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JAY LENZST FOLKERT ABSTRACT

From the collection, F, of functions, f, which
mep the set, _(—)_ y of N elements into _j_L , the generel
subclass, G{‘rﬂ » 18 selected. This cless is composed of
functions such th=t for each f € G{I’:’L} the point xlﬁ_f_)_
hes ry images in () , 1 =1, 2, +..., N. A probzbility
space 1s constructed by taeking Gfri} end attaching equsl
probability to each fEG{rﬁ e A random mspning of ﬂ
into ﬂ relative to G{ri‘ 1s defined as corresponding to
the selection of an f from Gﬁ‘j} with uniform probability.

A subset dof () 1s a comvonent of the function if
and only 1if it is a minimal, non - null subset such th~t
f (V)CD and =t (V)C D, Every mappinz function, feG{rﬁ
deccmposes ﬂ into a number of disjJoint components,
| Therefore, to easch f in G(rﬁ there corres:soncs a nurber, c,
wnich is the numbher of commonents induced in‘ﬁfl_ by this
f. If f is selected at rendom from G{ri} then ¢ is 2 random
variable. The problem is to find the probability aistriputlion
of c,

The nethod used is ome in which auxliliary suas,
S/,.. ’ /4= 1, 2, eeee, N 2re defined, These sumns are accounted
for by two sporoaches., By the first cpprosch a formula in
terms of N and ry is derived for comrutetion of S/a ,/u!t 1,

2, eeeey N . By the second eporoach, S/‘ is fourd in terms
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JAY Lhhmsit POLKZET ABSTRACT

of the brcbability, P of exactly ¢ components, ¢ =1, 2,

c?
eseey No A matrix solution of this expression for PC in
terms of S« is ziven. The result isthe exact probabllity
distribution of the nuuber of components,.

Particular cases of gecuieral mepping are considered
as sreclalizations of the mapuing under G{Tii' These are

the subclass, G of functions under vhich each element

r
of j—l_ has the seme number, r, of 1lnages =nd the subclass,
Gl, of functions under wiichk ecch eleuent of J—l_ has only

one liisge,

Hollow mapring in the sense that no voint is permitted
to map into itself is also considered. ior this cese, the
subclasses, H{ri}’ Hp, and Hy are defined in a manner parallel
to the generel case and the exect probabillity distribution
is found for each,

Nunerical exsmples are inciuded to illustrate each
of the cases considered. The amount of computation involved
in tirese scuggests the reed for en approximation to the
exact distribution. Therefore a binomial approximation 1is
developed. The results of the exsct and epproximate dis-
tributions for these exzmples are included in tebuler

form for reasons of comparison.
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1. INTRODUCTION

1:1, Basic éogsidera;ions. This thesis 1is concerned
with the collection, F, of trensformations or functiomns, f,
on the points of a set, L y of N elements into the set'j_l_,
The most general kind of a function takes a point of_j—L
into en arbitrary number of points of the set. Under such
a function the point x, mavns into r, points of Jrl_, X2
maps into rz points of _(TL , etc.

A subset W of,j—l_ is a gomponert of the transformation

or function if and only if it is a minimal, non-null subset
such that points of W map only into points of W and every
point which mavs into a point of w is itself a point of W,
Symbolically, the subset @ 1s a component of the function
if it 1s a minimal, non-null subset 3 f(w)< Wand
£~ (W)W, It is essential that @ be minimal .

Every mapping function, feF, decomposes j-l_ into
a number of disjoint components. For example, if f were
a cyclic permutation teking xy into x444, mod N, trere would
be only one component. On the other hand, if f wére the
identity transformation, there would be N components.
Consequentliy, depending on the function involved, there

could be 1, 2, ,.., Or N components irduced in ( ) by a

function, f.
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1:2, Statement of the problem =#nd the plan of attack.

A suitably chosen subset J'of the finite collection, F,
of functions is considered. A probability space is constructed
by teking & and attaching equal probability to each fe 2.
A random mapping of __(—)_ into _(—)_ relative to J'is defined
as corresponding to the selection of an f € .9'with uniform
probability. To each f& Jthere corresponds a number, c, which
is the number of components induced in _f_)_ by this function.
if £ 1is selected at random from 3", then ¢ is a random
varieble. The probability distribution of ¢ for various
choices of J 1s the core of this thesis,

There are two main parts in this dissertation. Part I
is the gencral case in which a point may map into itself,
For any fixed set,{rj_} »y 1 =1, 2, ¢es., N, of values, there
exists a subclass, Gﬁ.ﬂCF, of functions such that for each
fe.G{ri}the pPoints Xj, Xz, eeee, Xy of () have Y1y, T3y eeeey
Ty images respectively. Of svecial interest is the case where
ry =r for ell 1. (0 < r<N). This introduces the subclass,
GrCF, of functions under which each point of _(—)_ has the
same number, r, of images. MNoreover, the special case where
r = 1 ylelds the subeclass G, of functions under which each
point has only one image,

Part II 1s the hollow case and ~-eals with the sub=-
class H&.ﬁCFof completely nonidenticel functions under
which no point is permitted to map into i1tself. As in

the general case, the svecial cases H, and H; ere considered,
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These are actually subsets of the corresponding G sets and
are defined in a mamner perallel to the subsets G{ripgr and G,.

Starting with the generzl case, the procedure is to
consider the subset F'to be the subset Gyry}with ri, Tz, eees,
ry images in J_l_ for the points X3, X2, eese, Xy respectively
for each fz<3{ri}. Using metrix reoresentstion, which will
be described in gection 2:1, calculation formulas for
auxiliary sums, §/‘,‘/4= 1, 2, «.., N, are found in terms
of N and the numoer of images, rye This 1is followed by a
derivstion of the same suxiliary sums by a different approech.
By this second method §u is found in terms of the probsbility,
Pc’ that exactly ¢ components ere induced in jfl_ by £
chosen at ra:idom from G{?i}' Then, by matrix elgebra, the
last derivation is solved for Pc‘ The result is that the
exact probability distribution of the numbher of comuvonents
under the rawndom napping G{fi} is found in terms of §/4.
Since the §/‘,‘/u= 1, 2, eeeey, N, can be calculated by
the first set of formulas, the cdistribution of ¢ can be
computed,

The results for thre collection, G{T13 of functions
are easlily adapted to give similar results for the classes
Gp end G, by meking proper changes in the velues of ry in
the formulss.,

The hollow case is treated in a manner parallel to
the general co¢e in as much as the subsets HfripHP and H,

are considered in turn. rloreover, the results of the
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generel case can be adapted to this case by making proper
changes in the limits of summation znd proper substitutions
in the formulas for the auxiliary sums to account for the
fact that no point mey map into itself.

The numerical examples which are included for ecch
of the above ceses indicete that considerable computstion
is involved in finding the exact distribution. The examples
which are presented sre reletively trivial. 1In order to
minimize the work involved in more complicated cases a
binomial approximation to each distribution 1is derived and

illustrated by numericsl examples.

1:3, Previous york. If 3’18 restricted to the class

of permutations of N elements, com»onents become cycles.,
Under a permutation any point of the finite set j_l_ meps
into a second, the second mavs into a third, etc., until

at some stage a point ma s into the first mewber of the
sequence., At this stege a cycle 1s formed. Gontcharoff [1]
has given several moment generating functions for the
number of cycles of the elements of a permutation group

of N elements., His results of the asymptotic behavior

of the distribution of the number of components are repeated
in different forms by others. feller [2] renorts that if c
1s the number of cycles formed, the distribution of c 1s
asymptotically normal with mesn eguel to log N and standard

1l
deviation equal to (log N) /2 . More recently Greenwood [3]






showed by different methods that for large N, the mean of
the number of cycles is approximately equnl to log N + C,
where C is Euler's constant, and that the varlance 13
approximately equal to log N + C'4!£i .

The case where 7"is the class of single - valued
mappings on N elements was considered in part by Metropolis
and Ulan [L] . (This is the class which is called G; in
section 3:3.) They defined the study of a random function
as the study of the probability distribution over the
_(—)_‘(—L semple points of f(x) on () into () . Using
the word tree instesd of component, they proposed the question
of the expected number of comnonents under random mapping.
They suggested that the answer 1s no doubt cof the order of
log N and base thelir surmise on the result which was pre-
viously obteined for cycles,

Kruskal.[%] describes the structure of a component
as conslsting of a cycle together with a number of trees
rooted in the elements of the cycle. This 1s consistent
with the definition used in this thesis. EHEe, too, considered
the class of single - valued mapnings and in particular
deelt with the question proposed by Metropolis and Ulam,

He showed that the expected number, E, of comhonents under
a random mapping function is

N!

N
(1:1) E=2 (W) il -

m=1
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IHoreover, for lerge N this reduces to the following asymptotic
result,
(1:2) E~s1/, (Log 2N + C), where C 1s Euler's constant.
This dissertation will oresent the entire distribution
for multiple - valued functions as well as single - valued

functions. Thus its results extend well beyond those given

by Kruskal,
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If no restriction is plzced on the mepeing of ()
inte ) 4 it is conceivevle that a point could map inik
itself. Wwe silell refer to this type of mepping es the
general case. The collection, Fy, of &ll functiovas on ()
into ¢ 2 is wdniitteddiy Lroad for it Cues ol specify tue
nunber of imeges of the different points of () . There-
fore tre sutcleass, G{r-}’ is cousicered, This cless cunsisis

i
of those functions, f, uncer which each point x. € )
i
hes r{ imeges in () 4 1 2 1, &) eceey Ne It is assumed
1 . N " 3
that r1y Toy eeey Iy &re known., Furtlier, for each f‘G{ri}
t.e mapping of ) iuto () is unique. Equal probability
is assigned Lo each £ in G e Since to each f in Ggp.; there
{ril {rit

corresponcs & number, ¢, whici 1s the number of components
induced in y this ¢ Lbecomes a raniom veriable i

din ) by t f, T r riable if

f is selected at randonm frox Ggp. . qe
{r
il

2:ly The ceiculstion forrmule for the suxiliery

sumy, Sxe In order to Legin the derivetion of this formula

it 1s necessary to introcduce some notation.

(2:1) Let &= {i}, i = 1, 2, eeeey N be the set of
incdices of the points x4 e() .

(232) Let («l’ «2, oooo,“/t) be a/l—part partltion






cﬂ“Sinto subsets such tiret:
(a) aj is non =~ empty for each J <
(b) a, e @ =0 for j #k
J k
(0) a1+a3+oooo+a)“=§o
(2:3) Let whj be that subset of elements of _( )

with indices belonging to a,, J =1, 2, cecey Lo

v

(2:4) Let E(ay, Gz, eeeey Q5“) be the event when ()
is divided into subsets in accordance with (2:2)
and (2:3),¢JaJ (3 =1, 2, ceney st ) has the
properties:

(2) £(u)Ceh,

(b) f—l ( u)aj)c "oaj

It is emphasized that none of the subsets )
1

“’aa, UD%A need be minimal subsets heving tne

properties (a) and (b) of (2:4), Therefore, Bla,, as G )
Iy 9y eceey

18 not edquivalent with decomposition of f ) into

components,

: L e g ani 4
(2:5) et p(al’ az, a/‘) be the probanility of

the occurrence of E(al, a2, OE7“) on the

condition that f is a random selection from %}ir

(2:6) Let Se = P ’
(al’ aa’ ev 00y a'/lé) (al’ aa, eee tx/‘)

M= l, 2, «¢eey N, where the sum is over all possible choices
of (a,, dz, e..., %p) in asccordance with (2:2) for a fixed

value oﬂ/u.
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(2:7) Let ky = the number of indices in a,, J = 1,

J)
seees M This implies that there are k,

elements 1in u)al, aa’

Consistent with (2:2) ky > 0 and ky + ks + co0s * ko= W

The indicated summation in (2:6) cen now be considered

ks elements in & etc.

in two parts. By theorem 3, section 4, chapter 2 of Feller-[éi] ’

for eny fixed set of values (ky, Kz, eeece, K ), there

N
are ways in which the N indices of )
kl, ka, e ey 5“

can be divided into/u groups of which the Tirst contains

k; 1indices, the second contains kz indices, etc. Here

N

1s the multinomial coefficient and
kl, ka, o0 s oy l{/

N!
equals kl! ka! . k Y However, (kz’ k2, ec s oy %/4)

1
At
can take on different values and still satisfy the conditions
of (2:7). For each choice of (ky, Kz, eeee, L ) the
different choices of (a,, @z, ec.., @ e ) must be considered.

For convenience, therefore, it is possible to write (2:6)

as a double sum,

(2:6') Su = : ,
/“ (a1’ az’ ee s )
(Ky, K2y eoee, /A) (ay, G2, eees, A
(k)
The symbol means that for a fixed set
al, aao ee ooy %“

of values (K;, Kz, eoee, %/‘) the sum is taken over all
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poszible cholces of (G, Gz eeee, a/..) in sccordance
with (2:2),
To find a workeble expression for Su, 1t 1s necessary

to evaluate P(q,, In order to do this,

A2y ecee, 0;«)’ ¢
each f‘tG{rﬂis represented by an N by N matrix, Bf = (bij)
where bjj is either zero or unity. This representation

1s based on an approach suggested for socliometric data by
Forsyth and Katz [6] end by Katz [?] e« It was used in

a similar way by Ketz and Powell [Q] « Each of the rows
end columns of Bf is representative of a point of,l—l_.
The elements of each row denote the mapping of the point
of,l_l, which this row represents. IFor example, the i th
row of Bf describes the mappins of x4 e(). 1Ir bfq

is unity, then xj maps, under f, into Xq e(). 1If

biq is zero, then Xy does not map into Xqe Since the functions
f€<i?£§have been assigned equal probablility, the ry ones

N

in row X, pay with equel protsesbility aporear in this row
C‘i ways, 1 =1, 2, veue, N

in any of

The event that Bf has the form

Bll

(2:8) B =
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1s equivalent to the event, Eg o, In (2:8)

eecey a-,“).

C)stands for an array of zeros, BJJ is 2 k, by k

] J
principal minor of Bf, J =1, 2, eeee, Mo This form 1is
equivalent to E(al, G2, seses g‘) because the k; rows of
By, can represent the elements of &g , those of Baa
can represent the elements ofcdaz, etc., Since unity czan

appear only in the positions indicated in (2:8), the
properties, f( waJ)Ca’aJ end 3 (Waj)c“’aj, 3 =1, 2, eeee, M

are obviously saticsfied.
m . - “ )
The procedure for the evaluation of P(ay, Gz, eeeey Gu)

is as follows. For a fixed set of values (k;, Kz, eecee, %,)
N
which satisfy (2:7), one of the \kji, Ka, eecee, k) choices

of elements from ( 2 to represent the subsets dhl, ‘3a3,

Uqa‘ is made. By interchanging rows and corresponding
columns,Bf is arranged thet the rows and columns representing
the ky, points of dh1 appear in the first k; positions of

Bf, those representing the ka points of @q, next, etc,

For purposes of identification the rows of Bf are then labeled

from top to bottom: xlx’ xlz, eoee X1 3 xal, Xza, seey X2y 3
1 3
A %,1, 5“3, sovey Xpyp oo The corresponding
fn

numnber of ones in tnese rows is denoted by: rlx’ Ti,9 eceey
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rlk; ra 5, Ta_, eeeey ral,; eesesey I , 9 seee,y, I .
1 3 5
1 3 Al. /‘3 }‘}}s

The following auxiliary notstion is now introduced:

(2:9) P, = probebility thet the r, ones in the jih

J J

row of Bii are in the ki columns of Bii as indiceted
in (2:8), 1 =1, 2, ceeeymoand J =1, 2, eeee, ky.

In row Xy s the ry ones could sppear in any of the

J J

N positions in the row if no restrictions were placed on

‘)ways in which they could be
J

arranged in this row. However, if these riJ ones are to
f

Bf. Therefore there are @,1

eppear only in the ki columns of B® to satisfy (2:8), then
k

there are only Pij) ways in which they could be arrenged.

The result is

I‘l

J

2:10 = 2, eoces and = 1, 2, eceey K o
( ) Pij ’ M 81 J y < y B4

(1‘1)

In order to have BY take form (2:8), the events fcr
which the probabilities asre given in (2:10) must all occur
at the seme time., Since these events are all independent,
the probsbility of thelr simultaneous occurrence is the

product of these probabilities.

Therefore, (ki )
r

1
(2:11) Pla,, G2, seee, Qﬂ-) = ,rT. -rr. j

N

For a fixed set of values of (ky, Kz, eecee, %/‘)

the above procedure would be the same for each of the






13

N
(:;, K2, eeeey K choices of elements from jfl_ to form

the subsets W = W, Wy . Since (2:11) 1is

e o oy #
a general result, it i1s the expression which cen be used

in (2:6') to give

(k) ’r[ ' (
(2:12) Sw = é 2 e L 3m1

(kly Ka, ecee, ) (0.1, az, 00",/“

/,4.: 1, 2, ¢ceeey N,

Tre above derivation togetier with the limits on

= il
S ,\_/

(Ky, Kz, eose, 5“.) which are given in (2:7) and the fact
that the factors of the denominators of (2:12) come from
each of the N rows of Bt constitutes a proof of

i

THEOREM 1. If N is the nunber of elemepts in () ,

if r, 1s the number of images of the point xp € ),

V=1, 2, oos., Nand 4f (a;, C2, e.e., a7“) is

defined by (2:2), the velue of the auxiliary sum,

S is given by
= = ="1 (\
N
. N
(2:12') S/“= 17_7;-(1‘1 k19k3:°°°’%>°(a19a830°" ) 1=1 J=1\"1
- k +k3 o.oo+1(/‘ N

/“=l, 2, o0 0oy No

Formule (2:12') provides the means for computing

Sm, #=1, 2, eso., N, from the initial conditions (1.e,
with N given «nd ry, 1 =1, 2, ...., N known, the auxiliary
sums can be calculated). The values of %,'will be usad to find

the exact probability distribution.
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2:2, The exzct probebility distribution of the

of compone « In order to finéd the exact distri-
bution of thLe number of components, it 1is necessary to obtain
an expression involving the probebllity t:iat an f‘w}{fi}
selected at random induces exactly c components in j_l_ .
This is done by firnding a formula for %u.,/l= 1, 2, seey N
by a different method.

Before deriving thls expression for §,¢, we prove:

the number of ways in

LENMA 1. IfH (c, x)
/7

which ¢ components can be distributed Into &«

subsets with none of tkem beins empty end if
,‘
c are Stirlin. ruibers of the second kindl°,

Yy

(2:13) M (c,/) = 41 -/c

PROOCKF, The distribution of ore or more cocmihonents
into a subset imnlies thet 2all the elements of the com-
ponents are elements of tne subset evd that the total
nu-tecir of elements in the comhonents equals the number in
the subset, No regard is given to errsngement of components
within the subset,

Whitworth[iQ] in proposition XXII »roves that the

number of ways in which c¢ different things can be distributed

1
Stirling numbers of the second !"ind arc defined by
m mn m n
Jordon [9] as: J = _.-_’E_'..___ y Where Ax =
m -
n . x =0

(x+lﬂ)n"m(x+ﬁ]-l)n + m__(_ﬂi)__ (x+m-2)n-.o--.ooo



........
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1nt9/a parcels (without blenk lots) is ¢! times the co-

© in the expsnsion of (e* - lf“. de describes

efficient of x
"different things" s those which, for purposes of the
problem, are not identical snd he defines "parcels" =s an
unarranged claess. Therefore, it is consistent to allow
"things" to be considered "components" and "parcels" to bve
"subsets". Thus N (cbf‘) equals c! multiplied by the

coefficient of x® in the expansion of (eX - lY“.

Jordan [b in section 71, formula (5) shows that

oo . /‘
(2:14) (eF - 1) = 2 -+ e x°.

Therefore,
e
(2:13) M (c,/w) =//b! c- and the proof of lemma 1
i1s complete.
It is now possible to prove

THEORZ1 2., If PC is the orobebility of exactly

i
¢ comnonents and If «f ¢ are Stirling numbers of

the second kind, the wvalue of é.‘g is given by:

N
: Ve

(2:15) Sf =ﬂ! c Pc% ’/=l, 2’ e 60y NQ
=f

PROCH. In sccordance vith the hypothesis of lemma 1,

the event E(a1. oz, 0?‘.) can be described by a con-

‘.."

dition which is equivelent to those given in (2:4).

(2:16) = the event th-t when ( )

E
(0-1, az, e 000y a/.)
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is divided 1nto/a- subsets, (“’al, “paz, ceey ),

“on
in accordance with (2:2) end (2:3), it is true
that the ¢ components induced in jr)_ by f cen
be distributed into these s subsets with none
of them being eapty for £11 c E;u.

§, is the swa of the probabilities of the occurrence

of B(q,, a2, ..., a%‘). If there are a fixed number of

components, each of the ways of distributing these components
into the/n subsets of _(—L constitutes an occurrence of

E(Qx, Gz, oo, 0‘/.). Consequently,

N
(2:17) s/= % P, . M (c,/t) y #=1,2, ..., N

Cc

Using lemma 1 with (2:17), theorem 2 is proved.
The next step in deriving the exact probability
distribution is to solve (2:15) for Pe.

THIOREM 3., If Sge, =1, 2. ,..., N is given

by (2:12') and if

i
end if %#f are Stirlinz nurhers of th=2 first z;ngf',
then
2

Stirlinz numbers of the first kind are defined by
m
Jordsn [9] as S, = [[_;I'._ e (x)n]x _ o» vhere o (x)n is the

m ‘t_h_ det‘ivative Of: X(X - l) (X - 2) ® o0 0000 (X - n + 1)0
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N
(2:19) Py = = WuS{ , c=1,2 ....., N.
p=c

PROOF. Using (2:18), (2:15) becomes

N M
(2:20) W, = = Pc~6£ » A=1, 2, «uua, N,
C =pm

In matrix notation (2:20) is written:
(2:20') W= PJ, where

{(2:21) W

(VJI w; Wa e 0000 wN)’

(2:22) P

(P1 Pz Pa LRI A ] PN) arld

O c‘.o'ooo.o

J: O ceeeeeee O
0 I

A
Since njn = 0 for all/t ’n , Jis a triangular matrix,
Moreover, JE = 1 for all n. Therefore, /J/= 1, ,Jis

non-singular and has an 1nverse‘4-1 , which 1is also a trianguler

&

| VI

LY

(2:23) J =

(7]

SRR NN ¥

S ... &L

1
N

matrix of the same form. From (2:20') ,

(2:24) P = wSg™? .



~
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Using Jordan [é] , 1t will be shown thet:

O O oo 0000 00 O

Sa O o0 000000 O

3
-l 2
(2:25) =5 = s> §° 0
3 3 ,
N
3 3
Sy Sy Sy

c
where %, are Stirling numbers of the first kind, Jordan

shows

n 1
(2:26) = J, " - S
i=nmn i

n

m
where‘sn. 1s the Kronecker delta. This implies

(2:27) S=TIandas= 4",
Now (2:24) becomes
(2:24') P=WS,
which in non = matrix notetion is (2:19) and theorem 3 is
proved,

Formula (2:19) 1is analogous to the formula (3.1)
for the combination of events of chapter 4 of Feller [é{}
The method of inclusion and exclusion used by Feller 1is

different and does not work in the proof of (2:19). Katz [ll.]

enployed the method used in this thesis. It involves setting






19

up a system of equsations involving the desired quantity,.
(In our case the desired quentity was Pc.) Then this system
is solved so that this desired quentity 1s expressed ex=-
plicitly in terms of other calculshle quantities,

A short table of valucs cf Stirling numbers of the
first kind from Jordan [9;] i1s included in table 1 so they
can be used in the computetion of numerical examples.

TABLE 1

STTRLING NUMNBEKS OF THE FIRST XIND - §2

k 1 2 3 " 5 6 7 8
1 1 0 0 0 0 0 0o 0
2 -1 1 0 0 0 0 o 0
3 2 -3 1 o 0 0 o 0
L ~6 11 -6 1 0 0 0 0
5 24 -50 35 =10 1 0 0 o
6 -120 274 -225 85 ~15 1 0 o0
7 720 =176k 1624 =735 175 =21 1 ©
8  -5040 13068 ~13132 6769 -1960 322 =28 1

These numbers are related by a recurrence formula:
c - gc¢=? c J o _
Su 41 = S S5 with 5% = 81 end Sk = O. Thus, the

table may be extended indefinitely.

2:3 A numerical example. Considercﬁji defined by
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N=6endr, =(1,1, 2,2, 3, 3). The values of the

auxiliary sums by (2:12') are as follows,
If‘/l=l, k, = N and S; = 1,

Since (:) = O when r >k,

- ey OO - {Crry
SOOCCT Qe =0ery

W

e B [ORE)] - LOR0GE
)]

3636
Ss = — 2 £ ,001,122

6
3.24 x 10

Sey, S_ and S6 all venish because 1t is impossible to choose

5

k
the k's s0 thsat all(ri\ > 0 in a given product.

Using (2:18) and (2:19) with table 1, the exact

probability distribution of the number of comoonents is:



Pa

Py

1,567,385

1.62 x 108

52,312

1.62 x 10°

303

1.62 x 10°

Il

967,522

.032,291

000,187

21



3. PARTICULAR CASaS U GuoNLRAL APrING

321, The class Gr' A special case of G{fi} of
some lmportance in applications is the class Gr' Under
each f €G,,, each point of Jrl_ has the same number, r, of
images., Any situation where esch element under consideration
maps into the same number of elements is of this typce. While
this case was implicitly covered in chapter 2, it is irter-
esting to note what effect this particular kind of mepping
will have on the computation formulas of the probability
distribution,

Since G, is a speciel case of G{ri}’ the results of
chapter 2 apply and can be modified to fit the situation
that ry = r. The modificetion of the formula for §ﬂ.,
Wl l, 2, eeee, N, 1s threefold. First, with r; = r the
subscripts on r can be removed. Second, the factors obteined
from By4, 1 =,l, eeeey p , are all equal and the double
product of (2:12') can be changed to a single product with
exponents., Third, for a fixed set of values, (Kiy K2y eeecey gp),
the (k,, ga, e+, Ku) cholices of elements from () to form
W. ) will all give the same

3d *cee, ®pe
o) because the number of images
/I

the subsets (@al,wa

value for p(al, Tz, eees,

of each point of () 1is the same. Therefore, the indic-ted

(k)
summation, ' ;EEE can be replaced by the

(a]_, aa’ LI 2N G%)
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N
fector, élt kz- eeco 1{/ ° Tlie r'esulitv 1is

CURVLLARY 1, If Ii is the nurber of vpointg ir

() and v is the nunter of images of esch point,

tren it follov:e from thecrerr 1 that

= ey
(301) vJ/‘ I (l’ }.‘ geceoy /‘

, & ...’

kl‘.' AZ+ ceee ¢+ lyﬁz N

f'\
Sl
N

//z =1y 2y eeeey i

ReaADK 1, For cconputetionel purposes (3:1)
l’ }‘2) XX /‘\
[(I‘j kiy Koy eeey Bu>0
kl’ k(af cee ¥ k/"" L

k-
iﬂ;'[ki(ril : ’/“= Ly 29 eooey iiy

Vhere I‘J&r) - .u(‘ - l) EEEEX) (N - I 4 l)

can be written es:

(3:1') §#

Since the exprecsion for ‘c in (2:1C) céoes not 7epend
Gircetly on the valvne of v but rather on the values of
9,, /u.= l, 2. seees Ny the probebilitv cistribution for

this cese can be computed as for the cless G{v,}.
i

R3:2, A nmmmericsl example, Coucicce Gr ¢ be cefined

by N =€ end rr= 2, 7The values of the ecuxiliery sums by

(3:1') zue
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1=

(12) (2)
2 (30) { é‘*) 3 ? ()} 9375
C; 2, 2) (2) = —2

3 (30)6 253,125

k
Since 1t is impossible to choose the k's so that all( j>>0
r

w0
]

wn
]

in a given product, S, S5, end Sg all vanish,

The exact probability distribution as computed by

(2:19) 1is:
757,595

759,375

Fy

«997,656

p = 1779

.002,343
2 759,375

1
3 759,375

*d
I
lie

000,001

P)+=P5=P6=O

3:3. The class, Gj;. The class of functions, f,

under which each point of Jrl_ hes only one iumage in,ffL

is called Gl. This i1s the class of mappings considered by
Metropolis and Ulam [L;] and Xruskal [;.]. Since G % G, ,
the results contained in (3:1) apply in this case. Kowever,
because of prior interest in this class of functions, it is

appropriate to show explicitly the expressions which apply

to tris particular case,
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Since each point of jrl_ has only one image in
(), r=1. The result which follows from (3:1) is given in
COROLLARY 2, If N is the number of elements

in ( ) and each point in ( ) has orly one

image, then

N
(3:2) Sk = -%r- ;ZZEEEZ: (i;, Ka, eee, k‘>
N

kl’ ka, eseoy ;>O /‘
kl +k2 +vv.0 +k/l-=N

T o™ pen 2
’ /‘= 1, 2, LI I Y No

4 21 (ky)

Recently tables of the binomial probability dis-
tribution [12;] have been published., An glternztive form
of (3:2) for which these tables are useful is given in

THEORELT 4. If SI“ ’ /"- l’ 2, ececey N, is given

by (3:2) and if b (k; n, p) =(§)pk q®K 15 the

binomlal probobility distribution, then

k ka
(3:3) Su = :ZEEZ. b@diN,ﬁ?béhiN"kn—**B

kl, ka, eeey k/,>o N-kl

ky t kg + ... t %ﬂ =N

k, -
21
o0 cvo0co e ’ N - ooc"k
b(%“-l’ ki - /‘-a’ N - kl""-gu_a ?

/=l, 2’ ®0 00 o0y NO
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N
HOOR N!
PROOF: (i' . ) —
1y 2y e Tm 1. 2- ese Kume

= N (N-k,): en. Nk -....-5,—3)1
K7 (N-kpJ7 ~ Kai (N-ky-kKa)! ... .(H=ky=e.o=k,_ LI

) )
ﬁ' “‘1’ “ (_}_) (_% e (_%k" with

>Oalldk/‘=l\]-k1-ka-...-k °

k].’ k3, eecey k/

From these fscts, (3:2) can be written as a

“telescoping product",

N-k1 N-k,
(3:2') Su = ‘
o

kl’kQ’---’/«.>
k +k3 Ooo+k

k) [ ka\E2 [Nk, ~kg) VK K2
N Nk,

ececsoee N-k]'-... k"'- kl‘—l k,‘-
k/‘-l N-kl-...-kﬂ-z
N-k1 oco-k - N-kl-...-lsa-l
/‘ 1 /‘= 1l 2 esece No
g) ’ ’
N—kl"ooo-k}-a

By the hypothesis of theorem L, (3:3) follows immediately

from (3:2') and the theorem 1is proved.
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Again (2:19) can be used to compute the exact
probability distribution because this formula is not directly
dependent on the value of r but rather on the value of %k

which must be comruted by either (3:2) or 3:3),

3:4, A numerical exagmple. Consider Gj to be defined
by N= 8 and r = 1., The values of the auxiliary sums as
computed by (3:3) are:

S; =1
b(1;8,1/8) + b(2;8,1/4) + b(3;8,3/8) + b(4;8,1/2 )
+ b(5;8,5/8) + b(6;8,3/4) + v(7;8,7/8).

S

2

N
Since %) = (;?;) , 1t follows from the hypothesis of

N , (K N-k X N-k , \k
theorem 4 that (k (_15) ( y:_k) = ( _"'_’E) ( K)
/\N N N-XA N N

and as a result,
(48)  blkN,E ) = b(NeksN, £§£ ) and S, becomes:
s, = 2b(158,1/8) + 2b(2;8,1/4) + 2b(358,3/8) + b(4;8,1/2) .
Using tebles of the binomiel distribution [;%] for the
values which it contains 2nd computation by means of the
hypothesis of theorem 4 for other values:
S, = .785,391,8 + .622,924,8 + ,563,263,8 + .273,437,6
= 2.245,018,0
S5 = b(1;8,1/8) [}b(l;?,l/?) + 2b(2;7,2/7) + 2b(3;7,3/7)J
+ b(2;8,1/4) [2b(1;6,1/6) + 2p(2;6,1/3) + b(3;6,1/2)]
+ b(3;8,7/8) [2o(135,1/5) + 2v(255,%/5)]
+ b(4;8,1/2) [2b(l;4,1/1+) + b(z;u,l/zﬂ
+ b(5;8,5,8) [éb(1;3,1/3{]+ b(6;8,3/4)b(152,1/2)

42}
\M)
I
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.792,514,8 + .552,749,6 + .425,376,8 + 333,252,1

<+

2.

.250,339,4 + .155,731,2
509,963,9

v(138,1/8)b(157,1/7) 2b(136,%/6) + 2b(236,1/3)

<+

+

+

+

<+

+

<+

b(3;6,1/2£I+ b(l;8,1/8)b(2;7,2/7)[;b(l;5,l/5)
2b(2;5,2/5£]+ b(1;8,1/8)b(3;7,3/7)[;b(l;u,l/u)
b(2;4,1/2ﬂ+ b(l;s,l/e)b(uw,”/?)[2b(1;3,1/3ﬂ
b(1;8,148)6(5357,5/7)b(152,%/2)
b(2;8,1/4)b(1;6,l/6)[;b(l;S,l/S) + 2b(2;5,2/5i]
b(2;8,l/4)b(2;6,1/3) 20(154,1/4) + bl2;4,1/2)
b(2;8,1/4)b(3;6,l/2)2b(1;3,1/3)
b(2;8,1/4)b(u;6,2/3)b(1;2,l/2)
b(3;8,3/8)b(1;5,1/5)[}b<1;4,1/4) + b(z;u,l/zi]
b(3;8,3/8)b(2;5,2/5) 2b(133,1/3)
b(338,3/8)b(335,3/5)0(152,1/2)
b(4;8,l/2)b(l;4,1/4) 2b(l;3,1/3) -
b(u;s,l/z)b(2;u,1/2)b(1;2,l
b(5;8,5/8)b(l;3,1/3)b(1;2,1/2)

/2)

.276,374,8 + .139,056,3 + .140,590,7 + .102,539,1

<+

+'

+

1.

.102,539,1 + .062,584,8 + .189,056,3
124,969,5 + .086,517,3 + .086,517,3 + .140,590,7
.0LB,666,0 + ,051,269,6 + 062,584,9

715,120,9
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S5 = v(1;8,1/8)b(1357,1/7) {£(1;6,1/6)[;b(1;5,1/5)

+ 2b(2;5,2/5£Z+b(2;6,1/3)[}b(1;4,1/4) + b(z;u,l/zil

+ b(3;6,l/2)2b(l;j,l/j»b(4;6,2/3)b(1;2,1/Zi?
b(l;a,l/S)‘o(2;7,2/7) {b(l;5,l/5) [2b(l;4,1/4)
+ b(z;n,l/zi]+-b(2;5,2/5)2b(1;3,1/3)
+ b(3;5,3/5)b(1;2,1/2)}+-b(1;8,1/8)b(3;7,3/7)
*{5(1;4,1/4)2b(l;3,1/3) + bl2;4,1/2)0(132,1/2)

+

+ b(1;3,1/3)0(152,1/2)
+ b(2;8,1/4)b(1;6,1/6){%(1;5,1/5)[}b(l;h,l/b)
+ b(z;u,l/zi] + b(255,%/5) [bb(1;3,1/3 + b(1;2,1/2i]
+ b(2;8,1/4)v(2;6,1/3) {5(1;4,1/4)2b(1;3,1/3)
+ b(z;u,l/z)b(l;z,l/zf}
+ (238, /4)0(356,/2)b(153,/3)0(152,%/2)
+ b(3;8,%/8)b(135,%/5) {p(154,1/4)20(153,1/3)
+ b(zgu,l/z)b(l;z,l/zi}
+ b(3;8,7/8)b(2;5,2/5)0(133,1/3)0(1;2,%/2)
+ b(u;8,l/z)b(1;4,1/4)b(1;3,1/3)b(1;2,1/2)
Sg = .094,528,2 + ,062,484,7 + ,043,258,7 + ,025,634,8
+,062,484,7 +,038,452,1 + ,021,629,3 + .043,258,7
+ ,021,629,3 + ,025,634,8 + ,062,484,7 + ,038,452,1
+ ,021,629,3 + ,038,452,1 + ,019,226,0 + ,021,629,3
+ ,043,258,7 + .021,629,3 + ,021,629,3 + ,025,634,8
S4 = .753,020,9
S¢ = b(158,1/8)b(1;7,1/7)b(1;6,1/6) b(1;5,l/5)léb(l;4,l/h)
+ b(2;4,%/2)] + v(255,%/5) [26(153,%/3) + p(152,% 2)]
+ b(1;8,1/8)b(1;7,1/7)b(2;6,1/3){§(1;4,1/4)2b(1;31/5)
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+ bl2;4,1/2)p(152,1/2)

+ v(138,1/8)b(1;7,1/7)0(336,/2)v(133,1/3)0(152,%/2)
+ (1;8,1/8)6(2;7,%/7)p(135,1/5) (134, 1/4)26(153,1/3)
+ b(138,1/8)b(2;7,2/7)b(155,1/5)b(2;4,1/2)b(152,1/2)
+ b(138,1/8)v(257,2/7)v(255,2/5)b(133,1/3)b(1;52,1/2)
+ 1v(138,1/8)0(337,3/7)v(1;4,/4)b(153,1/3)0(152,1/2)
+ B2;8,1/4)b(136,1/6)0(155,/5)0( 154, /4) 20(15 3,1/ 3)
+ b(258,1/4)0(1;6,1/6)0(155,1/5)b(2;4,1/2)b(152,1/2)
+ b(2;8,1/4)b(1;6,1/6)b(2;55,%/5)b(153,1/3)p(1352,1/2)
+ b(338,3/8)v(1;5,1/5)b(1;4,/4)b(1;3,1/3)b(152,%/ 2)
.061,283,1 + ,028,839,1 + .010,814,7 + .019,226,1

+ ,009,613,0 + ,009,613,0 + ,010,814,7 + ,019,226,1
+ .009,613,0 + ,009,613,0 + ,009,613,0 + ,010,81k,7
.209,093,3

b(1;8,1/8)b(137,1/7)0(136,1/6)v(155,1/5) {v(154,1/4)
2b(133,1/3) + b(2;l+,1/2)b(l;2,1/2)}+ b(1;8,1/8)
v(157,1/7)b(1;6,1/6)v( 255,2/5)0(133,1/3)p(152,1/2)

+ v(1;8,/8)b(157,/7)0(2;6,%/3)0( 154, 1)
b(133,1/3)b(152,1/2) + v(138,/8)b(2;57,%/7)
v(135,1/5)0( 134, /4)0(153,1/3)0(152,1/ 2)

+ b(258,1/4)0(136,1/6)v(155,1/5)0(154,1/4)
b(133,1/3)0(152,1/2)

.014,419,6 + ,004,806,5 + ,004,806,5 + ,004,806,5

+ ,004,806,5

.033,645,6
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Sg = b(1;8,1/8)v(157,1/7)b(156,1/6)v(155,1/5)
b(134,1/4)0(153,1/3)0(152,1/2)
Sg = +002,403,3

Using these results together with table 1 and (2:19),
the exact probeobility distribution is:
P, = 405,628
P, = 408, K50
P3 = .153,895
P, = ,028,893
Py = .002,970
P = .000,169
P, = ,000,005
Pg = .000,000,06



4, THE HOLLOW CASE

4:l, Prelimingries. If the mepping of‘j-l_ into
j—l_ is restricted so that no point is permitted to mep

into itself, the mapping is called hollow. The subclass
of functions which represents this type is called H{yﬁ.
Analogous to GPE}’ HP}}is composed of functions, f, under
which each xiﬁ_(ﬁ_ has ry, 1 =1, 2, ¢ee., N, images in
L.

Hollow mgpning is of specisl interest in the field of
social psychology. In soclometric testc an individual chooses
the individuals in a group with whom he wishes to be associl-
ated, In some cases & vsriety in the number of choices
made by en individual is permitted. In other cases, all
individuals must mske an equal number of choices., In still
other instances only the prime choice is made, If each
of the N individuals making the choices is coiisidered to
correspond to a point ¥4 end if his cholces for associates
correspond to the ry imcges of x3, 1 =1, 2, eese, N,
then a hollow mepping situation exists provided no in-
dividual is permitted to choose to be =ssocieted with
himself,

The number of choices permitted in different in=

stances gives rise to differcnt subsets of hollow meppingse.



33

The situation where there is a variety in the number of
answers by different individuals in the group 1is covered

by the class,H{TI}, If F,. and H, are subsets of functions

defined for the hollow case as G, and Gl were for the
general case, then H, covers tne situation where each
individual in the group chooses the same number of associates
and Hl covers the cese where each individual makes only the

one best choice. Er and H; are considered in chapter 5.

L:2, The zuxiliary sums and the exact probability

distribution of the number of comnonents. Since Wrﬂf:Q?ﬁ’
thke results of chapter 2 can be adepted to the hollow cuse,

To meke the event, E(u possible under hollow
1

a2, eccoy a/)’
mapping there must be at least two elements in the subset
"DO‘.J, J = 1, 2, o.oo,/‘o This means the k.j’ J = 1, 2, 9..9,/“’

f
must be gresater than one. The matrix representation, Bf = (bij)

f
is different in thst bJJ = 0 for sll J = l, 2, ece ey N.
Consequently, the required form of Bf, which 1is equivalent

to the event, E(“l given in (2:8), is modified
?

G2y ooy Cu)
in thet the main diagonal elements'of the principal minors,
Byy, 1 =1, 2, eese, M, are all zeros., Therefore, the
rij ones in the J th row of Bii’ 1 =1, 2, ceeey M and
J=1, 2, ...., ky may appear only in sny of the remaining
(kg = 1) positions 1f BY 15 to nave the form equivalent to

(2:8). At the same time if no restrictions are placed on
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the form of Bf, the ones in any row could appeer in sny
of (N = 1) positions. Since ky>1, 3= 1, 2, eeeup,
there could be at most[-l-:-]subsets formed from the index set,ﬁ,

where [g] is the largest 1integer in the quotient -IZ\I .
IHoreover, there could be at most[é- components induced in
_(—)_ by a function, f.

Using the above facts, formules for the auxiliary
suns, S , M= 1, 2, eees, [-g , and for the probability,P
of exectly ¢ componentsS, ¢ = 1, 2, eeee, [], must be modified
in order to make them valid for the hollow case, The theorems
which were proved for the general case are now listed
with proper modifications for the hollow case. They are
numbered with primes to show the correspondence between the

cases,

THEOREM 1'e If N is the number of elements in

_r)_ end r, 1s the number of imeges of the point

Xy S_(—)_, v = 1, 2, XEEE) N, and if (al, a2, eceey aJ“')

1s defined by (2:2) then the value of Su is given by

(4:1) s = ——(—
-I;r' N;i kl,kz, '..., l (al’az, 0000,
kl+k +oooo+k/~_N

jf[ 1 () e e .




-
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THEOREM 2' . If P, 1s the probability of exactly

P* .
¢ components ami‘f; are Stirling numbers of the

gcecond kirnd, then

(b E] d
2) Su =l P, ~J; » 4= 1, 2, eean, [1.2\1]

c o
. \ Spe N
THEOREM 3'., If W, = =T s A1, 2, ceeey By

given by (4:1), and if §2 are Stirling numbers

0 th

(4:3) P, = WuSS, 0 =1, 2, ,[.121]

Consider Hgiidefined by
N=6gandry=1(11, 2, 2, 3,'3)e The values of the

auxiliary sums are, by (&4:1):

S0 -

Sl=l

“ORE

S, = 000,072

S_, S

By (4:3), the exact probability distribution for this

example is:



= .999,964

.000,036

36



5. PARTICULABR CASLS Ur HOLLOW MAPPING

5:1. The class Hn. A speclal czse of H{Tiz for

the hollow cese 1s the class Hy, which is defined as G

r

was for the genersl case. (That is each point of ( ) has

the same number, r, of images in ( ) .) Although this

clsss was mentioned in section 4:1 and implicitly considered

in section 4:2, for cocmnleteness, the exact formulas for

computation are shown. The corollearies are numbered with

primes to show the parsllelism betveen the results for

Up in secticn 3:1 and those for Hi,. The reasons for the

modifications are covered in section 3:1.

(5:1) Sp

COROLLARY 1', If I is the number of vnoints in

( ) and r is the number of imares of each roint,

then it follows from theorem 1' thet

—_— k
= . £ é Koyeone \ (1-1)
- Ne= N kl’ kz;-...,&)l 1272 ’ jm]

(7
r klk ocookf—

JZEE RN LI

REMARK 1', For purposes of computetion (5:1)

can be written
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N
(5:1') S, = 1 :zg%; <T ‘>
f [(‘N-l)(r)‘]N . kl’kZ"".’kf‘

l,kz’....,&>l
kl+k2+...+K‘=N

ﬁﬁki_l)(rﬂki, = 1,2,....,[.15] .

Since the formula for Pc in (4:3) does not depend

directly on r but rather on the values of‘§,,/u= 1, 2, ....[

1)

the exact probebility distribution can be computed by

using this formuls.

: A pumericgzl exsrn . Consider Hr defined by
N =6 2nd r = 2, The values of the auxiliary sums by

(5:1') are:

Sl = l

S, = —X ( 6) (2)® = 22 -~ 000,020
2 (20)6 3, 135 ’
S5 =0

The resulting exact probability distribution by
use of (4:3) 1is:

P = .999,990
P, = ,000,010
P3 =0

5:3. The class Hy. As mentloned in section L:1,
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the subclass Hy 1s defined for the hollow cese u8 Gy wns
for the general case. To complete the parallelism between
the hollow end the general case, the formulas which apply
specifically to rendom mapping under functions from Hl
are given as they were for the class Hp.
COROLLAKY 2', If N 1s tne number of elements in
1_1_ and each point in J_l_ has only one image, then

(5:2) Su = h é (1’ ’ﬁ_(ki-l) 1

k k2,0001§‘>1

+h +,..F
kl k2 oeo kf,

#=l, 2, ,[%]

In order to make the tables of the binomial

kz,....’ﬂ

probabllity distribution [iz{] useful sn slternative form

of (5:2) 1is presented in
By
THoOBEM 4', If S,, m=1, 2, ....l[%]is given

1
by (5:2) ond if blk;n,p) =C)p S

the binomisl distribution, then

N
N~ =
(5:3) Su = f...i)_ﬁ Z b@l;N,;%;)

(N=1 kl k2""’19">1
k. +k +...+k<(N°")

b@Z;N-kl ,W—zl,-/‘?]B. ) ob kﬂ l;I‘I"kl‘-o oo -',t‘: _2 ’ I\T_kl_. R .-I{ -2

=12, e, [-%—]



.
.
.
’
% A
..

~
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PROOF:
N N \/N=k N=Kq= =k
l l e ece /‘_2
kl’kz,...’5“ = k k s0 00 e k

kl’kz’ ....., l{#>l

(ku=1) = (N=ky=kp=ssoa=lg 1 =1)
Therefore, (5:2) can be written as a "telescoping

product",

N-k
N-k,-atl) 1
et = _(_I\T.Z.)l.\l. () ( 1 )
(5:21) Su (N-1)N Kpkpyeen Ky, -=-1{ N‘/“ N=x

kl+k2 cee /‘$ N-1

N-k.=k
"'kl N-ley=k,= @ +2> 172
-kl_/+ _kl-ﬂ +l ® e 0 00

1/N 1 Nky =
e N kl-...— -2 J“—l -K oo™ _l-
-kl ooo- ‘k -ooo- -2

M=1 2,....,[]

Using the notation of the hypothesis of theorem 4',
(5:3) follows snd the theorem 1s »roved.

The formulz which is used to compute the cxact
distribution after S/, A=1, 2, ey g_]has been com-
puted by (5:2) or (5:3) is (4:3) because it does not depend

on the value of r but on the value of S/“ .

5:4 A numerical ervampie. Consider Hy defined by

=8 end r = 1, The values of the auriliary sums as
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found by use of (5:3) are

By

S, =1
1
8
Sg = E_é')% 2b(2;8,1/6) + 2v(3;8,%/3) + b(‘*38»1/2)_]
7
s2 = ,390,607,4

w
]

3 éﬁ[Zb(z;S,l/S)b(z;é,l/h) + b(2;8,1/5)b(3;6,1/2)

+ 2b(3;8,2/5)b(2;5,1/3) + b(4;8,3/5)b(2;4,l/2£]

53 = .036,354,0

5, =f%§[;(2;8,1/4)b(2;6,1/3)b(2;4,1/2£]

Sy, = .000,437,1
S5, Sé, S7, and 88 all vanish.

(4:3), the exact distribution is:

o
n

1 = .816,705
Py, = ,177,327
P, = ,005,950
P, = .000,018

P5 = P6 = P7 = P8 =0



6., A BINOMIAL APPROXIMATION OF THE
DISTRIBUTICON OF 7Tlr NUMBER

OF COMPONENTS

62 Introductory considerations. Since the exact
distribution is known, an approximate distribution is useful
only if it 1s more easily computed. The above numerical
examples, although restricted to relatively trivial cases
show thaet considerable work is involved in the computaticn
of the exact distribution., Therefore, an approximation is
worthy of investigation.

Because the distribution of the number of components
is discrete and since it is concelvable, in scme appli-
caticns, that the set _()_ will be compocsed of a relatively
small number of elements, it seems feasible to use a
distribution of the discrete type fcr the approximation.

A binomial approximation is therefore found and the results

have proved to be rather good.

dist on. Tne binomial distribution has only two
parameters, N and p. With N fixed, only p needs to be
estimeted. Since the wuean of the binomizl distributicn

equals N times p, an approximation of p could be obtained
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by equating the expected value of the random variable, c ,
which 1s the number of components in.Jr)_ , With the
expected value of ¢ if it were distributed as the binomial
distribution. However, tne expected value of the number, c ,
of components 1s nct easlily obtained in terms of one or
more of tre Su, #= 1, 2, eees, N. Kruskal [;:J gave the
result for the speclecl cace where the mapping was single-
valued., Since this seems to be quite difficult in thre
general cgse, 1t 1is convenient to consider a relatcd

c-1

variable, n , where n is a positive integer. For such

a variegble the following theorem 1s proved.

THEOREM 5. If ¢ is the number of components in () ’

n 1s a positive integer and Su.the auxiliary sums

>

given by (2:12'), then the exnected velue of nc~1l

1§ guen by

n Vs
_ n-1 S
) 39 - ,210) #-

PEOOKF: Consider the arbitrary quantity, A, defined

ass:

s= n o\
- =0

n

=
From (2:15): S = p! - Pj j .
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n
3
Therefore, A = 2 Cl_l 0&-])1 2 P ‘K
A =1

b
-
c
=) vt L7
The coefficient of P, in A = — 1) K1) E,.

By changirg the notation slightly, the coefficient of

c
- ZEEE ) 4~
P, in A = gl- ng'“ ’Jc; .
4=l
But Jordan [9] , section 58, formula 2, shows

c
/‘-
n® = E ‘Jc (n}‘ , where (n}“ = n(n=1)....(n-putl) = np‘:)
!
Therefore, the coefficient of P, in A = nc-l; and by the
definition of the exvected value, A = E (n®1) ana (6.1)
follows. This completes the prroof of theorm 5.

Using (6:1) the results for a few integers are:

(a) E (1°71) =1

s
(b) E (2°7%) =1+ -2

2
( — C"l - Pl +_S_3

Since E(1°7%) gives a triviel result znd since
E (2°°1) 1s obviously the simplest expected value to
compute, 1t is convenient to use this to find a binomiel

approximation of the distribution of the number of components,
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In order to find the parameter p which will
determine the binomial distribution for fixed N, it is
necessary to prove the following theorem.
TH=CREM 6., If (c- s ¢ dom varicble distributed
binomially with paremeters (N-~1) and p, then

(6:2)  E(n°1) = [1 + (n—l)p] N-1

-1
PROOF: By hypothesis: b(e-1l; N-1, p) pS~1 gN-c

N c~1
., c=1 e-1fN=1) 1 N-c
Therefore, E (n~ ") = n p q e
This cen be rewritten:

N
-1
- - 2 -1 N- Ne
E (n®=1) = (np)c 1 q Ca (q + np)¥ 1
] c-1

Since @ = 1 - p, (6:2) follows and the proof of theorem 6
is comnlete.

| An estimate of p which will determine the binomlal
approximation of the distribution of the number of com-
ponents 1s now vossible by equating the two vzlues of
E(2°‘l) obtained from theorems 5 and 6. This is not an
estimate in the statistical sense., No sempling is
involved. It is simply an aporoximation which results

from equating the exvected value of pc-1

if ¢ is the
nunber of components in ( ) with the expected velue of
221 3¢ (c-1) has binomisl Gistribution with parameters

(N-1) and p.
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Usirg the results in (6:1) and (6:2) with n = 2 and
equating the expected values of 2c-l, the result for the

estimate of p is:

1
s, ] N1

Using (6:3) and denoting the espproximate probability

(6:3) p

of ¢ components by Q, , the formula is

(6:4) Q¢ = ptl N o =1, 2, ...., N.
c-1

It is noted that this birnomial approximetion of the
distribution of the number of components can be determined
by finding oniy the value of Sz. For the genersl case formula
(2:12'), (3:1') or (3:3) can be used, depending on the
values of r. After S, has been found, p is found by (6:3)
and the approximate distribution is found by (6:4).

For the hollow case, the same procedure may be used
and the same formulas apply with tue exception that N is
replaced by [%] throughout. For completeness the formulses

are listed with primes ss they apply to the hollow case.

S
(6:3')  p= |1+-2| [2] ~-1



6: Numerics aprles. In connection with the
exact-distribution discussed previously six numericsgl
examples were presented to illustrate each of the classes of
random mapping functions. These same examples are now presented
so'that the approximate distribution of the number of
components can be c-mpared with the exsct distribution.
Accordingly, an estimate of p is found for each exemple
and the epproximate probabilities are shown together with
the exact probabilities, (found earlier) for the general
and hollow cases in tables 2 and 3 resnecctively.

Lnguais defined by N = 6 end r = (1, 1, 2, 2, 3, 3),
then, from cection 2:3, S, = .065,705 and by (6:3)

p = .006,486. The values of Q, computed by (6:4) are
shown in the first section of table 2.

If G, is defined by N = 6 end r = 2, then,from
Lyiy
9375

The values of Q. computed by (6:4) azre given in the second

section 3:2, S, = end, by (6:4), p = .000,467,

section of table 2.
If Gy i1s defined by N = 8 and r = 1, from section
3:4, S, = 2,245,018 and therefore p = «113,506,6, Agein

the values of Q, are given in the tiird section of table 2.
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If‘k&rﬂ is defined by N = 6 ~nd r = (1, 1, 2, 2, 3, 3),
then S, = ,000,072 by section 4:3. Using (6:3'), p = .000,018,
The values of Q, are computed by (6:4') and given in the
first section of teoble 3.

If H, i1s defined by N = 6 and r = 2, by section
5:2, Sp = ,000,020 and by (6:3'), p = .000,005. The values
of QC as comouted by (6:4') are given 1n the second section
of teble 3.

If Hy is defined by N = 8 snd r = 1, by section
5:4, 85, = ,390,607,4 and by (6:3'), p = ,061,270,5, The
values of Q, are given in the third section of table 3.

The egreement hetween the tzbulated values 1s
ressonably good. In the hollow czose, there 1s virtually
no dift'erence between the exact and epnroximate velues vhen
N=6, ry =(1,1, 2, 2, 3, 3) endG wheaN=6, r=2, In
the general cszse, agreement is to at least the third decimal
place for these examples., Wnen N = 8 cnd r = 1, t:ere is
variation but trere is definite sgrecment in tne pattern
of the distridvutions.

For larger values of N the computation of the exact
distribution is cumbersome. Thus, comperison becoues
difficult. Katz [ijzl has shown thet the exect probability
of one component when N = 20 and r = 1 1s .264,68. The
approximate probsbility given by (6:4) for this set of values
is: Qy = .295,227. This indicates very little change in
accuracy in the probability of one component for larser values

of N.
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7. SUIIARY

After Kruskal [5._] had solved the problem of the
expected number of components for a single-~valued random
mapping function, the question of the probsbility distribution
of the number of components was a logical next step.

Moreover, thne question of what would hapven if the mapning
were multiple-valued seemed worthy of consideration. By

a method somewhat esnalogous to that used by rFeller [éJ for
the combination of events but more nearly like thet used by
Katz [ilJ , the exact probability distribution of the
number of componernts of a multiple=valued random mapping
function wes found. Results for particular mappings which
restricted in various ways the number of images of each
point became s)Haclal cases of the genergl solution,.

Hollow mapping in the sense that no point was permitted
to map into itself was considered because of the interest
in this type in application to social situations. The
probability distribution for this case followed very rezdily
from the general solution.

Numerical examples, vhich were included as illustrations,
revealed thet the smount of computation increases enormously
with increase in N. The binomial approximation, which wss
presented, does wuinimize the work but secrifices some of the

accuracy.
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Rubin and Sitgrezves [i4;] , in a peper made availeble
after the main part of the problem which is considered in
this thesis was completed, showed some results which are
rclated to the problem. Dealing only with single-valued
functions (corresponding to the class Gy in the thesis)
they have found the distribution of tae number of components
by a completely different method, Thus, for single-vslued
functions ti:eir result overlaps the result for the clcss
of functions, Gy, presented here. They also considered
other toplics dealing with size and composition of components.
Questions concerning the size and composition of comvonents
formed under multiple~valued random mapning functions remain
unanswered, |

It 1s hoped that the results obtained here will be
useful in apvrlications. In socizl situations, divisions
into groups are bound tc occur. Whetrher these divisions
follow essentially the t:eoreticsl distribution or whet:er
tney deviate significantly so that they must be accounted
for on the basis of age, prejudice, etc. rather than on
chance remains as part of the problem of tre application

of the results presented in this thesis.
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