A STRATIGRAPHIC ANALYSIS OF THE TRAVERSE GROUP OF MICHIGAN

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY STEPHEN LANE RUNYON 1976

:

111 12

. . .

· • • •

W 24 X: 38538 乃 II 974 502911 011 ZUG16 1982-21 AFP 0 1 19HB JUN C 9 12 M 153 FF 22 BB 298 000 H310

ABSTRACT

A STRATIGRAPHIC ANALYSIS OF THE TRAVERSE GROUP OF MICHIGAN

Ву

Stephen Lane Runyon

The Middle Devonian Traverse Group, in the past, was a major producer of hydrocarbons. Though it hasn't been actively explored for many years, new technology and a substantial increase in drilling activity in the last ten years warrants an updated examination of this group. This stratigraphic analysis attempts to reinovate some concepts concerning its development, especially those related to future hydrocarbon exploration, and reemphasize some of those already in existence.

This study provides completely updated structure and isopach maps constructed from tops derived from 306 gamma ray-neutron logs, in addition to, those obtained from samples of sixty wells widely distributed throughout the state. Lithofacies trends were diagnosed from these well cuttings and a clastic ratio, a limestone to dolomite ratio, evaporite and chert percent maps were generated to determine the paleoenvironment and history during a time when Michigan and surrounding areas were widely inundated by seas.

Many significant concepts concerning the Traverse Group are evidenced by this investigation. Support for the

orientation of the major structural trends in the Michigan Basin is demonstrated by the isopach and structural study. The various features delineated by these maps coincide with the structural trends evident in the Basin at the present time. Isopach thinning over present anticlinal features suggest that some movement in the Basin was concurring with deposition. Many of the major structures evident today though, were not apparent during Traverse time emphasizing that the main diastrophism, which resulted in these structures, occurred later. A substantial number of features delineated by the structure and isopach maps coincide with present oil and gas producing fields suggesting the validity of future predictions for hydrocarbon exploration as gleaned from them. Sharp, assymmetrical folds in southwest, south and southeast Michigan suggest faulting. These faults tie in isolated oil and gas fields and cross major, known hydrocarbon producing structures such as the linear, Albion-Scipio trend. In many producing fields where cross-fractures intersect, pronounced dolomite development, hence porosity, has been found. The cross-structure relationship of these faults suggests that possible hydrocarbon prospects exist along these features. Other features have also been cited as possible future exploration areas. The apparent complexity of the Howell Anticline area, suggested by a preliminary investigation there, indicates that a more detailed analysis is needed to unravel its history.

The various lithofacies trends generated in this study help to explain the paleoenvironment and history of the Michigan Basin during Middle Devonian, Traverse time. Dolomite and clastic lithofacies patterns indicate an eastern source area which is either lowlying and peripheal or an intermittantly rising eastern source area. They also disclose that the Findlay Arch stood slightly higher than the other frame structures directly related to the Michigan Basin at that time. The clastic ratio map indicates that the Kankakee Arch was also a source of clastics. A north to south high dolomite trend on the west side of the state can be related to shallowing on the Wisconsin Arch or a result of a west Michigan Barrier. For this barrier, a model has been postulated to help explain its relationship to the limestone, dolomite and evaporite trends in existence in the Basin during Traverse time. A more detailed examination of the widespread occurrence of chert in the Traverse Group is warranted to ascertain its significance.

A STRATIGRAPHIC ANALYSIS OF THE

TRAVERSE GROUP OF MICHIGAN

By

Stephen Lane Runyon

A THESIS

Submitted to Michigan State University , in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Geology

DEDICATION

I would like to dedicate this thesis to my late Grandfather, Virgil Runyon, who helped pioneer the Michigan oil and gas fields, to my parents, Jack and Rosella Runyon whose hard work and devotion instilled in me the traits of hard work and perseverance and to my wife, Sue and son, Jason whose love helped me complete this study.

ACKNOWLEDGMENTS

I gratefully express my thanks to Dr. Prouty, Chairman of the guidance committee, whose devotion of time and interest in this problem and in the critical review of this manuscript is sincerely appreciated. Thanks are extended also to Dr. James H. Fisher, Dr. Stonehouse and Dr. Bennett, other members of the committee, for their helpful suggestions and review of the thesis text and illustrations.

Also, I wish to acknowledge my indebtedness to the Michigan Geological Survey for the use of Mechanical logs and well samples, especially Garland Ells, Richard Lilienthal, Mike Bricker and Ron Elowski for their time and many helpful suggestions.

Thanks is also extended to Deb Tomasek and Chris Gruesbeck for their patience and skill in typing this thesis from barely legible copies and minimal pay.

Foremost appreciation must go to my wife Sue and son Jason for their love and devotion throughout this time of trials and tribulation. Their patient understanding and occasional push towards completion of this work will never be forgotten.

iii

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES	iv v vi
INTRODUCTION	1
General Statement Scope and Purpose Previous Work	1 1 4
GENERAL STRATIGRAPHY	6
TECTONIC FRAMEWORK OF THE MICHIGAN BASIN	12
METHOD OF INVESTIGATION	14
STRUCTURAL INTERPRETATIONS OF MICHIGAN BASIN ON THE TRAVERSE GROUP	24
ISOPACHOUS INTERPRETATIONS OF THE TRAVERSE GROUP	31
FACIES INTERPRETATIONS	39
Carbonate Facies Evaporite Facies Barrier Model Clastic Facies Chert Facies	39 42 46 50 53
ENVIRONMENTAL INTERPRETATION	56
ECONOMIC IMPLICATIONS	58
SUMMARY	62
RECOMMENDATIONS FOR FUTURE STUDY	65
BIBLIOGRAPHY	67
APPENDICES	71
Appendix A Appendix B Appendix C	71 84 86

LIST OF TABLES

Page

 Generalized Middle Devonian Column in Michigan (Subdivisions of the Traverse Limestone)

LIST OF FIGURES

.

•

1.	Michigan Traverse Group Outcrop Areas	7
2.	Michigan Region Tectonic Map	13
3.	Traverse Group Cross-Section	15
4.	Stratigraphic Succession in Michigan	16
5.	Michigan Traverse Group Structure	25
6.	Michigan Oil and Gas Fields	26
7.	Major Structural Trends in the Michigan Basin	27
8.	Michigan Traverse Group Isopach	32
9.	Carbonate Facies Map	40
10.	Evaporite Percent Map	43
11.	Previous Barrier Axis	45
12.	Barrier Model	47
13.	Clastic Ratio Map	51
14.	Chert Percent Map	54

.

INTRODUCTION

General Statement

The Middle Devonian, Traverse Group of Michigan has been in the past and still is a large producer of hydrocarbons. The Traverse Group along with the Rogers City-Dundee formation stimulated great exploration activity in the 1930's. Today there is a total of 181 fields which have produced out of the Traverse Group singularly or in combination with other horizons with cummulative production, through 1974, as great as 16,860,442 BBLS. from the Walker field alone. At the present time, the Traverse Group is not an exploration target, though many, more subtle traps are yet to be found. An understanding of the paleoenvironment and history together with new exploration techniques could help to renew interest in the horizon.

Scope and Purpose

This study will attempt to update structure and isopach interpretations, and discover, plot and contour lithologic variations present in the Middle Devonian, Traverse Group of Michigan. Structure and isopach contour maps will be reconstructed from tops picked off gamma ray-neutron logs

and percentages of limestone, dolomite, quartz, shale, chert, pyrite and evaporites will be derived from well samples throughout the southern penninsula of Michigan. (Directions referred to herein after are in terms of Southern Michigan only).

Isopach maps of the Traverse Group were first published by Newcombe (1933). Records of drilling after that date show that his map was seriously in error in Charlevoix and Antrim counties. Later, Cohee (1947) provided a more accurate estimate of Devonian thickness as along with a structure contour map based on the available well records to 1947 which penetrated the entire Traverse Group section.

Since this time, considerably more wells have been drilled penetrating the Traverse Group in search of hydrocarbons. The increasing production success of the northern and southern Silurian Reef Trends and the Ordovician Albion-Scipo play in the extreme south have spurred a new search for hydrocarbons in the deeper, older strata of the Michigan Basin providing a substantial increase in new data. In addition to this, recent technology has provided us with a relatively new and accurate tool for examining carbonate strata, the gamma-ray neutron log. In light of this an updating of the thickness of the Traverse Group is appropriate.

Gustafson (1960), investigated the Traverse Group in the Lansing area and generated structural and isopach maps of this area. Fisher (1969), examined the Traverse

Formation, the top unit of the Traverse Group, and completed a structural contour map on the top of the Traverse Group. A preliminary investigation by the writer found that his picks were inconsistent in many instances and were quite different than the tops picked in this report. Therefore, a new and further updated structure contour map is justified.

Previous work on the lithology of the Traverse Group usually involved a general description of the divisions of the Group and how they vary from one part of the state to another. A composite Devonian lithofacies in the Michigan Basin, including the Traverse, was constructed by Dice (1955); and Ross (1957) constructed lithofacies maps involving a sand-shale ratio, clastic ratio, quartz-chert ratio and evaporite ratio of the complete Traverse Group using a quantitative, sedimentary analysis. To date, no one has attempted a qualitative, lithofacies study of the Traverse limestone. The Traverse limestone for purposes of this study is that unit between the top of the Bell Shale and the base of the Traverse Formation. This investigation will endeavor to update previous thickness and structure maps of the Traverse Group and shed light on the source of clastics, dolomite, chert and evaporite trends of the Traverse Limestone in conjunction with the structure and thickness contour maps.

Previous Work

The Traverse Group has been studied in outcrop since the early 1800's. Pioneer work was first done in Emmet and Charlevoix counties, Michigan by Christopher C. Douglas in 1841, Winchell and Rominger in the latter half of the 1800's, Grabau (1902), Smith (1912) and then by Kesling, Segall, and Sorensen (1974). Grabau (1902) was the first to subdivide the Traverse Group and his nomenclature is still in use today. The Michigan Geological Survey in 1926 sponsored a field trip investigation of all Middle Devonian strata in the lower peninsula, the members including E. O. Ulrich (U.S.G.S.) E. Case, G. Ehlers, C. Deiss, and A. S. Warthin Jr., all of the University of Michigan. This work is incorporated as part of an updated study by Kesling, Segall and Sorensen (1974). Warthin and Cooper (1943) studied these rocks on the east side of the state while Pohl (1930) discussed them in the Little Traverse Bay area. Ehlers and Kesling further examined them in Alpena and Presque Isle counties in 1970.

In subcrop the Traverse Group has been studied extensively, because of its hydrocarbon importance. Discussion of the occurrence of these rocks throughout the state have been made in reports by Newcombe (1928, 1933), Hake and Maebius (1938); and in parts of Michigan by Riggs (1928), Pringle (1937), Newman (1937), Eddy (1936), Addison (1940), Landes (1945), and Cohee (1944, 1947). Most recent investigations have been concluded by Dice (1955), Gustafson (1960),

and Ross (1957). Fisher (1969) focused his study on the Traverse Formation which he defined as a formal stratigraphic unit.

L.

GENERAL STRATIGRAPHY

The Traverse Group and the rocks correlative to it are found all over the Michigan Basin from the southern peninsula of Michigan to northern Indiana, northwestern Ohio, southwestern Ontario and eastern Wisconsin. They are found at the surface (Fig. 1) in Alpena, Presque Isle, Cheboygan, Emmet and Charlevoix counties in nothern Michigan. Rocks of the Traverse Group also crop out in Lucus County, Ohio and Ontario, Canada. They subcrop (beneath glacial drift) in southeastern Michigan and northwestern Ohio along the Findlay Arch and along the north flank of the Kankakee Arch in Indiana. They are called the Hamilton Series where they extend across southwestern Ontario into the Appalachian Basin in the vicinity of the Chatham Saq. They probably also extend into Indiana through the Logansport Sag. Rocks of Traverse age are also on the southeastern side of Wisconsin along the shore of Lake Michigan from Cheboygan to Milwaukee.

The Traverse Limestone is divided into stratigraphic division or formations by Warthin and Cooper (1943), (Table 1). These units have been carried into the subsurface and in some cases over large areas, but lateral gradation from shales and argillacious limestones in eastern Michigan to pure limestone in western Michigan make it impossible to follow these units in the subsurface. The thinning and

Table 1

GENERALIZED MIDDLE DEVONIAN COLUMN IN MICHIGAN

(modified	after	H. M	4. Martin)	
-----------	-------	------	------------	--

¹Traverse group in Little Traverse Bay area.

²Traverse group in Cheboygan-Presque Isle counties.

³Traverse group in Thunder Bay Region.

Table 1 (Continued)

Thickness (feet)	Lithology
8	Limestone, brown fossiliferous overlain with dolomit
13-40	Limestone, interbedded with shale
70	Shale, alternating with sublithogarphic limestone
45	Shale, thinly interbedded with limestone
20	Limestone, biothermal with thin shale members
79	Limestone, pure to argillaceous
25	Limestone, dark
116	Limestone, dark
37	Shale, calcareous and thin shaly limestone
40	Limestone, dark with some interbedded shale
80	Shale, calcareous and fossiliferous with thin beds of limestone

disappearance of the Bell Shale in the southwest so that the Traverse limestone rests on the Dundee limestone, also confuses simple correlation.

Cohee (1947) described lithology of the Traverse Group in the Michigan Basin as argillaceous limestone, shales and some pure limestone in eastern Michigan grading westward into calcareous shales with the limestone becoming more pure until the whole group becomes relatively pure limestones in western Michigan with some dolomite and dolomitic and argillaceous limestone. In northern Michigan, the Ferris Point, Genshaw, Newton Creek and Potter Farm formations contain gypsum while some gypsum in the lower part of the Traverse in southwestern Michigan is found with lithographic Relatively pure limestone contains abundant limestone. chert and some chert can be found in argillaceous limestone beds also. The thumb area of Michigan is typically shale in the lower part with some shale and limestone in the upper part. Only about 20% of this group is massive limestone. Hake and Maebius (1938) state, "The prominent feature of the lithology of the Traverse Group of sediment in Central Michigan is its composition of calcareous, argillaceous and silicious materials in varying degrees of admixture. These rocks range from remarkably pure limestone through cherty, dolomitic and shaly limestone and limy shales to nearly pure clay shales", They also state that the second outstanding characteristic of this group is the presence of abundant fossil debris which include fragments of corals, hydrozoans,

bryozoans, crinoids, and brachiopods. Fossil reefs composed of the remains of hydrozoans, coral and algae also exist within this group.

TECTONIC FRAMEWORK OF THE MICHIGAN BASIN

The Michigan Basin is surrounded in the northeast, north and east by exposed Precambrian rocks of the North American Shield. Stonehouse (1969) suggests that the three provinces of this Shield Area, The Grenville Front to the east, Superior to the north and Penokean to the west meet under the Michigan Basin and comprise the basement rocks of the basin.

The origin of the Michigan Basin is debated by many. Significant theories have been postulated by Newcombe (1933), Pirtle (1932), Kirkham (1937), Lockett (1947), Cohee and Landes (1958) and Hinze (1963). A good summarization of these theories can be found in Ells (1969). These theories range from principal warping of the Michigan Basin by forces related to the Keweenawan Disturbance acting against the rigid Wisconsin Arch area to downwarp in the Basin chiefly resulting from movement of vast bodies of magma from one part of the earth's crust to another.

Many structural elements frame the Basin on all sides (Fig. 2). To the north, northeast, and east the North American bounds the Basin. It is constrained on the west by the Wisconsin Arch, and on the southwest by the Kankakee Arch in northern Indiana. In the south it is bounded by the Cincinnati Arch and in the southeast and east by the Findlay-Algonquin Arches.

MICHIGAN REGION TECTONIC MAP

FIGURE 2

METHOD OF INVESTIGATION

Structure and isopach maps were constructed from tops identified from 310 gamma ray-neutron logs obtained from the Michigan Geologic Survey and were recorded by Schlumberger These logs measure and record radioactive Log Company. emanations from strata exposed in the walls of wells. A11 rocks exhibit some degree of radioactivity and the variations in this property are sufficiently characteristic to afford a means of distinguishing between different sedimentary Identification of different rock types can lithologies. be made using this log and where a lithologic change occurs at the contact of two formations, tops can be picked. In addition to this, 60 tops were included from well samples selected throughout the state.

Tops were picked in accordance with the manner adopted by the Michigan Geological Survey (Fig. 3). The top of the Traverse Group has always been picked at the base of the Antrim Shale (Fig. 4) that is the top of the Traverse Formation. The Survey's method is to pick the top of the Traverse Group at the base of the first highly radioactive kick of the Antrim Shale going up the stratigraphic column.

This Antrim Shale is a black extremely carbonaceous shale found all over the Michigan Basin (Asseez, 1969). It has been recognized, because of its diagnostic color, as probably the best marker bed in the stratigraphic column of Michigan. Because of its high content of organic matter it

I:4

	+		STEM	SERIES	STAGE					
R				RECENT	Valders St	ade		PALEOZOIC THROU	JGH RECENT	
Ř	d	UA	TERNARY	PLEISTOCENE	Wisconsin Glaciation Mankato	Stade (Pt Huron?	5		545 A	at a carden
ž					Tazewell :	Stade	9			
5				-	Sangamon Interglaciation Illinoian Glaciation					
			OUTO	ROP NOMEN	CLATURE		SUBSURFACE NO	MENCLATURE	10	ATURAL
EOL TI/	OG	IC TI	ME-STRATIGRAP	ніс	ROCK-STRATIGRAPHIC		ROCK-STRAT	IGRAPHIC	MICNIGAN DEPARTMEN	IT OF NATURAL RE
-	8	IN					FORMATION MEM	BER GROUP	GEOLOGICAL	SURVEY DIVISION
2	EKI		SERIES	GROUP	FORMATION	MEMBER	ANT LITHOLOGY in the subsurface. NO SCALE	is, in feet, of rock units	Arthur E. Sloughter	, State Goologist and C
-		-	·						ADINOWLEDGENENT Compiled with the co logical Survey. Michigan's universities of Nichigan's oil and one ordering Dr. Amo	anal of callsagars in the c other state Geological Sur-
5	١,	U					Glacial Drift		University, identified rocks of Messeever eg	e and suggested provisions
		ASSI	KIMERIDGIAN				Ted Beds		GEOLOGIC I	AMES COMMITTEE
		JUR J					face only (?)	110	Garland D Bh. Charm Harry J Hardanbarg, L	an, Robert W. Kalley, Seco Devel Johnson, Harry O Sr
٤							A LOS DE LE CONTRACTOR		INFORM	AL TERMS
	NA.	AN	CONTRACTO			Ionia, Eaton,			Principal oil and pas pave. at	ad informal terms us
I V V		AN N	CONEMAUGE	'	Grand River Fm.	and Woodville Sandstones	Grand River Pm.		exploration and applied to pa subsurface	rts of formations or
120		SYL						750-	STRATIGRAPHIC POSITION	INFORMAL TERMS
		ENN	POTTSVILLE		Saginaw Fm.	Verse La	Sagnaw Fra		Basal sandstones of	
	Z	Z			Bayport Ls				Saginaw Fm	Parma sandstone
VIO	A L	AId	MERAMECIAN	GRAND RAPID	S Michigan Fm.		Michigan Fra	GRAND RAPIDS	In lower part of	forces and
10 OI		ISSI	OSAGIAN		Marshall Ss.	Hapoleon Sa	Marshall St	T	Michiga:	array dal
AICC	CCIN	AISS	KINDERHOOKI	AN	Coldwater Sh		Coldwater Sh	1100	Marshall Ss	
1	AIS	SISS	IPPIAN-DEV	ONIAN Unassigne	N		Sunbury Sh]	160	Coldwater Sh	
	F				Ellsworth Sh Western Michigan		Ellsworth Sh Berea Ss Bedford Sh	astern Michigan) 260 240	In upper part of Elisworth Sh	"Beres" (Western
	-	2	CHAUTAUQUA	N	Antrim Sh Squaw Bay Ls		Antrim St	660	Berea Ss	Berea sand Easter
	T			•	Thunder Bay Ls Potter Farm Fm				Upper part of	
					Norway Point Fm Four Mile Dam Fm	-			Traverse Group en Western Michigan	Stoney Lake gove
				TRAVERSE	Alpena Li.	1	Alpena Ls	TRAVERSE 830	Rogers City Ls	
Z		Z	ERIAN		Newton Creek Ls	Kdan	Generally	undivided in subsurface.	Dundee Ls	
INC		NIN			Ferron Point Fm.				part of Lucas Fm. (?)	Reed City zone _
PP/		EVO			Rockport Quarry Ls. Bell Sh.	-				Massive salt
1	1				Rogers City Ls Dundee Ls		Rogers City Ls	475	In Lucas Fm	massive anhydrin
					Anderdon Fm	-	Lucas Financial State		Amberstburg Fm.	Richfield sone
			ULSTERIAN	DETROIT RIVER			Amherstburg Fm	DETROIT RIVER 1450	Part of Salina	f 2000
					Sylvania Ss		Sylvania Si	800	Group t Unit	or Kinigh zone; _
	RIY				Garden Island Fm		Garden Island Fm	100	Carbonate =	A-2 delemin
-	-	+			Rasin River Dol	+			Western Michigan	
				BASS ISLANDS	Put-m-Bay Dol.			BASS ISLANDS 700	Upper part of	
	ATE		CAYUGAN			1	Ginter Cond		Niagaran Series	gray Nagaran
	-			SALINA	Pte aux Chenes Sh				Part of Niagaran Series	Clamps shale Ration Michigan
	L						C Uni	SALINA 3150	Trenton Group	
AN		AN					A-2 Carbonate		Black River Group	Back Row Something
LUR	-	LCR			Engadine Dol		A-1 Carbonate		Oneota Dol	Van Wert sone
S	NDOL	S	NIAGARAN		Cordell Dol		ALIELL AI Evaporite			
	2			MANISTIQUE	Schoolcraft Dol				EXPLA	NATION
				BURNT BLUFF	Byron Dol	Fibure La	Generally	NIAGARA 980 undivided in subsurface.		
	N				Lime Island Dol. Cabot Head Sh		Caber Hand Sh		Carry	A second second
	EAR		ALEXANDRIAN	CATARACT	Manitoulin Dol		Manifoulin Dol	CATARACT 2007		1-
					Big Hill Fm	Oganti	Queenston Sh		Applaceour	
	LATE		CINCINNATIAN	RICHMOND	Stonington Fm.	Bay de Nor		RICHMOND 950	Dolomite	-20000
z		z			Bill's Creek Sh		Utica Sh			-FEEE
ICIA	-	1CI			Groos Quarry Fm	Collingwood			Shale	E A
Š	DO	Ś	MOHAWKIAN	TRENTON	Chandler Falls Fm			TRENTON		Tilley
S	2	ő		BLACK RIVER	Bony Falls Fm.		Generally un	BLACK RIVER	Sandy Statement	
	X		CHAZYAN				St. Parley St.	260	Calconent	
	EAR		CANADIAN	PRAIRIE DU CHIEN		1	Shakopee Dol	PRAIRIE DU CHIEN	Carton and Carton	
-		\vdash			Oneota Dol	Jundam Sa	Charles To Oneola Dol ET	425	Sandstone	t-more
	2				Trempealeau Fm.	Lodi Sr Lawcence	Trempealeau Fm. a Los	730	a land of	
N	A	Z	ST. CROIXAN	LAKE SUPERIOR	Munising Fm	Manan's Caselle So	The Manuary In La Arrive	LAKE SUPERIOR	Cherry	1
BRIA		BRI				Chapel Rock Sa	Deubach is	1175 7	Calaman Delaman	PRI
AM	DOLE	W							Applement	11=
5	Y M				Jacobsville 5s		Jacobsville Ss.	1100 +	GEOLOGIC NAMES COMPLATIONS Harry Kelley, Tarly and Middle Salarae. Gel-nd	O Scremen Cambran a D Ella Late Secura Arris
	FARL						en and and a second		Devonian age Harry I Hardenberg Dan age L David Johnson Antries State through	des Limitere Arough Tre h die Persiylikanian Syst
			7						glacial geology of the Campron	

URCES

name, the U.S. Geo and geologists within ology. Michigan State a accigoments

INFOR	MAL TERMS			
Principal oil and gas pays, and informal terms used in petroleum exploration and applied to parts of formations or groups in the subsurface				
TRATIGRAPHIC POSITION	INFORMAL TERMS PAYS			
Basal sandstones of				
Saginaw Fm	Parma candidone			
In lower part of	brown line			
Michiga:	Gas del			
	ater a Ges & Oil			
Marshall Ss	Ges & Oil			
Coldware th	Coldwater Inno			
Colowater 3n	Coldwater red rack			
In upper part of				
Ellsworth Sh	"Beres" (Western Michigan) Ol & Gas			
Berea Ss	Barea sand (Eastern Michigan) _ Oil & Gas			
Squaw Bay Ls	Square Bay Oil & Gas			
Upper part of	(Traverse Instation			
Traverse Group m	Traverse Les Out & Ges			
Western Michigan	(Stoney Lake zone Oil & Gas			
Rogers City Ls	Oil & Ges			
Dundee Ls	Oil & Ges			
Dundee Ls (?), Upper part of Lucas Fm (?)	Reed City zoneOil & Gas			
	then got			
In Lucas Fm	Out & Gas			
	big anhydran			
	Richfield zone Oil & Gas			
Amherstburg Fm.	black inne			
Part of Salina	f 2000			
Group E Unit	or Kintigh zone;Od			
Divisions of A-2				
Carbonate m	A-2 dolumits Gas			
Western Michigan	/ A-2 ima			
A-1 Carbonate	Al dolument Oil & Gas			
Upper part of	brown Nagaran			
Niagaran Series	gray Magaran Oil & Gas			
	F white Hagaran			
Part of Niagaran Series	Classon shale (Eastern Machgan)			
Trenton Group	Oil & Gas			
	· Back form formation			
Black River Group	March Rover shale Ohl & Ges			
	Van Wert sone			
Oneota Dol	04			

-1.

is extremely radioactive relative to other rock types and on the gamma ray-neutron log it is denoted by the highest radioactive deflection in the stratigraphic column. The first, diagnostic, off-scale kick of this shale signals the end of Traverse Group deposition. In this manner the top of Traverse Group becomes an extremely consistent pick. It is consistent in that the pick is made in the same place on the log and consistent in that the change, paleoenvironmentally, from the Traverse Transitional Formation to the start of the Antrim Shale reducing facies is correct.

The Bell Shale, which lies above the Dundee limestone, marks the beginning of Traverse deposition. It is very diagnostic on the gamma ray-neutron log and is widespread in Michigan except in the southwest where it thins out. It becomes difficult to determine the base of the Traverse Group in this area because both the Traverse and the underlying Dundee are limestone. The writer, in order to determine the Traverse Group-Dundee contact, used previously published cross-sections (Bloomer 1969, Gardener 1971), cross-sections drawn by personnel of the Geological Survey and published sample records to correlate the Bell Shale from its outcrop area in the north of the southern peninsula of Michigan to where it disappears in southern Michigan. This correlation was continued throughout southern Michigan so that the base of the Traverse would be a consistent and correct pick. It is interesting to note that the southern limit of the Bell Shale by correlation of logs was very close, if not

the same, as that placed by Cohee (1947) from examination of well samples.

Three published sample descriptions were also used to help delineate a confusing area in Gladwin County.

Lithofacies variations were determined for the Traverse limestone alone or from that part of the Traverse Group which lies between the top of the Bell Shale and the base of the Traverse Formation (Fig. 4). The bottom of the Traverse Formation or the top of the Traverse limestone as determined by the Michigan Geological Survey is the very first kick representing 100 percent carbonates on the gamma ray-neutron proceeding from top to bottom of the log. This limestone kick represents the top of the Squaw Bay Limestone Unit. Fisher (1969) compiled detailed correlations using gamma ray-neutron logs and represented these as cross sections all over the state demonstrating the widespread character of this The author used these cross sections in addition to unit. cross sections drawn by the staff of the Geological Survey to verify the top of the Traverse limestone or bottom of the Traverse Formation, especially in marginal areas of the Basin where the Squaw Bay thins to fifteen feet or less. This writer supports Fisher's and Cohee's (1947) contention that the Squaw Bay merges with other, less shaly, limestone and dolomite fractions of the upper Traverse Group sediments as the western and southwestern parts of Michigan are approached.

In this way the top of the Traverse Limestone was also chosen from the well samples. All Traverse limestone tops were picked where 90-100 percent carbonate was encountered and then the lithologic description of all 60 of these wells were compared to the closest well where a gamma ray-neutron log was available to verify these tops.

The base of the Traverse limestone in well samples was chosen as the top of the Bell Shale, an easy pick in the northern two-thirds of the State where it consists of 100 percent gray shale. In the southwest corner, comparison of lithologic description of well samples to gamma ray-neutron logs was necessary to ascertain the break between the Dundee and Traverse Group limestones. In most cases, this break coincided with what geologists in the past had picked from well cuttings and recorded on printed logs.

The Traverse Formation was excluded from this study because serious doubt exists as to whether or not it should be placed within the Traverse Group. This formation is thought to be more closely associated with the Antrim Shale paleoenvironment than the Traverse Group. Hake and Maebius (1938) state that rocks of the Traverse formation are not typical of the Traverse Group and in some places they are underlain by black carbonaceous shale stringers characteristic of the Antrim Shale. Evidence of weathering at the top of the Traverse Limestone in southwestern Michigan, according to Bishop (1940), further suggests a break between the Traverse Limestone and shale period of deposition, where

no such break occurs between the Antrim and Traverse Formation. Furthermore Fisher (1969), who studied the Traverse Formation, states that it is transitional between the Traverse Group and Antrim Shale and it is not part of the Traverse Group but a separate environmental unit unto itself.

The Bell Shale was not included in this study as it is not representative of the typical environment of the Traverse Group. It has definite boundaries, is almost 100 percent shale and is considered a separate, easily identifiable unit.

The main part of Traverse history is reflected in the interval between the Bell Shale and the Traverse Formation. Some of these subdivisions of the Traverse Limestone are not traceable over the whole Michigan Basin and the fact that this interval is represented by predominant carbonate deposition where small regressive fluctuations are responsible for some shale development indicates that the Traverse limestone was deposited within a single environmental period. Therefore, the inclusion of the Traverse Formation and the Bell Shale with different paleoenvironmental histories in this study would only confuse and hide the lithofacies trends which occurred during the main part of Traverse time.

Data for the lithofacies variations were determined from examination of well cuttings of sixty wells selected throughout the State. As the Traverse was a highly sought after hydrocarbon reservoir, no problem was encountered in finding adequate sample coverage for the State, though

.

sparse drilling precluded finding good information for Benzie and Grand Traverse counties, and locating wells with complete sections was somewhat of a problem. Samples were obtained from the Michigan State University and Michigan Geologic Survey sample libraries. The author chose one cable tool well per county thus providing a uniform scatter of the state. The advantages of cable tool samples over rotary are set forth by Krumbein and Sloss (1951). A preliminary examination of rotary samples revealed that at least 40-60 percent of each sample represented contamination from above. Therefore, much time was expended locating complete, cable-tool samples for the sake of accurate results.

Examination of cuttings employed the use of a reflectedlight binocular microscope possessing a magnification range of 7X to 40X. A gridded eyepiece was used to assist in determining percentages of constituents and to account for size variation of the grains. All acid testing of samples used cold hydrochloric acid diluted with distilled water to acid rates of 7:1. Litholofic determination resulted from guidelines discussed in "Examination of Well Cuttings" (Quarterly of the Colorado School of Mines, v. 46, no. 4, 1951).

Facies changes are lateral variations in a rock unit and the most effective way of portraying them are ty maps. An exact and detailed description of a stratigraphic unit is needed and then an expression of that data as a numerical value is necessary to permit the development of facies

Krumbein (1951) set forth the guidelines to be used maps. in a quantitative approach to facies portrayal and interpretation. These guidelines also apply to a gualitative approach, which the writer used in this study. Determination of limestone, dolomite, shale, quartz, argillaciousness of carbonates, chert, pyrite, and evaporite percentages were determined from well cuttings. Then a dolomite to limestone ratio, described also by Krumbein was used to determine the degrees of dolomitization and its possible In this case, because of the low number of wells cause. containing appreciable amounts of dolomite, the writer inverted this ratio to obtain a large value to assist in ease of contouring. In this case, the smaller the numerical value for this ratio the more dolomite is found in the well. The most fundamental lithologic ratio, described by Krumbein and Sloss (1951) is the clastic ratio. It is expressed by the formula:

Clastic Ratio = $\frac{\text{Conglomerate + Sandstone + Shale}}{\text{Limestone + Dolomite + Evaporite}}$ The writer used a slightly modified version of this formula necessitated by the lack of conglomerates, low amounts of evaporite and the argillaceous character of the Traverse limestone. The expression developed for use in this study is the formula: Clastic Ratio = $\frac{\text{Quartz+Shale+Clay Content of Carbonates}}{\text{Limestone+Dolomite}}$ To determine the degree of argillaceousness and obtain a value for the clay content of the carbonates, the author

ascertained what percentage of the carbonates were argillaceous and to what extent it was argillaceous and incorporated that value in the clastic ratio formula. The writer determined the percentage of carbonates that had an extremely high clay content. From these percentage values, a thickness of carbonates was obtained and this value was incorporated into the clastic ratio formula as clay content. The author also inverted this ratio for ease in contouring. This, in no way, effected the pattern of contouring. The author also included an evaporite percent map expressed by the formula:

Evaporite Percent = $\frac{\text{Evaporite}}{\text{Total Traverse Limestone}} \times 100.$ and a chert percent map expressed as:

Chert Percent = $\frac{\text{Chert}}{\text{Total Traverse Limestone}} \times 100.$

Such small amounts of quartz and pyrite were found that no meaningful data could be mapped. The chert and evaporite accumulations were expressed as percentages rather than ratios because it is the opinion of the author that the percentage expression represents a truer paleoenvironmental picture of the whole group rather than during merely the carbonate depositional history of the group.
STRUCTURAL INTERPRETATIONS OF MICHIGAN BASIN ON THE TOP OF THE TRAVERSE GROUP

The structure contour map shows a relief of almost 3500 feet from the center of the basin to the outcrop area in northern Michigan (Fig. 5). The basin area has a elevation of almost 2500 feet below sea level while the outcrop area in Cheboygan County is over 1000 feet above sea level.

The basin as pictured here has an almost symmetrical, circular shape with two centers. The primary center is located over Isabella, Midland, Gladwin and Clare counties (see Fig. 6 for location of counties). The secondary center is located over southern Iosco and northern Arenac Counties and the eastern Saginaw Bay Area. This double centered basinal feature was first noticed by Cohee (1947) then by Bloomer (1969) on the Rogers City-Dundee structure map and later by Fisher (1969).

The major northwest-southeast structural trends (Fig. 7) associated with the Michigan Basin are readily verified by the somewhat linear northwest-southeast shape of the primary and secondary centers. The primary center has many features within it which delineate this trend such as the large anticline in northeastern Isabella County (T16N-R3W) and a small anticline adjacent to it in Midland County (T15N-R1W). Other anticlinal features with this trend are located in southern Oscoda County (T26N-R2E), adjacent to it in western Ogemaw is a doubly plunging anticline with smaller, more complex

Figure 7. Major Structural Trends in the Michigan Basin (compiled by Prouty, 1971)

structures (T23N-R2E) associated with it and smaller structures crossing west Roscommon and east Missauke (T23N-R4W), Genesee and Lapeer Counties (T9N-R9E). The most noticable feature delineating these trends is the Howell Anticline in southern Michigan. The only structures which do not conform to these major trends are east-west flexures crossing northern Saginaw and Tuscola Counties and a very diagnostic fold in Osceola and Clare County. Prouty (1970) suggests that movement, accompanying basinal settling, may have developed such radial folds, indicated especially in the incompetent Antrim Shale and Salina evaporites.

The major structure in southern Michigan is the Howell Anticline. This large flexure extends from southeastern Livingston County northwestward through Shiawassee County. The writer attempted to contour this as an anticline without faulting it but the control points dictated a major fault to account for the large left-lateral, strike slip arrangement of contours. In a preliminary investigation of the Howell Anticline, this writer found many, extremely abnormally thick and thin sections of Traverse Group deposition suggesting a very complex isopach history with possible noncontemporaneous faulting. Newcombe (1933) showed evidence of a normal fault with 90 feet of throw. Cohee (1947) examined this same data and supports Newcombe's conclusion. Bloomer (1969) did not fault the center area of the Howell Anticline but his extremely tight contours suggest that a fault might be present. On the other hand,

Fisher (1969) was able to contour this area without faulting it and, therefore, the interpretation for this area seems open to argument. Secondary anticlinal and synclinal features adjacent to the Howell Anticline are probably associated with the anticline itself. The well known Lucas-Monroe Monocline shows plainly along the southwest side of the Howell Anticline.

It is interesting to compare the features present on the structure contour map to oil and gas fields discovered in Michigan to date (Fig. 6). Foremost of these, of course, is the Howell gas field which lies abreast of the Howell Anticline. The Mt. Pleasant, Porter, Chippewa, Leaton, Geneva, Rosebush, Wise, Vernon, Currie, and Clare City oil fields all lie within the large anticlinal feature located in eastern Isabella County (T16N-R3W). The Rose City, St. Helen, and West Branch fields fall within the doubly plunging anticline in Ogemaw County (T23N-R2E). The Beaver Creek field is located on an anticline in southwest Crawford County (T25N-R4W). In southern St. Clair County (T4N-R14E) many oil and gas fields could be associated with a flexure in that area. The Taymorth, Birch Run, Birch Bela, Arbela, Otisville and Marathon fields lie on an anticlinal fold in nothern Genesee and Lapeer Counties and southern Tuscola County (T9N-R9E). Likewise, another flexure occurs where the Rich and Fostoria fields are found (T10N-R11E). There are many other fields in Michigan such as the Jerome field in Midland County (T15N-R1W),

Martin field in Mecosta County (T15N-R8W), Freeman-Redding and Lake George fields in western Clare County (T18N-R6W) and all the fields in eastern Allegan County could be related to the structural folding indicated on the contour map. Many of these fields produce from other horizons than the Traverse Group, of course, but the structures associated with those producing intervals probably would be reflected in the Traverse Group as the main diastrophism occurred much later and would have affected most of the rocks below and above the Traverse. The large contour interval does preclude discerning most of the fields in Michigan such as the giant, Traverse producing Walker field in Ottawa and Kent Counties but it is interesting to see that even a 100 foot contour interval can delineate many structural trends.

ISOPACHOUS INTERPRETATION OF THE TRAVERSE GROUP

The Traverse Group isopach map does not portray the basin as symmetrical nor circular as the structure contour map though it does possess definite symmetry and roundness (Fig. 8).

The thickness interval or depocenter occurs in the Saginaw Bay Area where it has a maximum thickness of 875 feet. The Saginaw Bay area has been a depocenter intermittently from the Cambrian to the Devonian (Fisher, 1969). The group attains a thickness of 800 feet in parts of Gladwin, Iosco, Ogemaw, Roscommon, Oscoda, Crawford and Grand Traverse counties. North of the depocenter, the northern 1/3 of Michigan maintains a thickness of 700-800 feet. This broad area could only be isopached on a 10-foot interval from isopach line 775 and thicker instead of the 25foot interval used in the rest of the map. In areas where sharp thinning and thickening occur, some lines were omitted for sake of clarity. North of this broad, thick area the Group crops out reaching a thickness of over 700 feet in Charlevoix County to 650 feet in Alpena County. To the south of the depocenter the Traverse thins consistently to 100 feet in the southwest and southeast in the subsurface area.

The regular pattern of east to west isopach lines and the general thinning of the Traverse Group southward (except in the depocenter) likely indicates that this area was

inundated from a general northward direction. Hake and Maebius (1938) state that inundation of the Michigan area probably came from the north or northwest direction. They cite for evidence that the Traverse Group thins to the northeast and very rapidly to the southwest in addition to substantial thickening of the Bell Shale in the northwest direction in Manistee County.

One of the most noticable features on the map is the presence of isopached enclosed, thick and thin pockets which trend in a northwest to southeast and northeast to southwest directions. The depocenter is an example of the former. The structural trends of the Michigan Basin (Fig. 7) have this same alignment. These structural trends are thought to denote zones of weakness in the basement along which folding or sinking has taken place. Thinning over major anticlinal folds in the state, noticed by Cohee (1947) and as denoted by the isopach map here, shows that some movement was taking place along these major structures and in other areas of northern Michigan as early as Middle Devonian time. One of the most dramatic examples of Traverse thinning over a present-day major anticlinal trend is located over and associated with hydrocarbon production of the North and South Buckeye, North and South Billings and Bently fields in Gladwin County (T18N-R1W) extending northwestward to the Beaver Creek Field in the southwest corner of Crawford County (T25N-R4W), (Figs. 6 and 8). Thus two very definite thin areas of Traverse Group deposition occur over an existing major structural trend. Thickening between these two areas as well as small areas of thickening adjacent and between the small structural highs in Gladwin County, in addition to, the orientation of these highs, infer that the synclines are associated with en echelon type of folding at that time, in some places. Many petroleum fields, such as those mentioned in Gladwin and Crawford Counties exist along these anticlinal thins gleaned from the isopach map, though hydrocarbon accumulation may have attended a later episode of folding. Other such fields like the Walker field in east central Ottawa County (T6N-R12W) which produces out of the Traverse Group, and the many fields located in the northeast corner of Allegan County could also be related to the folding inferred from the isopach map in these areas Both structure and isopach maps were prepared prior to any reference to petroleum field locations. Some other present-day, major structural trends in the Michigan Basin are believed post-Traverse in origin. The isopachs show no thinning along the major structural feature associated with the Porter, Mr. Pleasant, Chippewa, Leaton, Rosebush, Vernon, Currie and Clare City oil and gas fields (Fig. 6) establishing that movement related to the origin of this structure occurred after Traverse deposition.

Post-Traverse movement is also indicated in southwest, south and southeast Michigan where sharp bends in isopach lines suggest the possibility of faulting along the strike of the structural trends of the Michigan Basin. These

hypothetical faults are indicated on the Isopach Map (Fig. 8) by solid lines. In northern Ottawa and Kent Counties, asymmetrical, sharp isopach bends suggest a right lateral, northeast to southwest trending fault (Figs. 6 and 8). Adjacent to this fault, south of it and parallel to it, is another area in central Ottawa and Kent Counties where isopach lines also suggest a fault of the same nature. Here though, the symmetry of the isopach lines might indicate folding instead, contemporaneous with Traverse deposition. Other areas where similar faulting can be postulated are Allegan County where the center of the fault is located approximately in T2N-R13W, in Branch and Jackson Counties, where a rightlateral northeast to southwest trending fault cuts through the center of the Albion-Scipio trend; and in Lapeer and St. Clair Counties, a northwest to southeast trending leftlateral fault is also postulated. These structures, inferred from 25-foot contours on the isopach map, are not apparent on the structure map probably because of the large, 100-foot contour interval. The alignment of the proposed faults on the isopach map in Allegan and Ottawa Counties tie in isolated oil fields, as indicated by solid lines (Fig. 6), and suggest a connection with the origin of linear producing In southern Michigan, the hypothesized fault trendfields. ing southwest to northeast through Branch and Jackson Counties crosses the linear Albion-Scipio field. Prouty (manuscript maps, 1976) has demonstrated that many of the oil and gas fields of Michigan produce where fractures intersect. He

indicates that it is in these cross-structures that dolomitization is apt to be most marked. It is suggested that this fault which intersects the Albion-Scipio field might be related to this cross-faulting or cross-structure. The coincidence of the suggested faults in Ottawa and Kent Counties and Allegan County in crossing present day major structural trends and tending to fall on isolated oil fields, such as the Walker field (which incidently produces out of the Traverse Group), suggest that these might also be crossstructures occurring after Traverse deposition and related to the origin of the major structural trends. The east to west fault postulated in northern Oceana County (T16N-R14W) could be related to post-Traverse movement along radial lines of weakness accompanying basinal settling or be a part of the overall fracture pattern that may exist in the Basin. The wedge-shaped thick area located in the extreme southwest corner of the State (Fig. 8) could be related to movements during Traverse time, but might be better explained with additional well control available.

In southeastern Michigan, along the trend of the present Howell Anticline in Livingston County, an abnormally thin area projects northward. A more detailed investigation into the gamma ray-neutron logs of the area revealed that it is a very complicated area isopachously, perhaps involving faulting. Kilbourne (1947) could not contour the interval between the base of the Sunbury Shale and the top of Dundee limestone without faulting it. Six gamma ray-neutron

logs listed in Appendix C revealed an abnormal thick area located approximately in the northeast guarter of section 18-T2N-R5E adjacent to it. This area should be approximately 325 to 350 feet thick but was found to vary anywhere from 350 to 650 feet thick. Using these six wells, in addition to other wells in close proximity, a broad area of thickening is evident, with a very small local area of abnormal thickening in the area of the six wells mentioned. Although isolated thicknesses of 650 feet occur within a very small area, the author limited this maximum isopach to 400 feet on the scale of Figure 8. Since the Howell Anticline is the subject of a current study, the writer did not carry his investigation into this area but based on Kilbourne (1947) conclusions, the complexity of the area isopachously with abnormal thickening and thinning in close juxtaposition, in addition to, a northward dragging appearance on the west side of the broad thick area directly adjacent to the abnormal thin area in T2N-4E, suggests the presence of a fault there. The author has taken the liberty of drawing a leftlateral fault (Fig. 8) tending northwest-southeast which falls in the same place as the present Howell Anticline which might explain some of the anomalies through the offset of isopachs. The origin of the before mentioned, very small, abnormal thick area in the northeast corner of 18-T2N-R58 can only be guessed at now. Perhaps a karst topography on the Dundee limestone surface can account for the thick sequence

or solution of the underlying Detroit River or Silurian evaporites produced caving of the overlying beds before Traverse time.

One last thing to be mentioned about the isopach map is the obvious difference between the position of the structural center (Fig. 5) and the depocenter as delineated by the isopach map. The center of the basin in Traverse time has been pushed from the Saginaw Bay area to central Michigan. The forces which caused this event must have occurred after Traverse time as the center of the basin was in all probability where Traverse deposition was thickest.

FACIES INTERPRETATION

The various facies maps were constructed to delineate any regional trends and their association to events and/or structural setting in and around the Michigan Basin.

Carbonate Facies

The limestone to dolomite ratio is used to discover lithofacies trends in the predominant carbonate deposition of the Traverse limestone. In this map the zero contour line indicates a hypothetical 100 percent dolomite and any number larger than this reflects more limestone relative to dolomite. No well was encountered where dolomite exceeded the limestone content though the dolomite in the well in Oceana County equaled the limestone content. In fact, any value over 40 represents a very small amount of dolomite and shaded areas represent 100 percent limestone.

The high amount of dolomite along the west side of Michigan reflected in this map (Fig. 9) has been noted by Gardener (1971). Others, such as Hake and Maebius (1938) indicate that various counties on the west side of Michigan contain a higher amount of dolomite than usual. The northsouth trend of this dolomitic zone suggests a possible relationship to the Wisconsin Arch (Another alternate hypothesis will be discussed later). Newhart (1976), in a study of the carbonate facies of the Middle Ordovician demonstrates a possible relationship to an evaporation-reflux dolomitization

model after Deffeyes (1965) or Dorag dolomitization model after Badiozamani (1973). Evidence points to exposure of the Middle Ordovician carbonates, at least along the flanks, of the Wisconsin Arch at that time to allow diagenetic alteration of the limestone. His dolomite percent map for the Trenton carbonates have the same north to south orientation in western Michigan as that of the Traverse. As regional dolomite content may indicate a shallow, near-shore environment (Prouty, 1946), the presence of a high amount of dolomite in the same north to south trend as Newhart's, suggests the possibility that the Wisconsin Arch might have been high enough to cause shallowing of the Traverse seas along it also.

Other areas of high dolomite content are also evident. These are in the northeastern to east thumb area and especially the southeast corner of Michigan. On the clastic ratio map (Fig. 13) the highest clastic area is located in the thumb area and southeastern Michigan indicating again that shallowing was occurring along the southeastern edge of the basin and may have some implication in regard to the proximity of the Findlay Arch. The dolomite trend in the east, though not as high as that in the southeast, does suggest that shallowing is taking place farther eastward in light of the high clastic content there.

The shaded areas on the map contain extremely little dolomite or none at all. The high limestone area in the

central part of the state is also relatively pure limestone with very little dolomite or clay content. A north-south trending barrier (which will be discussed later) has been postulated by several including Jodry (1954) and Hale (1941), in this general vicinity (Fig. 11). Reef buildup on this postulated barrier is evident in the Paris oil field (Jodry, 1954). If reefs developed along this barrier, it partly could have restricted sediments to the west side of Michigan in a logoonal environment of perhaps more saline waters, enhancing good limestone development to the east of it and accounting, in part, for the high dolomite content to the west. Comparison to the clastic ratio map (Fig. 13) shows some support for this theory as the clastic content drops off sharply in this area along a north-south line which could represent the barrier. However, it is possible that this area could be the westernmost extent of the clastics from the east. Other hypotheses concerning the various areas of high dolomite and high limestone will be discussed later. The isolated area of no dolomite in the area of the Chatham Sag might be caused by deepening, but would appear anomalous in regard to the high clastic ratio there.

Evaporite Facies

In the evaporite percent determination (Fig. 10) only a small amount was encountered and only a few wells contained enough to be meaningful. No Traverse limestone section contained over 2% of the evaporites. The wells plotted

indicate a high evaporite area extending north and south through western central Michigan, Jodry, Newcombe, Gardener and many others cite this as evidence of a north to south trending barrier (Fig. 11) in western central Michigan which restricted the waters to the west producing a lagoonal environment. In times of regression this area was restricted enough to have produced evaporites. Hale (1941), demonstrated that the western and southwestern area of Michigan represents a different basin of sedimentation from the rest of the state in lower Mississippian time and supported the idea of a structural or environmental barrier also, to limit the eastward extension of the Ellsworth Shale. Gardener (1974) also demonstrated a north to south barrier with biohermal and biostromal development in central western Michigan. The writer's area of high evaporite (Figs. 10 and 11) falls in part between the barrier proposed by Jodry and that proposed by Hale. The few wells showing evaporites tend to support the lagoon barrier model also inferred in clasticcarbonate facies distribution. It is not clear why intervening wells are so devoid of evaporites. Either the occurrence of evaporites is quite local, or the evaporite fraction in the samples may have been lost in drilling and/or washing The well in Jackson County is anomalously high, procedures. as it was in chert percentage-possibly for the same reason. The isopach map shows this area as probably shallower and therefore a more restricted environment.

Barrier Model

A simple model can be constructed to help explain the lithofacies trends denoted by the carbonate and clastic ratio and the evaporite percent map of this study (Fig. 12). In no way is this model intended to explain the whole situation or answer all questions concerning the barrier and the west Michigan lagoonal facies noted there by many writers.

As mentioned before, several writers have noted the existence of a structural barrier in western Michigan based on high dolomite and evaporite content there, in addition to, reef development along it and the lithofacies change from a lagoonal environment on the west side of the barrier to an open sea environment east of the barrier. Other evidence exists, such as gravity highs,¹ structural contoured highs and the change from chemically precipitated limestone on the east of the barrier to biohermal development to the west of it, which delineate this feature (Jodry, 1954). Reef development was noted by him in the Paris field which lies abreast of the barrier and by Gardener (1974) who indicated a linear biohermal and biostromal development along it also.

One well was anomalous to all other wells studied in this report. The Traverse limestone section in the Ottawa County well is 300 feet thick and contains about 15% pyrite

¹Jodry cites as additional evidence for his barrier a positive gravity anomaly as mapped by Loque (1954).

West

East

Shoreline to the West

with the other 85% consisting of reworked very clean, white coralline limestone. In no other well did the pyrite percent exceed .8% or consist of such predominent clean coralline limestone. Jodry, citing evidence for a hypothetical barrier in western Michigan, which separates lagoonal and deep water facies, states that east of the barrier dense chemical carbonates with minor development of coralline limestone or other fossil material predominates while west of the barrier, in the lagoonal facies, biohermal carbonates are abundant, as are limestones made up of reworked fossil material. The presence of such a large amount of pyrite supports a reducing environment interpretation for western Michigan and enhances the concept of a semi-protected lagoon where reefs and banks developed. It should be mentioned that high pyrite content can just be coincidental. Its presence in just one well is not necessarily sufficient evidence to definitely support a reducing environment. Using the evidence obtained from the well in Ottawa County as well as the linear trend evaporite high and the evaporite high in Manistee County the writer's proposed position of the barrier, denoted on the evaporite percent map as a solid line, would fall approximately in line with previous postulated axes (Fig. 11).

The presence of this barrier, with reef development existing abreast it could help explain the lithofacies trends present in this study. The restricted nature of the waters west of the barrier would develop a highly saline environment where diagenetic dolomitization might occur.

This would be especially enhanced when periods of slight regression lowered the water in the lagoonal area. The restricted nature of this lagoon could also have been augumented by the presence of the Wisconsin Arch to the west.

The evaporation evident in this western lagoonal area would develop highly saline waters. Dolomitization then would probably generate from an evaporative-refluxing model after Deffeyes (1965). Gardener (1974), on a common association of dolomite below anhydrite beds, also suggests this model for the origin of dolomite in the lagoonal area. On the east side of the barrier, normal salinity and deeper water existed in an open sea environment. The existence of the high limestone to dolomite area (shaded area in central Michigan on Fig. 9) east of this barrier infers that the limestone was deposited in an area of low salinity. The lack of clastics on the west side of Michigan indicates that the barrier was probably a physical barrier with respect to currents.

The local pockets of high limestone to dolomite content in the north and the general low dolomite content encountered there can be accounted for if a low normal sea water salinity is hypothesized. Gardener (1974), describes this northern area of Michigan as a shallow, subsiding marine carbonate shelf with biohermal development evident. Good limestone development like this will probably take place in normal ocean salinity. Another area of good limestone development occurs in the vicinity of the depocenter. Here rather normal

salinity would be expected, in this open, probably deep water, area. Laseme (1975), in a study of the Bayport Formation, demonstrates a relationship of limestone with depth. As the depocenter area was in all probability the lowest part of the basin at this time it is suggested that the low dolomite content found there is a result of a combination of deep water and low salinity.

Clastic Facies

The clastic ratio (Fig. 13) was used here to delineate source areas of clastics and their relationship to the Michigan Basin. A value of one signifies an equal amount of carbonates and clastics and values less than one signify that more clastic material is found than carbonate material. Values of 10 or greater correspond to very low amounts of clastics. The north to south trend of the contours indicates that a regional clastic invasion from east to northeast occurred with the highest clastic content found in the east and grading westward to predominantly non-clastic sediments in the western third of Michigan. The high clastic content extending from Saginaw Bay to the thumb area and southeastern Michigan in addition to an indication of high dolomite content (Fig. 9) further east of the Basin than this study covers, suggests shallowing further eastward. These same areas indicate a source for clastics out of the east. A rising eastern source area is definitely indicated by Assez (1969) in the Bedford-Berea sequence and by Chung (1973) in the

Coldwater Formation in early Mississippian time. It is possible that this movement was episodic and could have shown activity in Middle Devonian time also. Another alternative is that low, peripheral highlands existed to the east and southeast of the Michigan Basin partially or throughout Traverse limestone time. Perhaps the Findlay and Algonquin Arches were contributing some sediment. In the north, the Canadian Shield was low lying and contributed some clastics to the Basin also. Gardener's (1974) percent shale map focuses on a eastward source of the clastics. Ross (1957), in a quantitative study of the Traverse Group, demonstrated, in a clastic ratio map, that a current-layered, delta-type pattern indicated an entrance into the Saginaw Bay area of detrital material from a nearby orogenic source area to the northeast of the Basin. His sand to shale ratio indicated a more eastern source of clastics and that the Findlay Arch to the southeast stood slightly higher than other structures surrounding the Basin. The high clastic content near the Findlay Arch, together with a high dolomite content there, indicates a shallow water environment where reflux, secondary dolomites accompanies predominantly fine reworked clastics. The Findlay and Algonquin Arches both could have been responsible for part of the sediment incursion from the east. The Kankakee Arch to the southwest also may have been responsible for some clastic sediment. In Figure 13, the isoliths in southwest Michigan turn roughly westwart and northwestward subparallel to that arch, while a small dolomite content suggests deeper water.

Very little quartz was encountered in the Traverse limestone but that present would appear to indicate that at one time the grains were in dune phase or at least under short wind transport. The grains were very slightly frosted, fine to medium grained. The possibility does exist that some of the clastic sediment could have been wind transported but were deposited in the marine environment.

Chert Facies

The chert percent map (Fig. 14) shows that an area of high chert content is found in southern Michigan. Ross (1947) also found that most of the chert was restricted to the south and central area of the Michigan Basin. As the origin of chert is highly questionable, more detailed studies are needed to account for its widespread occurrence in the Traverse Group of Michigan, especially in the southern The bedded character of the chert, in addition to portion. a climate favorable to life indicates a possible organic origin for it. Perhaps it is a lithified diatomaceous or radiolarian ooze or lithified spiculites (Pettijohn 1957). However, no organic remains were observed. A second hypothesis is that this chert is post-Traverse in origin and is a result of replacement by ground water. The high evaporite content present in the Jackson County well (T4S-RlW), (Fig. 10), suggests that this area was probably slightly restricted at some time during Trayerse history. A third possibility may be found by comparison to Upper Cambrian and Middle

Ordovician cycles as observed by Prouty (1960) in Pennsylvania where chert accurs in that unit of the cycle having dark, organic carbonates, indicating a reducing environment. The writer noted high organic carbonates in this area. Such an environment may apply to both the high chert and evaporites content here.

ENVIRONMENTAL INTERPRETATION

At the beginning of Traverse time the seas advanced over the Michigan Basin from the north or northwest as pointed out earlier. The depocenter existed in the general Saginaw Bay area as the thickest accumulation of sediment is found there, and a shelf-like, thick area existed throughout the northern portion of the southern peninsula. Reef development built up over some parts of this area as evidenced by abundant fossil debris in some of the wells in the northwest and in outcrops in the northeast. This area was probably a shallow, subsiding marine carbonate shelf. Limestone was deposited as the sea deepened to the north and the environment was favorable to the preservation of life forms as evidenced in the samples. The high dolomite content in the west suggests shallowing and some restriction. These dolomite isoliths are subparallel and possibly related genetically with the Wisconsin Arch. An alternative hypothesis suggest that a barrier, probably structural, is indicated by the relatively high dolomite and evaporite content on the west side of it, developing a restricted lagoonal area there. Isopachous thickening and thinning areas denote that some very slight diastrophism was taking place in the Basin at this time forecasting either the Acadian Orogeny or the later, Appalachian Orogeny; or perhaps owing to differential basinal settling. A clastic facies map indicates that the primary source area existed to the northeast, east and southeast, whether from afar or the eastern periphery.

Some clastics may have been derived also from a structurally low relief Canadian Shield to the north. Dolomite trends support a shallowing along the eastern rim of the Basin, perhaps on the Findlay Arch. In the northern, deeper water areas, precipitation of limestone predominated. Though clastics were entering the eastern and northern areas, rather pure limestone relative to dolomite, was deposited in this deeper, lower saline water area.

ECONOMIC IMPLICATIONS

Most of the hydrocarbon production associated with the Traverse Group has been discovered in southwest Michigan in the general vicinity of Van Buren, Allegan, Ottawa and Kent Counties. Jodry believes that some of this production is related to reef buildup on anticlines or his hypothesized West Michigan Barrier. Davies (1952) in a study of southwest Michigan, on the other hand, strongly advanced a structural relationship only, based on the definite lack of reef lithology in samples from producing wells. In either case, Traverse production in the southwest is usually found in the uppermost layer of the Traverse limestone where porosity is developed as a result of secondary (epigenetic) dolomitization and is overlain by a chert layer. In other areas of the state, production is found at the top or deeper in the Traverse limestone but usually from dolomitized layers. Cohee (1947) states that the best production from the Traverse has been obtained at places where limestone has been dolomitized. It has already been pointed out that dolomitization is apt to be most marked where cross-structures are associated with structural closure.

It has been noted that most of the hydrocarbon production from the Traverse Group is found in southwest Michigan, but by no means all of it. Many fields are located in the central and marginal areas out of the high regional dolomite

area. Also since dolomitized production zones are often linear and found beneath layers of chert or shale and are associated with structures such as anticlines or inferred faults indicate that this dolomite is structural and epigenetic in origin rather than regional or diagenetic. Most authors concur that "structural" dolomitization stems from ascending ground waters up through fracture systems in association with damming affects produced by overlying impermeable layers such as shale or chert. If, in fact, the dolomite associated with the production zone in linear fields of the Traverse Group are structural, then this origin of structural dolomite could be postulated.

Though the Traverse Group was a much sought after target in the 1920's and 30's, other petroleum traps must exist. Further investigation along the cross-structures in Kent and southeast Montcalm County (Figs. 6 and 8) is war-The isopach map definitely indicates that faulting ranted. or folding has taken place along a northeast - southwest trend. The author suggests that the northeast extension of these structures be examined in more detail. The crossstructures located in Branch and Jackson Counties, which cross the Albion-Scipio field, suggest that a further search for hydrocarbons along such features be initiated not only in the Ordovician but in the Traverse Group above. Though it has been explored repeatedly, the Howell Anticline still remains one of the most attractive areas. The elusiveness of the big reservoir traps there can probably be associated with
a complicated cross-structure relationship. In Lapeer County, T7N-R11W, an anticlinal thin or fault is shown in Figure 8. Though no structure as delineated from the structure map is seen to coincide with this isopach anomaly, it still remains a choice explorative area. It should be mentioned here, that the lack of structure associated with the above and heretofore mentioned traps is directly a result of the large contour interval on the structure map. A structure map with such a large interval will only define very large structures such as the Howell Anticline or the Mt. Pleasant-Porter structure. It must also be pointed out that these structures denoted on the isopach map formed during or later than Traverse time may have been destroyed, enchanced or at least moved slightly during more intense movement, possibly in Mississippian time. Therefore, smaller and more complicated closure can only be obtained from a more detailed mapping on a smaller scale and area such as a single township and range block. Other folds worth looking at exists in (1) T5N-3W through T6N-3W and 5N-3W (Fig. 8), (2) T6N and T7N-8W, and (3) 25N and 26N-10W and 11W. These areas indicate thinning taking place during Traverse Group deposition and petroleum traps could be associated with these. An excellent possibility exists in T17N and 18N-R6 west, exactly on the boundary separating the two range and township blocks. Here a structural east to west trending anticline (Fig. 5) coincides with an isopach thin or fold in Traverse time. If the later diastrophism which caused the east to west fold, denoted

on the structure map, did not destroy the isopach thin or fold, which in all probability it did not, then this area holds future promise.

Though the major structural trends and the hydrocarbon accumulations associated with them have been discovered, new tools such as the gamma ray-neutron log and substantially more well control could enable more detailed mapping than ever before. A new innovation, which has possible potential as an exploration technique is ERTS-1 (LANDSAT) Imagery. By use of very high quality imagery, fracture trends (lineaments) can now be examined (Prouty, 1976). These and other techniques such as seismic velocity discrimination between dolomite and limestone can delineate the more subtle traps, thus reinstating the Traverse Group as a potential source for hydrocarbons. Production from fault zones not accompanied by anticlinal folds (Albion-Scipio Trend) is well recognized in Michigan. Thus techniques, as above, have considerable potential.

SUMMARY

It would appear that structural and isopach studies support the orientation of the known, major structural trends of the Michigan Basin. The various folds, the shape of the depocenter and structural center, doubly plunging anticlines and the Howell structure all coincide with the known structural trends of the Basin. Thinning over some of the anticlines suggest that some movement had taken place in the Basin as early as Traverse time; however, other major structures suggest post-Traverse structures was much stronger than the slight pulses taking place during Traverse time, whether the latter was caused by extrabasinal or intrabasinal stresses.

Sharp asymmetrical bending of isopach suggest lateral faulting in the southern, southwestern and southeastern parts of Michigan. These faults cross major structures where hydrocarbon production is well developed, such as the Albion-Scipio trend, suggesting a cross-structure relationship to these fields. A more pronounced dolomite development is believed to occur along areas where fractures meet, suggesting that hydrocarbon exploration along such cross-structures be instigated. Many of the present day oil and gas fields fall along the flexures diagnosed by the herein structure and isopach maps. Other possibilities for exploration are suggested along many of the linear isopach thins, but the future of Traverse Group production

probably lies in sophisticated exploration techniques combined with detailed mapping on a small areal scale. The Traverse history of the Howell Anticline area is a mystery and will remain so until a further, more detailed, investigation can be instigated, Such a study is, in fact, underway by another graduate student at Michigan State.

The coincidence of regional dolomite and clastic content in eastern Michigan indicates a source to the east. Possible origins of this source could be related to either low peripheral lands or a rising eastern source area as indicated by the later Bedford-Berea sequence. The Findlay Arch appeared to be slightly higher than most structures around the Basin and together with a low-lying Algonquin Arch probably contributed some sediment to the Basin. A high clastic and dolomite content to the southwest indicates some shallowing of the seas in the vicinity of the Kankakee Arch. The high clastic build up there is probably related to the proximity to the Arch while the high limestone content suggests deeper water. On the west side of the state a low clastic but high dolomite development suggests the presence of a restricted area separated from the deeper sea to the east by an hypothesized west Michigan barrier, or shallowing produced by a slightly high, broad Wisconsin Arch. A linear north to south trending evaporite belt appears to be largely restricted to the west of this western Michigan structural or environmental barrier. Evaporation would be expected to be more effective in evaporite precipitation in this shallow environment.

An area of slight restriction, near the Findlay Arch, is evidenced by a high evaporite content there. Perhaps the environment there was conducive to abundant organic life which fostered a high chert content in this general area.

RECOMMENDATIONS FOR FUTURE STUDY

- A more detailed examination of the abnormal thick and thin interval located over the present day Howell Anticline area would help to unravel this areas history as well as aid in the prediction of future Traverse petroleum here.
- 2) Detailed studies of existing Traverse fields would help discover the relationship of cross-structures to major structural trends aiding in future gas and oil exploration and add information on Basin fault patterns.
- 3) A closer look at the dolomite found in existing fields is warranted to ascertain its association to structure and its possibile origin.

Some interesting parallels can be drawn between Newhart's (1976) study of the carbonate facies of the Middle Ordovician and the Traverse Group. Both stratigraphic sections have the highest regional dolomite trend in a north to south direction, along western Michigan, indicating a close relationship to the Wisconsin Arch during the Ordovician and possibly the Devonian. Hydrocarbon production in both stratigraphic sections is primarily located in the south and southwest areas of Michigan. Newhart and earlier workers have postulated, for Ordovician fields, that magnesium rich waters ascended fracture systems and were dammed by an impervious seal above, the Utica Shale in this case.

The source of those dolomitizations fluids is believed to be artesion in nature from outcrops along the major positive elements flanking the Michigan Basin with high magnesium concentrations in the groundwater generated by its movement through older regional dolomite. This action probably took place after Devonian time as most of the structures are related to movement after this time. The writer speculates this same origin for Traverse structural dolomite, taking place probably at the same time with the shale-rich Traverse Formation and/or Antrim Shale providing the seal.

- 4) A closer examination of Traverse outcrops in eastern Wisconsin and well samples in western Michigan is needed to ascertain the origin of the regional dolomite found there. Is there a cause and effect relationship between this dolomite and the Wisconsin Arch or is it the result of a lagoonal environment?
- 5) One of the most perplexing problems associated with the Traverse Group is the widespread and common occurrence of chert, especially in the southern area of Michigan. The significance of this needs to be evaluated by more detailed study.

BIBLIOGRAPHY

BIBLIOGRAPHY

- Addison, C. C., 1940, Buckeye Oil Field of Gladwin: Am. Assoc. Petroleum Geologists Bull., v. 24, pp. 1961-1964.
- Annual Statistical Summary 22, Michigan's Oil and Gas Fields, 1974: Michigan Department of Natural Resources, Geological Survey Division.
- Asseez, L. O., 1969, Paleogeography of Lower Mississippian Rocks of the Michigan Basin: Am. Assoc. Petroleum Geologist Bull., v. 53, pp. 127-135.
- Badiozamani, K., 1973, The Dorag Dolomitization Model Application to the Middle Ordovician of Wisconsin: Journal of Sedimentary Petrology, v. 43, no. 4, pp. 965-984.
- Bishop, M. S., 1940, Isopachous Studies of the Ellsworth to Traverse Limestone Section of Southwest Michigan: Am. Assoc. Petroleum Geologist Bull., v. 24, pp. 2150-2162.
- Bloomer, A. T., 1969, A Regional Study of the Middle Devonian Dundee Dolomites in the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Chung, P. K., 1973, Mississippian Coldwater Formation of the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Cohee, G. V., 1947, Lithology and Thickness of the Traverse Group in the Michigan Basin: U. S. Geological Survey Preliminary Chart 28, Oil and Gas Investigation Series.
- _____, and Landes, K. K., 1958, Oil in the Michigan Basin in Habitat of Oil: Am. Assoc. of Petroleum Geology Symposium, pp. 473-493.
- Davis, D., 1952, Oil Production from the Traverse Group of Southwest Michigan: Am. Assoc. of Petroleum Geologist Bull., v. 36, pp. 1642-1644.
- Deffeyes, K. S., 1965, Dolomitization of Recent and Plio-Pleistocene Sediments by Marine Evaporite Waters on Bonaire, Netherlands Antilles: Soc. of Economic Paleontologists and Mineralogists, Special Publication #13, pp. 71-88.

- Dice, B. B., 1955, A Quantitative Study of Composite Devonian Lithofacies in the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Eddy, G. E., 1933, A Study of Insoluable Residues of the Lower Traverse, Bell and Upper Dundee Formations of Michigan: Michigan Academy of Science Papers, v. 18, pp. 345-361.
- Ehlers, G. M. and Kesling, R. V., 1970, Devonian Strata of Alpena and Presque Isle Counties, Michigan: Michigan Basin Society Guidebook.
- Ells, G. D., 1969, Architecture of the Michigan Basin: Mich. Basin Geol. Soc. Annual Field Excursion, pp. 60-88.
- Fisher, J. C., 1969, The Distribution and Character of the Traverse Formation of Michigan: Unpublished Master's Thesis, Michigan State University.

_____, 1969, Early Paleozoic History of the Michigan Basin: Mich. Basin. Geol. Soc. Annual Field Excursion, pp. 89-95.

- Gardener, W. C., 1974, Middle Devonian Stratigraphy and Depositional Environment in the Michigan Basin: Mich. Basin Geol. Soc. Special Papers, No. 1, pp. 43-48.
- Grabau, A. W., 1902, Stratigraphy of the Traverse Group of Michigan: Geol. Survey of Mich. State Board (1901), pp. 191-196.
- Gustafson, W., 1960, Structure and Stratigraphy of the Traverse Group in the Lansing Area of Michigan: Unpublished Master's Thesis, Michigan State University.
- Hake, B. F. and Maebius, J. B., 1938, Lithology of the Traverse Group of Central Michigan: Mich. Acad. of Sci. Papers, v. 23, pp. 447-461.
- Hale, L., 1941, Study of Sedimentation and Stratigraphy of Lower Mississippian in Western Michigan: Am. Assoc. Petroleum Geologist Bull., v. 25, pp. 713-723.
- Hinze, W. J. and Merritt, D. W., 1969, Basement Rocks of the Southern Peninsula of Michigan: Mich. Basin Geol. Soc. Annual Field Excursion, pp. 28-59.
- Jodry, R. L., 1954, Reflection of Possible Deep Structures by Traverse Group Facies Changes in Western Michigan: Am. Assoc. Petroleum Geologist Bull., v. 41, pp. 2677-2694.

- Kesling, R. V., Segal, R. T. and Sorensen, H. O., 1974, Devonian Strata of Emmet and Charlevoix Counties, Michigan: Papers on Paleontology #7, University of Michigan.
- Kilbourne, D. C., 1947, The Origin and Development of the Howell Anticline in Michigan: Unpublished Master's Thesis, Michigan State University.
- Kirkham, V. R., 1932, Unconformity at the Top of the Traverse Formation in Michigan: Geol. Soc. of America Bull. Abs., v. 43, pp. 136-137.
- Krumbein, W. C., 1952, Lithofacies Maps and Regional Sedimentary and Stratigraphic Analysis: Am. Assoc. Petroleum Geologists Bull., v. 32, pp. 1909-1920.

_____, and Sloss, G. F., 1951, Stratigraphy and Sedimentation: pp. 230-251.

- Landes, K. K., 1944, Porter Oil Field, Midland County, Michigan: Am. Assoc. Petroleum Geologist Bull., v. 28, pp. 173-196.
- Lasemi, Y., 1975, Subsurface Geology and Stratigraphic Analysis of the Bayport Formation in the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Lockett, J. R., 1947, Development of Structures in Basin Areas of Northeastern United States: Am. Assoc. Petroleum Geologists Bull., v. 31, pp. 429-446.
- Loque, L. L., 1954, Gravity Anomalies of Texas, Oklahoma and the United States: Oil and Gas Journal, v. 52, pp. 132-135.
- Newcombe, R. B., 1933, Oil and Gas Fields of Michigan: Mich. Geol. Survey Pub. 38, G. Ser. 32.
- Newhart, R. E., 1976, Carbonate Facies of the Middle Ordovician of the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Newman, E. A., 1937, Geology of Ogemaw County, Michigan: Mich. Geol. Survey Prog. Report #2.
- Pettijohn, F. J., 1957, Sedimentary Rocks: 2nd ed. New York, Harper and Row Pub. Co., 718 pp.
- Pirtle, G. W., 1932, Michigan Structural Basin and Its Relationship to Surrounding Areas: Am. Assoc. Petroleum Geologists Bull., v. 16, pp. 145-152.

- Pohl, E. R., 1930, The Middle Devonian Traverse Group of Rocks in Michigan, A Summary of Existing Knowledge: Proc. U. S. Nat. Mus., v. 76, Art. #14, pp. 1-34.
- Pringle, G. H., 1937, Geology of Arenac County, Michigan: Geol. Survey Prog. Report #4.
- Prouty, C. E., 1946, Lower Middle Ordovician of Southwest Virginia and Northeast Tennessee: Am. Assoc. of Petroleum Geologists Bull., v. 30, pp. 1140-1191.
- _____, et al., 1960, Lower Paleozoic Carbonate Rocks in Maryland and Pennsylvania: The John Hopkins Univ., Studies in Geology, Guidebook, No. 3, 101 p.
- _____, 1970, Michigan Basin Paleozoic Evolutionary Development: Geol. Soc. Amer. Abst. with Programs, v. 2 (7), pp. 657-658.
- , 1976, Oral Communication.
- Riggs, C. H., 1938, Geology of Allegan County, Michigan: Mich. Geol. Survey Prog. Report #4.
- Ross, R. M., 1957, A Quantitative Sedimentary Analysis of the Middle Devonian Traverse Group in the Michigan Basin: Unpublished Master's Thesis, Michigan State University.
- Smith, R. A., 1912, The Occurrence of Oil and Gas in Michigan: Mich. Geol. and Biol. Survey, Pub. #14, pp. 19-32.
- Stonehouse, H. B., 1969, The Precambrian Around and Under the Michigan Basin: Mich. Basin. Geol. Soc. Annual Field Excursion, pp. 15-27.
- Warthin A. S., and Cooper, G. A., 1943, Traverse Rocks of Thunder Bay Region, Michigan: Am. Assoc. Petroleum Geologists Bull., v. 27, pp. 571-595.

APPENDICES

APPENDIX A

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
ALCONA					
22-26N-9E 27-27N-6E 20-27N-8E 23-27N-9E 30-28N-5E 10-26N-7E	Atchinson #1 Quant #1 St. Haves #1 York #1 Cranberry Ranch #1 Kohlman #1	721 870.5 900 760 922 829	858 1283 1037 630 1220 1252	1595 2017 1780 1358 1990 1952	737 734 743 728 770 700
ALLEGAN					
17-3N-11W 21-3N-11W 9-3N-15W 28-3N-15W 5-4N 11W 15-2N-13W 3-4N-13W 28-2N-13W	H. Edwards #2 Glusic Edwards #1 H. Veldhof #1 K. Bushee #1 H. Culp #1 J. & M. Rozeboom #1 Loew G-14 Perrigo M.F.G. Co. #1	800.5 722.4 712.9 709.5 814.6 745.9 722 618	1687 1731 1413 1377 1798 1397 1580 1209	1985 2048 1628 1595 2082 1694 1903 1496	298 317 215 218 284 297 323 287
ALPENA					
9-29N-5E	Turtle Lake Club #1	822	685	1425	740
ANTRIM					
19-32N-8W 27-29N-6W 35-31N-6W 31-31N-5W	Wolgamott #1 Elkins #1-27 Artie Morris Unit #1-35 L. H. White #1	868 1308 1027 892	467 1687 962 858	1182 2476 1747 1639	715 789 785 781
ARENAC					
11-18N-4E 5-19N-3E 7-19N-4E 1-19N-6E 22-19N-4E	Grashaw #1-A St. Adams #1-A Harry B. Weber #1 Chartier #1 Wood et al #2	625 767.5 783.0 589.0 723	1857 2138 2025 2105 1950	2689 2958 2853 2908 2786	832 820 828 803 836
BARRY					
23-1N-7W 30-1N-7W 17-1N-8W	E. Farley #1 Herrington #1 M. Puttman #1	848 897 978.8	1656 1690 1788	1971 2010 2094	315 320 306

APPENDIX A

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
BARRY					
22-3N-7W 20-4N-7W 3-4N-8W 20-4N-8W 34-4N-10W 34-2N-9W 8-3N-9W	Carl Bahs #1 Schiably #1 G. McClellon #1 J. M. Allerding #1 J. Janose #1 Hibbard #1 Kidder #1	896 868.6 868.8 850.2 781 968 796	1985 2094 2075 1983 1788 1765 1774	2336 2443 2437 2335 2122 2075 2097	351 349 362 352 334 310 323
BAY					
l-14N-4E 2-16N-3E 29-18N-3E 10-15N-3E	Schweitzer #5 Pomaville #1-2 A. B. McTincha #1 Edgar D. Solmtt #1	589 644 738 628	2009 2368 2227 2344	2706 3135 3028 3069	697 767 801 725
BERRIEN					
1-6S-19W 10-6S-17W 34-3S-17W 8-8S-20W	Schlutt #1-1 Thalmann #1 Warnan #1 Warren #1	645.5 793 663 645	578 747 850 357	672 848 474 467	94 101 124 110
BENZIE					
27-26N-13W 29-25N-15W 12-25N-14W	State-Inland #1-27 Mead #1-29 Hazel Von Aken #1	874 707 858	1302 822 1298	2094 1580 2086	792 758 788
BRANCH					
36-6S-5W 29-6S-8W 4-5S-6W	Paul Swain Unit #l Juday #l Pileri #l	1050 862 969	1142 932 1260	1337 1150 1493	195 218 233
CALHOUN					
12-1S-5W 27-1S-5W 7-2S-4W 12-2S-5W 14-3S-4W 26-3S-7W	Lena Lake Comm. #1 Cashman #1 Cruse #1 H. Fountain #1 Radee #1 P. Case #1	971.3 951 918 912 1014 933	1836 1710 1617 1596 1535	2123 2003 1894 1880 1781	287 293 277 284 246 260

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
CALHOUN		<u></u>			
1-4S-4W 26-2S-7W 29-1S-7W	Rosenaw #1-A J. Beeson #1 Wm. S. Fruin #1	1021 892 843	1500 1435 1520	1730 1712 1810	230 277 290
CASS					
31-5S-13W 14-6S-14W 26-7S-15W 15-8S-15W 5-8S-16W	McKenzie #1 F. Kimmick #1 Kaminski #1 Good #1 N. Beebe #1	913.7 911.8 835 791 746	1032 988 650 600 550	1192 1146 798 700 585	160 158 148 100 35
CHARLEVOIX					
7-32N-4W 15032N-6W 7-32N-4W	Romaniak #1 A. J. Valler #1 T. Romaniak #1	833.2 837 833	262 363 260	1003 1146 1010	741 783 750
CLARE					
6-17N-4W 21-20N-4W 8-20N-5W 21-19N-6W 1-18N-5W 20-18N-5W	McKay #1 Yake #1 Amstutz #1 St. Redding #1 Kirkpatrick #1 D. W. Frackelton #A-1	956 1211 1099 1047 1275 1138	3195 3280 3027 3175 3508 3340	3888 4033 3775 3860 4195 4003	693 753 748 685 687 663
CLINTON					
13-7N-2W 26-8N-2W 35-8N-4W 14-5N-3W 11-7N-2W	Henning #l N. R. Irrer #l F. Watts #l Errin & Arlin Zischke #l W. L. Skutt #l	754 716 738.5 825 765	2370 2373 2510 2388 2400	2796 2820 2928 2771 2790	426 447 418 383 390
CRAWFORD					
6-25N-3W 20-26N-2W 8-28N-4W 32-25N-1W 28-27N-1W 17-25N-4W	St. Beaver Crk. #1 McClintic #1 State Frederic "B" 1-8 R. E. Sheppards #1 Martindale #1 St. Beaver Creek #A-3	1262 1186 1276 1200 1121 1241	2414 2284 1865 2202 2008 2245	3203 3090 2648 2972 2770 2935	789 806 783 770 762 690

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
EATON					
2-1N-6W 18-2N-5W 24-2N-4W 5-3N-4W	Palmer-Miller Comm. #1 Cline & LaMont #1 C. G. Woodworth #1 Woodworth E1	934.7 910 901 862	1850 1931 2058 2128	2170 2250 2385 2503	320 319 327 375
GENESEE					
29-6N-7E 12-6N-8E 4-9N-8E 11-6N-7E	E. A. Everson #1 E. J. Coffee #1 Hutchinson #1 G. Gardam #1	850 915 827 878	1712 1732 1945 1777	2116 2148 2460 2172	404 416 515 395
GLADWIN					
19-17N-2W 6-18N-1W 19-18N-1W 36-18N-1W 4-18N-2W 10-18N-2W 14-18N-2W 30-19N-2W 15-18N-1E 16-20N-1E 3-18N-1W 15-18N-1W 22-18N-1W 19-17N-2E 12-19N-1W	<pre>St. Beaverton #A-2 Briggs #1 Bonninghausen #1 McMahon #1 Mills #1 M. H. Cady #1 Ogg #1 Watson #1 Heil #1 St. Clement #A-1 Baum #1 (P.L.) Johnson et al #1 (P.L.) State C-3 (P.L.) State #A-8 State - Gladwin #1</pre>	748 783 745 728.5 842 888 827 887 713.7 817 769 749 737 724 766	3116 2988 2968 2708 3083 3108 3033 3058 2750 2723 2850 2810 2755 2688 2654	3846 3763 3744 3487 3818 3829 3765 3787 3543 3585 3575 3521 3445 3429	730 775 776 779 735 721 732 729 793 815 765 765 766 757 775
GRAND TRAVE	RSE				
9-25N-10W 17-25N-11W 28-26N-11W 32-27N-12W 22-27N-9W	Mos et al #1-9 Fos #1-17 Burroughs et al #1-28 D. & M. Pattinson #1 Anstett et al #1	1041 1055 974 872 988	1743 1766 1490 1194 1660	2542 2520 2255 1993 2430	799 754 765 799 770

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
GRATIOT					
36-11N-3W 23-10N-2W 13-11N-3W 2-11N-1W 5-10N-4W	J. Davidson #2 Awdrey #1 Georig #1 N. Wenzel #1 Shuttlewarth #1	766 705 768.7 696 796.5	2670 2570 2685 2672 2726	3182 3073 3258 3238 3250	512 503 573 566 524
HILLSDALE					
3-5S-2W 19-5S-2W 21-8S-1W 29-7S-3W 16-7S-2W	Campenhaut #1 D. Finegan #1 Wehrle #1 Israel Grace #1 U. & M. Scharp #1	1077.2 1118 893 1053 1121	1438 1382 822 1055 1222	1645 1594 972 1235 1402	207 212 150 180 180
HURON					
10-15N-10E 36-16N-12E 36-17N-10E 21-18N-13E 27-16N-11E	Szidir #1 Scott #1 Schulze #1 P. & M. Wisiewski A. Keller #1	638.7 750 625.5 680 656	2000 1925 2072 1605 2050	2756 2620 2828 2301 2806	756 695 756 696 756
INGHAM					
16-2N-2W 13-1N-2E 15-2N-1W 12-2N-E 20-1N-2W 13-2N-1E 22-4N-1W	F. W. Harkness #1 Dave Basore #1 Laston #1 Scripter #1 Camp Ingham Inc. #1 F. C. Anderson #1 Wm. Kirkpatrick	902 963 924 918 910 912 852	2114 1425 2175 2178 1972 2148 2325	2427 1717 2493 2482 2250 2462 2651	313 292 318 304 278 314 326
IONIA					
4-6N-8W 34-7N-8W 21-7N-5W 15-5N-7W 11-6N-6W	C. E. Burtle #1 Samuel Len Cate #1 Albright #1 Weldman #1 C. & C. Smith #1	707 765.1 763.6 857 784	2170 2200 2430 2184 2330	2588 2622 2868 2565 2752	418 422 438 381 422

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
IOSCO					
11-21N-5E 29-21N-5E 20-21N-6E 28-23N-5E 3-22N-5E	Provoast #1 Erickson #1 Nat. Gyp. Co. #1 Mott #1 Stork #1	730.2 763 646.5 863.5 818	2200 2356 2310 2355 2315	3008 3173 3133 3140 3084	808 817 823 785 769
ISABELLA					
17-14N-5W 1-14N-6W 25-14N-6W 23-15N-6W 30-15N-6W 17-16N-3W 26-16N-5W 22-13N-4W 18-15N-4W	Couser & Wardrop #1 Cook #A-1 Pendell #1 Woodin & Forbes #1 Latham #1 Northwise Unit #2-W O'Rourke #1 Terry Childs et. al. #1- House #1	878 876.5 984 927.5 1033 794 896.5 -22 798.6 875	3017 3000 3105 3070 3150 2975 3230 3011 3182	3650 3631 3723 3706 3776 3680 3900 3619 3797	633 631 636 626 705 670 608 615
JACKSON					
14-1S-3W 36-1S-3W 27-2S-2W 27-2S-3W 32-3S-1W 5-4S-2W 28-4S-3W 26-3S-1E 18-4S-1W	Schultz-Cannel Comm #1 Campbell #1 N. H. Bonn #1 MacDonald Lett #1 H. Gumper #1 Barnes #1 Owen #1 G. Boone #1 Ray Ried #1	933.7 1019.5 927 999 983.1 1116 1098 955.9 1040	1820 1908 1716 1690 1547 1517 1452 1577 1483	2078 2177 1972 1948 1740 1737 1682 1795 1685	258 269 256 258 193 220 230 218 202
KALAMAZOO					
15-1S-12W 31-3S-10W 27-2S-9W	Menasha Wooden Ware #1 R. Hayward #1 J. & L. Smith GG-1	780 868 986	1345 1160 1442	1597 1408 1710	252 248 268
KALKASKA					
10-25N-8W 11-28N-6W 21-25N-5W 28-28N-7W 22-27N-6W 27-25N-8W	St. Springfield #1 St. Cold Springs #1 St. Garfield #1-21 Sherwood #1-28 State-Excelsion #1-22 Consumers Power Co. #1	1123 1271 1231 1007 1178 1017	2345 1838 2431 1535 1958 2294	3115 2634 3180 2328 2753 3013	770 796 749 793 795 719

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
KENT					
3-5N-9W 12-6N-9W 35-8N-9W 9-10N-11W 6-8N-9W 35-9N-10W 4-8N-9W	Alto L. P. G. #3 L. P. G. #4 Francisco #1 Free #1 J. Len Haven #1 B. E. Goss F. Donovan #1	811 638.7 859.6 907 857 936 877	2060 1987 2397 2440 2422 2488 2460	2438 2388 2830 2900 2858 2917 2897	378 401 433 460 436 429 1583
LAKE					
30-20N-12W 17-19N-11W 20-18N-12W	St. Newkirk #1 Ellsworth Twp. #1 J. Gramalna #1	976 1101 872	2378 2674 2500	3088 3347 3135	710 673 635
LAPEER					
17-6N-12E 6-6N-12E 14-7N-11E 10-8N-9E 6-8N-10E 1-9N-10E 21-9N-11E 17-10N-10E 28-10N-10E 22-9N-10E	J. Braidwood #1 E. Ulatowski #1 Bagley #1 I. Thom #GG-1 St. Mayfield #1 A. R. Mathews #1 Wilder #1 Lyon #1 H. Nowlin #1 Louis Bodwin #1	913 842 926 790.2 838.6 797 824.4 827.5 780 837	1472 1468 1709 1889 1911 1932 1847 1943 1887 1905	1815 1868 2080 2360 2375 2428 2320 2458 2388 2370	343 400 371 471 464 496 473 515 501 465
LENAWEE					
14-5S-4E 25-6S-2E 4-8S-1E 24-6S-3E	Allen #l Drewyer #l Charles Beal #3 L. Oenius #l	859 860 858 800	760 832 766 780	975 1040 910 980	215 208 144 200
LIVINGSTON					
35-3N-4E 27-4N-3E 14-1N-6E 13-3N-5E 25-3N-5E 25-2N-5E	McPherson #1 M. & D. Hendryx #1 Manuel Lopez #1 C. P. Cornell #1-13 E. John Hills #1 Bauer #1	941.5 921 915 943 993 964	492 1013 488 852 953 550	842 1296 782 1213 1325 945	350 283 294 361 372 395

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
MACOMB					
15-3N-14E 10-3N-14E 29-4N-13E 36-4N-14E 36-5N-12E 8-5N-13E	Wayne Moore #1 Henning St. #1 Payne & Gray #1 Seifert #1 Lamphar #1 Ward #1	591 598 657 619 757 777	555 557 908 658 1050 1135	786 802 1162 889 1338 1437	231 245 254 231 288 302
MANISTEE					
13-21N-17W 8-24N-13W 10-24N-14W 8-22N-15W 5-22N-13W 23-23N-14W	Gambs #1 Northrup #1 Con. Paw. Co. #1 McCarthy #1-8 State-Dickson #1-5 Nuikklala	606 896 758 765 1080 765	918 1472 1130 1185 1923 1420	1600 2240 1891 1930 2627 2125	682 768 761 745 704 705
MASON					
9-17N-15W 7-18N-17W 14-18N-17W 23-20N-15W 19-19N-17W 17-18N-16W	Healey #1 Disposal Well #40 Jacobson #3 State-Cartier #1-23 Peterson #3-19 Woodward #1	706 649 694 719 661 652	1832 1426 1588 1791 1384 1644	2478 2052 2218 2494 2042 2270	646 626 630 703 658 626
MECOSTA					
2-13N-10W 8-13N-10W 36-14N-8W 3-15N-7W 23-15N-8W 5-15N-9W 17-15N-8W	Whipple #1 Finch #1 Delong #1 Phillips #1 Darling #1 Flanders & Wilkins #1 F. D. Helmer #1	968 929 1025 1015.2 1056.3 958 1046	2794 2705 3068 3162 3115 2831 3164	3353 3245 3658 3827 3750 3435 3774	559 540 590 665 635 604 610
MIDLAND					
6-15N-1W 15-15N-2W 21-13N-1W 13-15N-1W 10-16N-1E 1-16N-2E 12-15N-2E	D. Segerlund #1 Middleton et. al. #1 Emery #1 C. & O. #2 Rider #1 Askevich #1 Draves et. al. #1-12	656 678.5 683.7 645 692 669 666	2950 3023 2745 2958 2990 2580 2898	3667 3718 3363 3683 3769 3395 3648	717 695 618 725 779 815 750

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
MISSAUKEE					
31-21N-6W 32-22N-7W 10-23N-6W 25-22N-7W 35-22N-6W 35-22N-6W	Mulder #1 Stroh & McBain #2 State-West Branch #1 Jager #1-25 Alderman & McCoy #2 Buning #1	1190 1194 1195 1184 1159 1170	3168 3213 2678 3125 3080 3120	3907 3952 3452 3867 3830 3830	739 739 774 742 750 710
MONTCALM					
9-10N-7W 26-10N-7W 30-11N-8W 5-11N-9W 27-12N-6W 28-9N-6W 14-11N-9W	Neilson #1 Goodnaugh #1 Christensen #1 Race #1 H. Graham #1 Foncett #1-28 Wm. R. Spence #1	890.5 843 928 908.5 943 823 932	2767 2678 2753 2741 2920 2630 2781	3266 3170 3258 3245 3452 3107 3260	499 492 505 504 532 477 479
MONTMORENCY					
5-30N-2E 21-31N-4E 10-30N-3E <u>MUSKEGON</u>	L. Rosen et. al. State Briley #1-5 C. A. Gain #1-21 W. & I. Miller #1	1216 784 928	1124 492 870	1866 1230 1580	742 738 710
21-9W-14W 15-10N-17W 8-12N-16W 14-11N-17W 15-11N-15W	Wunsch #1 McMahn #1 Wm. Eilers #1 A. Wickstrom #1 W. J. Smith & C. Hammil	673 620.5 660 630 #1 686	1845 1625 1761 1705 1887	2248 2074 2257 2182 2322	403 449 496 477 435
NEWAYGO					
18-11N-12W 15-11N-13W 26-12N-14W 26-13N-14W 30-16N-11W 20-15N-14W 5-12N-12W	Nyhof & Dobbin #1 Seaman #1 Sheridan Twp. #1 Siersema #1 R. Camfield #1 Walter-Rosilea Thompson Sawyer #1	810.4 803 738 890.3 1087 n #1 821 806	2343 2256 2123 2283 2858 2083 2350	2805 2745 2612 2824 3467 2648 2863	462 489 489 541 609 565 513

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
OAKLAND					
30-2N-8E 35-4N-8E 11-4N-11E 18-5N-10E 21-1N-7E	Beauthien #1 Huntoon #1 Eldridge #1 E. Lorence #1 W. Smith #1	963 1033 972.8 1063 936	798 1323 1276 1630 445	1105 1648 1574 1990 735	307 325 298 360 290
OCEANA					
7-13N-16W 29-15N-17W 11-16N-16W 15-16N-16W 15-16N-17W 12-13N-17W 27-14N-17W	R. & L. Mund #1 Gray #1 Skidmore #1 Hill #1 J. N. Griener #1 Huls #1 Spooner #1	780 903 976 885 650.5 706 943	1929 1930 1933 1841 1572 1830 2038	2434 2495 2515 2455 2130 2324 2541	505 565 582 614 558 494 503
OGEMAW					
4-24N-3E 35-22N-3E 28-24N-2E 10-21N-1E 29-23N-3E	St. Rose #1 F. Buckingham #4 State Foster #1 E. A. Lehman #1 Morrison #1	1232.3 861 1457 936 934	2212 1667 2155 2472 1880	2998 2487 2952 3313 2669	786 820 797 841 789
OSCEOLA					
29-17N-7W 5-17N-10W 32-18N-7W 35-19N-8W 26-19N-10W 5-20N-7W 17-20N-8W 14-20N-9W 19-20N-10W 31-17N-9W 10-18N-9W	Rountree #1 LR-82-3 Wimmer #1 Yarhouse #1 Lindell #1 Matt Found. #1 Kleinhesselink #1 Johnson-Thomas #1 Lindberg #1 Con. Paw. Co. #1 State-Cedar #B-1	1115.5 1087 1056.5 1213.6 1197 1213 1304.5 1586.1 1168.5 1117 1332	3236 2830 3218 3350 3005 3243 3343 3578 2942 3024 3276	3924 3456 3897 4046 3690 3988 4068 4303 3657 3648 3944	688 626 696 685 745 725 725 715 624 668
OSCODA					
12-25N-2E 16-28N-1E 19-25N-3E	U.S.A. #1-12 Garland #1 U.S.A. #1	1133 1230 1241	2382 1991 2220	3180 2793 3000	798 802 780

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
OTSEGO					
22-30N-2W 27-31N-1W 2-29N-4W 34-30N-3W	Kenney #1-22 Marstrand #1-27 L. J. Savage et. al. #2-2 AuSable #1	1308 1027 1309 1285	1611 934 1530 1575	2363 1678 2311 2333	752 744 781 758
OTTAWA					
32-6N-14W 34-7N-13W 21-8N-14W 19-7N-15W 21-6N-14W	Wyngarden #1 Fenske #4-A Heckel St. #1 Wm. A. Berg #1 Ponstantine #1	668 645 651.4 639 652	1578 1748 1790 1534 1590	1955 2134 2194 1947 1954	377 386 404 413 364
ROSCOMMON					
8-22N-4W 17-22N-4W 23-24N-1W 28-22N-2W 19-21N-3W	Hogan #6 Hogan #5 U.S.A. #B-1 Trustees of Estate of L. Meldrum, deceased State-Roscommon FG-4	1137 1142.4 1168 1180 1128	2884 2880 2000 2928 3137	3685 3653 2797 3722 3908	801 773 797 794 771
2-23N-2W	Salling Hansen Co. Tr. #1	1166	2578	3345	767
SAGINAW					
5-12N-6E 33-11N-3E 5-11N-3E	L. Elbers #1 R. Gage Coal Co. #1 Rockwell #1	595.5 587 603	2478 2382 2515	3113 2912 3058	635 530 543
ST. CLAIR					
11-3N-16E 2-4N-15E 4-5N-15E 7-6N-14E 5-7N-13E 11-7N-14E 4-8N-16E	Sharrow #B1-1 Lopapkicwicz #1 Stern #1 Schmidt #1 Hull #1 Gleason #1 O'Conner #1	590 646.7 704.3 792 789.5 783.5 720.6	438 687 835 1160 1442 1220 546	662 953 1130 1483 1822 1577 948	224 266 295 323 380 357 402
18-7N-16E	Collins #1-18	698	505	860	355

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
ST. JOSEPH					
15-7S-9W 17-5S-9W 27-6S-11W 13-6S-11W	R. Reed #1 Krupp #1 Thunder #1 Dunworth #1	864 873 817 865	866 1067 820 942	1077 1313 1015 1163	211 246 195 221
SANILAC					
31-9N-15E 2-10N-15W 9-10N-16E 25-11N-12E 7-11N-14E 7-11N-16E 9-12N-13E 12-12N-14E 28-14N-12E 34-13N-15E 26-9N-15E	Kappler #1 Trowhill #1 Keglovitz #1 Ode #1 Mica #1 Essenmacher #1 Uiswell #1 Detary #1 Linderman #1 E. Mosure #1 Marshall #1	767.6 761.3 771.6 771 785.7 805.5 783.6 762 786 778.6 748	1295 990 927 1940 1628 1106 1576 1363 1950 1094 660	1688 1470 1378 2453 2187 1611 2168 1933 2634 1648 1073	393 480 451 513 559 505 592 570 684 554 413
SHIAWASSEE					
22-5N-2E 15-5N-3E 12-8N-4E 33-7N-3E	Dysinger #1 Schribner #1 Birchmeier #1 Brooks #1	89 4.7 870.7 700 809	1978 1458 2110 1995	2378 1857 2588 2410	400 399 478 415
TUSCOLA					
31-10N-8E 8-13N-9E 16-13N-11E 12-14N-9E 32-14N-8E 4-13N-9E	McCormick #1 Sattleberg #1 Novesta Twp. #1 Dancey #1 Downing #1 J. Timko #1	770.5 667.8 727 653.8 607 662	1877 2112 1973 2009 1998 2109	2385 2760 2595 2718 2672 2756	508 648 622 709 674 647
VAN BUREN					
34-4S-14W 24-2S-15W 8-1S-14W 35-2S-16W	Kern #1 T. A. Curtis #1 Pease #1 Ament & Webster #1	911 708 734 768	1065 1028 1178 1033	1245 1220 1412 1195	180 192 234 162

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thickness
WASHTENAW					
16-4S-5E	Schowacko #GG-1	862.5	409	597	188
24-3S-7E	Wabash R.R.G. #1	691.6	130	357	227
25 -2S- 3E	Goers #1	937	1028	1274	246
26-2S-7E	Jorgensen #1	768	424	642	218
22-1S-3E	Warner & Slocum #1	954.5	1280	1540	260
12-1S-7E	Butler-Ansel-Strok #2	936	397	652	255
28-1S-5E	Brassow #1	946	1222	1471	249
22-2S-3E	J. Merkel #1	998	1185	1465	280
WESFORD					
28-21N-9W	Davidson #1	1323	3182	3900	718
23-21N-11W	St. Henderson #1-23	1336	3048	3702	654
32-22N-9W	Lesson & Sours #1	1303	3066	3791	725
9-22N-10W	Commers Sons Cypress Co.				
	#1	1411	2910	3621	711
20-24N-9W	St. Liberty #A-1	1014	2377	3142	765
2-24N-12W	Kellogg #1-2	1089	1890	2631	741
1-22N-9W	Andrews #1	1310	3030	3746	716

APPENDIX B

ጠ
X
Q
PE
AP

unty	Location	Name of Well	LS/ Dol	Clastic Ratio	Evaporite \$	Quartz %	Ryrite \$	chert *
_	10-26N-7E	Kohlman #1	31.06	2.9	0	0	0	0
ផ្ល	28-2N-13W	Perrigo M.F.G., Co. #1	5.19	10.4	.68	0	.13	3.06
æ	9-29N-5E	Turtle Lake Club #1	890.6	2.06	0	.0018	0	0
u	31-31N-5W	L. H. White #1	0	2.78	.84	3.36	0	.56
D	22-19N-4E	Wood et. al. #2	46.05	1.25	0	0	0	.22
	M6-NE-8	Kidder #1	111.29	4.86	0	0	0	6.34
	10-15N-3E	Edgar D. Solmtt #1	46.05	1.25	0	0	0	.22
c	8-8S-20W	Warren #1	3.12	18.39	ъ.	1.16	.	0
គ្ន	29-1S-7W	Wm. S. Fruin #1	0	5.88	0	0	0	3.41
	15-8S-15W	Good #1	8.82	4.1	0	0	.65	.13
	5-8S-16W	N. Beebe #1	29.75	1.36	0	0	2.89	0
evoix	7-32N-4W	T. Romaniak #1	12.4	2.55	.0112	.00017	.0027	0
	20-18N-5W	D. W. Frackelton #A-1	410.7	6.73	0	0	.0008	1.3
Ð	MZ-NL-11	W. L. Skutt #1	21.7	3.07	0	.000	0	7.67
ord	17-25N-4W	St. Beaver Creek #A-3	84.86	1.96	0	0	0	0
	5-3N-4W	Woodworth #1	16.52	5.14	0	0	• 05	3.04
8	11-6N-7E	G. Gardann #1	15.43	1.7	0	0	0	1.62
in	12-19N-1W	State-Gladwin #1	38.9	1.9	0	0	0	0
ч	36-11N-3W	J. Davidson #2	31.85	5.62	.0005	0	.0011	2.43
dale	16-7S-2W	V. & M. Scharp #1	3.56	2.13	0	0	0	7.72
	27-16N-11E	A. Keller #1	21.18	. 88	0	0	.03	.08
E	22-4N-1W	Wm. Kirkpatrick	153.95	3.26	.38	0	0	2.32
	11-6N-6W	C. & C. Smith #1	16.1	23.13	0	0	0	1. 83
	3-22N-5E	Stork #1	20	1.22	0	0	0	۲.
lla	18-15N-4W	House #1	0	1.72	0	0	0	4.0
uo	18-4S-1W	Ray Ried #1	4.98	2.56	1.69	0	0	8.34
azoo	27-2S-9W	J. & L. Smith GG-1	22.3	6.77	.18	0	0	3.35
ska	27-25N-8W	Consumers Power Co. #1	535.05	11.39	0	0	.0007	1.8
	4-8N-9W	F. Donovan #1	0	20.1	.11	1.56	0	2.47
	20-18N-12W	IJ. Gramalva #1	6.66	4.42	.0058	.041	.002	0
អួ	22-9N-10E	L. Bodiven #1	26.6	.78	0	0	0	1.9

•

County	Location	Name of Well	LS/Dol	Clastic Ratio	Evaporite §	Quartz 8	Ryrite	Chert %
enawee	24-6S-3E	L. Denius #1	1.75	1.68	0	0	• 06	5.3
ivingston	25-2N-5E	Baver #1	2.11	1.2	0	0	60.	4.21
lacomb	15-3N-14E	W. Moore #1	0	1.19	0	0	.36	1.67
lanistee	23-23N-14W	/ Nuikklala #1	16.75	30.6	1.18	0	0	0
lason	17-18N-16W	/ Woodward #1	2.19	4.88	600.	0	.00004	2.3
fecosta	17-15N-8W	F. D. Helmer #1	0	6.76	1.43	0	0	0
<i>didland</i>	MI-N2I-9	D. Segerlund #1	21.38	2.78	0	0	0	1.56
dissaukee	35-22N-6W	Buning #1	4.049	4.4	1.55	.04	0	.33
Montcalm	14-11N-9W	Wm. R. Spence #1	0	54.6	0	0	0	1.59
Montmorency	10-30N-3W	W. & I. Miller #1	45.9	9.85	.0018	0	0	0
Muskegon	15-11N-15W	W. J. Smith & C. Hamill #1	3.54	16.078	0	0	0	0
Newaygo	5-12N-12W	/ Sawyer #1	13.26	65.78	0	.13	0	0
Oakland	21-1N-7E	W. Smith #1	4.9	1.45	0	1.02	.79	3.11
Oceana	27-14N-17W	Spooner #1	1.18	13.83	.0732	0	.001	60 .
Ogemaw	29-23N-3E	Morrison #1	13.04	1.8	0	.15	0	.85
Osceola	M0-18N-01	State-Cedar #B-1	40.9	3.12	1.72	0	0	1.8
Oscoda	19-25N-3E	U.S.A. #1	0	2.44	0	0	0	.17
Otsego	34-30N-3W	AuSable #1	108.15	2.23	.0022	.0022	.0000	0
Ottawa	21-6N-14W	Ponstontine #1	271.5	11.9	0	1.19	14.68	.93
Roscomon	2-23N-2W	Salling Hansing Co. TN. H 1	3.29	1.92	0	0	0	0
Saginaw	5-11N-3E	Rockwell #1	12.40	1.715	0	0	0	4.4
St. Clair	18-7N-16E	Collins #1-18	0	.66	0	0	0	.44
St. Joseph	13-6S-11W	Dunworth #1	47	6.35	0	0	.02	3.7
Sanilac	26-9N-15E	Marshall #1	37.4	.614	0	0	.005	1. 83
Shiawassee	33-7N-3E	Brooks #1	42	3.48	• 006	0	0	2.98
Nscola	4-13N-9E	J. Timko #1	41.52	.7856	0	0	100.	.55
Van Buren	35-2S-16W	Ament & Webster	6.79	11	0	0	0	2.34
Nashtenaw	22-2S-3E	J. Merkel #1	5.32	2.55	0	0	0	3.98
Wexford	1-22N-9W	Andrews #1	3.8	3.78	0	0	0	1. 6

APPENDIX C

APPENDIX C

Location	Well Name	Elevation	Traverse Group Top	Dundee Top	Thıckness
LIVINGSTON					
18-2N-5E 8-2N-5E	Lounsberry #1-18 White #1-8	923.6 960	637 678	1288 1108	651 430
17-2N-5E	Lounsberry #1-17	926	620	1185	565
13-3N-5E	Chanay P. Cornell #1-13	943	852	1212	360
7-2N- 5E	Kuhns #6-7	913	640	1178	538
8-2N-5E	White #2-8	941	634	1151	517
12-2N-4E	Gates #1-12	916	620	1038	418

