TRACE-METAL DISTRIBUTION IN THE SEDIMENTS OF ROCHESTER HARBQR. NEW YORK AND VICINITY Thesis {or II“ Degree of M. S. MICHIGAN STATE UNIVERSITY Cyrus SeeIey Picken, Jr. I975 WWWMW 'I “w ;"_§l ILDR iMicfiIgaI 11323: University ha ABSTRACT TRACE-METAL DISTRIBUTION IN THE SEDIMENTS OF RUCHESTER HARBOR, NEW YORK AND VICINITY By Cyrus Seeley Picken, Jr. During the summers of 1971 and 1972, the R/V Shenehon collected water and sediment samples from 28 sampling sites within the Rochester Embayment and the Genesee River as part of the Lake Survey Center's (NOA— NOAA) ongoing effort to gather data for the International Field Year on the Great Lakes. The samples collected were used to relate trace-metal distributions to the chemical and physical depositional environments in the Rochester Embayment and Harbor. Variables used consist of the follbwing: (1) depth, (2) specific conductivity, (3) percent saturation dis- solved oxygen, (4) percent dry solids, (5) percent vola- tiles, (6) percent oil and grease (hexane extraction), (7) chemical oxygen demand, (8) percent sediment finer than four phi (clay and silt sized), (9) percent organic carbon, (10) percent total carbon, (11) pore-water concentrations of Cr, Co, Cu, and Zn, and (12) concentrations of sedi- ment-bound Cr, Co, Cu, and Zn. Direct analysis of data indicates large amounts of trace-metals (Cr = 60mg/kg; Co = Elms/kg, Cu - 40mg/kg; Zn = 190mg/kg) are accumu- lating about 2500 meters directly north of the Cyrus Seeley Picken, Jr. Rochester Harbor breakwaters. This is consistent with the finding that that area is a sink of fine-grained material and organic carbon both of which are associated with trace- metal uptake (Krausk0pf, 1956; Cline, £2 31., 1972; Cline and Upchurch, 1975; Kotsch, 1974). Although that concen- tration of trace-metals appears not to conform to the pre- vailing westerly currents, investigation of the ratio of trace-metal content to percent clay- and silt-sized sedi- ment (four phi and finer) does reveal that a plume of trace-metal is accumulating 1700 meters east of the Roch- ester breakwaters. The variable set less percent saturation dissolved oxygen and Specific conductivity was run for R-mode and Q-mode factor analysis (Harbaugh and Merriam, 1968; VOgelback Computer Center, 1975). R-mode factor analysis was used to show relationships between variables to aid in the understanding of metal-fixation causes, while Q-mode factor analysis was used to show relationships be- tween sample (stations) and aid in the interpretation of depositional environments. Combination of the two methods allows identification of the sources and sinks of sedi- ment-bound trace-metals. R-mode factor analysis using principal factor (no iternations) suggest that depth, chemical oxygen demand, percent 011 and grease (hexane extraction), percent vola- tiles, percent sediment finer than 4 phi, percent organic Cyrus Seeley Picken, Jr. carbon, percent total carbon, sediment-bound COpper, and sediment-bound zinc are associated with each other. Like- wise, sediment-bound chromium and cobalt appear to be associated and be more mobile than sediment-bound copper or zinc. Additionally, chromium, cobalt, and c0pper are likely to occur together in sediment pore water. Finally, percent dry solids and zinc in sediment pore water do not appear to be associated with each other or any of the other variables. Q-mode factor analysis using depth and sediment- bound trace-metals, suggest the existence.of three depo- sitional environments: (1) a river environment, (2) a nearshore environment, and (3) an offshore environment, which appears affected by the inferred plume of materials east of the Rochester breakwaters. Likewise, Q-mode analysis using sediment grain size and sediment-bound trace-metals indicated a unique depositional environment of excess metal loading in the area of the plume. TRACE-METAL DISTRIBUTION IN THE SEDIMENTS OF ROCHESTER HARBOR, NEW YORK AND VICINITY By Cyrus Seeley Picken, Jr. A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geology 1975 ACKNOWLEDGMENTS I wish to thank both Dr. Harold B. Stonehouse and Dr. Thomas A. Vogel for their critical analysis of this work and their service on my thesis committee. I also wish to thank my wife, Suzanne for her patience, under- standing, and eSpecially her typing skill in preparing the original of this work. Finally, I wish to express my sincere gratitude to my thesis chairman and advisor, Dr. Sam Upchurch, with- out whom this study truly would not be possible. ii TABLE OF CONTENDS CHAPTER LIST OF TA BLES O O O O O O O O O O O O O 0 LIST OF FIGURES. . . . . . . . . . . . . . I. IIqTIiODUCTICN O O O O O O O O I O O O O O O Pllrpose. O O O O O O O O O O O O O O O O 0 Location and Geologic Setting. . . . . . . General Remarks About Trace-Metals . . . Occurence of Trace-Metals Within the Depositional Basin . . . . . . . . . . . . Trace-Metal Fixation Models. . . . . . . . II. PROCEDURE. 0 o o o o o o o e o e o e o o 0 Sample COllBCtiOne e o o e o o o e e e o 0 Laboratory Analysis. . . . . . . . . . . . Data Processing. . . III. RESULTS AND DISCUSSION . . . . . . . . . . Direct Data. . . . . Computer Analysis. . . . . . . . . . . . . IV. CONCLUSIONS. . . . . . . . . . . . . . . . LIST OF REFEZL FNCES. . . . . . . . . . . . . . . . APPENDICES. . . . . . . . . . . . . . . . . . . . A. Sample locations . . . . . . B. Physical and chemical data collected for computer analysis. . C. List of cruise data from 7/71 to 9/71. iii Page iv ll 15 14 16 16 19 23 25 25 82 96 99 105 105 105 110 TABLE 1. 6. LIST OF TABLES Page Eigenvalues, communalities and percents of variability for R-mode analysis of variable 1181: O O O O O O 0 O O I O O O O O O O O O O 83 R-mode factor matrix of variable list using principal factors, no iterations . . . . . . 84 Eigenvalues, communalities and percents of variability for Q-mode analysis of sample sites using depth and sediment-bound trace- metals 0 O O O O O O O O O O O O O O O O O O 87 Q-mode factor matrix of sample sites using depth and sediment-bound trace-metals and principal factors, no iterations . . . . . . 88 Eigenvalues, communalities, and percents of variability for Q-mode analysis of sample sites using grain size and sediment-bound trace-metals e e e e e o o o o o e e o e o o 92 Q-mode factor matrix of sample sites using grain size and sediment-bound trace-metals and principal factors, no iterations . . . . 95 iv LIST OF FIGURES FIGURES 1. 2. 5. 9. 10. 11. 12. 15. Bathymetry of Lake Ontario and location of St'lldy area 0 o e o O o o e o e o e o o o 0 Distribution of sediment types along the southern shore of Lake Ontario . . . . . . Summer surface circulation pattern of Lake Ontario based on data from 1965-1967 . . . Location of sediment- and water-sampling stations in the Rochester Embayment and Harbor. . . . . . . . . . . . . . . . . . Distribution of depth in the Rochester Embayment and Harbor . . . . . . . . . . . Distribution of surface mean specific con- ductivity within the study area. . . . . . Distribution of percent variation of surface mean specific conductivity within the study area 0 O O O O O O O O O O O O O O O O O 0 Distribution of bottom mean specific con- ductivity within the study area. . . . . . Distribution of percent variation of bottom mean Specific conductivity within the study area 0 C O O C O O O O O O O O O O O O O 0 Distribution of percent saturation of dis— solved oxygen in the study area. . . . . . Distribution of sediment grain size (4 phi and finer) in the study area. . . . . . . Distribution of percent dry solids from sediment in the study area ... . . . . . . Distribution of percent organic carbon from sediment in the study area . . . . . . . . Page 17 26 28 5O 52 54 57 59 42 45 FIGURE 14. 15. 16. 17. 18. 19. 20. 21. 22. 25. 24. 25. 26. 27. 28. 29. so. 51. Distribution sediment in the study area . . . . . . . . . Distribution of percent-volatiles from sedi- of percent total carbon from ment in the study area . . . . . . . . . . Distribution of percent oil and grease (hexane extraction) from sediment in the study area . Distribution of chemical oxygen demand from 000004000900... sediment in the study area . . . . . . . . Distribution water. 0 o o e e e o o 0-. o e o e e o o e 0 Distribution water. . . . Distribution water. . . . Distribution Distribution Distribution Distribution Distribution Distribution of cobalt in sediment pore of chromium in sediment pore of COpper in sediment pore O O O O I O C O O O O O O O O of zinc in sediment pore water of sediment-bound-cobalt. . . of sediment—bound chromium. . of sediment-bound copper. . . of sediment-bound zinc. . . . of the ratio of sediment-bound cobalt to percent clay and silt. . . . . . . Distribution of the ratio of sediment-bound chromium to percent clay and silt. . . . . . Distribution of the ratio of sediment—bound copper to percent clay and silt. . . . . . . Distribution of the ratio of sediment-bound ‘ zinc to percent clay and silt. . . . . . . . Distribution depth and sediment-bound trace-metals. . . . Distribution of Q—mode factor regions using grain size (4 phi and finer), and sediment- of Q-mode factor region using bound trace-metals. . . . . . . . . . . . vi Page 47 49 52 54 56 58 6O 62 65 67 69 71 75 75 77 79 89 94 INTRODUCTION Purpose Fundamental to increased understanding of environ- mental problems is not only the develOpment of adequate data collection techniques and survey methods, but also the develoPment of adequate models to explain complex mechanisms at work in nature. Specifically, Kotsch (1974), in a regional study of Upper Lake Michigan, pr0posed that the uptake of trace-metals in lake sediments corresponds to the proximity of the source and to sedimentary environ- ment. If that is valid, one would expect a plume of high trace—metal concentration near the source conforming to the prevailing currents and local sedimentary environment. Regional studies, such as those of Ruch, 22 31. (1970), Kennedy, st 21. (1971), Walters, 22 31. (1972), and Kotsch (1974), usually include one or more samples that contain above background quantities of trace-metals and that are near predicted metal sources, such as urban areas. Few studies have examined in detail the configuration of trace-metal fixation at a point source with the goal of determining the effect of local sedimentary environment on waste plume identification. This study tests the re- lationship of trace-metal uptake and fixation to sediments near the Rochester Harbor area of Lake Ontario. Location and Geologic Setting Rochester Harbor is located in the central portion of the southern shore of Lake Ontario (Figure l). The harbor area consists of a large embayment that extends south of a line from the west at Braddock Point to Nine Mile Point on the east of the Rochester area. The total area of the em- bayment is approximately 90 km2 and it contains approxi- mately 1.5 x 109 m3 of water (Casey, gt 31., 1975). The Genesee River flows through the city of Rochester into the bay and is the primary tributary to the bay. The Genesee River has been identified as a major source of pollutants to Lake Ontario (Federal water Pollution Control Administration, 1968), although other sources of sedimen- tary and chemical contamination occur in the area. Annual mean discharge from the Genesee is 76 mB/s (Upchurch, 1972b). Loading of sediments from the Genesee is esti- mated to be 69,000 metric tons/year (Erosion and Sedimen- tation Work uroup, 1970), which results in rapid sedimen- tation within the harbor area and necessitates frequent maintenance dredging. The average annual dredged volume from Rochester Harbor is 275,000 cubic meters (Erosion and Sedimentation Work Group, 1970), which is now diSposed of on nearby land areas. Prior to use of land diaposal, the Spoils were discharged to the open lake. The primary nearshore sediments are sand and gravel Figure 1. Bathymetry of Lake Ontario in 40 meter contours and location of study area. (Modified from International Joint Com- mission, 1969). Jae .&u\\ a \ .2. _ Q a. \\ \‘Obmozs. .2. .m—h cwhmeUOC g \ do... pace ‘ocaooou Sacco» .m‘QW N¥ .——~——--- —--—-——--. ——-—————-—--- .—-—————-———— ........ ....... ........ '25siéés‘ééééiéiz. SAND and GRAVEL ...... Figure 5. Summer surface circulation of Lake Ontario as inferred from drogue and drift card observations, 1965-1967. (Modified from International Joint Commission, 1969). . .hh _ .2. 0 ... . .mh w‘tw WkC for 72 hours. The samples were reweighed to obtain dry sediment weight for later chemical calculations. The sediment samples were then digested to free the various trace-metals from organic complexes and from adsorption sites on minerals (Curtis, 1964). Sixteen m1 of concentrated aqua regia (3HCl : lHNOB) per sample were TI 21 used to put the metals into solution. Samples were di- gested on a hot plate at 78C)C until reactions were com- pleted.- An additional 16 m1 of aqua regia were added and the mixture was allowed to digest overnight. Following digestion, 10 ml of 5% CaCl2 solution were added to the sediment residue to remove those trace-metals on cation-exchange sites on the clay minerals (Cline, 33 31., 1973; Kotsch, 1974). The sediment residues were filtered through a 0.45P Millepore filtration system. Volumetric flasks which were used to collect the filtrate were washed and rinsed with distilled water and concen- trated END}. The pH of the filtrate was measured with a Photovolt pH meter using reference standards and glass electrodes. Samples with a pH less than 2.0 were adjusted to that pH with 10% NaOH solution so that the filtrate could be directly analyzed on the atomic absorption spectOphotometer. Eleven samples were diluted to 100 m1 and the remaining 17 were diluted to 200 m1. Other portions of the frozen sediment samples were allowed to thaw, centrifuged three times to extract inter- stitial water, where present, and the pore water was then analyzed for trace-metal (Cr, Co, 0n, and Zn) content. Both the pore water samples and the filtrates from the digested sediment were analyzed using a Perkin-Elmer Atomic Absorption Spectophotometer, Model 303, using an acethylene- air flame. A triple slot burner was used in the analysis 22 of all the metals. A series of four to five standards were used to span the concentration range of the unknowns in the linear portion of the absorption curve. Those samples that fell outside of the linear portion of the absorption curve were diluted to the proper concentration range. Error from the standard curve was essentially uniform for all metals. Multiple readings of standards and unknowns were made. The standard deviations of the absorbsnce readings of the standards were converted to concentration values from the standard curve at 1 mg/l and were used to determine the following apparent error range: 1(00 =0.11 mg/l, 11 Cr =o.os mg/l, la’Cu =2o.1 mg/l, and lJ’Zn =0.06 mg/l. Maximum errors are at the limits of analysis, either where concentrations are below detectable limits or approaching the non-linear portion of the standard curve. The sediment grain size was determined by pre—weigh— ing dry beakers, reweighing the beakers with approximately 10g of dry sediment, and then wet sieving the samples on the 4 phi screen. The sample fractions remaining on the sieve after wet sieving were returned to their beakers, dried overnight, then weighed to determine the weight per- cent of sediment coarser than 4 phi (sand-sized and coarser) and, by difference, percent finer than 4 phi (silt and clay-sized). 25 Data Processing In order to characterize the movement of Genesee River water as it leaves the harbor, conductivity data were analyzed for the water—sample sets collected from each station during 1971. Mean conductivities and co- efficients of variation were calculated for surface and bottom water samples at each station. Use of R-mode factor analysis (Harbaugh and Merriam, 1968; Vogelback Computer Center, 1973), which shows re- lationships between variables, aids in the understanding of metal-fixation causes, while use of Q-mode factor analysis (Harbaugh and Merriam, 1968; Vogelback Computer Center, 1973), which shows relationships between samples (stations), aids in the interpretation of depositional environments, and allows identification of the sources and sinks of sediment—bound trace-metals. Data were first normalized to a linear scale (0.0 low- est value, 1.0 highest; Prezbindowski, 1974), then run for R-mode and Q—mode factor analysis (Harbaugh and Merriam, 1968; Vogelback Computer Center, 1973). Since the data matrix was incomplete, the missing-data Option and Option no. 2 (pair-wise deletion of missing data) within the S. P. S. S. package (Nie, 33 31., 1970) were used to maximize the information fed into the computer. Varimax rotation and Kaiser normalization routines were utilized. 0011' and CC} 24 Variables factored for R-mode analysis included depth, chemical oxygen demand, percent oil and grease ( hexane extraction), percent dry solids, percent volatiles, per- cent silt and clay, percent organic carbon, percent total carbon, pore water concentrations of Cr, Co, Cu, and Zn, and sediment concentrations of Cr, 00, Cu, and Zn. Use of the total variable list, if variables are correlated, in Q-mode factor analysis does not appreciably add new knowledge. Since selection of those variables with highest loadings on each factor in the R—mode analysis was statistically unsuitable (cumulative percent of variation over 100 percent; communalities over 1.0; missing data) for this study, Q-mode analyses were run on the basis of most complete data in the following manner: (1) five factors including depth, and trace-metal concentration in sediment with the missing data option and option no. 2_ and (2) five factors including percent silt and clay and trace-metal concentration in sediment. The data matrix is included as Appendix B. RESULTS AND DISCUSSION Direct Data Figure 5 shows the depth distribution of the sample sites in two meter contours. The gradient of the bottom appears to be rather uniform with the exception of the re- gion near the breakwaters, which is dredged to maintain the approaches to the harbor. Maximum sample depth is 14 meters. Specific conductivity distribution, which is related to the total concentration of ionized materials in the water (American Public Health Association, 1971) was used to trace net water movement from the Genesee River for the summer of 1971. The mean and the coefficient of variation of the conductivity of surface water (Figures 6 and 7) show a plume that coincides with net littoral drift for upper water. The same data for bottom water (Figures 8 and 9) show essentially the same pattern although the con- ductivities are less. The difference between conductivity distributions for surface and bottom water can be explained as the movement of warmer water from the Genesee River over the colder water of Lake Ontario. If trace-metals were directly fixed from a point source such as the Genesee, then one could expect trace-metal in the sediment to closely coincide with the plume of dissolved substances 25 26 Figure 5. Distribution of depth in 2 meter contour intervals in the Rochester Embayment and Harbor from data collected on 7/21/71. 27 28 Figure 6. Distribution of surface mean specific conductivity in 50 micro-mho contour intervals in the Rochester Embayment and Harbor from data collected 7/71-9/71. 29 Figure 7. 30 Distribution of percent variation of sur- face mean specific conductivity in 10 per- cent contour intervals in the Rochester Embayment and Harbor from data collected 7/71 - 9/71. 31 2 Ithlb HI: Figure 8. 32 Distribution of bottom mean specific con- ductivity in 20 micro-mho contour intervals in the Rochester Embayment and Harbor from data collected 7/71 - 9/71. 55 mnn Rn. Figure 9. 54 Distribution of percent variation of bottom mean Specific conductivity in 10 percent contour intervals in the Rochester Embayment and Harbor from data collected 7/71 - 9/71. 55 283—30 HI: 36 represented by conductivity. .The present saturation of dissolved oxygen is low in the Genesee River and rapidly increases beyond the in- fluence of the Rochester breakwater (Figure 10). Thus, ,the oxygen content of the water of Rochester Harbor may be suitable to the movement of metals out of the harbor as soluble species, organic complexes and sulfides; in the open lake, the oxygen content is conducive to metal fixa- tion by oxidation of organic ligands and aqueous species (Garrels and Christ, 1967; Cline and Upchurch, 1973) as well as by adsorption on sediment. The distribution of sediment clasts finer than 4 phi (Figure 11) is critical to metal fixation because clay minerals and associated organic sediment have the capa- bility of fixing metals (Ruch, 33 31., 1970; Kennedy, 33 31., 1971). The offshore distribution of clay and silt appears to be a function of depth and the interaction of the harbor breakwaters with littoral drift. Clay and, silt-sized sediments are confined to deeper waters and the harbor approaches. Sand-sized material has accumulated nearshore and clearly shows the barrier-effect of break- waters where the axis of eastward littoral transport is deflected offshore and westward transport results in sand accumulation inshore. Inshore sand accumulation on the east side of the breakwater is probably a function of fetch. Whereas wind from the south and west (the Figure 10. 57 Distribution of percent dissolved oxygen immediately above the sediment/water interface in 10 percent contour intervals in the Rochester Embayment and Harbor from data collected 8/21/71. 38 Figure 11. 59 Distribution of sediment grain size (percent 4 phi and finer) in 20 per- cent contour intervals in the Rochester Embayment and Harbor from sediment samples collected 8/72. 40 0. 345.80 08¢.— 41 prevailing directions; Upchurch, 1973a) set up eastward littoral currents, there is insufficient fetch to allow for wave and nearshore current generation. Winds from the north and east have sufficient fetch to set up currents and waves that transport sand in a westerly direction where it accumulates against the breakwaters. Casey, 33 31., (1975) have shown, using current measure- ments that net littoral drift is westward in the Rochester Embayment during periods of northerly and/or easterly wind stress. Simultaneously, during periods of westward littoral drifts, erosion of sand-sized material on the western side of the breakwaters increases depth. During periods of normal transport from the west, accumulation of offshore clay and silt and nearshore sand is encouraged by water depth and the barrier posed by the breakwaters. The fine-grained material in the harbor is a function of rapid sedimentation in the artificially deepened river channel. There is a probability that dredging of this harbor sedi- ment has encouraged the transport of fine-grained material outside the breakwaters. Percent dry solids (Figure 12), which is a measure of the amount of pore water, is in close agreement with this pattern. For example, the silt- and clay-sized material, which has a higher porosity, is deposited further offshore. Inasmuch as the clay and organic debris are deposited in the deeper water to the north of the harbor, one would expect the uptake of Figure 12. Distribution of percent dry solids found within sediment from the Rochester Embay- ment and Harbor. Contours are in 5 per- cent intervals. Data based on sediment samples collected 7/71 - 9/71. 43 Y I I I I I l I I I e I IIIIII IIIIIII IIIIII IIIIIII IIIIII IIIIIII IIIIII IIIIIII IIIIII IIIIIII IIIIII IIIIIII IIIIII IIIIIII IIIIII I--"" IIIIII IIIIIII IIIIII 'Il---’ ------ IIIIIII IIIIII IIIIIII IIIIII IIIIII IIIIII IIIIII IIIIII IIII I I I IIIIIII IIIIII IIII'ImIIII-IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII ...................... IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II I II IIII III IIIIIIIIIII II I II IIII II IIIIIIIIIII I I II III... II IIIIIIIIIII I I II IIII II IIIIIIIIIII II I II IIII II IIIIIIIIIII II I II IIII I IIIIIIIIIII I I II IIII I IIIIIIIIIII I I II IIII I IIIIIII I I II IIII IIIIIIIIIII I I II IIII I IIIIIIIIIII I I II IIII IIIIIIIIIII I I II IIII IIIIII III. I I II IIII IIIII I I I II I II I I I I I I II I I I I I I I I 05h: HI: 44 trace-metals to be highest in that area and in the harbor itself (Cline and Upchurch, 1973). Carbon in the Rochester Embayment was measured as percent organic carbon (Figure 13) and percent total carbon (Figure 14). Organic-carbon sources originate primarily from the living and dead tissues of the fauna and flora of the lake and its tributaries (Kemp, 1969). In the vicinity of the harbor, organic constituents may also be derived from industrial effluents and domestic wastes. Total carbon is a measure of both organic-car- bon and inorganic carbon, which includes particulate, carbonate minerals derived by erosion from within the drainage basin and along the lake front. Organic carbon (Figure 13) follows the pattern of clay distribution (Figure 11). The significance of this relationship is that organic carbon is most important in metal fixation (Curtis, 1964; Ruch, 33 31., 1970; Kennedy, 33 31., 1971; Cline, 1974). Total carbon (Figure 14) fits the general pattern of organic carbon. The higher concentrations of total carbon nearshore appear to be due to the presence of particulate, carbonate minerals. Volatiles and oil and grease contribute to the organic— carbon content of the sediment, and may indicate the in- fluence of contamination from cultural sources. The dis- tribution of volatiles (Figure 15) corresponds with the organic-carbon distribution with the exception of the Figure 13. 45 Distribution of percent organic carbon found within sediment from the Rochester Embayment and Harbor. Contours are in 0.2 percent intervals. Data based on sediment samples collected 8/72. Figure 14. 47 Distribution of percent total carbon found within sediment from the Rochester Embayment and Harbor. Contours are in 0.5 percent intervals. Data based on sediment samples collected 8/72. I I I I II III I I II I I I I I I II I I I I I I I I In IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII vIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII .IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I II I IIIIII-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIII IIIIIIIIIIIIII III IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII mmmmmmmmmmmmemmwmmmmWWWmmmwmmmwmmmmmmmmWWW wmmmmmmmmmmwmwmmmmmmmmmmmmw.mmmmwmmWWWmm mnwwmhuvmuuuunuuuu... MFG...Hum.”.u.n.MHNNNNWWWWWWW”.mu.“.mumuuuwwwww .WWWWWWWWNnunuuunuunnunununuuunnnnunuunuuuunnnuuuuuuuuuunuunuuunuunnuuununununuununuuu ....... Emu - - ... - u - . N ...... - - ........................... - ....uumu ........ - mm... - - O. .5980 Ulta Figure 15. 49 Distribution of percent volatiles found within sediment from the Rochester Embay- ment and Harbor. Contours are in 0.5 per- cent intervals. Data based on sediment samples collected 7/71 - 9/71. 50 Y I I I v I I - - IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII .IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II III IIIIIII IIIIII IIIIIII ‘III-' [III II III I IIII II III I III I II I III I II I I- I I II I II I II I II I II I Y. I II II. I II IIII .. 25:8 3.5 .0 .v 9.00 / 0 nd a... on //IM3 2 . he o.« 3.. 51 plume to the east of the breakwaters. This plume appears to be influenced by light organics carried to the lake by the Genesee River and deflected eastward by net littoral drift. Heavier hydrocarbons distribution (percent hexane- extractable, oil and grease, Figure 16) largely follows the pattern of grain size and organic carbon. Lowest values are evident in the sandy area east of the harbor entrance. Finally, chemical oxygen demand (Figure 17) which is a measure of chemically oxidizable material, follows the pattern of specific conductivity and depth. The net move~ ment of wastes to the east results in accumulation of oxidizable materials east of the harbor entrance, while sedimentation of organics offshore yields high chemical oxygen demand in deeper water. Trace-metal concentrations in interstitial waters are relatively high in the Genesee River, yet below detectable limits in the lake prOper (Figures 18—21). Generally, the high concentrations of trace constituents in the harbor sediments reflect proximity to the sources of the metals and the magnitude of trace-metal loading within the harbor, and since the metals are still pre- sent in soluble forms, they indicate a sedimentary en- vironment conducive to trace-metal mobilization. On the other hand, the lower concentration of trace constituents in the lake-sediment pore water reflects the roles of Figure 16. 52 Distribution of percent oil and grease (hexane extraction) found within sedi— ment from the Rochester Embayment and Harbor. Contours are in 0.02 percent intervals. Data based on sediment samples collected 7/71 - 9/71. 53 Figure 17. 54 Distribution of chemical oxygen demand (mg/kg) found within sediment from the Rochester Embayment and Harbor. Con- tours are in lelOBmg/kg intervals. Data based on sediment samples collected 55 IIIIII'I'I'IIIIIIIIIIII'IIIIIII' vIIIIIIIII'III'IIIIIIIIII'I' IIIIIIIIIII IIII'IIIII'III'IIIII'IIIII'IIIII'II'III I'IIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIII I-IIII'IIIIIII-III'IIIIIIIIIIII'III'I'III VIIII'IIIIIIIIIIII'III'IIII' IIIIIIIIIII IIIIII'II'III-IIIIII'IIIIIIIIIIIIIIIII'II II---IIIIII'Iall-I'll---II'IIIII'IIIII'I'I II'IIIIIIII'I'I'II'IIII'IIII'IIIIIII'IIII VIII'III'IIIIIIII'III'I'IIIIII'I'II'III II'II'II'IIIIIIII'III'I'I'I'IIIII'IIIIII 'IIIIIIIIII'IIIIII'II'II'IIIIIIIIIIIIII IIII'III'I'IIIIIII'III'II'I'-II'II"I'I IIIIII-IIIII'II'I'III'II'II'-I'I'II'I"- 'IIIIIIIIIIIIII'IIIIIII'I'IIIII'I'I'IIIII uIIIIIIII'I'IIII'I'III'III'IIIIIIIII'I' IIIIIIIIII'IIIIIII'I'I'I'IIII'I'I'I'II' I'IIIIIIIII'I'III'I'I'I'I'I'II'IIIII--- IIIIIIIII'II'II'I'I'I'IIIIIII'I'II'I'II IIIIIIII'IIII|'-'I-"I|'III'I-'II"I'I' III'I'III'I'IIIIII'-I'I'III'I'I"-'-IIII uIII'IIIIII'IIIIIIIIIIIII'I'I'IIIIIIIII 'IIIIIIIIIIIIIIIIIIIIIIIIIIIII'I"I'III IIIIIIII'III'I--‘I'IIII'I'I'III'I'I'IIII IIIIII'-'-|'IIIIII"'III'l'l'I'I'I'IIII IIII'IIIIIIIIIIIIIIIII'II'I'IIIIIIIII' 'IIII'lII'III'I'IIII'IIIII'I'IIIIIIIIII n'IIIII'I'IIIIII'IIIIIIII'I'II'I'IIIIII IIII'IIIIIIIII'IIII-I'II'III'I'II'IIIII .--II'II'I'IIII'I‘I'IIIIIIIII'IIIII'II- IIIIIIIIIIII'II'I'-'IIII'I'IIIIIIIIII'I III-II"'II'II'Il-I'IIIIII'III-'III-""I- IllIIIll|"|||-IIIIIII'IIIIIII"I'I""" I-III-'II"'-'I'I-'|IIIIIIIII--lIII'I' IIIIII'IIIII---'I'III'I'IIIIIIIII'I'l'-‘ IIIII'I'I'I'I'I'IIIIIII'-I'I'II'II'II' 'IIIIIIIII---I'l'lu-I'II'IIIIIII'III'III' 'I'I'IIIIIIII'III'I'IIIIIIII""'--"| 'IIIIIIIIIIIIIIII'IIIIII'II'II'II'IIIII' IIIIIIIIII III'IIIIII IIIIIIIII IIIIIIIIII .IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIIII uIIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIIII IIIIIIIII IIIIIIIIII .IIIIIIIII IIIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIIII I IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIII'III IIIIIIIIII IIIIIIIII IIIIIIIII' IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII 'IIIIII'II IIII'IIIII I ‘IIIII'III IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIIIII IIIIIIIII IIIIIIII IIIIII IIIIIII IIIIII 9. 315.80 08¢.- ON (ex Om/II 0\ ON I.I\\\Ion oi. Figure 18. 56 Distribution of cobalt (mg/l) in sedi- ment pore water from the Rochester Em- bayment and Harbor. Contours are in 0.1mg/l intervals. Data based on sedi- ment samples collected 8/72. 57 00 00 00 00 00 00 Co 00 Figure 19. Distribution of chromium (mg/l) in sedi- ment pore water from the Rochester Em- bayment and Harbor. Contours are in 0.1mg/l intervals. Data based on sedi- ment samples collected 8/72. 59 IIIIII I I I v. I I VI I I t I I II I I II I II I VI II I U- I I I---IIIIIIIIII'III'IIIIIIIII'IIIIIIII'IIIIIII IIIIIIIII'III'IIIIIII'IIIIIIIIIIIIIIIIIIIIIII. IIIIII'IIIIIIII'IIIII'IIIIIIIIII'III'II'I‘IIII llII'IIIIII'IIIIIII'IIIIIIIIIIIIIIIIIIII'II'III IIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIII IIIII'I'III'IIIIIIII'II'I'IIII-'IIIIIIIIIIIIIIIII vIIIII'III'I-IIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIII IIIII'IIIIIII'IIIIIIIIIII'II'I'IIIIIIIIIIIIIIII IIIIIIIII'IIIIIIIIIIIIII'IIII'IIIIIIIIIIIIII-III III'IIIIIIII'IIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIII IIII'IIIIII'IIIII'IIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIII IIIIII'IIII'IIIIIIIII'IIIIIIII'IIII'IIIIIIIIIIIIIII IIIII'I'IIIIIIIIIIIIIIIIIIIIIIII'I'III'II'II'IIII'I' IIIII'IIII'IIII'IIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIII'I IIIIIIIIII'-IIIIIIIIIII'IIIIIIIII'IIIIIIIIIIIIIII'II IIIIIII'IIIIIIIIIIIIII'IIIIIIIIII'III'IIIII'IIIIIIIII IIIIIIIIII'IIIIIIIIIIIIIIIIIIII'IIIIIIIII'IIIIIIII'III IIII-I'IIII'IIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIII'II IIIIII'IIIIIIIII-I'IIIIIIIIIII-IIIIIIIII'III'IIIIIII'I IIIIIIIIIIIIIIIIIIIIIIIII'IIIIIII'IIIIIIIIIIIIIII'I 'IIIII'IIII'III'IIIII'IIII'IIIIIIIIIIIIIIII'IIIII'II IIIIIIIIIIIII'II'IIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIII -DY...-W wmmmmmwmuwwwwwmmmmmmmwwwmwwwmnwwwmmWWW 25:8 3.1. e e e e O O O o o oeo O 0 O 0.0 i. o e Oo 0:. 0e 0e 0:: 00 oo 0:. Figure 20. 60 Distribution of copper (mg/l) in sedi- ment pore water from the Rochester Em- bayment and Harbor. Contours are in 0.02mg/l intervals. Data based on sedi- ment samples collected 8/72. 61 " '| -‘ v I II IIII I I II v I II ' | I ' ' v. ' u I I | I I I I I I I I I I IIIIII'IIIIIIIIIIIIIIIIIIIII III'IIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIII III-IIIIII'IIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII III-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIII-IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIII'IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII'I IIIIIIIIIIIIIIIIIIIIIIIIIIIII'I'IIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII v IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIII'IIIIIIIIIIIIII'I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII-III IIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIII - IIIII II'IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIII'I IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII v IIIIII III'IIII'IIIIIIIIIIIIII'IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII . IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII' IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'II I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIII'II IIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIII'IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIII-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII-l IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIu III III III III III III II I II I I I I I IIIIIII IIIIII - O. 55.80 mi: mOd V “Dd V 00 0° 0° OO Figure 21. 62 Distribution of zinc (mg/1) in sediment pore water from the Rochester Embayment (0.02mg/1 contour intervals) and Harbor (0.10mg/1 contour intervalS). Data based on sediment samples collected 8/72. 63 IIIIIIIII”IJIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Il-IIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIII IIIIIIIIIIIIIII'IIIIIIIIIII'IIIIIIIIIIIIIIII IIIIIII'IIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIII'I IIIIIIIIIIIIIIIIIIIII'IIIII'IIIIIIIIIIIIIIII IIIIIIIIII-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIII UIIIIIIIIIIIIIIIIIII'IIIII'IIIIIIIIIIIIII'II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ..IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII vIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII-'IIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIII'IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIII 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIII IIIIII - O— 55.80 at: .0» 8.0V 64 dilution, diffusion, and sediment fixation of trace— metals. Figures 22-25, which depict the distribution of sedi- ment-bound trace-metals, show distributions that coincide quite well with grain size and organic-carbon distribu- tions (Figures 11 and 15). Generally, concentrations in- crease with depth and are lowest in the nearshore environ— ments. There are no apparent concentration gradients that correspond with the eastward moving plume of dissolved materials from the Genesee River. Rather, trace-metal concentrations conform closely to high organic—carbon and high clay and silt content, which yields a distribution that appears to have formed from westward waste migration. With the exception of the concentration of sediment-bound zinc at station 23 (Figure 25) which may be spurious, trace-metal concentrations conform to the sedimentary en- vironment in the Rochester vicinity. Since trace-metal content appears to be correlated with sediment grain size and organic content, the ratio of metal concentration to silt and clay-sized sediment should reduce the apparent correlation and allow identi- fication of regions of excess metal loading. The ratio of trace-metal concentration to silt and clay-sized sedi- ment (Figures 26—29) indicates that there is, in fact, a plume of metal loading that corresponds to the conductiv- ity data (Figures 6-9). This technique of data analysis Figure 22. 65 Distribution of cobalt (mg/kg) in sedi- ment from the Rochester Embayment and Harbor. Contours are in Smg/kg inter- vals. Data based on sediment samples collected 8/72. 66 Figure 25. 67 Distribution of chromium (mg/kg) in sedi- ment from the Rochester Embayment and Har- bor. Contours are in 50mg/kg intervals. Data based on sediment samples collected 8/72. IIIIIII'II‘IIIIIIIIIIII IIIIIIIIIIII IIIIII IIIIII I I II I II V II I I II I l I I I I I - IIIIIIIIIIIIIIIIIIIIIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII' IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIII'III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIII‘IIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIII'IIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIIIIIIIII'IIIIIIIIII I II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIIIIIII'IIIIIII'IIII'III II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I III. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII - IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII IIIIIIIIIII'IIIIIIIIIIIIIIIIIIII I II IIIIIIIIIIIIIIIIIIIIII'IIIIIIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIII'IIII I II IIIIIIIIIIIIIIIIIIIIIIIIIIIIII'I IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII' I II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIII'IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIII.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII vIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIII'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIII'IIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIIIII IIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 'IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIII 8 .......... 6 ”WWW... .. .......... --- 23:8 3.3 \x on on R m m m m o o o o N m «2 a o o b s \m. 0.“: FN 0m. 00\ 0Q\ 0.“ x O O cox \ \ \ 0 oh / 0? OOx // a. / Figure 24. 69 Distribution of copper (mg/kg) in sedi- ment from the Rochester Embayment and Harbor. Contours are in 5mg/kg inter- vals. Data based on sediment samples collected 8/72. 7O I I I II II I I I I I v I v I I I I I I I I I I I I I I I I I I I I I I I II 0x, IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIII’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0. 3‘: 88¢.— 00 Co Figure 25. 71 Distribution of zinc (mg/kg) in sediment from the Rochester Embayment (20mg/kg contour intervals; and Harbor (50mg/kg contour intervals . Data based on sedi- ment samples collected 8/72. 72 Figure 26. 75 Distribution of the ratio of cobalt (mg/kg) to percent clay and silt (kg clay and silt/kg total sediment) in sediment from the Rochester Embayment and Harbor. Contours are in 100 unit intervals. Data based on sediment samples collected 8/72. 7U+ I I I I I I I I I I I I I u I I I I I v I I ‘lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIII IIIIIIII IIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIII IIIIIII IIIIII IIIII 25:8 3.3 O .00” . a fie nun w¢o\ 030 oO\\ v Mum” O nuoo 0 r O \ \ 0.3 §\ 0 ‘30 Q 3% o w 3 . . «In 9.3 0 e 80 n 2.0 O O 21. 00h- 9n.) 0.on Meow o . men we .sm 0 Figure 27. 75 Distribution of the ratio of chromium (mg/kg) to percent clay and silt (kg clay and silt/kg total sediment) in sediment from the Rochester Embayment and Harbor. Contours are in 500 unit intervals. Data based on sediment samples collected 8/72. 76 00 :3, g0 00 V99 \\ mro n>ro n)ro n>ro n>ra FJFH F‘F4 F’F‘ F4 -*’-~ 1°.1” “0 PCT SAT '1 '1 '1 '1 R.234 no PCT SAT 41 -1 -1 -1 $.8H no PCT SAT -1 '1 '1 '1 9.40 nO'PCT SAT -1 -1 '1 -1 7.9M DO PCT S A T--.”- '1 '1 - '1 '1 >—..—-— —-..—. ... # URHISE_R0710? STA 21 LA 43,94M Ln 77.61N 71/ 7/91 13.1HR "EPTH .9’ GI.— ”I. N" $01PL= PATP? PH PH PHTH TOTAL CHLORIDE 'SPEC 00 no PCT "Earn M 1PMP C voLTc ALK:L ALW71/ 7/72 14.09R- DEPTH 7,04 - . v—v—mmmuw—‘p ' l “w-“ —-v.-— PH PuTu TOTAL 'CHLORIDE SPEC 124 PH "3 PCT _ anTS ALKAL ALKAL- ‘ Hu/L cnmn SAT ~0.01 99.999 .-1.0 -1". 29.2 360 -1 £0.01 99.999 £1.0 £1 ‘2 ~20.7 152 -1 .-u.01 99.999 -1.0 -1 - 20.9 . 340 -1 -0.01 99.999 0.0 0’ 23.7 349. .1 ~0.0". 900000 ‘ I CRUISE 907103 STA 29 LA '43.PDM L0 77.03H 71/ 7/22 14.2HR 10.7H PH PH 'PHTH TOTAL CHLORIDE ”SPEC 00 POT _ - VOLTS ALKAL .ALKAL MG/L. c000 SAT £0.01 99.999 -1.0 --1 30.0 356 -1 .0031 90.090 -100 ~ ’1 2°03 347 '1 £0.01_ 99.999 -1.0 -1 27.2 , 334 .1 1-0.01‘ 99.999 '0.0 0 _ 28.8 ‘ 345 —1 £0.01 99.999 ' ’“_"____,1, .--—...- f g. PHHIQE 997104 STA 1 LA _‘. , . no SAMPLE MATfiH PH nEDTu w TEMP r ‘ 0.“ 21.72 -0001 3 5.0 1“.“2 90.01 AVEDAGEQ -0.01 4 gnr, 9AMPLE ~0.01 ‘CRUIQE «07104 STA ? LA NO' SAMPLE wATER PH PEDTH H TEMP C 1 G.n 24.62 -0.01 ? 3.0 71.14 :0.01 3 . 0.0. 13.77 70.01 AVEDAGEQ 90.01 4 BHT. QANPLE ~0.01 CRNIQE KOYJOA STA 3 LA NO SAMDLE wATER PH DEDTH H TEMP C - ? 3.0 21.17 ~0.01 .‘ 6.0 170‘; T0001. AVEPAGEC 90.01' ‘ RnT. QAMPLE .0001. CRUISE H07104 STA 4 LA N0 SAnDLF HATFR PH PEPTu M TEMP C _ ? 3.0 10.02 70.01 3 6.0 17.35 .000‘ - AVEPAGEQ 70.01 4 BnT. QAHPLE -0.01 CRHICE R07104 STA 5 LA NO SAMPLE HATFR PH n59TH M TCMD C 9 3.3 19.n9 70-01 3 6.0 17.70 f0.01 AVEPAGES 70.01 4 HGT. 9A“PLE -0.01 41,959 in VOITQ 99.999 90,099 00.900 90.090 90.090 4‘.?5N FH -\HM-TQ 9°.099 90.090 90.999 90.090 99.099 43.?6N CH VOLTS 90.090 9°.”9Q 90.090 90.090 90.090 43.?6N FH VOLTS 90.090 99.999 90,990 90.0qo 99.999 43.?7N FH VOLT? 90.090 90.090 9°.°99 9°.Q90 99.099 . . l Ln 77.619 71/ 7173 13.399 OEOTH 9.79 PHTH TOTAL‘ CHLORIDE SDEC DO no DCT AIKAL ALHAL .HG/L anO Mc/L SAT -1,n ~1 +14?o/km?795n -1.03 -1 -10” f1 84.? 581 -1000 -1 .1.n -1 39.9 339 -1.nD -1 n.n O .lfiTla 606 -p.91 -1 7C40 Ln 77.619 71/ 7/23 12.9HR DEPTH .6.7H PHTH TOTAL CHLORIDE 5°66 00 D0 pCT AIKAL ALKAL HG/L ‘ICnNn HG/L 517 91.9 ~1 21~rnn¢591999-I-1.90 -1 ~1.9 -1 71.1 LOOO-I-1.0o -1 -1.9 -1 39.9 1999-1-1.00 -1 n.n o ,7979—- 1999-1-0.01 -1 737/ LO 77.60u 71/ 7/23 12.5HR DEPTH 6.7M PHTH TOTAL CHLORIDE SPEC DO nu PCT ALKAL ALKAL MG/L CONO MG/L SAT '1.“ '1 93.“ 71? -1000 -1 -1.n -1 61.7 612 ~1.no -1 -190 '1 3997 36? -1on0 -1 n.n O 69.4 552 -n.91 -1 Ln 77.60H 71/ 7/23 12.3HR DEPTH 6.7M PHTH TOTAL. CHLORIDE SPEC on no PCT ALKAL ALKAL ‘ HG/L CON“ HO/L SPT -1.n -1 79.1 659 h1.nn -1 ’1." '1 5no7 ['02 .1000 '1 -1.O -1 28.3 349 -1.00 -1 n.n o 52.7 467 -n.n1 -1 Ln' 77.60H 71/ 7x23 10.1HR DEPTH 7.9M PHTH TOTAL CHLORIDE SPEC DO 00 PCT ALKAL ALKAL NG/L COMO MG/L SAL“ _ ~1.n -1 33.9 .37O-»~1zoo"’”11 -1.9 -1 31.6 357 -1.00 .1 -1.0 -1 27.1 339 -1.00 -1 n.n o 30.9 355 -n.01 -1 A——-““--———‘ ‘ 1k .25 Pl 9“ ~’-. - -- ~—~1-.—... t § 'L- CRHIQE gfl7104 STA 0 LA 41.97” Ln 77.60” 71/ 7/23 9.3HR '“EPTH 5.?” s ' -, . . i 99 SAHPLP HAT5fi PH PH PHTH TOTAL LOHTDE SPEC 00 OO PCT - OEPIH 9 TEHP c vOLT9 ALAAL ALKAL' HO/L COHO "GIL SAT 1 0.“ 10.N5 '0001 9QQQ90 -10“ ‘1 2°01 359 -‘Ino '1 ? 2.3 100“" -0001 90.090 ’10“ -1 2°." ‘ 34R '1000 -1 , ‘ 5.0 1RI‘4 '0.0? 90.090 -10" -1 300° 362 .1000 '1 ‘ AVEPAOES 70.01 99.999 0.0 O 29.7 354 30.01 41 I 4 “all. QAHP‘.E .0001 900090 ' 1‘ ' I. PROISE 807104 STA 7 LA 43.?7N LO 77.619 71/ 7/23 9.0HR DEPTH 5.7M I NO SRHDLF HATPH PH PH p979 TOTAL. cHLnRIDE spec no 00 PCT I DEPTH H TEMP c VOITR AIKAL ALPAL Hn/L Can HO/L SAT 3 1 0.9 ' 19.64 :0.01 99.999 -1.n -1 28.1 345 -1.00 -1 i 2 2.0 _19.99 30.01 99.999 -1.9 -1 27.7 345 91.00 -1 3d 5.0 1R.34 “0001 90.093 -100 '1 28.? 345 -1000 -1 I AVERAGES ' -O.O1 99.999 -n.n O , 28.0 349 -0.91 -1 I - 4 HOT. SAMPLE -0.01 99.999 ,. - I ‘ . - - , ; CROI9E 907104 sTA 8 LA 43.289 Ln 77.609 71/ 7/23 8.6HR OEPTH 19.19 § Nn SAMPLE HATER PH// EH PHTH TOTAL CHLORIDE SPEC DO 00 PCT OEPTH M TEMP c - VOLTS ALKAL ALKAL Hn/L COND HO/L SAT 1 0.9 19.99 70.01 99.999 -1.9 -1 29.0 349 -1.00 -1 P 5.0 18.99 -0.01 99.999 -1.n ~1 29.0 351 -1.00 -1 3 9.0 17.47 90.01 99.999 -1.O -1 27.6 338 -1.OO -1 AVEPAOES ~0.01. 99.999 0.0 D 28.5 346 -0.01 -1 4 BOT, SAMPLE -u.01 99.999 nRHISE HO7104 STA 9 LA 43.278 Ln 77.599 71/ 7/23 10.4HR OEPTH 10.49 NO SAMPLE HATER PH CH PHTH TOTAL CHLORIDE SPEC DO O0 POT OEPTH w TEMP C VOLTS AIKAL ALKAL MO/L CONO, MG/L SAT 1 0.0 . 20.29 90.01 99.999 -1.0 -1 36.1 384 -1.00 -1 2 5.0~ 19.45 ~O.O1 99.999 -1.9 «1 35.6 384 -1.no -1 3‘ 90.0 17.61 :0.01 99.999 -T.O -1 27.6 336 -1.00 -1 AVEPAceS . 70.01 99.999 9.9 O 32.8 368 -0.01 -1 ‘ HOT. SAMPLE -0001 90.090 cauxgg 907104 sTA 10 LA 43.269 Ln 77.599 71/ 7/23 10.7HR DEPTH 6.4M NO SAHPLE HATPH' PH EH PuTH TOTAL CHLORIDE SPEC DO 00 PCT DEPTH M TFMP c u VOLT: AIKAL ALKAL HO/L CONO HO/L SAT 1 0." 10018 :0001 00.090 .100‘ -1 2804 349 I’Dno -1 2 3.0 19.91 -0.01 99.999 -1.9 -1 28.1 345 -1.00 -1 3 6.0 17.39 -0.01 99.999 -1.9 -1 28.9 346 -1.no -1 AVEPAOES 90.01 99.999 n.n 0 28.5 346 -n.01 -1 4 DOT. SAMPLE «0.01 99.999 — ——“ - “ ~«~—- -.s-s.co..»-—o|a._l. .. 126 k I “ J‘—-‘ “-NO- -‘-~~‘m_~“mw-_““0 ~a-m—O- ' ' . ,VW" -'-' 7....— ‘na..‘- “nu-“- nb- 'm—flfl-7~-O~* .-.-.-_..~._-.—c_ CRHIQE «07103 STA 11 LA N0 S‘dnLF HATCH PH DEfiTH M TEHD F 1 0.0 19.96 50.01 2 2.3 10.07 -0.01 3 4.3 17.39 -0.01 AVEPLCES .0.01 4 HOT. SAMPLE $0.01 ;PRHI¢E "07104 STA 1? LA NO SAMPLE HATER pH . DEPTH " TEMP C U 1 0.0 ‘1P.°D -0001 ? 2.0 18.81 30.01 3 , 4.0 17.30 -0.01 AVEPAOER - 70-01 4 BOT. SAMPLE -0.01 CRUISE R07104 STA 13 LA N0 SAMPLE HATFR PH DEPTH W TEMP C . 1 0.0 10.28 :0.01 2 4.0 19.89 70.01 3 9.0 17034 ”0001 AVEPAGEQ -0.01 A "HOT. SAMPLE 50.01 CRUISE R07104 STA 14 LA Nn SAMPLE HATFR PH DEPTH M TFHP C _ 1 0.0 10.35 70.01 7 _6.0 18.88 30.01 3 , 12.0 16.06 30.01 AVERAGES .90.01 4 BOT. SAMPLE 90.01‘ CRUISE R07104 STA 21 LA NO SAMPLEv HATER DEPTH H TCMP C 1 0.0 25.38 ’? 3.0 24.00 3 6.0 19.72 AVERAGES 4 BOT. SAMPLE PH 80.01 :0001 T0001 :0.01 .0001 43.?6N CH VOLTS 99.999 90.000 99,990 90_ogo 90,090 43.269 FH ' VOLTP 90.090 90,090 9°.°9° 90.099 43.?6N FH VOLTS 99.999 99.999 99.999 99.999 99.999‘ 43.?7N PH VOLTS 90.¢9° 9°.°9° 9°.99° 99.990 99.99Q 43.24N FH VOLTS 99.099 90.990 99.999 99.099 99.999' ‘ “ .- O-uz.--A~¢.un-oc 71/ 7/23 10.998 OEPTH . I . '1 Ln 77.899 PHTH TOTAL AIKAL ALHAL '10“ '1 -‘on -1. .-Ion .1 n.n 0 Ln 77.590 PHTH TOTAL ALKAL ALKAL '30“ -1 '10“ '1 .10" -1 ‘n.0 0 L0 77.58N PHTH TOTAL ALKAL ALKAL '10“ 71 '1." '1 -10” ‘1 0.0 0 L0 77.58H PHTH TOTAL AIKAL ALKAL -100 '1 ‘10“ '1 .1,0 .1 0.“ 0 L0 77.610 PHTH TOTAL ALKAL ALKAL “ion '1 .‘.n -1 -1.0 -1 0.0 0 127 | \ .CHLOAIOE SPEC . MG/L COMO 29.1 355 I 27.6 346 27.5 338 28.1 347 71/ 7/23 11.2HR _CHLnRIDE SPEC‘ MG/L CDND 28.2 345 28.3 342 28.0 341 128.2 '343 71/ 7/23 11.5HR CHLORIDE SPEC MG/L CONO 27.8 344 25.4 339 27.0 335 26.7 340 71/ 7/23 11.8HR CHLORIDE SPEC HG/L CONO 27.6 340 27.5 339 27.1 335 27.4 338 71/ 7/23 13.6HR CHLORIDE SPEC MG/L c000 14.660 ”6.22 .856 11610/aafléfl43 39.7 404 .3096- 701 70£7 ..-..-“uo—“Iabuo90' L. r ..J.- > ‘_-'-___‘//" 4,34 DO DU PCT ”GIL SST '1.00 -1 '1on0 '1 '1000 '1 ’0001 '1 DEPTH -4.6H on no PCT MG/L SAT -1000 '1 “1.00 -1 “1000 '1 -0001 '1 DEPTH 0.4M DO DO PCT MG/L SAT '1.00 '1 .1900 '1 -1000 '1 .0001 '1 DEPTH 13.1M DO 00 PCT , MG/L SAT '1.00 '1 .1000 '1 “1600 '1 '0001 '1 DEPTH 7.3M 00‘ 00 PCT NG/L SAT -1000 '1 .1000 T1 “1.00 '1 .0001 '1 4« CRUISE R07104 STA 22 LA 5 A ' V NO SAMPLP RATER PH DEPTH n TFMP c _ 2 3.0 23.39 “0.01 3 5.0 .20.93 30.01 AVERAGES r0001 4 BOT. SANPLE '0.01 - RCRUISE R07104 STA 23 LA NO. SlMPLF HATER PH DEPTH H ”TEMP c _ 1 0.0 20.09 30.01 2 3.0 19.95 70.01 3 ' 7.0 1R068 20001 AVEP‘GES ~ 20.01 _4 BOT. SAMPLE -0.01 CRUISE 007104 STA 24 LA N0 SAMPLE HATER PH DEPTH H TFHP C _ 1 00° 19.74 20001 2 6.0 19.05 :0.01 3 13.0 16.08 90.01 AVEPAGES 70.01 4 BOT. SAMPLE -0.01 CRUISE R07104 STA 25 LA N0 SAMPLE HATER PH DEPTH M TFMP c - 1‘ 0.0 10.78 30.01 2 .6.0 18.82 30.01 3 13.0 16.82 30.01 AVERAGES 70.01 4 BOT. SAMPLE -0.01 CRUISE R07104 STA 26 LA no SAMPLE RATER ' PH DEPTH M TEMP-C - . _1 0.0. 19.95 30.01 2 5.0 19.52 30.01 3 9.0 17.44 30.01 AVERAGES» 30.01 4 DOT. SAMPLE -0.01 43.23“ PH VOLTS 90.099 90.090 99.090 90.090 90.999 43.27N pH ‘VOLTS 90.990 99.999 90.099 90.999 99.999 43.26N EH VOLTS 99.999 99.099 99.999 99.999 43.290 FH VOLTS 9°.°9° 90.990 90.990 99.999 99.099 43.28N EH VOLTS 90.099 90.090 9°.°99 90.099 99.099 Ln 77.920 PHTH TOTAL ALKAL ALKAL '10” '1 .1." .1 '10“ '1 0.0 0 L0. 77.60N PHTH TOTAL ALK‘L ALKAL '10" '1 .1.“ f1 '1.” '1 '0.“ 0 L0 77.6OH PHTH TOTAL ALKAL ALKAL -1.0 .1 '1." -1 .1.” .1 0.0 0 L0 77.61H PHTH. TOTAL ALKAL ALKAL #100 '1 91.0 91‘ ’10" '1 0.0 0 L0 77.61W 'PHTH TOTAL ALKAL ALKAL '1.“ -1 ”1.0 '1 .1." ’1 0.0 0 128 HG/L 65.8 40'0“? " V/dtg 71/ 7/23 ‘CHLORTDE HG/L 29.6 29.0 29.3 29.3 71/ 7/23 CHLORTDE MG/L 31.4 30.9 27.9 30.1 71/ 7/23 CHLORIDE MG/l 28.7 28.6 27.4- 28.2 71/ 7/23 CHLORIDE MG/L 29.1 29.7 28.0 28.6 71/ 7/23 14.0HR ‘CHLORTDF SPEC COND ‘ 116.07.45.70 979 580 771 . 9.5HR SPEC COND 351 34¢ 347 349 8.2HR SPEC COND 362 349 337 349 7.9HR SPEC COND 349 341 340 343 7.7HR SPEC COND 347 339 ‘336 341 DEPTH DO MG/L .1000 ‘1000 ‘1090 (Dani DEPTH Dn MG/L -1000 '1.00 91000 V. .0001 DEPTH DO HG/L -1000 .1000 '1000 .0001 DEPTH DO , MG/L .1000 .1000 '1000 “0.01 DEPTH DO HG/L -1000 “1.00 ’1000 90.01 13.7H 00 PCT SAT -1 -1 -1 -1 14.0” D0 PCT SAT '1 '1 -1 '1 10.1M DO PCT SAT '1 -1 '1 '1 - _M“W ---r-—‘ I I: URUIQE R97104 STA 27 LA 9 I ' . NO SAMPLE WATER PH DEPTH M TFHP C 1 0.0 10.74 -0.01 7 2.0 1”.75 -U.01 3 5.0 17.59 90.01 AVERASES 90.01 4 DOT. qAMPLE -0.01 .CRHISE R07104 STA 29 LA NO‘ SAMPLE HATER PH DEPTu w TEMP C - 1 0.0 ‘1°.64 ~0.01 2 3.0 10.57 '0.01 34 6.0 10.31 :0001 AVER49ES 70.01 '4 BDT. PAVPLE ~0.01 CRHISE R07104 STA 29 LA NO SAMPLF RATPR PH DEPTH V TEMP C 3 0.0 2"."5 70001 9 50“ 10.90 "0001 3 10.0 17.05 30.01 AVEPAPES 90.01 4 8PT. SAMPLE n0.01 43,97N FH ‘10! 1": 90.090 90.090 9°.°9° 90.099 99.999 43.?8N EH ' V0lT9 90.099 99.999 90.999 9°.°99 99.099 43.20» EH VDLTS 90.090 90.990 90.099 99.099 99.999 LO 77.62N PPTH TOTAL AIKAL ALKAL '1." '1 -10“ ’1: .1.“ .1 0.0 0 L“ 77.64” PHTH ’ TOTAL AIKAL ALKAL '10" '1 -10" '1 -1on- '1 ‘D.D 0 Ln 77.63W PHTH TOTAL AIKAL ALKAL -10” -1 '1.“ '1 129 71/ 7/25 'CHLDRTDE ' MG/L 27.4 23.4 27.6 27.9 71/ 7/23 .cHLnRIDF HG/L 22.4 28.4 28.3 28.4 71/ 7/23 CHLORIDE MG/L 29.6 28.3 28.4 28.8 M—--“-O-l~'~"Wm-fi’fi‘O‘fum-V*-—->9 “512:: 70-1-7 TI _- '- - T 7.4HR SPEC COND 347 344 337 343 7.1”9 SPEC" COND 349 347 358 "351 6.8HR SPEC CDND 354 352 341 349 DEPTR DD MC/L ‘1.00 '1.00 .1000 90.01 9,5M DO PCT SAT -1 -1 -1 -1 DEPTH '7.9H DO HG/L '1.00 '1.00 .1000 '0.01 DEPTH DO MG/L .1000 -1.00 '1.DD DC PCT SAT -1 '1 '1 _-1 19.7M DO PCT SAT '1 '1 '1 '1 --.-”...- CRUISE 007105 STA ND SAMDLC AATCR PEPIH v TEMP C 1 0.0 25.09 2 3.0 29.04 1 7.0 24.43 AVEPAGES 6 ant, SAMPLE I l “CRUISE R0710‘ STA A ND SAMPLP EATER ‘DEPTH M TFMP C 1 0.0 24.90 9 3.0 24.94 3 , 6.0. 24.59 AVEPAGES I 4 BOT. SAMPLE CRUISE R07IOS STA NO SIMPLE HATER PEPTH M TFHo C 1 0.0 24.05 1 2 3.0 24.02 l 3 7.0, 23.26 AVEPAOES 4 BOT. SAMPLE CRUISE RO7105 STA NO SAMPLE HATER DEPTH M TEMP C 1 0.0 23.62 ? 3.0 . 22.22 I 3 7.0 21.35 AV EPACES ‘ 4 BOT. SAMPLE ‘ CRUISE RD71OS STA A N0 SAMPLE HATER Ti PEPTH V TEMP C I 0. 0 21.50 7 3.0 21.20 3 7.0 20.77 AVEPAOES . 4 BOT. SAMPLE 1 LA PH 7.69 7.45 7.30 7.49 ~30.01 2 LA PH 7.52 7.55 7.61 7.56 $0.01 3 L‘ PH, 7.59 7.42 7.4“ 7.47; 90.01 4 LA PH 7.65 7.6A .706q -7.67 .0001. 5 LA -PH 8.20 8.29 8.49 0.30/ 30.01 4‘.?5N PM VOLTS 0.14% 0.149 0,149 9.149 99.090 43.?5N PH -V0LTS 0.142 0.141 0.141 0.141 99.999 43.260 EH VOLTS 0.152 0.156 0.150 ".15? 90.090 43.?6N Ed VOLTS 0.165 0.157 0.158 0.160 90.099 43.27N FH VOLT? 0.145 0.15‘0 0.155 0.152 90.090 Ln 77.61u PuT9 TDTAL' AIKAL ALKAL' 0.0 119 0.0 120 0.0 119 0.0 119 L0 77.610 PHTH TOTAL ALKAL ALKAL 0. 0 119 0. 0 120 0. 0 119 n. 0 120 LO 77.600 PuTH TOTAL AIKAL ALKAL 0.0 116 0.0 117 0.0 112 0.0 115 Ln 77.600 PHTH TOTAL ALKAL ALKAL 0. 116 0.0 104 0.0 94 0.0 105 L0 77.600 PHTH TOTAL AI_K~L ALKAL 0. 05 3.0 90 1.5 94 130 71/ 0721 CHLORIDE HG/L 102.7 970A 100.7 71/ fl/21 CHLORIDE HG/L 99.6 99.5 99.1 99.4 71/ 8/21 CHLORIDE HG/L 93.6 92.9 82.1 89.5 71/ 8/21 CHLORIDE MC/L 82.9 58.A 37.3 59.6 71/ 8/21 CHLORIDE MC/L 36.9 34.9 26.7 32.7 7.9HR SPEC COND 771 766 743 760 8.5HR SPEC. . COND 762 762 757 ‘760 12.0HR SPEC COND 730 717 645 698 9.3HR SPEC COND 675 535 389 533 9.7HR SPEC CDND 393 38? 337 371 1! DEPTH 7.7% DC DO PCT MGIL SAT 3.41 42 3.09 38 2.75 ASL 3.05 38 DEPTH .6.74 90 00 PCT MG/L SAT 3.02 37 3.01 37 2.70 3} 2.91 36 DEPTH 7.39 On DO PCT PC/L SAT 3.05 37 2.99 36 3.39 _g;_ 3.14 38 DEPTH 7.3M 00_ 00 PCT MG/L SAT “3.66 44 5.19 61 7.16 _§3_ 5.34 63 DEPTH 7.3M . 00 00 PCT MG/L SAT 7.32 95 7.35 95 P.10 .21. 7.59 90 (9W) n b - .... __~. r. -... -—---.— —.-—— -—.-— on...— -mm—rm W“ ‘CRHIPE "91105 STA N0 SAMPLP CATPP PcPTu M TFMP c 1 0.0 21.27 2 2.0 21.29 3 4.0 21.19 AVEDACEC 4 HOT. —_ .—v -- CRHISé «n71b7 STA 29 LA 43.930 Ln 77.620 71/ 9/18 7.400 OEPTH 29F PH Nn SAHPLF HATFR PEDTU M TFM? P 1 1.0 23.13 ‘0601 7 10.0 23.1b ;0001 3 90.0 .29.77 :0.01 ‘ BOT. gAVPLE .0001 CRUISE 907107 STA 23 LA NO. SAMDLc QATFR PH UEOTH M TVMP C 1 1.0 _19.n4 70.01 ? 1100 1R.:_4 -0001 3 93.0 17.71 “0.01 4 'BOT. SAMPLE '0601 "-.“m—Ho--g.§; ~~- 1.. ‘ a.‘~--.-~o.o EH VOLTS 09.909 09.909 99.999 09.909 ‘43.?70 EH VOLTS 99,909 99.909 09.909 09.999 DO 00 PCT ALK MG/L CACO3 CL SP COND 25c 00TH TOTAL .007L MTCPOMHOS/CM NG/L SAT -o.1 -1, -1.0 675 -1.09 -1 -o.1 -1 -1.0 660 -1.on ~1 -o.1 -1 -1.0 535 -1.00 -1 Ln 77.60H 71/ 9/18 14.300 DEPTH g5r ALw MC/L CAC03 CL SP COND 25c on on PCT PHTH TOTAL MG/L HICPOMhnS/CM NG/L SAT -o.1 ' -1 -1.0 - 335 -1.00 -1 ~0.1 -1 -1.0 336 -1.on -1 -o.1 -1 v1.0 341 -1.00 -1 ...—»————'T*‘ -..—....” 139 . Wow-....” «Huh-- . -... ...._- ——_”——u—O-.—-— J CR”ISE HD7100 STA 4 L4 un‘ SAMDLC LATER PH nEDTH M TFMP fl 1 1.0 19.52 '0.01 2 10.0 1n.°6 .0001 3 20.0 17.49 +0.01 ‘ BnT. SA”PLE -0.01 QRUISE R07108 STA 5 L‘ No -SAMPLF NATCR PH ‘DEPTH 0 TPHP C _ 1 100 16051 .0001 ? 12.0 16og0 .0001 3 '9200. 1‘050 70001 4 BOT. SAMPLE ~0.01 CRUISE R0710R STA 31 LA No 'SanvLE HATER PH . DEPTH-" TFMP C 1 1.0 -16.66 70.01 P 12.0 16.67 50.01 3 94.0 1‘.A7 "0001 4 BOT. SAMPLE -0.01 CRUISE 007108 STA 9 LA ’NO SAMDLF HATFR PH DEPTH H TFMP c . ‘ 1 100 16037 $0001 2 17.0 16.85 -0.01 3 34.0 14.03 70.01 4 BOT. cAMPLE ”0.01 CRUISE R0710? STA 32 LA ‘ 00 $5MPLF 0ATF0 PH DEPTH M TFHP C _ 1 1.0 17.11 '0.01 P 33.0 17.na 70.01 3 570° 16.99 ?000‘ 4 BOT, SAMPLE “0.01 43.?OM EH VnLTS °9.9°9 99.999 Q9.9°9 43.270 EH VOLTS 99.999 °9.9°9 09.909 99.999 43.27N EH VOLTS 09.999 99.999 09.909 99.909 9 43.27N EH VOLTS 09.909 °9.999- °9.9°9 99.909 43.?8N EH VOLTS 99.999 99.909 °9.9°9 09.999 71/ 9/23 13,900 DEPTH' 24F Ln 77.600 ALK MG/L CACO3 CL SP COMO 25c On 00 PCT PPTH TOTAL MG/L HTCROMHOS/CH 00/L SAT -0.1 -1 ~ -1.0 644 -1.00 -1 -o.1 -1 -1.0 623 o1.on -1 -0.1 -1 ‘-1.0 ' 486 , -1.00 -1 L0 77.600 - 71/ 9/23 14.200 DEPTH 24F ALK HG/L CASO3 .CL SP COND 25C 00 00 PCT PHTH TOTAL HG/L MTCROMHOS/CH MG/L SAT 30.1 -1 .100 343 .100" .1 -o.1 -1 -1.0 340 -1.00 -1 ~o.1 . -1 -1.0 339 -1.00 -1 L0 77.590 71/ 9/23 14.500 DEPTH 27F ALK MG/L cACO3 CL SP COND 25c 00 On PCT PHTH TOTAL HG/L HICROMHOS/CH MG/L SAT .001 -1 .100 332 .1000 .1 -031 ~ .1 v1.0 331 -1.00 «1 -0.1 -1 v1.0 333 «1.00 .1 L0 77.590 71/ 9/23 14.800 DEPTH 54F ALK MG/L CAcos CL SP COND 25c 00 00 PCT PHTH TOTAL MG/L MICROMHOS/CM PG/L SAT -0.1 -1 -1.0 337 -1.00 -1 7001 '1 “1.0 338 '1000 .1 -0.1 -1 «1.0 338 v1.00 -1 L0 .77.590 71/ 9/23‘ 15.200 DEPTH 67F ALK 00/L CACO3 -CL SP COND 250 - 00 OD PCT PHT0 TOTAL MG/L MICROMHOS/CH-MG/L SAT 70.1 -1 -1.0 336 -1.00 -1 «0.1 -1 -1.0 335 -1.00 .1 -0.1 -1 v1.0 333 —1.00 -1 140 .n a. c ...---..”- LO 77.560 71/ 9/23 15.400 DEPT0- 700 Q l ' c0uISE 007100 STA 33 LA 43.200 00 SAflDLc NATFR PH EH 050016671000 C VOLTS 1 1.0 17.35 70.01 99.999 7 13.0 17.11 ”0.01 09.909 3 66.0 16.93 20.01 99.999 4 BnT. SA”PLE -0.01 99.999 CRUISE R0710? STA 0 L0 43.27" NO .SASPLF NATER PH EH *DEPTH M TFMP c VOLTS 1 1.0 ' 17.05 90.01 09.909. ’ 95.0 17000 :0001 090909 3 60.0. 160R7 #0001 0909°9 4 "BOT. SAMPLE -0.01 99.909 CROTSE 007109 .STA 31 'LA 43.270 00‘ SAMPLF‘ 04100 PH E0 DEPTH‘fi TFMP C VfiLTS T 1.0 , 16.72 70.01 99.999 2 32.0 16.71 90.01 99.909 3 ?4.0 16.73 -0.01 °9.999 4 BOT. SAMPLE 90.01 °9.9°9 CRHISE 007100 STA 5 LA' 43.270 00 SAMPLE 04T00 00 50 DEPTH M TEMP c . VOLTS 1 100 1‘061 :0001 09.909 g 12.0 16.61 '0.01 090909 3 ?200 16062 :0001 090909 4 BOT. SAVPLE .0001 990909 CRUISE 007109 STA 4 LA 43.260 00 SAMPLE 01100 PH EH '. DEPT0 0 TFMP C - anT5 1 1.0 4 19.28 -0.oy/69.999 .2 10.0 19.90 00.01 99.999 3 90.0 17.57 “0001 099909 4 BOT. SAMPLE 90.01 99.909 ALK PC/L CACO3 CL SP C000 25c- 00 00 PCT PHTH TOTAL MG/L 010000005/C0 MG/L SAT ~0.1 -1. -1.0 335 -1.00 -1 -061 '1 -100 335 .100“ '1 -001 ‘1 .190 335 .1000 .1 L0 77.590 71/ 9/23 15.900 DEPTH :40 ALK MG/L CAC03 CL SP COMD 25c 00 06 PCT 00T0 TOTAL MG/L 010000005700 PC/L SAT 70.1 -1 -1.0 ‘ 333 ~1.00 ,-1 -0.1 -1 -1.0 332 -1.00 -1 -0.1_ -1 -1.0 332 01.00 -1 LD 77.590 71/ 9/23 16.300 DEPTH 200 ALx Hc/L CACO3 CL SP C000 250 00 04 PCT PHTH TOTAL MG/L HICROHHOS/CH MG/L SAT -0.1 -1 -1.0 334 -1.00 -1 -0;1 -1 ~1.0 334 -1.00 .1 -0.1 -1 -1.0 334 .e1.00 -1 L0 77.600 71/ 9/23 16.6HR DEPTH 290 ALK MG/L CACO3 CL SP C000 250' 00 00 PCT 00TH TOTAL HG/L MTCROMHOS/CH MG/L SAT 30.1 -1 “1.0 334 .100“ .1 70.1 -1 -1.0 333 -1.00 -1 -001 91 .100 333 '1000 '1 L0 77.600 71/ 9/23 16.8HR DEPTH 24F ALK MG/L CAcosv CL SP 0000 250 , 00 00 PCT PHTH TOTAL 00/L 010000005700 HG/L SAT 70.1 -1 -1.0 630 -1.00 -1 ~0.1 -1 -1.0 601 -1.00 -1 -0.1 -1 -1.0 495 -1 141 ...-n.n o‘-_— - ”1000 ~—o..—~ - r".— - - ...-...- c—o—c ~..——— 00 (SAMPLE 061:0 DEPTH Hf TEMP c 1 1.0 19.17 7 12.0 19.16 3 79.0 17.09 . SOT. SAPPLE CRUISE 007100 STA ‘ N0 SAMPLE HATER OEPTH a; TFMP c 1 1.0 19.17 9 12.0 . 19.09 3 23.0 10.46~ 4 BOT. QAHPLE CRUISE R07100. STA '00 SAMPLE 011:0 DEPTH #P TFMP C 1 1.0 10.71 ? .12.0 10.74 3 93.0 16.93 4 BOT. SAMPLE CRUISE R0710° STA 00 SAMPLF HATPH DEPTH a? TFHP c 1 1.0 17.74 2 11.0 17.72 3 22.0 16.76 4 BOT. SAMPLE CRUISE 007109 STA 00 SAMPLE HATER OEPTH 0P TFMP C 1 1.0 16.68 2 11.0 16.66 3 22.0 16.67 4 BOT. SAMPLE '-C00{SE 007109 STA 1 LA PH ~0.01 f0.01 '0.03 “0.01 2 LA PH 40.01 2.0001 '0001 .0001 3. LA PH 90.01 .0001 4 L! PH +0.01 ”0.01. :0001. -0001 5 LA PH :0001. 90.01 .40.01 $0.01 43.?5N EN VnLTS 09.9““) 09,909 Q9.9“9 43.?5N ‘EH VOLTS 09.909 99.909 99.9°9 09.909 43.?6N EH VOLTS 99.909 99.999 99.909 .99.999 43.?6N EH VnLTS 99.9°9 99.999 99.999 99.909 43.?7N EH VOLTS 09.999 99.909 99.909 ' *A~J‘~o~—‘o-M._AL"-" ."‘- A ”E L0 77.610 71/ 0/74 7.000 01010 rnr ALK MG/L cAcna ’CL SP 0000 200 00 00 PCT PHTH TOTAL 0011 HTCPOHHnS/cn Mh/L QAT ~O.1 -1- 70." 702 ~1.00 .1 '-0.1 -1 70.0 701 -1.00 «1 -0.1 -1 60.4 671 -1.00 -1 L0 77.610 71/ 9/74 8.2HR DEPTH 26F ALK HG/L CACO3 CL SP 0000 250 00 '00 PCT PHTH TOTAL HG/L MICROHHOS/CH MG/L SAT fO.1 -1 ' 70.8 ~722 ~1.00 ' :1 90.1 91 70.6 722 ~1.0n ~1 -h-O.l . '1 65.8 697 ~1,oo .1 Ln 77.600 71/ 9/24 8.5HR DEPTH 26F ALK HG/L CACOS CL SP COND 256 DO 00 PCT PHTH TOTAL HG/L HICROMHOS/CH MG/L SAT 70.1 -1 64.5 674 -1.00 -1 -0.1 -1 64.8 695 -1.00 61 60.1 -1 39.4 469 ~1.00 -1 L0 77.600 71/ 9/24 9.9HR DEPTH 26F ALK HG/L CACO3 CL SP COND 25C DO 00 PCT PHTH TOTAL MG/L HICPOMHOS/CH MO/L SAT 70.1 -1 59.5 661 -1.00 -1 70.1 -1 59.5 657 ~1.0n _-1 v0.1 -1 32.4 508 -1.00 -1 L0 77.600 71/ 9/24 9.9HR DEPTH _26F ALK MG/L CACO3 CL SP COMO 25C DO 00 PCT PHTH TOTAL. MG/L MICROMHOS/CM MG/L SAT -O.1 -1 25.2 342 ~1.00 91 90.1 91 ?S.3 339 -1.00 -1 90.1 '1 25.3 339 -1000 -1 142 ~cnuise 007106 STA 6 LA NO SAMPLE HATER PH DEPTH PE TFMP C 100 16056 :0001 7.0 16.96 -0.01 14.0 16.59 70.01 BOT. SAMPLE -0.01 §1d\3‘ CRUISE 007109 STA 7 LA 00 SAHPLF HATER PH jDEPTH HF TFHP C 1 1.0 16.85 70.01 ? 9.0 16.08 :0.01 3 17.0 16.89 -o.01 A ,80T. SAHPLE 30.01 CRUISE R07100 STA 8 -LA 00. SAMPLE HATER PH DEPTH ’F‘TFMP C 1 1.0 17.?8 +0.01 ? 1700 17o?8 r0001 3 34.0 17.00 f0.01 ‘ BOT. SAMPLE 90.01 NO SAMPLE HATER PH ' OEPTH ar-TEHP C _ 1 100 16.80 :0001 2 19.0 16.78 “0001 3 4 . “Wu—owmnmm m---*—- —-_c “-.flw.‘ ...-w.“- a... “bony”- 38.0 16.78 40.01 BOT. SAMPLE .0001 C0uISE 007109 STA 10 LA N0 SAMPLE HATER PH OEPTH.»P TFMP c . 1 ‘ 1.0 16.06 70.01 ? 10.0 16.35 -0001 3 ,000 16.53 '20001 4 BOT. SAMPLE -0001 CRUISE R07100 STA 9 Lt 43.?7N EH VOLTS 09.909 09.909 09.909 09.909 43.27N EH VnLTS o9.999 °9.9°9 99.909 43.?8N EH VOLTS 09,909 09.909 99.909 43.27N EH VOLTS 09.909 99.909 09.909 99.999 43.?6N EH- VOLTS 09.999' 09.909 99.909 99.999 SP CONS 25C MICROPHOSICH ALK MG/L CAC03 ALK MG/L CACOS CL SP COND 250 HTCROHHOS/CH SP COND 25C HICROHHOS/CM ALK HG/L CAC03 SP 0000 25C MICPOMHOS/CM ALK MG/L CA003 SP COND 250 HICROMHOS/CH ALK MG/L CACOS 71/ 0/24 16.6HR DEPTH 18F DO On PCT "GIL SAT -1000 '1 -1000 '1 '1000 ’1 71/ 9/24 17,000 DEPTH 20F DO 00 PCT MG/L SAT '1000_ '1 .1000 ;1 .1000 '1 71/ 9/?4 17.2HR DEPTH 37F D0 Dn PCT HG/L SAT -1.00 ’1 "1000 '1 ’1000 '1 -_-H-. ____..——~~* 71/ 9/?4 10.3HR DEPTH 49F DO 00 PCT PG/L SAT ’1000 '1 -1000 '1 -1000 '1 DEPTH 24F D0 DO PCT MG/L SAT -1000 '1 .1000 '1 *1000 '1 ‘ ~ 1.0 g . ,. ‘CRUISE 007109 STA 11 LA N0 SAMPLE HATER PH 4 fiEPTH “F TFNP C 1 1.0 15.56 40.01 2 6.0 16.56 70.01 ' 3 T200 16.SU ’0001 4 BOT. SA“PLE .0001 CRUISE 007109 'STA 12 LA NO SAMPLE HATFR PH - DEPTH 0E TEMP C 7 1 1 1.0 16.85 70.01 . 2 6.0 "16.39 70.01 3 72.0 16.84 {'0001 4, BOT. SAPPLE 90.01 CRUISE RO7109 STA 13. LA N0 SAMPLE NATFR PH DEPTH NF TFMP~C* 1 1.0 16.95 70401 2 14.0 15.06 -0.01 3 28.0 16.71 ~0.01 4 BOT. SAMPLE '0.01 CRUISE R07109 STA 14 'LA NO SAHPLF HATFR PH DEPTH M? TFMP C 1 1.0 17.26 70.01 2 P2.0 17.71 '0.01 3 44.0 16.01 70.01 4 BOT. SAMPLE -0.01 CRUISE 007109 STA 15 LA NO SAHPLE HATER PH DEPTH-NP TFMP C 1 ' 1.0 17.40 50.01 2 24.0 17.43 70.01 3 48.0 17.03- 30.01 4. BOT. SAMPLE -0.01 43.?6N EH VOLTS 09.909 99.909 99.909 09.909 43.260 EH anTs 99.909 09.909 99.999 09.909 43.26N EH VOLTS 09.909 09.909 090909' 99.999 43.?7N EH VOLTS 990909 99.909 09.909 99.999 43.?6N EH VOLTS 99.909 99.909 09.999 09.999 ) . 0 L0 77.590 71/ 9724 12.2HR .OEPTH 16? “I a, ..... ”-— 00 ALK PC/L CA003. CL 50’0000 25c 00 PCT PHTH TOTAL 00/L MICROPHDS/CH MG/L SAT .-001 ..1' ‘3402 402 .1000 -1 -0.1 -1 ',34.6 90? -1.00 -1 '001 -1 33.3 40? 1-1.00 -1 L0 77.590 71/ 9x24 13.700 ‘DEPTH 15F ALK MG/L CAC03 CL SP 0000 250 ‘00 '00 PCT PHTH TOTAL“ HG/L~ HICROMHOS/CM HG/L SAT -0.1 I -1 29.5 “366 --.00 - .1 -0.1 -1 27.7 356 -1.00 .1 -0.1 -1 26.2 343 P1.00 .1 'L0 77.58“ 71’ 9’?‘ 13.3HR DEPTH 33F ALK 00/L CAC03 CL SP 0000 250 00 00 PCT PHTH TOTAL 00/L UICROHHDS/CU MG/L SAT -0.1 -1 25.8 . 330 91.00 -1 70.1 -1 95.6 330 -1000 -1 -0.1 -1 25.8 330 -1.00 -1 L0 77.580 71/ 9/24 12.900 DEPTH 400 ALK NG/L CA003 CL SP COND 25c D0 D0 PCT PHTH TOTAL 00/L HICROMHOS/CH MG/L SAT 40.1 .1 25.6 334 -1.00 -1 -0.1 .1 25.9 334 -1.00 -1 -0.1 -1 25.9 336 v1.00 -1 L0 77.570 71/ 9/24 14.900 DEPTH 530 ALK HG/L CAC03 CL SP 0000 250 00 00 PCT PHTH TOTAL HG/L UICPOMHOS/C0 HG/L SAT -0.1 -1 26.1 320 -1.00 —1 -0.1 .1 26.1 332 91.00 -1 -0.1 P1 '25.8 338 91.00 '1 144 -..-.g ‘ ~-----.OA<‘ 'CRUISE 007109 STA 16 LA NO bidNSH SAMDLF HATER DEPTH y; TFMP C 1.0 16.95 15.0 16.05 30.0 16.02 BOT. SAMPLE PH -0.0t -0.01 é0.01 .0001 CRUISE 007109 STA 17 LA 0 00 SAHPLE HATER PH .DEPTH HF TFMP n 1 1.0 16.78 ?0001 ? 7.0 .16.77 :0001 3 14.0 16.75 :0.01 ‘ATBOTO SAMPLE ”0001 CRUISE 007109 STA 18 -LA 00 SAMPLE HATER PH DEPTH-MP TFMP C 1 1.0 16.79 70.01 ? 9.0 1607b 70001 3 1600 16073 "0.01 6 BOT. SAMPLE .0,01 CRUISE 007109 STA 19 LA. 00 SAMPLE 0ATER PH DEPTH PP TEHP c . 1 1.0 17.38 -0.01 2 24.0 17.31 §0.01 3 48.0 16.95 -0.01 4 BOT. SAMPLE 90.01 CRUISE 007109 STA 21 LA N0 acunaw DEPTH 4*; SIMPLE 1.0 11.0 22.0 _ 80T. SAMPLE HATER TEMP C 19.59 10.59 16.86 PH 30.01 90001 "'0001 '0001 / -—_‘“ 43.?6N L0 77.57“ 5” AL“ “GIL CACO3 VOLTS PHTH TOTAL 09.909 '0.1 '1 09.909 '011 -1 090909 -001 .1 99.999 . 43.75N L0 .77.53H EH ALK MG/L CAC03 VOLTS PHTH TOTAL 99.999 '0.1 '1 090909 ‘001 ’1 99.999 '0.1 ”1 99.999 43.24N Ln 77.56” E” ALK MG/L CAC03 VOLTS PHTH TOTAL 09.909 '0.1 ‘1 090909 f0.1 '1 090909 .001 ’1 09.999 43.25N L0 77.56” EH ALK "GIL CAC03 VOLTS PHTH TOTAL 99.909 '0.1 '1 Q909°9 "0.1 91 09.909 -001 ’1 09.999 43.74N L0 77.51” E” ALK MG/L CAC03 VOLTS PHTH TOTAL“ 09,909 ”0.1 ‘1 99.909 -001 -1 °9.9°9 '0.1 ‘1 99.999 145 I T \ -I--..'I---.n.a-o--- .....- 71/ 9/24 14.400 DEPTH 34; CL MG/L '25.8 25.6 26.4 SP COND 28C MICROMHnS/CN 330 332 330 00 Ufl PCT MG/L SAT “1000 '1 '1.00 “1.00 '1 '1 71/ 9/24 14.0HR 'DEPTH 17F CL SP 0000 250 00 00 PCT ”HG/L MICROHHOS/CM UG/L SAT 26.1 335 -1.00 -1 26.2 336 ~1.00 -1 25.6 336 -100“ -1 71/ 9/24 15.8HR DEPTH 21F CL SP COND 25c 00 00 PCT HG/L HICROMHOS/CM MG/L SAT 26.6 344 -100” .1 26.4 344 -1.00 -1 26.6 348 -1.00 -1 71/ 9/24 15.500 DEPTH 52E CL SP COND 250 DO 00 PCT MG/L MICROHHOS/CH HC/L SAT 25.4 33? 91.00 «1 25.6 334 -1.00 -1 25.6 333 .-1.00 -1 71/ 9/24 7.4HR 'OEPTH 25? CL SP COND 25c 00 00 PCT HG/L HICROMHOS/CH MG/L SAT 72.0 752 -1.00 -1 73.1 752 -1.00 -1 59.3 682 ~1.00 -1 sum..- -....- A- ‘-10~ m-----—~‘O' - ,Www ! y I T I i I A L— .4- .. NO sAHPLF HATPR PH nEPTH “F TFMP c 1 1.8 19.62 «0.01 3 19.0 18.49 f0.01 4 BOT. SAMPLE -0.01 CRUISE 807100 STA 23 LA N0 SAHPLP HATPR PH ' DEPTH.HP TFHP C 1 1.0 .;17.06 70.01 2 12.0 ' 17.84 ~0.01 3 24.0 16.97 $0.01 4 BOT. SAMPLE -0.01 CRUISE R07109 STA 24 LA N0 SAMPLE HATER PH DEPTH HF TPHP C . 1 1.0 17.44 :0.01 2 24.0 17.46 20-01 3 48.0 17.15 -0.01 4 BOT. SAMPLE $0.01 -CRHJSE R07109 STA 22 LA CRUISE R07109 STA 25 LA NO SAHPLE HATER DEPTH HF TFMP C 1 1.0 17.43 ? ?4.0 17.42 3 48.0 17.16 4 BOT. SAflPLE PH E0.01 -0.01 -0.01 -9;p1 CRUISE R07109 STA 26 LA NO SAMPLE HATFR DEPTH ”F TEMP C 1 1.0 17.?4 2 18.0 17.?3 3 36.0 17.06 4 BOT. SAMPLE PH €0.01 .0.01 90.01 .0001. 43.?6N EH VOLTS 99.909 09.999 99.999 99.999 43.27N EH VOLTS '99.999 99.999 99.999 99.999 43.98N EH VOLTS 99.999 99.999 99.999 99.999 43.?9N EH .VDLTS 09.909 99.999 99.999 99.999 43.28N EH VOLTS 99.909 99.999 99.9°9 99.999 71/ 9/24 L0 77.62H 7.0HR .PEPTH 21F ALK HG/L CAc03 'CL SP COND 29C 00 06 PCT PHTH TOTAL HG/L MICPOMHOS/Cn MG/L SAT 20.1 ' -1‘ 72.4 747 -1.00 -: :0.1 -1 73.1 746 -1.00 -1 -001 '1 64.7 684 .1000 -1 Ln '77.60H 71/ 9/24 16.6HR’ DEPTH 27F ALK MG/L CACO3 CL SP COMO 25C '80. 00 PCT PHTH TOTAL. MG/L MICRQMHnS/CM HG/L SAT -0.1 -1 26.9 ”328 -1.00' -1 ~0.1 .-1 26.2 331 ~1.00 -1 -001. .1 25.6 - 329 “1.00 '1 L0 77.60H 71/ 9/24 17.6HR OEPTH 53F ALK MG/L CACO3 CL SP COND 258 DO 80 PCT PHTH TOTAL MG/L MICROHHOS/CM NG/L SAT #0.1 -1 25.6 325 -1.00 -1 -0.1 -1 25.7 333 . -1.00 -1 -0.1 '1 26.2 333 '1.00 -1 L0 77.61H ‘71/ 9/24 17.9HR DEPTH 53F ALY MG/L CAc03 CL SP COND 25: DO 00 PCT PHTH TOTAL HG/L MICPOMHOS/CM HG/L SAT g0.1 -1 26.1 332 -1.00 -1 yo.1 —1 25.8 332 91.00 -1 -0.1 -1 26.2 332_ -1.00 —1 Ln 77.61H 71/ 9/24 18.3HR OEPTH 30F ALK MG/L CACO3 CL SP COND 25c 00 U0 PCT PHTH TOTAL MO/L MICROHHOS/CM MG/L SAT 40.1 -1 26.2 333 -1.00 -1 -0.1 -1 26.3 333 ~1.00 -1 ~0.1 -1 26.1 333 -1.00 '1 146 ‘ W.- ” .a.» ? fin SAMOLF HATFR' PH DEPTH HF TFHP c 1.0 16.30 -0.01 8.0 16.31 ~0.01 16.0 16.32 ~0.n~ BOT. SAMPLE '0.01 503”” 1. .--,-.,.,..-.—- ...-.-oa--~.‘.v..i .7. . ,- EH VOLTS 09,9a9 09.999 09.909 99.999 ALK uG/L CACO3 'CL PHTH ~0.1 -0.1 -0.1 TOTAL 0 -1. '1 91 147 MG/L 26.4 26.4 ?6.0 SP COMO 25C HICPOMHOS/CM 333 336 335 on MG/L '1000 ”1000 -1000 'caugSh nn710° STA 27 LA 43.?7N Ln 77.62w ‘71/ 9174 18.6HR -DEPTH 16; DO OCT SAT -1 -1 1 .¢ HICHIGQN STQTE UNIV. LIBRRRIES 31293100658545