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ABSTRACT

In a recent paper B.M. Stewart (6] discussed sums
of distinct positive divisors of rational integers. 1In
this dissertation these results are generalized. Let
o{ (M) be the number of positive integers n which can be
written in the form n =Xd, where the d are distinct
positive or negative divisors of M. The author has

proved that (M) = o(M) if and only if n is of the form

boe X 8
n=23%T] Py where b and c¢c are not both zero,
i=1

LN J bc
3<p <P < Pys» P) 520(2737) + 1 and pyy =

J a
20(2°3° 1T p, ) + 1 for § =1, 2, *=+, k-1. The
1=1

function o (M)/o(M) 1is everywhere dense on the interval
O to 1.

In the gquadratic fields x + yV? and x + yV@ every
integer in the field can be written as a finite sum of
distinct units, the algorithm produced depending upon
the representation of each integer of the fleld as a
lattice point in the plane. In any real quadratic field
there exist infinitely many integers n, having the
property that every integer in the field can be written
as a finite sum of distinct divisors of n. Explicitly

if a + b/m 1s the unit of smallest absolute value for



which a > O and b > 0, then any integer 2t+llm where
Zt > & satisfies this condition. The proof agaln depends
upon the representation of each integer of the fleld as
& lattice point in the plane.
For the imaginary quadratic fielas the set A(m)
1s defined where an integer n belongs to A(m) if and only
i1f there exists a rational integer n' such that every
integer of the form x + y/m where -n' < x < n' and
-n' s y s n' ana no other integer can be représonted as
& sum of distinct divisors of n. It is shown that for
m = =2 numoers of the form RV-Z beiong to A(-2) where

a
R =1rp, 1, P; =2, 5 0or 7 mod 8 and &« (R) = o(R).

dhen m = =1, numbers of the form R = py 1

belong to

A(-1), where Py = 3 mod 4 and o (R) = o(R)s When m < =2
and m £ 1 mod 4, integers of the form ZtJm belong to A(m).

If m < -2 and m = 1 mod 4, then the set A(m) is empty.
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INTRODUCTION

In a recent paper B.M. Stewart [6] discussed sums
of distinct positive divisors of rational integers. In
this dissertation these results are generalized and
extended. In Chapter I these results are extended to
sums‘of distinct divisors of rational 1ntegers where the
divisors may be positive or negative. In Chapters II
throughlv sums of distinct divisors of integers in the
real quadratic fields are discussed. Sums of distinct
divisors of integers in the imaginary quadratic flelds
are investigated in Chapters Vv and VI,

In each case a maximal set A or A(m) is defined
and the propnlem is to find which integers of a given
field belong to thls set. For several flelds a complete
characterization of the integers belonging to this set
is given. For the remaining fields we show that the
set A(m) is not empty by exhibiting infinitely many
integers which do belong to A(m).



CHaPTLLit I
THE rATIONAL FI-LD

For a given rational positive integer n let «(n)
be the numoer of positive integers which can be written
as the sum of dlstinct divisors of ne The divisors may
be positive or negative. Let A be the set of all integers
for which «(n) = o(n).

LeMia 1. If (n,2) =1, (n,3) =1 and n # 1, then
n does not belong to A.

Lemma 1 18 true because ¢g(n)=3 cannot be written
as & sum of distinct divisors of n.

LikMA 2. If n=2t, then n belongs to A.

Lbliva 3¢ If n = §t, then n belongs to A.

PROO¥: The lemmsa is true tor t = 1. Assume that
the lemma is true for t = k-1. Let t = k. Every aivisor
of Bk-l is & divisor of §k. By the induction hypothesis

k-1 k
) = 3°=1 can be written

and thus as divisors

every integer between 1 and o(3

as & sum of distinct divisors of 3%¥71

k k k k k
of 37+ kvery integer from 3°-1 + 1 = 3°+1 = 3"=-(3"-1)

to 5k can be written as 3k minus a sum of distinct

k-1

aivisors of 3 ~, Every integer from §k to o(Bk) =

jgfl-l = 5-5“-1 = 5k+ §k-l = §k + o(}k-l) can be written
c 2 el

as 5k plus a sum of aistinct divisors of §k-l. Thus by



induction n belongs to Ae.
LA 4o If n belongs to A and p 1s an oud prime
with (n,p) = 1, then np belongs to A if and only if o(n)

g °lo
PROOF: Suppose that n oelongs to 4 and o(n) < p-l.
The numbers p-1 and p*l cannot be represented as sums of

adlstinct divisors of np since the largest number which

can be represented without using p is o(n) < p-1. The

smallest numoer which can be represented, using p, 1s

p=o(n) > p=- E'l = ptl. Thus the conaitlon 1s necessary.

We now prove that the condition 1s sufficient. Suppose

that n belongs to A and that o(n)z p-l. Let r be any

integer such that 0 5 r < o(n). Every integer between

rp and rp + o(n)can be written as p> d + = d'. Now
d/n d'/n

let r be any integer such that 0 g r+l < o(n). Every

integer from rp + p-1 +1 = (r+l)p - (p-1) to (r+l)p

can be written as p§d - 2_d', Thus np belongs to A.
d/n d'/n

LebMMA 5. If n belongs to A and (n,p) = 1, then

npt belongs to A if ana only if o(n) z p-1l.

PROOF: The condition is necessary in order to



represent p-1 _ . p+l. Suppose that o(n) z p-1. The

lenma was proved true for t = 1 1in Lemma 4. Let us assume

that the lemma 1s true for t = k-1 and prove it true for

k-1

t = k by induction. Every dilvisor of np is a divisor

ot npk. Thus by the induction hypothesis every integer

k-1

from 1 to o(np ) can be written as a sum of distinct

daivisors of npk. Every integer from pk - a(npk-l) to

pk can be wriltten as pk - -ld‘ However we have that

d/np
Kk

k-1 k=1 k
o(np™ 7) + 1 =1+ g(n)a(p ") 21+ (p=1)(p'-1) = p +1
21 *lendlib 2ol =Pt

= p* - Qk-ll = p* - 2-1)(%k-1) 2 pk- o(n)o(p¥™d) =
p-
pk - o(npk-l). Thus every integer up to pk - o(npk'l)

can be represented. Let r be any integer such that

k k'l)

0 sr soaoln). Every integer from rpk to rp + o(np

can be written as kad + 2:-_-_- d'. Now let r+l < a(n).
d/n d!'/np

kvery integer from (r+l)pk - o(npk-l) to (r+l)pk can be

written as kad -
d/n d'/np

+ o(np¥™1) +1 2 (r+1)p¥ - o(np

=;4'. Thils proves the lemma

k k-l)

since rp

t
LEkiih 6o Let n = -%-pii, where p, < pJ for i<j.
i=1
If n dees not beleng te A, then nqs does not belong te
A for all primes q > Py and all s > 0.

PROOF: Let n, = idépi for j s k. Let py =ng = 1.



Since n does not belong to A there must oe & smallest

integer j such that n, does belong to A and n does not

J ‘ j*l
belong to A. By Lemmas 2, 3, and 5, o(nj) < (pj+l- 1)/2.

Let R be the sum of all divisors of n greater than or

equal to Pyeye We will show that R - (pj+l- 1)/2 cannot

be represented as a sum of distinct divisors of n. If all
the divisors of n which are greater than or equal to pj+l
are used positively, the smallest integer which can be

represented 1s R - o(nJ) >R - (pJ+1- 1)/2. 1If any

divisor d 2 pJ+l is not used positively, the largest number
which can be written as a sum of distinct divisors 5? n is

R=-d+ o(nj) <R =Pyt (pj+1-l)/2 <R - (pJ+l - 1)/2.

As a direct result of Lemmas 1 through o6, we
can now state the following theorems: )

THEOREM 1. An even integer belongs to A if and
only if it has one of the two following factorizations as
a product of primes:

2t, for all t 2 O.

t

t k i

il) n =2 P
j:l i

i) n

with P, < Pg forr<s; tz1,

THEOREM 2. An odd integer belongs to A 1f and only

if it has one of the two following factorizations as a



product of primes:
1) n = 3% for all t 2 O.

ty

_ st Xk .
ii) n = 3 flipi with 3 < P, <pg forr<s; tzl

t, 21 and p;~1 < o n for 1 s j < ko
1 2 ! = 2 =

1
12391

THEORsM 3. There exlst arbitrarily large square
free integers in A.

PROOF: Let n, = ;E;pi be the product of the first
k primes in their natural order. For every k,nk belongs
to A since Pysny; ¢ lc< O(nj-l) +1 < 20(nJ_1) +1
for all j.

LEMMA 7. If p is a prime such that p > 2¢(T) + 1,
then o(pT) = 2«(T)[X(T) + 1].

PROOF: Lvery positive sum of distinct divisors
of pT can be written as n = n,p + n, where n, is zero
or any positive number which can be written as a sum of
distinct divisors of T and n, is zero or any positive or

negative lnteger which can be written as a sum of

distinct divisors of T. The maximum value for n, is o(T).

Since n,p *+ o(T) < nyp + (p-1) = (n;*l)p - p + p-1 =

(n;+1)p = (p+l) < (n;+1)p - (p=1) < (n1+l)p - o(T),

there is no overlapping. We have [(T)+1] choices for

n,y and 2X(T) + 1 choices for n, except when n, is zero.



If n; is zero, then n, must be positive. Thus we have
A(pT) = [(T)+1][2X(T)+1] - [X(T)+1] = 2X(T)[X(T)+1].

DEFINITION‘: S(Mj =ol(M) «
a(M)

THEOREM 4. 8(NM) 18 everywhere dense on the
interval 0 to 1. a

PROOF: Given any x and any y such that 0 <x <y
< 1, we seek an integer R such that x < s(R) < y. Let

R = pM where M belengs te A and p > 20(M) +1. By Lemma T

s(R) = s(pu) = 2a(§l§oém)+1! = 2[aéME+l]. We seek an

integer M and a prime p satisfying the above conditilens

and such that 1 < +1 <l. Let u =1, u(l+g) =1
y 2[0EE)+I| X y X

and v = 2u[o(M)+1]. We know by Theoréms 1 and 2 that we
can find an ki belonging to A which is arbltrarily large
se that v = 2ulo(k)+1] can.be made arbitrarily large.
B3y the Cahen-Stleltjes theorem [1] we know that for
sufficiently large v there exists a prime p such that
v-1<p< (v-1l)(1+g)= v(1+f) -1 -€ < v(1+E) - 1. We
new have (v-l) < p < v(1+g) - 1.

v <p + 1< v(l+tg),

2ulo(d)+1] < p + 1 < 2ula(M)+1][1+E],

l< +1 <l.
X



CHAPTER II
SPECIAL QUADRATIC FIELDS

In this chapter and in the chapter following this
we will focus'our attentlon upon the integers in the
quadratic field R(m) = x + y/m , where m 1s square free,
greater than zero ana not congruent to one modulo four.

The domain of integers D(m) of R(m) are the
nunbers of the form x + y/m where x ana y are rational
integers. The units are those numbers of D(m) where
xz - my2 = +1o Each domain has an infinite number of
units and a basic unit such that if u; = a; + blﬂm is the

unit of smallest absolute value for which both x and y

are positive, then every unit in the domain can be written

:u? forn =0, t1, +2,°°",
Let uJ = u{ tor j =0, 1, 2,°**s In this way we

may divide the units into one set S = {fl,-i} of two

units and infinitely many sets S, = {ui,-ui,l ,:lz of

u, u

171
four units. Every unit oelongs to one &and only one set.
DEFINITION: A(m) is the set of mtegers{n} in

the fiela K(m) which have the following property: n
belongs to A(m) if anc only 1if every integer in the domain
D(m) can be written as a finite sum of distinct divisors

of ne.

DEFINITION: A'(m) 1s the set of integers {n} in



the field k(m) which have the following property: n
pelongs to A'(m) if and only if every integer in the
domain D(m) can be written as a finite sum of distinct
associates of n.

We will show that for all values of m the set A(m)

is not empty ana that for m > 2 the set A'(m)is empty.

m=2
In this fleld u; =1 + V2, u, = 3 + 2/2,%¢+. Let

ay be the rational part of uy and b1 be the coefficient

k
ot Y2 in u,. Let B, = Dy
1 Kk g1

Since the integers of D(2) are given as x + y/2
where x ana y are both rational integers we may consider
eny integer P of D(m) as a lattice point P in the plane.
we will fill the plane with concentric sgquares whose
centers are the origin and whose diagoneals are the

coorainate axes. The length of the diagonal of the k
square is ubk. It will be shown that every integer lying

in the k square c&n be represented as a sum of distinct

units belonging to the first k sets SO,Sl,'°-,Sk.

PROOF: &, 41 *b, V2 = up ) = u (14/2) =

(ak+ka2)(l+/2) = (°k+2bk) + (ak+bk)V2. Therefore a1~

a, + Zbk ana bk+1 = a, + bk.
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Leiba 2. & + b <48, _; for all k > 3.

PKOOF: The lemma is true for k = 3 and k = L.
Wwe will assume that the lemma 1s true for 3 < k < n and

prove the lemma true by lnduction. Let k = n + 1.Using

Jen.y Y T

Lenma 1 we have: a 41 + bn+l = Zan + 5bn

= a + b

n-1 n-1 T u4e + ob = a + Db

n-1 n-1 *ho, - Lo

n-1

+ b +

+ b + 2b__. + Lb n-1

+ ¢ =
ob n-1 n-1

n-1 8h-1 8n-1

u(bn_l + bn). Using the induction hypothesls we find that
the extreme right hana siae of the equation 1s less than
or equal to b ot u(bn_l + bn) = uBn.

Livinhip 50 ak g bk.

PROOF: & = &8, _, * 2bk-l

v
o
<
1
-
+
o
X
]
—

LishbiA 4. @&+ b 2 2B, ;.
PRUOF: The lemma 1s true for k = 1. Assume that

the lemma is true for k = n. & 41 + bn+l = an +2bn + an + bn

By the inauction hypothesls the right hand side of the

. ‘ + = B .
equation is greater than or equal to 2bn 2Bn-l dBn

THEOREM 1. The integer 1 belongs to A(2).

PROOF: By inspection it can be seen that every
integer in the first three squares can be represented as
@ sum of alstinct units 1n the seta~SO,Sl,S2 and 85. Let

us assume that every integer in the first k-1 squseres can
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be written as a sum of distinct units In the first k sets

of units, SU,S °*e,S and prove the theorem by induction.

1" k-1
Conslider any polnt inside the k square., Since the square
ana all sets of units are symmetric with respect to both
axes, there is no loss in generality by assuming that the
point lies in the first quadrant, on the positive x axlis
or on the positive y axis. If the point lies inside the
k=1 square a required representation is assured by the
induction hypothesis. Therefore consider a point with
rectangular coordinates (x,y) which lies in the first
quadrant, in the k square but not in the k-1 square.

Thus we have: 2B <x +y<eaeB

k-1 k’

ng, X O

v

we divide the possibilities into three cases. 1In

Case 1 the point lies above the line y - x = 2(b, = B, ;).

In Case 2 the point lies below the line y-x=2(Bk_l-ak).

In Case 3 the point lies on or between these two lines.
Case 3 actually exists because Lemma 4 implies that

Dy = Bygay 2 By T 8

Case 1. 2g _; <x*+y s 2B,y
y = x>2(b, = B,._4),
yz0, x 2 0.

If we subtract Zbk from y, we obtain a point P' with
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rectangular coordinates x' = x and y' =y - Zbk' Thus
X' ¥ y' < 2b, - &b, = 2B, ¥ - x' g2 2(bk-r3k__l)-¢bk ==2B, 1,

x' 2 O« Thus the point P' lies inslide the k-1 sqguare and

oy the inauction hypothesis can be represented as a sum Op-1

of aistinct units in the first k sets of units, P'=0,

P! = p - abkda. Thus P = o, _; +2b V2= o, _, * (a,+b,/2) +

(-ak+ka2) and the theorem 1s proved in Case 1.

Case 2. 25, _; =X %+ y 5 2B,

1A
n
o

y - Xx =

yz 9, x 2 O,
If we subtract Zak from xy,we ottain a point P' with
coorainates x!' = x = 2ak and y' = y. Thus we have:
2B, - Za

x!' + y! = 2B

A

K s 2B, - 2b k-17

k k

y'-x'

A

y' =z 0. Thus the point P' lles inside the k-1
square and can be represented as a sum g, _; of distinct

units in the first k sets So,"',Sk_l.P' = Op.1e

p' = p - 2ak. Thus P = o + 28.k =01 " (ak+bkl2) +

k-1 K

(ak-bRJZ). Thus the theorem is proved for Case 2,
Case 3. 25k~1 sxt+tys 2Bk’

2(bk-Bk_l) 2y -x2 2(Bk_1-ak).
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If we subtract a, from x ana bk from y we obtailn

a point P' whose coordinates are x' = x - a, and y' = y-bk.

Uslng lewmna Z we ootain the following inequalitiles:

' ' - - - 4} = -
X! vyt zeby -oa m b 2By - AB .y = 2By,

x!' + y' < Zbk - a =D 5B -2eb = 2Bk-1’
' - ' -~ -f - r~N - - - T
y x' 2z eB,_, -ea, =D _* a 225 4 &, - b 2z =2B, ;>

! = x! 2 - -} . = - 2K
y x' < 2b 2Bk-l b, + a a, ¥ b, ZBk-l <

W81 T 2By T 2By
Thus the point P' lies inside the k-1 square and

can be represented as a sum ¢ of distinct units in the

k-1

first k sets of units. P' =g, ;. P' =P - (ak+ka2).
Thus P = o, _; * (ak+bEV?) and the theorem 1s proved.

COROLLARY 1. Every integer 1in D(2) 1is in aA(2).

THEOREM 2. The only integers in A'(2) are units.

PrnOOF: It was proved in theorem 1 that the units
belong to A'(2)Let X be any integer which is not a unit
ana let Y be any integer which can be represented as a
sum of aistinct associates of X. Using norms we obtain

from Y = 3X, = Z)Lui = X3 uy the following equation:
N(Y) = N(XZui) = N(X)N(Zui). If the norm of X

does not divide the norm of Y, the required representation

is not possible,
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m=3

In this fiela u, =2 + V3, uy, = 7+ L3,--.. Let

b, be the coeificient of

a, be the rational part of ug, by

JB in uy and Bk = ;gibi. we will first prove that the

units do not belong to A(3).

LEwNA 1. 2bk > ak for all k > 1.

PROCF: dbk = aak_l + “bk-l > 2ak-l + 8, - 2ak-1 = a,.

k-1
LENMA 2. ak>2z_ai+3fork>2.
i=1

PROOF: The theorem 1is true for k = 5; Let us
assume that the theorem 1s true for 2 < k < n-1 and prove

the lemma by induction. Let k=n. Using Lemma 1 we obtain
n=2
8, =28 ) * 3, >80 ey >ee Zfziai *3=
-1
- + 3z,
THiOkweld 1o The numbers 2 and -2 cannot be written
as a sum of distinct units of D(3).
PROOF: Ve can see by inspection that neither 2 nor

-2 can be written as a sum of distinct units in SO,Sl,S2

eand S, alone. Assume that ¢ can be represented, 2 =Zvi

5

where the v, are units. 1f vy and -v;1 both appe&ar in the

suuunana their sum is a multiple of'VB and contributes
nothing to the rational part. Therefore there must exist

a greatest positive integer J such that vy is in the set Sj’
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-1

nor -Vi

v, appears in the swmnand, and neither “vy

appear in the summand. Lemma 2 tells us that J < 2 and
the theorem is proved.
We will now show that the prime p = (1 + /3) belongs
= + .
to a(3). Let c,, + d2£V5 a, + bﬁJ} and ¢4\ d2t+l/m

= pult. We now separate the divisors of p into the sets

v, = e, *dV3),(c, -d,/3),(-c *d,V/3),(~c ~d,/3)]. Every

divisor of p pbpelongs to exactly one of these sets. Each

set contains exactly one divisor c, + dei: with both

k

¢y and dk non negative. Let Dk = %;idi.

We will make use of the following equations:

(2]
i

2°k-2 + 3d,_,andd =c¢ 5 +2ad _, for all k > 1;

k
Cp = Cp-1 * 394 and 4, = ¢, 4 * dk-l when k 1s odd;
¢ © %lck-l + 3d,._,] ana q = élck-l +d, _,] for k even.

k k = Tk-1°
PROOF: The lemma 1s true for k = 2 and k = 3.
Let us assume that the lemma 1s true for k g n and prove
that the lemma is true for k = n + 1. We have

cn+l + dn+l = 3cn-l M 5dn-l = cn-l + dn-l M udn-l + 2°n-l'

Noting that 2cn < hdn, and making use of the induction

-1
hypothesis we see that the right hand side of the equation

is < 4D

n=2 * La

A

n-1 ¥ hdn = th eand the lemma is proved,
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0 "' * + r‘ [ ]
LEMia 4o ¢ + ¢y > 2.Jk_l
PKCCF: The leiaw fe truc for k = 2 and k = 3,
Let us assure that the lewnia ls true for k < n and prove

the lemma by induction. Let k = n + 1.

®n+1 * dn+l = Cpa1 * dn-l * 2cn-l ¥ 4dn-l > 2Dn-2 * 2dn-l’

THEOREM 2. 1 + V/3 belongs to A(3).

PROOF: we construct concentric squares with
center at the origin ana with diagonal lengths equal to
quk. pBecause both the sets of dlvisors and the squares
are syumetric with respect to both coordinate axes there
1s no loss in generality by considering only those points
in the first quadrant, on the positive x axis or on the
positive y axis. By inspection we can see that every
integer in the first square can be written as a sum of

distinct divisors in the sets V0 and Vl. In order to

" prove the theorem by induction we assume that every point
in the first k - 1 squares can be represented as a sum of

distinct divisors taken only from the first k sets Vo""’vk-l‘

Let P be any point with ccordinates (x,y) which lies

inside or on the boundaries of the k square. If P lies in
the k = 1 square, the theorem is proved. If P does not

lie in the k - 1 sguare, we have the following inequalities:

xg(), ng.
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we divide the possibllitles into three cases. In

Case 1 the point lies on or above the line y - x =

2dk - 2Dk-l' In Case 2 the point lies on or below the
line y - x = -2c, + 2D, _, ana in Case 3 the point

lies between these lines. Lemma |, assures us that Case 3

actually exists.
Cese 1. <2b 4 <x *y s 2D,
x 2 0.
If we subtract de from y we obtain a point P!

with rectangular coordinates y' =y - 2dk and x!' = x,

x' +y' <D -ead, =2D _q,

y' = x' 2 2dk - 2Dk_l - 2dk =-2Dk_l,

x' 2 0.
The resulting point P' lies inside the k - 1

square and cen be represented as a sum g, _; of distinct

divisors in the first k sets VO’."Vk-l' P' =P - 2dk and

P' =0, 1 Solving for P we obtain P = ¢ + 24, =

k-1 k
Op-1 + (ck + deB) + (-ck + dei). This completes Case 1.

Case 2. 2D, _; <y * x 52D,

y = x g -2, *+ 2D _

k 1’

vy 2 0.
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If we subtract 2ck from x we obtain a point P!

with rectangular coordinates y'!' = y anad x' = x - ch.
y' + x' < de - 20k < ZDk - 2dk = 2Dk-l’
y' = x' g -ec, + aD _; *ec, = 2D 4

y' 2 0.
The resulting polnt P' lies inslde the k=1 square

und can be represented as a sum o, _, of distinct divisors

in the first k sets of divisors Vd°.”vk-l' P' =P - ZCk.

pr = 2¢ =

Solving for P we obtaln P = Op-1 * K

Oy
0,1 *le, * dV3) + (¢, - d,V3). This completes Case 2.
Case 3. 2D, _, <7y * x 52D,

-2¢c, + 2D x <24, - 2D

Kk k-1 =9 ° K Kk-1°

If we subtrect dk from y and Cy from x we obtain a
point P' with coorainates y' =y - dk and x' = x - Ci*

yr + x' < 2Dk “cp - dk < 2Dk - 2dk = 2Dk-l' Applyling

Leuma 3 to each of the following lnequalities we obtain:
y' ¥ x' > 2D - oy =dy 2 2Dy = WDy = =2Dy .,

y' = x' <24 =-2b +c¢ -4, =¢, +d, - 2D _

k=1 K K Kk K k-1 =
Loy 1 = @by = 2Dy
y' = x' > =2, *+eD 4 *tc -4 =-c -d 2D, 2

“WD ) Y eDyg T meby g
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The resulting polnt P' lies inside the k=1 sguare

and can be represented as a suu o __; of distlinct divisors
in the frirst k sets VO,Vrvoo,Vk_l. Pt = P - Cy deB.

p Solving for 2 we obtaln P = o, _, + ¢ * de3.

=0..1°
Tnis completes Case 3 and the theorem is provede.

COROLLARY. If x + y/3 1s an integer in D(3) with
X = y moaulo 2, then x + y/3 belongs to A(3}.

PROOF: x + 513 = (x = 3y) + (y - x)V/3 « If we
+ V3 -2

have x = y modulo 2, then the right hand side is an

integer and x + yV3 is divisible by 1 + \/3. It then
follows from Theorem 2 that x + y \/3 belongs to A(3).
m =0

In this flela u, =5 + /6, u, = 49 + 20/6 4o e e,

Let b, be the coefficient of V% in uy and ay be the

i
rational part of uy . we will first prove that the units
ao not belong to A(6). |

LEMMA 1. 2 diviaes D,

PROOF: The lemma 1s true for k = 1. Let us

assume that the lemma 1s true for k = n-1 and prove the

lemma by inauction. bn = 5bn~l + 2an_l. by the induction
hypothesis 2 aivides bn-l and thus divides the right hand

slde of the equation. Therefore 2 divides bn‘
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THEOREM 1. The units do not belong to A(6).

PROCF: Leima 1 tells us that in every sum of units
the coefficient of Vo is even. x + yV6 can not be
represented as a swn of units when y 1s odd.

we will now show that the integer 2 belongs to A(b).
Let us separate the divisors of 2 into sets V1 as follows:

V, = [l; -1, 2, -2]

0
vy = [e+/b, 2-/o, =2-/b, =-2+/6]
-1 -1
Vo = lup, w7y muy, =uy 7l
.oo=1 - .o=1
v3=[aﬁ,¢%_,-aﬁ,-aﬁ]

[ (e+/6)u,=22+9b, 22 -9Vb, -22+/6,-22-9/61

see <
1}

In every set V, (k>0) there exists exactly one

divisor c, + dkv% with both ¢, and d, positive. The

k k

divisors in the set V, are c, + deb, ) - deb, -, - de%

and

K
-c, +dvb6., Let D, = 3_d,. We will make use of the
K K k- ot

following equations:

¢, =2c,_ and d, = 2d,_; when k = O mod 3, and X # 0,

°x = °x-1 * 3d,_, end d = ¢,y * d, 4 if k=1or2
—

moaulo 3. In elther case 2dk < ¢, and 3dk > Cy for k > 1.

k

LEIVH#U’& 20 C + 2dk < 8Dk_lo

k
PROOF: The leuma is true for k = 3. Let us

assume that the lemma 18 true for k = n-1 and prove the
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lemma true by inauction. Let k=n. If k = n = 0 mod 3,

°n ¥ Zdn T “Ch-1 * qdn-l < Cn-1 * 7dn-l - Ch-1 * 2dn-1 *
53¢,y <8D o+ 5d ;<8 ;. Ifk=n=1or2mod 3,
Cp *ad S 2e, g *3a g <y v 8y Ty tad

od _; < 8Dn-2 *oa ;< 8Dn-l°

LEMMA 3. ¢ + Edk > uDk_l.

PRUOF: The lemma is true for k = 2. Let us
assume that the lemma 1s true for k = n-1 and prove the
lemma true by induction. Let k = n., If Kk = n = 0 mod 3,
°n * 2dn = ch-l *.hdn-l > Ch-1 * Odn-l =cChaa * 2dn-l ¥

Hpop > Wb, Y udy g S WD, Ik =n

1l or 2 mod 3,

+ 24 +

+ =
c 2d 2c n-1

n n n-1 M 5dn-l > cn-l +1d =c

n-1 n-1

M1 > 4Py * 0d > Whye

n-1
THiOhusiv 2. 2 velongs to A(6).
PROOUF: Wwe construct concentric diamonds with
centers at the origin, whose sides are given by the

equations 2y + x = #4D, and 2y - x = tLD . Because the sets

of divisors and the diamonds are both symmetric to both
coordinate axes there is no loss in generallty by
considering only those points lying in the first quadrant,
on the positive x axis or on the positive y axis. By
inspection we can see that every point in the first two

diamonds can be represented as a sum of distinct divisors
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in the sets VO,

Vl and V2. In order to prove the theorem
oy induction we assuwe that every point in the first k-1
diamonds can be represented as a sum of distinct divisors

in the first k sets of alivisors Vo' \'s Let P

VLI A
pe any point with coordinsates (x,y) which lies inside or
on the bounuaries of the k diamond. If P lies in the k-1
alamona, the theorem is proved. If P does not lie in the
k-1 dlamond, we have the following inequallties:

L#-Dk_l <ey txg LFDR’

xz 0, y 2 0.
Ne divide the possibilities into three cases. In
Case 1 the point lies on or above the line 2y - x =

ud, - uDk-l' In Case 2 the point lies on or velow the
line ¢y - x = -¢, + LD, _i+ InCase 3 the point lies
vetween these lines. Lemaa 3 assures us that Case 3%

actually exists.
Case 1. 4D, _; <2y + x 5 4D,
ey = X 2 qdk = u—Dk-l’
XQO.
If we subtract ZOk from y we obtain a point P!
with rectangular coordinates y' =y - 2d, and x' = Xx.

k
2y' + x!

A
5
=
!
I
Q.
~
|
&
5
]
[
.
>
v
O
-

ey' = x' zudy = LDy - bay = -uby .
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The resulting point P' lies inside the k-1 diamond

and thus can be represented as & sum Op-1 of distinct
ailvisors in the flrst k sets of dlvisors Vosr Vst Vk-l'

P' =P -2dk/o and P' = Op-1° Solving for P we obtailn
P=o0,_,* 2de6 =0, * (e * kob) + (=c) + de6).

This completes Case 1.
Case 2. uDk-l <2y *t x g 4Dy
2y = x g =ec, + LD _,,

y 2 O.

If we suotract &ck from x we obtain a point P!

with rectangular cooralnates y' =y and x' = x - 2°k'

2y' + x' s 4D, = 2¢) < LD - Ld =D,

eyl = x! g mecy * LD,y ¥ 2e, = 4Dy,

A

y'go.
The resulting point P' lies inside the k-1 diamond

ana thus can be represented as a sum of distinct divisors

in the first k sets of divisors VO’ Vis .'°’Vk-1'

P! = p - 2c, and P! = o, Solving for P we obtain

P=o _,+& = + (e, + afb) + (e - d,/6). This

Ox-1 K

completes Case 2,
Case 3. “Dk-l <2y +x g uDk,

=2c, + 4D, _, <2y - x < hdk - th_l.
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If we subtract Cy from x and dk trom y we obtain

a point P' with coordinates y' =y - dk and x! = x - Ck®

eyt x! s 4by = 2ady = cp < LD - 44y = 4D, .
Applylng Lemma 2 we also obtain the following inequalities;:
ey' + x' > 4D, 4 - 2d, = ¢ > -th_l,

ey' = x' <udy - LDy - 2d, *tey =cp +ad - LDy < LD,

2y' = x' > =2c, + 4D, _, -ad * ¢ =4D _, -c -2d, > th-l'
The resulting point P' lies inslde the k-1 diamond

and thus can be represented as a sum g, _; of distinct

divisors in the first k sets of divisors V \ e

o’ '1° »"k-1°

Pt =pP-c_ - dkdb and P' = ¢ Solving for P we

k k-1°

ootaln P = o, _; + ¢, * dV6. Tals completes Case 3

and the theorem 1is proved.
COROLLARY., If x = y = 0 modulo 2, then the Iinteger

x + yyb belongs to A(6).
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m =17
In this fleld u; = 8 + 3/7, u, =127 + LB/7 +--.

Let ay be the rational part of uy and bi be the

coefficlent of'/Y in uy . We wlll first prove that the

units ao not belong to A(T).

LENMMA 1. 3 aiviaes o, for ell k.

PROUF: The lemma 1s true for k = 1., Let us

assume that the lemma 1s true for k = n-1 and prove that

the lemma 1s true by inauction. When k = n, we

have b = 8o _, + %a_ _;+ 3 aivides b _; and thus 3

divides the right hana side of the equation. Therefore

3 divides bn‘

THEOKEM 1. The units ao not belong to A(7).

PHOOF: In every sum of unilts the coeffiéient of

V7 is divisible by three and thus x + yJ? cannot be

representea if y 1 or 2 moaulo 3,
we will now show that the integer 2 belongs to A(T7).

Let us separate the divisors of 2 into the sets Vk as

t'ollows:

Vo = [1, -1, 2, =2]

= (3 +V7, 3 -7, =3 - V7, -3 + V7]

- -1 -1
Vo = lug, -ug, u;7, -uy7]

-1 -
3 [2u1, -2u,, 2u;~, -2u;

T LOWTIu, = 45 ¢ 1T, L5-11VT, -U5-117, -L5+1V7]

0
Vi

4

]

v
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In every set V, (k>0) there exists exactly one

divisor c, + dkv7 with both ¢, and d, positive. The

k k k

aivisors iu the set V, are c, + dk/Y, ) - de7, ¢, - dk¢7

k
ana -¢, + d V?. Let D, = >_d,. Ve will make use of the
k k k 1=1 i

followling equations:

¢, =ec,_, eand a =2d _; when k = 0 moaulo 3,
e, = (3c,_y + 7d,_1)/2 ana a,=(c,_;* 3d,_;)/2 if k#O mod3.

Lilina 2. jdk < dck < bdk.
PROOF: The lemwa is true for k = 1. Let us
assume that the lemma 1s true for k = n-l and prove that

the leuma is true for k = ne When k = n = 0 mod 3 we have:

jdn = IOdn-l <4c. .y < ch = “cn-l < 12dn_1 = bdn.

when Kk = n £ 1 or 2 modulo 3 we have:

d, = (e 5+ lSdn_l)/Z < (be _, + 13dn_l)/2 <2 =
3p-1 ¥ (dpoy < 3.y * Yo T 0dpe

LENMNA 3. 2ck + 5dk < 20D for k > 2.

k-1
PROUF: The lemma 1s true for k = 3. Let us

assume that the lemma is true for k = n-1 and prove that

the leuma 1s true by inductien. For the case k = n

end n £ O mod 3% we apply Lemma £ and the 1induction

hypothesis to obtain 2c + 5d = ke _; + 10d _, =

ec 1 * + 2c

n-1 +5d _, < 20D _, *+ 11d _; < 20D _;.

n-1
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Wwhen Kk = n = 1 or ¢ modulo 3, we apply Lemma & and the
induction hypothesis to ovtain:

Ze, + 54 = (lle__; + 29d _1)/2 = (ue

n * 504,072 =

n-1

Ze .y * 54,1 * 204 _, < 20D _, *+ 20d _, = 20D__

n=2 n-1 1°

LEMMA L. 20k + 94, > 10Dk-l°
PROUF: The lemma is true for k = 2, Let us

assume that the lemma 1s true for k = n-1 and prove that

the lemma 18 true by induction. For the case k = n = 0

modulo 3, we apply the induction hypothesis and Lemma 2z
to obtain 2cn + 54, = he .y * 104 _, > 10D _, + ].Odn_1 =

10D _y+ when k = n # O modulo 3, we apply Lemma 2 and
the induction hypothesis to obtailn:

2c + 5d = (lle _; *+ 29d _y)/2 =2c _, * 54 1 *

((epaq * 194, _.,)/2 > 10D _, +10d _q = 10D _;.

THEOKEWM 2. The integer two belongs to A(7).
PROOF: We construct concentric diamonds with
centers at the orliglin, whose sides are given by the

equations Yy + 2x = thDk and 5y = 2x = + lODk. Since the

sets of divisors and the diamonds are symmetric to both
coordinate axes there is no loss 1in generality in
considering only those points lying 1n the first quadrant,
on the positive x axls or on the positive y axis. By

inspection we can see that every point in the first two
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diamonds can be represented as a sum of distinct divisors

in the sets VO’ Vl and V2. In order to prove the theorem

by inauction we assume that every point in the first k-1
alamonds can be represented as a sum of ailstinct divisors

in the first k sets of alvisors VO’ \ cee,V Let P

1’ k-1°
be any point with coordinates (x,y) which lies insids or
on the boundaries of the k aiamond. If P lies in the k-1
diamond, the theorem 1s provea. If P does not lie 1in the

k=1 alamona, we have the followlng inequalities;

lODk_l < )y *+ &x £ 10D,

x 2 0, y 2 O

we dlvide the possibilities into three cases. 1In
Case 1 the point lies on or above the straight line

57 = 2x = lOdk - 10D « In Case 2 the point lies on

k-1

or ocelow the line 5y - ex = -ye, + 10D, ;-

In Case 3
the point lies vetween the two lines. Lemma L assures
us that Case 3 actually exists.

Case 1. 10D <5 + 2x g IODk,

k-1
Sy - 2X g lOdk - 10Dk-l’
x 2 0.
If we subtract de from y we obtaln a point P!
with rectangular coordinates y' = y - de and x' = X.

5y' + 2x' g 10D, - lod, = 10D, _,, x!' 2 0,

k

5y' - 2x' z 104, - 10D, _; - 10d, = -10D,_;-
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The resulting point P' lles inside the k-1 diamond

and thus can be represented as a sum Ok-1 of distinct

alvisors in the first k sets of daivisors V ' see,V

o’ "1’ k=1"*

P' = p - 2akJ7 and P' = o Solving for P we obtain

kfl.
P=o, ) *2dV7 = o,y * (e +dT) + (wc + dp/T).
This completes Case 1.

Case 2. 10D, _; < oy * 2x g 10D,

9y = ex = '4ck + IODk_lp

yg_().

If we suotract <c, from x, we ootain a polnt P!

k
with rectangular coordinates y' = y and x' = x = ch.
Applying Lemuwa 2 we cobtaln:

5y' + &x!' < lODk - uep < lODk - 10d, = 10D

k k-1’

oy' - 2x' g =yc, * 10D, _, * Le, = 10D, _.»
y' g Qe
The resulting point P' llies inslde the k-1 diamond

ana thus can be represerled as a sum o, _, cf distince

alviscrs I the first k sets of divisors VO’ Vl’ "’,Vk_l.

P' = P -cZc, ena ! Solving for P we obtain

K = Oy

= Z ] , - /
P=o _,*ve, =0 _q* (c + akVW) + (e, = d V7).

This cowpletes Case 2.
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Cuse 3. lODk_l < 9y * &x < lODk,

-y4c, + 10D, _; < 5y + 2x < 104, - 1CD _

k k-1°

If we subtract cy from X and d, from y we obtain

a point P' with rectanguler cocrdirates y' =y - dk and
x!'" =x - e Applying Lemma 2 we obtains

S ] e 1 - i - - =

5y' * 2x' 5 10b, - 5d, = 2cy < 10D, - 10d, 10D, _; -

Applying Lemma 3 to the following, we obtain:

] 7 ] ) - 854 - - 2 = =
Sy' + &x!' > lUDk_l od, - ecy > IODk_l €0, 4 10D, _;»

5y! - 2x' < 104, - 1CD,_; = 54, *+ 2¢ 2c, + 54, =10D, _;

k

< 20D, _, - 10D, _; = 10D

k-1 k-1’

5y' = 2x' > =l + 10D, ; *+ 2¢, = 54, = 10D, _; = 2¢c, - 54,

> 10D, _; = 0D, _; = -10D, _;.

1he resulting point P' lies inside the k-1 dlamond

and thus can be represented as & sum o, _, of distinct

divisors in the first k sets of aivisors V '

0r V1s" e Vka1e

P =P ~-c - dkv7 and P' = Solving for P we

K Ok-1°

obtain P = + ck + de7. This completes Case 3

Ok-1
anua the theorem 1s proved.
COROLLARY. If x = y = 0 modulo 2, then the integer

x + y/7 belongs to A(T).
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CHAPTER III

REAL QUADRATIC FIELDS
m> 7 and m = 2 or 3 mod L4

In thils chapter we will focus our attention upon
the integers in the quadratic fields R(m) where m is
square free, greater than seven and not congruent to one
modulo four. we will show that if the norm of u, [N(ul)]
equals -1, then the number T = Zch belongs to A(m) ana if

= +1, then the number T = 2t+ldm belongs to A(m)
< 2t*l.

N(ul)
where t is chosen so that 2t < a2/al
Let us separate the aivisors of T into the sets

VO,V1,°°° where VO = S0 and Vk = 2rsh+l where h > 0,

O<srstand k =h(t+tl) + r + 1, 1In every set V, there

exists exactly one divisor ¢, + dRVm with both ¢, and d

k
non-negative., A divisor ot T belongs to at most one set.

. » = +
we will make use of the fact that ak alak-l blbk-lm

= +
ana b, albk-L blak-l’ We will first prove a series

ol lemmas for the fields where N(ul) = -1,

LEMua 1. 2% > a, + 1/2a. .
1 1
PROOF: 2% > a./2a, = (aS+bm)/2a. = (2a°+1)/2a
: o/ 28y 101 1 1 1°

LENNA <. bl/al > bk/ak for k > 1.

, 2 e _ _ :
PROOF: Since a; - blm = =1 and bk-l > 0, we have

pd 2
0 > (al - blm)bk"l.
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81018, * bIb,qm > 810181 * 835,
bylajay_y * Dybygm) > ay(dyay ;) + ady ).
blak > albk.
LEMMA 3. ak/bk < 3al/bl for all k.

2 blm+2a

c OO 2
PROOF: O < bk_l(al 1 l) + 2a;bj8) g

2 2
ajbjay )+ 0D ym < 3a1b g * 3e1bya, .

oylaja,.y * Bybyym) < 3ay(aydy ) + Dyay ).

blak < 3albk.

LEMwA 4. (2bja =bi)a,_/a; < 3(2* 1 -1)b, . for k>l
. 181701 /8k0/8 k-1 .

PROOF: By Lemma 3 we know that bia 1 < 38;b, 4.

Since 2al - 1> 0, we may multiply both sides by 2al-1,

S 2 2
and obtaln (2a,0,-bj)a, ;< 5(281-a1)bk_1< 3(2&1-al+1)bk_1.

Since a, > O, we may divide both sides by 8, and obtain

t+l -1)b

(ebja ~b))a, _,/a; < 3(2a1+% -1)b, _; < 3(2 k-1°

1

. t+1
LEMMA 9. Db *+ %lak < (2 -1)B,_, when k > 1.

1
PrOOF: If k = 2 we bave that bk + Blak =
8
. 2 _ ~t t+l_
2a b, + Ei(zal +1) = ubl(al + i ) < L(2 )bl < L4(2 l)bl.

al 1

Let us assume that the lemma 1sg true for k < n-1l and

prove the lemma by induction. Let k = n.



For k = n we have that bn + blan is equal to
%1
n-1 * P81 * Pyleje )+ oyb,gm) = b (a;+0in) ¢
8, 8,y
18,-1 bn_1(2alf3£) + 2o,8 _,. By Lemma 1 the right
1

hana side 1s less than 2""1p . + 2v

alt>
2b

= (ot+l_

Bh-1 e O B a _y(2a;b;=0;)/a;. Using Lemma L and the
81

induction hypothesis we find that the right hand side is

< @y ) v we®tens , + 52" -1 . The

latter is exactly u(2t+l-l)bn_l which completes the proof.
Ledia 6. 2%b, + b.2%a, < L(2¥*1-1)B, . + L(2T-1)v
* k 31 k = k=1 k*
1
PROOF: If k =1 and r = 1 the lemma 1s true. When
r =1 and k > 1, we use Lemmas 3 and 5 to see that
- t+l _ t+l_
dbk.+ 2v,a, < L(2 -l)xsk.1 + b, + 3p = L(2 l)Bk_l +
|
‘#bk. Thus the lemma is true for all values of k when r =1,

Let us assume that the lemma 1s true for r < n-1 and prove

the lemma by induction. Using Lemma 3 and the induction

n n _ n-1 n-1
hypothesis: 2 b, + Z‘Elak = 2(e b+ 2 Elak) <
& 8

h(2t+l - l)Bk-l + u(an-l -l)bk + 2n-lbk + 2n-1(3bk) =

t+l

4(2 - l)Bk_l + h(2n - l)bk. This completes the proof

of the lemma.
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k
Let Dk = %;%di ana s = El. We can now summarize
a

1
the results of Lemmas 1 through 6 as followss

LEida 7o d *+ sc, s 4D, _; and s > 4. /¢, for k > 1,

We now turn our attention to the flelds in which
N(u.l) = +1 and prove the analogous lemmas. We will let
s = (\/m)-1 and note that s > bk/ak for all k

LENA 8. 2% > 8, - 1/2a,.

t

. - . - 2 N
PrRUOF: 27 > 32/2a1= (a§+b§m)/dal = (dal—l)/2al.

LiebvA 9o sa, < gbk for k > Q.

2 2. _ 2
PROOF: a, - bkm =1 < Epkm.

N

2
ak < zbkm.
4
a, < gkam.

- - _2 _
Lekva 10, dal 8y < g(dal 8y 4.

L AV T

=1+ mbS > 10

PROOF: Since m 2z 1lU we have that a 1

which implies that &, > 3 ana 0 < 2a§ - &) - 4. Thus

é . 2
ual - dal < 6al - 5&1 Lo
= . e .
ca] - &a; < 3(2a7 - a; = 4.
1”8 <g2lea T A 3

- t+l
Liilia 11. bk_l/al + (2al-l)sak_1 < 3(2 -l)bk_1 for k>1.

PROQOF: liaking use of Lemmas 9 and 10, we have;
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k
Let DK = §E;d1 ana 8 = bl‘ We can now summarize
8
the results of Lemmas 1 through 6 as follows:

LEidwa Te dp + sc, s 4D _; and s > dk/ck for k > 1,

We now turn our attention to the flelds in which
N(ul) = +1 and prove the analogous lemmas. We will let
s = (\/m)-l and note that s > bk/ak for all k

LENiA 8. 2% > &) - 1/2a,.
Proor; 2% > a2/2a1= (a§+h§m)/2al = (2a§-l)/2al.

LeMvA 9. sa, < gbk for k > Q.

KN

. 2 _ 2
PrOOF: a = bkm =1 < %pkm.

N.

2
ak < zbkm.
U

a8, < %bkvm.

. e .2 .
Lekva 10. dal - 8; < %(dal -8, - 4)e
b}
2l
1

=1+ ms > 10

PROOF: Since m z 10 we have that a 1

which ilmplies that a; > 3 ana O < Zai -8 - 4+ Thus

. ) o

4ai - 28 < 6a1 - 38 = 4.

.2 2l :

cal - &, < 3(c2a7 = a; = 4).
178 < 2lee T 8y ]

. t+l
Liilia 11. Dby, _1/8; + (2a,-1)sa,_; < 3(2° "-1)b,_, for k>1.

PROOF: biakin, use of Lemmas 9 and 10, we have;
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2 2 . 2 ‘
s(2aj-ayja, ) < S‘/L“‘3"11‘*‘1‘55191’1(-1 < 3(2al-al°%)ok-l' Ir

we diviie voth sldes of the 1nequality by a,, we obtain

s(2a;-l)a, _; < 3(2&1-1-% Jo,_; = 1Db, _;. Using Lemma 3

1 8
we have bk_l/al *s(2a; - 1l)a,_; < 3(2a; -1 - 1)b,_; <
8
.t+l
3(4 l)bk‘l.
LEMMA 12. b+ sa_ < 424 = 1)B . for kx > 1
[} k k = - k-l [ ]

PROOF: When k = 2 we have that b2 + sa, =

2albl + s(a§+b§m) = Zalbl + s(l+2b§m) = 2albl + 2b§Jm + 8

= Zalbl(l+Ble) + 8 < ualbl + 8 = ubl(al- i ) + 2b1 + 8.
a; 2 1 a8y
Applying lemma 8 we see that the right hand side is

t+l

< 4oy (2%) + 2p)/a) + 8 < 4o (2%) * 38 < v (270 - 1),

This proves the lemma for k = 2. Let us assume that the

lemma 1s true for k < n-1l and prove the lemma by induction.

b, + sa, = &0, 5 *bja ; +slaa *bjb, _jm) =
b _j(8,*b;Vm) + (b +say)a | < 2a;b ) * 2saja ).

By Lemma 8 the right hand side is less than

t+1 _ (ot¥l_
(2 +l._)bn_1 + 2salan_1 = (2 l)bn_1 + (1ﬁl_)bn_l +
a a
1 1
sa + s(2a,-1)a = (2t+l-l)b + b + sa +
n-1 1 n-1 n-1 n-1 n-1

bn_l/al + (Zal-l)san_l. Making use of Lemma 11 and the
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induction hypothesis we find that the right hand side 1s

t+l t+l

5 b+l
less than (2 - b, +ul2 -l)Bn_2 * 327 7-1)b 4

t+l

= L(2 -l)bn~l which proves the lemma.

t+l

. r r 4 _ -
LEMHA 13. 2'b, + 2"sa s 4(2 by, * L(2* 1)b,

for all r when k > 1 and r > 1 when k = 1.

PROOF: Lemma Y tells us that sa; < bl which
implies that hbl + Usa; < 4°3b; and the lemma is proved
for k =1 and r = 2. If k > 1 ana r = 1, then we have

. Lt¥l_ t+l_
¢o, + Zsak < L(2 l)Bk_l * b + gbk < L(2 l)Bk_l + ubk.

Let us assume that the lemma 1s true for r = n-1 and prove
the lemma by induction. Using the inauction hypothesis and

+2n-l

Lemma 9 we have 2nbk + Znsak = 2(2n-lbk sa,) <

NEMEE PN Ents DN S 2(2n-1)bk <

. + A - _ -
w(2% 118, )+ w(@@ 10y, + W2 T =

(2t*1

4 -l)bk-l + 4(2n - l)bk' Thus the lemma 1s proved.,

e can now summarize the results of Lemmas 8 to 13
as follows:

LEMIMA 1y. 4 + sc, 5 LD, _,, and s > d /ey .

The first part of the lemma 1is true only for k 2> 3.
we will now proceed to show that the units do not
pelong to A(m) and T coes belong to A(m). It is obvious

that if b, # 1, the units do not belong to A, for b bk
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implies that the coefficlent of /m in any sum of units 1s
congruent to zero modulo bl' We make use of the following

lemma to show that the units do not belong to A(m) 1if bl = 1.

Leiia 15. 8, > 2% a, + 3 for k > 1.

L3

PKOOF: a5 =+l +mzm -1 3 9 implies that a;z3.

If k = 2, then a5 ai + bim > Zal + 3. Let us assume

that the lemma is true for k = n-l anu prove the lemma by

M-
inauction. a =e8 ) *tb _m>3a _,>2a ;% 2?&1 +3

m-|
= 2:& + 50
o 1
THEOREM 1. The units do not belong to A(m).
PROOF: We have shown that when b, # 1, the theorem
is true. By Lemma 15 no unit in Sj for J > 1 can be used
to represent the number two. It can be seen by inspection

that the number two cannot be represented using only units

in So ana Sl' Therefor the number two cannot be written

as a t'inite sum of ulstinct units.
THEOREM 2. The number T belongs to the set A(m).
PROOF: Wwe may conslder every integer P of D(m) as
a lattice point P in the plane with rectangular coordinates
X and y. We will fi1l1 the plane with concentric diamonds
with centers at the origin and whose diagonals are the
coordinate axes. The y intercepts of the sides of the

k dlamona are 2Dk and -ZDk ana the x intercepts are 2Dk/s

and -2Dk s. For every point In the k diamond we have:






K S + 8x < 2Dk’

-¢D =<y - 8x g EDk.

ve the set 1,Z,4,°**, T wVm,evm, eee,T .
m

Let Vo

1t will be shown that every lnteger lylng in the k dlamond
can be represented as a sum of distinct divisors in the

first k+l sets V_l,Vl,Va,-°-,Vk. Since the divisors in

Vj anu the dlamonas are symmetric with respect to both

coordinate axes there 1s no loss of generality by considering
only points in the first quadrant on the positive x axis

and on the positive y axis. If N(ul) = -1, then we have

~t+l

2¥ 5> &, and 2 -1>28 -15>2b -15>2b - 1.

1 1 1

Thus every integer in the first diamond can be written as

a sum o, of distinct divisors in the sets V_, and Vl'

If N(u;) = +1, we have e - 15> ey - 15 4o, -1
8
Lo, - 1 ana 2a; + 2% - 1> 6a; - 1> 6b; - 1. also
8
- Lt+e . .
<b, + 2 - 1> 6bl - 1. Thus every integer in the

Ssecond diamona can be represented as a sum g, of distinct

divisors in the sets V-l’vl and V2.

Let us assume that every integer pP' = x!' + y'Vh
in the first k-1 diamonds can be represented as a sum of

distinct divisors o of T without using any divisors in

k-1
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the sets Vj for j > k-1 and prove the theorem by induction.
Let P be any point (x,y) in the k diamond. If P lies in
the k=1 diamond, then the theorem 1s proved. 1f P is not

in the k-1 alauiond we have 2Dk-l <y +* sx s ZDK, x 20

and y 2 O. We dlvide the possipilitles into three cases.
In Case 1 the polnt 1lies on or above the line y - sx =

2dk - eD _y+1n Case 2 the point lies on or below the

line y - sx = -Zsck + 2Dk-l' In Case 3 the point

lies between these two lines.

Case 1. 2D, _, <y * 8x g 20,

- 2D

y - 8x 2z &d k=17

k
x 20 y z O.

It we subtract 2dk from y we obtain a point P!

with rectangular coordinates x!' = x and y' =y = 2dk’
y' + sx! < 2DK - de = ZDk-l’
y' - sx' zed -¢eD | - ed = =eDy 1

Since x' = x 2 0, the point P' lies in the k-1

dlawond and P' = Op-1° Since P' = P - deVh, we have

P = + 2kom = + (¢, + dk/m) + (-cp * kom) and

Ok-1 Ok-1 K

the theorem is proved for Case 1.

Case 2. 2D, _q <y *sx g eDy,

y - sXx £ 2Dk-l - dsck,

yz20, x 2 O.
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If we subtract ch from x we obtaln a point P!
with rectangular coordinates x' = x - 2c, and y' = y.

! z - 7 Z - 2q =
y' + sx!' < ‘Dk dack < ‘Dk ca,

y' = sx' < 2Dk-l - 2scy ¥ escy = 2Dk_l.

Since y! y 2 O, the point P' lies in the k-1

dlawond anu P' = g, .1+ From pr = p - 2ck we obtain

P=o__,%+2 =g, ;% (c + dVm) + (c) - dKVh) and

the theorem 1s provea in Case 2,

Case 3. 2D 1 <Y *sxg 2D

k- k?

-2sc, * eh | <y -sx<2ad -2D _,.

If we subtract d, frow y and c¢, from x we obtain

k k

a point P' with coordinates x' = x - ¢, and y' =y - dk‘

k
making repeated use of Lemmas 7 and 1y, we obtain:

y' + sx' s 2b -d - sc <2D -d -d =2D _q»
y' + sx' > de-l - - 8¢ 2¢eb 4~ “Dk-l =-sz_1,

y' - sx!' < edy =eb, 4 - dk + 8¢, s =eb , Yup 4 = by _q1»

y' - sx' > -Zsck + 2Dk-l -4 + sc 2 -2Dk_l.

Thus the point P' lies insiae the k-1 aiamond

and P' = Since P' = P - ¢, - deh, we have that

Ok-1° k

P = + (ck + dk/ﬁ) ana the theorem 18 proved in Case

Ok-1

3, This completes the proof of the theorem.



CHAPTER IV

REAL QUADRATIC FIELDS
m = 1 modulo 4

In this chapter we will focus our attention upon
the integers in the quadretic filelds K(m),where m is
square free, greater than zero and congruent to one modulo
four.

The domain of integers D(m) of R(m) 1s the set of
numbers of the form x + ydh, where x and y are both
rational integers or halves of odd rational integers.

The units are those numbers of D(m) where x2 - my2 = +1,

rach fleld has an infinite number of units and one basic

unit ul such that if u, = a

1 + bIVh is the unit of

1
smallest absolute value for which both x and y are

positive, then every unit in the field can be written
n

tu; forn =0, 1, 2, - .

Let u, = uj for j=0,1, 2, *** . In thlis way we
J 1

may divide the units into one set S, = [+1, -1] of two

- =1 -1
units ena infinitely many sets §; = [ui, “Uy, “U4, Uy ]

of four unlts each. Every unit belongs to exactly one set.
DEFINITION: A(m) 1s the set of integers {n} in

the field R(m) which have the following property; n belongs

to a(m) if and only if every integer in the domain D(m)

can be written as a sum of distinct divisors of n.

We will show that for all m the set A(m) is not
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empty and that for m = 5 every integer belongs to A -°

m =5
In this field u; =(1 +/%)/2, u, = (3 +/5)/2,
u3 =2+ /9, ¢+ . Let a, be the rational part of u, and

o N A5 = k
bi be the coefficient of J) in Uy . Also let Bk = fglbi.

The integers of D(95) may be considered to be those
points in the plane for which x and y are rational
integers or halves of odd rational integers. We will
£111 the plane with concentric squares with centers at
the origin, whose alagonals are the coordinate axes and
whose sldes are given by the equations x + y = +2 Bk

and y -~ x = 2B It will be shown that every integer

k.
lying in the k square can be represented as a sum of

aistinct units belonging to the first k + 1 sets So:""sy°

We will make use of the following equations:
a, = (a,_q * Bbk_l)/Z end b = (a _; * bk_l)/2.
LEudA 1. & + b s uBk_l.
PROO¥: The lemma is true for k = 1. Let us
assume that the leuma is true for k = n-1l and prove the
lemma true by induction. Let k = n.

a Yo =a _,*+3 ;=8 ;%D + 2b

n n

<

n-1 n-1

th-Z * 2bn-l <

n-1
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Lilibf 2 a *Db > 2Bk-l'

PROOF: The lemma 1s true for k = 2., Let us
assume that the lemma 1s true for k = n-1 and prove that
the lemma 1s true by induction. Let k = n,

& * by = O 5bn-l = 8hat bn-l * an-l

> 2B, _, + 2b ) = 2B

n-1 -1°

THiOKEM 1. The units belong to A(5).

PROOF: We can see by inspection that every integer
in the first square can be represented as a sum of

distinct units in S0 and Sl’ Let us assume that every

integer in the first k-1 squares can be wrltten as a sum
of distinct units taken from the first k sets of units,
S

°**°*,S and prove the theorem by induction.

o* S k-1
Considaer any point inside the k square. Since the square and
the sets Sk are symuetric with respect to both axes

there 1s no loss in generality in consiaering only points

in the first quadrant, on the positive x axis and on the
positive y axis. If the point lies inside the k-1 square,
the requirea representation 1s assured by the induction
hypothesis. Therefore we may conslder only points in the

first quadrant, in the k square and not in the k-1 square.

Thus we have; 2B, _; <x *+ y 5 2B,

y 20, x 2 0.
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We divide the possibilities 1into three cases. In

Case 1 the point lies on or above the line y - x = 2b, -2B

k “"k=-1°

In Case 2 the point lies on or below the line

y=x = -Zak + 2Bk_l. In Case 3 the point lies between

these two lines. Lemma 2 tells us that Case 3 actually

exlsts.

Case 1. 2Bk-l <X +ys ZBk,

y = X z2b, =28 _,,

ng.
If we subtract 2bk from y we obtain a point P!
with rectangular coordinates x' = x and y!' =y =~ 2bk‘

x' +y' <28 - 2b, = 2B

k k-1’

=

y' - x' z2b, =-2p _, = 2b = =2B, _;,

x!' > 0.

The resulting point P' lies in the k-1 square and
thus by the induction hypothesis 1t can be represented as
& sum g, _, of distinct units in the first k sets of units

Sgs Sys °*%» Sy_q+ P' = o, and P' = P - 20\/5. Thus
P=o _; +20V5=0,_;+ (g +Dba5) + (-a, +0/5).

This completes Case 1.

Case 2. 28, _,

<x+ys 2Bk’
y - x g -2a *+2B _,

yzO.
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If we subtract 2a, from x we obtaind a point P' with

k
rectangular coordinates x!' = x = 2ak and y' = y.
X'+ y' 5B, - <28 <28 - eb, = 2B, _y»
y' = x' 5 -2a, + eB,_1 * 2a, = 2B, 4,

y'_Z_Oo
The resulting point P' lies 1n the k-1 square and
thus by the induction hypothesis it can be represented as

a sum o of aistinct units in the first k sets of units

k-1

and P' = P - 28, . Therefore

Okx-1

(8, + b/5) + (8, = bV/5). This

+

P = 2a, =

Op-1 ¥ 28, T oy
completes Case 2.

Case 3, ZBk-l <x+*+ys 2Bk’

2B - 2ak <y -x<2b

k-1 x = eByoge

If we subtract &, trom x and bk from y, we obteln

k

a point P' with coordianes x' =x - a, and y' =y - by.

x'" + y!' < 2Bk - b, -a <2B - ?_bk = 2Bk-1'

Applying Lemmea 1 we obtain the following inequalities:
x!' + y'> ZBk-l -8, - bk 2 -ZBk-l’

y' - x!' < 2b, = 2Bk-l - bk ta = a + bk 2B

A

- 28, _

k 1 k-1’

y' = x'>2B,_; -2a -Db +a =2B _; - & -b 2 -2B ;.

The resulting point P' lies in the k-1 square and
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thus by the induction hypothesls cean be represented as a

sum o, _, of distinct units in the first k sets of units
L 1 = = - -
Sgs S1» > S,opc P Oy.p @nd P' = P - a kas.

= /c
Solving for P we obtain P = o _; + a + D V5. This

completes Case 3 and the theorem is proved.

m> 5
In this section we will show that if N(ul) = -1,
then the number T = 2t-1(1+Jm) belongs to A(m) and if
= +1, then the number T = Zt(l*Vh) belongs to A(m),

1)
t t+l
where t 1s chosen 8o that 2 < a2/a1 < 2 « In either

N(u

case 2t divices T.
Let us separate the divisors of T into the sets

VL, =8

o 0’ and V

= o =
Kk =2 8,+) Where k = h(t + 1) + r + 1,

h 20, and 0 s r 5 t. In every set V, there exists

+ deh with both ¢, and 4. non-

exactly one diviser c " K

k
negative., A divisor of T belongs to at most one set.

we will make use of the fact that ‘k = alak-l + blbk-lm'

and b, = b,a, _, + al?k—l' We will first prove a series

of lemmas for the fields in which N(u = -1,

LEwda 3. 2% > a) + 1/2a,.

t

1)

2

2 2
PROOF: 2° > a2/2a1 = (a] + blm)/2al = (2a] + 1)/2a1.

LENIA L bl/al > bk/ak for k > 1.
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PrOUF: Since ai - bim = -1 ana b,y > 0, we have

0 > (ai - bim)bk_l.

2 z
8)0y8, y * byb,_m > abja o *am .

bylajayy * Pybyyw) > ay(0ja, ) + &b, y)e

blak > albk.
LEwlia 9. ak/bk < §al/bl for all k > 1.

. 2 _ .2 2
PKOOF: 0 < b, _,(a] - bim + 2a]) + 2a;b

2 2
81058, 1 * byom < 3a1b ; * 38

1%k-1°
blak-l'

bylaye.y * b1opym) < 38y (ajby o + byay_y).

D18k-1 < 381Pk-1"

LEluiA 0. (2blal-bl)ak_l/al < 3(2t+1-1)bk_1 for k>1.

PrOOF: From Lemma 5 we have b,a, _; < 38,0, ;.
secause (2a, = 1)/a; > 0, wemay multiply ooth sides of the
above inequality oy (2a1 - 1)/a1 and obtain the following.,.

t+l

(Zalbl-bl)ak_l/al < 3(2&1 + % - l)bk-l < 3(2 - 1)b

1

k-1°

s L ot+l
Lkbilin Te b, + blak/al s u(2 - 1)B,_, for k > 1.
PROUF: When k = 2 we have that b+ blak/al =

| 2 _ ot t+1_
+ 01(2a1+1)/al = L;.bl(al + 1a ) < Le2 b, < L(2 1)b1.
1

2albl

Let us assume that the lemma 1s true for k sn - 1l and
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prove the lemma true by induction. Let k = n.
b, * bia ey = aby ) *bya ) *oylea gy + ob m)/ay

_ 2 -
=b _j(a; + bm) + 20,8 , =b _ (28 + % ) + 2b
8, 1

1%n-1°

By Lemma 3 the right hana side 1s less than

2%y o+ 2p A

n-1 180-1 = -l)b, 3 * b,y * e /8t

an_1(2albl - bl)/al. Applying Lemma 6 and the induction

hypothesis we find that the right hand slde is less than

(2% - 1o+ ue®t - s, ¢ 325 - e

n-1°

- N J r t+1 r
LEMMA 8. 2 b, * 2 blak/al s L(2 -1)B, ; * L(2 -1)b, .
PROOF: The lemma 1s true when k =2 and r = 1,

When r = 1 and k > 2, we apply Lemmas 5 ana 7 to obtain
2b, + 2bja/a) < 42"t - 1)B ) + b+ 3,

= L@"t -1)s, ) + Lo .
Thus the lemma is true for all values of k > 1 when r = 1,

Let us assume that the lemma is true for r n - 1 and

A

prove the lemma true by imductiom. Let r = n. Applying
Lemma 5 and the induction hypothesis we obtailn

n — 5(on=-1 n-1l
2%, + 2%, a /a) =2(2°77p, + 2" 7b.8 /a)) s

n=-1

T L G LN NSl C L I

t+l

L(2 - l)xj,k_1 + y(2" - l)bk. This completes the proof.

Let D = 1=ld1 and 8 = bl/al. We can now summarize
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the results of Lemmas 3 through 8 as follows:

LEMMA 9. d sc, s uD _; &and s > dk/ck for k > 1.

kTS
Wwe now turn our attention to the fields where
N(ul) = + 1 and prove the analogous lemmas. We will let
s = (Vh)-l and note that s > bk/ak for all k.
Liiia 10, 2° > a) - 1/2a, .
ORI, - 2 2l - 2 _
PROVF: 2~ > a2/2a1 (a] + bim)2a;, = (2a] - 1)/2a,.
Leblia 11. sa < 3b /2 for k z 1.

PROOF: aﬁ - bim =1 < Sbi n/l.

2 2
a, < 9bkm/4.

2
. &, < Bbkv&/Z.
LiMia 12. 28° - &, < 3(28° - a, = L)
S T B A ST Y .
3
o 2 _ 2
PROUF: For m z 13, a; =1 + mb] > L 1implies
a, > 2 which in turn implies 0 < 2a§ -8 - L. Therefore
2 .2
yay - 2al < ba; - 38y = u.
2 2
2a7 - a, < 3(2a7 - a; - 4).
T :
LukiliA 13. b, _./a, + (2a,-1)sa,_, < 3(2%*1-1)p
¢ k-1 "1 1 k-1 k-1°
PROOF: Applying Lemmas 11 and 12, we obtaln:
e 2l 2
s(2a] - aj)a, 4 < E(Zal - a - %)bk-l < 3(2a] - & %)bk-l‘
Dividing both sides of the inequality by 8,5 We obtain:

s(2a; - 1)a, _; < 3(2a; -1 - % o,y = by a;.
1l
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Applying Lemma 10 we obtaln:

t+l
bk-l + s(2al -l)ak_l < 3(2&1 - % -1)bk_l < 3(e -l)bk_l.
a; 1l
- i oot*l
L 14. bk + sa, < L(2 l)bk_l for k > 1.

PROOF: Wwhen k = 2, we have that b2 + sa, =

ca b, + s(af + bim) = 2a + s(l + 2b§m) = 2a bl + 2b§Vh + s.

1°1 1°1 1
= 2a1bl(l + bl ) + 8 < 4albl + s = L;.bl(al -1) + 2bl + s,
a,8 Zal a
1 1
Applying Lemma 10 we see that the right hand side is <

t+l

401(2t) + 2bl/al + 8 < 4bl(2t) + 33 < ub1(2 -1).

This proves the lemma for k = 2. Let us assume that the
lemma is true for k < n-l ana prove the lemma by inauction.

o, * 88, = &b,y * Pr8n.y *osleg8, ) * Do, gm) =
b _,(a) * bIVh) + (by + saj)a _, < 2a;b _, + 2saj8 ;.

Applying Lemma 10, the right hand siae 1s less than

St+l , _ (ot¥l _
(e + % )bn-l + dsalan_l = (2 l)bn-l +(1 + % )bn-l +
1 1
_ (., t¥l ;
sa _, *+ s(2a) lla _, = (2 - Ll)b,_y * b, *sa 4+

bn_l/al + (2a; - 1)sa__;. Applying Lemma 13 and the

inauction hypothesis, the right hana side is less than

T+l t+1l t+l

(e - l)bn_l + 4(2 - l)bn_2 + 3(2 - 1)b =

-1

oot
4\2t 1. l)bn_l. This ccmpletes the proof cf the lemma.

i _ T
Leiuh 15 drbk =1)b,_; *+ L(2" -1)p,

for all r when k > 1 and r > 1 when k = 1.

+ 2rsak s 4
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PROOF: Lemma 11 tells us that sa) < bl which
implies that hbl + haal < h(}bl) and the lemma is proved
for k =1 and r =2. If k> 1 and r = 1, then we have

t+l t+l
2b, + 2sa_ < L(2 = 1)B,y *o ¢ gpk < (2 “1)B _, * hbk.

Let us assume that the lemma is true for r = n-l1 and prove
the lemma by induction. Let r = n. Applying Lemma 11
and the induction hypothesis we obtain:
n L, on = n-1 n-1
e b, 2 sa, 2(2° b, + 2 sak) <
t+l

k

p(@% - 1B+ LT - 1)p, + zn'lbk + g(2n°1)bk.

< @™ - s+ bET -+ b2, =

L2t - 1)B,_, + k(2™ - 1) .

we can now summarize Lemmas 10 to 15 as follows:

LEMNA 16. d_+ sc, < th_l and 8 > dk/ck for k 2 3.

We will now proceed to show that the units do not
belong to A(m) and that the integer T does belong to A(m).
It 1s obvious that if b, # 1/2, then the units do not
belong to A(m). We make use of the following lemma to

show that the units do not belong to A(m) when b, = 1/2
k-1

LENMA 17. 8 > 2> a

=]

and b, = 1/2.

1 + 3 when k>1, m 3> 21
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PRCOF: a

i > 2

= bim +12 mw/4 - 1 > L implies 8,

a5 = ai + bim > Eal + 4 > 2al + 3. Therefore the lemma is

true for k = 2. Let us assume that the lemma is true for
k < n-1 and prove the lemma true by induction. Let k = n,
For m 2 21 we have the following inequalities:
‘ - c
L - m < = < u/mbn_l.

2 22

c e 2 _ 6 2 _ 2 2 _ 22 o
48p.1 T Ppoy® = L&y - bmbp g * umbn-l mop.y < Ll = 0.
8 _1 < (bn_lm)/2.
& =88 ,* blbn-lm > 2an_l + (bn_lm)/c > 2an_1 ta g

Applying the inauction hypothesis to the right hand side

me=g, M|
I3 + -
we obtain: a_ > 2a _; + 255&1 3 %;;ai + 3,

THLOREM 2. The units do not belong to A(m),

PROOF: If by = 1/2 and m » 21, then Lemma 17 tells
us that no unit in Sj for j > 1 can be used to represent
the number two as a sum of distinct units. It can be

seen by lnspection that the number two cannot be written

and S, .

as a sum of distinct units using only units in S0 1

-\
> 2% a

when k = 13 we have that a
k (% N i

+ 6 for k > 3, Thus

no unit in Sj for j > 3 can be used in the representation
of the number five., By inspection 1t can be seen that
the number five cannot be represented using only units i1n

Sys 81, S, and 85' This completes the proof.



56

THEOREM 3. The number T belongs to A(m).

PROOF: e may consider every integer P of D(m) as
a point P in the plane with rectangular coordinates x and y
where x and y are either integers or halves of odd integers.
We will fill the plane with concentric diamonds whose
dlagonals are the coordinate axes. The y intercepts of the
siaes of the k dlamond are + ZDk and the x intercepts are
:ZDk/s. For every point in the k diamond we have:

kK S Y * 8x £2D,,

'
n
@
A

Kk S Y - sx 52D .

Let V be the set of all divisors of T which are not
contained in Vj for some j > O. It will be shown that
every integer lying in the k dlamond can be written as a
sum of distinct divisors of T contained in the first k + 1

The divisors in V., and the diamonds

Sets V’ vl, V ...’vk. j

2
are symmetric with respect to both coordinate axes. Thus
there is no loss 1in generality by considering only points
in the first quadrant, on the posltive x axis and on the
positive y axis.

Let us first consider & representation for every
integer in the first aiamond in the case where N(ul) = =1,

. t+
Becsuause dt 1

-1>28 =-1> 2b1/s - 1> 20, -1, every
rational integer between O and 2b1 and between 0 and 2bl/a

can be written as a sum of distinct divisors of 2t. Thus



o1

every integer in the first diamond can be written in the
form: Z 2"(1 + Vm)/2 t%z".

Let us now consider a representation for every
integer in the second diamond 1n the case where N(ul) = +1,

t+2

2 -1 hal -1> hbl/s -1> hbl - 1.

t+e

2a, + 2 -1> 6&1 -1> ébl/s -1,

1

2b, + 2t*e U, 5 6b, - 1.

Applying the above inequalities we see that every
integer in the second diamond can be written either as
2'(1 + Vm)s2 + 2% or as (27 + 20,)(1 + Vm)/2 + 2% #2a,.
Therefore when N(ul) = = 1, every integer in the

first dlamonu can be written as a sum o, of distinct

divisors in the sets V and Vl. When N(ul) =+ 1, every

integer in the second diamond can be written as & sum of

distinct ailvisors in the sets V, Vl and V2.

Let us assume that every integer P' = x!' + y"m
in the first k-1 diamonas can be represented as a sum Op-1
of distinct divisors of T without using any divisors in
the sets Vj for jJ > k-1, ana prove the theorem by
induction. Let P be any point (x,y) in the k diamond
where x and y are either rational integers or both halves
of odd rational integers. If P lies in the k-1 diamond,
then the theorem is proved. If P does not lie in the

k-1 diamond, then we have the following inequalities:
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2D

k-] <Y * 8x 52D

k’
x 20, y 2 O.
Wwe divide the possibilities into three cases. 1In
Case 1 the point lles on or above the straight line
y = sx = de = 2Dk-1’
In Case 2 the point lles on or below the stralght line
y - 8x = -2sck + 2Dk-1‘
In Case 3 the polnt lies between these two lines,

Case 1. 2D _; <y * 8x 5 2D,
y - 8X 2 2dk -2Dk_l,

x 20 Yy 2 O.
If we subtract de from y we octain a point P!
with rectangular coordinates x' = x and y' =y = de.

y' + 8x' < 2Dk - 2dk = 2Dk-l’
y' - sx' z2d, -2D, _, - 2d, = -2D,_y,

x' =x 2 0.

The resulting point P' lies in the k-1 diamond and
thus can be written as a sum Ok-1 of distinct divisors in
the first k sets of divisors V, V,;, **, V, 1. P' =0, ;.
P' =P - ZdRJm. Solving for P we obtain the following:
+2aVm =0, + (e, + dp/m) + (-cy + dpVm).

P = Oy-1

This completes the proof of the theorem for Case 1.
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Case 2. 2Dk-l <y +sx gD
y = 8x 22D _; = 2scy,
yz o0, x 20

If we subtract 2ck from x,we obtain a point P' whose

rectangular coordinates are x' = x - ch and y' = y.

1 ] - - =
y' + sx' < 2Dk 2sc, < 2D, = 2d, =2D, _q»

y' = sx' 2 2Dk-l - 2sc, * 23ck = 2D, _q»
y'=y§00

The resulting point P' lies in the k-1 diamond and

thus it can be represented as a sum 0.1 of distinct

divisors in the first k sets of divisors V, Vl’ '°°’Vk-l‘

P'* = P - 2¢,,. Solving for P we obtalin:

Ox-1° k

P=o,_5 +2, =ag. ;% (c +adym+ (c, -dm.
Thus the point P can be represented as a sum of distinct

divisors taken from the sets V, Vl, --o,Vk. This completes

the proof of the theorem for Case 2.

Case 3. 2Dk-1 <y * sx 52D,

-ésc, +* 2D, <Yy - s8x <2d - 2D ;-

If we subtract d, from y and Cx from x, we obtain

k

a point P' whose rectangular coordinates are x' = x - Cy

and y' =y - dk‘
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Applying Lemmas 9 and 13, we obtain:

1 z - - - -
y' *+ sx' g 2D -d sc, < 2D 2dk eDy .

k k k 1’

y' + sx!' > ZDk_l =d, - sc, 2 2Dk-1 = WD,y = 2D, _q»
y' - sx' <2d, -2D 4 - d, * sc, g th_l - 2D ) = 2D,

y'! - sx' > -230k +2D,_, -4, * sc = 2D,y - 4, - sc,

2 2Dy = LDy = -eD e
The resulting point P' lles inside the k-1 diamond

and thus it can be represented as a sum ¢ of distinct

k-1
divisors in the first k sets of divisors V, Vl’ "',Vk_l.
P' =0, ¢ P'=P=-c -~ dg%h. Solving for P we obtain:
P=o,_,*tc + dem. Thus the point P can be represented

as & sum of distinct divisors taken from the sets V, e¢- |,

Vk. This completes Case 3 and the theorem is proved.
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CHAPTER V
THE GAUSSIAN FIA&LD

In this chapter we will focus our attention upon the
aomain of integers G in the Gaussisn field. The integers
in G are numbers of the form x + 1y, where x and y are
rational integers and 1 ='J-l. The units of G are the
numbers +1, -1, 1 and -i1. bBecause we have only four units
in G it 1s impossible to represent every integer in G as
a sum of distinct divisors of any one integer n of G.
However we can define a set A of integers in G whose
properties are analogous to the properties of the
rational integers belonging to the set A deflined in
chapter one.

DBFINITICN: A is the set of all integers {n} in
G which have the following properties: n belongs to A
it ana only 1if there exists a rational integer n' such
that every integer x + iy in G satisfying the inequalitiles

-n' s x < +n! -n' <y < +n!
and no other integer in G, can be represented as a sum
of distinct divisors of n.

If we represent every Gausslan lnteger as a
lattice point in the plane we can see that geometrically
we have a situation eanalogous to the situation i1n
Chepter I . In Chapter I we represented every

integer on the real line between -a and ta as a sum of
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distinct divisor of a rational integer. Here we are
golng to represent as & sum of distinct divisors of a
Gaussian integer every lattice point 1inslae a square whose
center is at the origin and whose sides are given by the
equations, y = tn!' ana x = +n',

LEMMA 1. If n pbelongs to A and d divides n, then
d is either real or pure imaginary.

PROOF: Let n be a Gausslan integer belonging to

A. Let d.i = 8y + 1bj be the divisors of n. II‘ZQA:i =n',

every divisor l1lying in the first or fourth quadrants or
on the positive x axis must be included in the summand.
If z:bj = n', every divisor lying in the first or second
guadrants or on the positive y axis must be included in
the summand. Thus the 1lnteger n' + in' cannot be
represented unless every divisor lying in the first
guadrant 1s used twice.

THEOkwM 1. A Gaussian integer n belongs to A i1f and
only if n 1s an associate of a rational integer having one

of the following factorizations as & product of primes:

i) n= Bt tor all t 2 O.
t k t 3
ii) n =3 TT'p.J with 3 <p <p forr<s, t>1
j=1 J r s <

J
-l AT

ti 21, p; = 3 moa 4 and pi-l s 0 n ']for 1=1, 2,°*°,k.
:ipj

PROOF: By Lewma 1l,n must be a rational integer

and all divisors of n must be rational lntegers or the



associates of rational integers. If we factor n as a
product of primes in the Gaussian field, each prime factor
must be a rational prime which 1s also a prime in G. Thus
if n belongs to A, it has the form 1) or 1i). If n has
one of these forms, then Theorem 2 of Chapter I tells us
that every rational integer between -o(n) and +o(n) can be
represented as a sum Zdj of distinct rational divisors of
n. Every number of the form iy for =-o(n) < y < +o(n) can

be represented as ide, where the d _ are distinct

rational divisors of n. If we let o(n) = n', every number

in the square can pe written as de + 124, = Zdj +31d,.

THEOREM 2. There exist arbitrarily large square
free rational integers 1in A.

- _ _ k
PrOOF: Let n, = 3, n, =21 and n, -}gipj be the

proauct ol the first k rational primes which are congruent

to 3 wodulo 4. Either n + 2 orn * L4 1s congruent to

3 moaulo 4 and therefore divisible by a prime g which 1s
congruent to % modulo 4. However (h,pj) = 1 implies that

(pJ,Q) = 1, Thus for k > 1 we have;

A

P41 S A SD * L=n_+3+1<o0ln) <20in) + 1.

when k = 1 we have, 7 < 8 + 1 = 20(3) + 1. Thus n;

belongs to A for all k.
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CHAPTLR VI
IVACGINARY QUADRATIC FIELDS
m # 1 modulo U4

In this chapter we will focus our attention upon
the integers in the guadratic fields R(m), where m 1s
square free, less than -1 and congruent to two or three
modulo four,

The domain of integers D(m) in R(m) is the set of
numbers of the form x + y/m, where x and y are both
rational integers. The only units in D(m) are + 1,

DEFINITION: A(m) 1s the set of all integers {n}
in D(m) which have the following properties: n belongs
to A(m) if and only if there exists a rational integer
n' such that every integer x + y/m in D(m) satisfying the
inequalities -n' < x s n' and “-n' <y sn'
ana no other integers in D(m) can be represented as a
sum of distinct daivisors of n.

We shall identify with every integer x + y/m a
point P = (x,y) in the plane. An integer n in D(m)
belongs to A(m) if and only if every point in a square,
whose center 1s the origin and whose sides are parallel
to the coordinate axes, and no point outside of this
square can be represented as a sum of distinct divisors
of n.

By using exactly the same argument as that used in
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Lemma 1 of Chapter V we can prove the following lemma.
LEMMA 1. If n belongs to A(m) and d divides n,
then either d = x or d = y/m, where x and y are rational

integers.

m = =2
Every integer in D(-2) can be factored uniquely as
a product of primes in D(-2). Lemma 1 tells us that if

k
n belongs to A(-2), then n = ZtTT'inm, where each Py is
1=1

a rational prime which 1is also a prime in D(-2). Therefore

J
P; = 5 or 7 modulo 8. Let n, = 211 p, for 1 < j < k.
i J 1=1 1 = =

The largest positive rational integer which can be written
as a sum of distinct divisors of n is o(nk). In order to

represent every rational integer between -a(nk) and +o(nk)

as a sum of alstinct divisors of n, n, must satisfy
Theorem 1 of Chapter I. We can now prove the following
theorem.

THEOREM 1., n belongs to A(-2) if and only if

n = nkvh, where n, satisfies Theorem 1 of Chapter I and

p; = 5 or 7 modulo 8.
PROOF: If n belongs to A(-2), Lemma 1 tells us

that n,  must have the form 2tTTpi, where p, 5o0r 7

modulo 8. 1In order to represent every rational integer

between -o(nk) and +o(nk), n, must satlsfy Theorem 1 of
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Chapter I. In order to represent every integer of the
form yy-2 for -o(n,) sy s *o(n,) we must have n = nkv-2

Conversely if n = nkV-Z, every integer in the square

can be written as 2_ d +[2— d'|V/-2. Because the
d/nk d'/nk

maxiosum value for each sum is o(nk), no integer outside
the square can be represented as a sum of distinct
divisors of ne.

THEOREM 2. A(=2) contains integers n with

arbitrarily large square free n, .

k
PKOOF: Let n, = 2TTp1, where p; = 5, p, = 7 and
i=1
k
L Py is the product of the first k primes which are

i=1
congruent to 5 or 7 modulo 8. 1In order to prove the
theorem we must show that n, satisfies Theorem 1 of

Chapter I for all ke If k =1 or k = 2, n, satisfies this

k
conditioﬁ. For k > 2 we have that at least one of the

numoers nk/2 + 2, nk/2 + 4, nk/2 + 6 or nk/2 + 8 must be

congruent to 5 modulo eight and therefore nust be
divisible by a prime (gq) congruent to 5 or 7 modulo 8.
Because (q,2) = (q,4) =(q,6) = (q,8) = 1, we have (q,nk)
=l. Therefore p,,, = q s1n,/2 + 8 <20(n,) + 1 and ny

satisfies Theorem 1 of Chapter I for all k.
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m< -2

In this section we will consider the quadratic
fielas H(m), where m 1s square free, less than -2 and not
congruent to 1 modulo 4. This implies that m is congruent
to 2, %3, 6 or 7 wodulo 8., Let h = -m. h 1s congruent to
l, 2, 5 or 6 modulo 8.

THROKEM 3. If a + by/m divides 2°/m, then either
& or b must be zero.

PROOF: Let us suppose that a + bym divides 2%\/m
and that neither a nor b are zero. This implles that

e 2

a - mb’ divides 22r e 2

m or that a~ + hb~ divides 22

rh’
where a, b, h and r are rational integers and r and h are

positive.

&€ + ho® = 2%,
(1)

0

A

t s2r , h'|h.
We may rewrite equation (1) as
h'(a/n')2 +(h/n')p° = 2%, (2)
where a/h' and b are non-zero -rational integers. The
left hand side of equation (2) is greater than h' + h/h!
> h' + 4/h' > 4. Thus t 2 3.

If either a or b is an even rational integer, then

the other must also be even and equation (1) reduces to

(a%/4) + n(ve/y) = 2% %nr, (3)

where ad/q and bz/q are rational integers. If elther
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a2/4 or bd/q are even rational integers, we may continue
our method of descent and obtain (a/h.)2 + h(b/h)2 = 2t-hh'
where a2/16 and b2/16 are rational integers. Continuing

in this way we obtain
(a/2%) + n(v%/2%) = 2% % (L)

where elither t - s < 3 or ooth (a2/23) and (b2/2a) are
odd rational integers. Because of the results following
equation (2), we cannot have t - s < 3, Therefore a
solution to equation (1) with a and b even rational
integers implies a solution to equation (1) with a and b
odd rational integers and t z 3.

when a and b are both oda rational integers we have

8 + hb° = h + 1 =2, 3, 6 or 7 mod 8.

Therefore there exlst no solutions in non-zero rational
integers to equation (1) and thus the theorem is proved.
THEOREM L. T = 2%/m belongs to A(m) for all t.
PROOF: Theorem 3 tells us that the only divisors
of T are powers of 2 and /m times powers of 2. Every
rational integer between -o(2t) and +o(2t) and no other
rational integer can be written as a sum of distinct
aivisors of T. Thus every integer x + y/m in D(m) where
-o(2%) S X s +0(2%) and -o(2%) Sy s +a(2%)

can be written as J_ (4 * Vm S ;d'+ No other integer
d/2 dr/2

can be so represented.
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CONCLUSION

In this dissertation the problem of characterizing
the sets A and A(m) has been completely solved for the
rational field and the fields where m =2, m = 5, m = -1
and m = -2, In every other quadratic fleld except where
m is negative and congruent to one modulo four, there
exist infinitely many integers which do belong to A(m)
and infinitely many integers which do not belong to A(m).
However in these fields we do not have a complete.
characterization of the integers which do belong to A(m).
One of the many difticulties which arises 1is that 1if
a + by/m divides a given integer, then a = b/m need not be
a divisor of this given integer. Thus it 1s impossible
to separate the aivisors into sets which are symmetric
to both the x and y axes.,

When m is negative and congruent to one modulo

four the set A(m) is empty. This arises from the fact
that integers of the form x + yVh, where x and y are
halves of oad integers cannot be represented using only

divisors of the form d, and diVm where the d

i are

i
rational integers.

Another area for further investigation is in
the study of the behavior of sums of distinct divisors

of integers in fields of higher degree.
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