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ABSTRACT

SURFACE MATCHING AND CHEMICAL SCORING
TO DETECT UNRELATED PROTEINS BINDING

SIMILAR SMALL MOLECULES

By

Jeffrey Ryan Van Voorst

How can one deduce if two clefts or pockets in different protein structures bind the

same small molecule if there is no significant sequence or structural similarity between the

proteins? Human pattern recognition, based on extensive structural biology or ligand de-

sign experience, is the best choice when the number of sites is small. However, to be able

to scale to the thousands of structures in structural databases requires implementing that

experience as computational method. The primary advantage of such a computational

tool is to be able to focus human expertise on a much smaller set of enriched binding

sites.

Although a number of tools have been developed for this purpose by many groups [53,

63, 89, 91, 94], to our knowledge, a basic hypothesis remains untested: two proteins that

bind the same small molecule have binding sites with similar chemical and shape fea-

tures, even when the proteins do not share significant sequence or structural similarity.

A computational method to compare protein small molecule binding sites based on sur-

face and chemical complementarity is proposed and implemented as a software package

named SimSite3D. This method is protein structure based, does not rely on explicit pro-

tein sequence or main chain similarities, and does not require the alignment of atomic

centers. It has been engineered to provide a detailed search of one fragment site versus a

dataset of ∼ 13,000 full ligand sites in 2-4 hours (on one processor core).

Several contributions are presented in this dissertation. First, several examples are



presented where SimSite3D is able to find significant matches between binding sites that

have similar ligand fragments bound but are unrelated in sequence or structure. Second,

including the complementarity of binding site molecular surfaces helps to distinguish

between sites that share a similar chemical motif, but do not necessarily bind the same

molecule. Third, a number of clear examples are provided to illustrate the challenges

in comparing binding sites which should be addressed in order for a binding site com-

parision method to gain widespread acceptance similar to that enjoyed by BLAST [3, 4].

Finally, an optimization method for addressing protein (and small molecule) flexibility in

the context of binding site comparisons is presented, prototyped, and tested.

Throughout the work, computational models were chosen to strike a delicate balance

between achieving sufficient accuracy of alignments, discriminating between accurate

and poor alignments, and discriminating between similar and dissimilar sites. Each of

these criteria is important. Due to the nature of the binding site comparison problem,

each criterion presents a separate challenge and may require compromises to balance

performance to achieve acceptable performance in all three categories.

At the present, the problem of addressing flexibility when comparing binding site

surfaces has not been presented or published by any other research group. In fact, the

problem of modeling flexibility to determine correspondences between binding sites is

an untouched problem of great importance. Therefore, the final goal of this dissertation

is to prototype and evaluate a method that uses inverse kinematics and gradient based

optimization to optimize a given objective function subject to allowed protein motions

encoded as stereochemical constraints. In particular, we seek to simultaenously maximize

the surface and chemical complementarity of two closely aligned sites subject to directed

changes in side chain dihedral angles.
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Chapter 1

Introduction

1.1 Motivation

The motivations for this dissertation include the ability to effectively mine protein struc-

ture datasets to discover similar binding sites in protein structures. This searching can

be used to pose candidate small molecules or functional groups that are likely to bind

protein structures or pockets with unknown function. In addition, the partial matching

and flexible matching nature of comparing binding sites is of a general interest to scien-

tists in the computer vision and computational geometry communities. Techniques for

flexible surface matching exist in character animation, face recognition, and many other

applications. In this dissertation, techniques from such fields have been adapted to be

applicable to compare protein binding sites. It is expected that insights and knowledge

gained from comparing proteins might be applicable in other areas such as full three di-

mensional matching and medical imaging.

1.1.1 The Need for a Binding Site Comparison Tool

Many proteins, and by extension protein networks and biological processes, are affected

by interactions with specific small molecules. Understanding the basis and mechanism
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of protein small-molecule interactions is crucial for drug discovery and design because

most drugs work by enhancing or reducing the activity of one or more proteins. In order

to gain a better understanding of proteins, structural genomics initiatives have been put

forward to encourage the experimental solving of novel protein structures [59]. Because

a relatively large number of novel structures are solved each year, automated methods to

mine the datasets of existing protein structures for features that the novel proteins share

with better studied proteins are important. The drug design community is especially in-

terested in chemical and shape patterns across protein folds. However, in many instances,

the binding sites and the biologically relevant small molecules that interact with proteins

from structural genomics are unknown. Thus, a computational tool that compares po-

tential binding sites against a dataset of proteins that have small molecules bound can be

useful to propose candidate small molecules for proteins with unknown function.

As an example, suppose there exists a novel protein, called Protein A, that protein

biochemists seek to understand. A commonly used technique is to search the known

protein sequence space for a Protein B whose sequence is significantly similar to Protein

A’s sequence. The goal is to find that Protein B does exist, and that Protein B has been

already studied. Thereby, one can infer features of Protein A based on conserved features

between Protein A and Protein B. Other techniques to find proteins related to A include

protein structure based search tools and experts looking at experimentally resolved pro-

tein structures in Protein A’s structural fold. All of these tools are restricted to proteins

with significantly similar sequence or structure. However, in many cases, there exist sets

of proteins that can bind the same small molecules (e.g. ATP), such no two proteins in a

set have significant pairwise sequence or structural similarity.

From a protein small-molecule interaction point of view, researchers are interested in

all folds of proteins that can bind the same small molecule. For this reason, a number of

tools have been developed that can compare the protein small-molecule binding sites of

any two proteins. However, the journal articles and the previously existing tools have
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shown little progress in addressing the problem of finding similar binding sites in other-

wise unrelated proteins. Therefore, there exists a need for a non-sequence non-mainchain

structure-based methodology to compare binding sites from any two proteins and to pro-

vide a ranking of a query binding site versus a dataset of binding sites reflecting their

likelihood of binding the same or very similar molecules.

1.1.2 Addressing the 3D Partial Matching Problem

A relatively common problem in object recognition is to find the best match between a

partial scan or object representation and each larger or full object in a dataset. Examples

of partial matching include finding the best match for a partial fingerprint, finding the

best match for a partial face scan, and finding the best match for a small molecule frag-

ment binding site. Partial matching tends to be more challenging and computationally

expensive than full matching since, in general, the heuristics used for object matching fail

for partial matching. The reason for this failing is heuristics for full matching generally

exploit global topological features of objects, but in the case of partial matching, a number

of the features may be missing. The missing global features, in the partial matching case,

can make it difficult to consistently avoid false negatives and false positives when using

such features.

The partial matching problem is, in general, approached in two ways. One method

is to compute a number of candidate alignments between the partial object and a full

object (one such method is RANSAC [34]). This method is helpful because the relative

positioning of feature points might be conserved between the compared objects. On the

other hand, since a number of candidate alignments are considered, the runtime of such

partial matching techniques can be longer than the comparison of two complete objects.

Another popular object recognition method is to compute transformation invariant

features such as points of maximal local curvature [84]. One then considers the distances

between the feature points in both objects to determine if the partial object is consistent
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with the larger object. Transformation invariant features do not necessarily perform well

in the partial matching setting as features of a partial object may be consistent with those

of the larger object, but the relative placement of the features as a whole may differ.

Unfortunately, many of the published partial matching methods are verified on dis-

tinct object parts that are rigid and closed objects such as animal legs, human heads, and

plane wings [71]. To our knowledge, protein small molecule binding sites do not have

such global features as a ”leg” or ”wing”. In addition, many such methods take care to

not allow intersections, but protein molecular surfaces are akin to metaballs [15]. That

is: if two protein atoms are sufficiently close, they are modeled as having their surfaces

joined as though they were two cohesive objects that are blended together in a distance

dependent manner. Therefore, although curvature has been used to align protein sur-

faces, the stability of points of maximal local curvature is unknown in the context of par-

tial matching.

1.2 Overview: Contributions to Science

A major objective of this thesis is to test the hypothesis that the binding sites of proteins

that bind similar small molecules exhibit sufficiently similar features such that an auto-

mated method can recognize and group them according to their surface and chemical

similarities. This objective is addressed by contributions to the state of the art in compu-

tational methods to compare protein small-molecule 1 binding sites. Since protein struc-

tures are 3D objects with their shape and function defined by the packing of a number of

small, flexible and linked building blocks, applicable computer vision and computational

geometry techniques are adjusted and applied to address the binding site comparison

problem. The techniques used for binding site comparisons differ in details and imple-

mentation from many traditional computer vision methods because protein structures

1 In protein small-molecule settings, the small molecule is many times called a ligand.
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are fully 3D objects and change of scale is not an issue with protein structures. The initial

method to compare binding sites is enhanced by including surface and chemistry match-

ing to address the problem of similar binding sites. Because proteins are flexible, due to

relative motions within and between the building blocks, a flexible refinement method

is developed and implemented to more consistently compare and contrast binding sites.

I have implemented the binding site comparison methods as a software package named

SimSite3D and extensively tested the methods on a number of challenging datasets. The

results show that binding site chemical and shape features are necessary to compare bind-

ing sites from proteins that do not have significantly similar sequence or structural fea-

tures.
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Figure 1: An example of different hydrogen bonding patterns of very similar ligands
bound to two different protein folds. The molecules are drawn using tubes (edges) which
represent the covalent bonds between the non-hydrogen atoms. The vertices represent
the centers of the atoms in the molecules with purple and green denoting carbon atoms
from the ligands and proteins, respectively. The blue and red vertices represent nitrogen
and oxygen atoms, respectively. The red balls represent the center of the oxygen atoms the
of water molecules. The dashed yellow lines denote the pairs of non-hydrogen atoms that
are participating in hydrogen bonds. The protein in panel A is a G. gallus dihydrofolate
reductase (DHFR) (PDB 1DR1). The protein in panel B is a Y. pestis 6-hydroxymethyl-7,8-
dihydropterin pyrophosphokinase (HPPK) (PDB 2QX0). These two sites are difficult to
recognize as similar because only two protein atoms form similar hydrogen bonds with
the pterin and the match between the hydroxyl group and carboxylate oxygen does not
provide a strong signal (this is difficult to present in 2-dimensional images). Notice: for
interpretation of the references to color in this and all other figures, the reader is referred
to the electronic version of this dissertation.

In the process of considering the binding site comparison problem, we have discov-

ered a number of challenges which cannot be addressed directly via methods similar to

those presented in this dissertation. We provide two examples where simple similarity

heuristics fail. The first difficulty is water molecules are very important for protein-ligand

recognition. If the water molecules present in the structures are ignored, it can be chal-

lenging to recognize that two binding sites, from otherwise unrelated proteins, can bind

similar small molecules (Figure 1). The second challenge is that two proteins, unrelated

by sequence or protein structure, may bind the same small molecule in opposing orienta-
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tions with respect to the shape of the binding sites (Figure 2). Therefore, maximizing the

overlay of binding site surfaces need not result in a good superposition of bound small

molecules, even if the small molecules are the same.

Figure 2: Examples of very different protein surfaces near the binding sites of the same
small molecules. The mesh surfaces represent the boundary between the protein and
other molecules in the solution. One might expect that if two proteins bind the same small
molecule that their mesh surfaces would be similar. However, this expectation does not
necessarily hold for proteins from different folds. In this figure, the proteins were aligned
using the bound small molecules as the reference frame. In panel A, one can see that the
molecular surface of G. gallus DHFR (magenta mesh) is quite different from that of the
molecular surface of Y. pestis HPPK (cyan mesh). In panel B, the molecule adenine is
shown with the molecular surfaces patches from an N6-out protein (magenta mesh) and
from an N6-in protein (cyan mesh)–the position of N6 is at the end of the blue tube that
is not part of the two rings. Notice that in both panels the small molecule alignments
do not maximize the amount of overlapping surface area. Therefore, the site alignment
with maximum surface complementarity need not be close, in pose space, to the better
alignment with respect to the position of corresponding ligand atoms.
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Chapter 2

Background

Because this dissertation builds upon from techniques and science from two scientific

fields, relevant background topics from Computer Science and Biochemistry will be illus-

trated and explained. In particular, key points are presented for the partial matching of

objects and the process of training and testing machine learning models. A brief introduc-

tion to protein structure and molecular forces is provided to explain protein terminology

and chemical characteristics of biomolecules.

2.1 Protein Biochemistry

Biochemistry is the study of the chemistry used by living organisms to carry out the tasks

associated with life. Some features of life include growth, using energy sources (food),

and reproduction. These tasks are performed using a large number of molecular con-

structs that vary greatly in size and complexity. The molecules are typically classified by

their functions and chemical composition. Some of the classes of molecules are biopoly-

mers built from a relatively small set of small molecules, and they include proteins and

genetic material (DNA and RNA). Given the breadth of the field, a brief overview to bio-

chemistry is not possible here and a good reference book that explains the current views

of the field based on experimental evidence is Biochemistry by Voet & Voet [100].
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Protein biochemistry can be characterized as the field of chemistry that studies the

unique features of proteins. Proteins are used by all known living organisms to accom-

plish specialized tasks. At a high level, proteins seem deceptively simple in that they are

biopolymers comprised of five elements (H, C, O, N, S). Proteins are built from 20 basic

building blocks, called amino acids or residues. The residues are linked in a chain, by co-

valent bonds. This chain is many times called the backbone, and it consists of alternating

peptide bonds and amino acid side chains. At some point shortly after its peptide bonds

are formed, a protein’s chain ”folds” to give the protein its unique 3D shape [7].

Figure 3: An example of a three amino acid section of a protein. The backbone carbon
atoms are colored gray, and the sidechain carbon atoms are colored green. A, B, and C
are backbone nitrogen, oxygen, and alpha carbon atoms. Notice that A, B, and C and
the carbon atom in their center are in a plane; this is a peptide plane and is an important
feature of protein backbone structure. X, Y, and C are participating in covalent single
bonds. An example of a dihedral angle is given by CXYZ where the convention is to hold
CXY fixed and to vary the position of Z. In particular, CXYZ is the angle between the
vectors CX and YZ when they are projected in a plane that has its normal in the direction
of XY.

The flexibility of proteins is mainly due to the fact that many of the covalent bonds in

proteins are single bonds. One characteristic of a single bond is that the two sets of atoms

on either side of the bond can rotate relative to each other (with the bond as the axis of

rotation), and these rotations can be used to describe most protein motions.
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Definition. A dihedral angle is the relative rotation of two sets of atoms that

are connected by a single bond where the angle is computed with respect to the

connecting single bond.

The large number of dihedral angles is one of the main reasons why computationally

modeling proteins is a major challenge. Modeling all of the joints’ degrees of freedom in

proteins as a discrete search space is intractable for most proteins. Furthermore, modeling

protein flexibility as a discrete search space is restrictive because many preferred angles

are better modeled as distributions with relatively large variance.

Another challenge is that proteins are very small. Molecules at the scale of proteins

cannot be observed using even the most powerful microscopes and cannot be accurately

modeled using Newtonian mechanics. The main tool used to observe the 3D structure

of proteins is x-ray crystallography. At the present, the use of x-ray crystallography to

resolve the structure of a ”new” protein that has not yet been resolved is a long and

challenging research and engineering process. The successful application of x-ray crys-

tallography yields a snapshot of a fully 3D model of the relative atomic coordinates of a

protein (many times called a protein structure) and any small molecules that were bound

to the protein. By carefully analyzing the geometric and chemical properties observed

in protein structures and the small molecules they bind, theoretical chemists have devel-

oped quantum mechanical and statistical models to describe the forces relevant to protein

small-molecule interactions and binding.

2.1.1 Molecular Forces

One fascinating feature of biomolecules is that their unique 3D structures strongly depend

on the ”weak” molecular forces within the molecules and between biomolecules and their

environment (solvent, etc.). Because the ”weak” molecular forces have a much smaller

magnitude than molecular bonds the constraints imposed by the forces are less rigid and

the forces take less energy to overcome. The ”weak” forces and dihedral rotations of
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single bonds allow the molecules to be flexible. A biomolecule’s flexibility has a large

impact on its overall characteristics, and the ”weak” molecular forces can be characterized

by their dominant features. Therefore, the modeling of proteins and small molecules

requires an understanding of the ”weak” molecular forces.

Two types of ”weak” polar interactions are due to molecules having charges, with op-

posite signs, that are brought in to close proximity. Ionic forces are between oppositely

charged atoms or functional groups that have formal charges. Ionic forces are character-

ized as being relatively strong and having less of a directional dependence than hydrogen

bonds. Examples of objects formed by ionic forces are salt crystals and salt bridges in

biomolecules. Ionic forces are not covalently bonded interactions as crystals formed by

ionic forces generally separate into their separate ions in polar solvents (e.g. much of the

Na and Cl in table salt crystals disassociates in water to form Na+ and Cl− ions).

The second polar force is the attraction between certain small electronegative atoms

that can directionally ”share” a hydrogen atom that is covalently bound to one of the two

atoms 1. The protein atoms that participate in a strong hydrogen bonds are nitrogen and

oxygen. Because the non-hydrogen atoms in biological molecules are primarily carbon,

oxygen, and nitrogen, hydrogen bonds are very important for life on earth and in the

study of biochemistry. Hydrogen bonds are considered as a distinct category from ionic

bonds because the atoms don’t have full formal charges, and the experimental evidence

(NMR) that hydrogen bonds have a partial covalent bond-like structure is not observed

for ionic bonds. Hydrogen bonds are very important since they help to stabilize proteins

and are a primary force for the formation of protein secondary structures.

Another interaction commonly described as an attractive force, that is not technically

a force, is the hydrophobic effect. The most clear feature of the hydrophobic (”fear of

water”) effect can be observed by the very high resistance of oil and water to mix. The

hydrophobic effect in biochemistry is characterized by the preference of non-polar atoms

1 Although it is useful draw a distinction between hydrogen bonds and covalent bonds,
in nature, there is a continuum between no bond and the presence of a chemical bond
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(typically carbon and sulfur) to group together and away from the polar solvent, and

cause the orientation of nearby polar solvent molecules to be more constrained in order to

satisfy their desire to form hydrogen bonds. Two commonly held hypotheses are that the

hydrophobic effect is important in the packing of protein secondary structure elements to

form folded protein structures, and that it is a strong component driving the binding of

proteins and small molecules.

The force that directly affects all atoms (even non polar atoms) is the van der Waals

forces that occur when a pair of atoms are in close proximity. The van der Waals force

contains both a repulsive and attractive component. The attractive forces are called the

London dispersive forces, and are thought to be due to induced dipole-dipole interac-

tions. The repulsive force is due to the Pauli exclusion principle for the overlap of atoms.

The van der Waals force between any pair of nearby atoms is very weak, but due to the

very large number of pairs of nearby atoms, the sum of the van der Waals forces is impor-

tant for the cohesion of protein structures.

2.1.2 Structural Features

We now provide an introduction to important points of larger-scale protein structure. A

more thorough introduction to protein structure is given by Brandon & Tooze [16].

As mentioned previously, proteins are comprised of one or more amino acids con-

nected via peptide bonds. Proteins are translated from messenger RNA by a ribosome

using the 20 amino acids. Each amino acid has two parts: the main chain and side chain.

The amino acid main chain atoms and bond structure are the same for the 20 amino acids.

When a number of main chain groups are covalently bonded together end to end, they

form a peptide chain (many times called the protein’s backbone, or main chain). An

amino acid’s side chain atoms are those atoms that are not part of the main chain, are the

part of the amino acids that differ, and are the reason why proteins are so challenging to

model.
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Proteins are characterized as having four levels of structure. The first or primary struc-

ture is the protein sequence, that is, the listing of the amino acid names from the beginning

of the protein’s peptide chain to its end (i.e. N to C terminus). Computationally analyzing

protein sequences is relatively straightforward since all protein sequences are linear and

have no branches. Protein sequences have been studied quite successfully as beads on

a string and as character strings with gaps. Protein sequence comparisons are typically

computed by dynamic programming [77, 93] or space-efficient approximate methods (i.e.

need not find the global maximum) [75, 103]. However, protein sequences are 1 dimen-

sional, and do not indicate which portions of the residues in a small molecule binding

site interact with each other or with other small molecules. Also, sequence methods can-

not adequately address binding site comparisons between two proteins that have low

sequence similarity (typically <20% similarity). The reason is at low sequence similarity

the relative position of the binding site residues need not be similar in both sequences; in

other words, their backbones can and do fold differently.
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Figure 4: An example of protein regular secondary structure. The bonds between the
protein main chain atoms are shown as tubes with red, green, and blue representing oxy-
gen, carbon, and nitrogen atoms, respectively. The amino acid side chain atoms are not
shown. The purple dotted lines denote the pairs of atoms which are participating in hy-
drogen bonds. On the left is an example of an α-helix. On the right is an example of large
β-sheet; notice that in the top right corner, there is an example of a β hairpin which is
forming part of the sheet. These particular secondary elements can be found in a crystal
structure of an E. coli RNA nuclease (PDB: 3AA3).

Protein secondary structure can be classified into three categories: α helices, β sheets,

and loops or disordered parts of proteins. An α helix is a local conformation of the protein

backbone such that the ith residue’s main chain oxygen atom forms a hydrogen bond

with the i + 4th residue’s main chain nitrogen atom. The protein’s main chain looks like a

spiral or helix (Figure 4 ). A β sheet is a portion of the protein where two or more lengths

of protein main chains run parallel or anti-parallel 2. to each other and form hydrogen

bonds between main chain atoms. In that region, the resulting main chain structure looks

like a hairpin or, with more strands added along the edge, like a sheet (Figure 4 ). Protein

2 The chains themselves are parallel in both cases, but if one draws a vector in the
direction of increasing residue numbers the vectors can be either pointing in the same
or opposite directions

14



main chain hydrogen bonds dominate secondary structure, and there are two categories

of regular, ordered secondary structure elements: α helices [80] and β sheets [79].

Figure 5: An example of the packing of protein secondary structure elements to form a
folded protein. On the left is the main chain of the protein shown as tubes; a β-sheet can
be seen in the upper center and right of the protein, and 2 α-helices can be seen in lower
right of the protein. On the right is a cartoon drawing of same protein with the secondary
structure elements rendered so that they are easily recognized. Cartoon drawings can
be very illustrative of the packing of the secondary elements and the overall structure of
proteins. These particular secondary elements can be found in a crystal structure of an E.
coli RNA nuclease (PDB: 3AA3).

Protein tertiary structure is the 3-dimensional structure that exists after an amino acid

peptide chain is ”folded”. Proteins are called folded since the resulting structure is com-

pact. Two copies of a translated protein sequence will result in two identically folded

proteins because the sequence of amino acids specifies a protein’s fold [7]. In this disser-

tation, when the terms protein or protein structure are used, they refers to the protein’s

tertiary or 3-dimensional structure.

Protein quaternary structure is the 3-dimensional structure of proteins that is formed

when two or more tertiary structures, formed by separate polypeptide chains, come to-

gether and form a protein or a complex of proteins. The interactions may be permanent

(one protein resulting from two or more chains) or transient (protein chains can come to-
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gether and separate again). Not all proteins form complexes, but many proteins are not

biologically active unless they are in complexes. The computational field of predicting the

interactions and relative orientations of protein chains in quaternary structures is called

protein-protein docking.

2.1.3 Protein-Small Molecule Binding Sites

Protein-small molecule interactions occur when a protein and corresponding small molecule

come into close proximity and the two molecules form a complex that is more energet-

ically favorable than being separate. The portion of the protein that interacts with the

small molecule (ligand) due to hydrogen bonds, the hydrophobic effect, etc. is called

the binding site. Here, we focus on small organic molecules that are the natural chemi-

cal partners (substrates) of proteins, such as ATP, rather than small ions (e.g. sulfate or

water).

2.2 Object Recognition

Several definitions are helpful when discussing object recognition as a field or method.

Rigid objects can be described by their position and orientation.

Definition. The center of an object may be its center of mass, geometric center,

etc. as long as the method of measuring the center is consistent for all objects

considered

Definition. The position of an object is generally approximated by the location of

its center with respect to a given reference frame (typically a local or global origin).

Many objects have distinct features such that unit vectors can be used to represent the

location of the features with respect to the objects’ centers (e.g. center of an animal’s mass

to the tip of its nose or the end of its tail).
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Definition. The orientation of a given object is its relative heading with respect to

a given coordinate system. The heading of an object can be represented by a unit

vector.
The position and orientation of a rigid object can be described by six degrees of freedom:

three degrees for its position and three for its orientation. A rigid object and be moved

from one position and orientation to another by applying a rigid rotation to its position

and orientation and adding a translation vector to its position.

Definition. A rigid transformation is any rotation and/or translation that can be

applied to an object that does not change its shape or volume.

Definition. A pose of an object is its position and orientation respect to a particular

reference frame.

Definition. An alignment is a particular rigid transformation applied to one object

that brings its center close to another object’s center and provides the first object

with approximately the same orientation as the second.

A challenging problem that encompasses much of computer vision and is relevant to

computational geometry is: given an example (or model) object, find all copies of that

object in a given environment. This class of problems is denoted as the general object

recognition problem. In the general case, this problem is very challenging because we

seek to find the object even if it is partially occluded or its representation is somewhat

distorted (i.e. cluttered environments, significant sensor noise, deformable features, etc.).

One approach commonly applied to object recognition is divide-and-conquer. The ma-

jor steps include: segmentation of the search space and/or locating candidate matches to

the model, determining the best alignment between the model and each candidate object

(registration problem), and a ranking of each candidate with respect to its similarity to the

model by use of a mathematical/statistical model (many times called a scoring function).

The divide-and-conquer approach to object recognition has been used with considerable

success in many application areas including military applications and handwritten char-

acter recognition.

17



An example of object recognition, is to use a divide-and-conquer approach to search

a dataset of images for matches to a given human face [108]. On the surface, this search

problem may appear to be an easy task because humans excel at solving this problem

when the number of images is small (people tend to get bored or tired if the number of

images is too large). However, face recognition is computationally difficult because the

research community does not have a complete understanding of how humans process the

information in an image, and humans seem to be hardwired to recognize faces [108]. Solv-

ing the segmentation problem requires computing features such as the approximate scale

of a face (e.g. average number of pixels per face), the colors that represent sensed human

flesh tones, lighting conditions etc. Determining the orientation of a person’s head is very

important for recognition; as an example, a human face has very different characteristics

when viewed from the side or viewed from the front. Accurate face recognition requires

that the alignment of each face in the image be as close as possible to that of the model

face. The fact that each of these steps is computationally challenging for a general image,

highlights the fact that humans excel at many complex pattern recognition tasks that are

open computational problems.

As with the general face recognition problem, the idea of searching through a dataset

of protein-ligand binding sites for those sites that are similar to a query binding site can

be attacked using the general object recognition framework.

Definition. A query object is that particular object used to search a dataset of

objects and have returned those object that are similar to that particular object

Because locating protein-ligand bindings sites is a very difficult problem in itself [69], we

assume, that the location of the binding sites is known and do not consider the prob-

lem of locating binding sites on a protein. This reduction in scope is similar to the scope

of the problem of face recognition for identity where one typically starts with a frontal

face scan and compares it to a dataset of frontal face scans [21]. However, unlike human

faces, protein-ligand binding sites exist in many different shapes and there is no known
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set of landmarks that can be used to align each binding site to a common reference frame.

Secondly, many of the query sites are significantly smaller than the sites in the screen-

ing dataset, and we seek the best partial match between the query site and each dataset

site. Therefore, the binding site search problem is more computationally demanding than

human face recognition for identity because one must search for candidate alignments.

Our goal is determining the best partial alignment between a given query site and

each binding site in a dataset of sites. This goal can be achieved by computing a number

of candidate alignments and, then, ranking the candidate alignments with respect to their

accuracy of alignment. Thus, as with many object recognition solutions, we separate the

problem of finding the best partial alignment into two subproblems.

2.2.1 Searching for Candidate Alignments Between two Labeled 3D

Point Clouds

Determining candidate alignments for the best partial match between two 3D point clouds

is a common and challenging problem. Two of the more common solutions are at oppo-

site extremes and are to use the maximum or minimum number of point correspondences

and a least squares error fit to enumerate the probable 3D alignments.

Consider maximizing the number of point correspondences used to determine a can-

didate alignment between the two point clouds. Such a method seems like a good idea

since the candidates will use most of the available information. However, using all of the

points is problematic since one or two poor point correspondences can greatly influence

the least squares error solution because it is a minimizer of the average error over all the

corresponding points. In addition, if a number of the points have a significant amount of

measurement error, it is difficult to determine the quality of point correspondences and

the quality of candidate alignments will suffer. Adjusting the fit by successively removing

the point correspondence with the largest residual, recomputing the fit on the remaining

correspondences, and terminating when the average residual error is less than an accept-
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able tolerance fails in the case of ”poison” points [34]. Thus, a straightforward use of a

large number of point correspondences, in the presence of significant errors, to determine

candidate alignments is generally error prone.

Another approach is to use the minimum number of point correspondences required

to have a unique transformation. In three dimensions three unique correspondences and

noncollinear points are required for a unique transformation. The beauty of this approach

is only three point correspondences need to have low error to get a good candidate align-

ment. The disadvantage is that a potentially large number of candidate alignments will

need to be reviewed. If all possible correspondences are considered and the first and

second point clouds have N and M points respectively, the number of alignments to con-

sider is given by the number of ways one can choose three points from N points times

the number of ways of choosing three points from M points. The number of three point

correspondences is O(N3M3). Given the very large number of candidate alignments

generated by considering all the three point correspondences, one typically resorts to a

sampling method or pruning method to reduce the number of candidate alignments.

Random sampling methods have been used with reasonable success for many ob-

ject recognition problems in computer vision. One of the earlier such methods is RAN-

dom SAmple Consensus (RANSAC) [34]. RANSAC uses a computational model M of

the query object, and a point set of each object in the dataset that is being queried. The

RANSAC algorithm is best presented in a pseudocode form as presented in Algorithm 1.

Since RANSAC-like methods build up from a minimal number of correspondences to a

larger set, they can cope with common issues in computer vision such as partial matching

due to occlusion, etc. For this reason, RANSAC methods are quite popular in computer

vision applications.

In many application areas, the points can be labeled or contain additional data and the

edges between points can be assigned domain specific characteristics. One can use the ad-

ditional data at the points or edges to drastically reduce the number of 3 point matches to
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Algorithm 1 RANSAC meta-algorithm [34]

Require: Model object M (point set, mesh surface, CAD object, linear model, etc.)
Require: Set S of sample points from object to compare to model M
Require: Minimum number of points required for the model (say m)
Require: Error tolerance T for accepting sample points fit the model M
Require: Minimum number of point correspondences desired for final model mfinal
Require: Maximum iterations N

for n in range(N) do
sn := m randomly chosen points from S
Fit M to sn to get model instance Mn
Determine the subset s∗n of S that is in reasonable agreement with Mn
Fit M to s∗n to update the model instance M∗n
if s∗n and M∗n is the current best and |s∗n| ≥ mfinal then

save M∗n and s∗n as best found
end if
if error(M∗n, s∗n) ≤ T and |s∗n| ≥ mfinal then

break
end if

end for

consider and to increase the number of good alignments. A common technique is to use

colored or labelled points and require corresponding points to have compatible features.

An example of adding information to sample points is to have a common reference frame

for fingerprints, and at each minutia denote the angle that the ridge tangent line makes

with the horizontal axis, and require corresponding points to have similar minutia an-

gles [36]. Associating features with data points requires an investment in preprocessing,

but in many applications it greatly reduces the search space.

The binding site partial matching problem makes it difficult to use a straightforward

application of Probability-Based Matching (PBM) techniques. The diversity of the sites

and the partial matching nature of this problem implies that there is not a common refer-

ence frame from which to measure features such as angles, etc. (as opposed to fingerprint

matching and face recognition). In general, there are no landmarks (e.g. tip of nose in

face recognition or wheels in car recognition) that can be used to quickly align two ran-

domly chosen binding sites. The reasons include the fact that protein interaction sites
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are very diverse in their sizes, their shapes, and the chemistry they present; and protein

binding sites can exhibit significant conformational change with respect to their scale. 3

Because one cannot define a common reference, vectors associated with corresponding

points cannot be directly compared as in the finger print matching case, but require at

least a 3D rigid transformation before comparison.

2.2.2 Scoring Candidate Alignments

The existence of candidate alignments is rarely sufficient evidence of a match between a

model object and the objects to which the model was aligned. The reason is that alignment

methods typically trade quality of alignment for a decrease in the search runtime. In fact,

in the case of RANSAC [34] or similar methods based on using the minimum number of

point correspondences to determine candidate alignments, the candidate alignments re-

quire additional scrutiny and filtering to determine which candidate represents the best

alignment. Typically, a scoring function or ranking method is used to determine the qual-

ity of candidate alignments and provide an ordering of the alignments with respect to

their quality of alignment.

As an example, in human-face recognition, the fact that a method is able to align a

model face to a face in an image does not imply that the person’s model face was a good

match to the face in the image. The reason is initial alignment methods typically focus

on getting the probable face in an image at the same scale and orientation as the query

image, and additional scrutiny is needed to determine if the two faces match. In the case

of face recognition for identification with high resolution range scans, one feature that

works reasonable well is if the root mean squared error (typically called RMS error or

RMSD, see Appendix A) of the points in the two face scans are within ∼ 1 mm the faces

3 In protein biochemistry, the existence of significant differences in the relative atomic
positions of two of the same or similar proteins is termed conformational change.
The reason is almost all of the relative differences can be explained by differences of
dihedral angles of single bonds.
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are considered a match [21]. Unfortunately, such a stringent tolerance means that different

facial expressions can cause the method to err on the side of false negatives. Therefore, the

method relies on the assumption that the person being scanned wants to have a positive

identification. Thus, face recognition requires a tolerance of match to distinguish between

true positives and imposters.

There are four prediction categories that are used to assess the performance of scoring

function with respect to an object and a particular class. Suppose we have a set (class)

A of objects such that x is in A and y is not. In addition, we have a scoring function S()

(classifier) to predict whether a given object is in A.

Definition. A true positive is an object that a scoring function correctly classifies

as being part a given class (S(x) is A) and x ∈ A.

Definition. A true negative is an object that a scoring function correctly classifies

as not being part of a given class (S(y) is not A and x /∈ A).

Definition. A false positive is an object that is not part of the class, but the scoring

function incorrectly classifies as being in the set (S(y) is A, but y /∈ A).

Definition. A false negative is an object that is part of the class, but the scoring

function incorrectly classifies as not being in the set (S(x) is not A, but x ∈ A).

These categories are widely used to estimate the performance of classifiers with respect

to given classes. Since most classifiers make classification errors on occasion, a clear un-

derstanding of these categories can be instrumental in choosing among classifiers and/or

settings thresholds for classes based on errors one seeks to avoid.

In many cases, we prefer to select the best of the candidate alignments and not one that

is ”close enough”. For that reason regression or approximation methods are preferred

over classification methods. In addition, when the dependent variable(s) are continu-

ous, classification methods require arbitrary boundaries or thresholds to be set during

the training process (i.e. classification requires converting a continuous variable to an
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integer variable). It is straightforward and relatively inexpensive to set arbitrary thresh-

olds for classification given a regression solution, but if a classification method was built

and the thresholds change, the classification training and testing must be redone. This

does not mean that regression is superior to classification, but rather that regression is

preferred in the case of approximating continuous values. Classification methods are

generally used in the case where the number of classes are finite and the boundaries are

meaningful. Since alignment error is represented by a continuous variable, we will focus

on regression techniques.

The general framework used to build a ranking method (the regression problem) has

been consistent for many years [14, 27, 42]. This framework is as follows:

1. Get a dataset containing the independent variables (measured features) and the de-

pendent variable (measured feature we seek to predict).

2. Use feature selection and extraction; that includes analyzing the raw data to deter-

mine which features and combinations of features to use for prediction.

3. Determine the goals of the ranking method and choose one or more approximation

or machine learning techniques that fit well with the goals.

4. Fit the models and methods from the third step to dependent features from the

second step to predict the independent feature.

5. Evaluate the models and methods on an independent dataset to gauge the general-

izability of each model and method.

6. Choose the best model from the fifth step and provide it to the customers or users.

This framework is straight forward, and has been successfully applied in many different

applications [14, 27, 42].

Although the framework itself is straightforward, each step has a number of problem

specific and significant details that need to be addressed in order to make accurate and
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useful predictions. It is precisely for this reason that machine learning, data mining, and

statistical inference continue to be active areas of research. In particular, in the regres-

sion/approximation step, it has been shown that without prior knowledge (bias) there is

no dominant approximation method that outperforms all others on all data distributions

( this is known as the ”No free lunch” theorem [104]). Since each step represents a signifi-

cant amount of work with respect to the binding site comparison problem, we will briefly

touch on relevant techniques that were used at each step.

The proper collection of informative data is essential for statistical learning methods

to be used to analyze the data and make predictions. In many cases, one does not have the

luxury of obtaining more data or asking for additional features as the cost of additional

data is prohibitive. However, if there is a coordinated effort before the data is collected,

the types of data gathered (experimental measurements, etc.) and the statistical analysis

techniques should be considered by those engineering the study to provide the maximum

impact for the cost of gathering the data. As an example, if experiments are expensive

but certain potentially useful measurements can be taken at the time the experiments are

performed with relatively little additional cost, then the experimental design should be

modified to collect the additional features. Thus sufficient and accurate data collection

can be very helpful in setting a sound basis for accurate analysis and predictions, but in

many cases it is either not feasible or cost effective.

Given the problems in data collection, it is to be expected that in many cases data

analysts are given noisy and/or partial data. The data analyst’s job is to determine which

features to use in the analysis and prediction phases. Supposing numerous features were

given, then one needs to reduce the set of features to a manageable number of features that

contain those features that are thought to be or that are statistically shown to be the most

predictive. A major reason for feature selection is to avoid the curse of dimensionality.

In simple terms, the additional information that an added feature provides to a model

decreases with each added feature and because samples are used to estimate the true
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population there is a point at which the added information is less than the measurement

and sampling errors [27]. A similar idea is that one can fit an overly complex model to a

large number of features so that the training data is exquisitely modeled, but predictions

on examples not included in the model can easily fail since the model focused too heavily

on closely interpolating the training data rather than learning the data features. Thus,

feature selection is generally required so that a reasonable number of predictive features

are used and the resulting model has good generalizability.

Another common problem is the analysts are usually given raw data and, the data

must be processed to obtain useful features. This is termed the feature extraction prob-

lem and is becoming even more common as the amount of available raw data is increasing

at a much greater rate relative to the quantity of annotated data. An example of feature

extraction applied to raw data is automatic annotation of video clips uploaded to web-

sites. A current problem is that video clips on websites such as Youtube generally have

very little useful annotation and there are far too many clips to be robustly annotated by

humans. Automatic annotation is a type of feature extraction that uses computer vision

techniques to define objects in the video frames and uses object recognition to assign the

types of objects present in the scene. The assigned features can then be used to classify

the videos so that text strings such as ”chair” or ”fire” could be used to search for videos

that contain a chair or fire. A more novel approach is to have users provide an image of

an object and have the system return the videos that contain objects similar to the user’s

object.

The choice of which model types to fit depends heavily on the prediction goals and the

assumptions about the features. If one seeks to show how much of the relationship can

be explained by a linear relation between the dependent variables and a known function

of the independent variable, using linear regression is the first tool of choice. If a good

approximation is desired and understanding the underlying connection between the fea-

tures and response is less important, tools such as K-nearest neighbors, neural networks,
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and support vector machines have been shown to perform well in practice. On the other

hand, if the data is noisy, the underlying relationship is unknown, and one seeks the gen-

eral trend rather than a highly accurate reproduction of the training data at all points,

smoothing methods including thin-plate splines are preferred.

After the model types are chosen, each model must be fit to the training data to build

a predictor. Because many models have adjustable parameters that control model fea-

tures, these parameters need to be given appropriate values with respect to the data. A

poor method of choosing the parameter values is to use those parameters that allow the

model to best fit the training data, because this method does not have an estimate of the

model accuracy for new data. A better method is to fit the model with a wide range of

parameter values and choose the best parameter value based on the model that best pre-

dicts on a validation dataset. In many cases, the cost of having a separate validation set

is prohibitive. Two better methods to use to estimate the model parameters when a vali-

dation set is not available or is cost prohibitive are cross validation and generalized cross

validation [23, 38].

Next, the models must be compared on a testing dataset that is separate from the

training and validation sets to gauge the generalization abilities of the models. This step

is crucial, since more complex models tend to have better predictions on the training

sets than the less complex models. However, due to the curse of dimensionality and/or

overfitting, complex models need not outperform the simpler models on new examples.

As examples, the model that the stock market will always be higher at the end of each

successive year on average outperforms all other existing models when the question is

”will a given stock market index have a greater value than today after exactly one year?”

Similarly, in the computational drug design field virtually all of the methods designed to

predict the change in free energy upon protein-ligand binding perform, on average, no

better than using the ligands’ molecular weight to predict the change in free energy [44].

One could argue that the more complex models are a waste of resources. However,
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the advantage of more complex models is they can be used to analyze the data and ask

more specific questions than can be asked of the very simple model. In fact, one of the

better uses for models is to filter large quantity of inputs to an amount that experts can

adequately handle and focus human expertise on those examples that tend to have the

most interesting characteristics.

2.3 Computational Geometry Techniques

Proteins have a number of constraints that can be classified as distance or angle con-

straints. The current models of protein-protein and protein-small molecule interactions

are based on relative distances between atoms and angles between sets of bonds. There-

fore, many existing computational geometric methods are well suited for studying protein-

small molecule interactions.

2.3.1 Addressing the Partial Matching Problem

In this dissertation, the partial matching problem is to find the best match between a

given part of an object and each full object in a given dataset. This search is called partial

because there exist features in the full objects that do not have correspondences in the

partial object. Partial matching of fully 3D objects is particularly challenging since many

methods and heuristics used for object matching are only feasible for two dimensions (i.e.

images) or are not applicable for partial matches. In addition, in the binding site matching

problem we seek the best partial match between the query site and each dataset site (not

just those sites that are already known to be similar to the query site).

Examples of commonly used techniques that do not perform well for 3D partial match-

ing include aligning objects via their major and minor axes, Hausdorff distance, and dis-

tance or gradient based probabilistic matching methods [78]. Partial matching using ma-

jor and minor axis or Hausdorff based distances will tend to place the partial object near
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the center of mass of the larger object which need not be the best match. Techniques such

as histogram of oriented gradients [24] that perform well for 2D images tend to not scale

to 3 dimensions. Probabilistic matching methods such as spin images or histograms of

point-to-point distances cannot be used to heavily prune the search space since it is both

challenging to determine if a histogram of a partial object cannot be contained in the his-

togram of a larger object and the partial objects need not have the large distances present

in the full objects which is where many of the differences in two full objects tend to be

observed. In work for this thesis, the partial matching problem has been addressed us-

ing a variety of methods including brute force and generalizing techniques from object

recognition.

2.3.2 Applying Inverse Kinematics

In the later portion of this dissertation, we investigate the contribution of flexibility of

proteins to bind the same small molecule. Protein flexibility is known to play an im-

portant role in the process of protein-ligand binding [6, 22, 61, 106]. One way to model

protein flexibility is to consider each atom as a joint and each covalent bond as a rigid link

between the joints. By modeling proteins as joints and links, one can use the method of

inverse kinematics to pull atoms directly or indirectly via features to new locations while

obeying atomic and bond constraints.

2.4 Comparing Protein-Small Molecule Binding Sites

There are many tools that have been designed to align proteins using the relative position-

ing of key features [66]. The features may include the relative positions and orientations of

α-carbons [33], secondary structure features [47, 60], protein residues [9], or more abstract

features such as hydrogen bond donor atoms (this dissertation, etc.). As noted in the in-

troduction, a key requirement of 3D binding site comparison methods is that one must
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know the relative 3D positions of the protein atoms for both the query and dataset sites.

Similarly, the methods presented in this section require accurate 3D atomic coordinates

for the proteins considered.

Because of the emphasis of protein comparison methods on the relative positions of

atoms or derived features, the methods can be considered as point cloud comparison

methods subject to biochemical constraints. 4

Definition. A set is a collection of objects such as integers, decimal numbers, faces,

proteins, etc. with a membership operation ∈. Such that, given a particular set S

and an object s we write s ∈ S if s is in the set S and, write s /∈ S if s is not in the set

S.
Definition. A finite set is a set such that the number of elements in the set is a

positive integer n that is less than infinity.

Definition. An unordered set is a set that does not have a defined order for the set

elements.
Definition. A point cloud is an unordered finite set of 3D points that have finite

coordinates (i.e. the set is bounded). In set notation, a point cloud P with N points

is a point set and may be written as {pi = (xi) | i ∈ [0, N) and xi ∈ R3}.

In order to reduce the time complexity of searches and to match complementary points,

many point based methods extend the point cloud definition to include point labels.

Definition. A labeled point cloud is a point cloud such that each point has one

label from a finite set of labels L. That is, a point cloud P with N points such that

{pi = (xi, li) | i ∈ [0, N) and xi ∈ R3 and li ∈ L}.
In some cases it is advantageous to assign a direction (unit vector) to each point.

Definition. A labeled point cloud with directions is a labeled point cloud such

that each point has a label and a unit vector. In set notation: {pi = (xi, li, vi) | i ∈

[0, N) and xi, vi ∈ R3 and li ∈ L and ‖vi‖ = 1}.

4 If one wishes to be more precise about point sets and index sets, an introduction to
point set topology is a good place to start.
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Comparing parts of proteins as point clouds has a strong advantage in that point clouds

have been and continue to be extensively studied in computer science and application

areas [12, 31, 52, 95].

2.4.1 Protein Structure Alignments

One way to align two binding sites is to align their respective protein structures by align-

ing secondary structure features and 3D coordinates of their α-carbon atoms. Two com-

monly used automatic structural alignment tools are Dali [47] and Secondary Structure

Matching (SSM) [60]. The proteins that carry out the same or highly similar tasks in dif-

ferent species tend to have a similar protein structure, conserved residues in their binding

sites, and binding sites in the same location relative to the full structure. Therefore, struc-

tural alignments are useful, but not necessarily sufficient, to engineer small molecules

that are specific for a particular species. As an example, structural alignments of two pro-

teins necessary for cell life (e.g. dihydrofolate reductases, etc.), one from a bacteria and

one from a human, can be used to design a molecule that prefers to bind to the bacte-

rial protein and not to the human protein (provided significant differences do exist in the

binding site). Such a preference of binding can be used to design potent antifungals or

antibiotics to treat particular infections with hopefully few side effects in humans. How-

ever, structural alignments cannot rule out the possibility that a similar binding site exists

in a protein that is structurally distinct from the target protein.

The primary goal of protein structural alignments is to have the best superposition of

entire protein structures. The alignment methods typically present the quality of back-

bone superposition and the differences in protein sequence at each residue’s position [47,

60]. In addition, because of the focus on backbone superposition, in practice, structural

alignment methods require many more residues than those that typically form a small

molecule binding site. Because the relative orientation and packing of protein residues

determines the shape and chemistry of small molecule binding sites, protein structural
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alignment methods themselves do not give a detailed report of the similarities and dif-

ferences present in the binding sites. For this reason, experts must look at the aligned

structures in molecular graphics and draw on domain knowledge and experience to de-

sign potential drug molecules that prefer to bind to the target structure instead of other

proteins. The reliance of structural superposition methods on the positions of protein

backbone atoms implies that such methods can rarely find any alignment between two

structurally unrelated proteins. In addition, if two binding sites have different relative po-

sitioning with respect to their protein backbones, the sites will not be well aligned using

structural alignments. In conclusion, automated protein structural alignment tools are

very useful in drug design, but are restricted to proteins within the same protein family

and do not give detailed comparisons of binding sites.

2.4.2 Comparing Patterns of Binding Site Residues

One way to remove the strong structural bias of structural alignment tools, is to search a

protein structure dataset for proteins with patterns of the same or similar residues as those

that form the query binding site. The residues in a given binding site may be represented

as a labeled point cloud with directions, such that:

• xi is the 3D coordinates of the α-carbon for the ith binding site residue

• vi is a 3D unit vector that represents the orientation of the ith binding site residue

(e.g. vi could be given by the vector from the α-carbon to the β-carbon for the ith

residue)

• li is the label associated with the ith residue; in many cases li is the name of the

residue, and there are 20 standard residues

Two binding sites A and B, represented as labeled point clouds with directions, can be

compared by searching for the best correspondence between the two sites.

32



Definition. A pair of corresponding points is a tuple (ai, bj) such that ai =

(xa,i, la,i, va,i) ∈ A and bj = (xb,j, lb,j, vb,j) ∈ B and la,i ∼ lb,j.

The methods to search for and the determinations of the maximal set of point correspon-

dences differ among the existing methods. However, a general progression is to compute

the superposition of the two sets of correspondences using a least squares error fit and

require that the average error be less than some tolerance and the vectors of the corre-

sponding points have a dot product greater than some tolerance. These residue based

methods are time and space efficient because of the large number of labels (usually 20

amino acid types) and the relatively small number of points (usually far fewer than 100

residues)

Two tools designed to compare binding sites based on residues are JESS [9] and PINTS [94].

An advantage of both JESS and PINTS over similar tools is they use statistical models to

estimate the significance of match scores by giving a probability estimate for a random

alignment to have the same score (p-value). Unfortunately, residue based methods have

difficulty in aligning a query binding site with a similar binding site that has significant

mutations or with a binding site from an unrelated protein since such sites will have a

small number of residues in common. A specific example that may prove difficult for

residue methods would be aligning the adenine pocket of a kinase ATP binding site with

the adenine pocket of a nicotinamide adenine dinucleotide phosphate (NADP) depen-

dent alcohol dehydrogenase as the residues binding adenine are distinctly different in

both pockets.

2.4.3 Comparing Labeled Sets of Chemical Points

A logical progression from residue based methods is to abstract the residue features and

concentrate on the common chemical interactions and shape complementarity of protein-

ligand binding sites. The reasons for this abstraction include the fact that molecules inter-

acting with proteins do so based on chemical properties and not specific residue names.
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By removing the dependence on matching residues, one can compare and contrast the

chemical features that are known to be important when describing the interactions be-

tween proteins and small molecules. There are a number of existing methods that are not

comparing residues based on their names. A few of these methods are described briefly

since a particular class of these methods is described in detail in Chapter 3.

Site comparison methods such as SIFt [26] and CompSite require users to correctly

align the sites prior to running the comparison software. SIFt is a hybrid approach that

does not entirely discard the notion of residues and by assuming all of the considered

binding sites have residues in approximately the same relative location it reduces the 3D

representation of each binding site to a vector. For each residue, SIFt uses a bit string

to encode whether that particular residue is making a certain interaction with the bound

ligand. Thus, SIFt uses both the protein and ligand information, and SIFt trades off the

relative 3D orientation and position of residue features for speed and ease of applying

”off-the-shelf” machine learning techniques. The assumptions of SIFt are the binding

sites come from structurally related proteins, and under that assumption the encoding

used is highly effective. However, SIFt is dependent on user provide alignments. User

provided alignments can be a source of significant error, and most users are unable to

provide alignments among proteins from different families.

CompSite uses the 3D binding site representation developed for SLIDE [107]. As with

SIFt, CompSite requires users to correctly align the sites prior to running CompSite. This

representation completely abstracts away the protein residues and is a chemistry labeled

point set in the ligand binding volume [107]. The main work-flow is as follows:

1. Build the representation for each site.

2. Use complete link clustering of the points from all of the sites.

3. Use majority vote to find the regions of the binding sites that have the same chem-

istry in more than 50% of the sites.
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4. Label substantial clusters where the majority of the points agree as a similarity

points.

Given the level of abstraction of the site representation, CompSite is less dependent on

the structural similarity of the proteins than SIFt. However, as with SIFt, the performance

of CompSite is greatly affected by the user provided alignments of the sites.

Methods that require user-provided alignments of binding sites suffer from a few

drawbacks. Having users align binding sites requires additional tools and can be labor

intensive. The alignments can be problematic since there can be substantial error in both

small-molecule alignments and protein structural alignments, and the alignments require

substantial similarities in the structures or ligands. Also, such methods rely on the user’s

knowledge of the protein space, and are unlikely to useful for data mining as the user

already has some prior knowledge and bias about the sites.

To remove these restrictions, a growing number of site comparison methods use full

3D alignments of the query site to each site in a dataset. While there is a number of

variations on the general method to compare binding sites using labeled point clouds,

all of the existing methods use additional features at each chemical point to increase the

accuracy of matching and scoring. In particular, the point clouds are very much like the

sets presented in Section 2.4.2, but the more abstract methods tend to have 4 or 5 types

of labels (rather than 20). A less obvious difference, that does not necessarily affect the

computational characteristics of point cloud matching algorithms, is that the position of

the points and their associated directions differ greatly between residue methods and

chemical point methods. Most of the existing chemical point methods use the binding

site atom centers as the points. Others, such as SimSite3D and MED-SuMo, compute the

relative position of the points based on the local geometry of the binding site atoms and

residues.

Besides comparing the labeled point clouds, some of the methods also compare the

sites’ molecular surfaces. The advantage of comparing surfaces is the sites’ shapes are
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used, in addition to the chemical points, to gauge the similarity of sites. However, com-

puting the degree of surface similarity is a relatively costly process when compared with

computing the similarity of chemically labeled point clouds. As presented in the general

object recognition framework, these methods all require a scoring mechanism to deter-

mine the quality of alignments and the similarity between two aligned sites. These more

general methods include SimSite3D, SiteEngine [91], SuMo [53], Cavbase [89], and Sites-

Base [37].

Given the limits of protein sequence and structure based methods, it is likely that the

focus on chemical features has the potential to yield more fruit when applied to com-

paring binding sites. At the present, the hypothesis, ”binding sites that binding simi-

lar ligands exhibit similar chemistry and shape features such that they can be detected

by computational methods”, has not been adequately addressed. Therefore, in the next

chapter, a method using chemically labeled point clouds with directions is presented as a

basis to explore the hypothesis.
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Chapter 3

Comparing Binding Sites as Chemically

Labelled Point Clouds

Fully characterizing the processes of protein-ligand interactions is a challenging problem

and is an active area of research. There are several major challenges:

• Proteins and ligands are flexible molecules.

• Some of the internal degrees of freedom of interacting molecules may change sig-

nificantly over the course of the interaction (e.g. conformational change due to co-

ordinated movement of residues).

• Proteins and ligands that interact have been shown to coordinate corresponding

motions.

• Current theoretical and experimental evidence implies that protein-ligand interac-

tions can only be truly characterized by quantum mechanics.

A review of computational methods that model protein-ligand interactions to predict the

favorableness of such interactions (called binding affinity) may be found in [74]. At the

present, proposing to design and implement a computational method to fully address
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one of these challenges, in the context of comparing tens of thousands of binding sites,

would constitute a very ambitious goal.

As is typically done when developing high-throughput computational methods, we

introduce a number of simplifying assumptions so that our computational method to

compare protein-ligand binding sites provides a reasonable result within an acceptable

time frame. Ideally, protein binding sites would be modeled using quantum mechan-

ics. However, at the present, quantum mechanical interactions are very computationally

demanding and challenging to model. In the case of proteins, quantum mechanics are ap-

proximated using Newtonian mechanics with very small timesteps (these approximation

methods are called molecular dynamics [18, 19, 56]). Molecular dynamics simulations

are, at the present, computationally expensive and not feasible for high-throughput com-

putational chemistry methods. To achieve sufficient throughput and sidestep addressing

the challenging questions of molecular motions, binding site comparisons are performed

with the proteins approximated as rigid objects The binding site atoms and features of a

protein are modelled as a labeled point cloud with directions.

The presented method is a compromise over several competing goals. From the begin-

ning, our main goal has been to push the envelope and find, in proteins unrelated by se-

quence or structure, sites that can bind similar molecules but could not be aligned/detected

by existing tools. A major engineering goal was to have a method that could search one

query site versus all the binding sites in the Protein Data Bank (PDB) [10, 11] within one

day on one processor core. Using our implementation of the method, presented in this

chapter, we provide some examples of significant hits that could not be found with other

methods.
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3.1 Methods

This section presents the details of the design and implementation of the binding site com-

parison method that is implemented in SimSite3D version 3.3. The site representation, the

computing of site alignments between pairs of sites, and the scoring of site alignments are

covered.

3.1.1 A Detailed Representation of Protein-Ligand Binding Sites

Definition. The ligand binding volume is that portion of the volume of a protein-

ligand binding site that is not occupied by one or more protein atoms.

Definition. A site map is a specific class of chemically labeled point clouds with

associated directions used to model binding sites in this chapter.

Definition. The site map volume is the portion of a ligand binding volume that is

used to create an associated site map.

A site map captures the essential chemical and some shape features of a binding site, and

is computed directly from the local geometry and chemistry of the binding site atoms. A

site map represents the chemistry and shape of ligands that would make strong favorable

interactions with the protein part of the binding site. A site map is a chemistry labeled

set of points with associated direction, and the points lie in the ligand binding volume

(a site map is derived from a SLIDE template [107]). This emphasis on abstract chemical

points allows the comparison of binding sites to be independent of the explicit degree of

similarity of the residues that comprise the binding sites. As an example, when compar-

ing two site maps, if a hydrogen bond donor atom from the query protein is an amide

nitrogen, its acceptor site map points may correspond to any acceptor site map points, in

the dataset site map, from any hydrogen bond donor atom (not just an amide nitrogen).

Since the site map model has relatively few points, the model allows for rapid alignment

and comparisons of protein-ligand binding sites.
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A site map can be automatically generated for a binding site given a user provided

protein coordinates file and the location of a protein-ligand binding site. A binding site’s

location and volume are determined by the intersection of a user provided volume object

and protein coordinates. Two easily supported volumes types are ligand based or spher-

ical. If a ligand is given, one can compute the volume of the site using the axis-aligned

bounding box with the smallest volume that contains the ligand and adds a buffer of 2.0 Å

on each side of the box. If a sphere (point and radius) is provided, that sphere can be used

as given (the user is expected to add a reasonable buffer). A given site volume focuses

the search method to only consider those site map points that are inside the volume.

The placement and type of features in the site volume are based on biochemical obser-

vations and experience [50, 107]. When designing computational approaches to solve dif-

ficult problems, domain knowledge and understanding the questions posed are crucial to

determine which types of features to measure and compare. A major challenge is to find

a good balance between the details of the essential features and the computational cost

to compare two objects. In the case of protein-ligand interactions, the weak atomic forces

are known to be important determinants and the driving forces of protein small-molecule

complementarity. These weak forces or interactions are some of the features modeled at

varying levels of detail by small-molecule docking tools [39, 62, 90], molecular dynamics

simulation packages, and small-molecule similarity tools [43, 72].

In this chapter, the protein-ligand interactions are categorized into several classes of

interactions. These types of interactions are hydrogen bonds, the hydrophobic effect, and

small-molecule metal interactions; and are now presented as parts of a labeled 3D point

cloud with associated directions.

3.1.1.1 Hydrogen bonds

It has long been recognized that the formation of hydrogen bonds between a protein and

ligand is one of the main specificity determinants for protein ligand binding and can be
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used to model protein-ligand interactions [62]. The comparison of the hydrogen bonding

capabilities of two binding sites can be done by assessing the degree of overlap between

complementary hydrogen bonding volumes.

Definition. The hydrogen bonding volume is the volume in a given binding site

where a ligand atom can be placed and form a hydrogen bond with an atom in the

protein.

The hydrogen bonding volume for protein atoms can be defined by the parameters used

to recognize protein-ligand hydrogen bonds in protein-ligand docking tools (e.g. SLIDE [90]).

Figure 6: This is an illustration of a computational model of hydrogen bonds. On the left
is a hydrogen bond donor atom D with a covalently bonded hydrogen atom H. The red
ball is a hydrogen bond acceptor atom A. The dotted line is the distance between H and
A; acceptable distances are in [1.5, 2.5] Å . The dashed line is the distance between the
acceptor A and donor D, and should have a length in [2.5, 3.5] Å . The DHA angle must
be in [2π/3, π] radians.

In geometric terms, the hydrogen bonding volume is a truncated spherical cone C. C

is defined as the subtraction of C1 from C0, where C0 is the volume of a spherical cone

given by the intersection of a 3.5 Å radius sphere with center at the center of the hydrogen

bond donor atom and the apex of the cone at the center of the corresponding hydrogen

atom (Figure 7). The cone’s axis is placed where the angles for the hydrogen bond would

be closest to the ideal values (Figure 6). C1 is similar to C0 in that it has the same axis
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and apex, but the bounding sphere has a maximum radius of 2.5 Å . The volume of C can

be approximated by a surface Sc that is in the middle of the volume with respect to the

cone’s apex and axis. The spherical cap Sc is defined by a sphere centered at the hydrogen

donor atom’s center, having a radius of 3.0 Å and keeping only the portion of the sphere

that is inside C. The cap Sc can be approximated by a sparse sampling of points on the

cap. One may start with the point lying on the axis of C and then add sparse sample

points in regions of high probability of forming hydrogen bonds based on a survey of

protein structures (i.e. experimental evidence) [50, 107]. Each sample point includes the

chemistry of the ligand atom that could form a hydrogen bond with the protein at that

point and the directionality of the hydrogen bond that is estimated by the normal of the

surface at the sample point. To keep only those points that are relevant to the binding site

and are not too close to protein atoms, points that fall outside of the site map volume or

are within 2.5 Å of any protein heavy atom are discarded. In this manner, the volumetric

representation is reduced to 0-5 sample points for each polar hydrogen and lone pair of

electrons [107].
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Figure 7: A two dimensional sketch of the three dimensional hydrogen bond model pre-
sented in this section. The center of the blue, white ball is the center of the hydrogen bond
donor atom, hydrogen atom, respectively. A cross section of the spherical cone C0 can be
seen in panel A. Panel B shows a cross section of C0 that overlaps with a cross section
of C1. Panel C is a cross section of the hydrogen bonding volume C. Panel D shows the
center of a cross section of C and some hydrogen bond acceptor points that are 3.0 Å from
the center of the hydrogen bond donor atom.

3.1.1.2 Hydrophobic interactions

The hydrophobic effect is an important component of protein-ligand binding. From a

strictly geometric viewpoint, the main distinction between the matching of hydrophobic

interactions and the matching of hydrogen bonds is that models of hydrophobic interac-

tions, generally, do not have a preferred direction.
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Definition. A protein hydrophobic atom is any protein carbon or sulfur atom that

is not covalently bound to an oxygen or nitrogen atom.

The exposed hydrophobic portion of a binding site is represented by discretely sampled

spheres of radius 2.5 Å centered at each hydrophobic atom. The poses of the spheres are

computed with respect to the local coordinate system defined by two of the hydrophobic

atom’s neighbor atoms (for a given residue and atom name, the neighbors are fixed).

Sample points closer than 2.5 Å to any protein atom or within 1.75 Å of a polar site point

are removed. The remaining surface points represent the portion of the binding site where

ligand hydrophobic atoms could be placed to make favorable hydrophobic interactions

with the protein.

3.1.1.3 Metal-template points and metal interactions

Metal ions are found in about 30 percent of all protein structures and are an important

(structural or catalytic) component of many ligand binding sites. Metal ions are typically

positively charged. From a site map perspective, they are likely to interact with electron-

rich, hydrogen-bond acceptor atoms in a ligand. Metal ions can be modelled as part of

the protein surface by evenly distributing acceptor on a sphere centered at the center of

the metal atom (the radius depends on the chemistry of the metal ion). Metal points that

are within 2.5 Å of any protein heavy atom are removed. During alignment and scoring

no distinction is made between acceptor points from hydrogen bond donors and acceptor

points from metals.

3.1.2 Enumerating Candidate Alignments

At the present, there are no known 3D methods that can compare two arbitrary protein-

ligand binding sites without first aligning the binding sites. Because there are no known

features to compute a canonical orientation that is applicable for all binding sites, the

alignments must be computed at match time. This absence of universal alignment fea-
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tures makes it a challenge to determine which of a set of candidate alignments is the best

alignment. Thus, a general practice is to compute a number of more probable alignments,

and then, score those alignments with a suitable scoring function.

A straightforward method can be used to enumerate poses to bring one site into the

reference frame of another site. This method is based on the fact that exactly three non-

collinear points are necessary and sufficient to determine a unique pose in three dimen-

sions. One could proceed by listing every possible pose by fitting all combinations of

three points from one site and three points from a second site. However, many of the fits

would have large residual errors, and can be eliminated by having a maximum threshold

on the residuals for a fit. Another way to greatly reduce the number of candidate align-

ments between two 3D point clouds is to only match points with complementary labels.

If we consider a site that has each third of its points colored with a distinct color, then

based on the number of color bins alone, the number of possible alignments to consider is

reduced by about 100 (10 color bins for each sites). Another heuristic is to only consider

those combinations for which the edges between the three points meet some problem spe-

cific geometric criteria. In practice, such heuristics have been used to reduce the average

number of matches when a polar query site had 30 points and a dataset site has 50 points

to about 2000 poses. However, worst case performance occurs when all the points in both

point clouds have the same label; the problem reduces to the unlabeled case where the

query cloud has M points and the dataset cloud has N points giving O(N3M3) candidate

alignments (if we disregard geometric features).

In particular, heuristics are used to bound the distances between the three points and

each point can have one of three labels. Each set of three points is considered as the

vertices of a triangle. The considered features of a triangle are:

• The perimeter (sum of edge lengths)

• The longest edge length
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• The shortest edge length

The bounds on the features are:

• Perimeter in [9, 13] Å

• Longest edge length in [3.5, 4.5] Å

• Shortest edge length in [1.8, 3.5] Å

These bounds were chosen as compromise between the number of alignments to consider

and the accuracy of the candidate alignments.

Our implementation uses a histogram with overlapping bins to group the query tri-

angles by the colors of their vertices and triangle features. The histogram allows one to

immediately disregard dataset triangles with incorrect color combinations or unlikely ge-

ometry, and to concentrate on the pairs of triangles that have a higher probability of a

match (i.e. smaller residuals). If a bin exists for a dataset triangle, then, for each query

triangle in the bin, determine which of the six permutations of corresponding points are

valid with respect to point color.

Definition. The distance matrix error (DME) is the weighted root mean squared

differences of lengths of the corresponding edges

Definition. Weighted least squares error is the weighted average of the Euclidean

error between corresponding points [1].

For each valid permutation, compute the weighted Distance Metric Error (DME). If the

best DME is within 0.3 Å use the corresponding permutation to assign the point corre-

spondences used to compute the weighted least squares error fit. If the weighted least

squares error fit is within 0.3 Å , keep the computed transformation (rotation and transla-

tion) as a candidate alignment.
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Algorithm 2 An algorithm to populate a four dimensional histogram of all possible tri-
angles for one point labeled point cloud. One level is all possible combinations of three
vertex labels. The other three levels are one for each of the triangle features.

Require: A labeled point cloud with N points
Initialize a 4D array for the bins B
for all 3 point combinations of the N site points (triangles) do

Form a ∆ with the 3 points as its vertices
Compute the lengths of the edges and the sum of the lengths (perimeter of ∆).
Sort the point labels to get a unique key k based on the label of the points
Place ∆ in the bin for k, perimeter, longest side, and shortest side
Place ∆ in the immediate neighbors of the perimeter, longest side, and shortest side
bins

end for

Algorithm 3 An algorithm to enumerate all acceptable triangle matches between two
labeled point clouds with directions.

Require: Query point cloud’s 4D histogram (algo 2).
Require: Dataset’s labeled point cloud with directions
Require: List L to store candidate alignments

for all triangle a of the M dset site points do
Compute label key k, longest side l, shortest side s, and perimeter p
Get the bin for the current triangle’s features b := B[k][l][s][p]
if b is empty then

continue
end if
for all query triangles t in bin b do

enumerate valid permutations between a and t with respect to point labels
for all valid permutation do

Compute the weighted DME for this permutation
if DME ≤ 0.3Å and DME is current best then

save current permutation as best
end if

end for
if a best permutation exists then

Get the weighted least square error fit between the points (LSE)
if LSE ≤ 0.3Å then

append LSE transformation to L
end if

end if
end for

end for
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3.1.3 Scoring and Ranking Alignments

In the previous section, we considered how to compute candidate alignments for a pair

of binding sites. A alignment ranking method, typically called a scoring function, is

needed to select the best candidate alignment between a pair of sites. Ideally, for a high-

throughput method, the scoring function would be both computationally inexpensive

and exhibit good ranking performance. Good ranking is needed since few, if any, users

will want to consider more than one alignment per query, dataset pair in the results from

a high-throughput object recognition method.

The ranking of binding site poses for sites with low sequence similarity is not necessar-

ily straightforward. Predicting the ranking of small molecules versus a protein target by

an estimate of the energetic favorableness of binding for each pair (binding affinity) [74]

can be done by a scoring function that was trained to predict an experimentally observed

measurement (e.g. binding affinity). However, the ranking of alignments between bind-

ing sites does not have a direct experimental counterpart. Because we don’t have direct

experimental data to design a scoring function, we must rely on heuristics based meth-

ods such as error of fit measurements. Commonly used error norms (`2, `1, `inf, etc.) in

object recognition and protein structural alignment can be used to estimate the alignment

accuracy. Although not knowing which error estimate best fits the binding site compar-

ison problem may be an issue, a larger issue is that a comparison of the state-of-the-art

scoring functions to predict binding affinity has shown that the current methods are not

sufficient to correlate the predictions of protein-ligand binding affinity with the experi-

mentally determined affinity [101]. Thus, it is naive to assume that a simple scoring of

abstract features used to compare binding sites could correctly rank binding sites based

on their affinity to a particular small molecule.

Although a scoring function designed to predict the similarity of two binding sites

may not be able to accurately rank sites with respect to their binding affinity for a partic-

ular ligand , the scoring function should be able to give a good indication of how well two
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sites are aligned. Determining which machine learning techniques is best suited to build a

site similarity scoring is challenging. Based on numerous anecdotes and experience with

the site similarity features, it is our experience that for two similar binding sites from

distinct protein structures that the signal-to-noise ratio for even the best site alignment

(with respect to site similarity features) is relatively low and the energy landscape is very

noisy. This is due in part to the facts that the feature correspondences are short-ranged in

nature, a relatively small number of distinct site similarity features are used, the relative

placement error of the site points is large, and binding site features are relatively periodic

(because binding sites are formed by amino acids). Given that more ”simple” techniques

tend to be less affected by noise, and the fact that we would like to interpret the model

used to make the predictions, linear regression was used to build the candidate scoring

functions.

Given the relatively short range of the point correspondences, using linear regression

to directly predict the error of alignment in the protein-ligand docking problem (i.e. dock-

ing RMSD) generally yields poor performance.

Definition. Binding site RMSD is the RMSD of a particular pose of binding site’s

points with respect to the reference pose of that binding site.

During analysis of protein-ligand docking scoring functions, Tonero noticed that plots

of individual features versus alignment error (RMSD) showed a relationship similar to

-1/RMSD [97]. Although a Gaussian function of RMSD appears to be a more accurate

parametric form, in practice, linear regression functions to predict -1/RMSD exhibit simi-

lar performance and it seems to be easier for some to grasp a multiplicative inverse rather

than a Gaussian function. The increase in alignment selection performance is due to

the fact that linear regression relies on the assumption that a suitable parametric form

is chosen for the predicted values, such that, the relationship between the independent

variables (features) and the dependent variable is linear. For these reasons, the linear re-

lationship between the aligned site features and alignment accuracy (as RMSD) is taken
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to be -1/RMSD in this chapter.

Before building a scoring function using linear regression, one requires one or more

site features that are viable for site similarity comparisons. The assumption is that if two

similar sites are well aligned (i.e. close to the best alignment) that many of their similar

site features should be brought into close proximity. Based on that assumption, a nearest

neighbor method with a maximum distance of 1.5 Å is used to determine the best point

correspondence for each point in the query site; the details may be found in Algorithm 4.

The computed correspondences are ”one-sided” because of the partial matching nature

of the problem, and the fact that the query site is the site for which we are seek the best

partial match. The idea of computing and using ”one-sided” correspondences for the

partial matching problem in object recognition has been formally presented and initially

applied to face recognition by Bronstein and Bronstein [17].

The site alignment features are:

1. Closest polar sum: Sum of pairs of the closest polar points within 1.5 Å of each

other for which the points in each pair are complementary. Each term in the sum is

weighted by the dot product between the pair of vectors with a weight of zero if the

dot product is less than zero.

2. Polar mismatch sum: Similar to the first sum, but this sum is a weighted count of

the pairs of acceptor-donor mismatches.

3. Closest AA & DD sum: Similar to the first sum, but this sum does not include any

doneptors 1 (either from the query or database site)

4. Closest doneptor sum: Similar to the first sum, but this sum includes only those

terms where at least one of the points is a doneptor. Note: The first sum is equal to

the sum of the third and fourth sums.

1 A point in the binding site where a hydrogen bond acceptor or donor could interact
with the protein, is called a doneptor
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5. Hydrophobic point count: Number of query hydrophobic points having the closest

database point within 1.5 Å and being hydrophobic

6. Unsatisfied query polar count: Number of query polar points for which the closest

point is within 1.5 Å and is hydrophobic.

3.1.3.1 Training data

As was mentioned in the background (Chapter 2), the machine learning approaches to

building scoring functions to predict alignment quality require a set of training exam-

ples. The training data that we curated contains twelve distinct protein folds and their

experimentally resolved structures. Each protein within a given fold is known to bind

similar molecules (see Table 1). Each protein fold can be represented by one representa-

tive protein sequence and structure. To encourage diversity between folds, the datasets

were constructed such that, the pairwise sequence identity of any two fold representa-

tives is less than 25 percent and the class of small molecules bound by each fold has

substantial differences. Two protein databases, DSSP [86] and FSSP [46], were used so

that the sequences of the proteins within any given fold provide a reasonable coverage

of the sequence identity space with respect to that fold’s representative sequence. To that

end, a histogram of the sequence space of each fold was used as a guide to partition the

sequence space into bins with [0, 25%], (25, 50%], and (50, 75%] sequence similarity with

respect to the fold representative. The goal was to have at least one example from each

bin for each fold. As is frequently the case with actual data, a number of the 12 protein

folds do not exhibit an adequate cover of the sequence space either due to the actual dis-

tribution of protein sequences in that fold or the sequence distribution of proteins with

resolved structures. In such cases, the bin boundaries were relaxed with a goal of four

structures per fold. The resulting training sets may be found in Table 1.
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Algorithm 4 A way to estimate the features in common between two aligned site, and
count the number of query polar points that do not have a correspondence.

Require: A dataset set, query site, and alignment between their labeled point clouds with
directions
Initialize hbond sum, doneptor sum, AA DD sum, mismatched hbond sum,
hphob count, unsat polar count
for all X in query site.hbond pts do

A := closest hbond pt in dset site; dA := dist(X.pos, A.pos)
B := closest hphob pt in dset site; dB := dist(X.pos, B.pos)
if dA ≤ 1.5 and dA ≤ dB then

dot prod := A.dir ◦ X.dir
if dot prod > 0.0 then

if A and B have compatible colors then
hbond sum += dot prod
if A or B is a Doneptor then

doneptor sum += dot prod
else

AA DD sum += dot prod
end if

else
mismatched hbond sum += dot prod

end if
end if

else if dB ≤ 1.5 then
unsat polar count += 1

end if
end for
for all X in query site.hphob pts do

A := closest hbond pt in dset site; dA := dist(X.pos, A.pos)
B := closest hphob pt in dset site; dB := dist(X.pos, B.pos)
if dB ≤ 1.5 and dB ≤ dA then

hphob cont += 1
end if

end for
F := [ hbond sum, doneptor sum, etc. ]
return WtF # W is the weight vector determined by linear regression
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Table 1: Twelve protein families used to train the SimSite3D alignment and site similarity scoring function. The
protein structures in each family were aligned by Dali to the first member in their family. The Z-score is the Dali
structural score for the alignment. The RMSD is the CA RMS between the pairs of aligned structures. Dali gives
a measure of the sequence identity (%id) between the aligned proteins and the number of residues (nres) used in
the alignments are provided to help gauge the significance of the sequence scores. The ligand column notes three
character PDB code for the ligand bound in the binding site. Note that structures determined by NMR do not have
resolution or R-factor values.

PDB Ligand Source Res Å R-factor Protein Z-score RMSD %id nres

GTP-binding proteins; G(*) α subunits of transducins

1got A GDP B. taurus 2.0 0.21 Chimera GT-α 100 0.0 100% 338
& R. norvegicus & GI-α1

1tnd A GSP B. taurus 2.2 0.19 GT-α 43.4 1.3 87% 338
2bcj Q GDP M. musculus 3.1 0.24 Chimera GQ-α 36.4 1.8 52% 337

& R. norvegicus & GI-α1
2ihb A GDP H. sapiens 2.7 0.21 GK-α 41 1.5 71% 337

DNA ligases; NAD+ dependent (adenylation domain)

1ta8 A E. faecalis v583 1.8 0.20 DNA ligase 100 0.0 100% 322
1b04 A B. stearothermophilus 2.8 0.23 DNA ligase 42 1.4 59% 311
1zau A AMP M. tuberculosis 3.2 0.25 DNA ligase 29.2 2.9 40% 311

Aspartate transcarbamoylase catalytic subunits (atases)

2air A CP & AL0 E. coli 2.0 0.24 Atase 100 0.0 100% 310
2be7 A M. profunda 2.9 0.21 Atase 47.2 0.9 74% 307
1ml4 A PAL P. abyssi 1.8 0.18 Atase 39.6 2.4 52% 295
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Table 1: (cont’d)

PDB Ligand Source Res Å R-factor Protein Z-score RMSD %id nres

Carboxypeptidases and precursors (inactive carboxypeptidases)

1dtd A H. sapiens 1.7 0.19 A2 100 0.0 100% 303
1pca A S. scrofa 2.0 0.20 A1 51.7 0.5 64% 301
1zli A H. sapiens 2.1 0.16 B 50.8 0.8 47% 302
1obr A T. vulgaris 2.3 0.15 T 41.9 1.4 33% 290

FKBP12s (3fap & 1c9h) and FKBP-like peptidyl-prolyl cis-trans (1fd9 & 1ix5) isomerases

3fap A ARD H. sapiens 1.9 0.21 FKBP12 100 0 100% 107
1c9h A RAP H. sapiens 2.0 0.21 FKBP12.6 (lung) 22 0.7 83% 107
1fd9 A L. pneumophila 2.4 0.23 MIPa 16.1 1.4 35% 104
1ix5 A M. thermo- FKBP 10.7 1.7 31% 88

lithotrophicus

Ferredoxin-NADP(H) oxidoreductases (FPR)

2bgi A FAD R. capsulatus 1.7 0.22 FPR 100 0.0 100% 272
1a8p A FAD A. vinelandii 2.0 0.21 FPR 38.3 1.2 53% 253
1fdr A FAD E. coli 1.7 0.18 FPR 31.2 1.8 33% 237

Peptidyl-prolyl cis-trans isomerases

1pin A H. Sapiens 1.4 0.22 pin1 100 0.0 100% 163
1j6y A A. thaliana pin1 11.7 3.5 49% 113
1jnt A E. coli parvulin 10.9 2.1 37% 75
1fjd A H. Sapiens parvulin-like 8.5 3.4 36% 111
a) MIP: macrophage infectivity potentiator
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Table 1: (cont’d)

PDB Ligand Source Res Å R-factor Protein Z-score RMSD %id nres

Racemases

1jfl P. horikoshii 1.9 0.19 aspartate racemase 100 0.0 100%
1b74 DGN A. pyrophilus 2.3 0.22 glutamate racemase 17.1 3.5 21%

CMP * synthetases

1eyr CDP N. meningitidis 2.2 0.19 CMP acylneuraminate 100 0.0 100%
synthetase

1qwj NCC M. musculus 2.8 0.24 CMP acetylneuraminic acid 26.6 2.7 25%
synthetase

Transcription regulatory proteins (receptor domains)

1dbw 15P R. meliloti 1.6 0.19 FIXJ receiver domain 100 0.0 100%
1l5y S. meliloti 2.1 0.18 DCTD receiver domain 17 2.3 37%
3tmy T. maritima 2.2 0.18 CHEY protein 16.7 2.0 30%
1mvo B. subtilis 1.6 0.19 PHOP receiver domain 16.8 2.2 23%

Phosphatases

1yn9 PO4 baculovirusa 1.5 0.17 RNA 5-phosphatase 100 0.0 100%
1ohe SEP H. sapiens 2.2 0.21 cdc14b phosphatase 18.3 3.0 22%

Structural genomics xray structures with unknown function

1tuv A VK3 E. coli 1.7 0.21 novel quinol monooxygenase 100 0.0 100%
1x7v P. aeruginosa 1.8 0.17 PA3566 protein 14.8 1.5 30%
1y0h M. tuberculosis 1.6 0.20 RV0793 protein 13.7 1.8 24%
a) autographa californica nucleaopolyhedrovirus



3.1.3.2 Alignment sampling

To our knowledge, it is unknown if other research groups have used protein folds with a

similar range of sequence and structural diversity to train their scoring functions to pre-

dict site alignment accuracy and binding site similarity. In fact, it is not clear how others

have trained their scoring functions which makes it nearly impossible to reproduce their

results without using their provided tools [53, 89, 92]. In our case, we used approximately

400 pairwise alignments between each pair of binding sites within each fold. Our work-

ing hypothesis is having a good coverage of the range of good to poor quality alignments

from a set of binding sites of proteins that diverge in sequence space, helps to build a

scoring function that can predict the quality of alignments of any two binding sites.

The error of a given alignment is approximated by the RMSD of the pose of the points

in the query’s site map with respect the reference pose for the query site. 2. Because the

proteins within a given fold share many structural features with the fold’s representative,

a structure based alignment tool, DALI [47], was used to align each protein structure to

the representative structure. The DALI structural alignments are used as the reference

(approximating zero error) alignments.

The training samples were computed as follows:

1. The alignments of the training samples were computed for each pair of binding sites

within each training fold using the triangle matching method described in section

3.1.2 to list many candidate alignments that have at least three points with low error.

2. For each alignment, the six alignment features were computed as presented in Al-

gorithm 4.

2 Note: A common practice in designing and comparing object recognition methods is
to have a set of ”gold standard” examples to benchmark new methods and compare
the performance of competing methods. Unfortunately, there are no current tools or
universally agreed upon standards to closely align binding sites (e.g. ≤0.1 Å RMSD).
Thus, we prefer to call the pose that corresponds to an alignment with zero error as
the reference pose rather than ”gold standard”
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3. The RMSD of each alignment was computed with respect to the reference pose (for

the query site).

Thus, from a machine learning point of view, each training sample has six independent

variables and one dependent variable and represents one alignment of one dataset site to

one query site.

Using all of the computed alignments to train a scoring function is not feasible as

the average number of alignments is 2000 per site pair. Another challenge is the pairs

of more similar sites had many more candidate alignments than the pairs of less similar

sites. For this reason, the training data was sampled using a stratified sampling method

to get approximately the same number of good, fair, and poor alignments for each pair

of binding sites within each fold. To help sample the data, the set of alignments for each

pair of binding sites was partitioned into 11 bins in RMSD space [0, inf). The bin edges

are 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5. The first bin is larger than the bins in the mid-

dle as it is difficult to get alignments with RMSD < 0.5Å for sites from distinct protein

coordinates. The last bin is large since all alignments in that bin can be considered as

equally poor with respect to the measured features and alignment error. The stratified

sampling used was to randomly select (without replacement) 20 alignments from each of

the first 10 bins and 200 alignments from the last bin. To alleviate the problem of pairs of

sites with few good alignments and to balance the number of alignments in [0.0, 3.0] with

those in [3.0, 5.5], the first five bins were sampled so that the cumulative total at each bin

edge was as close as possible to the maximum allowed number of alignments at that bin

edge (e.g. if only 15 alignments total were in bins 0 and 1, then if there are N alignments

in bin 2, min(N, 3 ∗ 20− 15 = 45) were sampled from bin 2. Given such a set of samples,

one can apply a variety of machine learning techniques to predict the error of alignment

based on the six alignment features.
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3.1.3.3 Scoring Function Forms

Given established machine learning techniques and the fact that there are six features

per sample, which technique(s) to use can be considered as a personal preference. The

reason is there is little previous knowledge about the data that can be used to prefer

one prediction method over another. On the surface, the fact that we have thousands

of samples and only six features implies that over-fitting is likely to be a small issue.

However, the assumption that the samples are independent and identically distributed

may not be reasonable for the site alignment features.

There are a number of considerations due to the nature of the problem. There is an

average error of ∼0.2 Å in the relative positions of the site points because of the relative

error in atomic positions (i.e. experimental/model error). The reference alignments of

the sites have an average global reference error that is at least 0.5 Å RMSD due to the

error in structural alignment methods and the relative location of the binding site with

respect to the protein backbone. We seek a reliable ranking of those samples that have

the sites well aligned (under 2.0 Å RMSD), but for the samples that correspond to poorly

aligned sites we only seek to recognize that they are poorly aligned. Finally, given the

exploratory nature of our work, it would be very beneficial to be able to interpret the

scoring function’s form and performance. Given these considerations, linear regression

is a good first choice to predict alignment quality based on site features.

Linear regression was used to train 27 distinct scoring functions to predict alignment

quality. The number of scoring functions is due to the facts that one of the terms is the

sum of two others, and manually selecting biologically meaningful combinations of terms

was preferred over statistical feature selection techniques. The independent features used

in the scoring functions are listed in Table 2 where feature 0 is the constant term and

the other features have been listed previously. The dependent variable or feature we

seek to predict is the RMSD of alignment. Based on previous experience and the reasons

given previously it is advantageous to transform the RMSD to -1/RMSD. The reason is
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the relationship between the features and RMSD is better described by -1/RMSD than a

straight line [97].

Table 2: Combinations of site similarity features for linear regression

SF # terms SF # terms

1 0,1 15 0,3,5
2 0,2 16 0,2,3,5
3 0,3 17 0,2,3
4 0,4 18 0,1,5,6
5 0,5 19 0,1,2,5,6
6 0,6 20 0,1,2,6
7 0,1,2,3,4,5,6 21 0,3,4,6
8 0,1,5 22 0,3,4,5,6
9 0,1,2,5 23 0,2,3,4,5,6
10 0,1,2 24 0,2,3,4,6
11 0,3,4 25 0,3,5,6
12 0,3,4,5 26 0,2,3,5,6
13 0,2,3,4,5 27 0,2,3,6
14 0,2,3,4

Given the resources required to build the training and testing datasets, a separate val-

idation dataset was not constructed. Instead, dataset cross-validation was used to select

the best performing scoring function. Specifically, 12 runs of training and validating the

scoring functions were performed with a different training dataset reserved for validation

each time. To keep the comparisons fair, the same stratified sampling was used for all 12

runs and all scoring functions. Matlab’s implementation of LSQR (an iterative solver)

was used to find a numerical solution to a weight vector that minimized the least squared

error (i.e. determine weights that solved the linear regression problem).

In order to reduce the effects of sampling artifacts, the entire training and validation

was performed for 10 stratified samples for a total of 120 sets of weights for each scoring

function. To reduce the potential for variance, the final scoring functions are the result of

stacking the 120 scoring functions by averaging the weights. The final scoring function

with the best average performance was chosen as the scoring function of choice.
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3.1.4 Scoring Function Training and Validation Results and Analysis

The process of determining which scoring function performs the best is not straightfor-

ward given the noise level of the data, the desire for a high quality predictions in [0.0, 2.0]

Å RMSD of alignment, and being less concerned about the actual fit for (2.0, inf) Å RMSD.

The textbook method of picking the scoring function with the smallest error of fit [42] is

not applicable because all of the fits are poor due to noisy data and the unknown paramet-

ric form of the data. Also, the smallest global error of fit does not necessarily correspond

the smallest error of fit in the range of [0.0, 2.0] RMSD. Since the goal is to have a scor-

ing function that performs well at ranking, the RMSD of the best scoring alignment per

pair of binding sites in each of the validation steps was saved. The performance of each

scoring function was estimated by the average of the RMSD values of the best scoring

alignments over 120 validation steps (see Table 3).

Table 3: Mean, median, and standard deviation of the sitemap RMSD of the best ranked
alignment per pair of validation set binding sites across 120 runs. Computed using the
“hold one dataset out” method and across ten stratified samplings.

SF # mean median stdev SF # mean median stdev

12 2.98 1.81 2.94 7 3.72 1.94 4.27
8 3.01 1.83 2.80 23 3.72 1.94 4.27

15 3.08 1.66 3.11 10 3.84 2.43 3.62
18 3.13 1.81 3.17 19 3.86 2.03 4.24
22 3.22 1.66 3.42 14 3.87 2.04 4.14
1 3.25 1.88 3.24 17 3.88 1.92 4.23

11 3.25 1.84 3.44 27 3.91 1.92 4.33
25 3.28 1.66 3.49 24 4.00 2.04 4.40
3 3.48 1.76 3.82 20 4.12 2.34 4.22

13 3.51 1.92 3.52 5 4.12 3.33 3.44
16 3.54 1.92 3.58 6 4.65 3.40 4.32
21 3.58 1.84 4.04 2 5.41 4.58 4.11
26 3.69 1.92 4.29 4 6.78 6.79 3.98
9 3.69 2.20 3.33

Looking at the scoring function validation data in Table 3 one can make several re-
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marks about the alignments chosen by the scoring functions. First, no scoring function

performed particularly well since the best average RMSD of alignment for the best scor-

ing alignments is about 3.0 Å ; this means that for many of the pairs of sites, the best

scoring alignment is one with a relatively high alignment error (> 2.0Å RMSD ). Second,

the median RMSD for scoring function 12 is 1.81 Å which is about 1 Å RMSD less than the

mean and indicates that the average is shifted higher by a number of outliers with high

alignment error. Thirdly, the relatively large standard deviations also point to outliers

with very large alignment errors because 0 Å RMSD is the minimum. Finally, scoring

function 12 was chosen as the scoring function of choice because it has the best average

RMSD and the second smallest standard deviation.

Table 4: The average and standard deviation of the weights for three of the scoring func-
tions listed in Table 3. The sample size is 120 for each weight. The weight numbers
correspond to the terms listed in the previous section

Term SF # 12 SF # 8 SF # 1

C -0.0662 0.0149 -0.0524 0.0169 -0.0589 0.0155
1 -0.0189 0.0013 -0.0197 0.0013
3 -0.0208 0.0018
4 -0.0088 0.0034
5 -0.0023 0.0019 -0.0021 0.0019

Looking at the standard deviation of the weights relative to the average weight we see

several points of interest. The hydrogen bonding terms that include the acceptor-acceptor

matches and donor-donor matches (terms 1 and 3) have a standard deviation that is about

10 percent of the average weight, and this indicates that the acceptor-acceptor and donor-

donor point matches are consistently considered as being favorable. On the other hand,

the standard deviation of the weight assigned to the hydrophobic term (term 5) is ap-

proximately of the same magnitude as the weight itself and indicates that in a number of

training cases the hydrophobic weight was almost zero or even positive.
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3.1.5 Score Normalization

One problem with global averaging schemes, such as linear regression, is the form of the

scoring function is a constant weight times each term. When the features are computed

as in Algorithm 4 and are not scaled, query objects with fewer high-value points have a

smaller range of possible scores than query objects with more high-value points. In term

of binding sites, those sites with fewer hydrogen bond site points will have, on average,

a less favorable score than sites with more hydrogen bond site points. Such a ”feature”

makes it difficult to set one reliable threshold value for a score to be significant and to

compare scores between different query objects with respect to the same dataset object.

To address this problem, each query site is compared to the same dataset of 140 bind-

ing sites from structurally diverse proteins (i.e. each protein is from a pairwise distinct

fold). The score distribution of the best score per site pair for one query site can be roughly

approximated by a Gaussian distribution. The mean and standard deviation of the Gaus-

sian for a given query site is estimated by the mean and standard deviation of the sample

population (140 scores). The raw scores for a query site are normalized by subtracting the

query’s mean score and then dividing by the standard deviation.

Definition. Normalized score is the number of standard deviations above or

below the mean score.

The advantage of score normalization is a score significance threshold of 1.5 standard de-

viations better than the mean was found to strike a delicate balance between the number

of false positives and the number of interesting true positive hits (for our implementa-

tion).

3.2 Results

One way to test the soundness of a scoring function is to apply it to several challeng-

ing test datasets. In this section, our alignment and scoring method is evaluated as it
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is expected to be used in practice. The candidate alignments are found using the previ-

ously explained method, and then the alignments are ranked using scoring function 12

(see Tables 2, 3, 4) from the previous section. The alignment and scoring methods are

implemented in version 3.3 of our software package SimSite3D.

3.2.1 Test Dataset

To test our method, we have constructed five unbiased test sets. These test sets are un-

biased because they were constructed from classes of small-molecules and protein folds

that are distinct from those of the 12 training datasets. A comparison study of SimSite3D

and two competing methods is given for one of the test datasets. Because of the dataset

sizes and the fact that users are expected to look only at the best scoring alignment per

pair of sites, all analysis is with respect to the best scoring alignment per pair of sites.

3.2.1.1 Protein Kinases and other Proteins Binding Adenine

Kinases have been a frequent drug target, and are an important class of proteins in phar-

maceuticals and understanding protein signaling and pathways. This dataset is partic-

ularly challenging as the protein kinases in the set diverge in structure and sequence,

the non-kinase structures are structurally distinct from kinases, and crystallographic evi-

dence for water mediated hydrogen bonds exists in most of the structures.
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Table 5: Adenine binding proteins: two-thirds of the sites are from serine/threonine ki-
nase, one is from a tyrosine kinase, and the remainder of the sites are from a diverse set
of non-kinase proteins that bind adenine.

Abbrev. PDB Adenine Source Res. R Protein
ligand factor

Hs CDK2 1b38 ATP H. sapiens 2.0 0.18 Cyclin dependent
kinase 2

Hs GSK3 1j1b ANP H. sapiens 1.8 0.22 Glycogen synthase
kinase-3 β
(gsk3 β or τ kinase)

Hs PIM-1 1yxt ANP H. sapiens 2.0 0.18 Pronto-oncogene
kinase pim-1
(Unique: has Pro at
123)

Hs CDK7 1ua2 ATP H. sapiens 3.0 0.22 Cyclin dependent
kinase 7

Hs Aurora-A 1ol5 ADP H. sapiens 2.5 0.19 ipl1-related kinase 1
Mm PKA 1u7e ANP M. musculus 2.0 0.17 cAMP dependent

kinase (pka Cα)
Hs IRK 1ir3 ANP H. sapiens 1.9 0.19 Insulin Receptor
Hs PDK1 1h1w ATP H. sapiens 2.0 0.20 3-Phosphoinositide

dependent kinase-1
Hs ATK2 1o6l ANP H. sapiens 1.6 0.20 Protein kinase B
Hs CK2ii 1jwh ANP H. sapiens 3.1 0.27 Casein kinase II
Mm TRP 1iah ADP M. musculus 2.4 0.22 Transient receptor

potential
Hs SRPK1 1wbp ADP H. sapiens 2.4 0.23 S/R rich protein

specific kinase
Mm EphB2 1jpa ANP M. musculus 1.9 0.23 EPHB2 receptor

tyrosine kinase
Hs MTAP 1cg6 MTA H. sapiens 1.7 0.20 Methylthioadenosine

phosphorylase
Hs HSP90 1byq ADP H. sapiens 1.5 0.19 Heat shock protein 90
Mc -MMC 1aha ADE M. charantia 2.2 0.18 Alpha-momorcharin
Hs HSP70 1s3x ADP H. sapiens 1.8 0.20 Heat shock protein 70
Ss F16P 1frp AMP S. scrofa 2.0 0.19 Fructose-1,6

bisphosphatase
Pf PHBH 2phh ADP P. fluorescens 2.7 0.17 P-hydroxybenzoate

hydroxylase
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3.2.1.2 Proteins that can bind Ligands Containing Pterin

The proteins in the folate biosynthesis pathway bind ligands that contain a fused two

hexagonal ring system called pterin. Of these proteins, 6-hydroxymethy-7,8-dihydroxypterin

pyrophosphokinase (HPPK) is of considerable interest to our lab as a potential drug tar-

get for Yersinas Pestis (the bacteria responsible for the plague). It would be helpful if we

could characterize the pterin binding sites in other protein folds with respect to the pterin

binding site in HPPK. This dataset has representatives from four distinct protein folds

that each have a site that binds pterin.
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Table 6: Pterin binding proteins: proteins that natively bind a ligand containing the pterin
rings system. Four distinct protein families are represented DHFRs, HPPKs, aromatic
amino acid hydroxylases, and DHPSs

Abbrev. PDB Pterin Other Source Res. R Protein
ligand ligand factor

Hs DHFRa 1u72 MTX NDP H. sapiens 1.9 0.16 DHFR
Pc DHFR 2fzh DH1 NAP P. carinii 2.1 0.25 DHFR
Ch DHFR 1qzf FOL CB3 C. hominis 2.8 0.23 DHFR

UMP
UDP

Mt DHFR 1df7 MTX NDP M. tuberculosis 1.7 0.19 DHFR
Pf DHFR 1j3i WRA UMP P. falciparum 2.3 0.19 DHFR

portion of
NDP DHFR-TS

Gg DHFR 1dr1 HBI NAP G. gallus 2.2 0.14 DHFR
Ca DHFR 1aoe GW3 NDP C. albicans 1.6 0.16 DHFR
Tm DHFR 1d1g MTX NDP T. maritima 2.1 0.20 DHFR
Yp HPPKb 2qx0 PH2 APC Y. pestis 1.8 0.23 HPPK
Sc HPPK 2bmb PMM S. cerevisiae 2.3 0.18 HPPK

portion of
HPPK-DHPS

Ec HPPK(t) 1q0n PH2 APC E. coli 1.3 0.12 HPPK
(ternary
complex)

Ec HPPK(b) 1rb0 HH2 E. coli 1.4 0.16 HPPK
(binary
complex)

Hi HPPK 1cbk ROI H. influenzae 2.0 0.16 HPPK
Hs PAH 1mmk H4B TIH H. sapiens 2 0.20 Phe

hydroxylase
Hs TPH 1mlw HBI H. sapiens 1.7 0.21 Trp

hydroxylase
Rn TH 2toh HBI R. norvegicus 2.3 0.21 Tyr

hydroxylase
Cv PAH 1ltz HBI C. violaceum 1.4 0.16 Phe

hydroxylase
Sc DHPSc 2bmb PMM S. cerevisiae 2.3 0.18 DHPS

portion of
HPPK-DHPS

a) DHFR: dihydrofolate reductase
b) HPPK: 6-hydroxymethy-7,8-dihydroxypterin pyrophosphokinase
c) DHPS: dihydropteroate sythase
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3.2.1.3 Glutathione-S transferases

The glutathione-S transferases were added as they are an important group of proteins

and contain a polar binding site and a hydrophobic binding site. This dataset is used

twice. Once for the Glu binding site of glutathione in the structural diverse portion of the

dataset and once for the hydrophobic binding sites (Hsite) in all of the structures. The

glutathione binding site is relatively conserved across the species and protein isoforms.

The Hsite for the H. sapiens pi-class structures has local changes due to different ligands

bound, and the Hsites for the diverse set are very different and in most cases bind very

different classes of ligands. Thus the Hsite portion of the dataset can be used to illustrate

the handling of local changes in the same binding site, and very large changes in the

binding site between different species and protein isoforms 3.

3 Proteins within a species can differ somewhat in sequence and structure depending
on the tissues or environment in which they are present
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Table 7: A test dataset of glutathione-S transferases (GSTs). Both the hydrophobic sites
(Hsites) and the Glu part of the glutathione sites are used in this dissertation. The H.
sapiens π-class structures have a variety of inhibitors bound in the Hsite and can be used
to gauge the sensitivity of SimSite3D to small changes in the binding site of the same
protein. The structures from other species have a glutathione or an analog bound in the
glutathione pocket.

Abbrev. PDB GSH Hsite Source Res. R Protein
ligand ligand factor

Hs π - SAS 13gs GTT SAS H. sapiens 1.9 0.19 π class GST
Hs π - 10gs Glu PG9 H. sapiens 2.2 0.18 π class GST

BCS
Hs π - EAA 11gs GTT EAA H. sapiens 2.3 0.21 π class GST
Hs π - BSP 19gs GTT BSP H. sapiens 1.9 0.21 π class GST
Hs π - 1aqx ILG ILG H. sapiens 2.0 0.20 π class GST

TNB TNB
GLY GLY

Hs π - CBD 20gs CBD H. sapiens 2.5 0.23 π class GST
Hs π - EAA 2gss EAA H. sapiens 1.9 0.21 π class GST
Hs π - GPR 2pgt GPR GPR H. sapiens 1.9 0.18 π class GST
Hs π - CBL 3csj CBL H. sapiens 1.9 0.18 π class GST
Hs π - EAA 3gss GTT EAA H. sapiens 1.9 0.21 π class GST
Hs π - GTX 4gss GTX GTX H. sapiens 2.5 0.20 π class GST
Hs π - GTX 9gss GTX GTX H. sapiens 2.0 0.19 π class GST
Mm π 1glp GTS M. musculus 1.9 0.17 π class GST
Hs 1xw5 GSH H. sapiens 1.8 0.21 class GST
Sp β 1f2e GTT S. paucimobilis 2.3 0.20 β class GST
Hs ε 1pkw GTT H. sapiens 2.0 0.16 ε class GST
Hs PGDS 1iyi GSH H. sapiens 1.8 0.19 Prostaglandin

D synthase
Ac θ 1jlv GSH A. cracens 1.8 0.22 ADGST1-3
Hs ω 1eem GSH H. sapiens 2.0 0.22 ω class GST
Mm α 1b48 A HAG M. musculus 2.6 0.24 MGSTA4-4
Rn M-κ 1r4w GSH R. norvegicus 2.5 0.20 Mitochondrial

κ-class
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3.2.1.4 Matrix Metalloproteinases

Given the prevalence of metal sites in proteins, we curated a dataset of proteins that use

a metal ion to cleave other proteins. Somewhat to our surprise, it was observed that

although the overall sequence and structure of the proteins diverges from that of colla-

genase, the peptide cleavage sites are structurally conserved and align very well using

structure based tools (e.g. DALI and SSM).

Table 8: Peptide cleavage site of matrix metallo-proteinases (MMPs)

Abbrev. PDB Ligand Source Res. R Protein
factor

Hs MMP1 1cgl PHQ-ABU- H. sapiens 2.4 0.19 collagenase
Leu-Phe-
EMR

Hs MMP8 1a85 HMI-DSG- H. sapiens 2.0 UNK MMP-8
DBP

Hs MMP3 1b8y IN7 H. sapiens 2.0 0.20 stromelysin 1
(MMP-3)

Hs MMP7 1mmr SRS H. sapiens 2.4 0.19 matrilysin
(MMP-7)

Hs MMP10 1q3a NGH H. sapiens 2.1 0.28 stromelysin 2
(MMP-10)

Ss MMP1 1fbl HTA S. scrofa 2.5 0.22 collagenase
(MMP-1)

Mm MMP11 1hv5 RXP M. musculus 2.6 0.22 stromelysin 3
(MMP-11)

Ca HT-D 1atl SLE-Tyr C. atrox 1.8 0.16 atrolysin c
form d

Sm SP 1af0 Leu-HMA S. marcescens 1.8 0.18 serratia protease
Bt Thermo 1gxw Val-Lys B. thermo- 2.2 0.16 thermolysin

proteolyticus
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3.2.2 Test Dataset Results

We would like to have an estimate of the difficulty of aligning and assessing the similarity

of the sites in the test datasets. To that end, Secondary Structure Matching (aka SSM or

PDBeFold) [60] was used to compute the best pairwise alignment of the residues near the

binding sites within each test dataset. Because SSM requires significant secondary struc-

ture features to align peptide fragments, a residue was considered near a binding site if

any heavy atom in the residue is within 9.0 Å of any ligand heavy atom. Based on these

residues, SSM provided a pairwise Q-score and sequence similarity score of the binding

sites within each fold. The Q-score characterizes the structural similarity of the residues

near the binding site; the sequence similarity characterizes the amount of sequence simi-

larity near the binding sites. The SSM results are illustrated in Figure 8.

One can make several remarks about the binding site datasets based on the SSM re-

sults. There is little if any structural similarity between the DHFR, HPPK, and amino acid

hydroxylase protein folds (Figure 8, B). The matrix metalloproteinases are relatively con-

served except possibly for Bt Thermolysin (Figure 8, D). The kinases’ and other proteins’

adenine sites are in general less structurally conserved as can be seen by the more blue

colors than for the other protein folds, and it is difficult or impossible for SSM to find

structural alignments between the adenine sites in kinases and the other adenine binding

proteins (Figure 8, A). The Glu pocket of the glutathione binding sites are structurally

similar at about the same level as the adenine sites in the kinases except for the rat mito-

chondrial κ-class GST (Figure 8, C). The SSM results for the hydrophobic binding site of

the GSTs are not presented as the atomic positions of α-carbons of the H sapiens pi-class

structures are almost identical and the Hsites of the other isoforms are in general very dis-

tinct from each other. Given the SSM results, the advantage of a site alignment tool, such

as SimSite3D, would be the ability to find significant hits in the regions where SSM was

unable to find an alignment (besides providing a more detailed comparison of binding

site features).
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As is commonly reported with other binding site alignment tools [33, 89, 92], Sim-

Site3D performs very well for the same binding site from proteins within moderately

conserved protein folds. In addition, SimSite3D is able to find some closely aligned and

significant scoring hits between HPPK and amino acid hydroxylase pterin binding sites

(Figure 9, B). As mentioned previously, the peptide cleavage site for the MMPs is very

highly conserved, and this is confirmed by the SimSite3D scores (Figure 9, C).
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Figure 8: SSM score matrices of the best scoring pairwise alignment of the residues flanking the ligand binding sites (all
residues within 9.0 of the ligand defining the binding site volume). Matrices A, B, C, D display the SSM results for the
adenine (Table 5), pterin (Table 6), diverse GST (Table 7), MMP (Table 8) binding sites, respectively. The column labels are
identical to the row labels. Within a matrix, a row corresponds to the results of one query site compared with all the sites
in that dataset. Likewise, each column shows the similarity of one dataset site with respect to all the query sites (in that
dataset). A black cell denotes that SSM was unable to find a structural alignment between the corresponding pair of sites.
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Figure 8: (cont’d) Since SSM scores are not necessarily symmetric, the values in each cell are the average of the correspond-
ing SSM values when the pair switches which site is the query site. The lower triangles of the matrices show the SSM
computed sequence identity near the ligand binding sites. The upper triangles show the SSM Q-scores for the secondary
structure elements and the residues near the binding sites.
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Figure 9: SimSite3D score matrices showing the score of the best scoring pairwise alignment of the query binding sites (site
maps) to the dataset binding sites. The matrices are enumerated in the same manner as figure 8. The column labels are
identical to the row labels except for the rightmost column. The rightmost column is the count of 140 diverse dataset sites
that scored better than 1.5 standard deviations better than the average score. The scores of the hits for each row (1 query site)
are scaled linearly to be in the range [self score, -1.5] where self score is the best possible score for the corresponding query
pocket. The range [self score, -1.5] is mapped linearly to the color bar. The color for a given score is found by computing the
index for the score in the given color map. A black cell indicated that the best scoring alignment between the corresponding
query pocket and dataset ligand site had a score worse than the threshold of -1.5. The number in a given cell is the RMSD
of the best scoring alignment with respect to the reference alignment.
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Figure 9: (cont’d)



3.2.3 Effects of Score Normalization

Score normalization has a significant impact on the performance of SimSite3D. As men-

tioned in the methods section, a score significance threshold of 1.5 standard deviations

better than the mean was empirically determined to provide a good balance between

finding interesting true positive hits and limiting the number of false positives.

Definition. A true positive hit is a valid match between a query site and dataset

site that is correctly identified as a significant match by the selected scoring func-

tion.
Definition. A false positive hit is an invalid match between the query site and

dataset site that is incorrectly identified as a significant match by the selected scor-

ing function.

In addition, the normalized score performs much better (than the raw score) at predicting

the error of site alignment. The advantage of using the normalized score to predict the

error of site alignment can be visualized by ROC-like plots.

Here a brief definition of a ROC-like plot 4 is given; a more indepth introduction

to ROC curves and analysis is given by Fawcett [32]. The goal is to show the interplay

between the number of acceptable and poor site alignments as a function of site score.

The data was compute as follows:

1. For each pair of query, dataset sites in the testing datasets, keep the best scoring

alignment, its score, and RMSD.

2. Partition the set of alignments into two categories; acceptable and poor alignments

based on a threshold of 2.0 Å RMSD 5.
4 The plots used are called ROC-like as the definition of ROC plots require percentages

of the corresponding populations on both axes, and we prefer to see the number of
samples on both axes. In addition, because of our emphasis on low error alignments,
the area under the curve (AUC) is less relevant for our purposes.

5 An RMSD threshold of 2.0 Å to distinguish between acceptable and poor alignments
is used since getting alignments under 1.0 Å RMSD is challenging, but for alignments
over 2.0 Å the site feature will have incorrect correspondences and the computed score
cannot be trusted.
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3. Determine the score thresholds S, T at which no alignment met the score, all align-

ments met the score, respectively.

4. Partition the range [S, T].

5. At each partition boundary compute the number of acceptable and poor alignments

that meet the score threshold (that corresponds to the partition boundary), and plot

the plot the number of good versus poor alignments.

Figure 10: A ROC-like plot showing the advantage of using normalized site score thresh-
olds rather than raw score thresholds for predicting the quality of site alignments. The
plot data is the score and site RMSD corresponding to the best scoring alignment per pair
of query, data sites in the testing datasets. The site score increases monotonically as one
moves along a particular curve from the lower left corner to the upper right corner (a
lesser score is more favorable). Thus, an ideal scoring method would exhibit a vertical
line at 0 poor alignments and a horizontal line at the number of acceptable alignments.
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One can use the ROC plot for alignment quality (Figure 10) to see that using the nor-

malized score is beneficial. At a cost of 25, 50, 100 poor quality alignments, the normalized

score gains approximately an additional 50, 75, 100 acceptable alignments (respectively)

over the raw score.

Figure 11: A ROC-like plot showing the ability of normalized site score to better distin-
guish between true positive and false positive hits. The plot data is the best score between
each query site and the sites within the query’s test set and between each query site and
the sites in the normalization dataset. Here the normalization dataset is used as a proxy
for the binding sites in the PDB. Therefore, an ideal scoring method would exhibit a ver-
tical line at 0 norm dataset hits and a horizontal line at the number of test dataset hits.

Figure 11 shows that the normalized score gains approximately 150-200 true positives

over the raw score between 100 and 300 normalization database hits. Note, as is com-

monly the case with current high-throughput protein computational chemistry tools, a

high false positive rate is the price one must currently pay in order to find interesting
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examples.

Figure 12 shows that normalizing the score has a significant impact on the overlap of

the distributions of scores within the test folds and scores for test query sites versus the

normalization database. An ideal method (function) would be one that could separate

the two distributions. Although the overlap of the score distributions is still significant

after normalization, the severity of the overlap is reduced.
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Figure 12: Class conditional density estimates showing the effects of score normalization on amount and shape of the
overlap of the score distributions of the best scoring alignments per query, dataset site pair. The sets of scores are classified
with respect to the test folds and normalization dataset. This plot highlights the level of difficulty of the problem and can be
used to select a score threshold based on the percentage of true positives one wishes to recognize at the cost of a percentage
of false positives. Given the samples used in the plot, an ideal scoring function would be one that minimized the amount of
overlap between the test fold score distribution and the normalization dataset score distribution.



3.3 A Comparison of Existing Approaches to Aligning Bind-

ing Sites

To gauge the contributions of our methods, the performance of our implementation (Sim-

Site3D 3.3) is compared to that of two other site comparison methods. MED-SuMo [53]

was chosen because it is computationally efficient as it uses a relatively small number

of points to represent a binding site. SiteEngine [91] was selected because the Principal

Investigators are well respected, they rigorously evaluate their computational methods,

and they have been addressing the binding site comparison method for many years. An

additional deciding factor was the free availability of the two tools for academic labora-

tories. The pterin binding site dataset (Table 6) was used as the test dataset to compare

the three methods as there are four distinct protein folds represented and three of the four

folds have at least four distinct sequences.

The all-to-all comparisons between the pterin binding sites dataset for both MED-

SuMo and SiteEngine were performed in approximately the same manner for both tools

and similar to the method used for SimSite3D. In order to have the query sites of approx-

imately the same size and location, the biopterin from 1DR1 was placed in the reference

frame of each query protein structure using the reference ligand/structure based align-

ments. The MED-SuMo dataset binding sites were defined by the ligand bound in the

pterin pocket of each crystal structure. Because SiteEngine searches the entire protein

surface of each dataset protein, the dataset binding sites were not defined. As recom-

mended by the tools’ designers, the threshold for considering a chemical point as part of

a binding site was at most 4.0 and 4.5 Å from any ligand heavy atom for SiteEngine and

MED-SuMo, respectively.
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Figure 13: MED-SuMo score matrix for the pterin binding proteins dataset. The scores of
the hits for each row (one query site) are scaled linearly to be in the range [3.0, self score]
where self score is the best possible score for the corresponding query pocket. The range
[3.0, self score] is mapped linearly to the color bar. A black cell with an asterisk indicates
that MED-SuMo was unable to find a significant alignment between the two correspond-
ing sites (only 3 points matched). A completely black cell indicates that MED-SuMo did
not find any matches between the two sites.

MED-SuMo performs well, but its scoring could be improved since it is basically a

count of the number of points that were matched. If one ignores the recommended score

threshold, MED-SuMo can hop between the pterin folds. However, one must remember

that only 3 points matched for any of those ”hits”.

82



Figure 14: SiteEngine score matrix for the pterin binding proteins dataset. As recom-
mended by the authors [91], the SiteEngine scores for each query were converted to a
percentage of self-score by dividing each score by the query’s self score. Notice that
SiteEngine scores for pairs of sites within a protein fold are typically greater than 50 per-
cent, and for those pairs outside of a fold the scores are about 33 percent.

Because of the more detailed nature of SiteEngine’s site models, SiteEngine’s scores

show a range more like those of SimSite3D than MED-SuMo.

3.4 Discussion

Looking at the score matrices for the pterin binding proteins dataset, we see that Sim-

Site3D, MED-SuMo, and SiteEngine all perform very well within each protein fold. Good

performance within a given protein fold is expected because the binding sites will, in

general, be formed by many of the same residues with similar relative poses. On the

other hand, for protein within the same fold, tools such as DALI and SSM are generally
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sufficient to correctly align the binding sites. Therefore, a useful binding site alignment

tool must necessarily perform well for binding sites within the same protein fold, but that

is not sufficient to motivate the use of binding site comparison tools as structure based

methods can usually provide low error alignments. Of course, a primary advantage of

binding site comparison tools is their emphasis on binding site features rather than more

global structural features.

An advantage of SimSite3D is the score normalization is provided automatically, and

we have provided a score threshold for a site alignment to be considered significant. A

major issue with SiteEngine is one does not know which hits are significant and for sites

outside the protein folds it does not seem like SiteEngine picks any ”winners” or ”losers”.

In our view, MED-SuMo uses too few points to represent binding sites in order to use

MED-SuMo to find similar pockets (i.e. binding sites of ligand fragments about the size

of adenine). The score normalization and the spread of the scores of SimSite3D clearly

designates some site alignments to be ”winners” and ”losers”.

Given the difficulty of the binding site alignment and comparison problem, our method

and implementation has many areas that could be improved. Because of the heavy re-

liance on hydrogen bond points, hydrophobic sites are more challenging to align and

have fewer high-value points to indicate the alignment is correct. Looking at high scor-

ing alignments between some polar query sites and the normalization dataset, there are

a number of cases where the polar points do match well, but the shape of the binding

sites are very different. Unfortunately, the point clouds seem to not provide an adequate

representation of the binding site shape in all cases. Therefore, it is likely that adding

information about the complementarity of the shapes of aligned binding sites would help

to better distinguish between true hits and false positives.
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Figure 15: An example of a strong mainchain motif match, but poor binding site shape.
The tubes with green carbon atoms are from a H. sapiens protein kinase CDK2 (PDB:
1B38). The tubes with gray carbon atoms are from a H. sapiens peptide binding protein
(TRAF6). Notice the backbones (tubes) in the center of the figure match (typically called
a similar protein backbone motif). The problem is the green set of matching tubes corre-
spond to the canonical binding motif kinases use to recognize N1 and N6 of adenine, but
the adenine binding site is too small for a peptide to bind.

Besides model and implementation details, there are several computational challenges

that must be addressed before the accuracy of high-throughput computational chemistry

tools can be increased with the goal of greatly reducing their number of false positive so-

lutions. A major issue for both binding site comparison and protein-ligand docking tools

is correct modeling of water mediated interactions. The modeling of water has too many

details to present here, but the two extremes (including no water or all water molecules

in the binding site) do not work well in practice. At the present, too many resources are

required to specify which water molecules to include for each dataset site. Including all

the water molecules that are near the binding site and are present in the crystal structure

is likely to restrict the binding site to present a shape and chemical signature that can only

be matched to a site with the same ligand or one of its analogues bound in a very similar

conformation. The reason is: including all such water molecules in a GOLD redocking
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study greatly increased the accuracy of the method and biased it to the crystallographic

pose and conformation [41]. Since the inclusion of all water molecules seems to be about

as ineffective as including no water molecules and such inclusion takes more computa-

tional resources, most (if not all) high-throughput methods ignore water molecules by

default.
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Chapter 4

Binding Site Surface Complementarity

Given the results in the previous chapter, our binding site comparison approach and im-

plementation shows great potential for posing candidate ligands for proteins of unknown

function and for pocket mining. However, as is commonly the case with high-throughput

computational chemistry tools, the search results are plagued by a significant number of

false positive hits. In particular, for any of the test site similarity searches, a number of the

hits near the score threshold are from sites that have very different molecules bound than

those the query protein is known to bind. Besides reducing the number of false positives,

we seek to reduce the alignment error of the better alignments and reduce the number

of poor alignments within the test folds. Our hypothesis is: if two binding sites have a

similar shape, the preferential binding of ligands to one of the sites over the other will be

based on chemical differences alone. In this chapter, we present the impact of including

the molecular surfaces of the binding sites to represent their shapes.

In the previous chapter, the degree of similarity of the binding site shapes was not

adequately addressed since the points in the chemistry labeled point clouds are sparse

and unevenly distributed. Binding site shape is known to be important because for a

protein and ligand to interact their surfaces should complement each other [28] in a man-

ner somewhat akin to a soft lock and key rather than a mortise and tenon woodworking
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joint [55]. An example of two aligned sites with a high degree of local chemical similarity

but very low surface complementarity is the alignment between the adenine binding site

in H. sapiens CDK2 (PDB: 1B38) and the antigen binding site in H. sapiens TRAF6 (PDB:

1LB6). Both proteins share a similarly exposed and oriented backbone segment (Panel A

of Figure 16). Therefore, locally, one would expect the molecules that interact with the

two proteins to place polar atoms in approximately the same relative position and orien-

tation. However, the shape of the two binding sites is very different (Panel B of Figure 16).

Given the very different pocket shapes, our best judgment is that the ligands bound by

the two proteins will have very different shapes. Thus, in many instances, the chemistry

labeled point cloud representation and partial matching of atomic positions is insufficient

to characterize the degree of shape complementarity of two sites.

Figure 16: Example of a strong partial polar match between binding sites with very dif-
ferent shapes. Panel A illustrates the adenine binding site of H. sapiens CDK2 (green
carbon tubes) as matched to the antigen binding site in H. sapiens TRAF6 (gray carbon
tubes). Notice the very similar protein backbone pattern in the center of panel A. Panel
B shows the molecular surface patches for the two binding sites from approximately the
same viewpoint as panel A. In panel B the cyan surface is from TRAF6 and the magenta
is from CDK2. The surfaces are quite distinct and only agree near the similar backbone
pattern in the center of the adenine pocket.

Likewise, the fact that two binding sites have similar shapes, is not sufficient to fully
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assess the similarity of two sites. The reason is there can be substantial chemical dif-

ferences between the two binding sites. An example of similar site shape and different

chemistry is a binding site shape alignment between the adenine binding pocket of a H.

sapiens τ kinase I structure (PDB: 1J1B) and the indole binding pocket of a P. putida naph-

thaline 1,2-dioxygenase structure (PDB: 1O7N). In Figure 17, one can see that the polar

site points have few correspondences (between red and pink and between blue and light

blue), but the surfaces are quite similar over most of the two pockets. Therefore, in this

chapter, we emphasize the use of both the chemistry labeled points and the site surface

patches with the goal of increasing the number of true positives and reducing the number

of blatant false positive site matches.

Figure 17: Example of a good partial surface match between binding sites with few polar
points in common. Panel A shows the adenine site of a H. sapiens τ kinase I (green
carbon tubes) as aligned to the indole site of a P. putida naphthaline 1,2-dioxygenase (gray
carbon tubes). The site points are shown as spheres, with those from the naphthaline 1,2-
dioxygenase in lighter shades than those from the kinase. In panel B one can see that the
majority of the 2 mesh surfaces is complementary.
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4.1 What is a binding site surface patch?

When analyzing how proteins interact with other molecules (e.g. proteins, water, and

small molecules), one would like to characterize the boundary that separates the protein

atoms from the atoms of other molecules. A common representation of biomolecules (in-

cluding proteins) is modeling the atoms by a hard ball centered at each atom’s center

with each ball’s radius specified that atom’s chemical element. One example of a molec-

ular surface is the van der Waals surface which is the set of the exposed surface points of

all the balls.

For our purposes we list a few technical definitions from general topology that are

reasonable, at least, for R3 [83].

• The complement of a set S contains all of the points that are not in S, and it is

denoted as Sc. That is, Sc = {p|p /∈ S}.

• A ball is another name for the volume of a sphere, and may be written as b(c, r) =

{x|d(x, c) ≤ r}.

• A neighborhood is another name for the interior of a sphere. A neighborhood as a

set is Nr(c) = {x|d(x, c) < r}.

• An interior point of a set S is a point p ∈ S that has a neighborhood Ni(p) that is

fully contained in the set of interest (i.e. Ni ⊂ S).

• A limit point of a set S is a point p ∈ S such that for each neighborhood Ni of p, Ni

contains a point si ∈ S where si 6= p.

• Let L be the set of limit points and I be the set of interior points of a set S in R3.

Then a surface point of S is an element of the set L ∩ Ic.

Given these definitions, the van der Waals surface is the set of limit points that are not inte-

rior points of the union of balls that represent a molecule’s atoms. Given two atoms ai, aj,
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with centers ci, cj, their van der Waals radii ri, rj can be determined by and considered

as the minimum of the distance between their centers when they are not participating in

the same chemical bond (i.e. ri + rj = min(‖ci − cj‖)). Although the van der Waals sur-

face of a protein is a reasonable approximation, it is defined as the intersection of spheres

and has many sharp valleys which are not aesthetically appealing in molecular graphics.

The valleys are not necessarily important shape features since atomic centers from other

molecules can not be in the valleys as such molecules would then penetrate the protein.

The idea of generating a smoothed surface by rolling a probe sphere of constant radius

over the van der Waals spheres was presented by Lee and Richards [64]. There are two

general classes of smoothed molecular surfaces. The distinction is one surface is traced

by the center of the probe and the other surface is defined by the extent of the molecule’s

van der Waals surface and the probe’s surface.

Definition. A solvent accessible surface (SAS) of a molecule M is the limit surface

at which water molecule centers can be placed such that the water molecules do

not penetrate M [64].

Definition. A solvent excluded surface (SES) or smoothed van der Waals surface

is the limit surface at which the boundary of a water molecule can be placed such

that the water does not penetrate the protein [40].

Because of the offset with respect to the protein’s volume, the SAS of a protein exhibits

different local features than a smoothed van der Waals surface as it is approximately 1.4

Å farther out from the atomic centers. As an example, the grooves of ∼ 1.4 Å width in a

van der Waals surface will be represented as creases in the corresponding SAS surface. At

the present, many protein scientists prefer to consider smoothed van der Waals protein

surfaces because they seem to be the more natural surface since they approximate the

limit of proteins’ volumes and shapes. Also, it has been argued that a smoothed van der

Waals surface is more applicable to describing hydration effects [51, 98]. Finally, given two

non-covalently bound molecules, if they are represented by their respective smoothed
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van der Waals surfaces, the two surfaces will be complementary at the interface [28], but

their respective Solvent Accessible Surfaces will have significant intersections and are not

necessarily visually complementary.

Given the topological details of constructing molecular surfaces, we selected Michel

Sanner’s MSMS [87] to construct triangular meshes that represent the smoothed van der

Waals molecular surfaces of proteins 1. The main advantages of MSMS are its speed

of surface construction, it computes a smoothed van der Waals surface, and the MSMS

program is freely available for academic use. Our implementation is not restricted to

surfaces generated by MSMS as the only requirement is that a site’s surface files be in

MSMS format.

Definition. A binding site surface patch is constructed by pruning a given protein

molecular surface mesh to keep only those faces near the site volume.

In our implementation, if a ligand was used to define the site volume, all faces which do

not have at least one vertex within 4.0 Å of a heavy ligand atom are removed. If a sphere

was used to define the site volume, all faces which do not have at least one vertex inside

the sphere or within 1.0 Å of the sphere are removed. In this manner, only those molecular

surface faces near the binding site are kept, and this set of faces is called a binding site

surface patch.

4.1.1 Computing surface patch complementarity

How to practically compute the surface complementarity of two arbitrary 3D objects is

both a research and an engineering problem. Two aligned surface patches may be com-

pared as a set of corresponding points in a manner similar to the methods proposed by

Besl and McKay [13]. In this manner, the first surface is represented by a set of sample

points, that are given by the vertices of the surface’s mesh. Since the two surface patches

1 From this point forward, when a molecular surface is referred to it is to be assumed
that it is a triangular mesh representation of a smoothed van der Waals surface.
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are assumed to be coarsely aligned, the point correspondences are determined by com-

puting the closest point on the second surface for each sample point from the first surface.

Because the analytical surface description of a molecular surface of a binding site is dif-

ficult to work with, the point correspondences are estimated by computing the closest

points with respect to the second surface’s triangle mesh. Such an estimation is reason-

able since, in the limit, the sample points and mesh surfaces converge to the analytical

surfaces However, the problem becomes computationally intractable as the number of

points and faces approach infinity. Therefore, a balance is required between desired ac-

curacy and computational efficiency.

Given a mesh surface, finding the closest point on the mesh with respect to a sample

point can be a costly process. A naive method is, given a sample point, compute the cor-

responding closest point for each face in the mesh and keep the point with the minimum

distance. A slightly better method is to have an upper bound at which we desire a point

correspondence and to use an overlapping grid to partition the volume of space contain-

ing the mesh. In practice, our grid implementation assumes an upper bound of 1.5 Å for

point correspondences, and produces exactly the same results as the naive method while

checking about one percent of the total faces of an average dataset binding site.

The degree of surface complementarity of two surfaces is estimated by the RMSD

between the query mesh vertices and their corresponding points on the dataset mesh.

Because there is an upper bound on the distance for allowed point correspondences, the

RMSD is perturbed by adding or removing points (i.e. having more point correspon-

dences may increase the average point correspondence error, but could indicate a better

partial match as there would be more points with correspondences within 1.5 Å ). To ad-

dress this discrepancy, each point without a correspondence is considered as having an

error of 1.5 Å . The RMSD of the corresponding surface points is added as another term

in the scoring function training process.
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4.1.2 Updated Training/Validation Datasets

After gaining experience with comparing protein-ligand binding sites, it was noted that

the initial training datasets suffered from a number of blatant flaws. Several of the datasets

have only two proteins, the structures in the structural genomics structures dataset do not

have similar binding sites, and the peptidyl-prolyl cis-trans isomerase dataset has three

NMR structures. Having only two proteins is somewhat problematic since there are only

four pairs of binding sites, and such datasets will be underrepresented in the training

samples. Our method may be used to search using an NMR query structure or a dataset

that contains NMR structures; however, protein structures determined by NMR typically

suffer from higher relative atomic positioning errors than structures determined by xray

crystallography. In general, our experience has been that the training datasets should be

carefully prepared to reduce the probability of two binding sites being labeled as similar

when they are in fact dissimilar with respect to the site representation.

To address these issues, several datasets were removed/added and the remaining

training datasets were augmented to approximately double the number of binding sites

used to training the scoring functions. If possible, the sites were aligned using both struc-

ture and ligand based alignments. For each family that could be aligned using both meth-

ods, the alignment method with the better average main chain RMSDs for the binding site

residues was selected as the alignment choice for that dataset. The aligned structures were

scrutinized by protein structure experts using molecular graphics and structural features

to determine whether to partition the training datasets by protein families. Several of the

training datasets had distinct protein folds for which the binding sites for the same ligand

were so different that these datasets were split into subfamilies for the purpose of training

the scoring functions.

To gauge the impact of improving the curation of the datasets and doubling the num-

ber of total structures in training datasets, one can compare the validation results for the

SimSite3D site point score over both training and validation datasets.
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Table 9: Mean, median, and standard deviation of the site map RMSD of the best scor-
ing alignment per pair of validation set binding sites across 10 orientation samples. The
”old” values are those previously reported in Table 3; the ”new” values are the result of
updating the training and validation datasets.

SF mean median stdev SF mean median stdev

”old” site score 2.98 1.81 2.94 ”new” site score 2.27 1.22 2.11

It is clear that the training/validation dataset enhancements are beneficial. The new

scoring function (using the same terms as the ”old” scoring function) has a much better

median RMSD with respect to the enhanced datasets (Table 9). Also, the average and

standard deviation of the RMSD have dropped significantly.

4.1.3 Scoring Function Training and Validation

The scoring function training and validation was performed in a manner that is very

similar to that of the previous chapter. The stratified method of sampling the orientation

space is the same as in Chapter 3. For each sample population, each scoring function was

trained ten times. With a distinct training dataset reserved for validation each of the ten

times. Ten sample populations were used to help reduce the effects of sampling. The final

scoring functions are the stacked scoring functions found by averaging the 100 values for

each weight. The parametric form of the scoring functions with respect to RMSD of site

alignment is again -1/RMSD [97]. The site point features (terms 1-5) are computed in the

manner presented in Algorithm 4. The term numbers are the same as those presented in

Chapter 3 with the exception of term 12, which is the RMSD of the corresponding surface

points (i.e. average surface error – see Section 4.1.1). The combinations of terms in the

scoring functions differ and can be found in Table 10. The solutions (weight vectors) of

the linear regression problems were found using Python and NumPy to implement the

standard QR-factorization method presented in [42].
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Table 10: Combinations of terms (features) used in linear regression to construct linear
scoring functions to predict site alignment quality and site similarity.

SF # terms SF # terms SF # terms

0 1,5 1 4 2 2,3

4 12 7 1,2,3,5 8 2,3,4

9 1,2,3,4,5 13 2,3,12 14 1,2,3,5,12

In the previous chapter, we assumed that it was reasonable to use the mean, median,

and standard deviation of the RMSDs of the best scoring alignments to evaluate the candi-

date scoring functions’ performance. Rather than using such global parameters, ROC-like

curves are used, in this section, as guides to choose the ”best” scoring function. The main

advantage of ROC-like curves is they show the interplay between true and false positives

as the score threshold is varied from too strict (no binding sites pairs are similar) to too

loose (all binding site pairs are similar). As in the previous chapter, the scoring function

candidates are evaluated based on their performance on the validation datasets.
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Figure 18: ROC-like curves comparing the performance of six of the scoring functions on
the validation datasets. The plotted data is the score and RMSD of the best scoring ori-
entation per query, dataset pair of binding sites averaged over the 10 stratified alignment
samples. Graph A shows the alignment selection performance of the scoring functions.
Graph B shows the ability of the scoring functions to discriminate between sites within
the protein folds and those in the normalization database. As one moves along a curve
from the bottom left corner to the upper right, the score threshold becomes more lenient.

Several observations can be made based on the validation results. First, the addition

of the surface term gives a significant increase in the number of better quality alignments

for the validation datasets. Second, the scoring functions with the surface term seem to

at a disadvantage with respect to discriminating between within validation family align-

ments and high scoring normalization dataset hits. However, if the information from

both plots is considered, one can note that about 260 of the SF8 within family hits are well

aligned and about 300 within family hits score better than those from the normalization

dataset. Therefore, one cannot definitively conclude that SF8 is better than, say SF13, at

discriminating between true and false positives as about 40 of the higher scoring within

family alignments (as scored by SF8) are based on pairs of sites with significant align-

ment error. Rather, SF13 might be preferred because after about 250 good alignments, it

is difficult (based on score) to distinguish between good and poor alignments, based on

their alignment error, and that is about the same number of alignments after which it is
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difficult to discriminate between the within family hits and normalization dataset hits.

Thus, SF13 is preferred over SF8 because the scoring is more consistent with the error of

alignment.

Figure 19: Cumulative distributions showing the percentage of best scoring alignments
(one alignment per query, dataset pair of the validation binding sites) with error less
than or equal to a given RMSD threshold. Each pair of binding sites is from one of the
ten validation datasets. Notice that the scoring functions that use the surface informa-
tion consistently ”catch” more orientations at a any chosen RMSD threshold above 0.3 Å
RMSD. The best sampled denotes the upper bound for any scoring function, since that is
the upper bound on the alignment error present in the validation alignments.

When considering the percentage of alignments with less than or equal to a given error

threshold (in RMSD), the scoring functions that use the surface error term show a strong

gain in alignments in the range of [0.3, 1.25] Å and the others in the range [0.5, 1.5] Å

RMSD. Although alignments are gained if an error of > 1.5 Å RMSD is allowed, the rate

of increase is much lower than for thresholds below 1.5 Å RMSD. It is not unreasonable

to expect that the RMSD of the best sampled orientation for each pair of validation sites

be < 1.0 Å RMSD. However, several of the validation sets have more than one protein
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folds with distinct modes of binding the same ligand and it can be difficult to consistently

align and recognize low error alignments for such pairs of binding sites.

Because of the emphasis placed on surface complementarity, we will compare the per-

formance of scoring functions that use the surface error term with those that do not. Scor-

ing functions 8 and 13 were selected to be used in the scoring function testing step because

they both perform well for their respective category and have fewer terms than scoring

functions in the same categories that had similar performance (Occam’s razor). Let us

denote the scoring function 8 as SF8 and the scoring function 13 as SF13.

4.1.4 Scoring Function Unbiased Testing

Here the generalization ability is assessed of a scoring function that using the site point

complementarity only (SF8) and of a scoring function that uses both the hydrogen bond

component of the site point complementarity and the surface complementarity (SF13). In

particular, we seek the effects of adding surface complementarity in the cases of otherwise

unrelated proteins that bind the same small molecule. The results are presented for the

three more challenging test datasets from the previous chapter: adenine binding proteins,

pterin binding proteins, and GST hydrophobic sites.
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Figure 20: ROC-like curves showing SimSite3D performance when using site points (SF8)
and site points and surface (SF13) to assess the similarity of aligned sites. Panel A shows
the ability of the scoring functions to predict if the alignment error is significant for the
best scoring alignments from the test datasets. Panel B shows the scoring functions’ per-
formance with respect to discriminating between the best test family alignments and the
best alignments of query sites to those in the normalization dataset. The norm curves are
the results when the raw scores are normalized using the mean and standard deviation
of the query site’s scores for the 140 sites in the normalization dataset. The dots on the
norm curves denote the point where the score is 1.5 standard deviations better than the
mean score with respect to the normalization dataset. Please note that the data in the two
panels differs as is noted by the axes’ labels.

The results of the two site scores illustrate that score normalization is not necessarily

helpful (Panel A in Figure 20). Note that the alignments for any two pairs of sites are

the same for both the raw and normalized scores from the same scoring function, but

the relative ranking of hits between two or more query sites may change upon normaliz-

ing the scores. Score normalization provides a significant improvement when using SF8

because the number of points and point types varies between query sites. Score normal-

ization is detrimental for the surface scores, when predicting alignment quality (Figure

20). Thus, score normalization is generally helpful if the scoring function terms are not

scaled, but can add noise if the terms have the same possible range for all training and

testing samples.

100



101

Figure 21: SimSite3D score matrices for the pterin binding protein families dataset. Each cell represents the best scoring
alignment for that query, dataset pair of binding sites. The cells are colored with respect to the normalized score for that
pair of sites. If a cell is white, the score is worse than 1.5 standard deviations better than the mean score for that query site
with respect to the normalization dataset. If a cell is dark red, the score was at least 5.5 standard deviations better than the
mean. The number in each cell (except for the last column) is the RMSD (error estimate) of the corresponding site alignment.
The last column shows the number of normalization dataset hits (out of 140) which had a significant score. The left and
right matrices show the best alignments with respect to SF8 and SF13 respectively.



We are interested in the effects of adding surface complementarity on the test datasets.

One can see that the number of between family hits is much reduced when using SF13

versus SF8 on the pterin binding proteins (Table 21). However, when looking closely at

the two matrices, a large number of the interfamily hits for SF8 (panel A of Table 21)

have poor alignments (RMSD of alignment is much greater than 2.0 Å ). The RMSD of

alignment is consistently good for the hits recognized by SF13. Also, when looking at

some of the alignments which SF13 did not recognize as significant hits, one can see that

a large number of the sites are aligned within 2.0 Å RMSD (e.g. the Hi HPPK row and the

cross family blocks between the aromatic amino acid hydroxylases and HPPK structures).

These results indicate that for polar sites, SF13 out performs SF8 in choosing good quality

alignments. However, given the current method to determining score significance, SF13

is unable, in most instances, to recognize when two similar sites from different folds are

well aligned.

Because the GST hydrophobic sites have few polar points, SF8 has difficulty in pre-

dicting the quality of the sites and their degree of similarity. One can see that adding the

surface complementarity to the site score (SF13) makes a clear distinction between the

same binding site that has numerous inhibitors bound and the hydrophobic sites from

other species and isoforms. The hydrophobic binding site of the mouse π-class GST is

very similar to that of the human π-class GST, and this is clearly seen when using SF13

but not SF8 (Figure 22).
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Figure 22: SimSite3D score matrices for the GST hydrophobic site dataset. Each cell represents the best scoring alignment
for that query, dataset pair of binding sites. The cells are colored with respect to the normalized score for that pair of sites.
If a cell is white, the score is worse than 1.5 standard deviations better than the mean score for that query site with respect
to the normalization dataset. If a cell is dark red, the score was at least 5.5 standard deviations better than the mean. The
number in each cell (except for the last column) is the RMSD (error estimate) of the corresponding site alignment. The
last column shows the number of normalization dataset hits (out of 140) which had a significant score. The left and right
matrices show the best alignments with respect to SF8 and SF13 respectively.



4.1.5 Discussion

Given the fact that SF13 tends to choose better site alignments than SF8, it would be

advantageous to use SF13 to choose which orientations to consider. The main problem

is SF13 is unable to recognize most well aligned interfamily hits as significantly similar,

and SF8 considers a number of poorly aligned interfamily sites as similar. Close analysis

of Panel B in Figure 20 shows that, at a score threshold of 1.5 standard deviations better

than the mean, SF8 predicts about 80 more test dataset alignments as significant than does

SF13. Unfortunately, looking at Panel A in Figure 20 one can clearly see that SF8 has about

75 more poor alignments than SF13 at the same score threshold. Given this dilemma, SF13

is taken as the better choice since it is more reliable at selecting lower error alignments for

binding site pairs from distinct folds (for binding sites that are known to be similar).

4.2 Rigid Refinement of Aligned Binding Sites

Given the compromises in designing methods to search for candidate alignments, even

the better candidate alignments for two 3D objects may have significant alignment er-

rors. When such alignments are viewed in computer graphics, the human eye will easily

detect the objects as being misaligned. A commonly applied method to refine global

rigid alignments of 3D objects, in the context of partial matches, is iterative closest point

(ICP) [13]. ICP is an iterative two-step optimization method that seeks to find the optimal

rigid alignment and optimal point correspondences between two objects. ICP is typically

implemented by keeping one object’s pose fixed and adjusting the pose of the other site

by looping over the following two steps:

1. The global orientation is held constant and is used to determine the best point cor-

respondences.

2. The point correspondences are fixed and are used to update the global orientation.
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Since the point correspondences and global orientation parameters can change after each

iteration, the steps are repeated until one or more termination/convergence criteria are

met. Although ICP need not converge to the global minimum, its relative simplicity and

the fact that it works well in practice for coarse initial alignments has helped it to become

widely used in object recognition applications such as refining the alignment of surfaces

(e.g. matching range scans to CAD drawings ).

An ICP method has been implemented in SimSite3D. Based on the features computed

to score site alignment quality and site similarity, there are two sets of corresponding

points: site map points and molecular surface points. Since the number of site point

correspondences is small relative to the number of surface point correspondences, only

the surface point correspondences are used to update the global alignment. The best

rigid transformation is computed using the closed form method for unit quaternions as

presented by BKP Horn [48]. The maximum number of iterations is set to a default of 100,

and if after an iteration, the change in the RMSD of the corresponding points is greater

than -1E-06 the method will terminate. Finally, because each iteration of ICP requires an

update of the corresponding points, ICP is relatively computationally expensive and is

only applied to the best scoring alignment for each pair of binding sites.

4.2.1 Results of Applying Iterative Closest Point

The most advantageous effect of applying ICP to the best scoring alignment per test

dataset site pair is well illustrated by catchment curves (Figure 23). ICP improves the

accuracy of most of the alignments (chosen by SF13) for which the initial RMSD of best

scoring alignment is ≤ 1.25 Å . However, on average, ICP does not reduce the alignment

error for those site pairs that have a larger initial alignment error.
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Figure 23: Catchment curves (cumulative distributions) showing the effect of ICP on the
RMSD of the best scoring alignments (one alignment per query, dataset pair of test dataset
binding sites) for the three test datasets. These curves show the percentage of best scoring
alignments with error less than or equal to any given RMSD threshold in [0.0, 3.0] Å
RMSD. The best sampled curve is the upper bound for any scoring function ( before ICP),
since it gives the percent of site pairs that have at least one candidate alignment with error
less than or equal to a given RMSD threshold.

4.2.2 Comments

Based on the results for the three test datasets, ICP is seen as very useful in that it reduces

the alignment error when the best scoring SF13 alignment is within 1.5 Å of the reference

alignment. In particular, half of the alignments that had an error of 1.5 Å RMSD or less

have their alignment error reduced to less than 0.5 Å RMSD after ICP (Figure 23).

Using SF13 to choose the best alignment per site pair and applying ICP to that align-

ment performs much better than SF8 at choosing alignments of good quality (Figure 23).

ICP may be applied to the chemically labeled point clouds, but, on average, optimizing

those correspondences did not improve site alignment or scoring. Given the improve-
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ment in alignment quality when the starting alignment is close enough and that SF13

is preferred over SF8, the default mode of SimSite3D uses ICP to refine the best scoring

alignment for each site pair.

Based on the results, the convergence funnel of ICP, within the SimSite3D search

paradigm, is quite narrow with a ”radius” of about 1.25 Å RMSD with respect to the

dataset reference alignments. Given the coarse sampling of the surfaces, about one vertex

per Å2, and the local differences in pocket shapes and the global similarities of pockets of

similar sizes, it appears that the energy landscape that is searched by the ICP implemen-

tation for two distinct sites is relatively noisy and has a number of local minima.

4.3 Two-tiered scoring

Computing the surface complementarity for a candidate alignment is relatively compu-

tationally expensive. For this reason, SF13 does not lend itself well as part of a high-

throughput method on one processor core. As a heuristic, we assume that if two sites

are sufficiently similar, ranking the candidate alignments of a pair of sites by their SF8

score will place at least one low error alignment within the top N alignments. The top N

alignments for each site pair can then be scored with SF13 as SF13 is better than SF8 at pre-

dicting the quality of alignment. This scoring method is denoted as two-tiered scoring. It

is our experience that using two-tiered scoring with N = 10 gives much better site align-

ments than using SF8 alone, and the computational cost is much less than determining

the surface point correspondences for every candidate alignment.
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4.3.1 Results

Figure 24: Catchment curves (cumulative distributions) showing the effect of two-tiered
scoring and ICP on the RMSD of the best scoring alignments for the 3 test datasets. These
curves show the percentage of best scoring alignments with error less than or equal to any
given RMSD threshold in [0.0, 3.0] Å RMSD. The best sampled curve is the upper bound
for any scoring function ( before ICP), since it gives the percent of site pairs which have
at least 1 candidate alignment less than or equal to a given RMSD threshold.

It is easy to see that on the three test datasets, two-tiered scoring & ICP on the best site

alignment per site pair is virtually identical to SF13 & ICP for final best alignments within

1.25 Å RMSD. By 2.0 Å RMSD, SF13 does recognize the alignment of about five percent

more pairs of sites to within 2.0 Å RMSD of the reference alignments than does two-

tiered scoring. Also, it is clear that using two-tiered scoring & ICP provides a significant

improvement over using SF8.
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Figure 25: ROC-like curves showing SimSite3D performance when SF8, SF13 & ICP, and
two-tiered scoring & ICP to select and refine the best scoring alignment for each pair of
sites in the test datasets. Panel A shows the ability of the scoring functions to predict
if the alignment error is significant for the best scoring alignments from the test datasets.
Panel B shows the scoring functions’ performance with respect to discriminating between
the best test family alignments and the best alignments of query sites to those in the nor-
malization dataset. The norm curves are the results when the raw scores are normalized
using the mean and standard deviation of the query site’s scores for the 140 sites in the
normalization dataset. The dots on the norm curves denote the point where the score
is 1.5 standard deviations better than the mean score with respect to the normalization
dataset. Please note that the data in the two panels differs as is noted by the axes’ labels.

The ROC-like curves comparing two-tiered scoring to SF8 and SF13 lend support to

the idea that two-tiered scoring & ICP is a good compromise between using SF8 and using

SF13 & ICP (Figure 25). In panel A, one can see that on the test datasets, two-tiered scoring

& ICP does rank as significant more good quality alignments than does SF13 & ICP at the

score threshold of 1.5 standard deviations better than the mean. In addition, two-tiered &

ICP predicts fewer poor alignments as being significant when compared with SF13 & ICP;

which is about half the number of poor alignments that were predicted to be significant

by SF8. In terms of the ability to discriminate between test dataset hits and normalization

dataset hits, the performance of two-tiered & ICP is better than that of SF8. The reason is

the percentage of test dataset two-tiered & ICP hits with poor alignments is much lower

than that of SF8 (Figure25).
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Figure 26: SimSite3D score matrices showing the difference in score significance and alignment quality between SF13 & ICP
and two-tiered & ICP on the adenine test dataset. The left and right matrices are the score matrices for SF13 & ICP and
two-tiered scoring & ICP, respectively.



Since two-tiered scoring & ICP selects the best alignment for each site pair using SF13

as the final sieve, direct comparisons can be made between SF13 and two-tiered scoring

to help explain the presented results. In particular, the set of candidate alignments is the

same for both scoring methods, but in two-tiered scoring, SF13 has at most ten align-

ments to rank. This means that before ICP, the alignment chosen by SF13 score applied to

all alignments, will have a score better than or equal to the score of the alignment chosen

by two-tiered score. Therefore, in the interest of a simple calculation, assume that, on

average, when applied to the test datasets, the two methods will choose the same align-

ments or alignments with very similar raw scores. What we would like to address is how

much of an effect does two-tiered scoring have on the mean and standard deviation of

the scores with respect to the normalization dataset.

Upon viewing the ranges of the means and standard deviations for the 58 query sites

(versus the normalization dataset) using the two scoring methods, it is clear that the mean

scores are significantly better when using SF13 as opposed to two-tiered scoring (Figure

27). The impact of using SF13 over two-tiered scoring on the standard deviations is less

clear. It is reasonable to argue that the reason SF13 does more poorly on the adenines

dataset than two-tiered scoring is using SF13 clearly shifts the mean normalization dataset

score to a better value, and as a result, the score threshold of -1.5 is more stringent. The

fact that SF13 has about half of the normalization dataset hits at -1.5 than SF8 or two-

tiered scoring indicates that there are fewer high scoring outliers from the normalization

dataset using SF8 than SF13.
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Figure 27: The three test datasets have a total of 58 query sites. For each query site, we compute the mean and standard
deviation of the 140 scores versus the normalization dataset. A hexagonal grid is used to plot the frequency of the means
and standard deviations. In short, the center of each hexagon is used as a grid point. The hexagons are colored by the
number of query sites (samples) for which the center of the hex is the nearest grid point (i.e. nearest neighbor). The left
and right plots show an estimate of the distribution of the means and standard deviations of the 58 query sites when scored
with two-tiered scoring & ICP and SF13 & ICP, respectively. It is easy to see that the score averages are shifted higher when
using SF13 alone.



4.3.2 Remarks

We have presented a two-tiered scoring method that captures some of the gains of includ-

ing the surface complementarity to assess site alignment quality and site similarity. The

reason that SF13 appears to outperform two-tiered scoring in terms of discriminating be-

tween test dataset hits and normalization dataset hits is twofold. First, two-tiered scoring

typically chooses the same alignment as SF13 for within protein family hits. Second, on

the normalization dataset, SF13, on average, chooses better scoring alignments than does

two-tiered scoring, and this fact causes the normalization scores above the mean to be

closer to the mean score (27).

Based on its results on the three test datasets and its greatly reduced computational

demand relative to SF13, we recommend using the two-tiered scoring method for high-

throughput screening.

Until this point, we have been assuming that hits from the normalization dataset are

all false positives. However, that is not entirely true. In terms of the adenines, a number

of proteins in the normalization dataset bind adenine, and the dataset contains a CDK2

structure with an inhibitor. Also, the benzimidazole inhibitor site of a poly ADP-ribose

polymerase structure (PARP) (PDB: 1EFY) is very similar in shape to the adenine sites of

the kinases and includes the same main chain motif kinases use to recognize adenine N1

and N6.

4.4 Search for More Optimal Surface Parameters

The results for the molecular surfaces have been presented for a specific set of molecular

surface generation parameters. The probe radius used is 1.4 Å as it is close to the van

der Waals radius for water (1.36 Å ) as specified by Li and Nussinov [68]. The density of

vertices used is the default MSMS value for proteins of 1 vertex per Å2.

We are interested in the effects that modifying the parameters will have on surface
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comparisons. An increase in the probe radius would omit water sites where the radius

of the site is less than the probe radius. Similarly, a decrease in the probe radius is likely

to result in a more nodular surface as smaller cavities than 1.4 Å radius will contribute to

the shape of the surface. In other words, the fractal dimension of the molecular surfaces

is expected to be inversely related to the probe radius. To test if a different value of the

probe radius might yield better results, probe radii of 1.2, 1.4, and 1.6 Å are used.

In order to have an aesthetically pleasing molecular surface, many scientists choose

to use a vertex density of 5 vertices per Å2 of molecular surface. As the previous surface

results were determined using a vertex density of 1 per Å2, important surface features

could be missing (due to the coarse sampling) from the binding site surfaces. Therefore,

the molecular surface vertex density is sampled at the rates of 1, 3, and 5 vertices per Å2.

Finally, nine molecular surfaces were generated for each site in the three test datasets and

in the normalization dataset (one surface for each parameter combination).
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4.4.1 Results

Figure 28: Catchment (cumulative distribution) curves for SimSite3D using two-tiered
scoring & ICP with nine distinct pairs of molecular surface parameters on the three test
datasets. In this plot, the range is focused on the region where the differences are most
apparent. A given point on a curve represents the percent of test sites for which the best
scoring alignment has an RMSD of alignment less than or equal to the corresponding
value on the horizontal axis. The numbers in the legend indicate the probe radius in Å
and the number of vertices per Å2 of surface area.

It is easy to see that using a probe radius of 1.2 Å and at least three vertices per Å2 of

molecular surface area performs significantly better than searches with other surface pa-

rameters over the range of [0.75, 1.5] Å RMSD of site alignment. In particular, the default

values of 1.4 Å probe radius and 1 vertex per Å2 (the red curve) catches a much lower

percentage of alignments at any RMSD value in the range [0.75, 1.5] Å than using a probe

radius of 1.2 Å and three vertices per Å2 (the purple curve).

Sampling three vertices per Å2 does incur a significant computational cost. On aver-

age, the total computational time to compare two sites is about one second per pair of test
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dataset binding sites with a vertex density of one per Å2. When a vertex density of three

per Å2 is used, the average computational time increases to about three seconds per pair

of binding sites in the test datasets.

For the most part, it is difficult to choose one of the nine sets of surface parameters in

terms of site scoring performance. Increasing the number of points sampled (left plot in

Figure 29) does help improve the quality of some alignments, but only at less stringent

score tolerances. Using a larger probe radius and a coarse sampling appears to be benefi-

cial in distinguishing between test dataset hits and normalization dataset hits (right plot

in Figure 29). The initial best scoring alignment for each site pairs tends to depend on

the surface parameters (i.e. the differences in the data are not due to ICP alone). When

considering the three plots, it is not immediately clear which of the nine parameter sets is

the best choice.
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Figure 29: ROC-like curves showing the performance of SimSite3D, using two-tiered scoring & ICP, on the three test datasets
for 9 pairs of molecular surface parameters. (SimSite3D was run 9 times. The best scoring alignments, in many cases, did
differ between the runs.) In the legends, the first parameter is the probe radius in Angstroms, and the second parameter is
the average number of surface vertices per Å2 of surface area. The left plot shows the ability of SimSite3D to discriminate
between good and poor alignments in the test datasets (vertical and horizontal axis, respectively). The right plot shows the
ability of SimSite3D to discriminate between pairs of aligned test dataset sites (vertical axis) and pairs of test dataset query
sites and normalization dataset sites (horizontal axis). Note: the data plotted differs in the two plots as is noted by the axes’
labels.



4.4.2 Discussion

It is clear from Figure 28 that using a probe radius of 1.2 Å and at least three vertices

per Å2 results in better overall alignment accuracy than the other seven sets of surface

parameters. However, the ROC-like curves (Figure 29) seem to indicate that using a small

probe radius (1.2 Å) or finer sampling is counter-productive since using such parameters

causes one to miss a number of test dataset hits over the range where all nine parameter

sets have approximately the same ability to choose low error alignments.

Which parameter set to use depends on one’s goal and the resources at hand. Given

that a probe radius of 1.4 Å and a surface density of one vertex per Å2 is one of the better

performing parameter sets for site pairs with scores better than 1.5 standard deviations

above the mean and using a finer sampling of the surface requires more computational

resources, it is recommended that the original surface parameters be used in SimSite3D.

On the hand, if the three test datasets are sufficiently general, it is likely that given a

better scoring function, the use of a probe radius of 1.2 Å and a surface density of about

3 vertices per Å2 would be beneficial since the alignment accuracy is substantially better

than using larger probe radii or a coarser mesh.

4.5 Improving Alignment Sampling

One potential way to improve the performance of an object recognition method is to in-

crease the sampling accuracy, such that, the error of the candidate alignment with the

smallest alignment error is reduced. To illustrate this, suppose there exists an oracle [99]

that provides a yes/no answer as to whether two objects, when aligned as given, are sim-

ilar. Then, any object recognition method trained using such an oracle would still fail for

those similar objects that were not reasonably well aligned.
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4.5.1 Relaxed Triangle Geometric Constraints

The method to generate candidate alignments was fixed early on in the design process

(Section 3.1.2). It is possible that the additional data and experience gained afterwards

can be used to provide the scoring functions with more alignments with low registration

error. The alignment method is based on three pairs of corresponding points chemical

points. Three points from a site can be considered as the vertices of a triangle. In Section

3.1.2, we noted that the bounds on the triangle features are: perimeter in [9, 13] Å , longest

edge length in [3.5, 4.5] Å , and shortest edge length in [1.8, 3.5] Å .

The number and quality of binding site datasets has increased since those bounds were

determined. One might inquire if loosening the bounds on the triangles would result in

a more accurate method at the cost of considering more alignments. In order to have

some data to guide the loosening of the bounds, we considered all of the possible three

point correspondences for the adenine test dataset (i.e. no bounds on the triangle sizes,

but still required corresponding points to chemically complementary). For each possible

set of correspondences the three geometrical features and the RMSD of alignment was

recorded. For each query site, the triangle features and RMSD of the ten alignments with

the least alignment error were saved.

Box plots were used to view the range of the triangle features for each query site.

Based on the box plots of saved features for the adenines dataset, the bounds on triangle

sizes were loosened to have the perimeter in [9, 16] Å , the longest edge length in [4, 7] Å ,

and the shortest edge length in [1.8, 4] Å . To test the impact of additional candidate align-

ments, SimSite3D was run with the alignments based on the loosened triangle bounds

and the alignments were scored using two-tiered scoring & ICP.
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Figure 30: Catchment curves showing the effects of increasing the allowed triangle sizes
for three point correspondences. Notice the improvement in best sampled alignment, but
no significant improvement in best scoring alignment.

Notice that the error of the best sampled alignment per pair of sites does show a dra-

matic reduction (Figure 30) as more than 80 percent of the pairs of sites have candidate

alignments with error less than 1.5 Å RMSD as opposed to 60 percent when the origi-

nal triangle feature ranges are used. However, there was no appreciable change in the

percentage of best scoring alignments at any significant RMSD value (< 3.0Å). Since the

number of alignments using the relaxed bounds on triangle sizes is about ten times that

of the original bounds, it is recommended that the bounds be kept at their original val-

ues until a scoring function is found that can take advantage of the additional low error

alignments.
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4.5.2 Grid Sampling of Pose Space

Over the course of the project it was observed that many of the candidate alignments

found using the triangle matching method (Section 3.1.2) gave a very large number of

dreadful alignments that had only three pairs of point correspondences. In order to test if

a different sampling method might increase the performance of SimSite3D, a grid based

sampling method was used to almost uniformly sample the pose space of the binding

sites for translation values near the centroids of the binding sites.

One must be careful to sample the space of rotations correctly. The reason is that the

space of rigid rotations is not a Euclidean space, but is the special orthogonal group of

3×3 matrices, SO(3). Therefore, although the space of rotations can be parameterized by

3×3 rotation matrices, quaternions, three Euler angles, an arbitrary axis of rotation and

an angle, etc., it is a challenge to deterministically sample SO(3) in a uniform manner.

The reason is SO(3) is similar to the 4 dimensional unit sphere (S3) since the space of unit

quaternions is exactly S3, and the unit quaternions (and, of course S3) provide a double

covering of SO(3).

Therefore, the problem reduces to finding a deterministic method to uniformly sam-

pling the sphere S3. Although such a method has been sought for more than 60 years [35,

70, 85], at the present, there is no known method that provides a truly uniform and de-

terministic sampling of the spheres Sn for n > 1. However, there is a recent method

(ISOI) [105], based on the Haar measure [73], that is shown to outperform all previous

methods in producing a deterministic, almost uniform sampling of SO(n) [105].

The grid based method has been implemented as follows. The centroid of the query

site is placed at the center of each heavy atom in the dataset ligand. The ISOI compute

program was used to generate the level 2 grid for SO(3) which has∼ 4500 grid points. The

grid based method was tested for one query site because of the large number of generated

candidate alignments and the goal was to illustrate whether a more uniform sampling of

alignments might help with the assessment of site similarity.
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Figure 31: Scoring catchment plots showing the impact of generating candidate align-
ments on a grid and increasing the triangle bounds used in the triangle matching method.
The best scoring alignments were chosen by the two tiered scoring method and were re-
fined using ICP (the best sampled alignments were not refined). The data is the alignment
error of the best scoring (or sampled) alignment for the H. sapiens CDK2 adenine binding
site (PDB: 1B38) versus the dataset sites in the adenine dataset and the adenine sites in
the normalization dataset (48 total sites that each contain an adenine site). A particular
point on a curve gives the percent of site pairs for which the best scoring alignment had
an error less than or equal to the RMSD value (horizontal axis).

It is easy to see that loosening the range of values allowed for features of the corre-

spondence triangles or using a grid based alignment method results in having candidate

alignments with less error than using the original triangle matching method in almost

all cases. Notice that, as expected, the accuracy of the best sampled alignments of the

grid-based sampling method is essentially independent of the site features. Again, as one

might expect from the previous section, an increase in sampling accuracy did not result

in the scoring function recognizing additional sites as similar.
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4.5.3 Comments

The implemented grid based sampling is unbiased, and the error of the best sampled

alignment is approximately the same for all 48 site pairs. On average, the loosening of

the range of triangle features increased the number of candidate alignments by at least

10-fold, and the grid based sampling increases the number of candidate alignments by

at least another factor of 10. Given the increase in computational cost and no apprecia-

ble improvement in the final results for the three test datasets, we do not recommend

changing the sampling method until the site representation and/or scoring methods are

improved.

There are two possible explanations why increasing the number of candidate align-

ments does not provide a decrease, on average, of the alignment error of the best scoring

alignments. A key part of protein-ligand interactions has not been considered in our

work. Correctly modeling the interplay between water molecules and protein-ligand

complexes is required to accurately model and explain protein-ligand binding affinity [29].

Water molecules were not included in the binding site comparisons in this dissertation

as the determination of which water molecules are important for binding is still an ac-

tive area of research, existing methods are computationally expensive, and the false pos-

tive/negative rates are significant. A major challenge is that some water molecules can

be displaced upon ligand binding, and the displacement depends upon which ligand

binds. Additionally, some water molecules can be absolutely critical for ligand recogni-

tion while others are relatively negligible. Because of these considerations, the inclusion

of water molecules in the protein-ligand binding site comparison problem is expected to

add an additional layer of relatively high noise. For these reasons, we chose to focus on

how well binding sites can be compared without considering water to have a method to

compare and contrast to when future methods are built.

A second explanation is the features (scoring function terms) used to assess site sim-

ilarity are akin to global averages over all the relative distances between corresponding
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points of the same type (i.e. surface vertices, chemistry points, etc). Ideally, there would

be a good metric to measure the similarity of two objects based on the relative position

of feature points without resorting to sums such as RMSD or kernels. A possibility is to

compare two sites versus the query by considering the overlap between the two sets of

query points matched. However, computational comparisons of these sets of points has

proved to be unsatisfactory because, at the present, we do not know the relative impor-

tance of interactions between the protein and ligand chemical groups and computational

predictions of relative importance are at best expensive and an area of active research.

Finally, if all of the dataset binding sites have ligands bound, explicitly considering the

dataset protein-ligand interactions and whether the query protein can adopt such confor-

mation might yield better performance than ignoring the ligand information (as is done

in this dissertation).

4.6 Polar Atom Caps

As noted previously, part of the point clouds in a site map is used to represent the posi-

tions and types of atoms that would make hydrogen bonds with the protein. These points

are a very sparse sampling of the SLIDE volume for allowed ligand hydrogen bond ge-

ometry with respect to the protein structure. In this section, we use spherical caps to rep-

resent the SLIDE volumes. Similar to computing the complementarity of the molecular

surfaces, we can use polar caps from one site and a set of sample points on the caps from

the second site to estimate the hydrogen bond similarities of the sites. Since the points in

the point clouds are sparse, it is likely that determining the corresponding points using

the caps will result in less correspondence error for the hydrogen bond points.

There are several advantages to the spherical cap representation:

• The method to find the closest point on a spherical cap can be defined and computed

analytically and is relatively efficient to compute.
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• The representation is analytical and does not depend on the parameter values, the

parameters could be adjusted at match time.

• If desired, distinct parameters could be easily specified for each distinct protein

atom type (e.g. His ND1’s values may differ from those of His NE2 and Arg NZ).

• If the sites in a screening dataset are represented using the analytical representation,

the sampling density for the caps in the query site may be changed at match time

without the need to recompute the representations of the dataset sites.

This spherical cap representation and closest point method has been implemented in Sim-

Site3D.

4.6.1 An Analytical Representation of a Cap

The analytical modeling of a polar spherical cap is as follows. Given a protein polar atom

A, the position x of the atom’s lone pair of electrons or hydrogen atom can be computed

by rules similar to those used to compute the central point of a polar point group in the

point cloud representation. Let
−→
N be a normal vector in the A → x direction. Let S be a

sphere centered at the center of A and having a radius of 3.0 Å . Let P be the plane defined

by the normal
−→
N and a point pn that lines on the ray starting at the center of A and is

parallel to
−→
N (pn is a dependent parameter that depends on the maximum allowed angle

α between
−→
N and a ray from the center of A; e.g. the minimum donor-hydrogen-acceptor

angle for a hydrogen bond). Then, the spherical cap Sc is that portion of S that is above

the plane P.

As with the point cloud representation, some regions of the cap Sc may be invalid as

placing a polar atom in such regions would lead to large overlaps between the placed

atom and one or more atoms in protein. For this reason, the volume of a ball with radius

2.5 Å and centered at each nearby atom’s center is subtracted from the spherical cap (Fig-
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ure 32). The remaining portion(s) of the spherical cap, if any, are taken to be the polar

representation for that lone pair of electrons or polar hydrogen atom.

Figure 32: An example of a spherical cap representation of an allowed hydrogen bonding
volume. On the left we see a sphere cut by a plane with the tube representing the nor-
mal to the plane. This normal would be parallel to the line segment between two atoms
participating in a ”linear” hydrogen bond. On the right is a cap that is partially occluded
by spheres of influence of neighboring atoms. Each green sphere represents the volume
in which one cannot place the center of an atom, from another molecule, as it would
severely overlap with the corresponding protein atom. The small red shape is part of the
plane defining the cap that is not occluded by a neighboring atom. The visible portion of
the cap represents the surface where ligand atoms could sit and form a hydrogen bond
with the corresponding protein atom.

To compute the closest point on a cap to a given sample point, suppose that we are

given a sample point p and an cap Sc which is part of the circle S with center A and radius

r.

1. Compute the unit direction
−→
Ap = (p− A)/‖p− A‖.

2. The closest point p∗ on the cap may be computed by projecting the point onto the

sphere by p∗ = r
−→
Ap + A.
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3. Check if the projected point p∗ is above or below the plane P by computing the

signed distance d′ from p∗ to the plane P.

4. If p∗ is below the plane, it can be projected to the closest point on the cap by first

projecting p∗ to the closest point on the plane p′ = d′N + p∗.

5. Project p′ to the closest point p′′ on the circle in the plane (defined by the intersection

of the plane and the sphere S). This projection is computed by projecting p′ to the

closest point p′′ on S (note that p′′ is restricted to the plane unless p′ = A; the

reason is that the only point at which the sphere s′, centered at p′ 6= A, touching S

at p′′, and contained in S, will come in contact with S is at p′′).

There is a maximum correspondence distance, and if at any step, the closest point distance

is greater than the maximum allowed, the sample point p is denoted as not having a

correspondence on the cap Sc.

Now that we know how to compute the closest point p′′ on the cap with respect to

a given sample point p, p′′ must be moved if it is inside one or more of the neighboring

balls. These moves require some reasoning about circles and spheres in three dimensions.

It is well known, that there are three types of intersection between two spheres: no inter-

section, a point, or a circle [88].

Definition. A circle of intersection or iCircle is that circle representing the inter-

section between two spheres.

In our case, we only consider those neighbors of the spherical cap Sc for which the in-

tersection of the surface of the ball (i.e. sphere) and the sphere S is a circle and at least

two points on the circle are on the spherical cap Sc. If part of the circle of intersection is

not on Sc, we can use the circle of intersection and the plane defining the spherical cap

to define the arc of intersection between Sc and the neighbor. Finally, we check each arc

of intersection to remove the portions of the arc which are inside the ball of any of the

neighboring atoms.
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Figure 33: 2D figure to illustrate computing the iCircle parameters. Suppose we want
the circle of intersection between spheres S0 = S0(C0, r0) and S1 = S1(C1, r1) that we
know intersect, and they do not contain each others centers. Let d0 = ‖C0 − p0‖ , d1 =
‖C1 − p0‖, h = ‖p0 − p1‖, and d = d0 + d1. We are looking for p0 and h.

Suppose we want the circle of intersection I0,1 between spheres S0 = S0(C0, r0) and

S1 = S1(C1, r1) that we know intersect, and they do not contain each others centers. We

know the centers and radii of the spheres and the distance between the two centers, but

we seek the radius h of the intersection circle and its center p0. We can solve for d0 =

‖C0 − p0‖ and h = ‖p0 − p1‖ by using the illustrations in Figure 33 and trigonometric

rules. Using the law of cosines, substitutions, and algebraic operations we can write

d0 =
d2+r2

0−r2
1

2d The center of the circle of intersection is given by moving from C0 to

C1 by a distance of d0; that is C0 +
d0(C1−C0)
‖C1−C0‖

. The radius is found using Pythagoras’

theorem; h =
√

r2
0 − d2

0.
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Figure 34: 2D figures to illustrate iCircle case and arc cases. On the left is a sphere S with
2 intersection spheres Sa and Sb which are the spheres on which two iCircles (Ia and Ib,
respectively) lay. The line P is the plane used to define the cap, and P is itself specified
by the normal N and the point pn. Clearly, if the center of a sphere is above the line by
at least the radius of the sphere, or is below the line by at least the radius of the sphere, it
is impossible for the spheres to intersect the plane. On the right is an example showing
the 2 cases for arcs; those with arc length less than πr radians (top arc), and those with
arc length greater than or equal to πr radians (bottom arc). Here r is the radius of the
corresponding circle and the points represent the center of the corresponding circles. It is
easy to see that, if the arc is closed by the drawing the chord between an arc’s end points
E0 and E1, when the arc length is less than πr radians the closed curve will not contain
the center of the corresponding circle.

We now need to check where the intersection circle I = I(p0, h) lies with respect to

the plane P (with equation
−→
N X + pn = 0) and sphere S used to define the spherical cap

Sc. First, we must determine if none of, part of, or all of I lies on the spherical cap Sc.

To do this, find the signed distance from the center p0 of the intersection circle to the

plane P. If the signed distance is ≤ −h, then the intersection circle I cannot intersect with

the cap Sc and the intersection can be safely ignored. If the signed distance is ≥ h, then

the intersection circle I is fully contained in the cap Sc (i.e. does not intersect with the

plane P). In the case where the signed distance is in the range (−h, h), we handle the

intersection by keeping only the arc AI of the intersection circle I that is above the plane
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P.

To compute the initial arc AI , we first check to ensure that the intersection circle I

does indeed intersect nontrivially with the plane P 2. We do this by checking if the line of

intersection LI between the plane PI that contains the intersection circle the plane P used

to define the spherical cap, passes through the sphere SI = SI(p0, h). If LI does indeed

pass through the sphere SI , the two points of intersection are the end points (E0, E1)

of the initial arc AI . To find the midpoint of the arc, define the unit vector NAI
in the

direction of (E0 + E1)/2 − p0. If the arc AI ’s angle is greater than π radians, the dot

product between NAI
and the normal to the cap plane N is negative, and NAI

must be

multiplied by −1. The midpoint of the arc is found by projecting the center p0 of the

intersection circle I to the circle I in the NAI
direction.

Finally, we must check each arc and remove those portions of the arc that fall inside

any of the neighboring balls. This is implemented by sequentially checking all of the

intersection spheres. For a given intersection sphere Si and arc Ai, we must check if it

intersects the intersection sphere Sj and arc Aj for all j 6= i. If Si and Sj do not intersect,

that pair does not need to be considered. Otherwise, remove all arcs from Si that are

fully contained in Sj. If Si is entirely contained in Sj, then Si and all of the associated

constructs are removed from the cap representation. Compute the line of intersection Li,j

between the corresponding planes of the two intersection circles. If Li,j does not intersect

with Si, this pair does not need to be considered further (as the intersection circles do not

intersect).

2 The signed distance based heuristic fails for intersection circles that almost intersect
the cap’s plane
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Figure 35: Four cases for the intersection of two arcs from the same circle. On the left is
an example arc. The numbered arcs show the 4 cases. Case 1 is recognized by exactly one
of the arcs containing both end points of the other arc; in 1a the black arc contains the ma-
genta arc, and in 1b the magenta arc contains the black arc. For case 1 the intersection of
the arcs is the arc with the shorter arc length. Case 2 is no intersection and it is easy to see
the neither arc contains an end point from the other arc. Case 3 is partial overlap between
the two arcs where both the magenta and black arcs contain exactly one end point of the
other arc; the intersection of the arcs is the arc shared between the two endpoints which
lie on both arcs. Case 4 occurs when both arcs contain both end points of the other arc;
The intersection is two arcs, and they are the shared arcs between the end points from the
two different arcs.

If the intersection circles do indeed intersect, the intersections need to be addressed.

Suppose that Li,j does intersect Si at two distinct points labeled E0 and E1. Then, the

intersection circle Ii is partitioned into two arcs by Li,j. These arcs have as their end

points E0 and E1 and differ in that they have opposing mid points. The arc whose mid

point is inside the sphere Sj is the arc that is removed by Sj, and is called the ”rm” arc.

The other arc is termed the ”keep” arc. Finally, for each arc remaining for the current

intersection circle Ii, keep only the portion(s) of the arc that intersects with the ”keep” arc

(see Figure 35). Continue processing for all i 6= j, and at the end the remaining arcs, on

the spherical cap Sc, are those that are not inside any of the neighbors’ volumes.

4.6.2 Determining the Closest Point on a Cap

Given the machinery from the previous section, it is relatively straightforward to compute

the closest point on a cap for a particular sample point.

1. Project the point to the closest point on the cap.

2. Check all intersection circles to determine if the projected point is inside the circle.
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3. If the projected point is not inside an intersection circle, that point is taken as the

closest point for the sample point.

4. Otherwise, for each intersection circle that contains the projected point, project the

point to each arc in the circle.

5. Take the projected point that is closest to the sample point as the closest point.

4.6.3 Training a Scoring Function

Here the complementarity of two site’s sets of hydrogen bond caps and molecular sur-

faces are used to estimate the quality of their alignment and their similarities. Given a

dataset site with hydrogen bond caps described by the analytical representation and a

query site with the caps sampled at quasi-regular intervals, approximate the best cor-

respondence for each query point as the closest point in the dataset caps with comple-

mentary chemistry and a distance of less than or equal to 1.5 Å . For each pair of corre-

sponding points, consider its contribution as 1.5 minus the distance between them, and

multiply that difference by the dot product of their corresponding directions. As when

computing the complementarity of two hydrogen bond points clouds, form two sums:

one when both points are either acceptors or donors and another sum for the cases where

at least one point can be both a donor or acceptor.

These two sums and the surface complementarity (surface point RMSD) can be con-

sidered as three terms in a linear scoring function used to predict -1 over binding site

RMSD [97]. The training and validation steps are the same as those presented in the pre-

vious chapter with the exception that each feature was scaled to [0.0, 1.0] where 0.0 is

no value and 1.0 is 100 percent of the query site’s maximum value for that feature. The

weights determined for the terms may be found in Table 11.
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Table 11: The weights determined for a linear scoring function to predict -1/(site RMSD)
from the 2 hydrogen bond cap terms and the surface complementarity term. Here ”Con-
stant” is the constant term (intercept), AA & DD sum is the cap sum for pairs of acceptor
and donor points, N* sum is the cap sum for pairs of corresponding polar points where at
least 1 of the points is a doneptor point, and Surf. RMSD is the RMSD of the correspond-
ing molecular surface points. Here we see that when the terms are constrained to be in the
range [0.0, 1.0] then the polar term and surface term have approximately the same weight.

Constant AA & DD sum N* sum Surf. RMSD

-1.57 -1.92 -0.00300 1.93

4.6.4 Results

The scoring function from the previous section (Table 11) was used to select the best align-

ment for each pair of binding sites in the three test datasets. The scores were normalized

as previously using the scores of the query sites versus the 140 diverse structures. The best

scoring alignment per pair of binding sites is refined using ICP on the site surfaces and

site hydrogen bond caps. Based on data that is not presented here, it was determined that

each hydrogen bond point correspondence should count as four site molecular surface

patch correspondences for the purposes of ICP.
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Figure 36: ROC-like curves comparing the scoring function performance of the two-tiered
scoring and scaled terms for hydrogen bond caps and surface complementarity. On the
left, the plotted data is the normalized score and site RMSD of alignment for the best
scoring alignment for each pair of binding sites in the three test datasets. On the right, the
data is the scores of the best scoring alignments for within test dataset pairs of sites and
for test query sites versus the 140 diverse structures. If one considers the performance
of the scoring function using the hydrogen bond caps with that of SF13 (Figure 25), the
performance is very similar.

4.6.5 Discussion

Overall, the addition of hydrogen bond caps and using the surface complementarity of

the binding sites did not significantly alter the results when compared with using hy-

drogen bond points and surface complementarity. One remark is that maximal overlap

of complementary hydrogen bond caps need not be required for proteins from differ-

ent families to bind the same ligand. In addition, the presented results for hydrogen

bond caps does not address the issue of modeling waters in the binding sites as water

molecules were ignored. Thus, an elegant model that seems to be more representative

of binding site features need not work better in practice than more simple models if the

more elegant model does not more accurately model the underlying mechanism.

Although the results on the test datasets do not show a great improvement (between
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SF13 and scaled terms including hydrogen bond caps and surface complementarity), re-

finement of alignments using caps and surface does increase both terms. On the other

hand, ICP on site map points alone rarely improves alignments with respect to score or

RMSD of site alignment, and in many instances makes the alignments worse (with respect

to site score and RMSD of alignment). ICP on two-tiered scoring (and SF13) improves sur-

face complementarity but generally reduces the hydrogen bond point (and caps) comple-

mentarity (Section 4.2). Therefore, at the present, a primary advantage of using hydrogen

bond caps and surface complementarity is that optimizing both sets of correspondences

using ICP usually increases both the surface and chemical complementarity for those

pairs of sites in the test datasets that have candidate alignments with relatively low align-

ment error.

4.7 Remarks

Clearly, the inclusion of binding site surface complementarity is beneficial as it helps to

distinguish between binding sites with similar chemical complementarity based on their

shape similarity. It is also rather obvious that both the hydrogen bond caps and increased

alignment sampling did not yield substantial gains in the recognition of binding sites in

the test datasets. Neither did that functionality improve the discrimination between hits

from test datasets and hits from a diverse set of proteins. Thus, it is likely that bind-

ing site comparisons requires a paradigm shift and/or the inclusion of more accurate or

descriptive features.

It is our opinion that one must be mindful of the magnitude of the errors present

in crystal structures. Ideally computational methods would be somewhat stable with

respect to perturbations of the same magnitude as the measurement and model errors.

Therefore, it is unlikely that very detailed models (e.g. detailed force-field models) will

substantially enhance methods to compare binding sites as the crystallographic uncer-
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tainty should be considered as a lower bound on the sensitivity of the models.
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Chapter 5

ArtSurf: Flexible Refinement of Aligned

Binding Sites

A common issue for object recognition methods is that rigid body alignments are gener-

ally insufficient to recognize flexible objects. As an example, the limbs of the human body

can move large distances relative to the scale of the body. A specific example is that many

of the point correspondences found by rigid matching will be incorrect when comparing

a person touching his toes to a person with her arms raised over her head. If the human

body is modelled as a shell (surface) over a stick figure, the joints and connectivity of the

human body can be exploited as part of the matching algorithm.

One algorithm that uses known joint parameters for human joints is articulated ICP.

By using articulated ICP, the shells for the limbs can be aligned subject to joint con-

straints [81]. The general idea of articulated ICP is:

1. Segment the objects into rigid sections

2. Find the best alignment, via ICP, for one of the rigid sections

3. Loop by selecting one joint from one of the already aligned regions and use ICP

to optimize both the joint parameters (of the selected joint) and the best surface
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correspondences for the surface patch that depends on that joint and is not already

aligned.

In this manner, the rigid sections are aligned iteratively, but the types of joints must be

known or estimated [81]. Articulated ICP might be useful in binding site comparison

cases where the binding site surface can be decomposed into a relatively small number of

distinctive surface patches such as those exhibited by exposed side chains.

Current advanced object recognition methods are generally problem specific since de-

scriptive features usually depend on the posed question. In addition, to reduce the time

needed to recognize an object, many problem specific assumptions and heuristics are

used, and the methods are tuned to address specific questions. As an example, suppose

an articulated ICP method was tuned to perform well for pose prediction or tracking of

limbs. Then, directly applying such an articulated ICP method to flexible, human face

recognition is likely to perform poorly since facial expressions are more nuanced than

limb motions, and facial points tend to have less relative displacement than human hands

or feet. However, such phenomena do not preclude applying the general framework of

articulated ICP to non-rigid face recognition, as certain regions of facial skin can and do

move together. Therefore, the articulated framework presented in this chapter is likely to

apply to other applications, but it is tuned for the comparison of protein binding sites.

In this chapter, the goal is: ”Given aligned binding sites A and B, can A undergo di-

rected shape changes and relative positioning and orientation of chemical hot spots, sub-

ject to protein constraints, to increase the chemical and surface complementarity between

site A and B?” A specific problem case is: given three aligned binding sites A, B, and C,

of which A and B bind the same ligand but C cannot, after the directed local changes,

is it clear that A & B become more similar but A & C and B & C do not?” The problem

statement is worded carefully because:

• If two binding sites are not well aligned, the method will not perform well.
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• The method in this chapter fixes (freezes) residues outside of the binding site in their

crystallographically determined relative positions.

• The protein side chains in the binding site are moved in a directed manner that is

not necessarily the path actually taken by the side chains in solution.

• Flexible comparison of binding sites is a new area of research and ought to be ad-

dressed with methods that are not overly complex as to not obscure general obser-

vations.

Thus, our hypothesis is: ”Optimizing binding site side chain positions and orientations

of site A by maximizing the local shape and chemical complementarity between sites A

and B will allow for a more accurate determination of whether site A can bind the ligand

bound in site B”.

The questions posed for flexible protein surfaces have details that differ from human

face recognition or human pose recognition. As presented in Chapter 4, the surface of a

protein is represented by an envelope surrounding solvent-exposed amino acids. How-

ever, unlike the limbs used in the articulated ICP example [81], many of the amino acids

in a binding site are only partially exposed. As a result, it would be very challenging or

impossible to accurately determine the underlying joints (atom centers) and links (cova-

lent bonds) based solely on the surface patch of a binding site. In addition, our goal is to

match sites that can bind similar small molecules, from otherwise unrelated proteins. As

a result, the atom centers and covalent bonds from pairs of aligned binding sites rarely

have direct correspondences which makes flexible binding site refinement a more difficult

problem than that addressed by articulated ICP [81]. Finally, when comparing binding

sites, the goal is to determine whether sites may present similar shape and chemistry, but

not necessarily to place atom centers and covalent bonds in a similar configuration (due

to the differences of amino acids among sites).
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5.1 Problem Statement for Flexible Binding Site Compar-

isons

At present, the problem of addressing flexibility when comparing binding site surfaces

has not been presented or published by any other research group. In fact, the problem of

modeling flexibility to determine correspondences between binding sites is an untouched

problem of great importance. The problem of the placement and orientation of amino

acid side chains has been studied extensively in homology modeling and protein-ligand

docking [6, 106], but is for one protein structure or binding site. Some flexibility mod-

eling has been done for protein-ligand interfaces, but in general the majority of protein

side chains are kept rigid to reduce the total number of degrees of freedom (so that the

methods do not suffer from combinatorial explosion). The methods published that ad-

dress protein flexibility in protein-ligand docking [2, 25, 39, 54, 90] tend to allow some

flexible side chains, but the flexibility is driven by accommodating ligand binding rather

than optimizing binding site shape and chemical complementarity between two binding

sites. Most of the docking tools with flexible binding sites use discrete samplings of dihe-

dral angles (called rotamer libraries 1) and an optimization method such as integer linear

programming [6], branch and bound, or mean field optimization (self-consistent field the-

ory) [58, 90] to choose the dihedral angles to use in the interface. However, studies have

shown that side-chain orientations in binding sites often adopt non-rotameric states to

accommodate ligands [6, 45, 76, 106] Thus, modeling flexibility in proteins is not new, but

has been tackled in a limited way and has not been addressed for protein-ligand binding

site comparisons.

The general framework used to address the flexibility of binding sites in computa-

1 Rotamers is the name given to the preferred values for dihedral angles of protein side
chains. Typically, for each bond that can rotate, there are two or three peaks in the
angular distribution. The rotamers usually are the mean/median of the region of the
distribution near each peak and may include the values +/- one standard deviation
from the mean/median values

140



tional methods is now presented. The central idea is somewhat similar to that of ”The

Directed Tweak Technique” [49]. However, in this chapter, the idea is to maximize the

surface and chemical complementarity of protein side chains instead of the overlap of

small molecules, and more applicable mathematical techniques are used. The problem is

separated into two components: optimizing the complementarity of the two sites, and

modelling realistic protein motions. The methods used to determine the surface and

chemical point correspondences are those used for site alignment and similarity scor-

ing (Chapters 3, 4). The corresponding surface and chemical points are attracted to each

other, are allowed to move to optimize the correspondences, and are subject to the under-

lying protein constraints. As proteins are comprised of one or more chains of amino acids,

the major degrees of protein freedom are the dihedral angles of the single bonds. Thus,

proteins can be modelled as articulated objects with atom centers considered as joints and

covalent bonds as links/limbs.

A number of simplifying assumptions are used and include:

• The atomic positions in one protein are held fixed while the atoms in the binding

site of the other protein may move relative to each other based on the attraction of

corresponding points.

• Protein atomic centers can be considered as joint centers with the bond coordina-

tion angles held fixed (the angles between two bonds that share an atom are held

constant)

• Protein covalent bonds can be modeled as arms/links

• Covalent bond lengths are held constant (no bond extensions/contractions)

• Only the dihedral angle many change at each joint (that corresponds to a single

bond rotation)

• All main chain angles are held constant
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Although the general method presented in this chapter can accommodate all the degrees

of freedom that are held fixed, the constraints were chosen so that the prototype method

was of reasonable scope and addressed the main protein degrees of freedom in binding

sites.

Figure 37: Molecular surface and atoms of the adenine binding site in the α-momorcharin
structure (PDB: 1AHA). The magenta lines represent the edges of the molecular surface.
The tubes are the bonds between protein atoms. The spheres denote those protein atoms
that form the surface of the adenine binding site. The orange spheres are atoms that
are held fixed relative to each other, and the cyan spheres denote the atoms which may
move relative to their neighbors (subject to the presented constraints– including no bond
stretching, etc.). The fixed atoms are invariant with respect to side chain rotations. If one
assumes the vertical axis lies on the page, from bottom to top, the view on the right the
result of rotating the protein about 90 degrees about the vertical axis from the view on
the left. The key point here is some of the side chains form a large portion of the pocket’s
surface, while others contribute a relatively smaller amount.

5.2 Inverse Kinematics

The modeling approach that seeks to adjust the joints of an articulated object so that an

end effector can reach objective points is called inverse kinematics (IK).
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Definition. An end effector is a point of an articulated object that is to be moved

to a goal (e.g. hand, foot, etc.).
Inverse kinematics is a well studied problem with applications in areas such as robotics

and character animation. In IK settings, the modeled degrees of freedom are joints at

positions in space (i.e. points), the objective points are called goals, and the points on

the model to move to the goals are called end-effectors. Prior to this dissertation, the

IK problem has had some applications in protein science, most notably, the protein loop

closure problem [57].

Solutions to the inverse kinematics (IK) problem may be better understood by first

considering the forward kinematics problem.

Definition. The forwards kinematics problem is given a particular set of joint

angles for an articulated arm, determine the position of the end effector.
It is relatively easy to see that the forward kinematics problem can be solved by applying

the corresponding coordinate transformation, at each joint, starting at the base (root) of

the arm. However, the IK problem is: given a desired position of an end effector, what, if

any, are the joint angles to reach that position? Conceptually, one could start by placing

the end effector at the desired position and perform the inverse of the transformation

used in the forward kinematics method, but the joint angles are unknown. Thus, one

must solve for a set of joint angles, but this is a nonlinear optimization problem.

One method to solve for (estimate) the joint angles in the IK problem is using a first-

order numerical optimization method [8, 102]. The key idea is to use linear approxima-

tions to the forward kinematics problem, since it is easy to compute, and invert the com-

putation. Suppose that the rotational degrees of freedom of the joints are given by the vec-

tor q = (q0, q1, · · · , qm) and the position of the end effector by the vector x = (x0, x1, x2).

Then, the forward kinematics problem is: given a change in joint angles q0 + ∆q, what

is the change in position of the end effectors x0 + ∆x? As stated previously, we can solve

this problem by applying m coordinate transforms. These transforms can be represented

as a function f (q0 + ∆q) = x0∆x.
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However, our goal is to find the joint angles to move protein atoms or robot arms to

the desired location. Thus, we know where we want to move the end effector (x0 + ∆x),

but do not know the change in joint angles q0 + ∆q that will result in such a move. In

general, the problem of finding an inverse to the forward kinematics problem can be over

or under-determined (depending on the system of equations). Now, assume that one can

determine the inverse of f () ( f−1()). By applying f−1() to both sides of the forward

kinematics equation, we get q0 + ∆q = f−1(x0 + ∆x). As mentioned earlier, f−1() is

nonlinear and difficult to compute. A commonly used numerical technique is to com-

pute a linear approximation of f−1() which is basically a first order multidimensional

Taylor series. The idea is to use the Jacobian J = [
∂xi
∂qj

] to form a linear approximation 2,

J∆q ≈ ∆x, to the forward kinematics equation ( f (q) = x) at ∆x = (0, 0, 0). Then, given

small ∆x, the linear approximation will agree well with the true value 3. By using an

iterative process, one can keep the error of the linear approximations small enough, but

still approach the desired solution. An iterative method is generally repeated until it has

converged (∆x is minimized), or a maximum number of iterations has been reached.

2 In mathematical terms, J gives the instantaneous rate of change (i.e. partial derivative)
of each end effector with respect to each joint angle

3 Of course, this statement relies on a well-behaved objective function
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Figure 38: Example of effects of dihedral rotations on one chemical point. The tubes
represent the bonds of a lysine amino acid side chain. The red point is a hydrogen bond
acceptor point that corresponds to the terminal nitrogen atom. The yellow lines are axes
of rotation. The white circles are the valid positions of the point with respect to rotation
about the corresponding axis (with the other axes held fixed). The magenta dashed line
sweeps out a nape of a truncated cone about the axis of rotation. Each red vector lies in
the plane of its corresponding circle and is tangent to that circle at the red point. Panels
A,B,C, and D represent a linear approximation to the rotation of the red point about the
CA-CB, CB-CG, CG-CD, and CD-CE bonds, respectively (i.e. each vector is a graphical
representation of the three corresponding values in the Jacobian J).
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Because we know ∆x and seek ∆q, we multiply both sides by J−1 to get ∆q = J−1∆x.

However, in most cases the Jacobian is not a square matrix and J−1 does not exist. The

solution is to use a pseudo inverse [82] of the Jacobian, denoted as J†, and the equation

becomes ∆q = J†∆x. Since this is a linear approximation to a nonlinear equation, the

system can only be adjusted by a small step in q towards the end point (x) so that the value

of ∆x is sufficiently accurate. The Jacobian must then be computed for the new positions

and joint angles and the system moved another small step towards the end point. Solving

the IK problem using the pseudo inverse of the Jacobian provides a sound mathematical

basis for the problem, and it allows for IK solvers to be improved by applying methods

from numerical analysis to enhance the convergence rate and place reasonable bounds on

the size of the changes in joint angles [8].

Solving the inverse kinematics problem using a linear solver is straightforward to im-

plement, is conceptually clear, has strong mathematical foundations, and it is the method

of choice based on experience with implementations [8, 20]. Use of the inverse Jacobian

allows for larger time steps, tends to have more natural motions (all joints can move a

small amount each iteration rather than adjusting one joint each iteration in which case a

few joints may undergo large changes in angles while the other stay relatively constant),

and suffers from fewer numerical problems [8, 20].

5.3 Optimization

Even the most straightforward IK problem requires one to know which end effectors to

move and to which goals. One solution is to have a user select the end effectors and goals.

However, for large scale processes, user interaction is not feasible. Another solution is to

adjust the joint angles by optimizing the matching of joint-dependent features between

the two objects. The problem is then formulated as an optimization problem that takes

the form of a objective function and one or more constraints. The objective function is
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generally problem and feature dependent and, in the context of IK, depends on the joint

angles. Constraints may be added for preferred distributions of joint angles, feature cor-

respondences, and etc. Such constraints may be incorporated into the objective function,

and our implementation uses this approach. The gradient of the objective function gives

the direction of the greatest increase; depending on whether the goal is to maximize or

minimize the objective, one moves the system in the direction of the gradient or negative

gradient, respectively. Therefore, the problem of determining which moves to make (in

the inverse kinematics setting) can be based on this complementary optimization prob-

lem.

In the general case of comparing binding sites from distinct protein folds, there are

no known rules to establish correspondences or the relative significance of the correspon-

dences. The correspondences in SitesBase are between nearby atomic centers for atoms

(in the binding sites) with the same element [37]. Methods such as SiteEngine [92] and

Cavbase [89], pair up nearby atomic centers for atoms and pseudo atoms that are chem-

ically important and have the same chemical type (hydrogen bond donors, hydrogen

bond acceptors, π centers, and aliphatic points). Still others, including SimSite3D and

SuMo [53], construct correspondences between computed chemical points that are nearby

and share feature labels (e.g. hydrogen-bond acceptor). Based on published results and

the tests in this dissertation, no one method has been shown to be clearly superior to any

other (Chapter 3).

Therefore, given that surface and chemistry are important for site similarity searches

(Chapter 4), the SimSite3D surface and chemical correspondences were selected as the

features to optimize. In the interest of keeping the problem clear, the main goal (objec-

tive) is to minimize the `2 distance between the SimSite3D surface and chemical point

correspondences. Protein stereochemical constraints can be modeled by adding penalty

terms to the objective function. In particular, protein atoms should not have significant

Van der Waals overlap, and one may desire to have the final joint angle configuration
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(i.e. final protein conformation) be energetically favorable. Such an objective function

is one example of an optimization method that can be used to automatically direct the

movement of end effectors to reach given goals.

5.4 Protein Motions

The previous sections covered how to move protein atoms and where to move corre-

sponding points to optimize a given objective function, but do not directly provide a

connection between the two ideas. Therefore, we require an association between the

molecular surface vertices and chemical points and their corresponding protein atoms.

In SimSite3D, each vertex is modeled as being rigidly attached to its closest protein atom

or bond, and each chemical point is assumed to be rigidly attached to its corresponding

protein atom. This association is made so that each query vertex is considered as an end

point in the IK formulation. The free dihedral angles in the amino acid side chains that

contribute to the surface or chemical points form the set of joint angles in the IK formula-

tion.

Using this association and the stated joint constraints, each vertex and chemical point

has 3 columns in the Jacobian J (one for each dimension in R3), and each joint has one de-

gree of freedom and has a corresponding row in J. The gradient of the objective function

gives the direction of the greatest increase. The objective function is reduced by moving

in the direction of the negative gradient. The change in the joint angles is found by matrix

multiplication between J† and the negative gradient. Since the approximations are linear,

the result is only valid in a small neighborhood of the current values of the joint angles

(joint configuration space). Therefore, only small moves are made in the joint configura-

tion space. This process is repeated until the maximum number of iterations is reached

or the method has converged.
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Ex Ey Ez
Joint angle for Lys CA-CB bond (χi,1) TA,x TA,y TA,z
Joint angle for Lys CB-CG bond (χi,2) TB,x TB,y TB,z
Joint angle for Lys CG-CD bond (χi,3) TC,x TC,y TC,z
Joint angle for Lys CD-CE bond (χi,4) TD,x TD,y TD,z

Table 12: Example of the part of a Jacobian block corresponding to an end effector (site
map point) E and a lysine side chain (Figure 38). The columns Ex, Ey, and Ez correspond
to the x, y, and z coordinates of the site point. The rows correspond to the joint angles
(dihedral angles) of the Lys residue with residue number i. The values of row 1,2,3, and
4 are exactly the components of the tangent vector computed for panels A, B, C, and D,
respectively, (Figure 38).

5.5 Computational Method

The presented outline of the method provides a conceptual overview of ArtSurf, but does

not provide the implementation details necessary to reproduce results. The concepts are

presented and implemented in a modular manner so that one concept may be modified

without affecting the other concepts/modules. In this section, the data structures, numer-

ical methods, and implementation details are presented and explained.

The protein side chain atomic positions and associated points (surface vertices and

chemical points) require straightforward and efficient bookkeeping to keep the method

understandable and computationally efficient. For each side chains, except isoleucine,

there is a single chain of zero or more joints with rigid group of one or more heavy atoms

at the end of the chain. Given the PDB naming of side chain atoms and that the joint

chains are linear, it is clear which joint angles affect which side chain atoms. Given this

fact and that the protein main chain is kept rigid, each mobile side chain and its associated

points and atoms form a block in the Jacobian and all entries outside any block are zero.

This means that one needs to store only the blocks, and block multiplication is used to

help reduce the computational time.

The surface vertices and chemical points are assigned to move with their correspond-

ing atom (one could think of this assignment as a rigid pseudobond between each point
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and its corresponding atom).

• Each molecular surface vertex is assigned to the closest atom in the protein.

• If the closest atom is a joint, then the vertex is checked to see whether it lies above or

below the plane defined by the atom’s axis of rotation (the plane normal) and using

the center of the atom as the point on the plane.

• If the vertex is below the plane, it is assumed that a rotation around that particu-

lar axis would not significantly affect the molecular surface of the protein at that

point 4.

• Each chemical point is assigned to the atom from which the chemical point arose.

Based on this assignment, forces on the points can change the joint angles, and conversely,

changes in joint angles will propagate to the points.

The numerical part of the implementation consists of solving the optimization and

the IK problems. What remains, to complete the IK problem as presented, is to compute

the Jacobian J and its pseudo inverse J†. Note that the presented method to solve the

IK problem relies on a linear system of equations (as does least squares regression). The

solution space of a linear system of equations can be problematic as it may contain a num-

ber of singularities or unstable points. Singularities are locations in space characterized

by small changes in the input that produce relatively large changes in the computed so-

lutions [30]. In the IK setting, this occurs when J is almost row rank deficient and exhibits

itself as small changes in positions yield relatively large changes in joint angles [20]. A

common solution is to use dampened least squares (regularization) to avoid singulari-

ties [8, 20]. That is, compute the pseudo inverse as J† = (J Jt + λI)−1 Jt, where I is the

identity matrix of the same size as J Jt, and λ is a small, positive constant. The inverse of

the regularized square matrix (J Jt + λI) is computed via LAPACK [5] using the Cholesky

4 The bond parallel to the axis of rotation is not rotating therefore surface points asso-
ciated with the bond are fixed irrespective of changes in the dihedral angle

150



decomposition method. The blocks of J and the inverse of the square matrix are used to

compute the pseudo inverse J†.

The objective function is to minimize the squared distance between the corresponding

points which may be the surface points and/or the chemical points. Let V be the set

of M vertices of the query surface, and let V′ be the set of closest points on the dataset

surface. Then, the vertices in V are variables and the points in V′ are held constant (for

the current iteration). The gradient of half of the squared difference in positions of the

corresponding points is a vector G = [vi,j − v′i,j] where 0 ≤ i < M and 0 ≤ j < 3.

A similar construct is used for the gradient H of half of the squared difference in the

positions of the corresponding chemical points. One or both of the gradients are used

to compute the change in position (i.e. ∆x). Angular constraints are imposed once the

change in joint angles is computed from J†G and/or J†H.

There are two angular constraints in the implementation: severe overlap of atoms

within the same protein is not allowed and the maximum rotation of any joint is restricted

to 5 degrees per iteration. Overlap of any two protein atoms within the same protein

structure file are limited to five percent of the sum of the atoms’ Van der Waals radii. There

are two types of exceptions: atoms that can participate in a hydrogen bond are allowed to

have a minimum distance of 2.5 Å ; those pairs of atoms that have greater initial overlap,

as given in the original structure, are left undisturbed or have their overlap reduced if

such a reduction helps to minimize the error between corresponding surface or chemical

points. Overlap is handled by fixing all joints that could move any overlapping atoms.

Once the final changes in joint angles, ∆q , are computed, the changes much be ap-

plied to those objects, in the query site, that depend on the joint angles. The objects

include: the hydrogen bond points and caps, the site surface vertices, and the side chain

atoms. The joint angles, for a given side chain, are applied starting with the joint closest

to the α-carbon and moving along the joint chain for each joint (e.g. for Lys the order is

∆χ1, ∆χ2, ∆χ3, ∆χ4).
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In the implemented method, the goal is to minimize the `2 distance between corre-

sponding molecular surface points and complementary hydrogen bond cap points. The

gradient of the goal (objective function) gives the directions (vectors) to move the points

to optimize the correspondences. Including the inverse kinematics representation of the

protein causes the motions of the points to respect the protein’s constraints by requiring

that all moves be accomplished only through the allowed degrees of freedom (i.e. changes

in joint/dihedral angles). Because the method is general, any reasonable objective func-

tion can be used provided that its derivative:

• is reasonably well behaved

• can be evaluate/estimated

• can be related directly or through the chain rule to changes in the joint angles.

Given the presented methods and our implementation of them, some preliminary results

are now given.

5.6 Results

The preliminary results have been encouraging. However better analysis likely requires

several known examples of non-homologous proteins that are known to bind the same

ligand, but for which, the crystal structures differ somewhat due to binding site confor-

mational changes Such a dataset would help to address whether the flexibility method

and implementation is progressing in a helpful direction. To gauge the functionality of

the method we first consider two datasets for which the protein backbone is in approxi-

mately the same conformation, near the binding site, for all proteins within each dataset.

The assumption is that if one has two conformations of a binding site from the same pro-

tein such that the backbone atom positions are very similar then the shape and chemistry

differences are primarily due to relative differences of the poses of the atoms in the side
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chains. To this end, the effects of ArtSurf are tested on: five H. sapiens thrombin exo

sites with different inhibitors bound, and ten Y. pestis HPPK pterin binding sites from a

molecular dynamics trajectory.

Next, the results for a set of molecular dynamics (MD) snapshots with increasing

main-chain binding site RMSD are presented to illustrate the combination of main chain

motion and the refinement of flexible side chains. This set and the previously men-

tioned set of MD snapshots (protein coordinate files) are from MD trajectories provided

by Su and Cukier [96]. These MD simulations show the pterin binding site of Y. pestis 6-

hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) as it undergoes low-energy

conformational changes over time. Applying ArtSurf to selected snapshots will pro-

vide an example of side-chain refinement performance in a realistic case of sites with the

same sequence that have undergone distinct main-chain and side-chain conformational

changes.

5.6.1 H. sapiens thrombin exo sites

The following H. sapiens thrombin exo site binding sites were selected based on their

diversity of inhibitors’ 3D structure (shape):

• ANS-Arg-2EP-KTH, a thiazole containing inhibitor, (PDB: 1A4W)

• aeruginosine298-a (PDB: 1A2C),

• IH2, a non-electrophilic inhibitor with a cyclohexyl moiety at P1 (PDB: 1C4V)

• T87, a dual specific thrombin and factor XA inhibitor (PDB: 1G30)

• T15, an N-acetamidoimidazole with novel groups in P1 (PDB: 3C1K)

Thrombin is a relatively rigid protein that is formed by two distinct peptides. Therefore,

SSM [60] was used to align the structures to 1TMB based on the longer peptide chain.
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The rigidity of thrombin can be seen by the low pairwise RMSD values for the main chain

atoms within 12.0 Å of the exo site (ignoring two small flexible loops) (Figure 39).

Figure 39: A distance matrix of the main-chain, pairwise, RMSD for five H. sapiens
thrombin structures. The RMSD is computed with respect the residues within 12.0 Å
of the exo site ( ignoring the small flexible loops). Notice that the RMSD is generally
less than 0.5 Å . It is easy to see that thrombin is relatively rigid as each RMSD is over
400+ atomic positions and with respect to each structure being aligned to 1TMB (i.e not
necessarily the best pairwise alignments).

SimSite3D with ArtSurf was used to flex each query site so that the surface and chem-

ical complementarity was increased between the query site and each dataset site. The

dataset site for each structure was defined using the union of the volume of the inhibitors

from all structures. The volume of each query site was determined by the corresponding

structure and volume of its bound inhibitor. To separate the effects of ArtSurf from the

sampling issues, the starting alignment for ArtSurf, for each pair of sites, was the align-

ment which minimized the main chain RMSD of the binding site. Since the terms of the

objective function are also terms in the scoring function, it is not surprising that ArtSurf

improves the score for each pair of binding sites (left matrix in Figure 42. The changes

in side chain RMSD and score (Figure 42) are relatively small, such that, the changes in

RMSD are of similar magnitude to crystallographic errors.
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Figure 40: SimSite3D ArtSurf results for five H. sapiens thrombin exo sites with distinct inhibitors bound. Each row cor-
responds to a query site and each column to a dataset site. The matrix on the left shows the improvement in the site score
before and after ArtSurf (the reference score is computed after aligning the sites and applying ICP but before ArtSurf). Note
that a more negative score is more favorable. For the matrix on the right, each cell is the change in the RMSD ( before and
after ArtSurf) of the side chain atoms of those residues that ArtSurf could move. The RMSD is computed between the query
site and the dataset site. The cells are colored green or red if the side chain RMSD decreased or increased, respectively, after
using ArtSurf.



5.6.2 Y. pestis HPPK pterin binding sites

The starting set of molecular dynamics snapshots for the Yp HPPK pterin binding site

contains 2999 snapshots. These snapshots correspond to one protein coordinate file for

each picosecond of the molecular dynamics simulation. The residues near the binding

site were selected using molecular graphics, and the residue numbers (in PDB 2qx0) are:

43-46, 54-56, 96, 98, 122-125. The upper triangular pairwise, main-chain RMSD matrix

(distance matrix) was computed for each pair of snapshots and with respect to the binding

site residues. The snapshots were clustered by a hierarchical method using average link

clustering and the distance matrix. The ten snapshots for this dataset were selected by

considering all clusters in the hierarchy that had exactly ten snapshots and taking the

cluster with the minimum average binding site RMSD (with respect to the main-chain

atoms of thirteen binding site residues).
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Figure 41: A distance matrix of the main-chain, pairwise, binding site RMSD for 10 snap-
shots from an molecular dynamics simulation of Yp HPPK. The sites were aligned pair-
wise using a least squared fit of the N, CA, C, O atoms of the 13 binding site residues. The
RMSD (LSE error) of each fit is recorded in this matrix (the unit is Å ). Notice that the
RMSD is generally less than 0.5 Å .

In this test, the same protein is used for each site, but the relative poses of the side

chain atoms differ between the snapshots. The method of applying ArtSurf was the same

as used to compute the previous set of results. Once again it can be seen that ArtSurf

always decreases the site score (a more negative score is more favorable), and has an

almost negligible effect on the binding site side chain RMSD.
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Figure 42: SimSite3D ArtSurf results for 10 Yp HPPK MD snapshots with low main chain, binding site RMSD. Each row
corresponds to a query site and each column to a dataset site. The matrix on the left shows the improvement in the site score
before and after ArtSurf (the reference score is computed after aligning the sites and applying ICP but before ArtSurf). Note
that a more negative score is more favorable. On the right, each cell is the change in the RMSD ( before and after ArtSurf)
of the side chain atoms of those residues that ArtSurf could move. The RMSD is computed between the query site and
the dataset site. The cells are colored green or red if the side chain RMSD decreased or increased, respectively, after using
ArtSurf.



5.6.3 Y. pestis MD Snapshots with Increasing Main-Chain Differences

The two sets of molecular dynamics snapshots for the Yp HPPK pterin binding site con-

tains 2999 snapshots each [96]. These snapshots correspond to one protein coordinate file

for each picosecond of molecular dynamics simulation. One simulation used a traditional

MD method and the other simulation used a Hamiltonian replica exchange method [96].

The first snapshot of the traditional MD method was taken to be the reference coordi-

nates. A histogram was used to partition the traditional MD snapshots into bins of 0.25 Å

binding site main-chain RMSD, with respect to the reference coordinates, in the range of

[0.0, 2.0] Å . Any traditional MD snapshots with greater than 2.0 Å RMSD were ignored.

The set of Hamiltonian replica exchange snapshots were partitioned into bins of 0.25 Å

binding site main-chain RMSD in the range of [2.0, 4.0] (snapshots with RMSD outside

of that range were ignored). For each bin, the snapshot nearest the leading edge was se-

lected as the representative for that bin. All bins except for the first two had at least one

snapshot giving 14 snapshots plus the reference coordinates for a total of 15 coordinate

files.

SimSite3D with ArtSurf was used to flex each query site so that the surface and chem-

ical complementarity was increased between the query site and each dataset site. The

PDB structure of Yp HPPK (2QX0) was aligned to the reference structure and the pterin

ligand PH2 (from the aligned coordinates of 2QX0) was used to define the binding site

volume for the query sites. The dataset sites were defined using a 6.0 Å radius sphere

centered at the center of the pterin ring system. To separate the effects of ArtSurf from

the sampling issues, the starting alignment for ArtSurf for all sites was the alignment of

the rigid backbone of the protein. The results in terms of the change in score and flexible

sidechain RMSD vary little from the results from the previous two test datasets. One item

of note is that, for this test dataset, ArtSurf does improve scores on the test dataset more

than scores between the test dataset and the 140 diverse structures in the normalization

dataset (Figure 43).
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Figure 43: ROC-like curves for the ability of SimSite3D to discriminate between hits
within the MD HPPK with increasing main chain RMSD test dataset and between that
test dataset and the 140 diverse structures. The point on each curve denotes the location
where the score threshold is 1.5 standard deviations better than the mean score (on the
140 diverse structures). The initial alignment is given by the backbone (core) alignment of
the coordinates. The scoring of the initial alignment is given by the black curve. After ap-
plying ICP to the initial alignments, the results are the dashed blue curve. Application of
ArtSurf yields the solid blue curve. Notice that, on this dataset, the use of ArtSurf allows
for about 40 more hits (out of a maximum of 225) from the test dataset with little increase
in normalization dataset hits.

160



161

Figure 44: SimSite3D ArtSurf results for 15 Yp HPPK MD snapshots with increasing main chain, binding site RMSD with
respect to the first snapshot (1ps-0.0). Each row corresponds to a query site and each column to a dataset site. The matrix
on the left shows the improvement in the site score before and after ArtSurf (the reference score is computed after aligning
the sites and applying ICP but before ArtSurf). Note that a more negative score is more favorable. On the right, each cell is
the change in the RMSD ( before and after ArtSurf) of the side chain atoms of those residues that ArtSurf could move. The
RMSD is computed between the query site and the dataset site. The cells are colored green or red if the side chain RMSD
decreased or increased, respectively, after using ArtSurf.



5.7 Discussion

ArtSurf has been applied to several test datasets. Based on these results the changes

in atomic positioning resulting from applying ArtSurf are quite small as the changes in

flexible side chain RMSD are on the order of the crystallographic error of relative side

chain placement. The small changes are due to at least one of several considerations.

The sites in the test datasets are from the same protein (structure and sequence). The

surface meshes and chemical caps are not recomputed at any iteration, and the goal is to

minimize the correspondence distance between the query surface points and the dataset

surface. Therefore, if, as an example, a phenyl ring is rotated by some significant amount

in one structure relative to another structure, it is unlikely that they will be planar after

ArtSurf converges since the mesh surfaces of the two phenyl rings will be significantly

different. However, we do not as yet know of a better method (than computing side

chain atomic RMSD before and after ArtSurf) to assess the accuracy of ArtSurf. The last

item is the handling of the overlap of binding site should be studied in greater detail.

Currently, if two or more atoms overlap by five percent or more, their corresponding

joints (those joints that affect the atoms’ positions) are held fixed. The reason for this is it

is not trivial to robustly and elegantly handle overlap for the cases where more than two

atoms overlap and multiple joints affect the positions of the overlapping atoms.

Already at this stage, one can see that ArtSurf does help in the discrimination between

within test dataset hits and hits between the test dataset query sites and the 140 diverse

proteins. For this reason alone, investing additional resources in ArtSurf and like methods

is likely to provide great benefits to protein-ligand structural methods. In addition, there

are other protein-ligand structural methods beside binding site comparisons which can

benefit from optimizing an objective function subject to protein dihedral angles.
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5.8 Conclusion

We have shown the ability to implement low-energy motions in binding sites using the

ArtSurf algorithm and implementation that improves the shape and chemical match be-

tween two binding sites via small rotations of dihedral bonds. At the present, the utility

of ArtSurf needs to be further proved on sets of binding sites that are known to bind

similar ligands and for which the given crystal structures are in different conformations.

These datasets are difficult to construct since a prerequisite is to have a method (not nec-

essarily automatic) to select protein structures from different families and in different

conformations that are known to bind the same ligand such that the proteins exhibit sim-

ilar chemical and shape interfaces when such a ligand is bound. Some examples achieve

their similar ligand binding by using water molecules (present in one structure, absent

in the other) to recognize small molecules, and an ideal set of test cases would avoid this

complexity.

Once suitable examples or datasets are assembled, it is likely that ArtSurf can be fur-

ther developed to address the flexible binding site comparison problem. At the present

one of the issues which should be addressed is that the correspondences used to direct

the changes in side-chain dihedral angles might be too local as they are capped at 1.5 Å

. In some instances binding sites have a conserved, long, flexible side chain such as Lys

or Glu. Because the atoms at the end of such side chains can have relative displacements

much greater than 1.5 Å , consideration of other methods (than a strictly distance depen-

dent method) to establish chemical and surface point correspondences is needed. One

possibility to test is the hypothesis that side chains rooted in similar positions of the bind-

ing site correspond to one another. Then, ArtSurf could aim to optimize their match in

surface chemistry. Such heuristics would circumvent the tendency of ArtSurf to match

wrong side chains between two binding sites in the case where the surface points for

complementary side chains are farther than 1.5 Å apart.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

The problem of comparing protein-ligand binding sites, and a computational software

toolkit to address that problem was presented. Throughout the research and implemen-

tation of the method a number of discoveries were made.

It is clear that both chemical and surface complementarity are necessary for binding

sites to bind ligands with similar shape and chemistry (Chapter 4). In many cases, a rigid

refinement, using the surface and chemical point correspondences, of the best scoring

alignment (for two binding sites) results in a more accurate alignment and a better assess-

ment of the degree of similarity of the two sites. However, more detailed representations

of the volume of space where ligand polar atoms would form hydrogen bonds with pro-

tein polar atoms did not result in improved alignment scoring or discrimination between

significant test dataset hits and significant hits from a set of 140 binding sites from diverse

proteins (Chapter 4). On the other hand, using the cap representation of polar volumes

and the molecular surface of the binding sites did see slight improvement in alignment

accuracy for ICP of rigid alignments. Based on these results and our current understand-

ing of protein-ligand interactions there are several areas that should be explored:
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• determining and modelling critical binding site water molecules

• small rotatable groups on ligands (e.g. hydroxyl groups)

• better methods of determining the chemical similarities and differences (when com-

pared with maximizing the overlap of chemical points).

The flexible surface and chemical matching method (ArtSurf) does perform as in-

tended, but the motions are limited due to the current method of determining surface

and chemical correspondences. In fact, ArtSurf rarely makes the score worse for any

alignment of any two binding sites because only those motions that improve the site score

are kept. The reason is that the objective function is based on the two main terms used in

the site alignment and similarity scoring function. An open problem for computational

binding site comparisons is defining which chemical groups in two binding sites should

correspond well for those cases where the two sites do not have significant sequence or

structural similarities. This problem is also challenging for experienced structural biol-

ogists, and hypotheses such as ”side chains with similar alpha carbon locations corre-

spond to each other” will need to be tested. To our knowledge, there is not an existing

break through method that performs significantly better than SimSite3D when comparing

binding sites from otherwise unrelated proteins that bind the same small molecule.

After the ArtSurf algorithm and implementation has matured beyond its current abil-

ity to make small dihedral rotations to improve surface chemistry (or other labeled sur-

face) matching, it is expected to have applications to other flexible matching problems

that have coupled dihedral rotations.

6.2 Future Work

A number of important questions remain in the context of comparing protein-ligand bind-

ing sites. We have seen anecdotal evidence that careful consideration of water molecules
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in binding sites would help to compare sites from otherwise unrelated proteins that bind

the same small molecule. In addition, there are numerous examples of drug design pock-

ets where one or more water molecules are known to be conserved (i.e. function as part

of the protein). Finally, the modeling of water molecules is a known, challenging problem

in computational protein chemistry, and when properly addressed results in models that

are more reflective of experimental observations.

The comparison of binding sites as presented in this dissertation ignores a major

area of existing knowledge, namely the well studied field of protein-ligand interactions.

Throughout most of the research it was assumed that an advantage of binding site com-

parison methods is that they are not restricted to protein structures that have bound lig-

ands. However, it is likely that for two specific questions the protein-ligand interactions

could be used to improve the method.

• Are there any protein structures that have a binding site similar to my query site

and have a complementary ligand bound?

• Are there any protein structures with binding sites similar to my query site and can

they bind the molecule bound in my query site?

A hypothesis is that using both the protein and ligand information will better direct Art-

Surf motions, and result in more accurate answers to the above two questions. In addi-

tion, the area of protein-ligand scoring functions is more established than site comparison

methods, and the knowledge of protein-ligand interactions might be more helpful than

was thought at the start of this research. Therefore, data fusion is expected to produce

more accurate binding site similarity scores for those questions where one has both pro-

tein and ligand data.

The flexible surface matching method can be improved in several key areas. The over-

lap of atoms could be handled in a more graceful and/or careful manner than stopping

all movements of those atoms which have significant overlap. Modelling the flexibility of
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proteins’ backbones may allow for more realistic binding site motions and greater flexibil-

ity for those binding sites which are affected by main chain motions. The bond networks

within proteins should be modeled as being energetically favorable to form and unfa-

vorable to break. The modeling of protein backbone flexibility subject to intra-protein

hydrogen bonds could be performed similar to the methods of ROCK [65].

A major boon for designing binding site comparison methods would be the exis-

tence of at least one substantial dataset of binding sites from otherwise unrelated proteins

that bound similar small molecules and that have binding sites with significantly similar

shape and chemistry even when one ignores water molecules. The emphasis here is on

datasets for which the shape and chemical similarities are much more pronounced than

for the test datasets presented in this dissertation. Of course, more than one such dataset

would be desirable so that the designed methods would have good generalization (i.e.

perform well on protein folds not in the dataset). Based on the datasets presented in this

dissertation, it is not clear how to refine ArtSurf for the general problem of flexible bind-

ing site comparisons. One path forward is to address (one at at time) a number of known

limitations and clearly document the results.

A more specific question that appears to now be solvable is ”find those protein-ligand

binding sites, such that, the given query site can bind the molecules in those sites”. The

reason is the bound ligands provide additional information. A known problem is ligand

fragments that have hydroxyl groups. An hydroxyl group can act as a hydrogen bond

acceptor or donor (or both), and the hydrogen atom and lone pairs of electrons can rotate

on a circle with respect to the position of the oxygen atom. In short, this means that a

hydrogen bond acceptor (donor) atom from two otherwise unrelated proteins that bind

the same ligand that contains a hydroxyl group (e.g. estradiol) can have the acceptor

atoms at opposing locations with respect to current models for comparing protein ligand

binding sites. This issue and others could be addressed by using ArtSurf to optimize

the query site with respect to the dataset ligand in the place of or in conjunction with
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the dataset binding site. In fact, one current unknown is how to optimize the overlay of

the hydrogen bonding groups of two protein structures. In particular, for proteins that

are otherwise unrelated but bind the same small molecule, maximizing the overlap of

hydrogen bonding regions (points, caps, volumes, etc.) does not necessarily optimize the

two structures with respect to the bound ligands. Besides addressing the binding site

comparison problem, the ArtSurf framework can be readily applied to the refinement of

solutions to the protein-ligand docking problem.

A particular advantage of ArtSurf, as implemented, is all of the degrees of freedom can

be adjusted slightly during one timestep, and the motions are coordinated. Thus, several

groups of atoms might be moved to produce a better refinement of a docking that could

not be refined with methods that attempt to move one atom to its current best position

each timestep In theory, the objective function can be as detailed or reductionist as one

might desire. A major drawback of ArtSurf, for high throughput methods, is the cost of

initialization and the need to recompute feature correspondences at each timestep. At the

present, ArtSurf was not necessarily designed for computational efficiency and the run

time for flexible refinement for one alignment of two binding sites (in the test datasets) is

on the order of 1-10 seconds. The computation of one timestep is similar to that of ICP

since the main computational burden is computing the point correspondences at each

timestep. Note that spatial partitioning is used in SimSite3D and reduces the computa-

tional time by approximately 100-fold over a simple method that checks all possible point

correspondences. One possible method to reduce this computational cost further is to use

d2-trees [67] that use an adaptive grid to approximate the squared distance between an

arbitrary point and a given surface.
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Appendix A

Root Mean Square Differences (RMSD)

In many applications it is desirable to compute the average error present in the alignment

of two objects. In protein science one would like to gauge the quality of the superposition

or alignment of structures. The most commonly used metric is the `2 norm of the differ-

ences in the positions of corresponding features from the same or similar objects (in pro-

teins this is typically atomic positions). That is, given m point correspondences, let (xi, yi)

for i ∈ 0, 1, 2, · · ·m − 1 be the point correspondences, then `p =
(

∑m
i=0(xi − yi)

p
)1/p

The `2 norm is used because it is easy to compute and its first derivative is smooth (i.e.

it is in C1). Apparently it is too cumbersome to call this metric ”the `2 error”. Thus, in

some fields this metric is called the Root Mean Square Differences or RMSD. In statistical

learning fields this metric is generally termed Root Mean Square Error or RMSE [42].
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Appendix B

SimSite3D Documentation

SimSite3D has been developed with users in the foreground and includes: the SimSite3D

software toolkit, a short tutorial, examples of site maps and searches, an installation

guide, and a user guide. Our goal is to release SimSite3D as soon as possible under the

GPL-2 software license. Currently SimSite3D is approximately 50,000 lines of C++ and

Python code (all of the code was written since January, 2006). There are a few require-

ments for the C++ code to compile in it current form: a gcc compiler, the math library, the

popt library, a LAPACK library, and the scandir() function. The Python code contains a

number of useful scripts that augment and extend the C++ interface. There are Python

wrappers that allow access to the main C++ modules using Boost.Python.

Several versions of SimSite3D have been installed at Pfizer. SimSite3D is one of the

tools, at Pfizer, which are integrated into pipeline pilot1. In addition, the results of a Sim-

Site3D search can be viewed in molecular graphics both in a Pfizer proprietary molecular

graphics tool and in PyMOL using our prototype PyMOL plugin. Therefore, SimSite3D

has the potential to be used by many of the scientists in the drug research areas at Pfizer.

1 Pipeline pilot is a way for users to connect programs graphically and to pipe output
of one program as the input of another, etc. An example of a similar program, using
graphics, for dynamic systems modeling is Stella
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B.1 SimSite3D tutorial

The SimSite3D tutorial covers the steps that a user would follow to create a query (or one

dataset) site map. These steps assume the user already has protein-ligand structure of

interest. The steps include: converting the ligand from PDB to mol2 format, generating

the site map based on the ligand volume and protein shape and chemistry, and verifying

that the site map was created correctly.

Figure 45: An excerpt from the SimSite3D tutorial document. Note that this documenta-
tion was prepared for Pfizer and the name of SimSite3D within Pfizer is ASCbase.
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B.2 SimSite3D User Guide

The SimSite3D user guide covers all of the options for SimSite3D with respect to creating

site maps and searches.

Figure 46: The beginning of the SimSite3D user guide contains an introduction to Sim-
Site3D. The user guide specifies the purpose and design parameters of SimSite3D.
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Figure 47: An excerpt from the SimSite3D user guide that describes how and why to
convert ligands to a different file format (i.e. mol2) and the conditions for when partial
charges are required for ligand atoms.
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Figure 48: The beginning of the section in the SimSite3D user guide on how to create a
site map (query and dataset sites are created in the same manner).
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Figure 49: The beginning of the section in the SimSite3D user guide on the use of the
search program.
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Figure 50: The section in the SimSite3D user guide which gives the file format for the
search results and describes what is in each field.
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B.3 SimSite3D Install Guide

Figure 51: The section in the SimSite3D install guide describes how to setup one’s Linux
environment to run SimSite3D.

SimSite3D loads a few data files when the C++ programs are used. The Python inter-

face must be in a user’s PYTHONPATH for the Python interpreter to load the SimSite3D

Python modules. These values must be in a user’s environment for SimSite3D to function

correctly.
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Figure 52: The section in the SimSite3D install guide describes how to build the C++
programs in the SimSite3D toolkit.

The C++ programs in SimSite3D are easy to compile and install. The GNU automake

tools are used to configure the parameters to the source code and makefiles based on the

environment and user input.
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Figure 53: An excerpt of the section describing the SimSite3D data file naming conven-
tion. The naming convention is very useful as it allows one to know what is in a file
without having to open/view it.

A file naming convention was agreed upon between our group and our collaborators

at Pfizer. This convention is not strictly required by the main programs, but many of the

Python utilities depend on it to automatically parse file names and retrieve protein and

ligand coordinate files.
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Figure 54: One method to install the PyMOL plugin to load SimSite3D hits from a .out
file into the PyMOL molecular graphics program.

There are a number of hurdles to installing the PyMOL plugin to load SimSite3D hits

into the PyMOL molecular graphics viewer. These hurdles are due primarily to two is-

sues: some of the SimSite3D Python utilities are required, and there are several ways to in-

stall PyMOL. The SimSite3D Python utilities are required because PyMOL does not have

its own methods to load SimSite3D results and site map files. PyMOL can be installed

either using system libraries, or using its own version of Python and dependencies. Be-

cause of these complications, it is difficult to foresee complications which were not seen

on our lab machines.

B.4 Remarks

In this appendix section, we briefly covered the work that went into developing Sim-

Site3D and creating its documentation. This work is important because we expressly

intend to distribute SimSite3D, and documentation is one of the main reason why users
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tend to quickly discard freely available software tools. Since a substantial amount of doc-

umentation already exists, it is much easier to refine it and add pertinent details.
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