum of distinct divisors of n is 0(nk). In order to represent every rational integer between -a(nk) and +a(nk) as a sum of distinct divisors of n, nk must satisfy Theorem I of Chapter I. We can now prove the following theorem. THEOREM 1. n belongs to A(-2) if and only if n = nkvm, where nk satisfies Theorem 1 of Chapter I and p1 = 5 or 7 modulo 8. PROOF: If n belongs to A(-2), Lemma 1 tells us that nk must have the form ZtTTpi, where p1 5 5 or 7 modulo 8. In order to represent every rational integer between -o(nk) and +o(nk), nk must satisfy Theorem 1 of 66 Chapter I. In order to represent every integer of the form yV-2 for -o(nk) g y "A +0(nk) we must have n = nkV¥2 Conversely if n = nkV-Z, every integer in the square can be written as Z d +(Z: d' \/-2. Because the d/nk d'/nk maximum value for each sum is 0(nk), no integer outside the square can be represented as a sum of distinct divisors of n. THEOREM 2. A(-2) contains integers n with arbitrarily large square free nk. k PROOF: Let nk = 211'p1, where p1 = 5, p2 = 7 and i=1 R TT‘p1 is the product of the first k primes which are i=1 congruent to 5 or 7 modulo 8. In order to prove the theorem we must show that nk satisfies Theorem 1 of Chapter I for all k. If k =1 or k = 2, n satisfies this k condition. For k > 2 we have that at least one of the numbers nk/Z + 2, nk/2 + h, nk/2 + 6 or nk/Z + 8 must be congruent to 5 modulo eight and therefore must be divisible by a prime (q) congruent to 5 or 7 modulo 8. Because (q,2) = (q,h) =(q,b) = (q,8} = l, we have (q,nk) =l. Therefore pk+l g q g nk/Z + 8 < 20(nk) + l and nk satisfies Theorem 1 of Chapter I for all k. 67 m < - 2 In this section we will consider the quadratic fields R(m), where m is square free, less than -2 and not congruent to l moaulo a. This implies that m is congruent to 2, 5, 6 or 7 mOdulo 8. Let h = -m. h is congruent to l, 2, 5 or b modulo 8. .THLOREM 3. If a + me divides ZrMm, then either a or b must be zero. PROOF: Let us suppose that a + me divides vam and that neither a nor b are zero. This implies that ad - mb2 divides 22r 2 2 m or that a + hb divides 22 rh, where a, b, h and r are rational integers and r and h are positive. 2 a + hb2 = 2th', (1) 0 MA t §;2r , h"h. We may rewrite equation (1) as hue/w)2 +(h/h'>b2 = 2t, (2) where a/h' and b are non-zero'rational integers. The left hand side of equation (2) is greater than h' + h/h' > h' + h/h' g 4. Thus t g 3. If either a or b is an even rational integer, then the other must also be even and equation (1) reduces to (a2/4> + h(ba/u) = 2t'2h'. (5) where ad/h and bZ/h are rational integers. If either 68 a2/h or bd/n are even rational integers, we may continue our method of descent and obtain (a/L.)2 + h(b/M2 = 2t-hh' where a2/lb and ba/lb are rational integers. Continuing in this way we obtain (ea/28> + h(bZ/23> = 2t'3hv (u) where either t - s < 5 or both (a2/28) and (ha/23) are odd rational integers. Because of the results following equation (2), we cannot have t - s < 5. Therefore a solution to equation (I) with a and b even rational integers implies a solution to equation (1) with a and b odd rational integers and t g 5. When a and b are both odd rational integers we have a2 + hb2 E h + l E 2, 5, 6 or 7 mod 8. Therefore there exist no solutions in non-zero rational integers to equation (I) and thus the theorem is proved. THEOREM u. T = 2t¢m belongs to A(m) for all t. PROOF: Theorem 5 tells us that the only divisors of T are powers of 2 and Jm times powers of 2. Every rational integer between -o(2t) and +o(2t) and no other rational integer can be written as a sum of distinct QiViSOPS or To Thus every integer x + me in D(m) where -o(2t) g x g +o(2t) and ~o(2t) g y g +o(2t) can be written as Z td + m2: td'. No other integer d/2- d'/2 can be so represented. 69 CONCLUSION In this dissertation the problem of characterizing the sets A and A(m) has been completely solved for the rational field and the fields where m = 2, m = 5, m = -l and m = -2. In every other quadratic field except where m is negative and congruent to one modulo four, there exist infinitely many integers which do belong to A(m) and infinitely many integers which do not belong to A(m). However in these fields we do not have a complete. characterization of the integers which do belong to A(m). One of the many difficulties which arises is that if a + bvm divides a given integer, then a - me need not be a divisor of this given integer. Thus it is impossible to separate the divisors into sets which are symmetric to both the x and y axes. When m is negative and congruent to one modulo four the set A(m) is empty. This arises from the fact that integers of the form x + y¢m, where x and y are halves of odd integers cannot be represented using only divisors of the form di and divm where the di are rational integers. Another area for further investigation is in the study of the behavior of sums of distinct divisors of integers in fields of higher degree. 2. 70 BIhLIOGHAPHY Cahen, M.E., Sur un theorme de M. Stiel es, Comptes Rendus des Seances deLLTAcademie dis c ences, 116 (1895). #90. Hardy, G.H. and wright, E.M., An Introduction to the Theory of Numbers, Oxford?’ Clarendon Press, I95h. MacDuffee, 0.0., An Introduction to Abstract Algebra, New York, John—Wiley andTSons, Incorporated, 1950. Nagell, T., Introduction to Number Theory, New York, Jehn Wiley and Sons, Incorporated, 1951. Pollard, H., The Theogyof Algebraic Numbers, buffalo, The Mathematical AssocIaEIOn of America, 1950. Stewart, B.M., Sums of distinct divisors, Amer. Jo'ure 0f Math., WW: (1351:), :29-2850 15 Q.’ MICHIGAN STATE UNIVERSITY LIBRARIES II lllll lHlIllll "Ill! 3 1293 3502 6735 I!