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ABSTRACT

THERMOPHORETIC TRANSPORT AND DEPOSITION OF SUB-MICRON
PARTICLES SUSPENDED IN GAS FLOWS

By

Meisam Mehravaran

Thermophoretic transport of small particles in gas flows has many scientific and

engineering applications, but has not been studied widely and is not well understood. Ther-

mophoretic forces arise in the presence of temperature differences, which drive particles from

hotter to colder regions of flows and may lead to deposition on surfaces, which may degrade

heat transfer. Previous studies have shown that, in flows with sub-micron particles, and

temperature gradients of the order of 10 K/cm, thermophoresis can be a dominant particle

transport mechanism. In the research described in this proposal, the governing equations

for mass, momentum, energy and species have been formulated and approximate boundary

conditions for particulate transport have been proposed. A new series solution has been

obtained for the particle concentration field in steady laminar tube flow, the results of which

are consistent with particle deposition experiments. The effects of the tube entrance zone

and of gas compressibility have been studied using computational fluid dynamics, and also

compare well with experimental observations. In the case of steady turbulent duct flows,

approximations based on existing direct numerical simulation results lead to a simple 1D

model for the deposition efficiency of sub-micron particles that compares well with results

of several experimental studies.

There are also many engineering applications in which thermophoretic transport of par-

ticles takes place in unsteady pulsating flows, though there have been no previous studies

of these problems. In the second part of this thesis, the effect of oscillating flows on ther-



mophoretically driven mass transfer is investigated. It is found that unsteadiness has little or

no effect on thermophoretic transport when the direction of flow oscillation is normal to the

direction of heat transfer. However, when the directions of flow oscillation and heat transfer

are aligned, flow oscillation can lead to significant enhancements in both heat transfer and

thermophoretic mass transfer. In the particular problem of oscillating slug flow with an axial

temperature gradient, it is found that the mass transfer is enhanced by up to 3 orders of

magnitude over its steady rate. Variation of the frequency of oscillation reveals a tuning

effect whereby a particular oscillation frequency maximizes the effective thermophoretic dif-

fusivity. In the case of a considerable convective velocity in the direction normal to heat

transfer-such as a porous channel flow with a pulsating vertical component of velocity, it is

seen that thermal disturbances travel quickly in the longitudinal direction. Thus, in order

to attain a tuning effect, a very high pulsating frequency would have to be imposed in the

vertical direction, which would require high velocities that would surpass laminar thresh-

olds and is impractical in most circumstances. In many industrial applications, the effect

of unsteadiness on heat transfer and thermophoretic mass transfer is negligible. However,

significant effects of mass-transfer enhancement could theoretically be observed in a few spe-

cialized devices such as conductive heat exchangers, if the heat transfer and flow oscillation

periods coincide. This enhancement is a kind of thermal resonance which can theoretically

occur when heat transfer takes place slowly, but it is a specialized effect and depends on

the characteristics of the heat/mass transfer device and the frequencies of flow and thermal

oscillation.
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Chapter 1

Introduction

Particle-laden flows are important in many scientific and industrial processes such as

particle and droplet deposition in gas and steam turbines, fouling processes in heat ex-

changers and thermoelectric devices, and in the transport of chemical aerosols, atmospheric

dispersal of pollutants and determination of indoor air quality. In the recent years, consid-

erable attention has been given to biomedical applications of particulate transport such as

the development of efficient devices for drug delivery by inhalation and the prediction of

exposure levels to particulate matter and pollutants in indoor and outdoor environments.

Relatively little research has been carried out on these applications of particulate laden flows,

many of which are poorly understood, and more is needed to provide a better understanding

of particle transport and deposition.

The motion of particles and the flow in which they are suspended are generally coupled.

Based on the interaction between the particles and the carrier phase, the coupling between

the flow and the particles can be categorized as either one-way, two-way or four-way couplings

[41]. In flows with dilute concentrations of small particles, the flow affects the particles

while the effect of particles on the flow is negligible–a one-way coupling. In the case of

large particles (greater than 10 µm) or high concentration (above 2% volume fraction), the

particles and the flow affect each other, which is referred to as ‘two-way’ coupling [95].

When particles interact with both one another, by collision, hydrostatic charge, etc., as well

as with the fluid, the particle-particle and particle-flow interactions are considered a four-way

1



coupling [71].

The methods used for modeling particulate transport and deposition can be divided into

Eulerian [41] and Lagrangian approaches [33, 88]. In the Eulerian schemes, the evolution of

the concentration of particles is traced through points fixed in an Eulerian reference frame. In

the Lagrangian approach, the equations of motion are solved for a large number of particles

and the trajectory is traced for each particle separately. In general, Eulerian methods are

computationally faster than Lagrangian schemes though handling the boundary conditions

is more difficult. Eulerian particle transport equations can be solved making use of Eulerian

flow solvers that usually have high computational efficiency. Lagrangian methods are easier

to implement and can take advantage of parallel processing computations, especially when

the fluid-particle coupling is ‘one-way.’

Deposition of particles has been studied by many researchers. One characterization

of experimental studies [77, 87, 34] on particle deposition is according to the ‘S’-shaped

curve shown in Fig. 1.1, which can be categorized as the three distinct regions: region

1 in which turbulent diffusion dominates other transport mechanisms; region 2 in which

turbulent diffusion-eddy impaction is significant; and region 3, in which effects of particle

inertia are considerable. The different modes of deposition have been identified by Guha

[41] as: thermophoresis, turbophoresis and Fickian diffusion, with each mode most relevant

to a particular range of particle size. Guha also proposed a unified Eulerian approach to

predict the deposition velocity of particles in all three regions of Fig. 1.1. In this figure the

ordinate is v+dep =
vdep
u∗

and the abscissa is τ+ =
τu∗2

ν
=

1

18

(
ρp
ρ

) dp
2u∗2

ν2
where u∗ is

the friction velocity, dp is the particle diameter, ρp is the density of particulate material, ρ

and ν are the bulk density and viscosity, and τ+ is the dimensionless particle response time.

Based on his studies, the transport of small particles which lie in region 1 (τ+ < 0.2) can be

2



τ+

υ+dep

small particles large particles

Figure 1.1: Measured deposition velocity υ+dep as a function of particle relaxation time τ+

in fully developed vertical pipe flow. The regimes are: 1-turbulent diffusion; 2-turbulent
diffusion/eddy impaction; and 3-particle inertia moderated (from [41].)

accurately described by a modified Fickian diffusion model, while the behavior of particles of

longer relaxation time that are beyond region 1 is more complicated and the solution of two

additional momentum equations is required (the reader is referred to Guha’s comprehensive

article for more details [41] on the subject).

In flows with low concentration (< 2% volume fraction) of fine particles (< 10 µm

diameter), the coupling between the flow and the particles is usually characterized as a

one-way coupling, in which the flow and temperature fields drive the motion of particles

but the particles have negligible effect on either the flowfield, the temperature field, or each

other [41]. As the density of solid particles is much larger than the density of air, the mass-

fraction may be quite large even in case of very small volume fractions, so the properties

of the air may be replaced by a weighted average values of air and particle properties,

3



but in higher concentrations the behaviour will be more complex and two-way coupling

is recommended [95] . While the equations governing one-way-coupled particle transport

can be formulated and simplified in a straightforward manner, few analytical studies of

thermophoretic particle transport and deposition have been carried out using the Eulerian

approach since the theoretical treatments of Goren [40], who considered similarity solutions to

the high-speed compressible flat-plate boundary layer in the absence of Brownian diffusion,

and Batchelor and Shen [6] who presented series solutions (with complementary Blasius

series calculated by Homsy et al. [51]) and numerical-calculation results for incompressible

laminar thermophoretic flows for the geometries of: the flat plate; the cylinder and the body

of revolution. Walker et al. [136] carried out a constant-property analysis of the entrance

region of a pipe flow that included an asymptotic treatment of the surface diffusive sublayer,

and made Lagrangian calculations of deposition efficiency in the developed downstream

region. Weinberg [140] also derived mathematically the result for laminar, constant wall

temperature pipe flow that the particle concentration at the edge of diffusive sublayer takes

the constant value of coTw/To at all axial locations when Kth Pr = 1, but otherwise is

not necessarily a constant. In these studies, attention was drawn to the extreme thinness

of the surface sublayer within which effects of Brownian diffusion, which are essential for

accommodating a surface particle-concentration boundary condition, are as important as

those of thermophoresis. In case the of submicron particles, the corresponding Schmidt

number is of the order of 105 and since the thickness of this sublayer scales in inverse

proportion to the particle Schmidt number, its thickness in gas flows laden with fine particles

is typically 10−4 to 10−6 times that of the hydrodynamic boundary layer. Consequently it

is extremely difficult to resolve the concentration field in this sublayer in computations.

Thermophoretic particle deposition efficiencies have been measured in a number of ex-
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perimental studies. These include the pipe-flow experiments of Romay et al. [107] in which

hot air seeded with submicron sodium chloride particles flowed steadily within a long cooled

pipe, under both laminar and turbulent conditions, and the studies of Montassier [91] and

Stratmann et al. [123] of particle deposition under laminar conditions in the thermal en-

trance region of pipe flows. Gonzalez et al. [38] have measured the deposition efficiency

and uniformity of iron and sodium chloride nano-particles in a precipitator and found good

agreement between theoretical and experimental efficiencies. Maynard [86] and Bang et al.

[5] have developed thermophoretic precipitators for electron microscopy analysis of ultra-

fine particles, which yielded deposition that was uniform locally but non-uniform over scales

larger than a few microns.

Tsai and Lu [132] have also measured the collection efficiency of submicron sodium chlo-

ride and sodium flourescein particles in laminar flow in a plate-to-plate thermophoretic pre-

cipitator. Their deposition-efficiency data and those of Messerer et al. [90] are in excel-

lent agreement with the theoretical deposition efficiency obtained from Lagrangian particle

trajectory calculations, when the model of Talbot et al. [125] is used to compute the ther-

mophoretic coefficient. More recently, experimental data on deposition efficiency has been

supplemented by numerical simulation results for the transport of small particles in compu-

tational domains, such as those of He and Ahmadi [48].

There have also been many other studies of related aspects of thermophoretic flows.

Rosner [108], and Rosner and Khalil [109] have explored differences between thermophoretic

transport of monodispersed and polydispersed aerosol particles, and shown that deposition of

some polydispersed particles can be predicted by applying an appropriate correction to a cor-

responding deposition rate of a monodisperse counterpart. The problem of thermophoretic

deposition in open systems under natural convection has been studied as a model problem
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for understanding particle deposition onto wafers in micro-electronic fabrication, and for de-

signing effective smoke filters and clean rooms. For example, Chang et al. [13] have carried

out numerical calculations to show that the rates of deposition of submicron particles on

vertical cooled plates in natural-convection environments are influenced strongly by both

thermophoresis and buoyancy. Ye at al. [143] have studied numerically and experimentally

the deposition of monodisperse aerosol particles on a heated vertical wafer surface and found

good agreement between measured and computed particle deposition velocities. Sasse et

al. [112] have investigated particle migration under thermophoretic and buoyant forces to

provide guidelines for the design of filters and to predict their efficiency of particle removal.

In preparation for the proposed use of extreme ultraviolet lithograthic techniques in mak-

ing semiconductor wafers, Asbach et al. [4] have discussed how thermal gradients might be

applied to repel thermophoretically nanoparticle that might otherwise contaminate masks.

Also, the use of thermophoresis as a protective force has been examined at atmospheric

pressures by Peterson et al. [100] and at reduced pressures by Choi et al. [17].

The motion of particles suspended in liquids, driven by temperature gradients, is called

the Soret or Ludwig-Soret effect. Although Ludwig [79] described this phenomenon several

years before Soret, the name “Soret effect” is usually used in recognition of the comprehensive

investigations of Soret on separation of various species by temperature gradient [121, 120].

The thermophoretic force is a linear function of temperature gradient in liquids while it is a

logarithmic function of temperature gradient in gases, and so there is little overlap between

the two research areas. In the current study, we concentrate on particulate gas flows and

the reader is referred to the articles of Platten [101] and Parola [99] for more information on

thermophoretically-driven particle transport in liquids.
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1.1 Soot Particles

Thermophoretic transport and deposition occurs in many engineering applications such

as exhaust gas recirculation (EGR) coolers, combustion chambers, thermoelectric devices

and industrial heat exchangers. In most of these applications, soot and combustion products

deposit on cooled surfaces, which degrades the heat transfer efficiency considerably and can

lead to the fouling of flow passages. Soot deposits may also increase the pressure drop along

ducts, which can decrease engine efficiency and increase fuel consumption. Moreover, soot

deposits are acidic and may cause corrosion of surfaces. Since an understanding of soot

particles is useful for understanding these problems, a short description of soot formation

and soot properties is given below.

1.1.1 Soot Formation, Coagulation and Aggregation

During combustion, embryonic soot particles are first formed in a process known as

nucleation. These particles then grow as a result of the two distinct processes of coagulation

and surface growth. In coagulation, two particles collide and stick together to form a larger

particle. In surface growth, smaller species (around 1.5 nm) such as gaseous hydrocarbons or

small nuclei attach to soot nuclei to form visible soot particles. As these growth mechanisms

do not occur monotonically, soot particles have different sizes ranging from 5-200 nm and are

usually an agglomeration of spherules that are approximately 30 nm in diameter [103, 118].

Tian et al. [130] used transmission electron microscopy (TEM) to study the morphology of

soot aggregates, while Suzuki et al. [124] observed that the thermophoretic transport of an

aggregated particle is governed by the primary particle size rather than the aggregate size,

which can be a considerable simplification in modeling soot deposition. Maricq measured
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both the size and electrical charge distributions of soot particles, using a nano differential

mobility analyzer (DMA). He reported that soot particles have bimodal size distributions

and are 5-200 nm in diameter. His measurements revealed that most soot particles possess

electrical charges but the number of positive and negative charges are almost equal which

makes the exhaust soot electrically neutral [84, 85]. The size, morphology and distribution

of soot particles may also be affected by other factors which are discussed next.

Figure 1.2: TEM image of soot aggregate sampled from an ethylene/air diffusion flame [130]

1.1.1.1 Pressure Effects

Rosner et al. [109] studied the morphology of particle aggregates and discussed the effect

of high pressure on their behaviour. They observed that at high pressures the deposition rate

of aggregates is considerably greater than spherule deposition and this disparity increases

as the pressure increases (Fig. 1.3). At high pressures (such as peak pressures in internal

combustion engines which are around 50 bars), preventing the formation of aggregates or

breaking them up before thermophoretic deposition (i.e. by decreasing the ‘stickiness’ of
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Figure 1.3: The effect of pressure on deposition rate for different morphologies of soot par-
ticles

spherules), can decrease the soot deposition rate appreciably. This observation applies to

deposits in combustion chambers where high pressures are reached, but not in EGR coolers

where the pressures are typically much closer to atmospheric.

1.1.1.2 Effects of Engine Operating Conditions

A comprehensive study was carried out by Neer et al. [96] on the effect of operating

conditions on the size, morphology and concentration of sub-micron soot particles in a Diesel

engine. They used transmission electron microscopy (TEM) to measure particle concentra-

tion, size and morphology and showed that the distribution of spherule size falls within a

very narrow band of 20-35 nm, while the aggregate size shows broad variations. They also

reported that the sizes of both spherules and aggregates decreased when the engine load

was increased. A similar trend was observed when equivalence ratio was increased. In a

similar study, Manzello et al. [81, 80] considered the effect of equivalence ratio on the size
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distribution of soot particles in a well-stirred reactor (WSR) and noticed a similar trend of

increasing average soot particle size with increasing equivalence ratio. They reported that at

the equivalence ratio of 1.9 soot particles are 7-8 nm, compared to 15-16 nm for the equiv-

alence ratio of 2.0. In other words, fuel-lean combustion leads to smaller aggregates than

fuel-rich combustion.

The geometry of aggregates has been found to have a fractal nature and inferences about

their 3-D morphology could be made from 2-D TEM images (see [67, 53] for more details).

Neer et al. [96] studied the morphology of aggregates in terms of their fractal properties and

reported that their fractal dimension is almost independent of operating conditions, while

their fractal prefactor implied that the aggregate formation is mostly due to cluster-cluster

collision mechanisms.

1.1.2 Soot Deposit Properties

Several researchers have provided data on the thermal properties of soot deposits, but

the discrepancies among the reported values are large. Soot aggregates have irregular shapes

so they form layers with high porosities. Their properties may vary significantly depend-

ing on the amount of condensed vapor or hydrocarbon. Nishiwaki [97] reported a thermal

conductivity of 0.68 W/m-K and a volumetric heat capacity of 250 KJ/m3K for combustion

chamber deposits, while Nakamura et al. [94] measured thermal conductivities of around

0.16 W/m-K and heat capacities ranging from 0.96-1.55 J/g-K for the same type of de-

posits. Konstandopoulos [66] measured the soot deposits in diesel particulate filters (DPF)

and observed that the soot cake density varied between 40 and 135 kg/m3. In a recent

study by Lance et al. [72] of thermal properties of EGR cooler deposits, several EGR cooler

tubes were exposed to exhaust gas for around 12 hours and the properties of deposits were
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measured using the Xenon flash lamp method. It was observed that the heat capacity of

these deposits were 0.82-0.87 J/gK which is slightly higher than graphite, and the thermal

conductivity was 0.041 W/m-K, which is 50 % higher than air. The soot cake therefore acts

as an insulator because of the high porosity of deposits (around 98% porous).

1.2 Other Particles

Other particle-laden flows include air-borne dust in respiratory systems, aerosols, micro-

organisms and other toxic and non-toxic materials. The transport and deposition of par-

ticles depends strongly on their size. For example, occupational dusts may be 0.001-1000

µm, pollen particles are 20-60 µm, cigarette smoke particles are 0.2-0.6 µm, and viruses and

proteins may be in the range 0.001-0.05 µm. In some cases, specific particles may be intro-

duced through the respiratory system for medical purposes (drug delivery). This technique

is effective as the human lung has a very large surface area and so provides rapid delivery

to the blood flow with minimal side effects. As the temperature gradients within air flows

in the lung are very small, the thermophoretic transport is negligible compared to other

mechanisms such as inertial impaction, Fickian diffusion and gravitational settling. Several

theories and models have been developed for evaluating the deposition of particles in the

respiratory system [126, 50].

Flows in gas and steam turbines contain droplets or particles. Experiments show [12,

19, 145] that water droplets in turbines have a wide size range, and that more than 90%

of the vapor is in the form of fog which has a very small diameter of 0.05-2.0 µm while

the remainder is in the form of coarse droplets of 20-200µm in diameter. In cooled gas

turbines the blade is 300-400K colder than the flow, and so thermophoresis is a significant
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mechanism in droplet deposition. Aircraft engines have also encountered difficulties when

passing through volcanic ash clouds, as suspended and deposited particles may block the

cooling holes of the turbine blades. Similar problems may occur in heavily particle-laden

flows such as explosive eruptions and sand storms, and can lead to significant damage to

airplane engines [29].

1.3 Objectives

While there is a significant body of research on various aspects of particulate flows, there are

very few research results that can be used to make reliable engineering predictions of the rate

of deposition of particles on a cold surface. Also, while considerable attention has been paid

to particle-laden flows in the entrance regions of ducts, or in developing boundary layers,

there do not appear to have been any studies of particle concentration fields and particle

deposition in fully-developed duct flow. Experimental measurements have generally been

restricted measurements of surface deposition rates and deposition efficiencies, and there do

not appear to be any measurements of particle concentration profiles in developing or devel-

oped duct flows. The objectives of the research presented in this dissertation are therefore:

i) to identify model and constitutive equations to evaluate the thermophoretic mass-flux and

deposition accurately;

ii) to develop a reliable engineering technique for making predictions of deposition on cold

surfaces in duct flows;

iii) to calculate the shape of particle concentration profiles in fully-developed duct flows;

and

iv) to explore unsteady flow effects on thermophoretic particle transport.
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We first review the theoretical background of thermophoretic particle transport and the cor-

responding mass flux and transport equations in Chapter 2. Thermophoretic transport in

steady duct flows is then studied using numerical and analytical approaches in Chapter 3,

together with a discussion of boundary conditions for computation of thermophoretic flows in

Chapter 4. A simple model for particle deposition in turbulent flow is described in Chapter

5, while effects of unsteadiness on thermophoretic transport, including effects of pulsation

on both heat and mass transfer, are analyzed in Chapter 6.
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Chapter 2

Theoretical Background

In this chapter, the theoretical background for models of thermophoretic force on parti-

cles and particulate fluxes is presented together with the governing fluid transport equations

and a new definition of thermally driven mass transfer coefficient. The background applies

to submicron particles in flows with temperature gradients of at least 10 K/cm, in which

thermophoresis is expected to be significant.

2.1 Particulate Fluxes

In the derivation of transport equations for the continuous phase in a multiphase flow,

it is necessary to introduce models for the effect of the particulates on the continuous phase

and their coupling. In this study of submicron particulate transport, we employ a one-

way coupling model in an Eulerian scheme which neglects the effect of particles on the

carrier phase and is appropriate for submicron particles. The three main mechanisms of

particulate transport [41] are: thermophoresis, turbophoresis, and Fickian diffusion, which

will be discussed below.

Turbophoresis is the bulk displacement of particles from regions of higher to lower tur-

bulent kinetic energy. Following Guha [41], turbophoresis is an important mechanism for

particles of large time response (τ+ > 1 in Fig. 1.1) and must be evaluated by solving the

particulate momentum equations. In the case of submicron particles such as soot, which
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have a short time response, effects of turbophoresis are small and may be neglected.

Fickian diffusion describes molecular transport from regions of higher to lower particle

concentration. In turbulent flows, this flux can be approximated by employing a modified

Fick’s law of diffusion, with an effective turbulent diffusivity:

Jr = −(DB +Dt)
∂c

∂r
(2.1)

where Jr is the radial particulate mass flux, DB is the Fickian, Brownian or molecular

diffusivity of particles in the surrounding fluid, Dt is the mean effect of velocity and concen-

tration fluctuations when the flow is turbulent and is modeled as a diffusivity, and c is the

local particle concentration in units of density. The molecular or Brownian diffusion DB is

represented by the Einstein equation

DB =

(
kT

3πµdp

)
Cc (2.2)

where Cc is Cunningham’s correction for rarefied-gas effects: Cc = 1 + 2.7Kn [20]. In this

equation, k is Boltzmann’s constant, µ is the fluid viscosity, dp is the particle diameter and

Kn is the Knudsen number. The turbulent diffusivity Dt is usually modeled empirically

[104, 58].

2.1.1 Thermophoresis

Thermophoresis is a phenomenon wherein small particles are driven by molecular collisions in

the direction opposite to that of the temperature gradient ∂T/∂r. This effect is a consequence

of higher molecular kinetic energies at higher temperatures which impose an unbalanced force
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Figure 2.1: Unequal molecular impact on a particle due to the temperature gradient (For
interpretation of the references to color in this and all other figures, the reader is referred to
the electronic version of this dissertation)

on either side of a particle in a temperature gradient and so drive the particle to the colder

zone (see Fig. 2.1). Thermophoresis can be a significant force on sub-micron particles

such as soot particles, aerosols, etc, when the temperature gradient exceeds 10 K/cm. It is

noticeable that unequal pressures on both sides of the particle will lead to drag force which

is important in Lagrangian approach. In the current Eulerian approach a thermophorectic

velocity is derived based on the balance between the themophoretic and drag forces that

takes care of both effects simultaneously.

The phenomenon of thermophoresis was first investigated as a fundamental physical

process by Maxwell (cf. [61]), for flows in which the mean free path of the gas was slightly

smaller than the size of particle. He observed that a shear stress is exerted by the gas on the

wall in the direction opposite to that of the temperature gradient and, since an equal and

opposite shear stress is exerted by the wall upon the gas, a thermal slip occurs towards the
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hotter region. Epstein approximated the force exerted on spherical particle in a gas at rest

due to temperature gradients [31]. He derived an expression for the thermophoretic force

and the subsequent velocity for small Knudsen numbers (Kn = 2λ/dp where λ is the mean

free path of the gas) as:

Fth = −
9πµνdp∇T

4T0

(
kg

kp + 2kg

)
(2.3)

where µ is the absolute: viscosity, ν is the kinematic viscosity, dp is the diameter of particles,

T0 is the mean gas temperature, ∇T is the temperature gradient, and kg and kp are the

thermal conductivities of the gas and particles respectively. Epstein’s formula compares

well with experimental data for particles of low thermal conductivity and Knudsen number,

but underestimates the thermophoretic force of particles of higher thermal conductivity

significantly. A number of attempts have been made to generalize Epstein’s relation for

higher conductivities which are to be described next. Waldmann extended Epstein’s analysis

by adding the first term in the expansion of a Sonine polynomial and derived a relation for

the thermophoretic force in the asymptotic case of large Knudsen numbers [135].

Brock used a hydrodynamic approach to evaluate the thermal force based on Navier-

Stokes-Fourier theory with a slip-corrected boundary condition [9]. Although Brock’s results

are better than Epstein’s results when compared to experimental data, the discrepancy is

still considerable. Based on the balance between the thermal force and the Millikan drag,

the thermophoretic velocity can be approximated as:

vth = −
2Csν

(
kg
kp

+ CtKn

)
∇T/T0

(1 + 2CmKn)

(
1 + 2

kg
kp

+ 2CtKn

) (2.4)

where Cm=1.14 and Ct=2.18. Derjaguin and Yalamov solved used an approach employing
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irreversible thermodynamics and Onsager’s reciprocatory relations [26, 27] to deduce that

the magnitude of the thermophoretic velocity was

vth = −
3ν

(
kg
kp

+ CtKn

)
∇T/T0(

1 + 2
kg
kp

+ 2CtKn

) (2.5)

which is similar to the Brock’s relation, except for the factor of (1 + 2CmKn). Gorelov

solved the linearized Boltzmann equation numerically and evaluated the thermophoretic

force for two distinct values of kg/kp=0.2 and 0.002, but did not present a general relation

for evaluation of the thermal velocity [39].

It is desirable to have a simple relation which can predict the thermophoretic force and

velocity over a wide range of Knudsen numbers and conductivity ratios. Cha and McCoy

[11] and Wood [141] proposed an expression for the thermophoretic force as a function of

particle properties and Knudsen number, but their results underestimate the experimental

data and fail to approach Waldmann’s predictions in the free-molecular regime. Although

the CMW (Cha, McCoy and Wood) model underestimates the thermal force, it follows the

same trend as the experimental data. Talbot made an interpolation which matched the

theory in the asymptotic cases of continuum and free-molecular limits [125]. By assuming

that the thermal force is balanced by the Millikan drag, the thermophoretic velocity may be

derived as:

vth = −Kthν
∇T

T0
= −

3Csν

(
kg
kp

+ CtKn

)
[1 +Kn(A+B.exp(c1/Kn))]∇T/T0

(1 + 3CmKn)

(
1 + 2

kg
kp

+ 2CtKn

) (2.6)
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This formula compares well with the results reported by Gorelov at
kg
kp

= .2 and shows

good agreement with the experimental data over a wide range of Knudsen numbers and

conductivity ratios [39] and so is used to model thermophoretic particle flux as Jth =

−Kthνc
∂(Ln(T ))

∂r
and so Jr = c(vr + vth)−D

∂c

∂r
.

In the last two decades, thermophoresis of particles at intermediate Knudsen numbers

has been studied extensively and the thermophoretic force has been approximated based on

the solution of the linearized Boltzmann equation [119, 142, 78]. Li and Davis measured the

thermophoretic force using electrodynamic levitation and showed that kinetic theory models

are in good agreement with their experimental data [75, 74] for Knudsen numbers from 0.1

to 10. Sone and Aoki [119], Yamamoto and Ishihara [142], and Loyalka [78] predicted that

at high conductivity ratio (kp/kg ≫ 1), negative thermophoresis is possible according to

the Boltzmann equation, though this phenomenon has not been reported in experiments. It

is noticeable that such a negative thermophoretic force is very small and the precision of

measurement instruments may not be sufficient to resolve it.

He and Ahmadi [48] compared Talbot’s model with experimental data of Li and Davis and

the CMW model. It is seen that the CMW model underestimates the thermal force while the

widely used Talbot relation is found to be quite accurate for particles with Knudsen numbers

of 3 or less (see Fig. 2.2). Tsai et al. carried out experiments on thermophoresis in a plate-

to-plate precipitator and a tube flow for a wide range of Knudsen numbers. They reported

that Talbot’s formula is accurate and can predict the experimental data with the difference

of less than 10% [132, 131]. Similar experiments were conducted by Bueno and Rucadio

for submicron aerosols at higher temperature gradients which confirmed the precision of

Talbot’s formula to within 10% of the experimental data [93]. Kim et al. [62] investigated

the transport of sub-micron particles of 0.5<Kn<83 experimentally and modified the original
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Talbot equation and the corresponding coefficients of Kth as:

Kth = 2 Cc Cs
kg/kp + CtKn

(1 + 3CmKn)
(
1 + 2kg/kp + 2CtKn

) (2.7)

where Cc = 1 + (1.165 + 0.483e−0.997/ Kn) Kn is the Stokes slip correction for rarefied-gas

effects as an improvement on the original model of Cunningham [20], Kn is the particle

Knudsen number, Cs, Ct and Cm are thermal slip, temperature jump and momentum ex-

change coefficients and take values of 1.147, 2.20 and 1.146 respectively [6], while kg and kp

are the thermal conductivities of the gas and the particles.

Since we are interested in soot, which is an agglomerate of carbon spherules and has an

effective Knudsen number of around unity, the Talbot relation seems to be a reliable model

for predicting the thermophoretic force and the corresponding velocity and has been used in

industrial applications by several researchers [2, 70, 138]. When Kn≫1, in the free molecular

regime, Waldmann and Schmitt [134] recommend for the thermophoretic coefficient Kth the

value of 0.55. In general, a value for Kth of 0.5 is a reasonable approximation for Knudsen

numbers of 0.5 and higher, while it decreases at lower Knudsen numbers, though a more

accurate value of Kth could be calculated from Talbot’s formula. It is noticeable that in the

asymptotic case of large Knudsen numbers Talbot’s formula predicts a value of Kth of 0.57,

independent of particle and flow properties.

In summary, Talbot’s relation appears to be the most trustworthy constitutive equation

for the prediction of Kth for a given particle and Knudsen number, from which the ther-

mophoretic velocity vth and the particulate flux may then be expressed. This flux is used in

the following sections to close the particle transport equations.
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2.2 Transport Equations

Since particle transport is often of most interest in circular duct flows and within bound-

ary layers, we present the governing fluid transport equations in axisymmetric boundary-

layer form. For the case of steady, laminar boundary-layer flow with constant bulk properties

and negligible pressure work and body forces, when a one-way coupling between the fluid

and particulate phases is justified, the continuous-phase x-momentum and thermal energy

equations are:

u
∂u

∂x
+ υ

∂u

∂r
= −1

ρ

∂P

∂x
+

ν

r

∂

∂r

(
r
∂u

∂r

)
(2.8)

u
∂T

∂x
+ υ

∂T

∂r
=

α

r

∂

∂r

(
r
∂T

∂r

)
(2.9)

The species diffusion equation describes particulate transport by advection, diffusion and

thermophoresis and so is written in the general boundary-layer flux form:

∂

∂x
(ρuc) +

∂

∂r
(ρvc) = −1

r

∂

∂r
(ρrJr) (2.10)

where Jr is the summation of Fickian and thermophoretic fluxes. After combining with a

bulk continuity equation, the particle diffusion equation may be written as:

u
∂c

∂x
+ υ

∂c

∂r
=

DB

r

∂

∂r

(
r
∂c

∂r

)
+

Kthν

r

∂

∂r

(
rc

T

∂T

∂r

)
(2.11)

where c is the particle concentration. The relative sizes of the thermophoretic and diffusive

transport terms on the right-hand side of this equation depend on Kth and DB and so their

ratio depends on the dimensionless group KthSc, where Sc is the particle diffusion Schmidt
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number. Large values ofKthSc correspond to flows in which thermophoretic effects dominate

the diffusive ones. When solving these equations, a symmetry condition is usually applied at

the center of the duct, while no-slip boundary condition is applied to the streamwise velocity

at the surface while the temperature takes its surface value. The boundary condition for the

particulate concentration at or in close proximity to the surface is not well understood and

will be discussed in later chapters.

2.3 Thermophoretic Mass-Transfer Coefficient

In heat transfer problems, the effectiveness of heat transfer is described by the heat

transfer conductance h. Similarly, the efficiency of thermophoretic mass transfer can be ex-

pressed via a mass transfer conductance ~. Analogous to the heat transfer case, we equate

the mass flux with the product of the conductance and the driving force through a model

equation. In this case, the particulate mass flux is driven primarily by a temperature differ-

ence. If a model equation is proposed in the simple form: J = ~(Tm − Ts), where Tm and

Ts are the mixed-mean and surface temperatures respectively, and equated to the surface

thermophoretic flux

J = −Kthν
c

T

∂T

∂r

∣∣∣∣
r=R

(2.12)

the mass-transfer conductance ~ would depend explicitly on the surface values of c and T and

only indirectly on the temperature field. Since it is the role of the flow and temperature fields

on conductance that are of most relevance to a coefficient that measures the effectiveness

of mass transport, we redefine ~ in the model equation as ~cm/Ts, where cm is the mixed-

mean particle concentration. This modified conductance represents the effectiveness of mass

transport without the explicit and obvious effect of T at the surface, and uses cm in preference
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to cs, as it is more usual for cm to be known in typical engineering analyses. If the surface

mass flux in the revised model equation:

J =
~cm
Ts

(Tm − Ts) (2.13)

is then assumed to be equal to the thermophoretic mass flux in Eq 2.12, the thermophoretic

mass transfer conductance ~ would be:

~ = −Kthν
cs
cm

∂T/∂r|r=R

(Ts − Tm)
(2.14)

or as the dimensionless mass-transfer number:

~R
Kthν

=
cs
cm

R∂T/∂r|r=R

(Ts − Tm)
in the model equation J =

~cm
Ts

(Tm − Ts) (2.15)

If we recognize that R∂T/∂r|r=R/(Ts − Tm) is half the heat-transfer Nusselt number Nu,

we can rewrite the dimensionless mass-transfer number and the model equation for surface

mass flux as

Shth =
~D
Kthν

= Nu
cδ
cm

with Jr = Shth

[
Kthν

D

]
cm
Ts

(Tm − Ts) (2.16)

where we define Shth as the thermophoretic Sherwood number. Larger values of ~ correspond

to greater thermophoretic mass transfer for a given temperature difference, and so a greater

effectiveness of mass transfer or particulate deposition. In this final form of our model

equation:
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i ) Tm − Ts provides the driving force for thermophoretic mass transfer;

ii) Shth describes the effectiveness of the flow in promoting thermophoretic mass transfer,

by convective enhancement of both the normalized surface temperature gradient and the

particle concentration at the edge of the diffusion sublayer relative to its bulk value;

iii) Kthν/D describes physical and thermophysical properties of the particles, the gas and

the duct; and

iv ) cs/Ts describes the explicit effects of the surface particle concentration and the surface

temperature on mass transfer. The ratio of surface to bulk particle concentration cs/cm

has no physical meaning but makes it possible to deal with bulk concentration in the model

equation (Eq 2.16) instead of near surface concentration, which is more convenient. It is

noticeable that in other problems cs/cm might change, i.e. in a boundary layer cs/c∞

should be used instead of cs/cm, where c∞ is the concentration far from the surface.

In typical applications, surface and bulk temperatures and the bulk concentration are

known. The Nusselt number can then be found from convective heat transfer analyses. The

principal difficulty in using the proposed model equation lies in determining cs from cm by

solution of the particle transport equation. In the following chapter, it is shown how this

mass-transfer coefficient is used to characterize thermophoretic mass transfer in pipe flow.

25



Chapter 3

Thermophoresis in Steady Laminar

Flows

In this chapter, new solutions are given for the thermophoretic particulate transport

equations for two problems. In Section 1, a numerical method is employed to determine the

velocity, temperature and particle concentration fields by solving the governing equations

for the case of developing laminar flow in a constant-wall-temperature tube. The govern-

ing equations are the conservation of mass, momentum, energy and particulate transport

equations and they are solved for the case of fully compressible flow in both the entrance

and fully developed zones of constant-wall-temperature tube flow. The numerical results

are also in good agreement with available experimental data. In Section 2, the particulate

transport equation is solved analytically for the simple case of fully developed laminar flow

in a constant-wall-temperature tube. The solution is based on the method of series and the

results compare well with experimental data.

3.1 Numerical Solution

In this section, a numerical solution is presented for the entrance zone of a circularly

symmetric tube, in which the effects of compressibility, temperature-dependence of proper-

ties, the entrance zone are considered.
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3.1.1 Governing Equations

The governing equations are the Navier-Stokes and the energy equation:

∂U

∂t
+

∂A

∂z
+

∂B

∂r
+

1

r

∂C

∂θ
+

1

r
D = 0 (3.1)

U =



ρ

ρu

ρv

ρw

ρE


(3.2)

A =



ρu

ρuu+ p− τzz

ρuv − τrz

ρuw − τθz

ρuH + qz − uτzz − vτrz − wτθz


B =



ρv

ρuv − τrz

ρvv + p− τrr

ρvw − τθr

ρvH + qr − uτrz − vτrr − wτθr



C =



ρw

ρuw − τθz

ρvw − τθr

ρww + p− τθθ

ρwH + qθ − uτθz − vτθr − wτθθ


D =



ρv

ρuv − τrz

ρvv − ρww − τrr + τθθ

2ρvw − 2τθr

ρvH + qr − uτrz − vτrr − wτθr


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where the total energy is defined as E = T/[γ(γ − 1)M2] + 1/2uiui with γ = 1.4, and

the total enthalpy is H = E + p/ρ. The corresponding stress tensor and heat flux vector

components are

τzz =
2µ

3Re

[
2
∂u

∂z
− ∂v

∂r
− 1

r

(
∂w

∂θ
+ v

)]
(3.3)

τrr =
2µ

3Re

[
−∂u

∂z
+ 2

∂v

∂r
− 1

r

(
∂w

∂θ
+ v

)]
(3.4)

τθθ =
2µ

3Re

[
−∂u

∂z
− ∂v

∂r
+ 2

1

r

(
∂w

∂θ
+ v

)]
(3.5)

τrz =
µ

Re

[
∂u

∂r
+

∂v

∂z

]
(3.6)

τθz =
µ

Re

[
∂w

∂z
+

1

r

∂u

∂θ

]
(3.7)

τθr =
µ

Re

[
1

r

(
∂v

∂θ
− w

)
+

∂w

∂r

]
(3.8)

qz =
−µ

Pe(γ − 1)M2

∂T

∂z
(3.9)

qr =
−µ

Pe(γ − 1)M2

∂T

∂r
(3.10)

qθ =
−µ

Pe(γ − 1)M2

1

r

∂T

∂θ
(3.11)
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where the Peclet number is assumed to be constant, the molecular viscosity µ depends on

absolute temperature raised to some power, and the ideal gas equation of state is used to

determine the pressure [111]. The governing equations Eq. 3.1 were discretized using a

finite difference method (FDM). A (5,4) Runge-Kutta scheme was used for the temporal

discretization (see [10] for more details), and a computer code was written in Fortran to

solve the discretized form of the governing equations.

After calculating the temperature and velocity fields, the particle transport was solved using

a similar code. As the flow is axisymmetric, the particulate transport equation may be

simplified as

∂ρc

∂t
+

∂ρcu

∂z
+

1

r

∂ρcrv

∂r
=

∂

∂z

(
ρcD

∂c

∂z
+ ρcKthν

∂Ln(T )

∂z

)
+

1

r

∂

∂r

(
r

(
ρcD

∂c

∂r
+ ρcKthν

∂Ln(T )

∂r

)) (3.12)

Eq. 3.12 is sufficiently well-behaved that it can be solved by a Eulerian time integration

scheme in a simple uniform grid. As the time required for the numerical solution of Eq. 3.12

was much shorter than the time necessary for solving velocity and temperature fields, the

steady state values for the velocity and temperature were saved in a file and used by the

particulate transport solver.

The boundary conditions of no-slip velocity and constant temperature were imposed at

the walls, while the inflow and outflow conditions were imposed according to Rudy and

Strikwerda’s non-reflecting scheme [110]. The Neumann and the symmetry boundary con-

ditions were imposed at the walls and the centerline respectively. The inflow concentration

was assumed to be constant and uniform, while the outflow concentration was obtained via

extrapolation.
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Figure 3.1: Pressure, velocity and temperature contours at steady state for the Poiseuille
flow.
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Figure 3.3: Schematic of the computational grid used for calculating the flow field.
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3.1.2 Results and Discussion

In order to validate the numerical solver that was developed, a benchmark problem was

solved. The chosen problem was low Reynolds number Poiseuille flow with isothermal no-

slip walls, which has been studied by Poinsot and Lele [102]. In this problem, the Reynolds

number based on the half width of the channel was set to 15, the inflow velocity was cosinoidal

while the inflow and the wall temperatures were identical (the interested reader is referred

to Poinsot and Lele’s article [102] for more details on this Poiseuille problem). Convergence

occured when the outflow mass flux approaches the inflow value, and the corresponding

pressure, velocity and temperature contours are shown in Fig. 3.1. They compare well with

Poinsot and Lele’s results. The velocity profiles calculated at inlet and outlet are displayed

in Fig. 3.2 and are also similar to those of Poinsot and Lele, and almost identical to the

exact solution [102].

After validation, this computer code was used to solve the problem of flow and heat and

mass transfer in the entrance zone of a constant-wall-temperature tube. The problem was

assumed to be axisymmetric, which eliminated some of the terms in Eq. 3.1. The grid chosen

was uniform along the tube, while grid compression was applied in the radial direction. A

2-D grid 121 × 35 was found to yield good results up to Reynolds numbers of 300, and is

shown in Fig. 3.3. As most of the heat transfer and thermal mass transfer occurs in the

entrance zone, the length of the domain was chosen so that the thermal developing zone

could be captured completely. The code developed was capable of calculating the velocity

and temperature fields for Reynolds number of up to 4000 in Cartesian and up to 1400 in

cylindrical coordinates. The velocity and temperature fields for a Reynolds number of 300

are shown below.
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Figure 3.4: Velocity field in a tube at Reynolds number of 300-based on the hydrodynamic
diameter of the tube.
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Figure 3.5: Temperature field in a tube at a Reynolds number of 300 based on the hydrody-
namic diameter of the tube.
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Figure 3.6: Concentration field in a tube at Reynolds number of 300-based on the hydrody-
namic diameter of the tube.

The calculated concentration field for the Reynolds number of 300 is shown in Fig. 3.6,

from which the mean concentration cm(x) and the deposition efficiency η(x) were calculated.

The transport and deposition of sub-micron particles in entrance zones has also been deter-

mined by others. Montassier et al. carried out a comprehensive study on the thermophoretic

particle deposition in laminar tube flow [91], including a series of experiments and observed

that his measurements were in agreement with the theoretical predictions of Stratmann [122]

for sub-micron particles, when employing Talbot’s formula for Kth. Based on these obser-

vations, Montassier developed an empirical relation for the deposition efficiency along the

tube η(x).
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Figure 3.7: Measured deposition efficiencies η(x), predicted values based on Eq. 3.13 and
the results obtained by numerical solution for particles of 0.1µm diameter at Re≃300.

η(x) =


3.2

PrKth

1 + θ∗

(
1 +

1− PrKth

1 + θ∗

)( x

RPe

)2/3
Kn ≥ 0.2,

( x

RPe

)
< 0.15

1.7
PrKth

1 + θ∗

(
1 +

1− PrKth

1 + θ∗

)( x

RPe

)0.58
Kn ≤ 0.2,

( x

RPe

)
< 0.15

(3.13)

The values of η(x) determined by numerical computation, Eq. 3.13 and Montassier’s experi-

mental data are shown along the tube (Fig. 3.7). The experiments were carried out in a tube

of inner diameter of 2 cm with an air flow of 10−4 kg/s containing particles of sodium salt

of fluorescein, which corresponded to Re and Kth of approximately 300 and 0.5 respectively

(the reader is referred to Montassier’s article for more details on the experiments [91]). The

discrepancy between the computational results and the experimental data is negligible, and

Eq. 3.13 is also in good agreement with the experimental measurements. In the current
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problem, it is seen that the thermophoretic conductance values are quite different to those

obtained in Section. 3.2.2. This discrepancy may be explained based on the fact that in the

former case, the temperature and concentration profiles were fully-developed, while in the

latter, the mass transfer in the thermal entrance zone is far from fully-developed.

A numerical simulation at Reynolds number of 30 was then carried out for longer tube

lengths, when the flow was almost fully developed and the Nusselt number approached a

steady value. It was assumed that the fluid viscosity was a power function of temperature

as µ
µ0

=

(
T

T0

)0.7

, where µ0 and T0 are the reference viscosity and temperature. As the

flow properties depend on the flow temperature, the Nusselt number was calculated at dif-

ferent temperature ratios and has been compared with the Nusselt number in the case of

constant properties Nucp, where the flow properties are independent of the flow temperature

(see Table. 3.1). It is evident that the discrepancy between Nusselt numbers because of

temperature dependent properties is very small, making the constant property assumption

reasonable.

Table 3.1: Studying the effect of variable properties on Nusselt number

Ts/To Nucp Nu Nu/Nucp Error(%)

0.6 3.52 3.65 1.04 4%
0.7 3.48 3.55 1.02 2%
0.8 3.47 3.51 1.01 1%
0.9 3.45 3.48 1.01 1%
0.95 3.48 3.5 1.01 1%

3.2 Analytical Solution

In this section the transport equations have been simplified considerably so they can be

solved by the method of series. The simplifying assumptions and the corresponding analytical
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solutions for several typical problems will be discussed in the following.

3.2.1 Effects of Temperature-Dependent Properties

Exact analytical solutions exist for the fully-developed velocity field in laminar pipe flows

of constant-density, constant-viscosity Newtonian fluids, and the companion fully-developed

temperature field for uniform wall temperature when k and cp are constant. In gas flows with

thermophoresis, in which the temperature gradients are necessarily large, the gas density,

viscosity and Prandtl number can vary significantly with surface-normal position. However,

the extent to which these property variations affect the resulting velocity and temperature

profiles in any particular flow is not clearly understood. We therefore carried out numerical

calculations of the Graetz thermal entry-length problem by solving the compressible axisym-

metric equations of motion and thermal energy (Eqs. 3.1–3.2), using an ideal gas equation

to describe the air density, a Sutherland model for its temperature-dependent viscosity, and

a linear Prandtl number dependence on temperature.

The computations were carried out at Re = 30 on a compressed mesh with 35 points in

the radial and 121 points in the axial direction (x/R = 5), when the ratio of surface-to-inflow

temperature (in Kelvin) was set to 0.6 and 0.8. The resulting profiles of temperature and

velocity are plotted in Figs. 3.8 and 3.9 and appear to be in very close agreement with the

constant-property analytical solutions. Computations of the Nusselt number in this laminar

pipe flow with temperature-dependent air properties differed from its constant-property value

by less than 4% for Ts/To > 0.6 and by less than 1% for Ts/To > 0.8. These results

are consistent with the observation of Kays et al. [60] that, as viscosity and conductivity

scale with T 0.8 and density is inversely proportional to T , the temperature dependences of

these properties almost compensate for one another, with the result that constant-property
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Figure 3.8: Comparison of velocity profiles computed in compressible laminar pipe flows with
temperature-dependent properties at Ts/To = 0.6 and 0.8 with the analytical Poiseuille-flow
solution.
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Figure 3.9: Comparison of temperature profiles computed in compressible laminar pipe flows
with temperature-dependent properties at Ts/To = 0.6 and 0.8 with the analytical solution
of Shokouhmand and Hooman [116].

solutions can provide quite accurate representations of gas flows with temperature-dependent

properties, even when there are large temperature variations across a flow [60].

In the following sections the particle transport equation for the hydrodynamically and

thermally fully-developed incompressible tube flow, channel flow and a plate-to-plate pre-

cipitator have been solved using series solution. Although the measurement of deposition

efficiency is quite convenient, there is almost no experimental data on the shape of con-

centration profiles in tubes so the full development of the concentration profiles is not well

understood. In the following sections, two plausible forms of a fully-developed concentration

field are proposed, both of which provide a basis for the particle transport equations to be

simplified and solved. These solutions are discussed in the next two sections.
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Concentration profiles are considered to be fully-developed when the non-dimensional

concentration θ stays invariant in the longitudinal direction. Two possible forms for θ are:

a) cs−c
cs−cm

, and

b) c
cm

The first form is analogous to that of fully-developed heat transfer, in which the heat flux

is driven by a temperature gradient. It is clearly the appropriate form for fully developed

particle transport dominated by molecular diffusion, in which case the particle flux scales

on the concentration gradient through Fick’s law. However, in cases when thermophoresis is

dominant, the particle flux depends linearly on the absolute value of particle concentration,

and not its gradient, and so a scaling of absolute concentration ratios is proposed. For the

first of these proposed conditions for full development of the concentration field, the transport

equations for pipe flow are solved based on the assumption of θ = (cs − c)/(cs − cm). The

second fully developed assumption of θ = c/cm is then used to solve the pipe flow, channel

flow and plate-to-plate precipitator flows, with a series solution. The corresponding results

originated from both assumptions will be discussed in the following sections.

3.2.2 Fully-Developed Pipe Flow(θ = (cs − c)/(cs − cm))

We consider the problem of thermophoretic transport of particles from a hot gas to a

cold, uniform-temperature wall when velocity and temperature profiles in the outer region

can be approximated as their constant-property, fully-developed forms, as discussed earlier.

The Nusselt number for this flow is 3.657 [60]. The velocity and temperature profiles can

be expressed in terms of the average velocity Um, the mixed-mean temperature Tm(x) and
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r+ = r/R, as

u = 2Um(1− r+
2
) (3.14)

where Um is the average velocity and r+ = r/R, and when Brownian diffusion is much

less important than thermophoresis, the corresponding particle transport equation may be

written as:

2Um(1− r+
2
)

(
∂c

∂x

)
=

Kthν

R2r+
∂

∂r+

(
cr+

T

∂T

∂r+

)
(3.15)

The fully-developed temperature profile in this flow has been calculated by Shokouhmand

and Hooman [116] as the series solution:

T − Ts
Tm − Ts

≈ 1.8030− 3.2966r+
2
+ 2.3310r+

4 − 1.1433r+
6
+ . . . = f(r+) (3.16)

We now develop a solution for the concentration field when thermophoretic particle trans-

port takes place in this flows. The presence of thermophoresis implies that significant tem-

perature gradients exist, in which case the flow would not be one with constant properties.

The validity of this assumption was discussed in the previous section. The local mixed-mean

temperature Tm(x) in Eq. 3.16 may be evaluated by making use of an overall energy balance

in the x-direction, from the pipe entrance at x = 0, where the fluid temperature is To, to any

arbitrary downstream location x. Neglecting the thermal entrance effects, the heat-transfer

coefficient is constant along the tube, and it is found by integration of the energy balance

that

Tm(x)− Ts
To − Ts

= exp (−2Nu x/[PeR]) (3.17)

where Pe is the Peclet number Pe=UmD/β referenced to the pipe diameter D. Eqs. 3.16 and

3.17 can then be substituted into Eq. 3.15 so that its temperature terms are determined. An
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overall particle mass balance over a section through the pipe of differential length dx yields

the result

dcm(x)

dx
= − Kthν

UmR2

cs
Ts

Nu(Tm − Ts) (3.18)

and when this result is substituted in Eq. 3.15, Um is cancelled and the particulate transport

equation is simplified as:

−2Nucs

(
r+ − r+

3
) ∂c

∂x
=

dcm
dx

∂

∂r+

(
r+cf ′(r+)

1 + fe−βx[To/Ts−1]

)
(3.19)

where f ′ is the derivative of f in Eq. 3.16 and β = 2Nu/(PeR). In order to solve this

particle transport equation, a simplifying assumption about the ∂c/∂x term is necessary. A

dimensionless concentration parameter θ is defined as,

θ =
cs − c

cs − cm
(3.20)

and ∂θ/∂x = 0 under fully developed conditions. By differentiating Eq. 3.20, it may be seen

that a condition for the existence of a fully developed concentration profile is

∂c

∂x
=

dcm
dx

=
dcs
dx

= g(x) (3.21)

where g(x) is any function of x. This condition also implies that cs(x) − cm(x) =constant.

Numerical simulations of this entrance-length problem show that the concentration profiles

reach full development at x/(PeR) ≃ 0.1. It is important to distinguish this condition for a

fully-developed concentration profile from the analogous constant-heat-flux condition for a
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fully-developed temperature profile:

∂T

∂x
=

dTm
dx

=
dTs
dx

= constant (3.22)

This more restrictive requirement of the temperature gradient taking a constant value is a

consequence of the overall energy balance and the constant-heat-flux condition and does not

apply to the concentration field.

When the additional condition of a fully-developed concentration profile of Eq. 3.21 is

applied to Eq. 3.19, it may be integrated once, with the boundary conditions that c remains

finite and the temperature is symmetric about r+ = 0, the result is

c

cs
= Nu

(
1 + f(r+)e−βx

[
To
Ts

− 1

]) 1

2
r+

3 − r+

f ′(r+)
(3.23)

The concentration ratio c/cs may then be determined at any x-location by expansion of Eq.

3.23 and takes the form of the analytical series solution:

c

cs
= Nu

(
0.1516 + 0.2734e−βx

[
To
Ts

− 1

]
+

{
−0.2500 + 0.1386e−βx

[
To
Ts

− 1

]}
r+

2

+

{
0.0382− 0.0345e−βx

[
To
Ts

− 1

]}
r+

4
+

{
−0.0171− 0.0072e−βx

[
To
Ts

− 1

]}
r+

6

+

{
−0.02316 + 0.005410e−βx

[
To
Ts

− 1

]}
r+

8
+ . . .

)
(3.24)

Thus the concentration ratio c/cs evolves as a function of x even though the shape of the

concentration profile θ is assumed to have completed its development. Moreover, this ratio is

independent of the thermophoretic and viscosity coefficients and is therefore invariant with

the size and kind of particle, providing it is one-way coupled with the flow. The ratio cm/cs
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may be found from the definition of cm,as

cm
cs

= 4

∫ 1

0
(r+ − r+

3
)
c

cs
dr+ = Nu

[
0.20044 + 0.18462e−βx(To/Ts − 1)

]
(3.25)

where the coefficients have been determined from terms up to r+
20
, for which convergence

was achieved to the 5th decimal place. When Nu is set to 3.657 and x is sufficiently large,

cs/cm approaches 1.364. This asymptotic result tells us that the surface particle concen-

tration is significantly larger than the mixed-mean value. It is important to note that this

calculation of cs does not include any effect of the Fickian diffusion. Therefore it would be

expected to describe the edge of a very thin diffusion layer at the surface, rather than at

the surface itself. It is this aspect of this solution that explains its apparent contradiction

with the cs = 0 boundary condition applied at the surface in other studies. It also implies

that the simplification that is sometimes made of a flat concentration profile underestimates

deposition in laminar flows. It is noteworthy that, in this determination of c(x; r+)/cs(x), no

boundary condition was applied at the surface of the tube. As Eq. 3.15 is a first order PDE

of concentration only one boundary condition is required, which was the symmetry condition

in the centreline in this case. The gradient of the concentration profile at the surface can be

found by differentiation of Eq. 3.24 to be

∂

∂r+

(
c

cs

) ∣∣∣∣
r+=1

= −Nu
[
0.02935 + 0.4862e−βx(To/Ts − 1)

]
(3.26)

The results of this section may be used to explore the dependence of the dimensionless

mass-transfer conductance ~D/(Kthν) = (cs/cm)Nu on Pe, x/R and To/Ts.
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3.2.2.1 Development of the Sherwood Number

For the problem of particulate transport in axisymmetric pipe flow with fully devel-

oped velocity and temperature profiles, with a hot fluid and a cold constant-temperature

pipe surface, the Nusselt number reaches its asymptotic value of 3.657 at approximately

x/(PeR) = 0.1 [60]. When the concentration profile is fully developed, the mass-transfer

conductance may be written in dimensionless form, using the pipe diameter as its length-

scale, as ~D/(Kthν) = (cs/cm)Nu or

Shth =
~D
Kthν

=
cs
cm

Nu =
1

0.20044 + 0.18462e−βx(To/Ts − 1)
(3.27)

Thus, when the concentration profile is fully developed and x = (PeR) > 0.1, this con-

ductance depends only on the axial dependence of the concentration ratio cs/cm. The

dimensionless conductance is plotted against x/(PeR) in Fig. 3.10, when the ratio of in

flow temperature to wall temperature To/Ts (in degrees K) takes the values: 1.25; 1.5; 1.75

and 2.0. From this figure, it appears that the conductances at each temperature ratio tend

towards an asymptotic value of 5.0 which is reached after a development length of roughly

0.6PeR, when cs/cm reaches a fully-developed value of 1.364. Since this concentration en-

trance length is about six times longer than the thermal development length, the assumption

in the preceding analysis of a fully-developed temperature field for the entire flow appears to

be a reasonable one. Within the concentration-ratio development region (x/(PeR) < 0.6),

there is a significant effect of the ratio To/Ts on the mass-transfer conductance, with higher

temperature ratios corresponding to lower conductances at any given axial position. This

effect is a consequence of the non-linear temperature dependence of the thermophoresis term

in Eq. 3.15 and the x-dependent temperature field of Eq. 3.17. Complete (numerical) so-
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Figure 3.10: Dimensionless mass-transfer conductance Shth = (cs/cm)Nu plotted against
x/(PeR) when To/Ts=1.25; 1.5; 1.75; and 2.0.

lutions for the dimensionless mass-transfer conductance in the thermally developing region

(x/(PeR) < 0.1) should, presumably, provide a smooth continuation of each plotted conduc-

tance curve to its value at x = 0 for whatever in flow conditions might be specified. However,

regardless of the inflow conditions, the dimensionless mass-transfer conductance reaches its

fully developed value of 5.0 when cs/cm = 1.364.

3.2.2.2 Development of the Concentration Profile

The dependence of the dimensionless mass-transfer conductance on the concentration

field is ~D/(Kthν) = (cs/cm)Nu and has a region of development shown in Fig. 3.10. It

is therefore interesting to see how profiles of the particle concentration behave within this

development length and so profiles of c/cm are plotted against r/R in Fig. 3.11 at several

axial locations during development, at a representative temperature ratio of To/Ts = 1.5.
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Figure 3.11: Radial profiles of c/cm plotted at x/(PeR) = 0.2; 0.3; 0.4 and 0.6, when
To/Ts = 1.5.

It is important to note that while the local ratio cs/cm has been found analytically for a

thermally and hydraulically developed, particle-laden flow, the absolute value of c(x; r) and

the ratio c(x; r)/cmo cannot be found without solving numerically the coupled differential

equations of linear momentum, thermal energy, and particle diffusion over a domain from

in flow to the x-location of interest. From Fig. 3.11, it can be seen each c/cm profile takes

the shape of a rotated ‘S’ with the lowest particle concentrations at the pipe center and

the highest concentrations at/near the surface. Each profile is flat at the pipe center and

almost flat at the surface. The effect of axial development is to steepen the profile, reducing

the concentration at the center while increasing it at the surface. In the early stages of

development at x < 0.2PeR, the gradient of the concentration profile is almost zero over a

region that extends outward from the surface to roughly 0.9R. As full development of the

concentration profile is reached at x = 0.6PeR, the concentration gradient at the surface is
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not zero but slightly negative.

3.2.2.3 Deposition Efficiency

A small number of experimental studies have been carried out of particle deposition

from hot, laminar, particle-laden gas flows to cold pipe walls [107, 91, 123], in which particle

transport is characterized in terms of a measured deposition efficiency. This efficiency is

defined as the mass flow rate of particles deposited on the wall of the pipe, from the pipe

entrance to some downstream location x, divided by the mass flow rate of particles entering

the pipe, and can be expressed as

η(x) = 1− cm(x)

cmo
(3.28)

where cmo is the mixed-mean particulate concentration at the pipe entrance. The ratio

cm(x)/cmo can be determined by integrating from in flow to some arbitrary downstream

distance x the overall particulate mass balance for a section of the pipe of differential length

dx, which is

−UmR
dcm(x)

dx
= 2J (3.29)

or, after substitution for the particulate flux at the pipe surface J from Eq. 2.16 and

separating variables,

dcm(x)

cm
= − Kthν

UmR2
Nu

cs
cm

[
Tm(x)

Ts
− 1

]
dx (3.30)

where Nu and cs/cm are, in general, functions of x. If constant values of Ts and the surface

heat transfer coefficient are assumed for all x, Tm(x)− Ts may be expressed in terms of the
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in flow temperature To, Ts and x according to Eq. 3.17. Furthermore, if cs/cm is taken as its

fully-developed value, Eq. 3.30 can be integrated analytically from inflow to some arbitrary

downstream distance x and substituted into Eq. 3.28 to yield

η(x) = 1− exp

{
−2KthNu

Re R

[
To
Ts

− 1

] ∫ x

0

cs
cm

e
−2Nu.(

x

R
)/Pe

dx

}
(3.31)

In the case of fully-developed concentration concentration profiles, the corresponding formula

for cs/cm in Eq. 3.25 may be used and Eq. 3.31 may be integrated analytically from inflow

to the arbitrary downstream distance x of the flow to yield

η(x) = 1−

1 + 0.9211(To/Ts − 1)e
−2Nu(

x

R
)/Pe

1 + 0.9211(To/Ts − 1)


KthPr/0.1846 Nu

(3.32)

As x tends to infinity, corresponding to deposition in long tubes, this efficiency tends towards

the asymptotic value of

η(∞) = 1−
[

1

1 + 0.9211(To/Ts − 1)

]KthPr/0.1846 Nu
(3.33)

3.2.2.4 Comparison with Experimental Data and Computational Models

The experimental data for deposition efficiency that are most suitable for comparison

with theoretical predictions are those of Romay et al. [107] in which hot air seeded with

sodium chloride (NaCl) particles (0.1 µm and 0.482 µm diameter) was flowed steadily at Re

= 1400 within a 4.9 mm diameter metal pipe, the outer surface of which was cooled by water

in the configuration of an annular counter-flow heat exchanger. In these experiments, Romay

et al. maintained the inflow temperature of the cooling water at 20oC while systematically
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Figure 3.12: Comparison of measured (Romay [107]) and predicted (Eq. 3.32) deposition
efficiencies η(ℓ) of sodium chloride particles from hot air to cold pipe walls at 293 K, as a
function of air in flow temperatureTo

varying the air in flow temperature between 300oC and 420oC. The deposition efficiency over

the test section of length ℓ = 0.965 m was determined from measurements of the suspended-

particle concentrations at in flow to and out flow from the test section. If it is assumed that

the surface of the layer of deposited particles Ts is approximately equal to the temperature

of the cooling water, comparisons can be made between Eq. 3.32 and the experimental

measurements of deposition efficiency. The deposition efficiency η (Eq. 3.32) was calculated

for x= 0.965 m, as a function of To, and plotted in Fig. 3.12 for 0.1 µm and 0.482 µm

NaCl particles, together with the experimental measurements of Romay et al. From this

figure, it is clear that the agreement between theory and experiment is good for both sizes

of particle considered, and that the sensitivity of the theoretical prediction to particle size

is comparable to that of the experimental data. It is also instructive to use Eq. 3.31 to
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Figure 3.13: Effect of cs/cm on the deposition-efficiency predictions of Eqs. 3.31 and 3.32
as a function of air inflow temperature To.

explore the significance of the particle concentration profile and of Ts on particle-deposition

efficiencies. In Fig. 3.13, the predicted deposition efficiency of Fig. 3.12 is plotted for 0.1

µm NaCl particles, together with the corresponding prediction when cs/cm is set to unity in

Eq. 3.31 (the uniform concentration assumption). It is clear from this figure that the effect

of this assumption is to underestimate the deposition efficiency by approximately 40%.

In the preceding discussion, an attempt was made to compare the development of deposi-

tion efficiency η along the tube with results published by other researchers. In the literature,

there does not appear to be any experimental data on the spatial development of deposition

efficiency along the pipe (Eq. 3.32). However, it is interesting to compare our prediction of

η(x) with the empirical function proposed by Stratmann et al. [123] as an accurate fit to a

large set of computational results. This empirical fit is to numerical solutions to the laminar

continuity, Navier-Stokes, thermal energy, and species thermophoretic diffusion equations,
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Figure 3.14: Predictions of total deposition efficiency from Eqs. 3.33 and 3.34 as a function
of reciprocal temperature difference, for KthPr = 0.35; 0.40; 0.45.

with temperature-dependent properties and surface boundary conditions of constant tem-

perature and zero concentration, for developing flow along a pipe and takes the form:

η(∞) = 1− exp

{
−0.845

[
KthPr + 0.025

Ts/(To − Ts) + 0.28

]0.932}
(3.34)

with x-dependence accounted for by a separate function η(x)/η(∞) which was presented

graphically in [123]. It is interesting to note that, if the fitted coefficient 0.932 were set

to unity, the functional form of this equation would essentially be that which is obtained

by integrating Eq. 3.31 when setting cs/cm to a constant rather than a function of x. It

therefore appears that the four coefficients in Eq. 3.34 account for: i) the implicit dependence

of cs/cm on Ts/(To − Ts); ii) the effect on η of employing the cs = 0 boundary condition;

and iii) the effect of temperature-dependent properties on η.
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The deposition efficiency η(∞) has been evaluated based on the two mentioned expres-

sions: Eq. 3.34 which is an empirical fit to Stratmann’s numerical results and Eq. 3.33

that originates from the series solution presented in this paper; for three various reciprocal

temperature differences. These results are shown in Fig. 3.14. While the trends followed by

each prediction of η(∞) for different values of Kth Pr are very similar, the absolute values of

deposition efficiencies predicted according to this study are roughly 30% higher than those

of the fit of Stratmann et al. This systematic discrepancy is a consequence of the inclusion

of molecular diffusion in the computations of Stratmann and the different treatments of the

concentration boundary condition at the pipe surface. As explained in Sec. 3.2.2, our so-

lution for c/cs requires one integration and the imposition of a single symmetry boundary

condition at r+ = 0, yet it yields the results that cs ̸= 0 and ∂c/∂r|r+=1 ≃ 0, which are

consistent with the deductions of Sec. 3.2.2. If we recall that the thermophoretic flux is

equal to Kthνc∂(lnT )/∂r, the cs = 0 boundary condition will set this flux to zero at the

surface and so the particulate flux will occur only through molecular diffusion. On the other

hand, the results that ∂c/∂r|r+=1 ≃ 0 and that cs is finite at the surface require that there

is thermophoretic flux at the surface but that molecular diffusional flux is negligible. The

greater size of the surface thermophoretic flux, relative to molecular diffusional flux, in these

flows accounts for the greater deposition velocities and efficiencies predicted by the results

of this study.

The x-dependence of η is plotted as η(x)/η(∞) against x/(PeR) in Fig. 3.15 for the

model developed in this paper and the x-dependence deduced from the computations of

Stratmann et al. The effect on η(x)/η(∞) of varying KthPr and Ts/(To − Ts) between the

largest and smallest values they take in the data of Fig. 3.14 is small and of the order

of a few thickness of the lines plotted in Fig. 3.15. While the x-dependence of the two
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Figure 3.15: Predictions of x-dependence of deposition efficiency from Eqs. 3.32 and 3.34
when plotted as functions of x/(PeR).

deposition-efficiency predictions is in good agreement for x/(PeR) > 0.2, the discrepancies

between the two models grow at x-locations closer to the pipe inflow. These discrepancies

for x/(PeR) < 0.2 are unsurprising as the deposition model of this study was developed

using a fully-developed temperature profile and so would not be expected to yield accurate

results within this region of thermal development. The results presented by Stratmann et

al. include entrance zone effects and as the temperature gradients are higher in this zone,

the corresponding deposition efficiencies presented by Stratmann et al. have higher values

in the entrance zone than our thermally developed solution.

From this analytical solution and comparisons with experimental studies, it appears

that the assumption of a fully-developed concentration field, analogous with that of a fully-

developed temperature field, leads to good agreement with the limited experimental data
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available on deposition efficiency. The second proposed parameter for describing a fully-

developed concentration field—the ratio of absolute particle concentrations—is next used to

solve the particle transport equation, and is discussed in the following section.

3.2.3 Fully-Developed Pipe Flow(θ = c/cm)

In this section, an analytical solution for the flow in a pipe analogous to that Sec. 3.2.2 is

presented, only using a different criterion for fully-development of the particle concentration

profile.

As presented in the previous section, the velocity profile in steady, laminar, constant-

property, fully-developed flow along a pipe is

u = 2Um

(
1− r+

2
)

and
T − Ts
Tm − Ts

= 1.803−3.296r+
2
+2.331r+

4−1.143r+
6
+· · · = f(r+)

(3.35)

following Shokouhmand and Hooman [116].

An overall energy balance in the x-direction, from the pipe entrance at x = 0 where

the fluid temperature is To to downstream location x, under the assumption of a constant

heat-transfer coefficient (i.e. neglecting thermal entrance effects) yields

Tm(x)− Ts
To − Ts

= e−2Nu x/(PeR) (3.36)

and an overall particle mass balance over a section of length dx through the outer region

requires that

dcm
dx

= −Nu
Kthν

UmR2

cs
Ts

(Tm − Ts) (3.37)

The corresponding particle transport equation will be similar to 3.15.
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The x-dependence of the e−βx term in Eq. 3.15 precludes an exact analytical solution for

a fully developed concentration profile. However, a series approximation to such a solution

can be made if the dimensionless concentration profile in the outer region is expressed as

θ(r+) = c(r+, x)/cm(x), with the condition on full profile development that ∂θ/∂x = 0.

The concentration ratio θ is one of absolute values of particle concentration, because the

thermophoretic flux depends on the absolute concentration. It follows that the condition for

a fully-developed concentration profile is

∂c

∂x
=

c

cm

dcm
dx

(3.38)

Substitution of this constraint into Eq. 3.15 renders it an integro-differential equation on

account of the definition of cm. It is important to note that the left-hand side of Eq. 3.15 is

zero at r+ = 1 irrespective of the full-development assumption. It follows that Eq. 3.38 is

applied only when r+ < 1 and not at r+ = 1, where the mathematical result of Weinberg

[140] that cδ is constant when KthPr = 1 would otherwise implausibly require dcm/dx = 0.

A series solution for the concentration profile may be found by substituting the series

c/cδ = c0 + c1r
+ + · · · and Eq. 3.38 into Eq. 3.15 and integrating, subject to the boundary

condition that c is symmetric about r+ = 0. The power-series coefficients may be found

by equating the left- and right-hand sides of the resulting equation at each power of r+.

Equating terms at r+
2
yields the result

cδ
cm

=
1.803

1 + 1.803e−βx [To/Ts − 1]
(3.39)

while equating at even powers of y+ yields a system of algebraic equations from which

56



successive values of the series coefficients may be determined, of the form:

c2 = 1.8284c0

(
1− 3.606e−βx [To/Ts − 1]

1 + 1.803e−βx [To/Ts − 1]

)
; c4 = 1.6213c2

(
· · ·
)
−1.5656c0

(
· · ·
)

etc.

(3.40)

These relationships may be combined with the definition of cm and the requirement that

c = cδ at r+ = 1 to yield the complete series solution for c/cδ to arbitrary order. In the

limit of large x, the outer concentration profile takes the form

c

cδ
= 0.3080 + 0.5632r+

2
+ 0.4324r+

4
+ 0.0878r+

6 − 0.1560r+
8 − 0.1915r+

10

−0.1049r+
12 − 0.0129r+

14
+ 0.0738r+

16
+ · · · (3.41)

in which case cδ/cm = 1.803, cδ/c(0) = 3.247, Shth = 6.59 and ∂c/∂r ≃ 0 at r+ = 1. The

shape of the profile is independent of the thermophoretic and viscosity coefficients and is

therefore invariant with the size and kind of submicron particle in this outer solution.

3.2.3.1 Development of the Sherwood Number and the Concentration Field

It can be shown from the Graetz solution for heat transfer at the pipe entrance that

the Nusselt number for fully developed flow in a pipe of uniform wall temperature reaches

its asymptotic value of 3.657 at approximately x/ (PeR) = 0.1 [60]. Beyond this x-location,

the thermophoretic Sherwood number in Eq. 2.16 can be expressed using Eq. 3.39 as:

Shth =
6.593

1 + 1.803 e−βx [To/Ts − 1]
(3.42)

This Sherwood number is plotted against x/ (PeR) in Fig. 3.16, when the ratio of inflow

temperature to wall temperature To/Ts (in Kelvin) takes the values: 1.25; 1.5; 1.75 and 2.0.
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Figure 3.16: Thermophoretic Sherwood number Shth plotted against x/ (PeR) when
To/Ts = 1.25; 1.5; 1.75 and 2.0.

From this figure, it is clear that Shth at each temperature ratio tends towards an asymptotic

value of approximately 6.6, which is reached after a development length of roughly 0.6PeR,

when cδ/cm attains a fully-developed value of about 1.8. Since this concentration entrance

length is about six times longer than the thermal development length, the assumption in the

preceding analysis of a fully-developed temperature field for the entire flow appears to be

reasonable.

Within the concentration-ratio development region of x/ (PeR) < 0.6, there is a sig-

nificant effect of the ratio To/Ts on the Sherwood number, with higher temperature ratios

corresponding to lower mass-transfer conductances at any given axial position. However, the

particle flux Jr is proportional to the product of Shth and Tm − Ts and if this temperature

difference is replaced by (To−Ts)e
−2Nu x/(PeR) from Eq. 3.36, the particle flux is still seen

to decay almost exponentially with distance along the pipe regardless of the value of To/Ts,

as shown in Fig. 3.17.

The particle concentration ratio c/cδ within the concentration development region is
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Figure 3.17: Normalized particle flux J plotted against x/ (PeR) when To/Ts = 1.25; 1.5;
1.75 and 2.0. The flux at each value of To/Ts is normalized by its value at x/ (PeR) = 0.1.

plotted against r/R in Fig. 3.18 at several axial locations, at a representative temperature

ratio of To/Ts = 1.5. From this figure, it can be seen that each c/cδ profile takes an ‘S’ shape,

with the lowest particle concentrations at the pipe center and the highest concentrations at

the edge of the surface diffusion sublayer. The effect of axial development is to stretch the

profile and reduce the concentration at the pipe center, with the asymptotic shape of the

profile at large x matching the one plotted at x/ (PeR) = 0.8. Thus Shth—the particle-

deposition effectiveness, a dimensionless measure of J Ts/(cm∆T )—increases with x during

development because J does not decrease as rapidly as the product of cm and ∆T . At

complete development, when x/ (PeR) > 0.6, Shth reaches its asymptotic value of 6.59 and

J thereafter decreases with x at the same rate as cm ∆T .

It can also be seen from Fig. 3.18 that as x/ (PeR) increases, the radial gradient of the

concentration profile at r = R—the edge of the diffusion sublayer—tends to zero. This result

appears to be a consequence of complete development of the outer concentration profile. It

also provides an outer boundary condition for calculation of the inner diffusive sublayer
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Figure 3.18: Radial profiles of normalized c(c/cδ) plotted at x/ (PeR) = 0.1; 0.2; 0.3; 0.4
and 0.8, when To/Ts = 1.5.

that is independent of x and so is compatible with a fully-developed sublayer concentration

profile. At present, there do not appear to be any experimental measurements of particle-

concentration profiles for comparison with these theoretical results.

3.2.3.2 Particle Deposition Efficiency and Concentration Profile Development

The efficiency of particle deposition at some axial position x is defined as the mass flow rate

of particles deposited on the wall of the pipe, from the pipe entrance that location, divided

by the mass flow rate of particles entering the pipe, and is expressed as

η(x) = 1− cm(x)

cm0

(3.43)

where cm0 = c0 and is the mixed-mean particulate concentration at the pipe entrance. It is

found most readily from Lagrangian particle-trajectory calculations such as those of Walker

60



et al. [136], whose numerical results appear to be in good agreement with the formula

η(x) = PrKthϕ0 [To/Ts − 1]
(
1− e−2Nu x/(PeR)

)
(3.44)

in which ϕ0 is the value of cδ/c0 obtained from a similarity solution for thermophoretic trans-

port in the concentration entrance zone. They also agree with the experimental deposition-

efficiency measurements of Romay et al.[107]. If we note that

dη

dx
= − 1

c0

dcm
dx

(3.45)

we can equate values of dcm/dx in the derivative of the approximate deposition-efficiency

formula of Walker et al.[136] and in the overall particle mass balance (Eq. 3.37) to yield the

result that cδ(x)/c0 ≃ ϕ0, from which it follows that cδ(x) is approximately constant.

It is important to note that Eq. 3.44 can be obtained as a mathematical solution to

the particle transport equations for this flow only for the case of KthPr = 1, when cδ can

be shown to be constant. At other values of KthPr, cδ is not necessarily a constant. The

observation that Eq. 3.44 is in good agreement with numerical solutions for η(x) for a range

of values of KthPr merely implies that, for the purposes of matching deposition-efficiency

data, cδ can usefully be approximated as if it were a constant, even when KthPr ̸= 1. Thus if

cδ is approximated in this manner, the profiles of c/cδ in Fig. 3.18 are approximately profiles

of c each of which is normalized by the same value, and therefore describe the progressive

reduction of c in the outer flow with increasing x/ (PeR). In the limiting case of very large

x, when the gas temperature equilibrates with the wall temperature and c becomes small,

thermophoresis no longer dominates diffusion in the outer flow and these results for profile
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shape and for the x-dependence of cδ would not apply.

From the results of thi ssection and the previous one, it appears seen that both proposed

criteria for the full development of the particle concentration field lead to results with similar

trends, which are both in reasonable agreement with what limited data are available on par-

ticle deposition efficiency. The approach based on a ratio of absolute concentration θ = c
cm

,

consistent with the thermophoretic flux dependence on absolute concentration, resulted in

a mass-transfer effectiveness of Shth=5.0. The approach analogous with the dimensionless

temperature of diffusive thermal, θ =
(c−cs)
(cm−cs)

, resulted in Shth=6.6. The simplified trans-

port equation (Eq. 3.15) was also solved by a finite difference code and yielded the result

Shth=6.4. However, since the appropriateness of wall boundary conditions for this compu-

tations (which are discussed in a later chapter) is not not clear, it is difficult to say which of

the criteria for full development is more rational. These matters are discussed further in the

following section, when the deposition efficiencies and particle transport in a channel flow

and a plate-to-plate precipitator are considered.

3.2.4 Fully-Developed Channel Flow

The problem of thermophoretic transport of particles in a gas flowing between two parallel

plates at the same uniform temperatures can be solved in the outer region in a similar

manner, when the velocity and temperature profiles can be approximated as their constant-

property fully-developed forms. This thermophoretic transport problem is similar to the

pipe flow when r and R are replaced by y and the channel half-width h.

The Nusselt number ~4h/k for this flow is 7.54 [60]. The velocity and temperature profiles

in fully developed flow can be expressed in terms of the average velocity Um, the mixed-mean
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temperature Tm(x), and y+ = y/h, as

u =
3

2
Um

(
1− y+

2
)

and
T − Ts
Tm − Ts

= 1.319−1.865y+
2
+0.750y+

4−0.246y+
6
+· · · = f(y+)

(3.46)

when the series form of the temperature profile is found using the approach of Shokouhmand

and Hooman [116].

An overall energy balance from the channel entrance (T = To at x = 0) to x, under the

assumption of a constant heat-transfer coefficient yields

Tm(x)− Ts
To − Ts

= e−Nu x/(2Pe h) (3.47)

and an overall particle mass balance over a section of length dx through the outer region

requires that

dcm
dx

= −Nu
Kthν

4Umh2
cδ
Ts

(Tm − Ts) (3.48)

After substitution of Eqs. 3.46, 3.47 and 3.48, the outer particle transport equation is written

as

−3

8
Nu cδ

(
1− y+

2
) ∂c

∂x
=

dcm
dx

∂

∂y+

(
c f ′(y+)

1 + f(y+)e−βx [To/Ts − 1]

)
(3.49)

where f ′ is the derivative of f in Eq. 3.46 and β = Nu/ (2 Pe h).

When the dimensionless concentration profile in the outer region is expressed as θ(y+) =

c(y+, x)/cm(x), with the fully-developed condition that ∂θ/∂x = 0 substituted into Eq. 3.49,

a series solution to the resulting integro-differential equation may be found by substituting

the series c/cδ = c0+c2y
+2

+· · · into Eq. 3.49, integrating subject to the boundary condition

that c is symmetric about y+ = 0, and equating the left- and right-hand sides of the resulting
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Figure 3.19: Profiles of normalized c (c/cδ) plotted at x/(Pe h) = 0.2; 0.4; 0.6; and 1.0,
when T1/T0 = 1.5.

equation at each power of y+.

Equating terms of order y+ yields the result

cδ
cm

=
1.319

1 + 1.319e−βx [To/Ts − 1]
or Shth =

9.945

1 + 1.319e−βx [To/Ts − 1]
(3.50)

while equating at odd powers of y+ enables successive values of the series coefficients to be

determined to arbitrary order. In the limit of large x, the outer concentration profile takes

the form

c

cδ
= 0.6685 + 0.4722y+

2
+ 0.0257y+

4 − 0.1144y+
6 − 0.0623y+

8
+ 0.0103y+

10
+ · · · (3.51)

in which case cδ/cm = 1.319, cδ/c(0) = 1.496, Shth = 9.945 and ∂c/∂r ≃ 0 at y+ = 1.

The particle concentration ratio c/cδ within the concentration development region is

plotted against y/h in Fig. 3.19 at several axial locations, at a representative temperature
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ratio of To/Ts = 1.5. It can be seen that each c/cδ profile also takes an ‘S’ shape, with the

lowest particle concentrations at the channel center. However, the effect of axial development

is to collapse the near-surface peak in concentration towards the wall while reducing the

concentration at the channel center. The asymptotic shape of the profile at large x matches

that at x/(Pe h) = 1.0, when development is complete. As was the case for pipe flow,

the particle-deposition effectiveness Shth increases with x during development because the

flux J does not decrease as rapidly as the product of cm and ∆T , whereas, after complete

development, Shth reaches its asymptotic value of 9.95 and J thereafter decreases with x at

the same rate as cm ∆T . There do not appear to be any experimental measurements with

which these concentration-profile results can be compared.

3.2.4.1 Particle Deposition Efficiency and Concentration Profile Development

The x-derivative of the particle-deposition efficiency is

dη

dx
= − 1

c0

dcm
dx

(3.52)

into which dcm/dx can be substituted from the overall particle mass balance (Eq. 3.48) to

yield the result

dη

dx
=

cδ
c0
PrKth

[
To
Ts

− 1

]
Nu

2Peh
e−Nu x/(2Pe h) (3.53)

If cδ(x)/c0 is assumed to take a constant value, Eq. 3.53 can be integrated, subject to the

initial condition that η(0) = 0, to yield the channel-flow deposition efficiency

η =
cδ
c0
PrKth

[
To
Ts

− 1

](
1− e−Nu x/(2Pe h)

)
(3.54)
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Figure 3.20: Thermophoretic particle transport in a plate-to-plate precipitator.

Although the analysis of Weinberg [140] can be extended readily to constant wall-temperature

channel flow to show that cδ is constant when KthPr = 1, there do not appear to be any

particle-trajectory calculations for this flow that would support or refute these conjectured

deposition efficiency or cδ(x) results. However, if these deposition-efficiency results are ac-

curate approximations at values of KthPr other than one, as was the case for their pipe-flow

counterparts, then the profiles of c/cδ in Fig. 3.19 are profiles of c each of which is normalized

by approximately the same value, and therefore approximate the reduction of c in the outer

flow with increasing x/ (Pe h).

3.2.5 Plate-to-Plate Thermophoretic Precipitator Flow

Thermophoretic deposition in a plate-to plate precipitator with the geometry of a channel

of width H, a hot wall at T1, and a cold wall at T0 (Fig. 3.20), has been studied by Tsai

and Lu [132]. Within this fully-developed velocity/temperature field, the linear temperature

profile allows particle trajectory calculations to be carried out analytically to yield the exact

deposition-efficiency result

η =
Kth

Re

[
T1
T0

− 1

]
x

H
(3.55)

where Re is the Reynolds number referenced to mean velocity and channel width H. This

expression for deposition efficiency is in excellent agreement with the experimental measure-
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ments of Messerer et al. (2003). Deposition is complete when x/H = (Re/Kth)/ [T1/T0 − 1].

This flow is more difficult to analyze in an Eulerian frame because a region void of particles

develops along the hot wall and grows to fill the precipitator. This region is delineated from

the particle-laden flow by the trajectory line of particles which enter the channel adjacent

to the hot wall, as sketched in Fig. 3.20. However, by combining Lagrangian and Eulerian

analyses, one can determine Shth and gain a better understanding of this flow.

3.2.5.1 Particle Deposition Efficiency and Concentration Profile Development

By combining the result that

dη

dx
= − 1

c0

dcm
dx

(3.56)

with the deposition efficiency of Eq. 3.55 and the overall particle mass balance for this flow

(with particle deposition only at the cold surface):

dcm
dx

= − Kth

ReH

[
T1
T0

− 1

]
cδ (3.57)

it can be shown that cδ(x) = c0 in this flow, and that cm therefore decreases linearly with x

and that the particle deposition rate is uniform, regardless of the value of KthPr. It follows

that the thermophoretic Sherwood number is

Shth =
1

1− (Kth/Re) [T1/T0 − 1] (x/H)
(3.58)

for which concentration profiles and the trajectory of particles introduced to the flow at the

hot wall are sketched in Fig. 3.20. The thermophoretic Sherwood number for this flow takes

a value of unity at the precipitator’s entrance and becomes infinitely large at the point at
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which deposition is theoretically completed. This progressive increase in particle-deposition

effectiveness with downstream distance reflects the effect of thermophoresis in concentrating

the particulate field closer to the cold wall with increasing x. Thus, in a flow with a uniform

temperature difference, and a bulk particle concentration cm that decreases with x, the

effectiveness of particle deposition Shth must increase with x to maintain a uniform particle

deposition flux.

3.2.6 Concluding Remarks

In this section, we have presented new analytical solutions in the form of series for

the concentration profile c/cδ in laminar, submicron-particle laden, one-way coupled, fully-

developed pipe and channel flows, in which particulate flux is driven by thermophoresis from

a hot fluid to a cold wall at a constant surface temperature. These solutions extend through

the outer, thermophoretically-dominated region of the flow to the edge of the thin surface

sublayer within which effects of Brownian diffusion become important. They can be used to

provide boundary conditions for analyses of the concentration field within this sublayer, as

well as for inflow and boundary conditions for computational studies of thermophoretically

driven flows, in which a boundary condition at the edge of the surface sublayer is often

required because the computational cost of resolving the diffusional sublayer can be excessive.

The solutions can also be used to determine particle concentrations at the edge of the surface

sublayer from measurements made at the center of a pipe or channel, and hence provide an

indirect technique for deducing particulate deposition fluxes in these flows. The solution

procedure presented in this paper can also be applied to other fully-developed problems such

as channel flows with two cold walls etc., though achieving smooth solutions from summations

of terms to arbitrary order may require methods for recovering accurate approximations to
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exact solutions for slowly convergent or divergent series, such as Shanks transformations or

Pade approximant summations.

In the developing flat-plate boundary layer (details of which are provided as supplemental

information), the free-stream concentration exceeds cδ whereas, in the fully-developed pipe

and channel flows, cδ exceeds its bulk and centerline values. In fully developed flows, with

no surface-normal bulk velocity, these concentration-profile shapes are a consequence of the

thermophoretic effect of promoting the highest particle concentrations at the edge of the

surface diffusive sublayer whereas, in the developing boundary layer, the advective surface-

normal velocity v overwhelms this effect and yields the lowest particle concentrations at

the edge of this surface sublayer. Since the entrance regions of pipe and channel flows

can be thought of as boundary layers that eventually merge at the center of the duct, this

finding implies that the concentration profiles in such flows undergo an inversion during

development, from low concentrations near the cold surface and high concentration in the

bulk flow at entry, to low concentrations in the bulk and high ones near the cold surface at

full development.

An engineering approach to thermophoretic mass transfer, analogous to that of convective

heat transfer, has been presented that permits the effectiveness of thermophoretic mass

transfer to be compared from one flow to another, by factoring out the flow-specific effects

on conductance of surface temperature and particle concentration. In this approach, the

deposition mass flux ṁ′′ is described by the model equation

ṁ′′ =
~cm
Ts

(Tm − Ts) (3.59)

in which the conductance ~ is expressed in the dimensionless form of the thermophoretic
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Sherwood number

Shth =
~D
Kthν

where Shth = Nu
cδ
cm

(3.60)

This thermophoretic Sherwood number provides physically meaningful characterizations of

the deposition effectiveness in laminar pipe, channel, plate-to-plate precipitator, and flat-

plate boundary-layer flows. It is used to illustrate how in duct flows the effectiveness of

particle deposition increases with downstream difference, reaching an asymptotic value of

Shth = 6.59 in pipes and Shth = 9.95 in channels, when the particle concentration profile

reaches full development for x/ (PeR) > 0.6.

A knowledge of the thermophoretic Sherwood number can also be used to calculate the

particle deposition flux from bulk-flow information and comparisons of Shth and ~ can be

made for different flow geometries to determine which is the more (or less) effective in de-

positing particles from hot gases to cold surfaces. For example, if a comparison is made

fully-developed constant-wall-temperature pipe (Shth = 6.6) and channel (Shth ≃ 9.95)

flows on the basis of equal hydraulic diameters, it can easily be shown that ~ is 1.51 times

larger for the channel flow and so the channel is more effective in promoting thermophoretic

mass transfer under this constraint. From the definition of the thermophoretic Sherwood

number, it is also clear that in steady laminar flows convective heat transfer effectiveness

and thermophoretic mass transfer effectiveness are very closely coupled, and that increas-

ing/decreasing one necessarily increases/decreases the other.
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Chapter 4

The Surface Boundary Condition for

the Particle Transport Equation

The transport equation (Equation 2.11) for particulate flows affected by both molecular

diffusion and thermophoresis is an advection-diffusion equation with an additional source

term, so two boundary conditions are required for the solution, such as the particulate

concentration or its normal derivative at the center of the duct and at the surface. A

no-flux condition is applied at the center of the duct to enforce symmetry. However, the

exact form of the near surface boundary condition is less clear. Several approaches for

predicting the transport of fine particles adjacent to the surface have been presented which

will be discussed in details. The particle transport equation has been solved using both

compressible and incompressible numerical codes, and several different surface boundary

conditions so that the effect of each boundary condition on the computed concentration

profiles could assertained.

4.1 Concentration Profiles in Compressible Flows

The compressible solver used to compute the entrance-zone flow in a tube discussed in Sec-

tion. 3.1 was used to calculate the velocity, temperature and concentration fields. When

using this compressible solver, it was necessary to include a small amount of (molecular)
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∂c/∂y = 0 y = ε ≫ δc

y = 0.
δc

Figure 4.1: Concentration profile in proximity to the surface based on the Levéque method
for temperature and concentration close to the inlet [136].

diffusion to stabilize the code in order to reach convergent solutions at reasonable compu-

tational cost. To avoid such numerical difficulties, it was assumed that Sc=120. Various

boundary conditions were then imposed at the cold duct surface and their effects on the

resultant concentration profiles are discussed in the following section.

4.1.1 Zero Particle Concentration at the Surface (cs = 0.)

The condition of zero particle concentration at the surface has been used extensively in

the literature [122, 123, 137, 44]. This condition originates from the assumption that all

submicron particles that make contact with the surface attach to it immediately and so are

no longer present in the gas phase. Walker et al. [136] proposed an analytical solution based

on the Levéque approximation of the temperature and concentration fields close to the inlet

which was restricted to a very thin surface diffusion layer, with zero particle concentration

at the wall. Walker’s analytical solution showed that the concentration at the outer edge of
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the diffusion layer possessed a finite value which could be calculated numerically. At long

longitudinal distances the requirements for the Levéque approximation did not apply so a

Lagrangian approach was used to evaluate the deposition efficiencies. It was observed that

the deposition efficiencies determined from the analytical solution were almost the same

as those found from the results of numerical calculations near the inlet (z/Pe < 10−3),

although the discrepancy grew with increasing distance from the inlet. Walker’s solution

yielded large concentration gradients across the diffusion layer which has a thickness δc of

order Sc−1Pe−1/3, shown in Fig. 4.1. A similar boundary condition was used in the more

recent numerical simulations of Walsh et al. [137] and Gutti and Loyalka [44]. In the case

of large Schmidt numbers (thermophoresis-dominated), very high concentration gradients

are evident in this diffusion layer. At smaller Schmidt numbers–where thermophoresis and

Brownian diffusion are of the same order of magnitude; concentration profiles based on

the zero wall concentration vary smoothly. In the case of fine particles, the concentration

boundary layer is extremely thin and a very fine mesh is required close to the surface to

capture the high gradients, which results in a significant increase in the computational cost.

The experimental measurements of Lee and Hanratty on droplet deposition [73] showed that

the widely used boundary condition of cs = 0 is only approximately correct in the case of

very small droplets driven to the wall by Brownian diffusion. Some practical approximations

to this boundary condition are discussed below.

4.1.2 Particle Flux Conservation at the Surface

A second possible boundary condition can be derived by considering the simplified form

of the particle continuity equation as the surface is approached. The concentration profile

is expected to change smoothly. As the surface is approached, the convective terms must
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diminish as a result of the no-slip condition on velocity. At locations beyond the edge of

the diffusive sublayer, where thermophoresis dominates molecular diffusion, the gradient

of thermophoretic flux in longitudinal direction is small compared to the radial direction

and, since variations in fluid density are small at low Mach numbers, the divergent of the

thermophoretic fluxes should be approximately zero. Therefore Eq. 3.12 should simplify to

∂(r.c.vth)/∂r = 0 where vth is the thermophoretic velocity.
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x/R = 12.5;17.5;25.

Figure 4.2: Development of concentration profiles along the tube at Re=300, Sc=120 based
on the conservation of flux at approach to the cold surface

Young et al. made a comprehensive study of the deposition of particles in turbulent flows

and suggested that a cs = 0 boundary condition was not valid, even in diffusion dominated

flows [144]. Guha [41] proposed that in the limiting case of very small particles, their concen-

tration at the surface approaches zero and in the strictly inertial limit of very large particles,

the appropriate surface boundary condition is ∂c/∂r = 0. Interestingly enough, when he

calculated the efficiency of deposition of particles (for which several sets of experimental
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data are available) in simple flows, he found that changing from one boundary condition to

another had a negligibly small effect on the efficiency. For submicron particles with ther-

mophoresis as the dominant transport mechanism, the condition of zero concentration at the

surface is difficult to apply, and other conditions applied at a short distance from the wall

may be more suitable for both analysis and computation.

4.1.3 A Kinetic Theory Analogy at the Surface

A concentration boundary condition for submicron particle transport that considers both

diffusion and thermophoresis is now considered. It is based on a proposed analogy between

the behavior of submicron particles in a gaseous medium and the behavior of molecules in

a gas, as described by kinetic theory, and is an extension to the model developed by Young

et al. [144] (see Appendix A for details). It is assumed that the thermophoretic velocity of

particles can be described by the standard constitutive equation, with Talbot’s formula used

to determine the thermophoretic coefficient. Following Young’s approach, it is assumed that

each particle’s velocity is described by a Maxwellian distribution centred around the sum

of the convective and thermophoretic velocities (vr + vth). This analogy between molecular

and particle distributions cannot be justified rigorously and is a topic for further research.

In order to understand the behaviour of particles close to the surface, it is useful to con-

sider heat and particle mass transfer based on both the kinetic-theory analogy and continuum

theory approaches. Transport phenomena involving particles and the surrounding gas tend

to depend strongly on the Knudsen number. For Kn ≪ 1 molecular collisions are so fre-

quent that the flow may be considered as a continuum medium while for Kn ≫ 1—which is

referred as free-molecular regime—the collisions between the surrounding gas molecules and

the particles dominate molecule/molecule collisions. The continuum theory is used in the
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continuum regime while the kinetic approach may be more applicable in the free-molecular

regime. The intermediate range of Knudsen numbers (or Knudsen regime) is more compli-

cated and has been subject of extensive studies in the past decades, which are mostly based

on the solution of the Boltzmann equation [22] which is a non-linear integro-differential

equation. Bhatanagar, Gross and Krook simplified the original Boltzmann equation by as-

suming that molecules possess a Maxwellian distribution after replenishing collisions, which

is known as the BGK approximation and is widely used as a convenient substitute for the

original Boltzmann equation [7, 16].

For submicron particles such as soot spherules which are around 30 nm in diameter in

air, with a mean free path of air ranging from 70 nm-60 µm–depending on temperature

and pressure, the corresponding Knudsen number is greater than one and lies in the free-

molecular or transition regime. The corresponding thermophoretic surface-normal flux at

the surface takes the form:

Jr =

[
c(υ + υth)−D

∂c

∂r

]
r=R

=

[
c

2
(υ + υth)

(
1 + erf{Mr}+

e−Mr
2

√
πMr

)]
r=R

(4.1)

where υ and υth are the convective and thermophoretically induced components of the radial

velocity and Mr = (υ + υth)/
√
2kT/mp. In the limiting case in which the sum of the con-

vective and thermophoretic fluxes greatly exceeds the molecular diffusive one, corresponding

to KthSc ≫ 1, at r = R

Mr → ∞, erf{Mr} → 1 so e−Mr
2
→ 0 (4.2)

and the surface boundary condition simplifies to ∂c/∂r|r=R = 0. It is interesting to note
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that, in the other limiting case in which molecular or Brownian diffusion is dominant and

KthSc is not large, at r = R

Mr → 0, erf{Mr} → 0 so e−Mr
2
→ 1 (4.3)

and the boundary condition would be simplified as

D
∂c

∂r

∣∣∣∣
r=R

= c

√
kT/mp

2π

∣∣∣∣
r=R

(4.4)

which is similar to the expression used in the theory of gases to relate the diffusive flux and

the rate at which particles are projected towards the surface. It is seen that even in the

case of pure Brownian diffusion, the kinetic-theory model does not yield the c = 0 boundary

condition, which has been widely used in previous continuum-level studies (see, for example,

[41, 70]), consistent with the observations of Lee and Hanratty for droplet deposition [73]. It

is noticeable that this boundary condition describes the transport of particles at approach to

a perfectly absorbing surface. While some researchers have assumed that all small particles

adhere to the surface [133, 98], others have proposed a sticking efficiency for particle surface

attachment [30, 21]. In order to capture phenomena like rebouncing and resuspension, it

seems that more advanced versions of kinetic theory and molecular dynamics approaches [113,

65, 22] are needed, or better empirical models [18]. Nonetheless, this boundary condition

can be easily imposed on the surface and does not require a fine mesh. The concentration

profiles based on this concentration boundary condition at the wall is shown in Fig. 4.3
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Figure 4.3: Development of concentration profiles along the tube at Re=300, Sc=120 based
on the analogy to kinetic theory (Neumann boundary condition) at approach to the cold
surface

4.1.4 The Extrapolation Boundary Condition

As the behavior of the particle concentration profile can be difficult to prescribe near

the surface, a simpler approach is to impose a weak boundary condition, by extrapolating

the concentration at the surface from its values further away. This scheme, which exploits

the assumed smoothness of the particle concentration profile, is easy to implement and has

low computational cost. The particular extrapolation scheme used is:

c(i, nr) = 2.c(i, nr − 1)− c(i, nr − 2) (4.5)

The density, velocity and temperature field were then solved over the computational

domain with this concentration boundary condition and are shown in the following figures.
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It can be seen from these figures that the effect of the extrapolation boundary condition is
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Figure 4.4: Development of concentration profiles along the tube at Re=300, Sc=120 based
on the weak boundary condition at approach to the cold surface

restricted to the concentration boundary layer at the surface and scarcely affects the inner

zone. The corresponding rate of particle deposition appears to be quite insensitive to the

various boundary conditions applied at the surface(see Fig. 4.5)

4.2 Theoretical Concentration Profiles

Theoretical particle concentration profiles for fully developed pipe flow were presented

in section 3.2.2, as a series solution to the governing thermophoretic particle transport equa-

tion. These results were based the assumption of no molecular diffusion beyond the surface

sublayer, with particle transport driven only by convection and thermophoresis. In this case

the transport equation is a first-order PDE which requires a single boundary condition in
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Figure 4.5: Effect of different boundary conditions on the overall deposition efficiency η(x),
in the entrance zone of a compressible flow at Re=300

the surface-normal direction. Therefore a symmetry boundary condition at the centreline is

sufficient for the solution of particle transport PDE and the governing equations determine

the behavior of concentration profiles at approach to the surface. The results presented in

Fig. 3.11 show that the concentration profiles are smooth near the surface. It is also no-

ticeable that although no Neumann condition is imposed at the cold surface, it appears that

∂c/∂y ≃ 0. This observation is consistent with the boundary condition obtained from the

analogy with kinetic theory, which may then be a reasonable approximation.

4.3 Concentration Profiles in Incompressible Flows

In this section, the concentration profiles deduced from numerical solutions to the in-

compressible particle transport equation are considered. The one-way coupling between the
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particle transport equation and the thermal energy and Navier Stokes equations allowed

the solutions for fully developed velocity and temperature profiles in a tube, described in

section 3.2.2 to be used as inputs. The numerical code was therefore simple and fast and

so, by decreasing the time steps sufficiently, it could solve for transport with infinitesimally

small (Sc=105) diffusion in a reasonable time, without encountering stability problems. The

boundary conditions described in the previous section were imposed on the cooled surface

and the corresponding effect on the concentration profiles and the deposition efficiency was

investigated. As discussed in the previous section, the cs=0 wall boundary condition resulted

in an extremely thin concentration boundary layer adjacent to the wall which required a very

fine mesh. Its effect appeared to be limited to the immediate vicinity of the wall without

having a noticeable effect on the concentration in the core region. This boundary condition

results in a very slow computation, as noted by others [136, 137]. Other boundary conditions

are discussed below:

A) Flux Conservation Boundary Condition:

The assumption of particulate flux conservation in the surface-normal direction results in

the surface boundary condition: ∂(r.c.vth)/∂r = 0, where vth is the thermophoretic velocity.

The concentration profiles calculated in this fully-developed incompressible pipe flow are

shown in Fig. 4.6. It appears that spurious oscillations occur in the concentration field near

the surface. These oscillations, which were not evident when the cs = 0 condition was em-

ployed, imply that additional diffusional damping would be required for a flux-conservation

boundary condition to be used effectively.

B) Extrapolation Boundary Condition:

The thermophoretic particle transport is a first order PDE and so it seems reasonable to

assume that the particle concentration profile change smoothly/monotonically at approach
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Figure 4.6: Development of concentration profiles along the tube at Re=30, Sc=∞, when a
conservation of particle flux condition is applied at the surface

to the wall. This expected smoothness suggests that the concentration at the surface might

be extrapolated from the near-surface concentration field. The extrapolation is similar to

assuming a weak boundary condition on the surface and letting the governing equations

decide the near wall behavior. The concentration profiles calculated with this boundary

condition are shown in Fig. 4.7

C ) Kinetic Theory Analogy:

By making an analogy between particles and molecules (with an assumed Maxwellian distri-

bution), a general boundary condition was be derived which was simplified to the Neumann

condition on the wall in the case of zero or infinitesimally small diffusion. The corresponding

concentration profiles computed with this boundary condition are shown in Fig. 4.8. It

is seen that the concentration profiles vary smoothly near the surface although there is no

diffusion in the system. Thus this boundary condition yields physically plausible results in
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Figure 4.7: Development of concentration profiles along the tube at Re=30, Sc=∞ when a
weak (extrapolation) boundary condition is applied near the surface

this fully developed flows. However, the validity of the analogy upon which the condition is

based is questionable and more research into the physical basis for this boundary condition

is required, as well as its testing in other flows.

The corresponding deposition efficiencies computed by each of these approaches are shown

in Fig. 4.9. It is almost impossible to distinguish between these deposition efficiencies

according to the boundary conditions used in their calculation, which tends to confirm that

the effects of different boundary conditions are limited to the immediate vicinity of the

surface.
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Figure 4.8: Development of concentration profiles along the tube at Re=30, Sc=∞ when a
boundary condition based on an analogy with kinetic theory (Neumann condition) is applied
at the surface

4.4 Discussion

There is currently no exact prescription for the concentration boundary condition at the

surface in thermophoretic flows. Walker et al. [136] introduced the concept of a diffusion

sublayer with a very small thickness δc adjacent to the surface, within which the particle

concentration changes sharply from a finite value at the edge of the sublayer to zero at the

wall. The particle flux towards the surface at the edge of the diffusion layer is Jδc = cδcvth

and the flux at the wall is Js = csvth − DB
∂c
∂r . The boundary layer approximation that

∂J/∂x ≃ 0 requires that ∂J/∂y ≃ 0, which leads to the conclusion that Jδc = Js. In other

words, the particulate flux is almost constant within the diffusion layer and just changes

from thermophoretic flux to diffusional flux. Thus the particulate flux may be determined

at δc without solving the particle transport equation in the diffusion layer. It is for this
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Figure 4.9: Effect of different boundary conditions on the overall deposition efficiency η(x),
in the fully developed region of an incompressible pipe flow at Re=30

reason that, in both the entrance zone and fully developed cases, it is seen that the overall

deposition efficiency changes only slightly when a different surface boundary condition is

used, even though there are more significant changes in the particle concentration profile.

The cs = 0 condition appears to be a practical and reasonable boundary condition in

case of small Sc numbers (Sc<20). For larger Sc numbers, it leads to the formation of an

extremely thin diffusion layer which is hard to resolve at reasonable computational cost.

The extrapolation of the concentration field at the surface is a weak boundary condition ap-

pears to yield reasonable results as the transport equation is a first order PDE and does not

require a wall boundary condition. The Neumann boundary condition, which is a simplifica-

tion deduced from an analogy between particle motion and the kinetic theory of molecules,

yields concentration profiles which are quite similar to those computed using extrapolation.

However, a more comprehensive study of this approach in a range of different flows is nec-
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essary if further conclusions are to be drawn. The boundary condition derived based on the

conservation of flux can also yield generally acceptable results, but it ca also causes spuri-

ous oscillations in the concentration field, especially at high particle Sc numbers. However,

for high Sc numbers, the imposition of a weak boundary condition is easy to implement,

and leads to smooth, accurate results and is recommended, while the widely-used cs = 0

condition appears to give trustworthy results at lower Sc numbers (Sc<20).
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Chapter 5

Thermophoresis in Steady Turbulent

Flows

In the majority of industrial and scientific applications, the flows in which particulate

transport takes place are turbulent. Thakurta et al. investigated the deposition of small

particles in turbulent channel flows using direct numerical simulation [129]. They reported

that in order to calculate the fluxes in turbulent flows, the coefficient of Brownian diffu-

sivity DB should be replaced by (DB + Dt) where Dt is the turbulent diffusivity, but the

thermophoretic flux will stay proportional to kinematic viscosity ν and no modification is

required to take care of turbulent effects. Thakurta et al. also noticed that in turbulent

flows the thermophoretic flux changes due to changes in the mean temperature values and

the effects of instantaneous oscillations in temperature will cancel out . These phenomena

could be explained based on the fact that the logarithmic function decreases the amplitude

of the temperature oscillation in turbulent flows and acts similar to a strong damper, so a

good approximation of the mean temperature values would be enough for calculating the

thermophoretic fluxes in turbulent flows. Dehbi [25] solved the Langevin equations for the

turbulent flow velocities which were added to the mean velocity values obtained from the

Fluent 6.3 commercial code. Dehbi applied his particle transport closure to several different

problems with complex geometries and in each case found reasonable agreement with data
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obtained by other methods [24, 23]. His simulations showed that for particles with short

relaxation times such as soot, oscillations that appear as turbulent diffusivity have a con-

siderable effect on simulation results. The most significant role of turbulent diffusivity is

to smooth out concentration profiles, especially near the wall, which lowers the deposition

efficiency (as shown in Fig. 5.1). Based on Dehbi’s simulations of particles with short re-

laxation times, it appears that in turbulent wall-bounded flows, the concentration next to

the wall is almost equal to the mixed-mean concentration cm in the boundary layer. The

time-averaged concentration field may then be modeled as if uniform in the surface-normal

direction. However, larger particles were shown to accumulate near the wall. A similar trend

is seen in the direct numerical simulation (DNS) results reported by Thakurta et al. [129].

Dehbi’s results appear to explain why Romay’s 1-D model, which is based on the assump-

tion of a flat profile, can predict the deposition efficiency of sub-micron particles reasonably

accurately [107].

dcm
dx

= − 2

UmR
(Jr)r=R ≃ − 2cm

UmR
(vth)r=R (5.1)

dTm
dx

=
2Nu

PeR
(Ts − Tm) (5.2)

In wall-bounded flows, when condensation is negligible, diffusion acts to keep the concentra-

tion of particles uniform across the span of the flow, whereas thermophoresis drives particles

from the hot gas towards the cold wall. The conservation of particle mass and the First Law

of thermodynamics describing these processes may be written as: Eq. 5.2 may be integrated

to evaluate the mean value of the temperature Tm at any longitudinal distance and can be
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Figure 5.1: Normalized concentration profiles for different particle inertias (from [25].)

Figure 5.2: 1-D schematic of heat and mass transfer in a pipe

rewritten as:

Tm(x)− Ts
To − Ts

= exp

(
− 1

ṁCpRtot

)
(5.3)

89



where Rtot =
∑

R is the total thermal resistance. As discussed in Chapter 2, the ther-

mophoretic velocity may be written as:

vth = −Kthν

T

∂T

∂r
. (5.4)

Furthermore

kf

(
∂T

∂r

)
r=R

= h(Ts − Tm) (5.5)

so the thermophoretic velocity towards the wall is:

vth|r=R =
Kthνh

kf

(
1− Tm

Ts

)
(5.6)

where the convective heat transfer coefficient h can be found from several sources [117, 37]

and kf is the thermal conductivity of the flow. As the spanwise temperature gradient, which

is the driving force for the thermophoretic deposition, can be especially high near the inlet, it

is important to describe h accurately within the thermal entry region using relations reported

in Kays [60, 54]. Based on the Graetz and extended Leveque solutions, Shah [115] reported

the local Nusselt number in the thermal entrance zone of a tube to be:

Nux,T =


1.077(x∗)−1./3 − 0.7 for x∗ ≤ 0.01

3.657 + 6.874(1000x∗)−0.488exp(−57.2x∗) for x∗ > 0.01

(5.7)
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and the mean Nusselt number to be

Num,T =


1.615(x∗)(−1./3) − 0.7 for x∗ < 0.005

1.615(x∗)(−1./3) − .2 for 0.005 < x∗ < 0.03

3.657 + .0499./(x∗) for 0.03 < x∗

(5.8)

where x∗ = x/D/Pe and Nux,T and Num,T are the local and mean Nusselt numbers respec-

tively. Reynolds [106] proposed a relation for the turbulent thermal entrance length which

can be combined with the Dittus-Boelter equation as:

Nux,T = 0.023Re0.8Pr0.3
(
1 + 0.8(1 + 70000Re−1.5)

(x/D)

)
(5.9)

while the mean Nusselt number may be calculated by making use of Al-Arabi’s relation as

[3];

Num,T = 0.023Re0.8Pr0.3
(
1 +

C1

(x/D)

)
where C1 =

(x/D)0.1(0.68 +
3000

Re0.81
)

Pr(1/6)
(5.10)

With these Nusselt number relationships, the heat-transfer coefficient h can be deter-

mined and substituted into Eq. 5.6, after which cm(x) can be found by integrating Eq. 6.7.

The deposition efficiency η(x) can then be evaluated as

η(x) = 1− cm(x)

cm(0)
(5.11)
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5.1 Comparison with Experimental Data for Turbulent

Flows

In order to validate the capabilities of this uniform concentration model, we compare its

predictions with published experimental data on turbulent flows. The data chosen are those

of Romay’s and the results of the turbulent-flow experiment TT28 of the TUBA program

(the TUBA-TT28 data) [107, 52].

5.1.1 Comparison with Romay’s Data

Romay et al. measured the deposition efficiency of particles in a 0.965 m long, 0.49 cm

ID pipe. Their experiments were carried out in both the laminar and turbulent regimes, at

Reynolds numbers of up to 9700. The particles used were sodium chloride or polystyrene

latex spheres of 0.1–0.7 µm diameter and the deposition efficiency η(ℓ) was measured directly

[107]. The measured values of η(ℓ) and the predicted values based on the 1-D model at Re≃

5500 and 9700 at different inlet temperatures are plotted in Figs. 5.3 and 5.4. It is seen

that the results of the 1-D model are in good agreement with the experimental data at both

Reynolds numbers.

5.1.2 Comparisons with TUBA-TT28 Data

The TT28 is a test the TUBA programme in which the thermophoretic deposition has

been measured in each of 13 sections of a 1 m long pipe of 1.8 cm ID. The aerosol used

was CsI in a carrier gas of air that flowed at a Reynolds number of 4300. The results of

the TUBA-TT28 experiment have been used widely to validate other deposition models

[28, 52]. The corresponding values of η(x) along the tube based on the 1-D model and the

92



250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Tinlet

η(ℓ)

0.1µm, 1-D

0.1µm, expt.

0.3µm, 1-D

0.3µm, expt.

Figure 5.3: Deposition efficiency vs. inlet temperature for NaCl particles of 0.1, 0.3 µm
diameter at Re=5500(τp

+ = 0.016, 0.15)
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Figure 5.4: Deposition efficiency vs. inlet temperature for NaCl particles of 0.1, 0.3 µm
diameter at Re=9700(τp

+ = 0.04, 0.39)
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TUBA-TT28 data are shown in Fig. 5.5. The deposition-efficiency predictions of the 1-D
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Figure 5.5: Deposition efficiency vs. longitudinal distance for CsI particles of 1.2µm
diameter(τp

+ = 0.115)

model compare reasonably well with the experimental results. Although the diameter of the

particles is greater than one micron, the particle relaxation time τp
+ is still sufficiently small

(τ+ < 0.2) that the assumption of a flat particle-concentration profile is a reasonable one.

5.1.3 Comparisons with Data for EGR Coolers

In the previous section, the comparisons between the predictions of the particle depo-

sition model and experimental data implied it was an accurate method for approximating

thermophoretic deposition of small particles in straight tubes. In this section, we use the

particle deposition model to predict the soot-layer thickness in an EGR cooler after 2 and 5

hours of operation and compare the results with the experimental measurements of Ismail
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et al. [56, 57] (Fig. 5.6). These results are plotted in the figure below and appear to be in

good agreement with the experimental measurements. The model incorporates an empirical

x(mm)

δ(mm)

2 hour, expt.

5 hour, expt.

2 hour, 1-D

5 hour, 1-D

Figure 5.6: Comparison of predictions of a 1-D model with average soot thickness measure-
ments along the EGR cooler using the neutron radiography technique [56] (Re=7000; 2 and
5 hours of operation.)

relation for Nusselt number, which is valid for x/D > 3. Near the entrance (x/D < 3) the

Nusselt number increases sharply. The predictions of the one-dimensional model appears to

be in reasonable agreement with the experimental data of Ismail [55]. Although the current

model shares similarities with Romay’s and Teng’s methods [107, 128], its use of the uniform

particle-concentration-profile assumption in turbulent wall-bounded flow is also consistent

with the 3-D DNS results of Dehbi [25], and accounts for entrance zone effects. The effect of

condensation is also important in the early stages of EGR operation and has been modeled

with an empirical condensation correction factor Kc ≃ 1.3, which diminishes with time (see

[89, 1] for more details).

95



Chapter 6

Thermophoresis in Unsteady Flows

In many applications such as respiratory systems, blood vessels, combustion engines and

reciprocating pumps, the flow is oscillatory. There have been almost no studies of effects

of unsteadiness on thermophoresis in such flows. The effects of axial flow unsteadiness on

heat and diffusive mass transfer has been studied by several researchers, who have reported

a variety of interesting results [68, 49, 8]. For example, the axial dispersion in capillary

tubes has been reported to increase significantly under axially- oscillatory flow conditions

in several studies [127, 139, 15]. The effect of flow pulsation on conductive heat transfer

in tubes was also investigated by Kurzweg [69], who studied the axial heat exchanger in

tubes, with axial flow pulsation but no mean convective mass transfer, as applied to the

heating/cooling of hazardous materials, and observed that the pulsation led to the effective

thermal diffusivity increasing to more than 104 times its molecular value. Kurzweg solved the

energy equation for the oscillating flow within capillary channels analytically and reported

a tuning effect where the maximum value of the corresponding effective thermal diffusivity

occured at α2.Pr = π, where α is the Womersley number
√

ν/ωR. This optimum value

occured when the oscillation period and the transverse thermal diffusion time response were

almost the same. Kurzweg also solved the problem of simpler counter-oscillating slug flow

in a pipe with an imposed axial temperature gradient and flat velocity profile analytically

and observed a similar tuning effect [68].

Faghri et al. solved the problem of fully-developed, axially pulsating flow in a heated

96



tube at low frequencies analytically and reported that small oscillations in flow velocity

slightly increased the Nusselt number [32]. Kim et al. calculated the heat transfer in the

entrance zone of a pulsating channel flow with constant wall temperature numerically [64].

Their results showed that the Nusselt number could either increase or decrease depending

upon the values of the pulsating flow parameters, and that the variation was mostly in the

developing zone, diminishing gradually along the tube. Moschandreou and Zamir presented

an exact solution for the heat transfer in a fully-developed pipe with oscillating axial flow and

constant heat flux [92]. Although Moschandreou’s results confirmed that the heat transfer

conductance could either increase or decrease depending on the flow parameters, they differed

significantly from those of Kim et al. [64]. However, Moschandreou and Zamir’s data did

not show a cut-off frequency and but did reveal a singularity at Pr=0.5 at low frequencies,

which appeared to be unphysical. Hemida et al. later showed that the approximations used

by Moschandreou and Zamir to obtain results were not valid. They also obtained a new

analytical solution to this problem and reported that the influence of axial pulsation on heat

transfer conductance in the fully developed region of pipe flow was less than 1% [49].

Hemida et al. also solved the governing equations in the thermally developing zone using

a finite element method (FEM), which led to results similar to those of Kim et al. [64] for

pipe flow with a constant-temperature wall, and showed that the averaged Nusselt number

could increase or decrease by up to 6% in the thermally developing region. Chattopadhya

et al. solved the problem of axially pulsating flow in a heated pipe numerically, when the

flow was both thermally and hydrodynamically developing and the tube wall temperature

was uniform [14], and observed negligible enhancement in the time-averaged heat transfer.

Guo et al. [42] also solved numerically for the heat transfer in an axially pulsating pipe flow

with constant heat flux and found that any changes in the mean Nusselt number were small
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(see Fig. 6.1). The discrepancy between their numerical prediction and the experimental

measurements of Kim [63] at A=1.05, 2.05 was also small (< 2%). Yu et al. proposed an

analytical solution for pulsating flow in a laminar tube with constant heat flux, and also

found that axial pulsation had no effect on the time-averaged Nusselt number [146].
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Figure 6.1: Variation of Nusselt number vs. pulsation intensity A (β is the Womersley
number) [42]

Heat transfer in a pulsatile pipe flow with a uniform wall temperature was also studied

experimentally by Gupta et al. [43]. They measured the variation of Nusselt number at

different operating conditions and noticed that, at pulsation intensities of less than one,

the changes in Nusselt number were small (Fig. 6.2). The behavior of laminar pulsating

pipe flow inside a pipe with uniform heat flux was investigated experimentally by Habib

et al. [45]. They reported that the Nusselt number could either increase or decrease with

changing pulsation frequency and that the variations were slightly larger than those predicted
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Figure 6.2: Variation of Nusselt number vs. normalized frequency parameter Fp correspond-
ing to 0.13 < ω <0.35 (experimental data reported by Gupta et al. [43]).

numerically by Hemida et al. [49] (Fig. 6.3), although the changes in the mean value of Nu

over the corresponding range of Reynolds number (800< Re <2000) were still exceedingly

small.

The effect of axial flow unsteadiness on heat transfer in turbulent flows was investigated

by several researchers [59, 76, 36, 47, 46]. Liao and Wang [76] and Genin et al. [36] observed

that at each Reynolds number turbulent bursts occur at a certain frequency and presented

charts for evaluating the corresponding burst frequency (the interested reader is referred

to [47] for more details). When the imposed pulsation frequency approached the turbulent

bursting frequency, a resonance behavior occurred and the Nusselt number obtained its

maximum value. This phenomenon was also reported in the measurements of Habib et

al. [47, 46] (Fig. 6.4). They also noted that in the case of low Reynolds number flow,

pulsation-dependent changes in the mean Nusselt number were insignificant.
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Figure 6.3: Experimental data on variation of Nusselt number vs. Re at different frequencies
in laminar flows

The effect of boundary conditions was also investigated by Hemida et al., who reported

that in the case of laminar flows with linear boundary conditions (linear combinations of

temperature and temperature gradient), axial flow pulsation changed the heat transfer only

slightly. When non-linear boundary conditions such as a radiation or a convective boundary

condition apply, or non-linear phenomena such as turbulence are present, flow oscillations

can potentially enhance the average Nusselt number. It has also been shown by Hafez and

Montasser [35] that effects of compressibility may be important when the frequency of flow

pulsation coincides with the natural frequency of the thermal-fluid system, which can lead

to resonant effects. In many applications, the flow pulsation frequency is much lower that

the natural frequency of the system and so effects of compressibility may often be neglected

and the incompressible governing equations may be used without significant error.
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Figure 6.4: Experimental data on variation of Nusselt number vs. Re at different frequencies
in turbulent flows

From the above discussion, it may be inferred that when flow oscillation takes place axi-

ally, in the direction normal to that of heat transfer, the change in heat transfer effectiveness

is almost always negligible and no significant effect on thermophoretic mass transfer would

be expected. On the other hand, when the directions of convective flow pulsation and heat

transfer are aligned, the effective heat transfer can increase significantly and so changes in

thermophoretic mass transfer would be expected too. In the following section, we investigate

the effect of unsteadiness on heat and thermophoretic mass transfer.
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6.1 Flows with Orthogonal Heat Transfer and Pulsa-

tion Directions

We consider an oscillating flow above a flat surface, when the directions of flow pulsation

and heat transfer are perpendicular. This analysis extends that of Mao and Hanratty, who

studied the effect of pulsating flows in heat and diffusional mass transfer in a boundary layer

[83, 82], to include thermophoretic effects. It is assumed that the thickness of the thermal

and concentration boundary layer is small enough that the effect of velocities normal to the

wall can be neglected, so the streamwise velocity can be approximated as:

U = S.y (6.1)

where S is the shear or velocity gradient at the wall. A harmonic velocity gradient is then

imposed on the wall and changes with time as

S = S(1 + A.sin(ω.t)) (6.2)

where S is the mean value of velocity gradient at the wall, ω is the frequency and A is the

normalized amplitude of pulsation. The corresponding thermal energy equation is

∂T

∂t
+ S.y

∂T

∂x
= α

∂2T

∂y2
(6.3)

with the boundary conditions

T (x, 0, t) = Ts, T (x,∞, t) = T (0, y, t) = T∞. (6.4)
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The solution to this equation has been presented by Reiss [105] using a pseudo-steady state

approximation as

T − Ts
T∞ − Ts

=
1

Γ(4/3)

∫ η

0
e−z2dz (6.5)

where

η = y

(
S

9αx

)1/3

(6.6)

The particle transport equation is

∂c

∂t
+ S.y

∂c

∂x
= D

∂2c

∂y2
+Kthν

∂

∂y

(
c

T

∂T

∂y

)
. (6.7)

The Schmidt number for submicron particles is very large and diffusion is negligible compared

to thermophoresis. Walker et al. solved the corresponding steady mass transfer equation for

submicron particles (Sc≫1) in a wall-bounded flow including thermophoresis and imposed

the cs=0 constraint at the surface. Their results showed that, in steady flow, diffusion effects

were limited to an extremely thin layer next to the surface over which there is an abrupt

change in concentration from zero to a finite value [136]. The same trend is seen in the

more recent results of Walsh et al. [137]. In case of negligibly small diffusion, the transport

equation becomes a first-order PDE in which the particle concentration field has only a weak

dependence on the wall boundary condition. In other words, at large Sc numbers the far-

field condition is sufficient to solve for the entire domain and the effect of the wall boundary

condition is be limited to an extremely thin layer. The same approach was used by Homsy et

al., who also did not have to impose a cs=0 condition in their analysis of a steady transverse

flow past a cylinder [51]. Therefore, in this study, a weak condition (a Neumann condition)

is used instead of the common cs=0 condition, since it is expected, even in unsteady flow, to
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have only a small effect on the corresponding particulate fluxes. The concentration boundary

conditions are therefore

∂c

∂y
(x, 0, t) = 0, c(x,∞, t) = c(0, y, t) = c∞. (6.8)

When the governing equation is normalized with the length scale L and the velocity scale

U0, the non-dimensionalized constant-property thermal energy equation is

∂T ∗

∂t∗
+ S∗.y∗

∂T ∗

∂x∗
=

1

Re.Pr

∂2T ∗

∂y∗2
(6.9)

and

T ∗ =
T

T∞
, t∗ =

t.Uo

L
, y∗ =

y

L
, x∗ =

x

L
(6.10)

and the non-dimensionalized particle transport equation is

∂c∗

∂t∗
+ S∗.y∗

∂c∗

∂x∗
=

1

Sc.Re

∂2c∗

∂y∗2
+

Kth

Re

∂

∂y∗

(
c∗

T ∗
∂T ∗

∂y∗

)
(6.11)

where

c∗ =
c

c∞
, S∗ =

S.L

Uo
=

S.L

Uo
(1 + A.Sin(St.t∗)) (6.12)

The pulsation frequency is described by the non-dimensional Strouhal number St as

St =
ω.L

Uo
(6.13)

where ω is frequency, and L and Uo are length and velocity scales respectively. The ther-

mophoretic flux is a nonlinear function of temperature and so normalizing the temperature
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by T∞ instead of T∞ − TS leads to a simpler form of non-dimensional particle transport

equation.

The local Nusselt number Nux can be obtained from the temperature profile and may

be averaged over distance as the mean Nusselt number Nu, which represents effectiveness

of the heat transfer. The mass transfer effectiveness or thermophoretic Sherwood number

Shth (see Section. 3.2.2) is equal to Nu.(cs/cm) in a pipe flow and may also be averaged

over distance to describe the effectiveness of thermophoretic mass transfer.

A finite difference code was developed to compute numerical solutions to these transport

equations. In order to validate the computational code, the solution to the energy equation

under steady conditions was compared with the exact analytical solution (Eq. 6.5). It is seen

that the numerical results are in excellent agreement with the exact solution (with a mean

error smaller than 0.05%), so the developed numerical code was considered trustworthy.

The calculated temperature and concentration contours are shown in Fig. 6.5 and Fig. 6.6

respectively. To the authors knowledge, this model problem has not been studied experi-

mentally. However, the numerical heat transfer results for this laminar pulsating pipe flow,

for either constant heat flux or uniform surface temperature, may be used for comparison

and validation against analytical solutions such as those of Hemida et al. [49].

The validated CFD code was used to calculate the changes in heat and mass transfer

effectiveness. The numerical domain size was L×2L, where L is the length scale. A uniform

100×100 grid was used to discretize the governing equations and the Reynolds number based

on the length of the domain was equal to 150, with Pr=1. It is seen that the pulsation in wall

shear stress lead to oscillatory heat and mass transfer coefficients, and changes are observed

in their mean values. The amplitudes of the oscillation in heat and mass transfer coefficients

are given as ∆Nu and ∆Shth respectively, while the mean values are normalized by the
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Figure 6.5: Contours of temperature at Re=150

Figure 6.6: Contours of concentration at Re=150
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Figure 6.7: Effect of excitation frequency on the mean values of Nusselt number Nu

The numerical data shown in Figs. 6.7, 6.8, 6.9 and 6.10 are for the temperature ratio:

T∞/To = 1.25, and very similar trends are seen for T∞/To = 1.5 and 1.75. The numerical

values of ∆Nu and ∆Shth are less than 5% of the mean values at St = 1 and decay

exponentially with increasing the frequency with a slope of -0.96 in both cases, when plotted

in log-log coordinates. This decay with increasing excitation frequency is typical of physical

systems with cut-off frequencies above which the pulsation is too fast to have a significant

effect. In many engineering devices such as reciprocating engines, the Strouhal number St

is greater than 10 and so the effect of pulsation on time-averaged heat and mass transfer

coefficients is very small. These results are also in agreement with the observations of Gupta

et al. [43] that effects of oscillation on mean Nusselt number are negligibly small (Fig. 6.2).

The parameter A is the ratio of pulsating to mean shear stress. In the numerical data
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Figure 6.8: Effect of excitation frequency on the mean values of mass transfer effectiveness
Shth

shown in Figs. 6.7, 6.8, 6.9 and 6.10, A was set to 0.3. The effect of A on heat and mass

transfer coefficients at T∞/To = 1.25 and St = 10 is shown in Figs. 6.11 and 6.12.

It is clear that increasing the pulsation intensity A has negligible effect on the mean values

of heat and mass transfer coefficients, which is consistent with the findings of Guo et al. [42]

and the experimental measurements of Kim [63] (at A < 1.1 in Fig. 6.1). The amplitudes

of oscillations in heat and mass transfer effectiveness ∆Nu,∆Shth increase linearly as, at

higher values of A, there is more mixing in the flow so ∆Nu and ∆Shth increase. However,

as the steady values of the heat and mass coefficients are 5.13 and 4.59 respectively, it is

clear that in laminar flows, even at a pulsation intensity of A = 0.5, the changes in Nu and

Shth are less than 1% of their steady values.

These numerical results are almost identical to the analytical results for steady flow and
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Figure 6.9: Effect of excitation frequency on the amplitude of subsequent oscillation in
Nusselt number Nu

consistent with the observations of Hemida et al. [49] and Kim et al. [64] on the negligibly

small effect of pulsation on heat transfer. The experimental measurements of Habib et

al. [45] also support the finding that the variation in mean Nu due to pulsation is small.

Their experimental results show larger variations in Nu compared to our results and other

numerical data [49, 64], which may be due to the oscillating mechanism used or measurement

uncertainty. In general the numerical results on heat and mass transfer effectiveness are in

good agreement with the existing experimental data [45] and confirm that axial pulsation

has a negligibly small effect on heat and thermophoretic mass-transfer phenomena.
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Figure 6.10: Effect of excitation frequency on the amplitude of subsequent oscillation in
mass transfer effectiveness Shth

6.2 Flows with Aligned Heat Transfer and Pulsation

Directions

In this section, the effect of flow pulsation is studied numerically when the directions

of heat transfer and pulsation are aligned. The first model problem to be discussed is the

counter-oscillating slug flow, which has been solved analytically for the case of heat transfer

[68]. The second model problem is channel flow with an imposed pulsating velocity, which

is more relevant to industrial applications.

110



0 0.1 0.2 0.3 0.4 0.5
0.95

1

1.05

A

N
u
,S
h
th
(N

or
m
al
iz
ed
)

Nu/Nusteady

Shth/Shth,steady

Figure 6.11: Effect of pulsation intensity A on mean value of subsequent oscillation in heat
and mass transfer coefficients

6.2.1 Thermal and Thermophoretic Enhancement in Counter Os-

cillating Slug Flow

As stated above, Kurzweg et al. studied the effect of oscillatory flow on heat transfer

when the direction of flow oscillation was aligned with the direction of heat transfer and

reported that, because of the nonlinear term u
∂T

∂x
, the axial conductance was significantly

enhanced. The model problem that Kurzweg analyzed was that of a counter-oscillating slug

flow, shown in Fig. 6.13. The effective thermal diffusivity is equivalent to the effectiveness

of heat transfer and is defined as

λ = − 1

2πγ(△x)2

∫ τ

0

(∫ 1

o
[U ]R[T ]Rdη

)
dt (6.14)
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Figure 6.12: Effect of pulsation intensity A on amplitude of subsequent oscillation in heat
and mass transfer coefficients

where the subscript R represents the real part of a complex number. Kurzweg simplified

the governing equations and presented an exact solution for the problem and calculated the

effective thermal diffusivity λ to be

λ =
1

8β
(
√
i.tanh

√
iβ)R (6.15)

Eq. 6.15 shows that there is a tuning effect whereby the effective thermal diffusivity can be

adjusted to take its maximum value at the particular oscillatory frequency β = 1.59, where

β = a
√
ω/α [68]. A numerical code was developed which could solve the exact transport

equations for this problem. They were solved for the case of channel flow, with a plate at

y = 0, with values of velocity taken from the exact solution to the momentum equation. It

may be seen that the effective thermal diffusivity follows a similar trend to that found for
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Figure 6.13: The counter oscillating slug flow analyzed by Kurzweg et al. [68]

slug flow, and that discrepancies between the exact solution and the numerical data for slug

and channel flow are negligibly small (Fig. 6.14).

In a manner analogous to the definition of effective thermal diffusivity, the effective

thermophoretic diffusivity λth may be defined as

λth = − 1

2πγc(△x)2

∫ τ

0

(∫ 1

o
[U ]R[C]Rdη

)
dt (6.16)

where △x is the tidal displacement, and γ and γc are the steady-state slopes of the temper-

ature and concentration respectively. The numerical code was used to solve the particulate

transport equation which included the thermophoresis term. The numerical results show

that a similar tuning effect is seen for the effective thermophoretic diffusivity λth, which

might have been anticipated since thermophoresis is driven by the temperature gradient.

It is also noticeable that axial flow pulsation can enhance the thermophoretic transport by

113



10
�1

10
0

10
1

10
2

10
�4

10
�3

10
�2

10
�1

β

λ

Exact

CFD(Slug)

CFD(Channel)
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up to 3 orders of magnitude. Since the magnitude of the thermal ‘force’ is proportional to

ν.Kth, it may be seen that increasing Pr.Kth will enhance λth (Fig. 6.15). Numerical data

for lower values of the frequency parameter β indicate that at high values of Pr.Kth the ther-

mophoretic force could be higher than the force required to produce a uniform concentration

profiles, and could in theory lead to inverse mass transfer (λth < 0.). This phenomenon is

not possible in the absence of thermophoresis, as an infinite Brownian diffusion coefficient

would be required to provide the flux necessary for a uniform radial concentration—where

λth approaches zero.
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6.2.2 Thermal and Thermophoretic Enhancement in a Vertically

Pulsating Channel Flow with Porous Walls

The numerical simulations of the previous section on counter-oscillating slug flow have

provided new findings on the effects of pulsation on thermophoresis. Although the slug flow

studied is a simple model problem, such a flow could not be realized in practice because

the shear stress at the centreline which would cause a Kelvin-Helmholtz instability. In the

current section, we investigate the effects of pulsation on thermophoresis in a more practical

model problem which is a channel flow that is a closer representation of heat-exchanger flows.

In order to obtain an amplifying effect on heat conduction near the surface, it is assumed

that a pulsating velocity is being imposed perpendicular to the direction of the bulk flow.

It is assumed that the walls of the channel are porous and that the vertical velocity v could

be imposed either by acoustic waves or by a pulsating flexible membrane which achieves its

highest velocity in the center of the pores and recedes to zero away from the pores. It is also

assumed that the pores are directly opposite each other on both sides of the channel and

that the magnitude of the vertical velocity v changes smoothly from zero to its corresponding

value (as shown in Fig. 6.16. The horizontal velocity u is assumed to be that of a steady,

laminar, constant-property, fully-developed channel flow:

u =
3

2
Um(1− y+

2
) (6.17)

where Um is the average velocity, y+ = y/H, and H is the half width of the channel. The

vertical velocity v is assumed to be zero at the solid parts of the intermittently porous wall,

while it reaches its maximum value V0 between each pore. The corresponding thermal energy
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Figure 6.16: The pulsating vertical velocity v in a channel with porous walls

equation is

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

[
∂2T

∂x2
+

∂2T

∂y2

]
(6.18)

on which a symmetry boundary condition has been imposed at the centreline, while the

Dirichlet condition has been imposed on the solid wall and the temperature between each

pore has been extrapolated. The thermal energy equation was solved numerically and, based

on the decay of the time-averaged value of the mixed-mean temperature, the effective Nusselt

number was evaluated (Fig. 6.17).

In the studies of Kurzweg et al. [68], it was seen that when the time required for thermal

diffusion over the width of the channel and the pulsation period coincide, a tuning effect

was observed and the heat transfer improved significantly. In the case of channel flow with a

horizontal bulk flow, thermal transport by convection is much faster than thermal diffusion.

Therefore, in order to obtain an equivalent enhancement effect, the frequency of pulsation

should be very high (see Fig. 6.17). However, the required vertical velocities V0 at high

frequencies would be so high (see Fig. 6.18) as to surpass the laminar threshold. The
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required mass flow rates through each porous wall would be implausibly high.

The thermophoretic particle transport equation for this problem is

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= D

[
∂2c

∂x2
+

∂2c

∂y2

]
+Kthν

[
∂

∂x

(
c

T

∂T

∂x

)
+

∂

∂y

(
c

T

∂T

∂y

)]
(6.19)

Again, a symmetry boundary condition is imposed on the centreline, while extrapolation is

applied at the walls. It is assumed that all the particles that enter the pores of the porous

wall attach to the surfaces and get trapped in porous media, so the concentration of the flow

coming out of the walls would be equal to zero. In other words, the porous wall behaves

as a side filter which traps all particles. The Eulerian approach is capable of capturing the

filtering effect of walls at low frequencies but at higher frequencies (St > 5) the numerical

code diverges. The divergence of the numerical code may be explained based on the fact

that at higher frequencies the cleaning effect of the side walls is much stronger and leads to

the formation of a void region near the surface which is similar to a jump and cannot be

properly handled by the Eulerian solvers (see Fig. 6.19). Therefore a Lagrangian solver was

developed which could solve for the transport of particles at high frequencies. The results

showed that shortly after the entrance, the void region formed with a thickness of δv, and

the mean concentration dropped sharply over a very short distance beyond the entrance

zone. The mean concentration also decreased with axial distance in a similar manner to a

channel flow with no pulsation. A more comprehensive study on the concentration profiles

and mass transfer effectiveness in the channel based on the Lagrangian approach is necessary

to further understanding of such flows in which particle voids develop, and is recommended

as a topic for future research.
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Figure 6.19: The formation of a void region near the surface at higher frequencies (St > 5)
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Chapter 7

Conclusions

Thermophoresis is an important phenomenon in several scientific and engineering ap-

plications, and can be the dominant mechanism of transport of sub-micron particles. Ther-

mophoretis is a force which is driven by differences in temperature on either side of particles,

which drives the particles from hotter regions towards the colder ones and may lead to depo-

sition on walls, which can reduce heat transfer. In the current study, the governing equations

for particulate transport have been formulated and the effects of using various plausible sur-

face and near-surface boundary conditions have been explored. A new solution has been

obtained in the form of a series for the particle concentration profile in fully developed lam-

inar tube flow. This solution appears to be the first reported for this flow, for which no

experimental measurements of particle concentration have been made, and the theoretical

particle deposition efficiencies derived from this solution appear to be in good agreement

with deposition efficiencies measured in experiments. A new measure of the effectiveness of

thermophoretic transport—the thermophoretic Sherwood number—was devised. According

to this new, exact solution, the thermophoretic conductance, expressed as a thermophoretic

Sherwood number, approaches a value of approximately 5 when the fluid, thermal and con-

centration fields are fully developed.

The particle concentration field in the entrance zone of a particle-laden pipe flow and the

effects of compressibility have been studied using numerical analysis. Numerical calculations

of the particle deposition efficiency are in good agreement with experimental measurements.
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While the numerical solution yields results that are slightly more accurate than those of

simple laminar-flow models for entrance-zone and compressibility effects, the computational

cost is high. In flows with Mach numbers below 0.2, effects of compressibility on particle

deposition efficiency are negligible.

In steady turbulent particle-laden duct flows, results from DNS suggest that particle

concentration profiles across the bulk of the flow are almost uniform, in which case a uniform-

concentration approximation may be used to formulate a simple one-dimensional model

for surface deposition [89]. The particle deposition efficiency evaluated with this model

compares well with available experimental measurements. The thickness of soot deposits

in an EGR cooler has been evaluated with this one-dimensional model, and is also in good

agreement with experimental data. Although turbulent flows are difficult to predict in many

applications, it is seen that, in the case of thermophoretic transport of submicron particles

in ducts, the uniform particle-concentration model appears to be quite accurate.

In many practical applications, thermophoretic transport of particles takes place in flows

that pulsate. The effect of flow oscillation on thermophoretic mass transfer was analyzed

numerically. In the model problem of counter-oscillating slug flow (with no mean velocity)

in a long channel with imposed axial temperature and concentration gradients, it was found

that flow oscillation enhanced the thermophoretic mass transfer by up to 3 orders of magni-

tude over that in a static fluid. It was also found that the thermophoretic mass transfer (or

effective thermophoretic diffusivity λth) could be tuned to reach a maximum value, by choos-

ing a particular flow oscillation frequency and that λth also scaled in proportion to Pr.Kth.

At high values of the flow-oscillation frequency parameter β, thermophoretic transport is

dominated by convection so λ and λth follow similar trends, while at low flow-oscillation

frequencies, thermophoretic transport is dominated by the non-linear thermophoretic force
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which has a complex behavior. Numerical solutions show that, at low values of β, the ther-

mal flux can surpass the force required to make the particle concentration profile uniform

and can, in theory, lead to inverse mass transfer(λth < 0.). This effect of pulsation on ther-

mophoresis is an interesting topic for further study. Finally, the effect on thermophoresis

of unsteady blowing/suction through channel walls was explored. While it seemed possible

that thermophoresis could be enhanced in this way, it appeared that the frequencies of pulsa-

tion required to achieve significant enhancement would be implausibly high for conventional

applications.
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APPENDIX
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A condition describing the concentration of suspended particles in gas flows in close

proximity to a surface is deduced by considering an imaginary interface located a very short

distance χ from the surface. The particle mass flux toward the surface (see [144] for more

details) is

J = c(vr + vth)−D
∂c

∂r
(1)

where vr and vth are the surface-normal convective and thermophoretically induced com-

ponents of velocity. It is assumed that the distribution of particles around the convective

and thermophorestic velocities (vr + vth) is Maxwellian, by making an analogy between the

behaviour of particles and gas molecules. This assumption may have more justification in

the free-molecular regime (Kn ≫ 1) than in the transition regime (0.1 < Kn < 10) but it

is assumed that the deviation from the Maxwell-Boltzmann distribution is small. If we set

f(ξr; ξϕ; ξz)dξrdξϕdξz to be the number of particles per unit volume having components of

velocity with magnitudes in the range: ξr → ξr + dξr, ξϕ → ξϕ + dξϕ, ξz → ξz + dξz, the

mass flux of particles to the surface is

J =

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

mp.ξrf(ξr, ξϕ, ξz)dξrdξϕdξz (2)

The integral can be evaluated by defining

cr =
ξ−(vr+vth)√

2RpT
, cϕ =

ξϕ√
2RpT

, cz = ξz−vz√
2RpT

(3)

where mp is the mass of each particle and f is assumed to be locally Maxwellian in the
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moving frame, so

f(cr, cϕ, cz) = np(2πRpT )
(−3/2)exp(−(cr

2 + cϕ
2 + cz

2)) (4)

Integration yields the result

J =
1

2
mpnp(vr + vth)

(
1 + erf{Mr}+

e−Mr
2

√
πMr

)
(5)

where Rp = k/mp and Mr = (vr + vth)/
√
2kT/mp. If we assume that χ is small enough so

that Eq. 1 and Eq. 5 approach the same value, then

J = c(vr + vth)−D
∂c

∂r
(6)

=
c

2
(vr + vth)

(
1 + erf{Mr}+

e−Mr
2

√
πMr

)

at approach to the surface. If vr is determined from the solution to the radial momentum

equation and vth is approximated from the temperature field that satisfies the thermal energy

equation and Talbot’s model [125]), then Eq. 7 provides a relationship between c and ∂c/∂r

that is a condition on particulate concentration at approach to a surface.
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