OF THE HOWELL ANTICLINE

Thesis for the Degree of M. S.
MICHIGAN STATE UNIVERSITY
RANDY MAX PARIS
1977

3 1293 10065 7851

LIBRARY
Michigan State
University

ABSTRACT

DEVELOPMENTAL HISTORY OF THE HOWELL ANTICLINE

By

Randy Max Paris

The Howell Anticline is the most prominent of Michigan's many northwest-southeast trending anticlines. Located along a major zone of basement weakness the Howell Anticline has responded to the regional tectonic forces which have affected the Michigan Basin. During late Salina time the northeast block of this fault zone subsided as tension and gravity acted as the dominant regional forces. Later as compressional forces began to be felt throughout the region accompanying the Appalachian Orogeny the Howell Fault zone reacted with uplift along the northeastern block resulting in a pattern of en echelon, faulted, asymmetrical anticlines that reflect simple shear wrench fault mechanics. Hydrocarbons accumulation occurred within fractured carbonates in linear trends associated with the fault zone. Projecting this model into the central Michigan Basin area opens up the possibility of deeper production beneath the many northwest trending anticlines which have been the heyday of Michigan oil and gas production.

DEVELOPMENTAL HISTORY

OF THE

HOWELL ANTICLINE

Ву

Randy Max Paris

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Geology

ACKNOWLEDGMENTS

The author wishes to thank Dr. C. E. Prouty, Chairman of the Guidance Committee, for his advice and help during preparation of this study. Thanks is also extended to Dr. J. H. Fisher and Dr. J. Trow for their advice and review of the thesis.

A note of gratitude is extended to those of the oil and gas industry of Michigan who provided information and materials that were used in the preparation of the thesis: the Michigan Geological Survey, Hunt Energy Corporation, and most especially my father and Panhandle Eastern Pipeline Company.

Special gratitude is given to my wife Nancy, whose love and patience made this effort worthwhile.

TABLE OF CONTENTS

																			Page
ACKNOWLE	DGMEN	TS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
LIST OF	FIGUR	ES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iv
INTRODUC	TION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
	Prev Meth					edu	res	•	•	•	•	•	•	•	•	•	•	•	6 11
STRATICR	APHY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	Gene Howe					•	•	•	•	•	•	•	•	•	•	•	•	•	13 15
STRUCTUR	Е.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
	Regi The						e.	•	•	•	•	•	•	•	•	•	•	•	21 23
ISOPACHS		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30
	Regi Howe			a.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	30 32
SUMMARY (OF DE	VELC)PM	ENI	AL I	HIS	TOR	Y.	•	•	•	•	•	•	•	•	•	•	49
OIL AND	GAS P	RODI	CT:	ION	•	•	•	•	•	•	•	•	•	•	•	•	•	•	56
CONCLUSIO	ONS.	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	62
BIBLIOGR	APHY	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	64
APPENDIX																			70

LIST OF FIGURES

Figure		Page
1.	Location of Study Area Within Michigan	2
la.	Location Map	3
2.	Major Structural Trends in the Michigan Basin	5
3.	Aeromagnetic Map of the Southern Peninsula of Michigan .	8
4.	Bouguer Gravity Anomaly Map of the Southern Peninsula of Michigan	9
5.	Michigan Stratigraphic Chart	12
6.	Structure Cross Section Across Howell Field	16
7.	Structure Cross Section Across Fowlerville Field	17
8.	Structure Cross Section Along Strike of the Howell Fault System	18
9.	Regional Tectonic Setting of the Michigan Basin	22
10.	Niagara Structure Map	24
11.	Dundee Structure Map	25
12.	Upper Cincinnatian - Unit 5 - Isopach	34
13.	Salina Group Isopach	36
14.	Restored Stratigraphic Cross Section Across Howell Field, Datum Salina G	37
15.	Dundee to Salina G Isopach	40
16.	Restored Stratigraphic Cross Section Across Howell Field, Datum Bell Shale	41
17.	Bell Shale Isopach	42
18.	Antrim Isopach	45

Figure		Page
19.	Berea - Bedford Isopach	48
20.	Structural Features Resulting From Simple Shear Wrench Fault Mechanics	51
21.	Progression of Axial Plane Rotation During Simple Shear Deformation	53
22.	Possible Migration Path of Hydrocarbons Along Fault Plane	60

INTRODUCTION

Lying nearly along the northwest diagonal of Livingston County in southeastern Michigan, the Howell Anticline is one of Michigan's most prominent linear features (Figs. 1, 1a). It is a part of a system of anticlines beginning with the Northville Anticline in Wayne and Washtenaw Counties which strike northwest through Livingston County, which Newcombe (1933) designated the Howell-Owosso Anticline. Additional drilling will most likely extend this feature through Shiawasse County and into Gratiot County, but current well control limits this extension to a much broader regional type of study rather than a local study such as this. The anticlines along this trend are northwesterly plunging and are roughly sub-parallel structures which Ells (1969) has termed the Washtenaw Anticlinorium.

Covered by a blanket of glacial till ranging between 40 and 350 feet in thickness, the Howell Anticline is not discernable from a surface study. The discovery of the anticline may have been in the 1920's when it was recognized that the Saginaw formation was not continuous across the area (in Kilbourne, 1947). Newcombe (1933) in an extensive study of Michigan geology defined the Howell-Owosso Anticline with a structure map on the Berea Sandstone. He suggested and presented evidence of an en echelon series of faults along the southwest flank of the structure with a total vertical displacement, throw, of as much as 1000 feet on the Berea Sandstone. Keck (1938) did some early

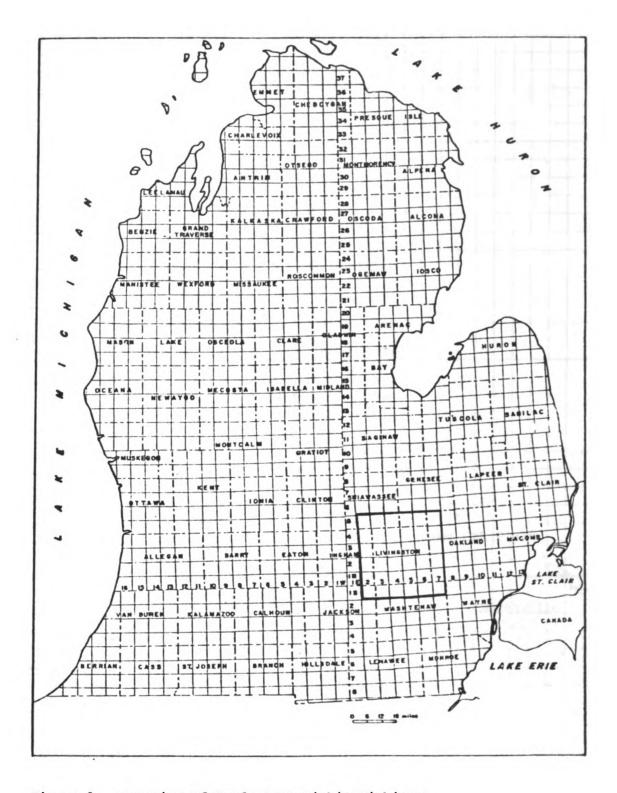


Figure 1. Location of Study Area Within Michigan

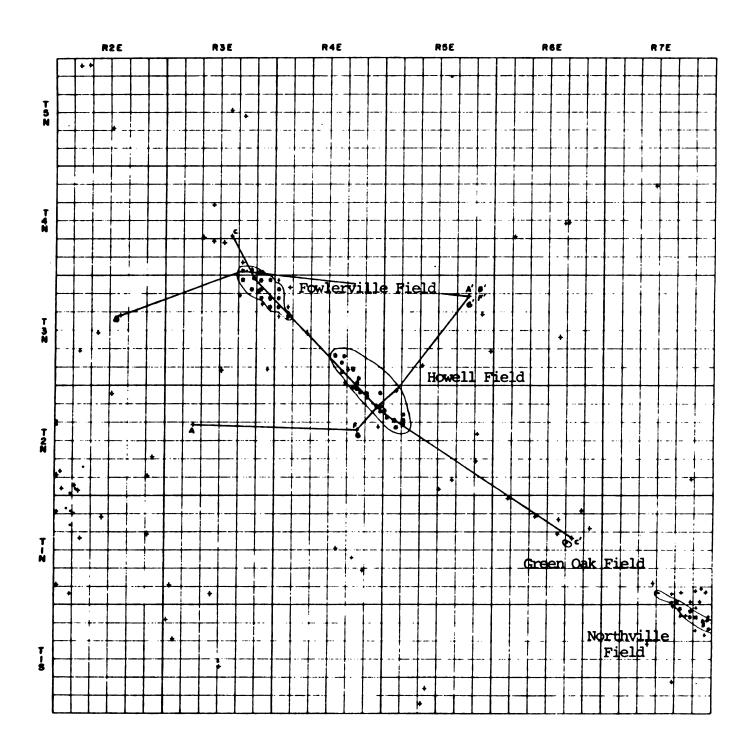


Figure la. Location Map
Location of fields and cross-section lines

qeophysical work in the area by conducting a resistivity survey. His results showed the Saginaw was offlapped along the sides of the structure, with Coldwater shale exposed higher up on the anticline. Kilbourne, (1947), with more well control than was available to Newcombe, drew a structure map on the Dundee formation again showing faulting along the southwest flank. Cohee and Landes (1958) noted that the crest of the Dundee structure did not directly overlie the crest of the Niagara structure of the Howell Anticline. Hinze and Merritt (1969) noted that the Howell feature was on top of a Mid-Michigan gravity and magnetic high. Checkley (1968) conducted a field study of the Northville Field connected the Northville anticline with the Howell Anticline as being a part of the same structure. Ells (1969) used the control provided by the sixty-nine wells of the Howell Storage Field to yield good definition of the structure down to the Niagara formation in the region of Howell. Since Ells' work, there has been additional drilling near Fowlerville in Livingston County. The purpose of this study is to conduct a broader study of the Howell Anticline, extending the structure northward to include the Fowlerville Field and to the southeast to catch the northern terminus of the Northville Field. It is hoped that this study will illustrate the developmental history of the Howell Anticline from the late Ordovician (Cincinnatian) to Recent. It is further the purpose to construct a possible model, based on the Howell Anticline, to explain the many northwest-southeast striking anticlines of the central Michigan Basin area (Fig. 2).

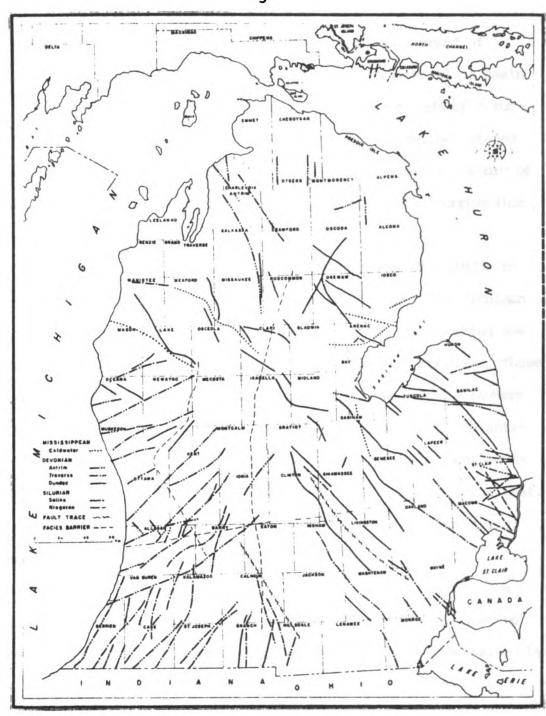


Figure 2. Major Structural Trends in the Michigan Basin (compiled by Prouty, 1971)

Previous Work

The Howell Anticline is the most prominent of this trend of northwest-southeast striking anticlines in the central Michigan Basin area. Pirtle (1932) attributed this fold pattern to trends of structural weakness in the Precambrian basement rocks. He further stated that the folds were due to vertical forces during the early history of the basin with continued deformation following horizontal compression during middle Mississippian time.

Deep seated basement faults were believed by Newcombe (1933) to control the localization of the many en echelon folds of the Michigan Basin. He felt that these structures were the effect of shearing due to movements along deeply buried faults in the basement complex. These faults were along lines of basement weakness developed during Keween-awan time, according to Newcombe. The principal folding of the anticlinal trends occurred during the late Devonian with subsequent movement during later periods accentuating the structures. The force that formed the anticlines is attributed to "growing stresses forcasting the Appalachian Revolution" (Newcombe, 1933).

Kirkham (1937) believed the Michigan Basin was the result of a shifting of large magma bodies from one area of the earth's crust to another. During this movement the Precambrian surface became marked by joint systems, faults, rifts, and shear zones creating zones of weakness along which vertical forces could later act. Step faults along these lines within the Michigan Basin resulted in the subparallel anticlinal trends.

The dominant positive structures are the cores of old Precambrian mountains according to Lockett (1947). The principal movement was

subsidence of the basin. The weight of the sediments from these mountains provided the mechanism of subsidence. During the Paleozoic, three sides remained stable as the area of the Ontario Sag continued to subside resulting in a system of fractures in the basement. Continued sedimentation caused differential subsidence with preference on the basinward side of these lines of weakness. Lockett attributed the mid-basin anticlinal trends to this subsidence.

Kilbourne (1947) concluded that the area of the Howell Anticline was a local low until Coldwater time. At the beginning of Coldwater time normal faulting along old lines of weakness in the basement rocks resulted in uplift of the northeast side of the fault and the coming into existance of the Howell Anticline.

Cohee and Landes (1958) believed that the Michigan Basin underwent its greatest episode of subsidence during the late Silurian, with downwarping during Salina, Bass Islands, and Detroit River times. They further stated that the major structural deformation of the Basin occurred during late Mississippian and pre-Pennsylvania times. This episode of deformation formed the structural traps in Michigan.

Hinze and Merritt (1969) noted that the vertical magnetic intensity map (Fig. 3) and the Bouguer gravity anomaly (Fig. 4) map closely parallels the northwesterly trend of the mid-basin anticlines south of 40°30'N lattitude. Of particular interest is that the Howell Anticline is very closely associated with the Mid-Michigan gravity and magnetic High. They attributed this close allignment of trends of intrabasin structures and geophysical anomalies to lines of weakness in the basement complex that are associated with a rift zone filled with basalts delineated by the Mid-Michigan gravity and magnetic anomalies.

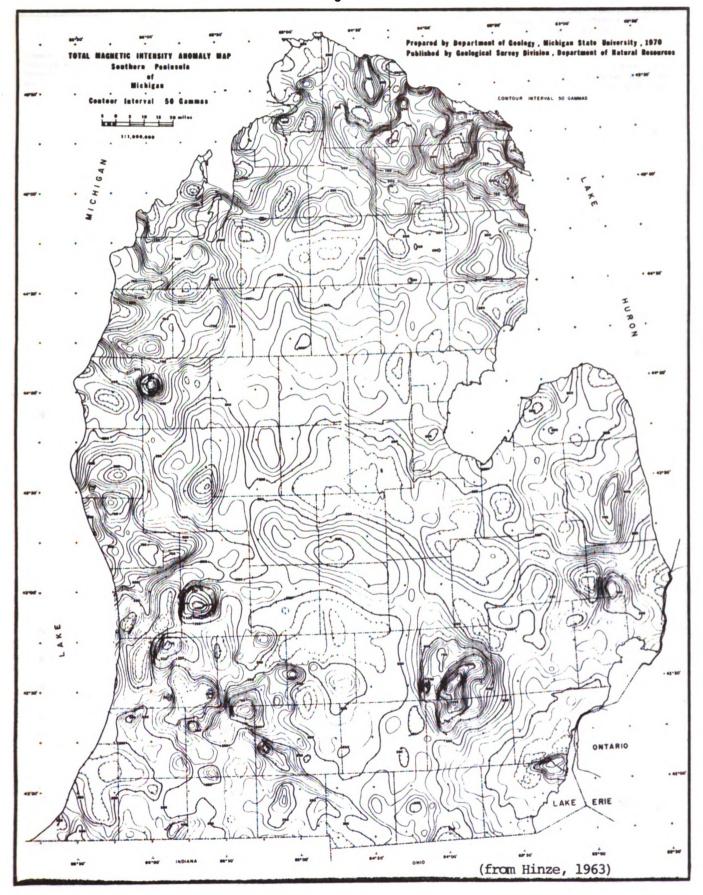


Figure 3. Aeromagnetic Map of the Southern Peninsula of Michigan

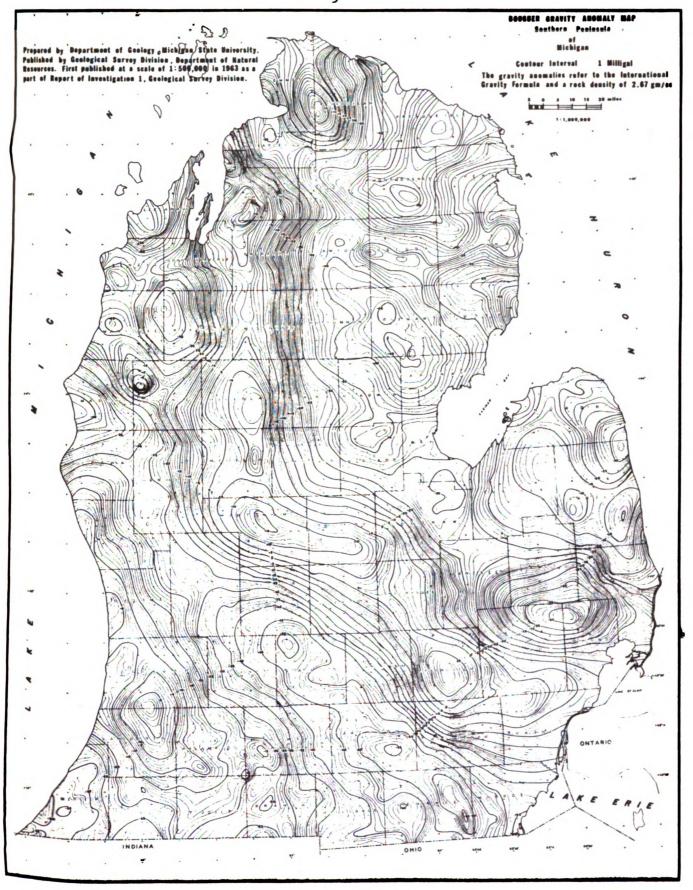


Figure 4. Bouguer Gravity Anomaly Map (from Hinze, 1963)

The structures are then due to rejuvination of these basement features during later episodes of the Basin history. Hinze's gravity and magnetic maps also reflect the slight change from dominately northwest-southeast to north-south in the northern area of Southern Michigan that Newcombe (1933) had noted earlier in the shallower Paleozoic rocks. Hinze and Merritt (1969) attributed the formation of the Michigan Basin to isostatic sinking as the crust readjusted to added mass of basic material in the basement complex. Their work is based on regional gravity and magnetic surveys of the lower penninsula of Michigan. They further associated the Michigan Basin with the Lake Superior Basin, the Michigan gravity and magnetic high being related to the Mid-Continent Gravity High along which the Lake Superior Graben formed.

Ells (1969) in a study of the Howell Anticline discounted the presence of a fault along the west side of the structure. Ells described the Howell Structure as a "series of linear, somewhat off-set anticlines". He attributed folding of the structure to minor faulting of deeper horizons, beneath the Trenton-Black River, along the west flank with possible accentuation of the structure on the Dundee formation by solution and removal of the thick Salina salts from the flank of the structure. Ells then described the Washtenaw Anticlinorium, of which the Howell Anticline is a part, as a structure controlled by master fault blocks in the basement rocks. Most of the movement occurred during late Mississippian (Meramecian) time though minor movement could have begun as early as late Ordovician. He further noted the similarity between the central basin Dundee structures and the Howell Anticline as being along the same dominant structural trend

and probably controlled by basement rocks.

Fisher (1969) associated the Howell Anticline with faulting.

According to Fisher the major period of basin subsidence occurred during Salina time. The major episode of folding in the central basin area is late Mississippian.

Methods and Procedures

Three structural cross-sections were constructed from gamma-ray neutron logs. There are two dip cross-sections and one strike cross-section. The cross-sections serve the dual purpose of introducing the log characteristics upon which the formation tops were picked and to present a quick visual picture of the Howell Anticline. Two restored stratigraphic cross-sections were also constructed, again to present a quick visual presentation of the paleo-structure at the time the uppermost units were deposited.

The interpretive study incorporated formation tops based on mechanical log picks. Where these mechanical logs were unavailable, State printed sample logs were used for tops. Formation tops used were Trenton, Utica, Cicinnatian, Rochester, Brown Niagara, Salina G, Dundee, Bell, Traverse Formation, Antrim, Berea, Sunbury, and Coldwater, as named on the Michigan Stratigraphic Chart (Fig. 5). The tops were based on lithologic characteristics of the gamma-ray and resistivity curves on the mechanical logs. Well cuttings were examined in several selected wells to check for concurrance of my sample interpretations and the interpretations of the State geologists. Two structure maps and six isopach maps were constructed from these data.

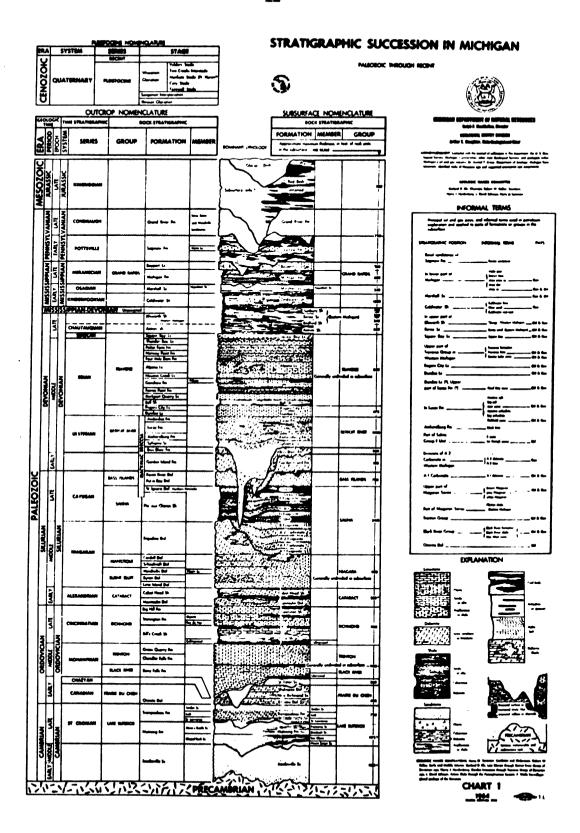


Figure 5. Michigan Stratigraphic Chart

STRATIGRAPHY

General Section

Group and formation names used in this study are based on the stratigraphic chart (Fig. 5). Formation contacts were based on work done by the Michigan Basin Geological Society (Fisher, et al, 1969). These publications were used to maintain consistancy with generally accepted nomenclature and formational boundaries. Previous work done by others as regional studies on the various units were also incorporated to observe changes in lithology, whether it would be a regional gradation or a local lithologic change in the proximity of the Howell Anticline.

Newhart (1976) described the Trenton as a brown fossiliferous limestone which grades into a dolomite in Western Michigan. The Trenton, in many places, is capped by a thin dolomite. In the eastern part of the Michigan Basin the Trenton limestone is dolomitized along linear trends associated with faults.

Nurmi (1972) described the Utica and the upper Cincinnatian shale unit, his Unit 5. Nurmi's Unit 6, the upper most Cincinnatian is absent in southeastern Michigan. The Utica is a dark colored shale, generally darkest near the base grading lighter towards the tip of the unit. Unit 5 consists of interbedded carbonates, which are argillaceous limestones near the central Basin area grading to dolomites near the Basin margins; and greenish grey shales near the center of the Basin

which grade to green and red shales near the Basin margins.

Potter (1975) described the Clinton Group. The lower part is the Clinton restricted, a tan to gray dolomite which becomes split to the southwest by a thin grey dolomitic shale streak. The Clinton is overlain by the Rochester Shale, a thin grey dolomitic shale. In southern Michigan the Rochester is a good marker bed at the base of the Niagara.

Mesollela, et al, (1974) have described the Niagara and Salina
Units. The Niagara is a light colored dolomite at the base. Throughout
the Basin it is overlain by a thin brown dolomite often referred to as
the Brown Niagaran. The Salina A-1 Evaporite is a salt near the center
of the Basin which grades into an anhydrite near the Basin margins. The
A-1 Carbonate is a dark brown, very carbonaceous, highly laminated
carbonate. The algal laminations of this carbonate have led to it being
termed a "poker-chip shale". The A-2 Evaporite is also an anhydrite
near the Basin margins and a salt at the Basin center. The salt also
grades upward to an anhydrite, which in turn grades into the overlying
A-2 Carbonate. The A-2 Carbonate is a brown to grey carbonate which,
in places is highly laminated by algal mounds. The C and G units are
described by Fisher, et al, (1969). The C-shale is a green-grey shale,
somewhat calcareous. The G-Unit is a thin, dark grey, generally
anhydritic, dolomitic shale.

The Lucas, upper Detroit River, is an interbedded evaporite and dolomite sequence (Majedi, 1969), the dolomites being brown to tan and the evaporites being salt confined to the central Basin grading to anhydrites near the Basin Margins.

According to Bloomer (1969) the Dundee is a buff to brown to grey finely crystalline limestone, the central Basin, western, and

	; ; (

southwestern areas are a dolomite. He notes a breccia zone in the upper part of the Dundee. The Dundee is overlain by the dark grey to black calcareous Bell shale. The Bell is less argillaceous and more calcareous at the base.

Asseez (1967) described the lower Mississippian section. The Antrim is a black, pyritic, radioactive shale, though Asseez does note some color variations within the Antrim. The Bedford is a bluegrey shale, with sand and silt stringers. The Berea is an interbedded sandstone, shale sequence; both are grey in color. Overlying this is the black carbonaceous Sunbury Shale.

Howell Section

General descriptions of only those portions of the stratigraphic column covered by this study are given below. The rationale for differentiating the units is given along with the descriptions. Refer to the structure cross-sections (Figs. 6, 7, or 8) for log characteristics of the various units. The Brazos-Kizer well in section 14 T2N R4E was used as the standard section.

Descriptions are as follows:

- Trenton: limestone, brown; finely crystalline to dense, grades to thin brown dolomite near top; sharp break away from shale marker on logs
- Utica: grey-greenish grey, limey shale, occasionally becoming shaley limestone; top of Utica is fairly difficult to pick, as it grades into a calcareous shale above; the pick is made on this change to a more calcareous shale as the gamma-ray and neutron curve begin to move out from the shale line
- Upper Cincinnatian: red and green silty shale; the upper Cincinnatian was picked as the first shale below the Manitoulin Dolomite; it is not a clean shale, getting many limestone stringers mixed in with it; this unit was relatively lighter colored ranging from red to green soft, silty shale; around

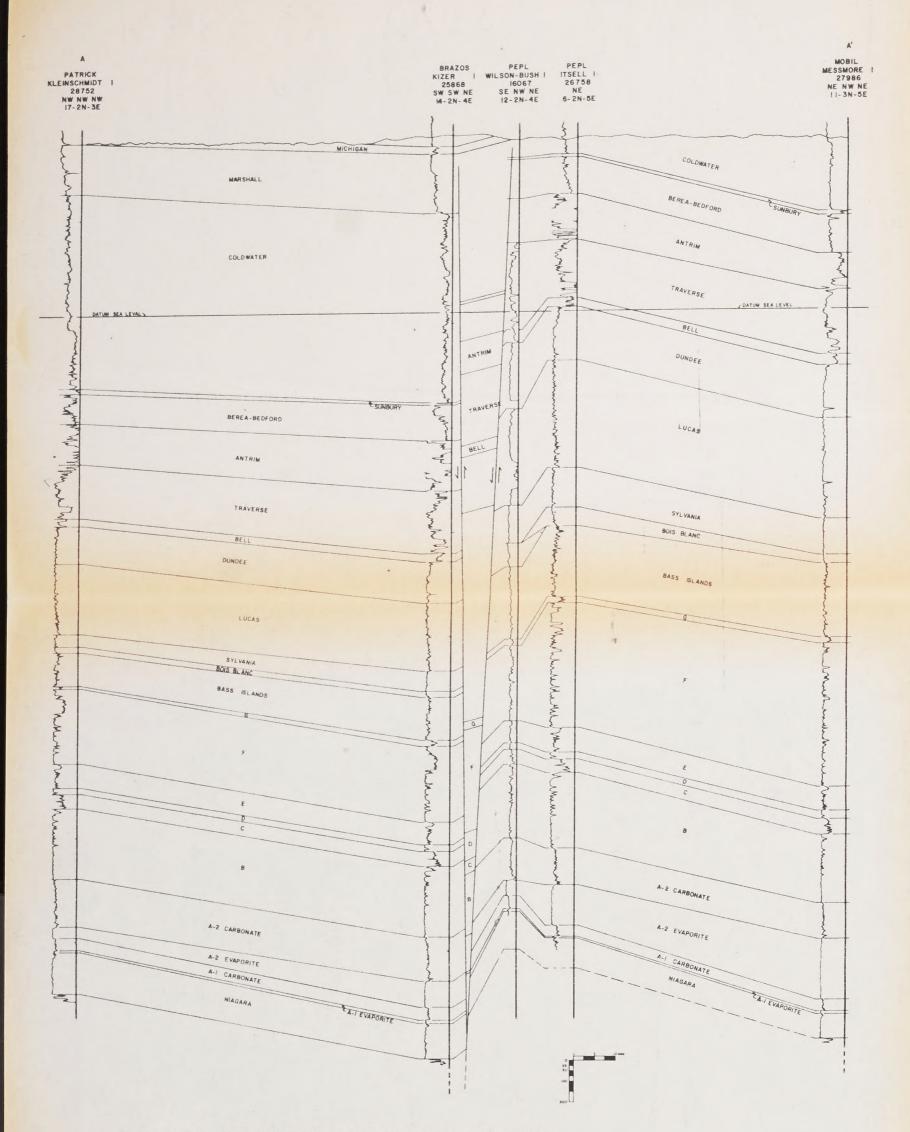


Figure 6. Structure Cross Section Across Howell Field

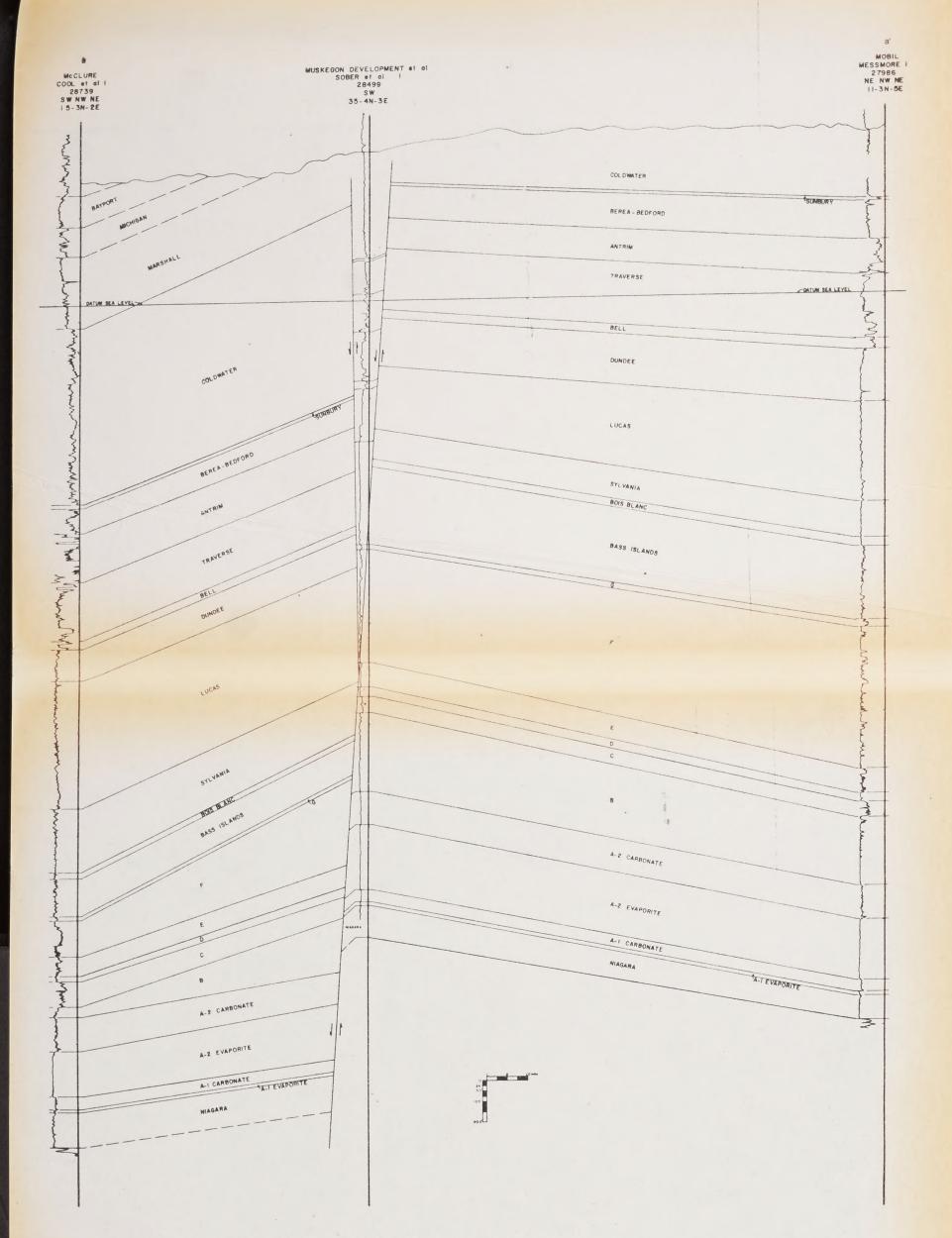


Figure 7. Structure Cross Section Across Fowlerville Field

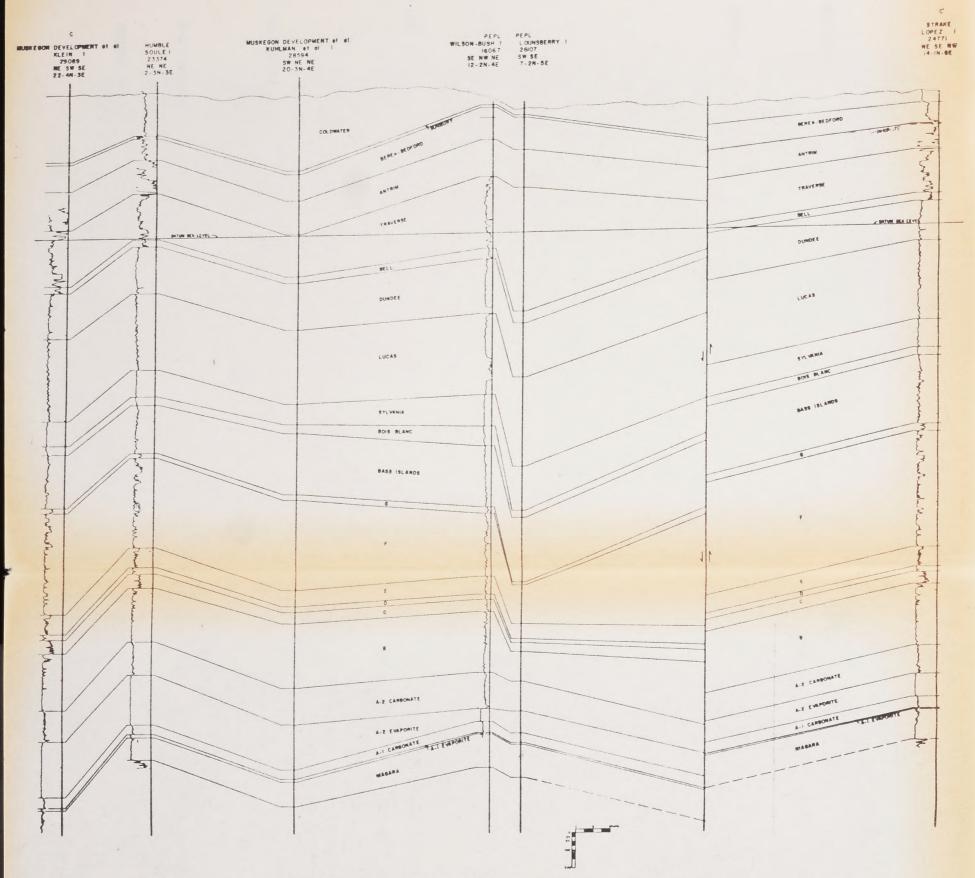


Figure 8. Structure Cross Section Along Strike of the Howell Fault System

Livingston County the base of this unit was picked as the return to the underlying carbonate; log picks are based on the increased gamma-ray response lying between the low gamma-ray curve of carbonates

- Rochester: this unit was used primarily as the base of the Niagara; it is a very thin green to grey shale; it has a good shale break on the log both from the underlying Clinton Dolomite and the overlying Niagara; marked by an increased gamma-ray response
- Niagara: white, light grey to blue-grey dolomite; finely crystalline with infrequent streaks of pink dolomite; in some
 wells it is very slightly shaley; it grades upward into
 the Brown Niagara (Guelph) which is brown and finely
 crystalline (the Brown Niagara is the reef facies of the
 Niagara); off the Howell structure it is generally dense
 and tight, over the structure the porosity is intercrystalline (a fresh break will absorb water almost like a
 sandstone) to vuggy-some being fairly large (1/2"), but more
 commonly pinhole porosity; the Niagara has good log
 definition being in contact with the overlying anhydrite;
 in the area of Ingham County this definition is lost where
 the A-l Anhydrite is absent due to pinacle reef build up;
 in this situation the A-l Carbonate and upper Brown Niagara
 were grouped together as undifferentiated Carbonate
- A-l Anhydrite: anhydrite, white to grey; absent over reef buildups, also pinches out southward as it does not cover the massive reef in Washtenaw County; sharp peak of low response on curves
- A-1 Carbonate: brown dolomite, very carbonaceous; algal laminations give the unit a "poker-chip" characteristic which has led it to be described as "shaley"; porosity is again limited to the region of the fault zone and it also is characteristic as the sample appears finely crystalline when dry but disintegrates to a very sandy texture when acid is applied; log definition is a sharp increase in curve response from the overlying evaporite
- A-2 Evaporite: good clean salt at base with many thin dolomite stringers; grades upward into an anhydrite; the whole unit becomes anhydrite as it thins southward, lapping onto the massive reef; log character is very distinguishable as a drop on neutron curves
- A-2 Carbonate: brown, carbonaceous, finely crystalline dolomite; care must be taken to avoid a limestone stringer in the overlying B-unit, otherwise log definition is good
- Salina "C-Unit": grey, dolomitic shale; good shale break on log curves, thin limestone streak near the center of the unit

- Salina "G-Unit": thin grey to dark grey shale to shaley dolomite unit; in samples it is picked as the change from brown shale or dolomite in the overlying Bass Islands to grey in the Salina G; on the gamma-ray log it is more easily distinguished as a good shale break on the gamma-ray curve from the overlying Bass Island
- Detroit River: picked as the first upward occurance of anhydrite in a light brown limestone; very easy pick of FDC logs as the curve kicks out demarking a very dense unit; neutron peaks follow a similar pattern as do resistivity peaks
- Dundee: light brown to brown limestone, crystalline; the log characteristic is almost as good as the Utica-Trenton contact being a very sharp break away from the shale marker of the overlying Bell shale; low uniform gamma-ray curve, with associated high neutron readings
- Bell: grey calcareous shale, develops a very limey streak in it which thickens westward toward Ingham County; toward the east the contact with the overlying Traverse is sharp on the log upon return to a carbonate; as the calcareous streak thickens care must be taken to maintain a consistant pick
- Traverse: the Traverse Group is an alternating grey to brown limestone and grey to brown shale unit with much gradation between the two extremes; quite fossiliferous; the last strong radioactive kick of the overlying Antrim is used as the top of the Traverse on the logs
- Antrim: black shale, pyritic; very high gamma-ray response on logs
- Bedford: grey shale, somewhat silty; much lower gamma-ray response than Antrim
- Berea: grey sandstone, contains shale stringers; contact with overlying Sunbury is very sharp on the logs
- Sunbury: thin dark brown-black shale; very high radioactive peak on the gamma-ray log

STRUCTURE

Regional Framework

The Michigan Basin is a gravity sag basin of the Central Interior region on the North American Continent (Fig. 9). To the northwest, north, and northeast the Michigan Basin is bounded by the North American Shield consisting of an exposed Precambrian igneous and metamorphic complex. A ring of arches, the Algonquin Arch to the east, the Findlay and Kankakee limbs of the Cincinnati Arch to the southeast and southwest respectively, and the Wisconsin Arch to the west, complete the relatively low relief border of the Basin. The Chatham Sag and Logansport Sag provided inlets to the Basin during different epochs of the Basin's history.

Within the Michigan Basin there is a strong trend of northwestsoutheast trending anticlines (Fig. 2). The most prominant of these
is the Howell Anticline. The Northville Anticline is part of the same
system as the Howell Anticline. Ells (1969) has termed this system the
Washtenaw Anticlinorium. The Lucas-Monroe Anticline, a large faulted
structure, terminates in Livingston County, strikes northwesterly
through Washtenaw County, turns, and strikes south through Monroe County
to join the Bowling Green fault system of Ohio. The Albion-Scipio Oil
Field is a third northwesterly striking fault system in southern
Michigan (Ells 1962, Merritt 1968).

The Howell Anticline has been mapped in several regional studies. Syrjamaki (1977) showed shear faults along the Howell Anticline and a

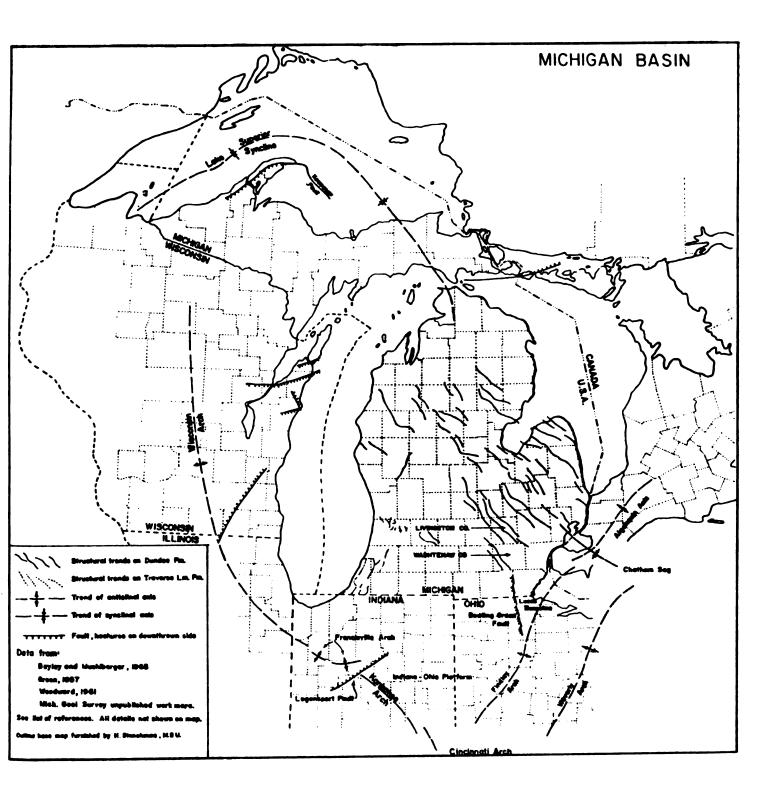
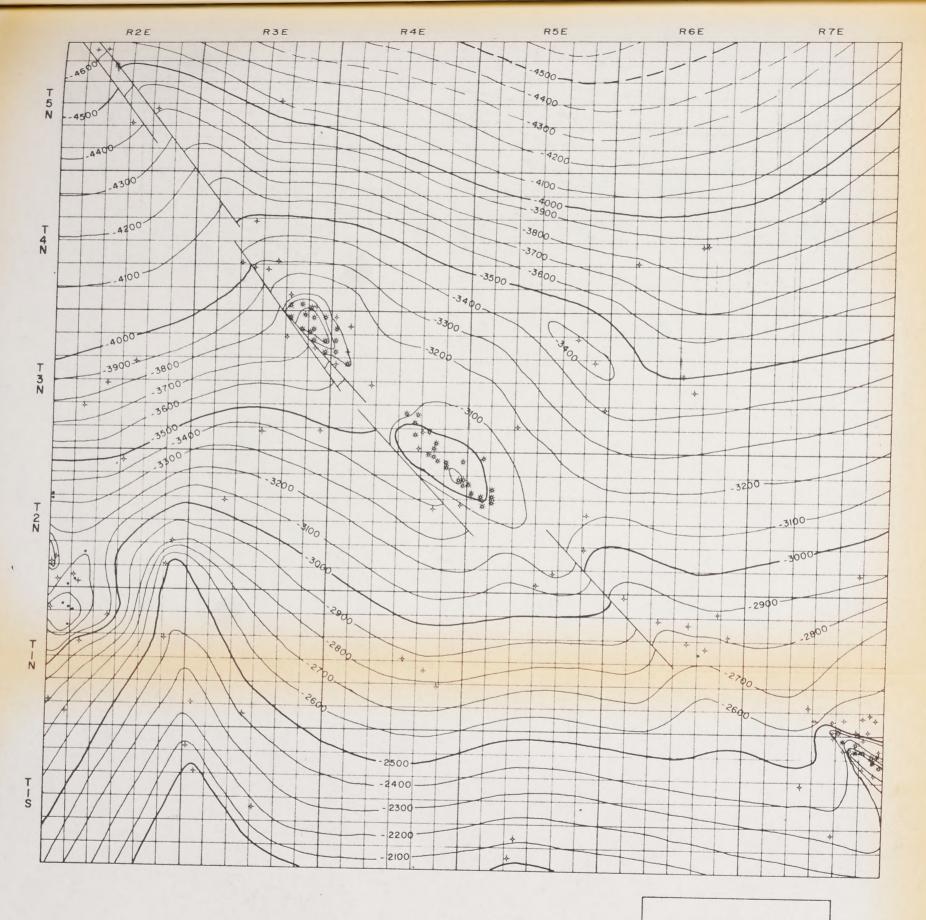
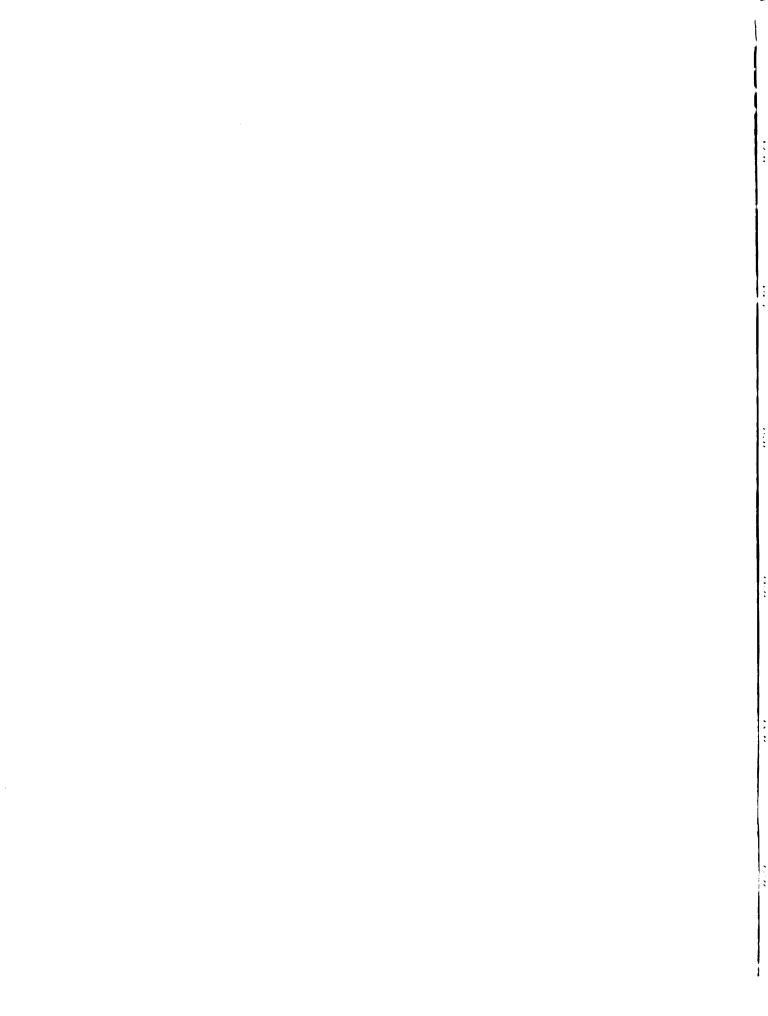
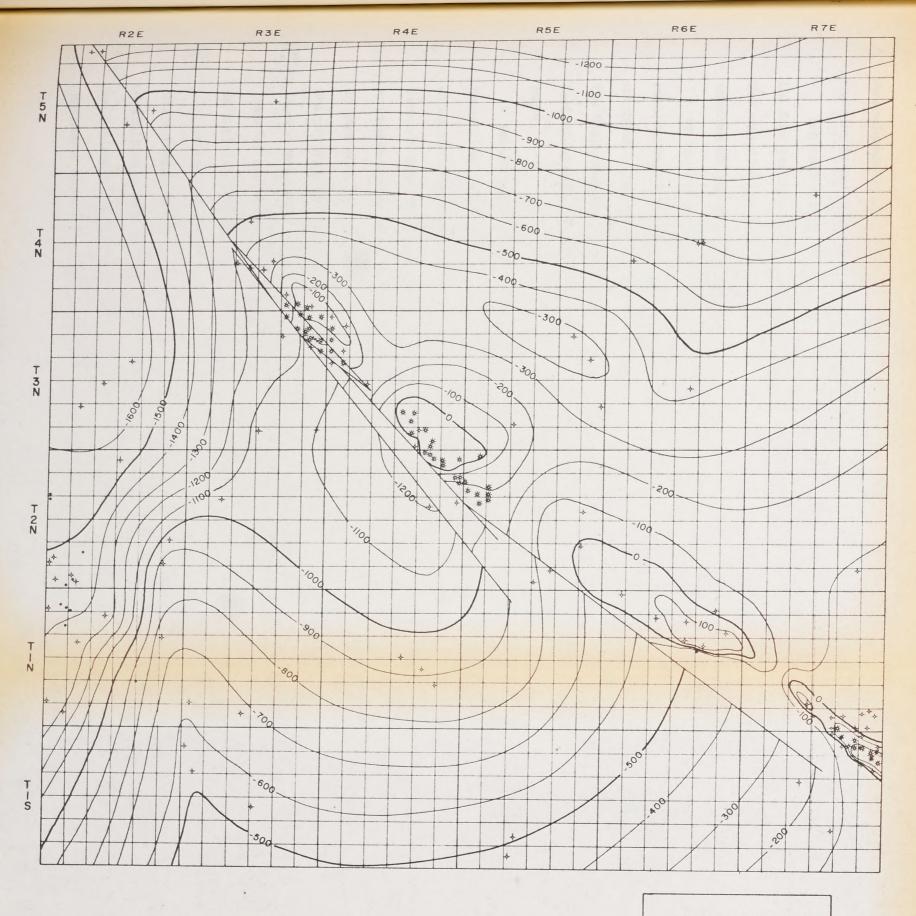



Figure 9. Regional Tectonic Setting of the Michigan Basin (from Ells, 1969)


subparallel structure to the southwest in his Prairie Du Chein study. Seyler (1975) on his regional Trenton structure depicted the Howell Anticline as faulted along the southwest flank by a single continuous fault zone beginning in T5N R2E and dying out in the south of T2N R5E. He did not fault the area of Green Oak or Northville Fields. The fault was mapped by Fisher (personal communication, 1977) on his Niagara structure, while Ells (1969) believed the structure was not a faulted feature but rather an asymmetrical anticline with a steeply dipping southwest flank. Majedi (1969) concurred with a fault zone along the southwest flank on his Detroit River structure map. Bloomer (1969) chose not to draw the anticline as a faulted feature though he recognized that the Howell Anticline could well be faulted along the southwest flank. Asseez (1967) considered this a faulted system and depicts it as such on his Lower Mississippian structure maps. In order to show the Howell Anticline and the Northville Anticline as a continuous trend, the writer has included the northern terminus of the Northville Anticline. The Northville Field itself is not included in this study, therefore, reference to Checkley (1968) is made when referring to that structure.


The Howell Structure

The present structural configuration of the Howell Anticline is shown by a set of three structural cross-sections (Figs. 6, 7, and 8) and two contoured structure maps, Niagara (Fig. 10) and Dundee (Fig. 11). The two structure maps show the offset of structure with progression upward through the sedimentary column. The Howell Anticline most likely underwent its major uplift during the Mississippian or early

HOWELL ANTICLINE
LIVINGSTON COUNTY MICHIGAN
NIAGARA STRUCTURE
CONTOUR INTERVAL = 100'
SCALE: 1" = 4 MILES
APRIL 1977 R PARIS

HOWELL ANTICLINE

DUNDEE STRUCTURE

CONTOUR INTERVAL = 100'

SCALE: 1" = 4 MILES

APRIL 1977 R PARIS

	l	

Pennsylvanian as the basement responded to tectonic compression from the east as a harbinger of the oncoming Appalachian Orogeny.

Regional dip on the Niagara (Fig. 10) Formation is approximately
100 feet per mile, slightly more than 1 degree to the north-northeast.

The anticlinal feature in the southwest corner of the map is the northern terminus of the Lucas-Monroe Anticline.

On the Niagara, the Howell Anticline is drawn as a series of en echelon faults striking roughly N45°W. The system plunges to the northwest. Increased control brings out the en echelon arrangement of the fault system. A regional study which uses only a few wells from each field will allow the fault to be drawn as a rather sinuous single fault.

Relief across the Fowlerville Field is nearly 900 feet across the fault line. This represents the greatest amount of structural relief along the length of the Howell Fault zone. Throw on the fault block dies out both to the northwest, into Shiawassee County, and to the southeast toward Green Oak field where relief across the fault line is less than 100 feet. Green Oak could easily have been drawn as a sharply dipping anticlinal nose with no faulting on its southwest flank. This area was interpreted to be faulted on the southwestern flank of the structure. The fault dies out to the southeast becoming an anticlinal nose.

As this study covers only the northwestern terminus of the Northville Field, Checkley's work of 1968 has been used for structural definition of the Northville Field. He shows the Northville Field to be faulted along the northeast flank. This faulting dies out to the northwest becoming a steeply dipping anticlinal nose along its terminus in this study area.

Evidence for interpreting this system as a faulted system of anticlines is primarily around the Fowlerville Field. Relief between the wells located in section 21 T4N R3E and 28 T4N R3E is 756 feet, where the wells are a little under one mile apart. Also between the wells located in section 11 T3N R3E and NE12 T3N R3E the structural relief is 714 feet. The relief between these wells accounts for nearly all of the structural relief on the Niagara across the Fowlerville Field.

Further evidence is found in the Helen Sober well located in SW35 T4N R3E. In this well from the lower portion of the Detroit River through the upper part of the Bass Islands (a sequence of 400 feet in nearby wells) is represented by 200 feet on the mechanical log. Thus, 200 feet are missing and the log of the interval present is severly jumbled. The well located in NW of 18 T3N R4E also has a missing section of rock units. The A-2 carbonate in this well is missing.

A missing section of salt could be accounted for as removal by solution but removal of a carbonate perhaps is better explained as a result of faulting. Faulting along the southern flank of the Howell Field is a projection along the strike of this faulting.

The pattern of faulting seen along the fault zone from the north-western limit of the map through the Northville Field area is representative of a scissor-type fault motion. A scissor pattern of fault motion would tend to indicate wrench fault mechanics operating within the basement complex beneath the Howell Fault zone. As the basement responds to regional tectonic forces, most likely this would be a compressive force from the east due to an early pulse of the Appalachian disturbance, stress will be relieved along ancient zones of weakness.

	1

In Michigan the pattern of basement lines of weakness was probably set prior to the emplacement of the Keweenawan age basalts. These basalts were probably intruded along pre-existing lines of weakness (Hinze and Merritt, 1969; Kellogg, 1971).

The Dundee structure (Fig. 11), like the Niagara structure, shows an en echelon system of faulted anticlines that strike generally N45⁰W and plunge basinward. The northern terminus of the Lucas-Monroe Anticline is again seen in the southwest corner of the map.

Structural relief over the fields is generally greater on the Dundee than on the Niagara. Across the Howell Field the relief is 1279 feet on the Dundee, measured between the well in section 14 T2N R4E and the well in section 35 T3N R3E while the greatest relief on the Niagara was only 509 feet between the well located in section 14 T2N R4E and that in the NE of section 12 T2N R4E. Another noticable feature near the Howell Field is the large depression along the south side of the field. (It is through this area that Ells (1969) chose to draw his cross section of the Howell Field).

The faulting near Fowlerville is considerably more complex on the Dundee horizon than on the Niagara horizon. Across the Fowlerville Field the difference in structural relief between the two horizons is not nearly as noticable as across the Howell Field, being about 1100 feet of relief across Fowlerville on the Dundee and 900 feet on the Niagara.

The Green Oak Field also exhibits greater structural relief on the Dundee, nearly 600 feet, than on the Niagara, less than 100 feet.

The two dip structure cross sections (Figs. 6 and 7) show that the offset of the crest of the Howell Anticline on the Dundee horizon to the

northeast of the Niagara crest as noted by Cohee and Landes (1958), can be attributed to the fault dipping to the southwest. The result of the dipping fault plane is that the axial plane of the anticline also dips to the southwest. During uplift, drag along the fault resulted in the beds dipping toward the fault immediately along the fault zone. The crest, on both the Dundee and Niagara, is therefore not directly adjacent to the fault but is slightly to the northeast of the fault. This drag is also apparent on the Niagara and Dundee structure maps, where it yields the appearance of left lateral motion. On the down thrown side of the fault, drag can also be seen as the beds dip upward toward the fault.

A small anticline located in the northeast corner of T3N R5E also can be seen. This small anticline is probably a small wrinkle developed during uplift along the Howell Fault.

Further discordance of structures between the Niagara and Dundee horizons can be attributed to uneven response of the thick evaporite sections of the Salina and Detroit River Groups to the deformation of the Howell structure. The block along the south flank of the Fowlerville Field tilted, dropping down to the northwest. This block will be seen later to be acting independently during deformation. Solution and removal of the Salina salts will also account for the depression of the south side of the Howell Field.

ISOPACHS

Regional

During Cambrian time, Fisher (1969) shows an embayment of the Illinois Cambrian depocenter in southwestern Michigan. A shallow depocenter of an early Michigan depression also occurs in the southeastern portion of Ogemaw County.

A Trenton depocenter located near southern Lake Huron is shown by Seyler (1974). Seyler's Trenton basin is elongated toward the east and west. The Utica shale (Nurmi, 1972) is thinnest in Western Michigan, becomes thicker toward the east, and reaches a maximum thickness in Lenawee County. Nurmi also notes that the Utica thickens and thins in a pattern reflecting structures which show on Trenton structure maps. This pattern holds true across the Howell Anticline. This would tend to indicate a topographic or structural high along the Howell Anticline during deposition of the Utica. Another possible reason could be that these shales responded more plastically during later uplift of the Howell Anticline and were "squeezed" or thinned by compaction across the crest of the structure. Nurmi's Unit 5 shows a gentle thickening toward the north with no reflection of the Howell Anticline.

The Clinton thickens considerably northward until it looses definition and grades into the overlying Niagara in the northern part of the southern peninsula according to Potter (1975). He also shows the Rochester shale to be thickest in St. Clair County thinning westward

until it pinches out near Lake Michigan. This pattern repeats toward the central part of the Michigan Basin where the Rochester is absent.

Mesolella, et al, (1974) show a Barrier or Massive Reef complex of the Niagara surrounding the Michigan Basin margins. This Massive Reef attains a maximum thickness of just over 500 feet. Away from the Massive Reef the Niagara thins very quickly basinward to less than 100 feet thickness in the central Basin area. The A-l Evaporite is thickest in the Basin interior and thins toward the Basin margins. The unit only partially fills in any topographic irregularities of the Niagara surface. The A-l Evaporite wedges out against the flanks of barrier and pinnacle reefs. The A-l Carbonate is also a "reefing" unit being thickest and dolomitized along the Basin margins becoming thinner limestones in the Basin interior. Where the A-l Evaporite is absent the Niagara and A-1 Carbonate are grouped as an undifferentiated carbonate. The A-2 Evaporite is thinnest along the Basin margin, wedging out near the Massive Reef zone, and thickens to just over 1000 feet near the Basin center. The A-2 Carbonate is "non-reefing" being thinnest along the Massive Reef zone and thickest toward the Basin interior. Mesollela's, et al, work shows an interesting trend of deposition across the area of the Howell Anticline. The Massive Reef facies deposition of the Niagara is not continuous across Livingston County. The reef front turns west of Livingston County so that the reef front roughly parallels the strike of the Howell Anticline. The A-1 Carbonate also thins roughly along this same line. The A-2 Carbonate thickens parallel to the thinning Niagara and A-1 Carbonate and thickening A-2 Carbonate indicates a deeper water environment altered the depositional pattern of these units across the area of Livingston County.

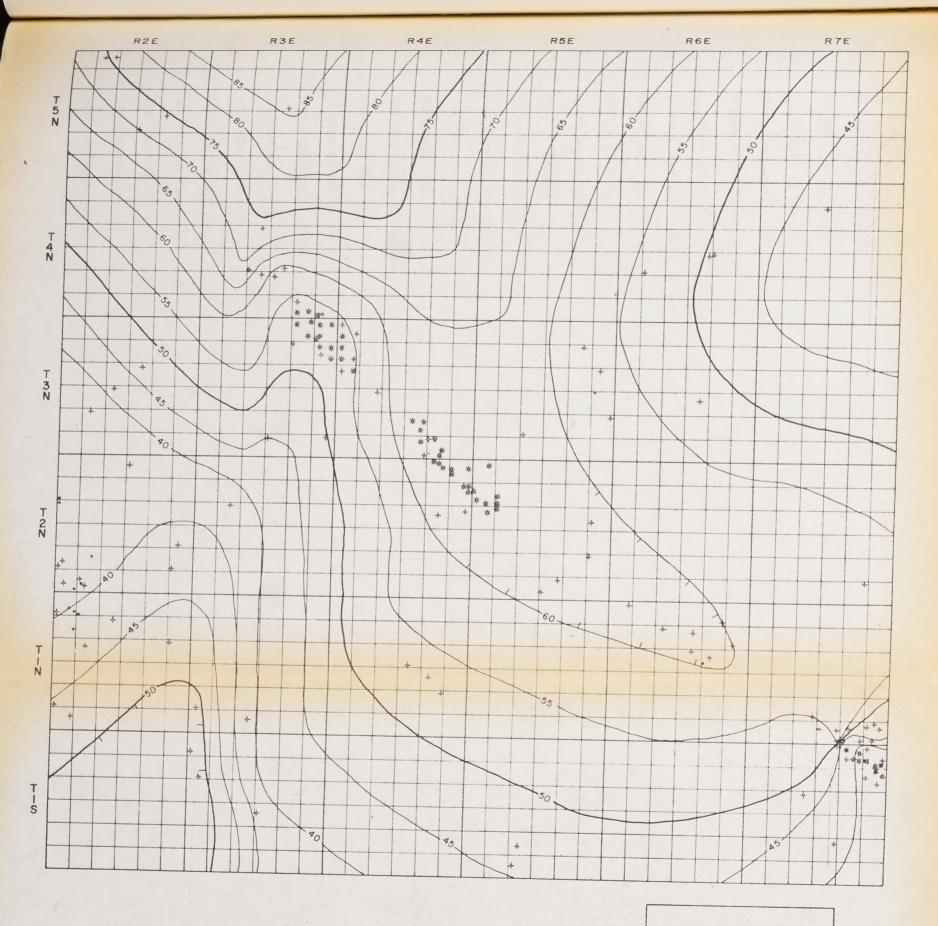
Majedi (1969) shows a broad low entering from the north across
Livingston County during Detroit River time. This low is shown by a
general thickening of the Detroit River Group toward the northeast.

Isopachs of the Antrim, Bedford, Berea, and Sunbury by Asseez (1969) show no thickening or thinning of these units to reflect the existance of any structure in the area of the Howell Anticline during deposition of these units. The Antrim shale is thickest in the central Basin region and thins toward the west. The Bedford-Berea sequence is restricted to the eastern half of the Lower Peninsula. This sequence is thickest toward eastern Michigan and thins out toward a line running about north-south through the center of the state. Asseez terms the Bedford-Berea a prodelta sequence, with the sands of the Berea being bars and channel fills.

Chung (1973) shows the Coldwater Formation to be offlapped on the Howell Anticline. The Coldwater appears to thin gradually toward the Howell Anticline but it is very difficult to determine whether this offlap is due to erosion or non-deposition, however, the greater offlap of the overlying Marshall formation suggests truncation erosion along the post-Marshall disconformity.

Howell Area

The previous section describing the Howell Structure depicted the present structural picture of the Howell Anticline. The Howell Anticline has not been a structural high throughout its past. Following is a set of isopach maps: Upper Cincinnatian or Unit 5; Salina G to Niagaran; Dundee to Salina G; Bell, Antrim, and Bedford-Berea. Two restored stratigraphic cross-sections, one on the Salina G unit and the second


on the Bell Shale, also are used to develop an understanding of the developmental history of the Howell Anticline.

Upper Cincinnatian:

The Upper Cincinnatian (Fig. 12) has the least amount of control. As the picks were made on the basis of log characteristics only those wells which were logged were used.

The unit exhibits an uneven depositional pattern. Thickening toward the north and west reflects regional thickening into the basin interior. Nurmi (1972) suggests a period of erosion following deposition of the Upper Cincinnatian. The irregular thickening and thinning seen in areas of thighter control is reflecting an uneven surface which could be attributed to post-depositional erosion of this unit.

The Michigan Basin was probably fairly shallow during deposition of the Upper Cincinnatian and the Howell area was quite near the shore line, possibly an intertidal zone. The deposition of red and green shales with thin limestones indicate this type of environment. The red shales were likely deposited in an oxidizing environment, indicating shallow, agitated waters with enough oxygen to oxidize the iron in the clay particles. The green shales may represent slightly deeper water and higher organic content. Deeper water would allow layers of mud to be covered before there is a chance to oxidize the iron. More organic material would rob the oxygen during decay of the organic material to produce a reducing environment. The inclusion of limestones in this sequence indicate a fluctuation of water level as determining whether the environment is oxygen rich (oxidizing) or oxygen poor (reducing). The limestone indicates a more stable slightly deeper warm water environment. The whole sequence taken together would indicate

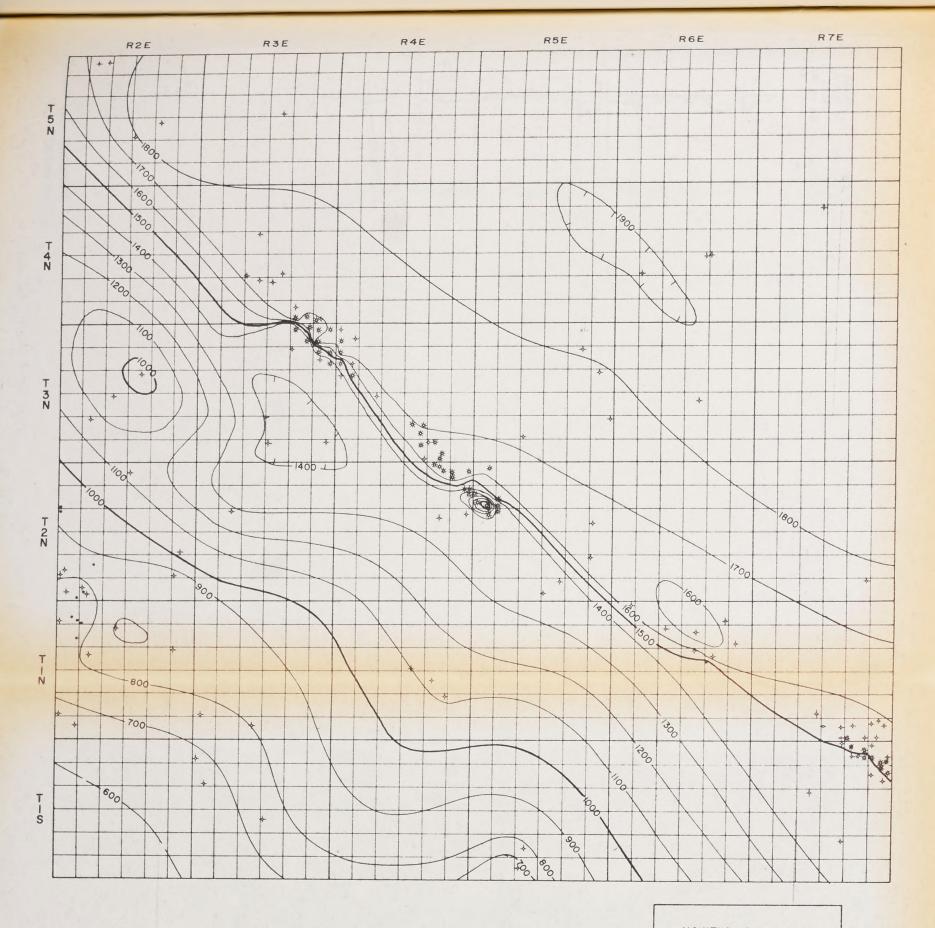
HOWELL ANTICLINE

LIVINGSTON COUNTY MICHIGAN UNIT 5 ISOPACH

CONTOUR INTERVAL = 5'

9CALE: | " = 4 MILES'

APRIL 1977 R.PARIS


an oscillating water level such as would be expected of a tidal flat or intertidal zone.

Salina G to Niagara:

Figure 13 is an isopach of the Salina Group of Cayugan time. During this time the Michigan Basin was undergoing deposition of thick evaporites with interlayered carbonates and shales.

This interval thickens gradually toward the northeast until the line of the fault zone along the southwestern flank of the Howell Anticline. At this line the Salina units thicken from 1300 feet to nearly 1700 feet over a short distance. Beyond the fault zone the units again thicken gradually into the deeper portion of the Michigan Basin. Except for the abrupt thickening across the fault zone, this interval thickens gradually toward the Basin interior. This change in slope of the depositional surface can also be seen in figure 14, the restored stratigraphic cross-section on the Salina G. Going across the fault, the F-Salt Unit thickens most between the Brazos-Kizer well and the Panhandle Eastern-Wilson-Bush well, which are on opposite sides of the fault. This would indicate that the greatest episode of subsidence along the northeast flank of the Howell Fault was contemporaneous with F-Unit deposition.

Fisher (1969) indicates the Salina time to be the major period of subsidence of the Michigan Basin. Figures 13 and 14 would tend to concur that subsidence was greatest during upper Salina time in the area of Livingston County. Sudden thickening along the northwest diagonal of the map indicates that the fault zone along which the Howell Anticline interforms was active during Cayugan time also. The northeast block was subsiding during this time. This type of fault activity is termed

HOWELL ANTICLINE

CONTOUR INTERVAL = 100'
SCALE: 1" = 4 MILES
APRIL 1977 R PARIS

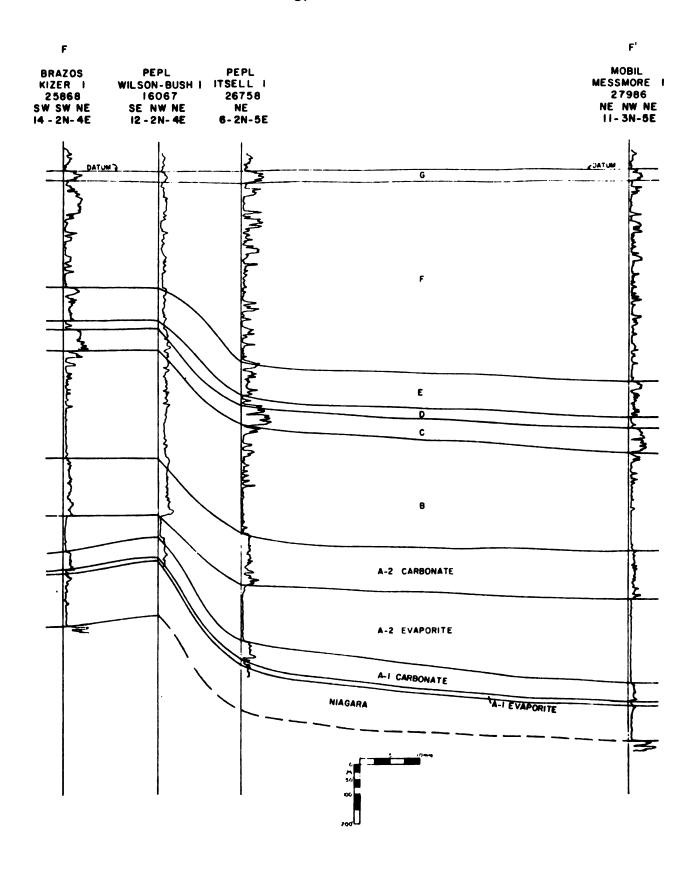


Figure 14. Restored Stratigraphic Cross Section Across Howell Field,
Datum Salina G

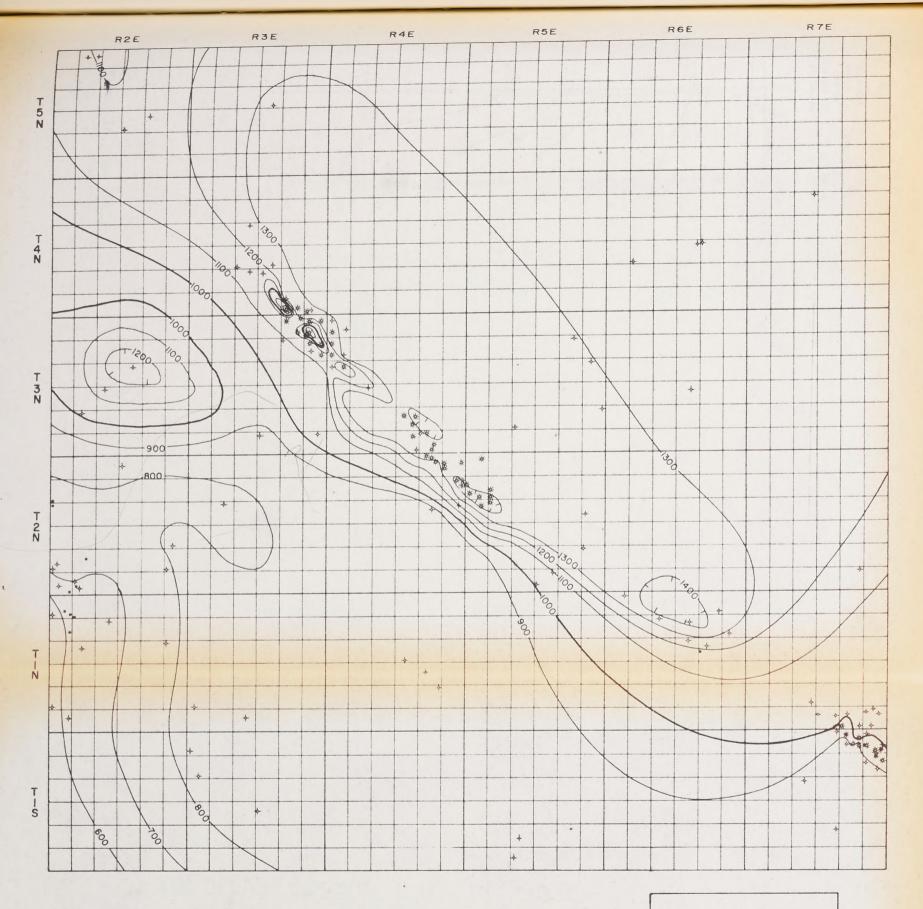
growth faulting, when fault movement is contemporaneous with sedimentation, resulting in rapid thickening of the units along the fault line.

As tensional forces acted on the Basin during the Silurian the basement rocks would readjust themselves along pre-set fracture of fault patterns. The primary movement would be vertical readjustment as gravity became the dominant force acting on the basement blocks. The Salina G to Niagara map indicates that the northeastern block did respond during the Cayugan epoch by subsiding with the greatest amount of subsidence occurring during deposition of the F-Unit.

The anomalous thin area seen in section 7 T2N R5E is caused by solution and removal of the Salina salts during later uplift of the Howell Region, as suggested by Ells (1969). Collapse of the overlying beds would account for the depression on the Dundee surface. Landes (1945) describes collapse of Salina salt caverns near the Straits of Mackinac with resulting brecciation of pre-Dundee beds. He dates this as a pre-Dundee phenomenon.

Middle and Upper Silurian time is marked by deposition of alternating carbonates, evaporites, and shales within the Michigan Basin. A massive reef surrounding the Basin with patchy pinnacle reef growths on the basinward margin of this massive reef complex, followed by thin basinal limestones characterizes the Niagara. Following deposition of the Niagara, fluctuations in sea level are marked by cycles of evaporite and carbonate deposition through deposition of the A-2 Carbonate.

Entrance of fresher waters is severely restricted during deposition of the B-Salt. The Michigan Basin remains generally restricted until deposition of the lower Bass Islands dolomites. This marks a respite from the cyclical deposition pattern and a general return to more normal marine conditions.


Dundee to Salina "G":

This map (Fig. 15) shows a general thickening toward the northeast. Again the sharp tightening of contour lines along the line of the Howell Fault zone indicates some subsidence of the northeast block during deposition of this interval. The restored stratigraphic cross-section (Fig. 16) on the Bell Shale datum shows that the majority of subsidence occurred during deposition of the Detroit River evaporite-carbonate cycle.

The general thinning along the Fowlerville Field is probably caused by flowage of the Detroit River evaporites during later uplift. This sliver coincides with the tilted block on the Dundee structure. This block seems to have acted somewhat independently during deformation.

Deposition of the Bass Islands Group marks the end of the shallow restricted evaporite basin. The lower portion of Bass Islands is an anhydritic dolomite which represents a returning to more normal marine conditions of the Basin waters. It becomes more of a pure dolomite near the top. Normal marine water environments prevail until after deposition of the Sylvania. The interlayered evaporites and carbonates of the Detroit River indicate a return to an evaporite basin. Deposition of the Dundee limestone marks a return to a more open marine environment within the Basin. These conditions prevail until deposition of the Mississippian clastics begin to fill in the Basin.

The Bell Shale isopach (Fig. 17) was drawn with a 2-foot contour interval. This smaller interval could lead to the interpretation of a complex depositional pattern, where in actuality the unit thickens very gently to the northeast with no sudden thickening across the fault

HOWELL ANTICLINE
LIVINGSTON COUNTY MICHIGAN

DUNDEE to SALINA G SOPACH

CONTOUR INTERVAL = 100'

SCALE: I" = 4 MILES

APRIL 1977 R.PARIS

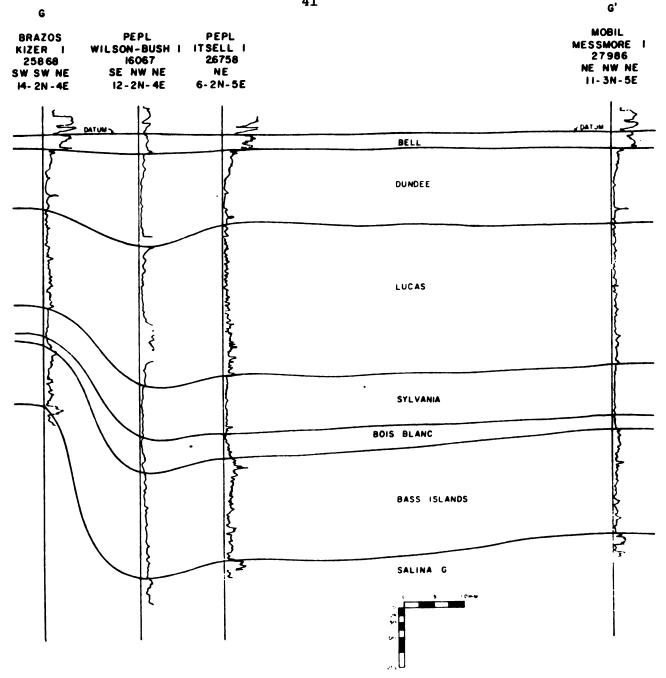
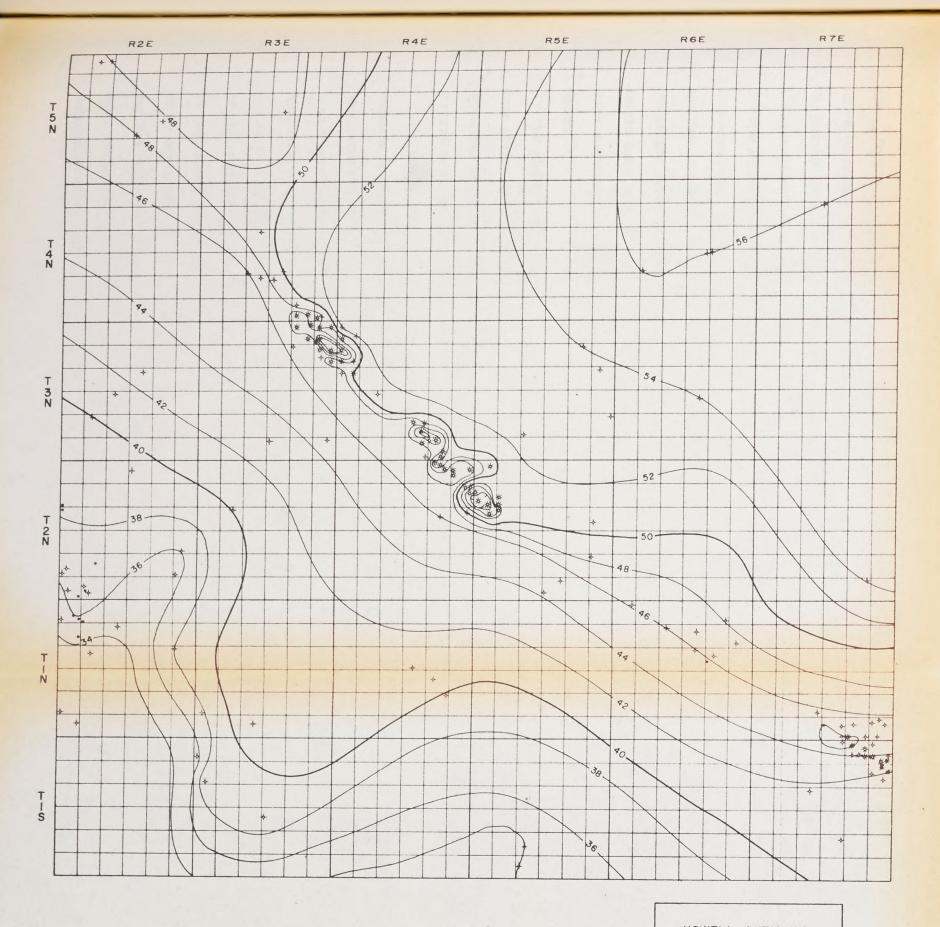



Figure 16. Restored Stratigraphic Cross Section Across Howell Field, Datum Bell Shale

HOWELL ANTICLINE

LIVINGSTON COUNTY MICHIGAN

BELL ISOPACH

CONTOUR INTERVAL = 2'

SCALE | | " = 4 MILES

APRIL 1977 R PARIS

zone. During deposition of the Bell the northeastern block is no longer subsiding though it could still be somewhat structurally lower. The complex pattern across the Howell and Fowlerville Fields is partly a matter of control in the field areas.

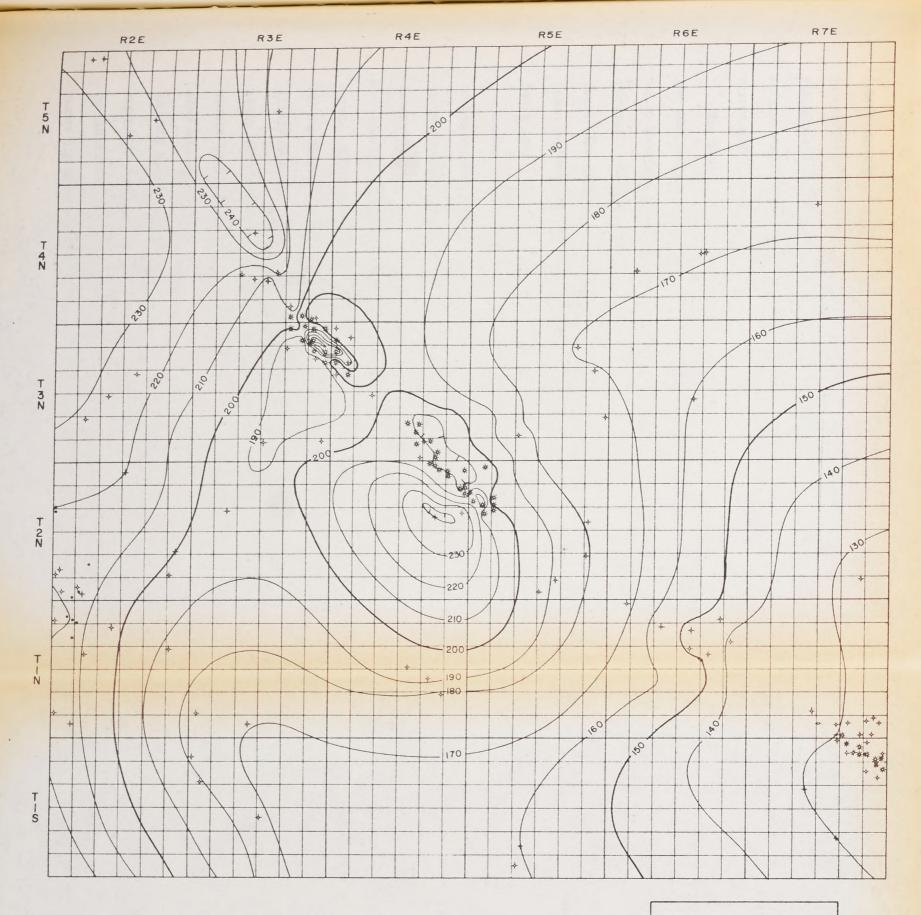
The increase in calcareousnous of the Bell toward the west across this area would imply the source of clastics for the Bell to be from the East. A shale unit will be more coarsely clastic and thicker nearer the source which provides the clastics, the fine clays settling out in fairly quiet waters. Going away from the source area one would expect fewer clastics and more carbonate material deposited in shallow warm waters.

The complex pattern of contours across the two gas fields results from closer control. The Dundee surface upon which the Bell has been deposited is undoubtably more irregular than shown by the scattered control away from these fields.

The Dundee surface should owe its irregularity to post-Dundee erosion, as suggested by Newcombe (1933) and Bloomer (1969). With the near proximity to the Michigan Basin edge of this area it would not take a very dramatic drop in water level or rise along the Findlay Arch to expose this area to erosion.

It is also possible, in the Howell area, that the irregularity of the Dundee surface is in part a reflection of flowage and removal of Salina and Detroit River evaporites. This suggestion is arrived at by examining the location and trend of irregularities on the Dundee surface across the separate fields. The thickest Bell in the Howell area, SE section 7 T2N R5E (Fig. 17), coincides with the large Dundee depression (Fig. 11), and the thin Salina interval (Fig. 13). That

these should all coincide favors the thought that removal of the Salina salts is responsible for the relief of the Dundee surface in this area.


The thin area along the Fowlerville Field (Fig. 17) coincides with the thinning of the Dundee to Salina G interval, and with the tilted block on the Dundee structure. This could be a thin block or sliver which has responded independently to a gentle compressive force which has halted the subsidence of the main northern block. The response of this sliver has been a gentle pre-Bell uplift with a subsequent thinning of the Bell along this block. The evaporites of the Detroit River Group could then have responded by flowing away from this zone of deformation with the resulting thin that is seen in this interval. Leaching and flowage of the evaporites of the Salina and Detroit River Groups can partially account for irregularities on the Dundee surface, which are in turn reflected on the Bell isopach map as irregular patterns of thick and thins.

Antrim:

The Antrim shale (Fig. 18) shows general thickening towards the northwest. This unit is a thick dark grey to black shale. It is very carbonaceous, heavily pyritized and radioactive. A shallow stagnent environment would produce the stagnent waters and reducing conditions which must have prevailed during deposition of the Antrim. Near the southeast corner of the map the Antrim subcrops beneath the glacial cover. Along the strike of the Howell fault the unit varies in thickness, again perhaps a matter of more well control.

If the fault zone was in motion as early as Dundee or Bell time it can be assumed that this motion was continued, though perhaps episodically, throughout deposition of the Traverse and Antrim. Cohee

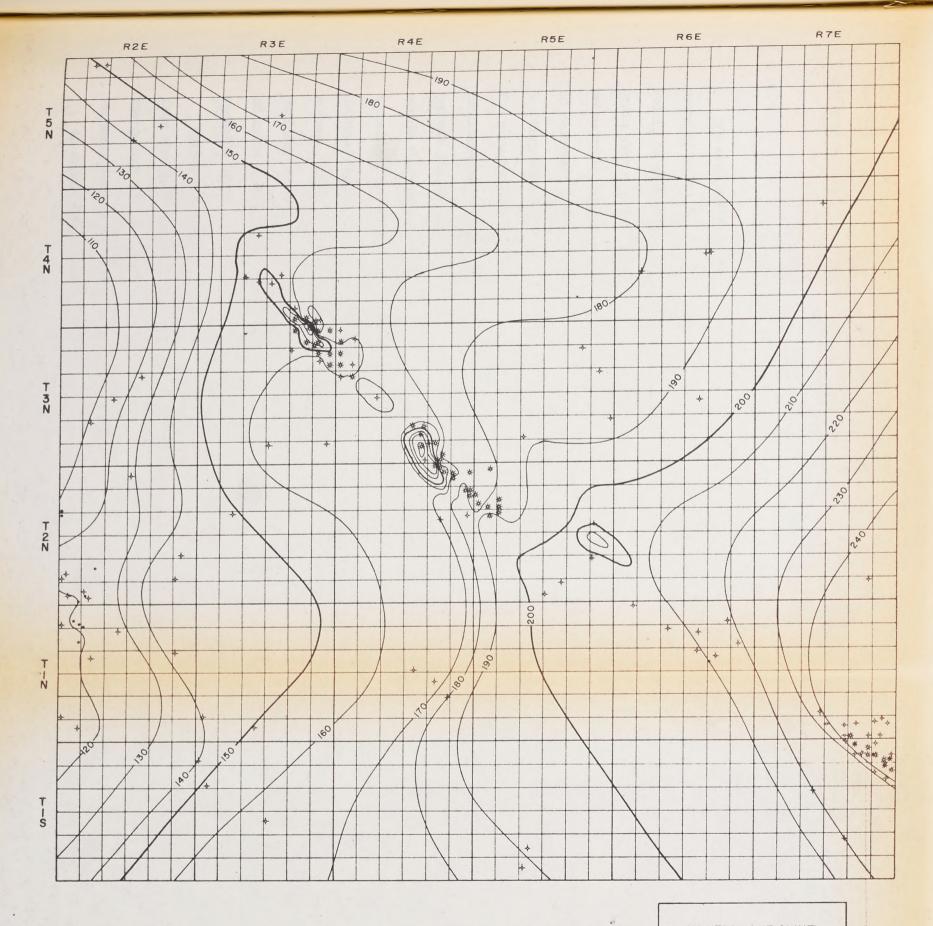
		İ
		1
		•
		•
		1

HOWELL ANTICLINE
LIVINGSTON COUNTY MICHIGAN
ANTRIM ISOPACH
CONTOUR INTERVAL = 10'
SCALE: 1" = 4 MILES
APRIL 1977 R.PARIS

(1947) suggests that there was motion along the major structural trends as early as Traverse time. The thin along the crest of the Fowlerville Field could indicate that this portion of the fault was high during Antrim time. The area in Green Oak township was also slightly high, structurally, at this time.

The Howell Field is surrounded by a thicker deposit of Antrim than the surrounding area. It is quite likely that the early motions of the fault zone were not along a continuous line but were somewhat discontinuous. The Howell area would then have been a low or sag along the fault line which had not yet undergone uplift as the Fowlerville and Green Oak sections had, displaying differential movement along the fault zone.

Assecz (1967) shows no strong thinning across the Howell Anticline on his regional Antrim isopach map. The minor relief created by these early movements would not show on a regional map contoured on a larger interval.


Another explanation would be karst development within the Traverse Group. Ells (1969) has suggested that a karst terrain was developed on the Traverse. This might account for the brecciation that Newcombe (1933) describes in the Traverse interval of the Tooley well (although fault brecciation can not be ruled out). Collapse into a cavern would result in brecciation of the overlying material. Karst terrain would also account for the irregular thickening and thinning of the Traverse in this area as noted by Runyan (1976). As the Antrim was deposited upon this irregular surface the karst topography would be reflected by thickening and thinning of the Antrim. Across the area that Runyan notes his most irregular Traverse interval, the overlying Antrim shows

a poor matching of Antrim thicks with Traverse thins. As this irregularity of Traverse isopachs is most noticeable along the Howell Anticline, and the overlying deposition patter of the Antrim does not strongly suggest karst development of the Traverse, gentle irregular movement along the fault plane is suggested as the cause of both the Traverse and Antrim irregularities of thickening and thinning.

Berea-Bedford:

This unit (Fig. 19) shows a general thickening to the southeast, though there is a considerable degree of unevenness of deposition. The extreme irregularities across the Howell and Fowlerville Fields are in part the result of increased control. The uneven surface undoubtably extends beyond the field limits but is not observable, owing to sparser control. This unit subcrops in the southeast corner of the map, and is offlapped along the northeast block of the Howell Anticline. The subcropping of this unit introduces some anomalous thinning which was not contoured, as only control points of wells which contained the overlying Sunbury were utilized.

Asseez (1967) terms the Berea-Bedford a prodelta sequence in the Michigan Basin. He notes that this prodelta does not extend beyond the eastern half of the Lower Peninsula. The uneven pattern of deposition and the general lithologies of these units within the area of the Howell Anticline imply a progressive deltaic sequence during this time. The thinning across the Howell and Fowlerville Fields suggests that these areas were low-relief structural highs during deposition of the Berea-Bedford sequence.

HOWELL ANTICLINE
LIVINGSTON COUNTY MICHIGAN
BEREA - BEDFORD ISOPACH
CONTOUR INTERVAL = 10'
SCALE: 1" = 4 MILES
APRIL 1977 R.PARIS

SUMMARY OF DEVELOPMENTAL HISTORY

The structural grain of the basement beneath the Michigan Basin is probably quite complex. Western Ontario, in the region of the Grenville Front, is marked by a dominantly northeast-southwest structural grain with a northwest-southeast cross pattern within the igneous and metamorphic complex of the Canadian Shield. The Shield is marked by an east-west pattern east and north of the Upper Penninsula of Michigan. Southern Wisconsin also is marked by an east-west structural pattern. The structural grain in southern Western Ontario is also east-west. Continuation of these structural patterns of the surrounding areas beneath the Michigan Basin would result in a complex structural grain within the basement rocks. Hinze and Merritt (1969) have suggested a dominant northwest-southeast trend within the basement of the Michigan Basin, from interpretation of their gravity and magnetic surveys. They also suggest the Keweenawan age rifting would follow this dominant structural trend of basement weakness, allowing emplacement of thick basalts suggested as the source of the Mid-Michigan gravity and magnetic high.

During the Ordovician, deposition within the Michigan Basin changed from the predominant Cambrian sandstones to a more typical sequence of carbonates and shales. Nurmi (1972) and Seyler (1974), both describe an early form of the Michigan Basin during the Ordovician.

As deposition of the late Silurian Salina Evaporite cycle began,

the zones of basement weakness responded to regional tensional forces and gravity by subsidence of fault blocks. Thickening of the Salina Group northeast across Livingston County shows that the Howell Fault was active at this time with the northeast block subsiding thereby responding to the tensional and gravitational forces.

The northeast block remained structurally low throughout the early Devonian with some continued subsidence during Detroit River time. By Bell time there was little or no relief across the Howell Fault marking the end of subsidence. Gentle compressive force is indicated by a small degree of thinning of the Bell Shale implying gentle uplift along the Fowlerville Field. Gentle compression continues to act on this area until at least Coldwater time. These movements which culminated in uplift of the Howell Anticline can be related to early stage or small displacement wrench fault tectonics acting on the basement complex.

The present configuration of the Howell Anticline, as depicted on figures 10 and 11, reflects a pattern of structural features (Fig. 20) which can be attributed to wrench fault mechanics. Release of stress along the Howell Fault has resulted in vertical uplift of the northeast block along the fault zone with little lateral offset.

Harding (1974) describes the Albion-Scipio oil field trend as a pattern which represents a stage of wrench faulting during which slight left-lateral displacement of the basement complex beneath the area has occurred. Prouty (1976a, 1976b) has extended the concept of wrench fault tectonics to apply throughout the Michigan Basin and shows a close correlation between the azimuths of linear oil fields and shear patterns related to compression from a general eastward direction. Thomas (1974)

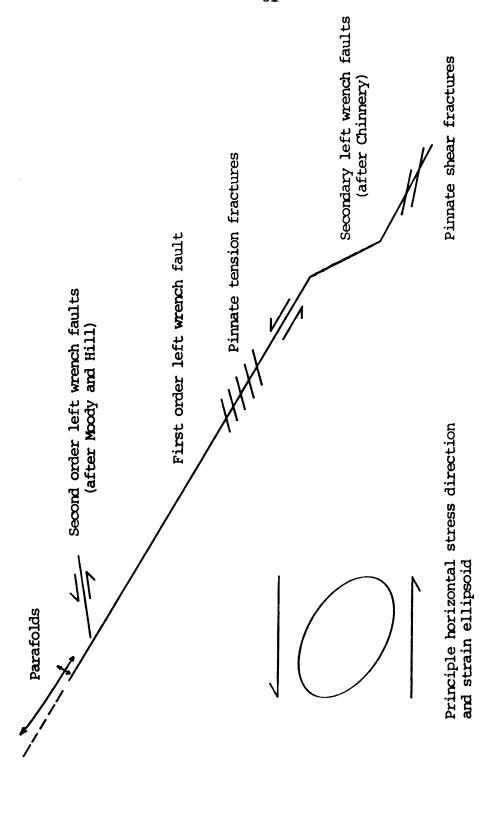


Figure 20. Structural Features Resulting From Simple Shear Wrench Fault Mechanics

in a study of the structural features of the Williston-Blood Creek

Basin suggests that this area has been subjected to compressional simple shear mechanics. According to Thomas the basement beneath the

Williston-Blood Creek Basin is not an unbroken competant medium, but

rather a fairly complexly fractured basement which would divert any

applied stress along these basement lines of weakness allowing compressional simple shear block coupling mechanics to predominate.

The Michigan Basin basement also can be expected to have a fairly complex structural pattern as suggested by Stockwell (1965) and Hinze and

Merritt (1969). Stockwell describes the structural grain of the

Canadian Shield. Hinze and Merritt suggest the structural grain beneath the Michigan Basin.

During the incipient stages (Thomas 1974; Wilcox, et al, 1973) of a left lateral couple, para-folds would develop (Fig. 2la). As the compression continues, the axes will be rotated counterclockwise (clockwise in a right lateral shear couple), toward the direction of the shear couple (Fig. 2lb).

With the Albion-Scipio trend to be generally agreed upon as lateral strike-slip movement (Harding, 1974; Fisher, 1969; Ells, 1962), this trend is probably a reflection of deep seated wrench fault tectonics as suggested by Harding. This model, with the modification of being a less intense stage of deformation, can be assumed to apply to the features associated with the Howell Fault system. The offset en echelon anticlines of the Howell, Fowlerville, Northville, and Green Oak Fields have axes which are rotated to nearly parallel the general strike of the basement fracture patterns along which the lateral motion of the wrench zone would occur. Faulting along the southwest side may

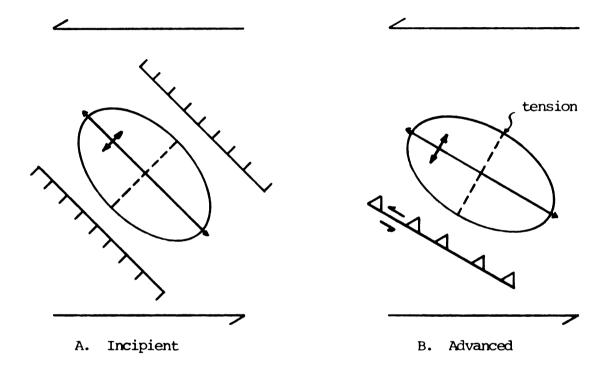


Figure 21. Progression of Axial Plane Rotation During Simple Shear Deformation (after Thomas, 1974)

Lineament simple shear produces block coupling resulting in parafolds with the associated flank faults and crossfold tension. Incipient and advanced stages apply to degrees of axis rotation, not degree of wrench motion. have begun as normal faulting with dips to the southwest and continued with eventual uplift of the northeast block during later stages of this deformation. Cross faults, possibly the shear couples, or pinnate tension fractures, would develop at nearly right angles to the fold axis. Ells (1969) drew such a cross fault on his Niagaran structure. This type of feature would provide channel ways for the solution and removal of the Salina salts on the south side of the Howell Field which resulted in the large depression on the Dundee structure. The small anticline located directly northeast of the Howell Field would then be a smaller para-fold along the en echelon trend, without the attendant faulting.

Additional evidence of this being a wrench fault-related system lies with the faulting of the Northville Anticline. Checkley (1968) interprets the Northville as faulted along its northeast flank on both his Niagaran and Trenton structures. With the die out or loss of throw on the Niagara in Green Oak Township being near the location of the pivot point of the fault system, the entire system from Northville Field to Fowlerville Field can be interpreted as a scissor fault.

The wrench fault system has not progressed to the stage of lateral offset of facies in this area. (Harding, 1974, suggested left-lateral offset along the Albion-Scipio wrench fault system.) Kilbourne (1947) does indicate some offset of Coldwater facies but this is based on relatively few wells. Evidence of considerable left-lateral movement is lacking along the Howell Fault. Mesolella, et al, (1974) have an extension of basinward facies of the Salina and Niagaran units into Livingston county near the Howell Fault system. This extension is opposite that which would be expected of any significant left-lateral

motion, that is, the marginal facies should be extended basinward as you cross the fault zone to reflect left-lateral motion. The extensive offset as suggested by the Bedrock of Michigan geological map would be better explained as erosional offset along regional dip of the north-eastern uplifted block of the Howell Anticline.

OIL AND GAS PRODUCTION*

Earliest indications of oil and gas associated with the Howell Anticline were reported by Smith in 1834, (in Newcombe, 1933) northwest of the city of Howell. Later in 1893, Lane mentions considerable shows east of Howell. Shows of oil and gas in shallow water wells have been reported since that time to the present. By the early 1930's many Berea and several Dundee tests had been drilled. Only shows were recorded with no commercial quantities of oil or gas. Most of the Berea wells were deep water wells. One well, the Robb, drilled by Norris and Smith in 1928, had gone into the upper Salina beds. This well was drilled in section 26 of Cohoctah Township.

First discovery of significant quantities of gas was in 1935. The Duck Lake Oil Company commenced drilling, on the McPherson farm, NW35 T3N R4E, in September 1934, and completed the well in March 1935. The well was completed open hole with initial production of 478 MCF of gas. The 1930's had a very limited market for natural gas, the primary use being to reinject the gas into oil reservoirs for pressure maintainance, resulting in plugging and abandonment of this well. In October 1946, Panhandle Eastern Pipeline Company completed the McPherson #1 SE35 T3N R4E for 8,000 MCF of gas from the Guelph or Brown Niagara dolomite.

^{*}Production figures are from Annual Statistical Summary 24, Michigan Oil and Gas Fields 1975, published by the DNR Geology Division, November 1976.

Development proceeded rapidly thereafter until 1950 when 16 wells were producing gas and light condensate from the Guelph. Commulative production from the field was 23,678,129 MCF of gas before the field was switched to a gas storage reservoir in 1962.

Production is from the Guelph, the brown dolomite associated with the reef buildups in the northern and southern Niagaran reef play.

Ells (1969) suggests the dolomite reservoir might be a low relief reef buildup of Brown Niagara along the crest of the Anticline. This is doubtful as the maximum thickness of Brown Niagara over the Howell Field is 12 feet while the minimum might be 11 feet. Both of these values are within the regional "inter-reef" thickness of Brown Niagara for this area.

Gas and oil have been produced in Northville Field. Production comes from the Dundee, Salina-Niagara, and Trenton-Black River. Discovery of Northville was in November 1947 when the Heath #1 Dugan was completed as a Dundee gas well. Taggart completed the Kehrl in December 1954 to open production of the Salina-Niagara. Earlier, in January, 1954, Taggart had completed the LeMaster well beginning production of the Trenton-Black River reservoir.

Production from the Dundee was not significant enough to tabulate but came from 4 wells offset from the deeper production. The Salina-Niagara produces 3,794,518 MCF of gas with small amounts of oil from 10 wells. Trenton-Black River production has been the most prolific in Northville yielding 1,075,702 barrels of oil and 14,332,358 MCF of gas from 50 wells.

In 1945 Shell drilled the Wilkinson, SW36 T4N R3E, as a Niagaran test hole. This well was plugged after shows of gas from the

Salina-Niagara and test flows of 280 MCF and 179 MCF of gas and shows of oil from the Dundee. It is interesting to note that this well was drilled on the Dundee crest and just off of the Niagara crest. Humble then drilled the Soule Unit #1, NE2 T3N R3E, to record the discovery of the Fowlerville Field in August, 1961. Fowlerville produces from the Salina A-1 Carbonate and the Brown Niagara. A total of 18 wells have produced 1,419 barrels of oil and 1,848,503 MCF of gas. The majority, 1,360,565 MCF of gas and all oil being produced in 1975 after Michigan Consolidated Gas Company acquired the field as a shut-in gas reservoir awaiting commercial line tie-ins.

Texaco is credited with discovery of the Green Oak Field after completing the Kish #1, SW14 TlN R6E, in November, 1967, for 15 barrels of oil per day from the Trenton-Black River dolomites. Shows of gas were reported from the Dundee and Niagara, and a show of oil were reported from the Dundee. This one well field produced 2,836 barrels of oil before being abandoned in 1970.

Checkley (1968) notes that the Dundee production in the Northville Field is offset to the production from the deeper zones. It is possible that this production is from the crest of the Dundee structure which is offset to the deeper structures. This pattern of structural offset is not inconsistant, as over both the Fowlerville and Howell Fields the Dundee anticlinal crest is to the northeast of the Niagaran anticlinal crest. It is from this pattern of structural offset that the writer has interpreted the dip of the Howell Fault system to be to the southwest near Howell and Fowlerville (Figs. 6 and 7).

Hydrocarbon reservoir potential of the Howell Anticline was greatly enhanced by the faulting which accompanied the folding of the Anticline.

Porosity and permeability of the Trenton and Niagaran production horizons is rather well limited to the fault zone. Away from the fault zone both Trenton and Niagaran reservoir rocks grade to a dense, tight carbonate. Toward the fault zone porosity and permeability increase becoming intercrystalline to pinhole porosity to occasional vuggy porosity. Intercrystalline and interconnections of porosity give rise to good permeabilities. This reservoir quality, good porosity and permeability, probably developed in response to stress applied during faulting. Pressures associated with the faulting most likely crushed or fractured the normally dense carbonates, formational waters, or artesian waters as suggested by Newhart (1976) and Runyon (1976), could then enhance porosity while percolating along these fractures developing pinhole and vuggy porosity.

Source material for the Trenton-Black River production could be the Utica shale. While this shale is stratigraphically higher than the Trenton reservoir, it is structurally lower near the fault zone. Migration of hydrocarbons could take place along the fault zone to become entrapped in the Trenton reservoir (Fig. 22).

Another source could well be the Trenton itself or the Black-River Shale zone. The Trenton-Black River sequence has several organic rich intervals which could act as source for the hydrocarbons (Ells, 1962).

A source for the Niagara production is somewhat harder to locate. The upper Cincinnatian is a good candidate being a thick shale sequence. Migration upward of hydrocarbons along the fault zone would be halted by the A-1 Evaporite which would be less likely to fracture and more likely to flow during deformation. A closer and more likely source is the structurally low A-1 Carbonate on the down thrown block

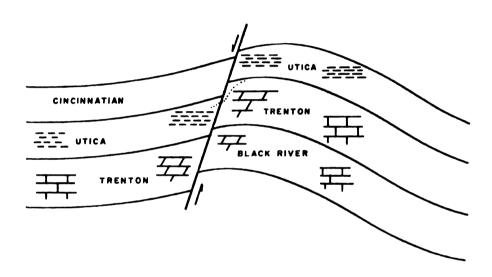


Figure 22: Possible migration of hydrocarbons from stratigraphically lower Utica to structurally higher Trenton along a fault plane.

of the fault. The A-1 Carbonate is a very organically rich unit, so much so that the algal laminations of this unit have led it to be termed the "poker chip shale". During compaction the associated heat and pressures would undoubtably be sufficient to generate hydrocarbons. Gas and light condensate could migrate upward along the fault zone and become entrapped in the Niagara dolomite along the upthrown side. The B-Salt of the down thrown block against the A-2 Evaporite (Fig. 6) would act as a barrier to further upward migration and eventual loss of the hydrocarbons from the Niagara horizon.

The production of light condensate in the Niagaran and Salina A-1 Carbonate in the Howell area indicates that the maturation of hydrocarbons has not progressed to the dry gas stage. In fact it indicates that the shallow basin rim production is of early stage development of hydrocarbons. The central basin region should have potential for deeper production of Silurian age hydrocarbons. The association of high pressure gas, the Gulf-Bateson well drilled in Kawkawlin Field, Bay County, and the deeper development of Akron Field, Tuscola County, with Salina A-1 or Niagaran reservoirs within the central Michigan Basin region demonstrate this potential for deeper hydrocarbon production in this region. The development of central Basin reservoirs should follow a pattern of wrench fault mechanics responding to simple shear stresses acting upon the basement as modeled after development of the Howell Anticline.

CONCLUSIONS

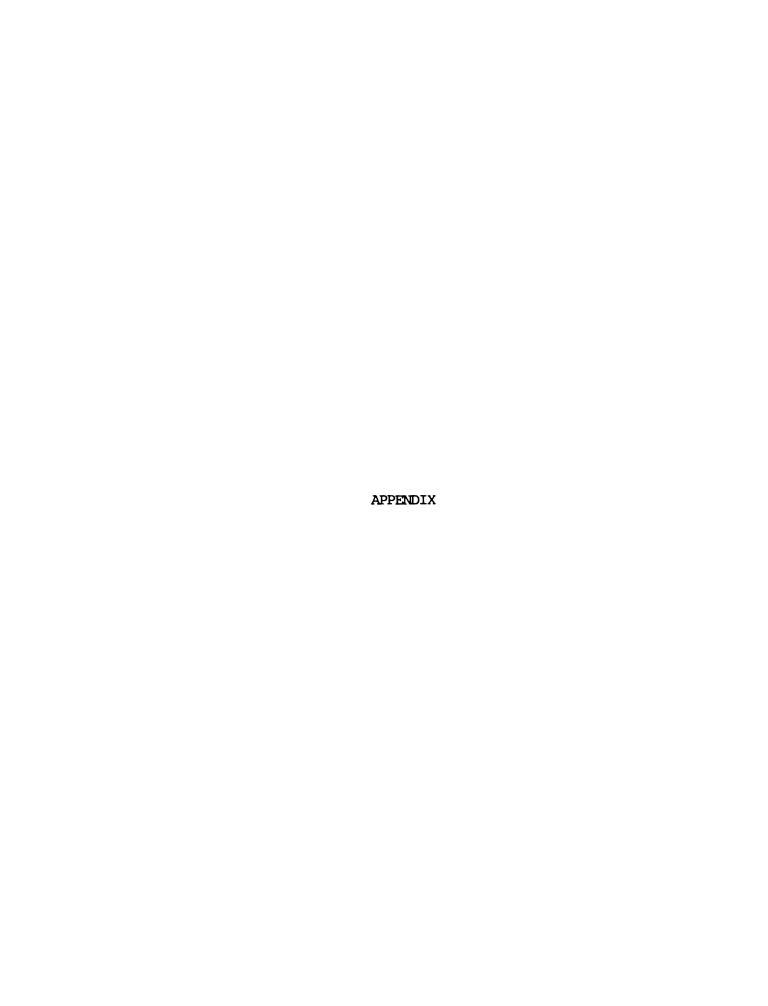
Since Newcombe first described the Howell-Owosso Anticline as a faulted structure there has been debate as to whether this feature is a faulted anticline or a steeply dipping asymmetrical anticline. The evidence available to this study indicated that the Howell Anticline is a series of en echelon anticlines faulted along the southwest flank. This fault zone is part of the same system as the Northville Anticline which is faulted along its northeast flank. Together the Howell Fault zone and the Northville Anticline are a system of faulted parafolds developed in relation to compressional simple shear wrench fault mechanics acting on basement lines of weakness beneath this area as stress is applied from the east during the oncoming Appalachian Orogeny of Mississippian time.

This same compressional stress is responsible for developing the reservoir qualities of the Howell Anticline. Fracturing along the fault zone of the normally dense tight carbonates during compression developed the porosity and permeability necessary for the accumulation and subsequent economic removal of stored hydrocarbons.

It seems reasonable to extend this model of wrench fault mechanics into the central Michigan Basin Area. The many northwest-southeast trending anticlines would occur along minor zones of basement weakness whereas the Howell Fault zone developed along a major zone of basement weakness.

The Howell Anticline has not always been a structural high. During the late Silurian the northeast block was downfaulted in response to regional tensional forces and gravity. This area remained structurally low until it underwent uplift during the Mississippian.

BIBLIOGRAPHY


- Asseez, L. O., 1967, Stratigraphy and Paleogeography of the Lower Mississippian Sediments of the Michigan Basin: Unpublished Ph. D. Thesis, Michigan State University.
- Asseez, L. O., 1969, Paleogeography of Lower Mississippian Rocks of the Michigan Basin: Am. Assoc. Petroleum Geologists Bull., v. 53, pp. 127-135.
- Babb, C. S., 1969, Geologic Interpretive Study and Data Resource Evaluation of the St. Clair and Macomb Counties, Michigan, Subsurface, 1969: Unpublished Master's Thesis, Michigan State University.
- Bloomer, A. T., 1969, A Regional Study of the Middle Devonian Dundee Dolomites in the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Checkley, W. G., 1968, Northville Field: Oil and Gas Symposium, Mich. Basin Geol. Soc. Special Publication, pp. 115-122.
- Chung, P. K., 1973, Mississippian Coldwater Formation of the Michigan Basin: Unpublished Ph. D. Thesis, Michigan State University.
- Cohee, G. V., 1947, Cambrian and Ordovician Rocks in Recent Wells in Southeastern Michigan: Am. Assoc. Petroleum Geologist Bull., v. 31, pp. 293-307.
- _____, 1948, Cambrian and Ordovician Rocks in Michigan Basin and Adjoining Areas: Am. Assoc. Petroleum Geologists Bull., v. 32, pp. 1417-1448.
- _____, and Landes, K. K., 1958, Oil in the Michigan Basin in Habitat of Oil: Am. Assoc. of Petroleum Geology Symposium, pp. 473-493.
- _____, 1965, Geologic History of the Michigan Basin: Journal of Washington Academy Sciences, v. 55, pp. 211-223.
- Dallmus, K. F., 1958, Mechanics of Basin Evolution and its Relation to the Habitat of Oil in the Basin - Habitat of Oil: Am. Assoc. Petroleum Geologists Bull., v. 42, pp. 883-931.

- Dewey, D. E., 1958, A Mechanical and Chemical Analysis of the Middle Devonian Detroit River Group Above the Sylvania in the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Dice, B. B., 1955, A Quantitative Study of Composite Devonian Lithofacies in the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Ells, G. D., 1962, Structures Associated with the Albion-Scipio Oil Field Trend: Michigan Dept. of Conservation, Geological Survey Division.
- _____, 1969, Architecture of the Michigan Basin: Mich. Basin Geol. Soc. Annual Field Excursion, pp. 60-88.
- _____, 1967, Michigan's Silurian Oil and Gas Pools: Geol. Surv. Div., DNR, State of Mich., Report of Invest, no. 2, pp. 1-49.
- Fisher, J. H., 1969, Early Paleozoic History of the Michigan Basin: Mich. Basin Geol. Soc. Annual Field Excursion, pp. 89-95.
- _____, et al, 1969, Stratigraphic Cross-Sections of the Michigan Basin: Michigan Basin Geol. Soc., Special Publication.
- Fincham, W. J., 1975, The Salina Group of the Southern Part of the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Gill, D., 1973, Stratigraphy, Facies, Evolution and Diagenesis of Productive Niagaran Guelf Reefs and Cayugan Sabkha Deposits, The Belle River Mills Field, Michigan Basin: Unpublished Ph. D. Thesis, University of Michigan.
- Harding, T. P., 1974, Petroleum Traps Associated with Wrench Faults: Am. Assoc. Petroleum Geologists Bull., v. 58, pp. 1290-1304.
- Hinze, W. J., 1963, Regional Gravity and Magnetic Anomaly Maps of the Southern Peninsula of Michigan: Geol. Survey of Mich., Report of Invest., no. 1.
- and Merritt, D. W., 1969, Basement Rocks of the Southern Peninsula of Michigan: Mich. Basin Geol. Soc. Annual Field Excursion, pp. 28-59.
- , Merritt, D. W. and Kellogg, R. L., 1971, Gravity and Aeromagnetic Anomaly Maps of the Southern Peninsula of Michigan: Geol. Survey of Michigan, Report of Invest., no. 14.
- Jodry, R. L., 1954, Reflection of Possible Deep Structures by Traverse Group Facies Changes in Western Michigan: Am. Assoc. Petroleum Geologists Bull., v. 41., pp. 2677-2694.
- Keck, W. G., 1937, Geophysical Measurements in Livingston County: Mich. Acad. of Sci. Papers, v. 23, pp. 463-476.

- Kellogg, R. L., 1971, An Areomagnetic Investigation of the Southern Peninsula of Michigan: Unpublished Master's Thesis, Michigan State University.
- Kilbourne, D. C., 1947, The Origin and Development of the Howell Anticline in Michigan: Unpublished Master's Thesis, Michigan State University.
- Landes, K. K., Ehlers, G. M., and Stanley, G. M., 1945, Geology of the Mackinac Straits Region: Michigan Geological Survey, Div. Pub. 44, Geol. Ser. 37.
- _____, 1948, Structure of Typical American Oil Fields: Am. Assoc. Petroleum Geologists Bull., v. 3, pp. 299-304.
- _____, 1970, Petroleum Geology of the United States: John Wiley and Sons (Wiley-Interscience), New York, New York, pp, 75-84.
- Lockett, J. R., 1947, Development of Structures in Basin Areas of Northeastern United States: Am. Assoc. Petroleum Geologists Bull., v. 31, pp. 429-446.
- McGinnis, L. D., 1966, Crustal Tectonics and Precambrian Basement in Northeastern Illinois: Ill. Geol. Surv. Report of Invest., no. 219.
- Mesollela, K. J., et al, 1974, Cyclic Deposition of Silurian Carbonates and Evaporites in Michigan Basin: Am. Assoc. Pet. Geol. Bull., v. 58, pp. 34-62.
- _____, 1975, Cyclic Deposition of Silurian Carbonates and Evaporites in Michigan Basin: Am. Assoc. Pet. Geol. Bull., v. 59, pp.538-542.
- Moody, J. D. and Hill, M. J., 1956, Wrench-Fault Tectonics: Geol. Soc. America Bull., v. 67, pp. 1207-1246.
- Newcombe, R. B., 1933, Oil and Gas Fields of Michigan: Mich, Geol. Survey Pub. 38, G. Ser. 32.
- Newhart, R. E., 1976, Carbonate Facies of the Middle Ordovician of the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Newman, E. A., 1940, Trend map of Anticlinal Folding: Michigan Department of Conservation, Geological Survey Division, map 3527.
- Nurmi, R. D., 1972, Upper Ordovician Stratigraphy of the Southern Peninsula: Unpublished Master's Thesis, Michigan State University.
- Pease, R. W., 1969, Normal Faulting and Lateral Shear in Northeastern California: Geol. Soc. America Bull., v. 80, no. 4, pp. 715-720.

- Pirtle, G. W., 1932, Michigan Structural Basin and Its Relationship to Surrounding Areas: Am. Assoc. Petroleum Geologists Bull., v. 16, pp. 145-152.
- Potter, D. L., 1975, The Lower and Middle Silurian of the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Prouty, C. E., 1970, Michigan Basin Paleozoic Evolutionary Development: Geol. Soc. Amer. Abst. with Programs, v. 2 (7), pp. 657-658.
- , 1976a, Michigan Basin A Wrenching Deformation Model?: Abs. with Prog., Geol. Soc. of America, v. 8, no. 4, p. 505.
- _____, 1976b, Implications of Imagery Studies to Time and Origin of Michigan Basin Linear Structures (Abst.): Am. Assoc. Petroleum Geologists Annual Meeting Program, New Orleans.
- Rudman, R. J., Summerson, C. H. and Hinze, W. J., 1965, Geology of Basement in Midwestern United States: Am. Assoc. Petroleum Geologists Bull., v. 49, no. 7, pp. 894-904.
- Runyon, S. L., 1976, A Stratigraphic Analysis of the Traverse Group of Michigan: Unpublished Master's Thesis, Michigan State University.
- Sales, J. K., 1968, Crustal Mechanics of Cordilleran Foreland Deformation a Regional and Scale-Model Approach: Am. Assoc. Petroleum Geologists Bull., v. 52, no. 10, pp.2016-2044.
- Seyler, D. J., 1974, Middle Ordovician of the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Sheldon, F. D., 1963, Transgressive Marginal Lithologies in Niagaran Northern Michigan Basin: Am. Assoc. Petroleum Geologists Bull., v. 47, no. 1, pp. 129-149.
- Stockwell, C. H., 1965, Structural Trends in Canadian Shield: Am. Assoc. Petroleum Geologists Bull., v. 49, pp. 887-904.
- Stonehouse, H. B., 1969, The Precambrian Around and Under the Michigan Basin: Mich. Basin Geol. Soc. Annual Field Excursion, pp. 15-27.
- Thomas, G. E., 1972, Continental Plate Tectonics: North American (abs.): Am. Assoc. Petroleum Geologists Bull., v. 56, p. 658.
- _____, 1974, Lineament-Block Tectonics Williston-Blood Creek Basin:
 Am. Assoc. Petroleum Geologists Bull., v. 58, no. 7, pp. 1305-1322.
- Vening Meinesz, F. A., 1947, Shear Patterns of the Earths' Crust: Trans. Am. Geophys. Union, v. 28, pp. 1-61.
- Whitten, E. H. T. and Beckman, W. A. Jr., 1969, Fold Geometry Within Part of Michigan Basin, Michigan: Am. Assoc. Petroleum Geologists Bull., v. 53, no. 5, pp. 1043-1057.

Wilcox, R. E., Harding, T. P. and Seely, D. R., 1973, Basic Wrench Tectonics: Am. Assoc. Petroleum Geologists Bull., v. 57, no. 1, pp. 74-96.

APPENDIX

LIST OF WELLS USED FOR ISOPACH AND

STRUCTURE CONTOUR MAPS

Legend Permit Number PN S Sunbury Berea-Bedford B-B Α Antrim T Traverse Bell В D Dundee G Salina G Niagara - in area of Pinnacle Reef A-1 Carbonate and Niagara N are grouped together as an undifferentiated carbonate Clinton CL 5-T Upper Cincinnatian - Unit 5 - top 5-B Upper Cincinnatian - Unit 5 - base

5-B		3700		3637		3579				3571	3587							3816																
5-J		3646		3598		3533				3539	3548							3768																
B		3486	3408	3454		3387		3264	3327	3405	3393	3485	3377	3517	3279	3231	3581	3610			3148		3354		4422			4362	4412	3759	4329	4205	4167	3573
Z		2992	2163	3156	3079	2975	3326	3110	3176	3253	3238	3329	3243	3361	3125	3082	3421	3464	2999	2992	3009	3379	3200	3911	3958	3920	3951	3897	4075	3376	3953	3753	3711	3148
g		2370	2329	2397	2294	2320	1715	1647	1683	1713	1688	1738	1785	1767	1692	1655	1930	1956	1581	1562	1575	1941	1795	3157	3178	3175	3162	3104	3153	2494	3092		3065	
D		1527	1491	1540	1469	1422	707	709	721	715	693	720	852	735	788	759	1050	1038	662	664	652	1143	1009	2369	2401	2387	2384	2361	2366	1716	2349	2314	2295	1558
В		1492	1452	1501	1435	1388		199	6 78	1/9	6 50	<i>LL</i> 9	808	691	744	716	1006	995	622	622	910			2334	2365	2352	2349	2320		1678	2313		2261	
Ŧ		1254	1228	1280	1224	1184	440	450	455	452	430	457	590	458		510	802	778	415	415	397	905	790	2088	2114	2093	2089	2067	2075	1428	2054	2029	2014	1303
A		1075	1046	1108	1064	1022	350	396	412	396	358	381	466	354		436	9/9	653	352	342	340	775	99	1861	1885	1877	1871	1853	1856	1239	1845	1817	1798	1087
В-В		935	892	944	873	838		250									446	416	309	188		296	440	1739	1763	1756	1752	1735	1730	1095	1721	1704	1684	926
S		922	883	930	863	825											429	400					420	1727	1751	1744	1740	1720	1714	1082	1710	1692	1672	945
DATUM																																	944 KB	
P.		28620	19384	24161	29964	19371	18796	18912	18968	19240	25536	25622	19200	19235	19274	25650	25759	23743	18841	19061	19166	10141	10792	29973	28858	29747	30592	29748	28913	22607	29415	30091	24470	22273
		6-1S-3E	7-13-選	22-1S-3E	28-1S-5E	33-1S-5E	1-1S-7E	1-1S-7E	1-1S-7E	1-1S-7E	1-1S-7E	1-1S-7E	2-15-75	2-1S-7E	2-1S-7E	2-1S-7E	2-1S-7E	3-1S-7E	12-15-75	12-1S-7E	12-1S-7E	16-1S-7E	27-1S-7E	9-1X-2E	6-1N-2E	6-1N-2E	6-1N-2E	7-IN-2E	子に一名	13-11-26	17-1N-2E	30-IN-ZE	31-1N-ZE	30-1N-3E
LOCATION		Š	ß	Š	包	3	SE	R	Z	Z	MS.	旦	旦	R	ž	旦	¥		₹	SE	SE	Z	S	Š	Z	SE	MS.	邕	Ž	Z	S	_	SE NE	

5-B										4075		4023			3600				3720				!											
5-T										4014		3962			3545				3677															
텀	3622	4022			3987			3934	3938	3852	3800	3797	3708	3717	3545	3598	3670	3733	3536	3710		1		4471				3920	4545					4475
z	3212	3798	3768	3683	3823	3798	3760	3766	3755	3676	3646	3686	3610	3573	3428	3457	3541	3585	3399	3550	3575	3595	3570	4434	4172	4251	3750	3487	4068		4045	3979	4120	3959
U	2716		2650	2576	2980	2205	2115	2228	2218	2056	2172	2046	1938	2024	1944	1923			1847					3319			2745	2609	3191				3204	
Δ	1604	1871	1817	1764	948	875	823	962	814	782	1048	794	832	1047	991	918	791	802	872	260	762	755	730	2501	2485	2520	1928	1825	2427	2450	2438	2403	2433	2407
В					956		770	749		735	995	748		1003	947	870			828					2470	2446		1892	1787	2390					
E	1330	1617	1556	1499	618	550	520	472	491	491	750	505	546	176	718		524	574	298	475	490	490	460	2188	2170	2214	1627	1528	2122	2146	2132	2104	2143	2100
A	1146	1425	1362	1323	472	400	477	328	352	344	900	362	410	640	290		433	385	474	365	350		380	1968	1946	1977	1427	1332	1908	1928	1919	1887	1814	1885
H-B	994	1246	1197	1143		215		268	250		390	203	303	401	438									1839	1839	1863	1280	1186	1782	1810	1792	1767	1792	1761
S	983	1236	1186	1130		190					370			382	422									1827	1818	1850	1268	1173	1768	1797	1786	1754	1779	1748
DATUM	910	15	20	88	930 RB	23	80	16	928	929 KB	36	910 KB	73	63	1043 GL	90	20	15	1029 ਕ	94	96	83	8	44	35	92	45	2	43	72	09	20	2	63
<u>K</u>	16636	23074	23073	23624	19793	15875	17719	25801	19052	24771	26999	27720	19506	22681	19411	23278	19055	19114	20274	19139	19140	19236	19437	30134	29338	29334	30247	30288	29554	29721	30008	29727	30737	29158
LOCATION	邑	SW 15-1N-	¥	医医医		NE NE 6-	NE NW 9	SW NE 10-1N-	SW 12-1N-	SE NW 14-1N-	S	N 6 15-15-	SE 28-1N-	NW 34-1N-	SE 34-1N-	品 SE 34-1N-	SE SE 35-1N-	SE NW 35-1N-	SW SW 35-1N-7E	NM 36-1N-	NW NW 36-1N-	SW NE 36-1N-	SW NW 36-1N-	SW NW 3-2N-	SW SW 7-2N-	NW NW 18-2N-	SW 24-2X-	SW SW 25-2N-	29-24	SE SW 30-ZN-	SW 30-28-	SE SE 31-2N-	¥	NW SW 32-2N-

Т 5-В	1	-	14 4451		1	!!	!		-	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	-	1		•	1682 4743	•	•				1	1	-		1	1							
7-5-T	1	1	51 44	1	1	1	1		1	1	1	} }	'	•	7			1	1	 	1	1	1	1	89	31 -		1	02	54	03	1	
병	1	ł	42	1	ı	l	i	ł	1	1	1	ł	40	44	45	i	ı	i	1	l	1	1	ł	ł	41	42	ł	ı	50	49	49	1	
z	3991	4006	4052	3806	3838	3872	3859	3809	3809	3867	3823	3824	3825	4104	4337	3989	3843	3855	3879	3992	3953	4134	3927	3928	3989	4060	4294	3898	4831	4766	4699	3833	· (
ტ	-		2759	2167	2195	2237	2225	2178	2183	2253	2423	2590	2513		2998	2337	2458	2808	2937	2472	2563		2612	2716	2255			2192	3888	3713	3584	2173	
Ω	2430	2412	1979	836	859	842	862	885	864	906	1037	1152	1085	1758	2139	960	1076	1314	1443	1106	1152	1082	1135	1288	954	1750	1750	1064	2595	2584	2563	977	
В			1939	792	819	196	816	838	831	857	983	1095	1025		2092	911	1020	1255	1374	1056	1102		1131	1233	907	1705	1640	1010	2552	2543	2523	929	
E	2128	2111	1676	522	543	510	530	611	622	597	557	578	614	1304	1774	623	572	614	929	684	636	733	630	644	621	1430	1425	756	2256	2246	2236	632	
A	1911	1893	1480	308	344	300	315	415	403	400	353	373	395	1066	1560	419	353	398	435	492	444	550	426	439	440	1285	1240	630	2030	2022	2008	435	
В-В	1787	1769	1331	147	169	122	134	264	244	271	175	196	208	883	1390	241	179	223	250	307	255	350	238	245	235	1105	1055	384	1908	1906	1897	263	
S	1773	1157	1319	134	156	113	125	254	230	258	168	183	197	870	1374	229	166	210	236	295	242	340	225	232	223	1088	1040	364	1894	1893	1885	250	
DATUM									到 006														926 GL	-	896	940	1015		905 KB				
Z.	29297	29306	28752	26101	26099	26819	26820	26817	26096	26116	26102	26109	16067	18974	25868	26758	26807	13287	26107	26111	26092	15389	26108	26106	11818	1344	14120	21298	28739	27910	28145	23727	1 0 0
	12-28-2E	S-X-E	7-24-36	1-2N-4E	1-2N-4E	1-2N-4E	1-2N-4E	2-2N-4E	2-2N-4E	2-27-46	2-21-4E	2-2N-4E	2-X-4E	3-2N-4E	4-2N-4E	6-2N-5E	7-24-5E	7-2N-5E	7-24-5E	8-2N-5E	8-ZN-5E	3-2N-5E	17-2N-SE	8-2N-5E	5-2N-5E	4-2N-5E	4-2N-5E	5-8-7E	5-38-2E	11-38-18	9-38-2E	1-3N-3E	
LOCATION	SW NW	_	NW NE	SW NW	S	SER	邑	邑	SW NW NE	NE NE	邑	月		图		SW RE	SW NW	NW SW	SE	S.	SW	S	Z	局	NW NW	*SW NW SW 3	品品	NE NE	NW NE	NE SE	NE NE	_	

S-B	4193	4157																												4705				ļ
5	4140	4108																												4647				
뒴	3955	3954			4770		4460			4430	4642						4185			4274										4483	4420	4547	4296	4541
z	3807	3823	3736	3867	4632	3803	4323	3929	3947	4272	4471		4007	4073	3948	3993	4050	4027	4100	4132	3955	3888	4042	3865	3883	3895	3931	3891	3887	4361	4296	4407	4158	4407
ပ	2270	2188	2359	2498	2980	2267		2485	2558	2841			2259	2305	2469	2286	2376	2436	2270	2472	2249	2219	2231	2241	1985	2244	2250		2243	2554	2514	2680	2438	2574
ρ	1243	988	1263	1346	2060	1274	1632	1354	1418	1987	2160	1044	985	1022	1358	1071	1057	1383	1611	1243	846	820	835	856	988	843	842	840	859	1253	1213	1324	1095	1359
В	1196	942	1214	1301	2012	1234		1307	1369	1944		998	936	970	1310	1029	1009	1333	1564	1206	798	778	788	810		796	799		812	1199	1160	1271	1042	1305
EH	936	675	918	1011	1730	939	1269	1012	1070	1673	1845	695	622	099	1018	724	186	1043	1269	957	208	478	490	539	650	495	206	505	528	892	855	953	726	966
A	765	475	729	811	1518	772	1086	810	871	1485	1648	465	418	451	812	559	601	837	1071	760	290	268	284	403	478	287	290	295	313	724	683	779	545	836
H-B	622	348	283	652	1356	619	924	652	716	1321	1502	309	255	286	712	489	472	9/9	910	605		88	118	282	305		135	135	140	536	499	593	356	643
S	610	334	211	642	1343	909	903	639	701	1308	1480	292	240	274	869	477	460	099	890	583		9/	104	262	289		119	110	127	523	486	579	343	628
DATUM	920 KB	o o	m	σ	0	4	_	_	_	922 KB	₩	_	~	~	_	m	ന	ന	_	0	10	N	_	₹*	~	m	ın	_	_	0	_	~	974 KB	_
*	29051	23374	28283	28524	10990	28209	29339	28308	28405	29675	19063	15561	28949	28950	28440	28461	29296	28482	28556	28594	26816	26759	26815	26775	13877	12603	2179	14846	26760	27986	30033	27034	22853	24029
	1-3N-3E	2-34-35	2-32-35	2-3N-3E	11-38-38	12-38-36	12-34-36	12-38-36	12-34-36	34-3N-3E	36-3N-3E	6-3X-4E	6-3N-4E	6-3N-4E	7-3N-4E	7-3N-4E	7-3N-4E	18-3N-4E	18-3N-4E	20-37-4E	27-3N-4E	27-3N-4E	27-3N-4E	34-3N-4E	34-3N-4E	35-3N-4E	35-3N-4E	35-3N-5E	35-3N-4E	11-3N-5E	13-3N-5E	25-3N-5E	28-3N-5E	22-3N-6E
IOCATION	SW			_						¥		医医							M	呂	邕	SE SE	Z	NA NE	S	SW SE	NE SIN	MN MN	NW SE	旦	NE NA	邕	WS WS	SE SE

		5346			4527								İ	5236	5304	5530	5718		5384
		5278			4467									5194	5227	5456	5648		5298
4500	7007	5079			4294		4184			4060	4818		5005	5023	5037	5260	5455		5128
986 V		4935	4247	4152	4164	3889	4059	3887	3907	3919	4722	4876	4893	4905	4945	5167	5336	4719	5019
		3215	2512	2448	2759	2120	2329	2221	2217	2230	2812	2994	3003	3073	3155	3454	3536	3000	3162
1406		2103	1258	1296	1564	1351	1094	983	978	1004	1530	1754	1763	1858	2098	2308	2366	1830	1845
1352	777	2057	1208	1264	1519	1313	1045	937	931	928	1474	1698	1707	1802	2050	2259	2318	1777	1798
1047		1741	881	1014	1207	1072	729	642	629	647	1146	1377	1385	1498	1718	1912	1978	1475	1457
נסמ	100	1527	099	802	1030	873	513	448	426	420	974	1206	1214	1326	1492	1686	1753	1225	1244
873		1374	504	099	875	726	358	280	252	245	794	1023	1027	1129	1336	1539	1610	1080	1070
435	2	1360	490	645	860	710	345	267	239	235	779	1005	1009	1113	1322	1525	1597	1060	1055
97801	つたのとて	26623	29089	28255	22642	28499	24324	28128	29021	11737	22995	23426	23169	22665	22379	27907	23376	16738	23375
אני ולה איב	ATT OT THE	SW 21-4N-	SW 22-4N-	NW 27-4N-	NE 28-4N-	SW 35-4N-	NW 35-3N-	SE 35-48-	SW 36-4N	SW 36-4N-	SW 20-4N	NE 22-4N-	NW 23-4N-	吊子の	るとの	NA 5-57-	SW 22-57-	NW 23-5N-	SE 15-58-
														巴	SE	8 8 8	SS.	*SW NE	8
	NW NE 16-AN-32 10848 012 ES 648 801 1047 1352 1406 4386 4509	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 4386 4509	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 4386 4509 SW SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 4386 4509 SW SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW SW 22-4N-3E 29089 940 KB 490 504 660 881 1208 1258 2512 4247	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 4386 4509 SW SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW SW 22-4N-3E 29089 940 KB 490 504 660 881 1208 1258 2512 4247 S½ NW 27-4N-3E 28255 932 KB 645 660 805 1014 1264 1296 2448 4152	NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 —— 4386 4509 —— SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW 22-4N-3E 29089 940 KB 490 504 660 881 1208 1258 2512 4247 —— —— NW 27-4N-3E 28255 932 KB 645 660 805 1014 1264 1296 2448 4152 —— —— NE 28-4N-3E 22642 900 KB 860 875 1030 1207 1519 1564 2759 4164 4294 4467	NW NE 16-4N-3E 19848 912 FB 635 648 801 1047 1352 1406 —— 4386 4509 —— SW SW 21-4N-3E 26623 915 FB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW SZ-4N-3E 28255 932 FB 645 660 805 1014 1264 1296 2448 4152 —— SY NW Z7-4N-3E 22642 900 FB 860 875 1030 1207 1519 1564 2759 4164 4294 4467 SW 35-4N-3E 28499 921 GL 710 726 873 1072 1313 1351 2120 3889 —— ———————————————————————————————	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 —— 4386 4509 —— 5W SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW SW 22-4N-3E 29089 940 KB 490 504 660 881 1208 1258 2512 4247 —— 5X NW 27-4N-3E 28255 932 KB 645 660 805 1014 1264 1296 2448 4152 —— NW NE 28-4N-3E 22642 900 KB 860 875 1030 1207 1519 1564 2759 4164 4294 4467 SW 35-4N-3E 28499 921 GL 710 726 873 1072 1313 1351 2120 3889 —— NW 35-3N-3E 24324 906 KB 345 358 513 729 1045 1094 2329 4059 4184 ——	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 — 4386 4509 — SW SN 21-4N-3E 26623 915 RB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW 22-4N-3E 29089 940 RB 490 504 660 881 1208 1258 2512 4247 — SY NW 27-4N-3E 28255 932 RB 645 660 805 1014 1264 1296 2448 4152 — NW XE 28-4N-3E 28499 921 GL 710 726 873 1072 1313 1351 2120 3899 — SW 35-4N-3E 28128 937 KB 267 280 448 642 937 983 2221 3887 — <	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 —— 4386 4509 —— SW SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW 22-4N-3E 29089 940 KB 490 504 660 881 1208 1258 2512 4247 —— SY NW 27-4N-3E 28255 932 KB 645 660 805 1014 1264 1296 2448 4152 —— NW NE 28-4N-3E 28499 921 GL 710 726 873 1072 1313 1351 2120 3889 —— SW 35-4N-3E 28128 937 KB 267 280 4059 4184 —— SW 35-4N-3E 28128 937 KB 267 280 426 629 931 978 221 3887 —— SW SW 36-4N-3E 29021 945 KB 239 252 426 629 931 978 2217 3907 —— ——	NW NE 16-4N-3E 19848 912 FB 635 648 801 1047 1352 1406 —— 4386 4509 —— SW SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW 22-4N-3E 28255 932 KB 645 660 805 1014 1264 1296 2448 4152 —— SY NW 27-4N-3E 28499 921 GL 710 726 873 1072 1313 1351 2120 3889 —— SW 35-4N-3E 24324 906 KB 345 358 513 729 1045 1094 2329 4059 4184 —— SW SS-4N-3E 28128 937 KB 267 280 448 642 937 983 2221 3887 —— SW SW 36-4N-3E 29021 945 KB 239 252 426 629 931 978 2217 3907 —— SW SS-4N-3E 1737 937 235 245 420 647 928 1004 2230 3919 4060 ——	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 —— 4386 4509 —— SW SW 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW SW 22-4N-3E 28089 940 KB 490 504 660 881 1208 1258 2512 4247 —— ——————————————————————————————	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 —— 4386 4509 —— 538 538 5079 5278 538 539 540 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 538 53 53 53 540 540 KB 22-4N-3E 28255 932 KB 645 660 805 1014 1264 1296 2448 4152 —— 538 539 53 540 540 540 540 540 540 540 540 540 540	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 —— 4386 4509 —— 53 5079 5278 55 507 51 51 1741 2057 2103 3215 4935 5079 5278 55 55 55 55 55 55 55 55 55 55 55 55 55	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 —— 4386 4509 —— SW SW 21-4N-3E 26623 915 RB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW SW 22-4N-3E 29089 940 RB 490 504 660 881 1208 1258 2512 4247 —— SW SW 22-4N-3E 28255 932 RB 645 660 805 1014 1264 1296 2448 4152 —— SW SO-AN-3E 22642 900 KB 860 875 1070 1519 1564 2759 4164 4294 4467 SW 35-3N-3E 28499 921 GL 770 726 873 1045 1036 1044 2329 4164 4	NW NE 16-4N-3E 19848 912 RB 635 648 801 1047 1352 1406 4386 4509 SW SW 21-4N-3E 26623 915 RB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SW SW 22-4N-3E 29089 940 RB 660 881 1208 1258 2448 4152 SW SW 22-4N-3E 28459 940 RB 660 881 1208 1258 2448 4152 SW 35-4N-3E 28459 921 GL 710 726 873 1072 1313 1351 2120 3899 SW 35-4N-3E 28128 937 KB 267 280 448 642 937 983 2221 389 SW 35-4N-3E	NW NE 16-4N-3E 19848 912 FB 635 648 801 1047 1352 1406 — 4386 4509 — 58 SN 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 SN 22-4N-3E 29089 940 KB 490 504 660 881 1208 1258 2512 4247 — — — — — — — — — — — — — — — — — — —	NW NE 16-4N-3E 19848 912 FB 635 648 801 1047 1352 1406 — 4386 4509 — 538 53.15 49.35 5079 5278 58 SN 21-4N-3E 26623 915 KB 1360 1374 1527 1741 2057 2103 3215 4935 5079 5278 58 NN 22-4N-3E 29089 940 KB 490 504 660 881 1208 1258 2512 4247 — — — — — — — — — — — — — — — — — — —	

