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ABSTRACT

ANALYSIS AND DESIGN OF MULTIPLE ORDER CENTRIFUGAL
PENDULUM VIBRATION ABSORBERS

By

Brendan James Vidmar

Impending government fuel economy standards are causing automobile manufacturers to

consider innovative ways to increase the average fuel economy of their fleets. In many cases,

as discussed in this study, automakers are required to push their engine operating conditions

to levels not previously considered. One constraint which limits the engines to operate

efficiently and salable in these conditions is torsional vibrations. Centrifugal Pendulum

Vibrations Absorbers (CPVAs) are devices used to reduce the levels of these undesirable

torsional vibrations without decreasing performance.

In this study, we consider nonlinear interactions in systems of order-tuned torsional vi-

bration absorbers with sets of absorbers tuned to different orders. In all current applications,

absorber systems are designed to reduce torsional vibrations at a single order; however, when

two or more excitation orders are present and absorbers are introduced to address different

orders, nonlinear interactions become possible under certain resonance conditions. Under

these conditions, a common example of this phenomenon occurs for orders n and 2n where

crosstalk between the absorbers, acting through the rotor inertia, can result in instabili-

ties that are detrimental to system response. In order to design absorber systems that avoid

these interactions and to explore possible improved performance with sets of absorbers tuned

to different orders, we develop predictive models that allow one to examine the effects of

absorber mass distribution and tuning. These models are based on perturbation methods

applied to the system equations of motion ultimately yielding system response features as



a function of parameters of interest, notably absorber and rotor response amplitudes and

stability. The model-based analytical results are compared with numerical simulations of the

complete nonlinear equations of motion and are shown to be in good agreement. In addition,

experimental absorbers at multiple orders were designed and tested on a controlled spin rig.

The experimental data is found to be in good agreement with the analytical predictions,

thus verifying the numerical and analytical studies. These results are useful for the selection

of absorber parameters to achieve desired performance. For example, they allow for approx-

imate closed form expressions for the ratio of absorber masses at the two orders that yield

optimal performance. It is also found that utilizing multiple order absorber systems can be

beneficial for system stability, even when only forcing at one order.

In a related study, we develop relatively simple predictive formulations describing the

absorber and rotor dynamics. We do this by assuming specific forms about the absorber

response in order to simplify the steady state analysis of absorber systems. Utilizing these

assumptions, along with physically relevant scalings, the harmonics in the system can be

balanced and thus yield these predictive closed form expressions. Although unable to capture

all of the subtle system instabilities, these expressions are found to accurately capture both

the steady-state absorber response as well as the harmonically rich rotor response for a wide

range of absorber configurations, as confirmed by both numerical and experimental data.

This analysis provides accurate and simple descriptions of the system dynamics. These

descriptions are useful for selection of important system parameters when designing such

systems and are generalized to account for single or multiple order absorber systems.
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sorber. (b) Order ñ2 absorber. . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.8 Rotor mean speed, Ω vs. the mean torque applied, T0. . . . . . . . . 58

Figure 3.9 Experimental absorber amplitudes, s, vs. the amplitude of applied
order n torque, Γn, with perturbation and numerical simulation pre-
dictions. (n = 2.29, ε = 0.18486) . . . . . . . . . . . . . . . . . . . . 60

Figure 3.10 Experimental rotor angular acceleration, yy′ vs. Γn for multiple or-
der epicycloidal absorbers compared against the perturbation and
numerical predictions (n = 2.29, ε = 0.18486). (a) First three rotor
response orders, n, 2n, 3n. (b) Order n. . . . . . . . . . . . . . . . 66

Figure 3.11 (c) Order 2n. (d) Order 3n. . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.12 Experimental stability results for a pair of order ñ1 absorbers. (a)
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Chapter 1

Introduction

Vibration reduction in rotating machinery has long been an area of study in both industrial

and academic settings [11,20,21,35]. An inherent difficulty in solving issues relating to tor-

sional vibrations is, in many applications, the rotating inertia and associated damping are

desired to be as small as possible for maximum performance. Both of these properties, al-

though necessary for good performance, can lead to troublesome torsional vibrations. Several

well-researched methods have been employed to attenuate these torsional vibrations, which

include adding inertia in the form of flywheels, utilizing energy dissipation through torsional

dampers, employing frequency tuned dual mass flywheels, and the use of order tuned Cen-

trifugal Pendulum Vibration Absorbers (CPVAs). Due to the stringent efficiency demands

now present in some rotating machinery, such as internal combustion engines, adding inertia

and dissipating energy are not feasible. Also, as dual mass flywheels are tuned to a certain

frequency, that is an engine order excitation at a specific rotational velocity, their perfor-

mance is limited to very specific conditions. CPVAs dissipate very little energy, are tuned to

an order, and, as will be explained in more detail further, can be very beneficial in reducing

the amplitude of torsional vibrations.

CPVAS are passive devices that have been shown to significantly reduce torsional vibra-

tions in rotating machinery that arise from engine order excitation [12,21]. Such machinery

includes internal combustion engines, helicopter rotors, turbines, and rotary aircraft en-

gines. For several decades, CPVAs have been used in light aircraft engines and helicopter
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rotors [21, 25] for vibration suppression. Recently, CPVAs have been shown to be very

beneficial for use in automotive engines [6, 33, 42]. As examples of CPVAs, Fig. 1.1 shows

a set of four bifilar (two-point suspension) CPVAs attached to a helicopter rotor, and an

experimental bifilar absorber used at MSU.

(a)

(b)

Figure 1.1: (a) Bifilar Absorbers on a Helicopter Rotor. (http://www.b-domke.de /Avia-
tionImages/Rotorhead/11358.html). (b) MSU Experimental Bifilar Absorber Showing the
Two-Point Suspension. For interpretation of the references to color in this and all other
figures, the reader is referred to the electronic version of this dissertation.

Previous use of CPVAs in aerospace engines has been to reduce torsional vibrations of a

rotor operating at a nearly constant angular velocity, in situations for which the most extreme

speed and load conditions are known. These conditions allow the inertia of the absorbers

to have sufficient inertia and be tuned so as to avoid the undesirable nonlinear behavior.

These non-linear dynamics include instabilities such as an amplifying “jump” bifurcation for

circular path absorbers, as well as non-synchronous motions for other paths that arise due

to non-linear absorber coupling through the rotor, each of which are detrimental to absorber

performance [3, 9, 39]. Recent research has been conducted into understanding the response
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and assessing the effectiveness of CPVAs for use in high efficiency automotive engines, where

the mean speed of the rotor varies greatly throughout the range of operation [33,41], and for

which the inertia of the entire crank shaft is desired to be as small as possible for maximum

responsiveness. It should be noted that the rotary inertia of an engine powertrain has always

been desired to be small, but new demands have coupled this minimization of powertrain

inertia with very large engine torsional fluctuations. A crankshaft used in an experimental

Ford V8 automotive engine fitted with CPVAs is shown in Fig. 1.2 [32].

Figure 1.2: Circular Path CPVA on Automotive Crankshaft.

1.0.1 Motivation

With automotive manufacturers all battling to design more fuel efficient engines, vibration

suppression surprisingly plays an important role in maximizing this efficiency. The Corpo-

rate Average Fuel Economy (CAFE) standards state that passenger cars must meet a 30.5

mpg minimum and light trucks a 24.1 mpg minimum by this year. Also, by 2025, auto-

motive manufacturers will be required to meet a combined fleet average of 54.5 mpg for

cars and light trucks, as imposed by the passing of the Energy and Independence Security

Act (EISA). With these impending government restrictions on fuel economy, car companies
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are implementing many new engine technologies, two of which, as subsequently discussed,

require some sort of vibration attenuation to be as efficient and salable as possible. The first

engine technology is the so-called “displacement on demand” large displacement engines,

first used by General Motors in 1981 Cadillacs, modified by Mercedes-Benz in 1999, and also

employed by Chrysler and Honda since 2005 [1]. These internal combustion engines vary

the number of cylinders firing as engine speeds and loads change. The variable displacement

engines have been found to achieve a fuel economy saving of 10− 20%, mainly through the

reduction of pumping losses, which occur when the engine is in its reduced cylinder mode.

Using current technology however, these multi-displacement system engines cannot operate

in the more efficient reduced cylinder mode for speeds below 1200 rpm, due to noise and

vibration issues. Resolving these low speed vibratory problems would result in even more

fuel economy improvement. The second type of new, more efficient engine technology is very

small displacement, usually turbo-charged, high torque engines, for example the Ford “Fox

I-3” engine . Running these engines at low speeds and high torques, that is, in the so-called

“lugging” mode, is very efficient, but results in very high levels of torsional vibrations. These

vibrations, which are felt by the operator and passengers, currently make these engines un-

suitable for the marketplace. CPVAs have recently come to the forefront in the automotive

industry to reduce these torsional vibrations.

In most applications there exists a dominant source of engine order vibration, and ab-

sorbers are tuned to that order. In fact, all previous studies known to the author have

investigated the use of CPVAs tuned to attenuate torsional vibrations at a single order.

However, it is known that when absorbers are pushed to large amplitudes, where nonlinear

effects come into play, instabilities can occur, and the absorbers generate higher order tor-

sional vibrations on the rotor. In this work we extend upon these studies and analyze the use
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of multiple-order CPVAs in order to reduce vibrations at multiple engine orders. The goal

is to develop a fundamental understanding of the interplay between absorbers at different

orders, and use this knowledge to develop design strategies for systems of absorbers with

groups of absorbers tuned to different orders.

1.0.2 General Operation of CPVAs

CPVAs are masses suspended from a rotor in such a way that they are free to move along a

desired path, similar to that of a pendulum, and a general schematic of a rotor/CPVA system

is shown in Fig. 1.3. CPVAs have several inherent properties which make them ideal for use

in rotating machinery. First, they have a natural frequency that is proportional to the mean

rotational speed of the rotor, thus corresponding to a given order of rotation. This follows

since the effective stiffness on the absorbers is due to centrifugal effects, and this property

makes them effective over a continuous range of rotor speeds. Referring to the dimensions in

Figure 1.3, one can find that when the rotor spins at a constant rate Ω, the natural frequency

of the absorber is Ω
√
R0i/ρ0 − 1, where ρ0 is the radius of curvature of the absorber path

at the path’s vertex. The natural frequency of the absorber will be subsequently referred to

as ñΩ where ñ is referred to as the absorber tuning order.

When tuned to the correct value of ñ, the absorbers oscillate in a manner that counteracts

the corresponding order component of the fluctuating applied torque acting on the rotor.

The engine excitation orders, n, 2n, ... are inherent to a given machine. For example, in a

four stroke internal combustion engine, each cylinder fires once every two revolutions of the

crankshaft. This implies for an N cylinder engine, the dominant engine order is at N/2 = n,

but orders 2n, 3n and higher are also generally present, although often at a much smaller

amplitude. In fact, if there is significant cylinder-to-cylinder variation, one-half orders, such
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Figure 1.3: Schematic of a rigid rotor fitted with absorbers tuned to ñ and 2ñ.

as n/2, 3n/2, etc. can also be present. With this knowledge, we can model the forcing from a

four stroke internal combustion as a Fourier series in θ with frequency (order) n, for example,

with a leading order term of T sin(nθ), where the forcing order, n is equal to N/2, this is the

so called order n excitation. For some multiple displacement engines, as previously described,

the fluctuating torques applied when the engine is in “full” and “reduced’ cylinder mode can

both cause undesirable vibration effects. This results in vibration amplitudes at two different

orders which need to be attenuated. Also, in the high compression, small displacement

engines being developed, higher order harmonics can be of substantial magnitude. For

example, the oscillating torque for an engine which produces a torque in which the first two

harmonics are large can be modeled as T1 sin(nθ) + T2 sin(2nθ + φ). In general, the torque

can be expressed as a Fourier series in terms of the base order n. Previous investigations

have analyzed the performance of CPVAs tuned to a single order, when subjected to a single

order torque. This work extends upon those previous investigations by both predicting the

response of a system containing a rotor equipped with multiple order CPVAs subjected to

multiple order torques, as well as by developing methods to design such systems for optimal
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performance.

As mentioned above, it is desired keep the total rotational inertia of the rotor/CPVA

system at a minimum to maintain good responsivity of the engine, that is, how quickly it

reacts to shifts in torque, for example, during vehicle launch. This requires using as small

an absorber mass m, and absorber distance from the center of rotation R0i, as possible.

The absorber works by using a combination of its mass, the distance from the center of

rotation, and the absorber amplitude S, to counteract the applied torque, and thus a mini-

mization of the first two quantities results in a large absorber amplitude. This implies that

an understanding of the large amplitude, nonlinear dynamic behavior of the entire system is

essential for an effective design. It turns out that the path that the absorber center of mass

follows Ri(Si), is very important to large amplitude behavior of the system [14, 39]. Also,

if more than one absorber is employed, nonlinear inter-absorber interactions can occur due

to kinematic coupling through the rotor. It will be shown that it is essential to consider the

effects of this inter-absorber coupling when designing multiple order absorber systems for

large amplitude behavior. In fact, if one has sufficient absorber inertia to keep amplitudes

small, and the system response can be described by a linear dynamic system model, then

one can use superposition to design the system, since there will be no interaction between

absorbers at different orders.

1.0.3 Background

We now turn to a summary of past contributions to our knowledge about CPVAs, and less

specifically, contributions to non-linear vibration absorbers. As will be shown, original stud-

ies investigated the steady-state linear response of CPVAs, slowly moved into the nonlinear

steady-state response for circular paths, went on to look at non-circular path steady-state
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nonlinear analysis, and finally to transient non-linear analysis; all for single order CPVAs.

Frequency tuned vibration absorbers have long been understood and used as a means to

reduce vibrations, and are commonly found in undergraduate vibrations textbooks, e.g., [45].

Around the early 1930’s, the basic operational principles of order tuned vibration absorbers

were first brought to light in separate patents by Salomon and Sarazin [37, 38], which were

motivated by the need to alleviate crankshaft torsional vibrations in aircraft engines. A

thorough description of the problems associated with aircraft engine torsional vibrations, as

well as the development of the pendulum type vibration absorber, is presented in [26]. Shortly

after the Salomon and Sarazins’ patents, Chilton of Curtiss-Wright employed a bifilar CPVA

and E. S. Taylor designed a “puck” type pendulum absorber, both to alleviate propellor

snapping issues in 9 cylinder aircraft engines [26].

Shortly after Curtiss-Wright hired E. S. Taylor to become their principal vibration con-

sultant, Pratt & Whitney decided to hire another M.I.T professor as its vibration consultant,

J. P. Den Hartog. Den Hartog was the first to investigate how damping and detuning (the

difference between forcing and absorber tuning orders) of a CPVA effects its linear steady-

state response, and he extended on this to show that large amplitude oscillations of a circular

path CPVA cause a detuning that arises from nonlinear effects [12,13]. Den Hartog’s Ph.D.

student, D. Newland, first investigated the dangerous amplifying “jump” bifurcation that

can occur for circular path absorbers (resulting from a saddle-node bifurcation), and rec-

ommended overtuning the absorbers (that is, making ñ > n) to alleviate this bifurcation.

Overtuning the absorbers does increase the torque level that causes this instability, although

the absorbers are less effective at reducing torsional vibrations when overtuned. Further in-

vestigations have validated Newland’s ideas with controlled experiments, and extended upon

the analysis through the inclusion of Coulomb friction in the system model [34, 47].
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This dangerous amplifying instability seen in circular path absorbers motivated research

into alternative path designs. It was known that this jump bifurcation is only possible for

softening nonlinearities (frequency decreasing as a function of amplitude), motivating Mad-

den to propose a cycloidal path [25], which, in fact, induces a slight hardening nonlinearity.

The cycloidal path is the solution of the tautochrone problem in a gravitational field, de-

scribed as follows: a particle released from any point on a cycloid will reach the vertex (the

bottom of the curve) at the exact same time in a gravitational field. In fact, the equation of

motion for a particle on this curve is a simple linear harmonic oscillator, that is, the response

has the same frequencies for all amplitudes. Huygens solved the corresponding tautochrone

problem in a centrifugal field, and found epicycloids to be the solution, but it wasn’t until

Denman in 1992 [14] that epicycloids were proposed for use in CPVAs. A special epicycloid,

known as the “tautochronic epicycloid,” renders the absorber frequency independent of am-

plitude (for constant rotor speed), thus making the absorber motion that of a linear harmonic

oscillator [14]. Denman was able to formulate the equations of motion for bifilar absorbers,

including the rollers, for a quite general path and was able to represent these paths as a

two parameter family of curves defined by their radius of curvature ρ2 = ρ2
0 − λ

2S2, where

ρ0 is the curvature at the vertex, which fixes the absorber’s linear tuning, and a parameter

λ that controls the large amplitude behavior of the curve. Monroe and Shaw [29] general-

ized Denman’s results to include the inertial effects of the rollers used in bifilar absorbers,

and showed that a tautochrone exists for this system. Lee and Shaw [24] investigated the

counteraction of applied torques through epicycloidal absorbers and found that, along with

applying a counteracting torque at the desired order, these absorbers produced higher order

harmonics back onto the rotor. As previously mentioned, epicycloidal paths yield a simple

harmonic oscillator when the rotor speed is constant, yet there exists a nonlinear coupling
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between the absorbers and the rotor which produces these higher harmonics. Lee and Shaw

interestingly found that epicycloidal absorbers tuned to one half of the forcing torque would

undergo a subharmonic resonance which resulted in a pure harmonic torque applied to the

rotor. Chao and Shaw [7] incorporated design guidelines for systems with absorbers that

had small imperfections as well as systems of identical, subharmonic absorbers.

The cycloidal and tautochronic epicycloidal path absorbers avoid the dangerous jump

bifurcation encountered by circular path absorbers, but can still give rise to non-synchonous

response bifurcations for systems with multiple absorbers, including the aforementioned

subharmonic bifurcation. In general, these symmetry breaking bifurcations are detrimental

to system performance, as the absorbers no longer work together effectively acting as a

single large inertia. Chao et al. [8, 9] showed that a critical torque level exists which will

cause tautochronic absorbers to become non-synchronous. Shaw and Geist [39] subsequently

generalized those results to include linear and nonlinear detuning of the tautochrone, showing

where non-synchrounous and jump instabilities occur in the path parameter space, thus

allowing one to select absorber paths that avoid these instabilities. The authors showed

that both instabilities can be alleviated through overtuning the absorbers. Alsuwaiyan and

Shaw [5] provided conditions on this non-sychrounous bifurcation for non-tautochronic paths,

and also showed that overtuning the absorbers is beneficial to performance, although for

circular path absorbers, the jump bifurcation can still occur. All the aforementioned studies

consider only the steady-state response for CPVAs. Monroe and Shaw [27, 28] recently

categorized the transient response of CPVAs for a general range of paths. It was found

that an approximate value for the percent overshoot of a single absorber could be calculated

analytically, in terms of the absorber tuning, damping, and system nonlinearity. The only

studies known to the author that consider systems composed of absorbers tuned to multiple
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orders are those where some absorbers are tuned to orders n± 1 in order to reduce shaking

order n shake forces [6,10]. The only study that considers multiple order torques is that of Lee

and Shaw [23], who considered how a pair of identical order n absorbers can simultaneously

address torques of order n and 2n through nonlinear effects.

It is the goal of this PhD dissertation to extend upon these previous studies through a

comprehensive study of systems with multiple order CPVAs subjected to multi-order torques.

As explained in more detail in the next sections, the system nonlinearites, specifically the

nonlinear absorber/rotor coupling, play an important role in the dynamics of CPVAs at

multiple orders, and must be considered in order to achieve optimal performance of such

systems.

1.0.4 Dissertation Organization

The dissertation is organized as follows:

• Steady-State Dynamics of Multiple Order CPVA Systems. Chapter 2 ana-

lyzes the steady-state dynamics of multiple order CPVAs through the use of numerical

simulations, perturbation methods, and numerical continuation. System stability as a

function of the applied torques and other relevant parameters is investigated. Optimal

inertia ratios between the two order absorbers are obtained.

• Experimentation. Chapter 3 introduces the experimental setup utilized and provides

experimental validation of the previous analytical treatments. Synchronous and non-

synchronous multiple-order absorber responses are investigated.

• Harmonic Balance Methods Applied to CPVA Systems. Chapter 4 presents

an analysis on the dynamics of CPVAs through the use of harmonic balance methods.
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The harmonic balance approximations are compared to numerical simulations as well

as experiments for a wide array of absorber systems.

• Conclusions. The final chapter reviews the work completed in this dissertations and

gives some recommendations for some future areas of study.
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Chapter 2

Modeling and Prediction of System

Response

The equations describing the motion of a rigid rotor equipped with multiple order pendulum

absorbers are derived in this chapter. These complicated, nonlinear equations are then non-

dimensionalized and the non-dimensional parameters are scaled based on practical limits

for the ranges of these parameters. Perturbation methods are then applied to the scaled

equations of motion, and are shown to accurately capture the both the stable steady-state

dynamics as well as the instabilities present in the system. All analytical results are compared

to simulations of the fully coupled nonlinear equations of motion.

2.1 Equations of Motion

For the present investigation, we model the system at hand as a rigid rotor spinning about a

fixed axis with masses attached that move along pre-described paths relative to the rotor, as

shown in Fig. 2.1. The figure exhibits two different paths that the masses can follow, defined

by the distance from the center of the rotor to the center of the masses, referred to as Ri(Si),

where Si is the masses’ arc length position relative to the rotating frame. The characteristics

of these curves, along with their distance from the center of the rotor determine the linear

and nonlinear tuning of the masses. The general system has N1 absorbers tuned to an order,
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Figure 2.1: Schematic of a rigid rotor fitted with absorbers tuned to ñ and 2ñ.

ñ1, as well as N2 absorbers tuned to order ñ2. For convenience it is assumed that N1 = N2

and that the order ñ1 absorbers are indexed from 1 : N1 and the order ñ2 absorbers indexed

from N1 + 1 : N1 + N2, where we define M = N1 + N2. The masses of the absorbers at

their respective order are assumed to be equal, i.e.,

mi = mn 1 ≤ i ≤ N1

mi = m2n N1 + 1 ≤ i ≤M

In order to motivate the modeling of the engine torque, a sample schematic of gas pressure

torques for a four-stroke, in-line, four cylinder engine is shown in Fig. 2.2.

This torque can be modeled as

T (θ) = T0 + Tn sin(nθ) + T2n sin(2nθ + φ)

in which T0 is the DC torque, Tn,2n are the fluctuating components of the torque, and φ is

the phase between the harmonics. With the above information, the kinetic energy for the

14



Crank Angle

T
or

q
u
e

P
er

C
y
li
n
d
er

0 π 2π 3π 4π

(a)

T (θ)

θ

T0

(b)

Figure 2.2: (a) Torques generated from individual cylinders, calculated by converting a
characteristic gas pressure force acting on a piston to crank torques. (b) Summed torque,
which is dominated by a DC term and second order harmonic. Higher order harmonics are
also evident.

rotor/CPVA system can be found to be

Tt =
1

2
(JRθ̇

2 +

N1∑
i=1

(mi(Xi(Si)θ̇
2 + Ṡi + 2Gi(Si)θ̇Ṡi))

+
M∑

i=N1+1

(mi(Xi(Si)θ̇
2 + Ṡi + 2Gi(Si)θ̇Ṡi)))

(2.1)

where

Xi(Si) = R2
i (Si),

and

Gi(Si) =

√
Xi(Si)−

1

4
(
dXi
dSi

(Si))
2.

In order to obtain the differential equations describing the dynamics of the system we

use Lagrange’s method. The generalized forces are found to be
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δW = −ca,iṠiδS − (c0θ̇ − T0 − T (θ))δθ,

and performing the steps in Lagrange’s method yields N1 + N2 + 1 equations of motion,

found to be:

mi[S̈i +Gi(Si)θ̈ −
1

2

dXi
dSi

(Si)θ̇
2] = −caiṠi 1 ≤ i ≤M, (2.2)

for the ith absorber and

JRθ̈ +

N1∑
i=1

(mi(
dXi
dSi

(Si)Ṡiθ̇ +Xi(Si)θ̈ +Gi(Si)S̈i +
dGi
dSi

(Si)Ṡ
2
i ))

+
M∑

i=N1+1

(mi(
dXi
dSi

(Si)Ṡiθ̇ +Xi(Si)θ̈ +Gi(Si)S̈i +
dGi
dSi

(Si)Ṡ
2
i ))

= −c0θ̇ + T0 + Tn sin(nθ) + T2n sin(2nθ + φ)

(2.3)

describing the dynamics of the rotor.

In order to get the equations of motion in a form suitable for non-linear analysis methods,

we non-dimensionalize the variables and change the independent variable from time to the

rotor angle, θ following the work of Chao et. al. [8]. To change the independent variable a

new dimensionless dependent variable y, is defined as

y =
θ̇

Ω

This variable is used to then define relationships between derivatives with respect to time
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and θ as follows:

θ̈ =
dy

dθ

dθ

dt
Ω = y′yΩ2

˙( ) =
d( )

dθ

dθ

dt
= ( )′yΩ

and

(̈ ) =
d2( )

dθ2

(
dθ

dt

)2
+
d( )

dθ

d2θ

dt2
= ( )′′y2Ω2 + ( )′y′yΩ2

In summary, we have the following relationships, where ( )′ =
d( )
dθ

,

θ̈ = Ω2yy′ ˙( ) = Ωy( )′ (̈ ) = Ω2yy′( )′ + Ω2y2( )′′

This process transforms the equations of motion, Eqs. (2.2) and (2.3) into a set of pe-

riodically forced, non-autonomous equations, and thus the nonlinearity, Tn sin(nθ)+higher

harmonics, into a forcing term. The equations of motion are then rearranged into a non-

dimensional form as follows,

ys′′i + (s′i + gi(si))y
′ − 1

2

dxi
dsi

(si)y + µais
′
i = 0 1 ≤ i ≤M (2.4)

ε(
1

N1(1 + α)
(

N1∑
i=1

[
dxi
dsi

s′iy
2 + xi(si)yy

′ + gi(si)(s
′
iyy
′ + s′′i y

2)

+
dgi
dsi

s′2y2]) +
α

N2(1 + α)
(

M∑
i=N1+1

[
dxi
dsi

s′iy
2 + xi(si)yy

′

+ gi(si)(s
′
iyy
′ + s′′i y

2) +
dgi
dsi

s′2y2]))

+ yy′ = −µ0y + Γ0 + Γn sin(nθ) + Γ2n sin(2nθ + φ)

(2.5)
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in which ( )′ =
d( )
dθ

. The parameters xi(si) = R2
i (si)/R

2
i0 and gi(si) =

√
xi(si)−

1
4(
dxi(si)
dsi

)2

are path-related functions, described in detail in the next section, and the other variables

and parameters are defined and described in Table 2.1. While many of these parameters

have been considered in previous CPVA studies, the absorber inertia ratio α is of special

interest here, since it dictates the distribution of absorber inertia between the two orders for

a fixed amount of absorber inertia, that is, for a fixed value of ε. These equations form the

basis of the analysis that follows.

Table 2.1: Definition of non-dimensional variables in Eqns. (2.4-2.5).

Non-
dimensional
parameter

Definition Description

y θ̇
Ω

Angular velocity of the ro-
tor normalized by the rotor
mean speed, Ω

ε N1mnR
2
0(1+α)

JR

Inertia ratio of absorbers to
rotor

si
Si
R0

Absorber arc length nor-
malized by its distance from
the rotor center

µa,i
ca,i
miΩ

Normalized absorber vis-
cous damping

µ0
co
JRΩ

Normalized rotor viscous
damping

Γ0
T0

JRΩ2

Mean engine torque normal-
ized by twice the rotor’s ki-
netic energy

Γn,2n
Tn,2n
JRΩ2

Fluctuating component of
the engine torque normal-
ized by twice the rotor’s ki-
netic energy

α
m2n
mn

Ratio of masses at each or-
der
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2.1.1 Absorber Paths

In order to smooth out torsional vibrations with minimal absorber inertia under the most

severe fluctuating loads, the absorbers will move at large amplitudes, requiring careful se-

lection of the absorber paths, which are specified by the functions xi in the equations of

motion. Denman [14] conveniently represented these paths as a two parameter family of

curves defined by their radius of curvature ρ2(S) = ρ2
0− λ

2S2, where ρ0 is the curvature at

the vertex, which fixes the absorber’s linear tuning order ñ, and λ controls the large ampli-

tude behavior of the curve, thereby dictating the absorbers’ nonlinear dynamics. Typically,

the absorber tuning is taken to be slightly above the dominant engine order, for example,

for an N -cylinder four-stroke engine, the dominant engine order is n = N/2, and absorber

tuning is taken to be ñ = N(1 + σ)/2, where the detuning parameter σ is a few percent.

The tradeoff is that smaller values of σ make the absorber work better, but it also makes

the absorber amplitudes large, inducing nonlinear effects, including the generation of higher

harmonics that can result in crosstalk among absorbers.

Selection of the nonlinear path parameter is more complicated. Basically, the nonlinear

part of the path dictates whether the absorber frequency (order) increases or decreases as

a function of absorber amplitude, and the degree to which this nonlinear detuning occurs

[3,39]. There exists a special value, λte, corresponding to the tautochronic epicycloid, which

renders this detuning zero, that is, selection of this path makes the absorber dynamics

essentially linear out to large amplitudes [14,39]. Figure 2.3 shows three curves for the same

linear tuning value, ñ = 1.5, with nonlinear path parameters of λ = 0 (circle), λ = λte, and

λ = 1 (cycloid).

Conservative absorber designs select relatively large values of the detuning σ, keeping the
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Figure 2.3: Absorbers paths which produce a linear tuning of ñ = 1.5, for three different
nonlinear path parameters, λ = 0, λte, 1.

absorber response away from its resonance, and therefore linear [3, 36,39]. More aggressive

designs, with improved performance for smaller absorber inertia, keep σ small and account

for nonlinear behavior, typically by taking λ ≈ λte. In this study, following the work of Shaw

and Geist [39], we define the path as a perturbation of the tautochronic epicycloid, which

allows for the analysis of different path types. This path can be easily described through the

radial distance from the rotor center to the absorber location along it’s arc length as,

xi(si) = 1− ñs2i + εhi(si).
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The paths of each absorber at the different orders are assumed to be identical,

xi(si) = xn(si) 1 ≤ i ≤ N1

xi(si) = x2n(si) N1 + 1 ≤ i ≤M,

and the perturbation of the path away from the tautochronic epicycloid is described by

hi(si). The form of the deviation from tautochronic paths is defined to be

hi(si) =
N∑
j=1

ϕjs
2j+2
i (2.6)

This is due to the symmetric nature of the curves and the fact that the second order cor-

rections can be captured in the quadratic term already used tautochronic path formulation.

The exact form for ϕ1 has been found to be as follows,

ϕi = (
1

12
)(ñ2

i + 1)2(ñ2
i − λ

2
i (1 + ñ2

i )),

where the complete path derivation and details can be found in Shaw and Geist [39].

The higher order coefficients of the amplitude expansions can easily be found performing a

series expansion in s of xi(si).

As mentioned above, the design of absorber systems must account for various types of

instabilities that may occur. These instabilities arise since CPVA systems have multiple ele-

ments with identical natural frequencies, or, for the present study, natural frequencies in 2 : 1

ratios, low damping, and they are driven near resonance. One type of instability encountered

is a jump, due to absorber detuning (specifically, softening) at large amplitudes, resulting in

the absorber transitioning into a vibration amplifier (since its phase shifts such that it adds
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to the fluctuating torque). This is a common problem with circular path absorbers, and it

is avoided in practice by selecting large detuning [3, 36]. Another, more subtle, instability

occurs for systems comprised of multiple identical absorbers. When aggressively tuned, these

absorbers experience cross-talk through the rotor inertia, resulting in an instability of the

desired synchronous response, and this occurs even for tautochronic absorbers, that is, when

the absorbers are designed to be as linear as possible. This instability can also be avoided

by detuning, which is accomplished by proper selection of the absorber path, and analysis

indicates how one can tune for optimal performance without encountering this instability

[39]. The issue of imperfections among absorbers is also detrimental to performance, and

tuning strategies to account for these effects, at least for small absorber amplitudes, are also

known [4].

2.2 Motivating Simulation Results

With the full equations of motion developed for CVPA systems with absorbers tuned to

orders n and 2n, one can begin to qualitatively map out the stability of the absorber response

using numerical simulations. Shown in Fig. 2.4 is the normalized order n and 2n torque

space, Γn and Γ2n, exhibiting some of the instabilities that can occur for zero relative phase

between the torque harmonics, φ = 0. This system has 4 absorbers, 2 each at orders n and

2n, that is, the absorbers are tuned to exactly match the torque orders. The mass ratio

between the different order absorbers is taken to be m2n/mn = 0.1.

Synchronous responses correspond to both sets of absorbers acting in relative unison, as

desired; these occur, for example, at points W and Y in Fig. ??. As the torque amplitudes

are increased, instabilities can occur, and these are quite rich if there are multiple absorbers
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Figure 2.4: Simulated responses of a system composed of four tautochronic absorbers, two
each at orders 1.5 (sn) and order 3 (s2n), subjected to a torque composed of a linear com-
bination of orders 1.5 and 3. Note the different scales used for depicting the responses. (a)
Torque harmonic amplitude space, Γ3 vs. Γ1.5, with boundaries of the desired synchronous
response indicated schematically; solid line depicts a subharmonic instability boundary, dot-
ted (dashed) line depicts a symmetry-breaking instability boundary to nonsynchronous re-
sponses of the order 1.5 (3) absorbers. (b) Mutually synchronous response at point W.
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Figure 2.5: (c) Response at point X; the order 1.5 absorbers have become nonsynchronous
and are in a transition towards their amplitude limits. (d) Response at point Y; similar to
W, only with reversed relative amplitudes.
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Figure 2.6: (e) Response at point Z; the order 1.5 absorbers have become subharmonic
and are in transition toward their amplitude limits, as shown in (f). (f) Response at point
Z, depicted over a long time interval; the order n absorber instability eventually results in
large amplitude motion; the cusp amplitudes are the maximum possible amplitudes for these
absorbers.
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at each order. Three types of instabilities are indicated. The solid line represents the order

4 absorbers undergoing a subharmonic transition [22,30] in which they go out of phase and

respond at order 2, an example of which occurs at point Z in Fig. 2.4. The dashed-dotted

line represents the order 2 absorbers becoming nonsynchronous with an amplitude and phase

shift, but remaining at order 2; such a response occurs at point X. The dashed line represents

a condition for which the order 4 absorbers become nonsynchronous (not encountered here).

Note that this instability is seen to occur beyond the subharmonic transition of the order

two absorbers for the present system, but this may not always be the case. Each of these

instabilities is detrimental to system performance, since the absorber amplitudes grow and

reach physical limits, imposed by either hardware or the mathematics of the tautochronic

absorber paths [39]. These preliminary results provide a general overview of the behavior

of multiple order CPVA systems, and the analytic results developed below will provide a

method for carrying out parameter studies of this behavior, to which we now turn.

2.3 Perturbation Analysis

In order to make the equations of motion suitable for analytical investigation, specifically by

perturbation methods, we follow a scaling similar to that of Chao [8]. Taking advantage of a

small dimensionless inertia ratio ε allows one to scale the responses, expand the equations of

motion, and ultimately uncouple the rotor dynamics from those of the absorbers to leading

order in ε. In the subsequent analysis, it is assumed that the following non-dimensional

quantities are small, specifically O(ε): the torque amplitudes at orders n and 2n, the absorber

and rotor damping coefficients, and the absorber detunings (ñi − kn)/(kn) for k = 1, 2.

These conditions are met in applications, and perturbation analyses following this scaling
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have proven useful for matching experimental results [27, 40, 47] and for absorber system

design [3, 27, 39].

This scaling results in a system for which the rotor runs at nearly constant speed with

small fluctuations, that is, y = 1 + εw, where y is the rotor speed normalized by its mean

value. Solving the rotor equation of motion, Eqn. (2.5), for yy′ and performing expansions

in ε, the rotor acceleration can be expressed as yy′ = εw′, where

w′ = Γ̃n sin(nθ) + Γ̃2n sin(2nθ + φ)

+
1

N1(1 + α)

N1∑
i=1

(2ñ2
i sis
′
i + ñ2

i sigi0 − s
′2
i g
′
i0)

+
M∑

N1+1

α(2ñ2
2sis
′
i + ñ2

2sigi0 − s
′2
i g
′
i0)

 ,
(2.7)

where gi0(si) =
√

1− ñ2
i (1 + ñ2

i )s2i . Inserting w′ into the absorber equations, Eqn. (2.4),

utilizing the above the scalings and expanding in ε yields M equations for the absorbers in

which the rotor dynamics has been eliminated to leading order. These equations have the

following form, convenient for application of standard perturbation methods:

s
′′
i + ñ2

i si = εfi(s1, .., sM , s′1, .., s
′
M,µi, ñi, λ, T (θ)) +O(ε2), (2.8)
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where

fi = 3ϕis
3
i − µ̃ais

′
i + [s′i + g(si)][

1

N1
(

N1∑
i=1

1

1 + α
(−2n2

i sis
′
i − n

2
i g(si)si

+
dg(si)

dsi
s′2i ) +

M∑
i=N1+1

α

1 + α
(−2n2

i sis
′
i − n

2
i g(si)si

+
dg(si)

dsi
s′2i ))− Γ̃n sin(nθ)− Γ̃2n sin(2nθ + φ)].

(2.9)

Note that the absorber amplitudes are not scaled to be small in this analysis, since the

absorber path is taken to be close to the tautochrone, which yields a linear oscillator equa-

tion for the absorber motion out to large amplitudes. Thus, the equations of motion allow

for large amplitude absorber motions, but their motion is sufficient to counteract the applied

torque, resulting in attenuation of rotor vibration. The order ε terms in the absorber equa-

tions capture, to leading order, the effects of absorber damping, and the coupling between

the absorbers’ through the rotor dynamics, which is driven by the applied torque and the

dynamics of the other absorbers. Once solutions of Eq. (2.8) are known, the rotor response,

which is the quantity of principle interest for vibration reduction, can be reconstructed using

Eq. (2.7). Perturbation analysis can be performed on Eq. (2.8), in order to obtain approxi-

mate solutions of the absorbers’ amplitudes and phases as a function of θ. In this study, we

employ the method of multiple scales (MMS) [31] to construct these approximate solutions.

As is common for capturing dynamics near resonances, we introduce detuning parameters

which allow for small deviations of the absorbers’ orders relative to their respective forcing

orders, as well for variations in the 2 : 1 relationship between the absorbers. For forcing at

28



orders n1 = n and n2 = 2n the detuning parameters are defined as,

n = ñ1 + εσ1

2n = ñ2 + εσ2

In order to make the equations for amplitudes and phases autonomous, we use the stan-

dard MMS coordinate change, φi = βi − εσi. Using these assumptions, the results of MMS

produce 2M equations representing the slow time dynamics of the amplitudes and phases,

ai and φi, of the absorbers. These complicated expressions capture the nonlinear absorber

interactions, and are given in a condensed form here in order to demonstrate their general

form,

a′i = ε[−
µi
2
ai +

Γn
n1

cos(φi)F1(ai)

−
Γ2n

4
ai sin(2φi) + Pi] 1 ≤ i ≤ N1

(2.10)

φ′i = ε[−σ1 −
3

4
ϕia

3
i −

Γn
n1ai

sin(φi)F2(ai)

−
Γ2n

4
ai cos(2φi)−

1

N1(1 + α)
(
n5

1a
2
i

4
−
n1
2

) +Ri]

1 ≤ i ≤ N1

(2.11)

a′i = ε[−
µi
2
ai

+
Γ2n
n2

cos(φi)F1(ai) + Vi] N1 + 1 ≤ i ≤M

(2.12)

φ′i = ε[−σ2 −
3

4
ϕia

3
i −

Γ2n
n2ai

sin(φi)F2(ai)

− α

N1(1 + α)
(
n5

2a
2
i

4
−
n2
2

) +Xi] N1 + 1 ≤ i ≤M

(2.13)

where the functions (Pi, Ri, Vi, Xi) contain the coupling terms, which depend on all absorber
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amplitudes and phases, and are found to be:

Pi(ai, aj, φji) =
1

N1(1 + α)

N1∑
j=1

[−1

4
n3

1aia
2
j sin(2(φj − φi))

+ n1ajG1 + n1(n2
1 + n4

1)a3
jH1]

+
α

2N2(1 + α)

M∑
j=N1+1

[aiajn
2
2 cos(2φi − φj)F1(aj)]

Ri(ai, aj, φji) =
1

N1(1 + α)

N1∑
j=1

[
1

4
n3

1a
2
j cos(2(φj − φi))

+ n1
aj

ai
G2 + n1(n2

1 + n4
1)
a3
j

ai
H2]

− α

2N2(1 + α)

M∑
j=N1+1

[ajn
2
2 sin(2φi − φj)F1(aj)]

Vi(ai, aj, φji) =
α

N2(1 + α)

M∑
j=N1+1

[−1

4
n3

2aia
2
j sin(2(φj − φi))

+ n2ajG1 + n2(n2
2 + n4

2)a3
jH1]

− 1

2N2(1 + α)

N1∑
j=1

[a2
jn

3
1 cos(2φj − φi)(F1(ai) + F2(ai))]

Xi(ai, aj, φji) =
α

N2(1 + α)

M∑
j=N1+1

[
1

4
n3

2a
2
j cos(2(φj − φi))

+ n2
aj

ai
G2 + n2(n2

2 + n4
2)
a3
j

ai
H2]

− 1

2N2(1 + α)

N1∑
j=1

[
a2
j

ai
n3

1 sin(2φj − φi)(F1(ai) + F2(ai))]

Where the Hi and Gi terms are integrals defined below.
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G1(ai, aj, φji) =
1

2π

∫ 2π

0
cos(x) sin(x− φj + φi)[1− ni(1

+ n2
i )a2

j cos2(x)](1/2)[1− ni(1 + n2
i )a2

i cos2(x− φj + φi)]
(1/2)dx

G2(ai, aj, φji) =
1

2π

∫ 2π

0
cos(x) cos(x− φj + φi)[1− ni(1

+ n2
i )a2

j cos2(x)](1/2)[1− ni(1 + n2
i )a2

i cos2(x− φj + φi)]
(1/2)dx

H1(ai, aj, φji) =
1

2π

∫ 2π

0
cos(x) sin2(x) sin(x− φj + φi)1− ni(1 + n2

i )a2
i cos2(x− φj + φi)

1− ni(1 + n2
i )a2

j cos2(x)

(1/2)

dx

H2(ai, aj, φji) =
1

2π

∫ 2π

0
cos(x) sin2(x) cos(x− φj + φi)1− ni(1 + n2

i )a2
i cos2(x− φj + φi)

1− ni(1 + n2
i )a2

j cos2(x)

(1/2)

dx

The functions F1 and F2, which are related to the individual absorber nonlinear behavior,

are defined as [39]:

F1(ai) =
1

2π

∫ 2π

0
sin2(x)[1− n2

i (1 + n2
i )a2

i cos2(x)](1/2)dx

F2(ai) =
1

2π

∫ 2π

0
cos2(x)[1− n2

i (1 + n2
i )a2

i cos2(x)](1/2)dx.

Nonlinear interactions arise from the fact that the absorbers are driven near their indi-

vidual resonances at orders n and 2n (as required for good performance) and, in addition,

the fact that nonlinearities in the absorber motions result in combinations of harmonics that

promote crosstalk, as shown below. These nonlinear interactions become important at large

31



absorber amplitudes, and thus the nearly tautochronic scaling is required to capture these

effects; that is, this coupling does not appear at leading order if one considers amplitude

expansions for the absorbers, as is done for circular paths [3]. We now turn to results derived

from this analysis, and compare them with direct simulations.

2.4 Synchronous Responses

In order to exhibit the basic effects that the different order absorbers have on each other,

we first assume the absorbers at their respective order behave in a mutually synchronous

manner. This is dynamically equivalent to a system with only two absorbers, one at each

order; however, the use of a single absorber at each order is seldom realizable in practice due

to space and balance issues. Assuming a synchronous response, the perturbation equations,

Eqs. (2.10) to (2.13) above are simplified through the removal of the summations across

multiple absorbers as well the complicated non synchronous expressions.

As a motivating example, Fig. 2.7 shows the amplitudes of both absorbers, as obtained

from the perturbation equations along with simulation results, versus the amplitude of the

order n applied torque, with the order 2n torque taken to be zero; this corresponds to

sweeping along the horizontal axis in Fig. 2.4(a). This is of interest to situations when the

order 2n absorbers are used to address the second harmonic in the rotor response induced

by the nonlinear dynamics of the order n absorbers. We initially assume a stable response

in the perturbation equations for Fig. 2.7, but, as will be shown, nonsynchronous responses

can occur.

It is of interest to note that although the system is being excited only at order n, the

order 2n absorbers actually reach their cusp amplitude at a torque level much below that
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Figure 2.7: Predicted and simulated steady-state absorber amplitudes as a function of the
order n torque amplitude; the order 2n torque amplitude is zero. The cusp values are
amplitude limits set by hardware constraints. System parameters: m3/m1.5 = 0.1, ε = 0.05.

which causes the order n absorbers to reach their amplitude limit. This is a result of the

non-linear interaction between the absorbers, specifically the fact that the order n absorbers

impart a harmonically rich torque on the rotor, composed primarily of orders n (used to

address the order n torque), 2n, and 3n. It is clear from these results that the order 2n

absorbers do not have sufficient inertia for these loading conditions. If one were to analyze

this system using linear response theory, which ignores the nonlinear interactions, the results

would show the order 2n absorbers to have a much smaller amplitude, since the order 2n

absorbers are being driven well away from their resonance. Thus, the growth of the order 2n

absorbers as the order n torque is increased is clear evidence of the importance of nonlinear

effects. One goal of the present work is to provide a tool for determining the appropriate
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inertia balance, described by the parameter α, for such sets of absorbers.

As the main goal of the absorbers is to reduce torsional fluctuations of the rotor, one can

investigate how well they perform by looking at the angular acceleration amplitude of the

rotor. This is shown in Fig. 2.8, for the same conditions as Fig. 2.7.
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Figure 2.8: Order n and 2n harmonic components of the rotor angular acceleration as a
function of the order n applied fluctuating torque amplitude, for the same conditions as Fig.
2.7. The solid line is the reference response for the absorbers locked.

In order to benchmark the effectiveness of the absorbers, one considers the rotor response

with the absorbers locked in place, so as to account for their added flywheel inertia, but not

their dynamic effects; this torsional vibration level is represented by the solid line in Fig.

2.7. As seen from Fig. 2.8, the absorbers significantly reduce the order n component of the

rotor torsional vibrations, as desired. It is also interesting to note that, even though the

rotor is being driven only at order n, order 2n torsional vibrations are present, as described
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above. In fact, these would be even more prominent if not for the presence of the order 2n

absorbers. For all results to follow, the rotor vibration results are very similar to those of

Fig. 2.8, and are thus not shown.
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Figure 2.9: Absorber amplitudes as a function of order n fluctuating torque amplitude; the
order 2n torque amplitude is zero. System parameters: m3/m1.5 = 0.62, ε = 0.05. The
absorbers reach their respective cusps at approximately the same level of excitation.

The results of Fig. 2.7 show that this design does not have appropriate inertia balance

between the order n = 1.5 and 2n = 3 absorbers, since the order 1.5 absorber is not near its

limits at a torque level where the order 3 absorber reaches its limits. An ideal design would

have the absorbers reach their limits at the same torque level. In fact, the perturbation

equations offer an analytical prediction for the mass ratio that provides this condition, de-

termined as follows using the steady-state perturbation equations. First, damping is taken

to be zero, so that the absorber response phases are all zero or π, and then the absorber

amplitudes are set to be at their respective cusp values, or some percentage thereof (which
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are functions of only their tuning orders ñ [14, 39]). This results in a pair of equations that

involve the following parameters: the absorber mass ratio, the peak torque level (correspond-

ing to the value when both absorbers reach their cusps, Γ̃n,m and Γ̃2n,m), the two forcing

orders and the values of the absorber detunings. These equations provide a very useful tool

for selecting important absorber design parameters, and determining the maximum torque

level the resulting system can handle. These equations are given by:

Γ̃n = −
a1,mn1

4F2(a1,m)(1 + α)

(
−2n1 + a2

1,mn
5
1

+2a2,mF1(a2,m)n2
1α + 4σ1(1 + α)− Γ̃2n(1 + α)

)
,

and

α =
a2
1,m(−2(F1(a1,m) + F2(a1,m)))n3

1 − 4(a2,mn1σ2 + F2(a2,m)Γ̃2n)

a3
2,mn

6
1 + a2,mn1(−2n1 + 4σ2) + 4F2(a2,m)Γ̃2n

,

where, for the tautochronic epicycloids, the maximum absorber amplitude is defined as:

ai,m =
1

ñi

√
ñ2
i + 1

.

Fig. 2.9 repeats the conditions shown in Fig. 2.7 with the same total absorber inertia, but

with a different ratio of absorber inertias. Here the absorber inertia ratio is calculated so

that both sets of absorbers reach their maximum values at the same torque level for the

given absorber tuning, specifically, α = 0.62, a surprisingly large value given the fact that

there is no applied torque at order 2n. Note that the corresponding maximum torque level

is predicted to be Γn,max = 0.025, closely matching the value found by simulations. These

results demonstrate the utility of the perturbation predictions. Note that the optimal mass
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ratio can also be obtained when both orders of excitation are present, but one must assume

some relationship between the different forcing order amplitudes, and found by solving the

above equations simultaneously.

The above results show the effects of the multiple absorbers on each other, as well as

the dependency of the system response on the ratio of the absorber inertias. The matter of

how these parameters affect torsional vibration levels will be considered after we describe

non-synchronous responses.

2.5 Non-Synchronous Responses

We now turn to some instabilities that can occur when multiple absorbers are used at each

order. It should be noted than in order to carry out an analytical study on the stability of

the synchronous response, one must compute the Jacobian of the set of the non-synchronous

perturbation equations, evaluate this Jacobian on the synchronous solution, and then calcu-

late the eigenvalues of this matrix. This, in fact, is not a trivial task for single order absorber

systems [8, 39], and may perhaps be impossible for sets of multiple order absorbers due to

the fact that an analytical synchronous response solution is not evident to the author. With

this in mind, the stability calculations done in this study are carried out using numerical

continuation software, and prove to be computationally inexpensive and very accurate.

Using the full, nonsynchronous perturbation equations for a system of four absorbers

(two at each order), a numerical continuation study using AUTO [15, 16] is carried out for

the conditions used in Fig. 2.7. The order n torque is swept until the bifurcation to nonsyn-

chronous response of the order n absorbers is found, in which the absorber response is similar

to that in Fig. 2.5 (c). This instability is then investigated as both the order n and order
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2n torque amplitudes are varied. As clear from Fig. 2.10, the nonsynchronous response of

the order n absorbers, caused by the order n torque, is actually due to the same bifurcation

as the subharmonic response of the order n absorbers when driven primarily by an order

2n torque. Thus, the solid and dashed-dotted bifurcation lines depicted in Fig. 2.4(a) are

actually a single curve, bounding synchronous and nonsynchronous responses of the order

n absorbers, although the character of these nonsynchronous responses appears different in

the two limiting cases, Γn = 0 and Γ2n = 0. Note that in all these simulations the order 2n

absorbers remain mutually synchronous. The maximum (cusp) amplitude of the absorbers

is shown in Fig. 2.10 as well, and it is clear that this instability occurs near the maximum

absorber amplitudes. Simulations of the full non-linear equations confirm the accuracy of

these bifurcation curves, as shown in Fig. 2.10. Also shown in Fig. 2.10 are contours of the

root mean square (RMS) values of the rotor response, generated from analytical approxima-

tions by inserting the absorber amplitudes obtained from the perturbation equations into

the scaled rotor response assumption, Eqn. 2.7. One can see that at torque levels above this

instability line, the rotor response increases dramatically in amplitude, as the absorbers go

unstable and grow towards their amplitude limits.

The curve in Fig. 2.10 provides very useful guidelines for designing multiple order ab-

sorber systems, as one must design the system to be in the stable regime, and desires to

minimize the rotor vibration amplitudes. Typically, one would have a range of the two

torque amplitudes along with their relative phase, and one would select absorber parameters

so that the synchronous response was stable for all operating conditions. Examples of this

situation are not presented here, but are straightforward to obtain using the tools developed

herein.
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Figure 2.10: Order n = 1.5 absorber synchronous response stability boundary as a func-
tion of the driving torques, for φ = 0. Torques outside the range of this curve result in
nonsynchronous responses of the order n absorbers.

2.5.1 Minimizing Torsional Vibration

In order to attenuate torsional vibrations at multiple orders, CPVA’s tuned to the multiple

orders must be used. Interestingly, it was shown above that if only the order n torsional

vibration is desired to be decreased, a system using multiple orders of CPVA’s can be more

effective than using only absorbers tuned to order n (we used 2n absorbers in addition to n,

but further adding 3n might offer even more benefit). In this part of the study we keep the

total inertia of all absorbers constant as α (defined in Table 2.1) is varied, which makes the

performance comparisons meaningful, since one expects to get better performance if more

total absorber inertia is added. Of particular interest here is the level of torsional vibration,

since its reduction is the ultimate goal of the absorber systems. This is computed from the

perturbation results for the absorber amplitudes, specifically using the scaled rotor angular

acceleration, w′, after the absorber amplitudes have been determined using Eqns. (2.10)-
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(2.13). The measure we use for the rotor torsional vibration is percent correction, defined

as the ratio of the order n component of rotor angular acceleration amplitude when the

absorbers are locked to that when they are free.

As α is varied the limiting mechanisms of the absorbers depend on the arrangement

of absorbers. If one has only a single absorber at order n, the limiting factor is the cusp

amplitudes of the absorbers and the results of Section 2.4 apply; in this section these limits

are depicted in the Figures that follow as dashed-dot curves for the limit of the order n

absorbers and as solid curves for the limit of the order 2n absorbers. If there are multiple

absorbers at order n, the limiting factor will be the instability of the synchronous response,

and the critical value Γ∗n is depicted as a dotted curve in the Figures, as calculated by

numerical continuation of the perturbation equations using AUTO.

To illustrate the main points of this section, Figure 2.11 shows a contour plot of the

torsional vibration amplitude as a function of the order n torque amplitude Γn and the

mass ratio α, where the absorbers are assumed to remain synchronous, which is analogous

to having a single absorber at each order, and there is no torque at order 2n (Γ2n = 0). In

this case the order n absorbers reach their cusps along the dashed-dot line, and the order

2n absorbers reaching cusps along the solid line. Note that these two conditions meet at

α ≈ 0.62, which is the optimal value found in the analysis of Section 2.4. For reference,

Γ∗n is shown as the dotted curve in Fig. 2.11, although it is not relevant to this case. This

indicates that the limiting condition is the loss of stability of the synchronous response when

multiple absorbers are used at order n, which will be considered below. As is evidenced in

Fig. 2.11, when desiring to attenuate vibrations at order n only and assuming a synchronous

absorber response, using all the available inertia towards order n absorbers yields the largest

correction. The addition of order 2n absorbers decreases the correction, although only by
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a small amount, and will be shown to provide a benefit in the stabilization of the order n

absorbers when the stable response assumption is lifted.

_

K
 (O

rd
er

 n
)

 

 

0.2 0.4 0.6 0.8 10.015

0.02

0.025

0.03 Order n % Correction
Kn*

Cusp (order 2n)
Cusp (order n)

65

70

75

80

85

90

Figure 2.11: Order n applied torque versus the mass ratio of the different order absorbers,
when assuming a synchronous response.

Fig. 2.12 shows the contours of torsional vibration correction for the same conditions

as Fig. 2.11, but with two absorbers at order n. Note that the limiting condition here is

Γ∗n, and that the loss of stability causes a sharp increase in the torsional vibrations at the

limit, which is well below the cusp limits. In the stable regime, the contours of the percent

correction are exactly the same as those in Fig. 2.11, although different contour lines are

labeled. This clearly indicates the importance of the stability of the synchronous response.

An interesting, and surprising, observation is the fact that the order 2n absorbers provide a

23.5% increase in the order n operating torque range, that is, the order 2n absorbers actually

stabilize the synchronous response of the order n absorbers. In this case the optimal value

of α for maximizing the torque range is approximately 0.4. This is well below the “equal

cusp” value of 0.62, but still a significant distribution of absorber inertia at order 2n, given
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the fact that the torque is purely order n. Considering the contours, one obtains a better

correction for small values of α, but α allows for a significant increase in the torque operating

range. Practically, this trend allows the tuning on the order n absorbers to be much more

aggressive (closer to the torque order), and thus results in better performance in reducing

the order n torsional vibrations.
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Figure 2.12: Order n applied torque versus the mass ratio of the different order absorbers.
As evident, using a small amount of order 2n absorbers can stabilize the order n absorbers.

2.6 Non-Tautochronic Paths

All of the previous analysis was conducted for a tautochronic path, which renders the ab-

sorber motion linear out to large absorber amplitudes. Previous researchers have conducted

extensive analysis on the dynamics of non-tautochronic path absorbers [3,34,36,47], specifi-

cally circular and cycloidal path absorbers, all for single order absorber systems. In order to

conduct analysis on these non-tautochronic paths, one must scale the absorber amplitudes to
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be small, which is not required for perturbation analysis of the tautochronic path absorbers.

Since the torque generated by the absorbers onto the rotor becomes harmonically rich at

larger absorber amplitudes, this amplitude scaling results in perturbation equations which

fail to capture the non-linear multiple order absorber crosstalk to leading order of the small

parameter. As mentioned earlier, and detailed in [39], a perturbation at leading order away

from the tautochrone can be implemented in order to analytically investigate absorber paths

which deviate from the tautochrone without having to assume small absorber amplitudes.

The question that then remains is if this O(ε) correction to the path can accurately capture

the system’s dynamics throughout the range of curves possible using the two-parameter fam-

ily of paths as explained above. In order to answer this question, the two extremes of the

family of curves are investigated, specifically circular and cycloidal paths. Referring back to

Fig. 2.3, one can see that, strictly geometrically speaking, the cycloidal path does not differ

greatly from the epicycloidal path, and in fact can almost be exactly replicated by keeping

terms to O(s8) in the perturbation away from the tautochrone, hi(si), as shown in Fig. 2.13.

It is also noteworthy that, as fully derived in [14], the nonlinear path parameter which yields

a tautochronic epicycloid, λte, can be expressed in terms of the absorber tuning as,

λte =

√
ñ2

ñ2 + 1
.

Recalling that λ = 1 yields a cycloidal path, as ñ → ∞ the tautochronic epicycloid

approaches a cycloid. One then expects the absorber tuning order to effect the accuracy of

the results, causing a general formulation of the dynamics non-tautochronic path absorbers

to be difficult.

We begin by the analysis on a single order absorber/rotor system in order to asses both
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Figure 2.13: Normalized rotor center to absorber COM length as a function of absorber arc
length for different numbers of truncations of the absorber path.

the ability of the perturbation equations to accurately estimate the dynamics of the system,

as well the effect of the absorber tuning on this ability. Shown in Fig. 2.14 are the percent
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difference in absorber amplitudes obtained from the perturbation equations to those found

by numerically integrating the full equations of motion versus the absorber tuning order for

cycloidal paths. It is know from previous researchers, and can be confirmed by numerical

simulations, that the cycloidal path causes the the absorber frequency to increase with am-

plitude, a so-called hardening nonlinearity. We therefore perform the comparisons between

the perturbation equations and the numerical simulations at a torque level which produces

an absorber amplitude equal to 90% of it’s cusp amplitude, as found from simulations. It

is clear from Fig. 2.14 that using the tautochronic path scaling to capture the dynamics

of cycloidal path absorbers is yields large errors as compared to numerical simulations at

large absorber amplitudes, although these errors are decreased as the absorber tuning order

is increased. It is therefore necessary to perform a “strongly” nonlinear analysis in to ac-

curately predict the dynamics of cycloidal path absorbers for a general tuning order. This

analysis would require the use of action/angle coordinates and could be quite involved. For

this reason, further investigation of multiple order, cycloidal path absorber systems is not

undertaken in this study.

A similar analysis on the ability to analytical investigate circular path absorbers is not

given here, as previous research has shown the detrimental instabilities that can occur for

such paths [34,36,47]. Circular path absorbers are only beneficial in their ease of implantation

and should only be considered as a last resort.
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Figure 2.14: Percent error between the perturbation equations and numerical simulations
for a single order cycloidal path absorber system vs. absorber tuning order.
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Chapter 3

Experimental Validation

The analytical predictions presented in the previous chapter are investigated through the

use of a customized experimental setup here. The experimental setup is described and a

set of parameter identification tests are conducted. Synchronous, steady state experiments

are performed on multiple order absorbers, as well non-synchronous stability tests. The

experimental data is found to agree with the theoretical results.

3.1 Experimental Setup

The experimental rig consists of a shaft (the rotor) with a mounting section for up to four

absorbers, driven by a feedback-controlled electric motor. The setup is equipped with four

absorbers here, two tuned to order ñ1 and two tuned to order ñ2, where ñ2 = 2ñ1. For the

subsequent discussion, the order ñ1 absorbers are referred to as absorbers 1 and 2 and the

order ñ2 absorbers as 3 and 4. A schematic diagram of the experimental setup is shown in

Fig. 3.1, outlining the sensors and controls, explained subsequently. A photograph of the

experimental setup, equipped with the multiple-order absorbers is shown in Fig. 3.2, giving

the reader a view of the actual components described below.

The instantaneous angle of the absorbers φ (relative to the rotor) is measured via an

optical encoder. In order to compare the measured absorber angle to the analytical formu-

lation, we must convert this angle into an arc length, S (in meters). For an epicycloidal
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Figure 3.1: Schematic of the experimental setup.

path, this measured angle can be described in terms of the absorber arc length, as shown in

Fig. 3.3, as

φ = tan−1
(
x(S)

y(S)

)
, (3.1)

where the x(S) and y(S) distances for an epicycloidal path can be shown to be

x(S) =
ρ0

1− λ2
(sin(ξ) cos(λξ)− λ2S

ρ0
cos(ξ)),

y(S) = L+
ρ0

1− λ2
(cos(ξ) cos(λξ) +

λ2S

ρ0
sin(ξ)− 1),

where ξ = (1/λ) sin−1(Sλ/ρ0), which is the local tangent angle (in radians) to the pendulum

COM curve with respect to the x axis , and L is the length of the encoder arm. In order

to get a relationship between the measured encoder angle and the absorber arc length,
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(a) (b)

(c)

Figure 3.2: Photograph of the experimental setup. (a) The entire setup, showing the motor,
rotor, and corresponding motor control and data acquisition components. (b) Multiple order
experimental absorbers. (c) Self centering rollers.

Eq. (3.1) must be solved for S in terms of φ. This can only be done numerically, when given

the values of the encoder arm length, L, non-dimensional large-amplitude path coefficient,

λ, and the path vertex radius of curvature, ρ0 (in m). These values are indeed known,

and interestingly, when one plots the absorber arc length versus the encoder angle for the
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Figure 3.3: Geometrical schematic of the measured absorber angle via an optical encoder
with a rotating arm of length, L (λte provides a tautochronic epicycloid and λ1 yields a
cycloid.

epicyloidal path formulation and compares this to the obtained absorber arc length for a

circular path (S = Lφ), the differences are negligible, as shown in Fig. 3.4. In fact the error

in calculating the arc length from a circular path assumption when the absorber is at its

amplitude limit is only 0.112%. Thus we can use the circular path assumption in order to

translate the measured encoder angle into an absorber arc length.

The instantaneous rotor speed θ̇ is also measured by an optical encoder, from which

the mean and harmonic components, as well as the angular acceleration, can be distilled.

The torque T (θ) applied to the rotor is supplied by an input voltage to the armature, and

is quantified by measuring the current sent to the motor; a current to voltage conversion
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Figure 3.4: Calculated non-dimensional absorber arc length, s, versus measured encoder
angle, φ, for epicyloidal and circular path formulations.

is set in the control box which allows the corresponding torque voltage to be displayed in

LabVIEW. Using the inertial properties of the motor given by the manufacturer, the torque

(in Newton-meters) can then be obtained from the voltage measurement. All three of these

signals (absorber angle, rotor speed, and torque) are fed into a PC running data acquisition

and control software (coded in LabVIEW), which allows for real-time viewing and post-

processing of data in the time or order (frequency divided by the mean speed) domains. The

custom written LabVIEW code also allows for PID feedback control of the mean rotor speed

to maintain a nearly constant mean speed, upon which the fluctuating torque is applied. An

error analysis has been conducted on the experimental sensors in order to obtain quantitative

measures of the accuracy of the data and is presented in Appendix A.1. An important

feature of this setup is that the fluctuating components of the applied torque are based on
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the rotational angle of the rotor, which allows for accurate engine order excitation, for which

multiple engine order harmonics can be generated, and also allows for external data from, say

a dynamometer, to be used to generate the torque pulses. The ability to change the applied

order of the torque allows one to easily investigate the influence of mistuning between the

absorber and applied torque order, without having to change the absorber hardware. Further

details of this rig are described in [40].

3.2 System Parameter Values

In order to quantify certain physical parameters associated with the experimental setup that

cannot be directly measured, specifically the rotor inertia, absorber tunings, and absorber

and rotor damping, a set of parameterization experiments are first conducted. The unknown

parameters listed above can be extracted by running the experiment under certain conditions

and utilizing the available measured quantities, which will now be explained in detail.

3.2.1 Rotor Inertia

To obtain the rotor inertia, J , the attached absorbers are locked into place at their respective

vertices, which reduces the equation of motion for the rotor to,

Jθ̈ + c0θ̇ = T0 + T sin(nΩt), (3.2)

where θ is the rotational angle of the rotor, (̇) = d()/dt, c0 is the rotor damping, and T0,

T are the amplitudes of applied mean and fluctuating components of torque, respectively.

Assuming the rotor damping force balances the mean torque, the rotor angular velocity,

θ̇ can be measured for different levels of applied fluctuating torque, T , when applied at a

52



constant order, n. The order n rotor angular acceleration fluctuations can then be computed

from the measured velocity, and are plotted versus different values of the applied order n

torque, as shown in Fig. 3.5. A line is then fit to this data and the slope of this line is

1/Jmeas, from which we obtain the rotor inertia. It should be noted that when measuring

the inertia, the absorbers are kept on and locked instead of being removed. This is due to

the fact that the bifilar absorbers do not rotate with respect to the rotor and, therefore the

inertia of the absorber about their center of mass can be added to the rotor inertia. The

rotor inertia used for analysis is then easily calculated from the measured inertia as

J = Jmeas −
M∑
i

(miR
2
i,0).

The rotor inertia is different for each of the subsequent experimental investigations, as we

add and remove absorbers for the different tests and the overall inertia ratio is desired to be

kept the same, done by adding inertia to the rotor. Therefore this test must be repeated each

time and, for this reason the obtained rotor inertia values for each experiment are presented

in the corresponding experimental investigation sections below.

3.2.2 Absorber Tunings

The absorbers were designed to be tuned to a certain order, but one must experimentally

verify the actual absorber tuning order. It can be shown [19] that amplitude of rotor angular

acceleration, when compared against the forcing order n, for a given torque level, will have

a minimum at the tuning order of the pendulum. Shown in Fig. 3.6 is the amplitude of the

order n harmonic of the rotor angular acceleration divided by the measured amplitude of

the applied order torque versus the order of the applied fluctuating torque for an order ñ1
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Figure 3.5: Amplitude of order n rotor angular acceleration versus the amplitude of applied
order n torque, with absorbers locked.

absorber. The angular acceleration amplitude is divided by the measured applied fluctuating

torque because, although the desired amplitude of torque is kept constant along the entire

order range (as specified by the user), the motor may produce small fluctuations about the

specified torque. From Fig. 3.6, it is seen that the absorber’s tuning order is ñ1 = 2.3. Similar

experiments were carried out on the other three absorbers in order to quantify each absorber’s

tuning order, where the results are presented in Table 3.1. When performing these order

sweeps, care must be given to the level of applied fluctuating torque used. All previously

studied absorber paths (circles, epicycloids, cycloids) have some sort of large amplitude,

non-linear behavior with circles producing a softening non-linearity and epicycloids and

cycloids a hardening one. If the amplitude of fluctuating torque is too large, then these

inherent non-linearities effect the measured tuning order, moving it lower or higher than the

actual value, depending on the path. If the amplitude of fluctuating torque is too small,
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the absorbers will not overcome their frictional damping force, and thus not oscillate. It is

therefore somewhat of an art form to correctly apply the right amount of fluctuating torque

for generating responses that are good for estimating the tuning order.
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Figure 3.6: Order n amplitude of rotor angular acceleration divided by the amplitude of
fluctuating torque as a function of the applied torque order, n.

3.2.3 Absorber Dampings

An equivalent viscous damping is used to model the energy dissipation mechanisms in the

experimental absorbers. In order to quantify this damping, a logarithmic decrement scheme

[45] is employed. In order to achieve a free vibration response experimentally, an amplitude of

oscillating torque which produces an absorber amplitude of ≈ 12◦ for the order ñ1 absorbers

and ≈ 7◦ for the order ñ2 absorbers is suddenly shut off, while the rotor maintains a

nearly constant speed. These absorber amplitudes were chosen to allow for a sufficient

amount of absorber decay time while at the same time keeping the absorbers in their linear
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response regime. The experimentally obtained absorber amplitudes versus there respective

times of decay are shown for both order absorbers in Fig. 3.7. As commonly found in all

undergraduate vibrations texts, the ratio between N peaks in a single degree of freedom,

free vibration decay is given by

δ =
1

N
ln

(
xi

xi+N

)
= ζωnτd,

where ζ is the non dimensional damping ratio, ωn = ñiΩ, and τd = 2π/ωn

√
1− ζ2. One

can then solve for the non-dimensional damping ratio from

ζ =
δ√

δ2 + 4π2
.

In order to overcome the quantization error inherent in the optical encoders, as well as

to calculate the average viscous damping coefficient over the entire decay, nn xi near the

beginning of the decay is used with an xi+N near the end of the decay in order to get an

average damping value.

The obtained non-dimensional damping values for each absorber are presented in Ta-

ble 3.1, for a mean rotor speed of 300 RPM, as the non-dimensional damping is defined as

µa,i = ca/(mΩ), where ζa,i = µa,i/(2ñi).

3.2.4 Rotor Damping

The analytical treatment of the system at hand involves an assumption that the rotor damp-

ing force balances with the mean torque, T0 = c0Ω, which eliminates the effect of the rotor

damping in the first order of ε. The rotor damping effect is included in the numerical simula-
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Figure 3.7: Free vibration response of both order absorbers. (a) Order ñ1 absorber. (b)
Order ñ2 absorber.

tions, though, which requires the quantification of the experimental rotor damping. In order

to accomplish this, we run the rotor at multiple constant speeds with the absorbers locked
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and measure the applied mean torque required to obtain these speeds. When the rotor spins

at a constant speed, Ω, Eq. (3.2) reduces to

c0Ω = T0.

The measured mean speed is then plotted against the measured mean torque for a range of

speeds, as shown in Fig. 3.8. If the rotor damping force is not a function of mean speed, then

the data should be linear in the mean torque with a slope of 1/c0. Looking at Fig. 3.8, the

data is not precisely linear, but a linear assumption suffices here, as the rotor damping has a

small effect on the system dynamics. The dimensional value of this damping is in Table 3.1.
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Figure 3.8: Rotor mean speed, Ω vs. the mean torque applied, T0.

All of the experimental parameters obtained by the methods described above are pre-

sented in Table 3.1.
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Table 3.1: Values of Experimental Parameters.

Parameter Definition Value
m1,2 absorber 1 and 2 mass 0.4312 kg

m3,4 absorber 3 and 4 mass 0.0482 kg

α inertia ratio between multiple order absorbers 0.106 kg
R1,0 rotor center to absorber 1 and 2 COM 0.12316 m

R3,0 rotor center to absorber 3 and 4 COM 0.123 m

ñ1 absorber 1 tuning order 2.3
ñ2 absorber 2 tuning order 2.3
ñ3 absorber 3 tuning order 4.6
ñ4 absorber 4 tuning order 4.6
µa,1 absorber 1 viscous damping 0.1

µa,2 absorber 2 viscous damping 0.1054

µa,3 absorber 3 viscous damping 0.191

µa,4 absorber 4 viscous damping 0.186

c0 rotor damping 0.0144 Nms

3.3 Steady-State Experimental Results

Utilizing the experimental setup described above, steady-state absorber and rotor responses

as functions of the amplitude of applied fluctuating torque were tested for sets of multi-

ple order absorbers. Synchronous and non-synchronous absorber responses are compared

against the perturbation results derived in the previous chapter (Eqs. (2.10) to (2.13)). The

experimental rotor angular acceleration fluctuations are compared with predictions obtained

by extracting the first three rotor harmonics from the scaled and expanded form of the rotor

angular acceleration, as given in Eq. (2.7). Numerical simulation results are also presented

for each experimental investigation.
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3.3.1 Synchronous Response

To experimentally test the synchronous response of multiple order absorbers, one absorber at

each order is unlocked and free to oscillate. The amplitude of the fluctuating torque, applied

at n = 2.29, is varied and the response of the absorbers at each order is measured through

optical encoders. Shown in Fig. 3.9 is the experimentally obtained non-dimensional ab-

sorber amplitudes versus the amplitude of applied order n torque, along with the predictions

obtained through the perturbation equations (labeled as theory) and numerical simulations.
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Figure 3.9: Experimental absorber amplitudes, s, vs. the amplitude of applied order n
torque, Γn, with perturbation and numerical simulation predictions. (n = 2.29, ε = 0.18486)

As visible from Fig. 3.9, the perturbation equations accurately predict the amplitudes of

both order absorbers for the entire torque range. The internal 2 : 1 resonance, which drives

the order ñ2 absorber is accurately captured in the experimental data, as the forcing is

directly resonating the order ñ1 absorber. There exists a small error between the predictions

and the experimental results at low torque levels, most likely due to the absorber damping
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having features that are not included the model, explained subsequently. First, the level of

absorber damping generally is a function of its amplitude [47], whereas a single effective value

is used for all amplitudes in the present study, in order to match the analytical models. In

fact, it is known that some level of nonlinear damping is present in the system, and this has

been investigated in detail for the Coulomb friction aspects of the circular path absorbers [47].

In general, the motion of bifilar absorbers involves frictional rubbing between the absorber

and flange, as well as rolling resistance of the rollers. The rubbing is particularly problematic

when the rotor axis is vertical and the rotor is run at low speeds, since gravity will promote

rubbing. (In fact, gravity is an important effect when running the system with a horizontal

rotation axis at the speeds feasible with this equipment [44]). In order to overcome some

of the difficulties associated with these effects, self-centering rollers are implemented for

the tautochronic bifilar absorbers as shown in Fig. 3.2(c) [2]. In order to center the bifilar

absorber with respect to the flange with these rollers, the absorbers must oscillate, and this

requires a certain threshold of oscillating force acting on the absorber, thus giving a physical

explanation to the damping as a function of absorber amplitude. In fact, this low amplitude

effect is similar to the dry friction measured for circular path absorbers [47]. Also, as detailed

in Section 3.2.3, the absorber damping coefficient used for experimental data is measured by

performing a logarithmic decrement on the absorber response when the oscillating part of the

applied torque is suddenly switched to zero from an amplitude that causes the absorber to

oscillate at an amplitude of about 12◦. The decrement is performed over the entire absorber

decay, and the method assumes a single degree of freedom system (ε → 0), whereas the

actual dynamics involve coupled oscillations of the rotor and absorber.

Looking at the corresponding experimental rotor harmonics, as shown in Figs. 3.10

and 3.11, the predictions again accurately match the data. The experimental order n rotor
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harmonic deviates a small amount from the predictive results at low levels of applied fluctu-

ating torque. This is due to the fact that the experimental absorber amplitude at this level

is smaller than the predictions, thus not absorbing as much of the torsional oscillations as

the model predicts. The order 2n and 3n experimental data match the predictions across

the entire range of torque, and this deviation of accuracy in the order n harmonic due to the

absorber amplitude error at small torque levels is not observed. Most likely, this is due to

the amplitudes of the higher harmonics being relatively small at these low levels of torque.

Overall, the synchronous multiple order predictions track the experimental data through-

out the range of applied fluctuating torque, confirming the accuracy of the analytical and

numerical predictions.

3.3.2 Non-Synchronous Response: Order ñ1 Absorbers Only

For the following experimental results, both order ñ1 = 2.3 absorbers are unlocked, and the

order ñ2 absorbers are removed, yielding an inertia ratio of ε = 0.226. Combinations of two

orders of applied fluctuating torque at orders n = 2.3 and 2n = 4.6 are applied. The applied

torque is increased until the non-synchronous bifurcations captured analytically in Section 2.5

are experimental observed. Four points covering the Γn,2n surface are investigated, as shown

in Fig. 3.12.

As visible from Fig. 3.12(a), the analytical stability curve, generated from a numerical

continuation of the perturbation equations, accurately predicts the torque amplitudes which

cause the absorber instabilities. The points labeled (1) in Fig. 3.12(a) exhibit the synchronous

and non-synchronous absorber responses generated from a torque at order n only. The

square data point corresponds to the experimental torque which causes the non-synchronous

response. It can be seen from Fig. 3.12(b) that their is phase difference between the two
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absorbers, and in some cases, this instability causes an absorber to increase in amplitude and

reach it’s corresponding amplitude limit. The period doubling, sub-harmonic bifurcation is

labeled as the square point (4) in Fig. 3.12(a), and arrises when the applied torque is at

order 2n only. This bifurcation causes a drastic increase in the absorbers amplitudes, and

they quickly reach their amplitude limits, as visible from Fig. 3.12(c). This sub-harmonic

bifurcation results in the absorbers oscillating completely out of phase with each other, as

captured in Fig. 3.12(d), which exhibits a short time recording of the sub-harmonic response.

3.3.3 Non-Synchronous Response: Order ñ1 and ñ2 Absorbers

For the next set of experimental results, all four of the experimental absorbers are unlocked

(two at each order). As in the previous section, the absorber instabilities in the Γn,2n torque

space are experimentally compared to the analytical results obtained in Section 2.5. For an

accurate comparison to the previous section, the ratio of the absorber inertia to that of the

rotor was desired to be the same value. In order to accomplish this, due to the added inertia

of the order ñ2 absorbers, inertial weights were added to the rotor. The corresponding

measured inertia ratio was found to be, ε = 0.218. This is a 3% decrease in the inertia ratio

used in the previous section and will suffice for our investigation.

Figure 3.14 exhibits the theoretical stability boundary as a function of the two applied

fluctuating torque orders, with experimental results for stable and unstable absorbers re-

sponses. The experimental data agrees with the analytical prediction, with the order ñ1

absorber bifurcations being the same as detailed in the previous section. Interestingly, the

addition of the order ñ2 absorbers does not increase the level of fluctuating torque which

causes the absorber bifurcations. In fact, the experimental results motivated further study

into this phenomenon.
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It was found that both the inertia ratio, ε, as well as the absorber damping effect the

stabilization of the order ñ1 absorbers through the use of higher order absorbers. Specifically,

as the inertia ratio between the absorbers and rotor changes, the optimal inertia ratio of

different order absorbers changes as well. The optimal different order absorber inertia ratio

of ≈ 0.38 given in Section 2.5 is valid for the specific inertia ratio of absorbers to rotor used

in that case (ε = 0.05). The absorber damping plays an important role in the stabilization as

well, and if the absorber damping is too large, the addition of order ñ2 absorbers will decrease

the torque level which causes the non-synchronous response of the order ñ1 absorbers. For the

experimental parameters used, it was found that a non-dimensional damping ratio coefficient,

ζ, of 0.018 was the damping threshold which caused the order ñ2 absorbers to no longer

increase in the stabilization of the order ñ1 absorbers. The absorbers used in this study have

a damping ratio of ζ ≈ 0.2, for which no apparent benefit in terms of system stabilization

is gained. This does not render the results in Chapter 2 practically unattainable however.

The damping ratio in the experimental absorbers used in this investigation should be much

larger than that used in applications, specifically automotive, for two reasons. First, the

spin rig used in this study spins in the vertical plane, causing the effects of dry friction to

be larger than in an horizontally spun rotor. Second, the damping ratio is a function of the

rotor mean speed, Ω, for which the tests conducted in this study are at a much lower speed

than in most applications.

3.4 Conclusions

The experimental setup utilized to investigate the dynamics of multiple order absorber sys-

tems has been detailed. The indirect measurement of the parameters associated with this
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setup that cannot be directly calculated is detailed. Experimental results are shown to agree

with the theoretical predictions given in the previous chapter. Specifically, synchronous

multiple order experimental absorber responses are shown to closely match the theoretical

and numerical predictions. Experimental non-synchronous responses for sets of order ñ1

absorbers quantitatively match the stability boundaries calculated through the use of a nu-

merical continuation of the perturbation equations. The experimental bifurcations of the

order ñ1 absorbers are then investigated with the addition of order ñ2 absorbers. The ex-

perimental and theoretical results are again found to be in agreement, proving the utility of

the analytical predictions for use in absorber design.
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Figure 3.10: Experimental rotor angular acceleration, yy′ vs. Γn for multiple order epicy-
cloidal absorbers compared against the perturbation and numerical predictions (n = 2.29,
ε = 0.18486). (a) First three rotor response orders, n, 2n, 3n. (b) Order n.
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Figure 3.11: (c) Order 2n. (d) Order 3n.
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Figure 3.12: Experimental stability results for a pair of order ñ1 absorbers. (a) Theoretical
stability boundary with a sample of stable and unstable experimental data points. (b)
Experimental time response of the non-synchronous absorber response corresponding to the
data point labeled (1).
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Figure 3.13: (c) Experimental time response of the sub-harmonic absorber response corre-
sponding to the data point labeled (4) in Fig. 3.12. (d) Short time sample of the sub-harmonic
instability, showing the out of phase absorber motion.
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Chapter 4

A Harmonic Balance Approach to the

Dynamics of CPVAs

In this chapter harmonic Balance (HB) methods are applied to the scaled equations of

motion Eqs. (2.7) and (2.8) as given in Section 2.3. The purpose of this analysis is that

it provides explicit formulas that predict the steady-state system response, including its

harmonic content, although without stability information. Two assumptions about the form

of the absorber amplitudes are used in the approximations, and relatively simple formulas

are derived which accurately predict absorber amplitudes and corresponding rotor response.

Predictions are validated using numerical simulations and experimental data.

4.1 General Harmonic Balance

The rotor/absorber system is dynamically complicated, as inherent nonlinearities in the ab-

sorber motion and the absorber/rotor coupling do not allow for a closed form solution for

the system dynamics. Current methods of analyzing CPVAs involve numerical simulations

and perturbation analysis. The perturbation methods do allow for accurate studies of the

system dynamics as a function of system parameters, and can capture the detrimental non-

linear instabilities inherent in the system [3, 8, 39]. For example, when the absorber path

is a circle, the absorbers behave similar to a simple pendulum and become detuned at large
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amplitudes. This detuning can cause a jump bifurcation in the pendulum’s amplitude, which

is accompanied by a phase shift in the absorber response causing amplification of the rotor

vibrations [3,36]. Denman [14] grouped a set of absorber paths into a two parameter family

of curves, one parameter controlling the linear tuning of the absorber and the other con-

trolling the large amplitude nonlinear behavior. The two extremes of this family of curves,

in terms of the nonlinear parameter, are circles (softening path) at one end and cycloids

(hardening path) at the other. Between these two extremes is a family of epicycloids, one

of which is the so called tautochronic epicyloid, which renders the absorber motion, when

decoupled from the rotor, linear over all feasible amplitudes (that is, out to the cusp on

the curve). Implementing non-circular paths can alleviate the jump bifurcation, but non-

synchronous absorber responses can still occur, due to the multiple harmonics imparted onto

the rotor from the absorber/rotor nonlinear coupling [3, 8, 39, 46]. One important aspect of

these nonlinear interactions is that the second harmonic (2n) can cause, through parametric

coupling terms, subharmonic instabilities in the system.

The perturbation methods referenced above provide an accurate representation of the

system dynamics, but involve quite complicated calculations and resulting expressions [9,39,

46]. In this chapter, we derive relatively simple formulas for the absorber amplitude and the

harmonic amplitudes of the corresponding rotor angular acceleration as a function of system

parameters. In order to obtain these formulas, the harmonic balance method is applied to

a scaled version of the equations of motion. The harmonic balance method is an efficient

way to estimate the steady-state dynamics of nonlinear systems, as commonly applied in

nonlinear electric circuits [18]. We first utilize scaling techniques in order to decouple the

absorber dynamics from those of the rotor, and two different assumptions about the form of

the amplitude of the absorbers are used to perform the harmonic balance.
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We begin by applying the harmonic balance methods to a quite general system that

involves a rotor equipped with absorbers tuned to two orders and subjected to a torque

composed of two orders. In the first harmonic balance method, the so-called general method,

the unknown steady state amplitudes of the degrees of freedom are assumed to be unknowns

and take no particular form. It will be shown that due to the complicated non-linearities

inherent in the system, usable closed form solutions for the absorber amplitude and rotor

angular acceleration as a function of the applied torque cannot be obtained by this method.

To overcome this, the applied torque is expressed as a function of the absorber amplitudes

and other parameters, which allows for accurate absorber design studies to be carried out.

In the second approach, we assume the absorber amplitude to be in the form of a power

series in the (non-dimensional) torque amplitude. This formulation allows for the absorber

amplitude to be obtained explicitly as a function of the system parameters, by collecting

harmonics of the absorber response, as well as powers of the applied torque. The utility of

this method is in the fact that relatively simple formulas for absorber and rotor response

can be obtained in terms of the other relevant parameters in the system. It will be shown

that due to the assumption about the absorber amplitude, certain solution branches for the

the absorber amplitude will not be captured, and there is some degradation in the accuracy

of this theory at large absorber amplitudes.

We begin with the harmonic balance analysis of the general system consisting of absorbers

tuned to two orders as well as forcing at two orders. This formulation will lead to the most

general form of the approximations, which can then be greatly simplified in some special cases

of interest. As previously stated, the application of harmonic balance to this system, although

providing accurate predictions to the steady-state dynamical response of the absorbers and

rotor, will fail to capture instabilities of the system response [3, 8, 23, 39]. For this reason,
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for this investigation we assume a response of the absorbers in which each group is mutually

synchronous, implemented by grouping the inertia of all the absorbers at each order into a

single effective absorber, thus simplifying Eqs. (2.7) and (2.8) into the form

w′ = Γn sin(nθ) + Γ2n sin(2nθ + φ)

+
1

1 + α

[
(2ñ2

1s1s
′
1 + ñ2

1s1g10 − s
′2
1 g
′
10)

+ α(2ñ2
2s2s
′
2 + ñ2

2s2g20 − s
′2
2 g
′
20)
]
,

(4.1)

s
′′
j + ñ2

jsj = εfj(sj, s
′
j, .., s

′, µ, ñj , nj, λ, T (θ)) +O(ε2) j = 1, 2, (4.2)

where,

fj = h′j/2− µ̃a,js
′
j + [s′j + g0j(sj)][

1

1 + α
(−2n2

1s1s
′
1 − n

2
1g01(s1)s1

+
dg01(s1)

ds1
s′1

2
+ α(−2n2

2s2s
′
2 − n

2
2g02(s2)s2 +

dg02(s2)

ds2
s′2

2
))

− Γ̃n sin(nθ)− Γ̃2n sin(2nθ + φ)],

in which εw′ = yy′ = θ̈
Ω2 is the non-dimensional rotor angular acceleration, which we use

as the measure to quantify rotor torsional vibration. Also, due to the complicated nature

of the path functions, specifically gi(si), which is explained in detail in Chapter 2 1, one

must expand Eqs. (4.1) and (4.2) in the absorber arc length si in order to obtain explicit

expressions; here we keep terms up to O(s5i ).

It has been previously found, from extensive simulation and experimental studies, that

the motion of the absorbers is very closely resembled by a single harmonic, for all paths.

1This term is specifically the radial distance from the rotor center to the absorber center multi-
plied by the dot product of the unit vectors in the rotational direction of the vertex of the absorber
path and the tangent of this curve as the absorber moves along the path.
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Using this as a guideline for the harmonic approximation of the response, we assume the

absorbers each respond at single harmonic, that is, they have the form,

s1 = A1 sin(nθ) +B1 cos(nθ), (4.3)

and

s2 = A2 sin(2nθ) +B2 cos(2nθ). (4.4)

Equations (4.3) and (4.4) which are inserted into Eq. (4.2) and harmonics are balanced.

The balancing of harmonics results in four equations in the four unknowns, A1,2, B1,2.

Commonly, the absorber amplitudes would be solved for in terms of the forcing, but in this

case the nonlinearities do not allow for a closed form solution for the unknown harmonic

amplitudes. However, by neglecting damping the phases are simplified such that one can

eliminate the B1,2 terms. The applied torques can then be solved for in terms of A1,2 and

other relevant system parameters as follows,

Γ̃n =
−(16A1(A2n

3(−8 + A2
2(ñ2

2 + ñ4
2))αε

X1

+
−2Γ̃2nn(1 + α)ε+ 2n2(2 + 2α− 2ε+ A2

1ñ
4
1ε)

X1

+
−2(1 + α)(2ñ2

1 − 3A2
1ϕ1ε)))

X1
,

(4.5)

Γ̃2n =
−(8(−8A2(ñ2

2(1 + α) + 4n2(−1 + α(−1 + ε)))

X2

−8A2
1nñ

2
1ε+ 3A2

1A
2
2nñ

2
1ñ

2
2(1 + ñ2

2)ε

X2

4A3
2(4n2ñ4

2α + 3(1 + α)ϕ2)ε))

X2
,

(4.6)
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where,

Xi =(−64 + 5A4
i ñ

4
i (1 + ñ2

i )2 + 24A2
i (ñ2

i + ñ4
i ))(1 + α)ε

i = 1, 2.

The above equations, with some manipulations that are subsequently explained in fur-

ther detail, allow for accurate prediction of the absorber response as a function of torque

amplitudes. This is essentially accomplished by choosing amplitudes for the absorber am-

plitudes and then solving for the corresponding torque amplitudes. In order to gauge the

effectiveness of the absorbers in terms of reducing torsional vibrations of the rotor, we con-

sider the rotor angular acceleration, defined as w′ in Eq. (4.1). While each absorber responds

at single harmonic, the rotor response is composed of multiple harmonics. Observations, jus-

tified by the following analysis, shows that the rotor response can be well approximated by

three harmonics. These multiple harmonics are imparted onto the rotor by nonlinear inter-

actions with the absorbers, and they can be quantified by inserting the absorber amplitude

approximations, Eqs. (4.3) and (4.4), into the rotor angular acceleration equation, Eq. (4.1),

and collecting harmonics. This results in terms for the rotor angular acceleration at three

different harmonic orders, with harmonic amplitudes given by,

w′n =
−A1n

2(−64 + A4
1ñ

4
1(1 + ñ2

1)2 + 8A2
1(ñ2

1 + ñ4
1))

64(1 + α)
+ Γ̃n, (4.7)

w′2n =
16Γ̃2n(1 + α)− n(−16A2

1ñ
2
1 + A2n

16(1 + α)

× (−64 + A4
2ñ

4
2(1 + ñ2

2)2 + 8A2
2(ñ2

2 + ñ4
2))α),

(4.8)

and

w′3n =
3A3

1n
2ñ2

1(1 + ñ2
1)(16 + 3A2

1(ñ2
1 + ñ4

1))

128(1 + α)
. (4.9)
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Substitution of the torques from Eqs. (4.5) and (4.6) into these equations allows one to

express the rotor angular acceleration harmonics in terms of the absorber amplitudes. While

the expressions are straightforward, the actual calculation is not so. Typically one specifies

the system and input parameters, including the torque amplitudes, and solves for A1,2 from

Eqs. (4.5) and (4.6), using numerical methods. However, a well known approach to avoiding

numerics is to vary the absorber amplitude and solve for the corresponding torque, since

it is known explicitly. However, this is not possible when two torques are present. A way

to perform this operation in this case is to assume a linear relationship between the two

torque harmonic amplitudes and a constant relative phase between them, i.e Γ̃2n = βΓ̃n,

which is a good assumption for some automotive applications [17]. With this assumption,

one is still left with the problem of obtaining A2 from Eq. (4.6), which is a cubic equation.

One approach, which will be shown to be limited in accuracy, but does allow one to obtain

explicit expressions, is to keep only the terms linear in A2, which yields

A2 = −

(
A2

1nñ
2
1 + Γ̃n(1 + α)β

)
ε

ñ2
2(1 + α) + 4n2(−1 + α(−1 + ε))

. (4.10)

One must now only specify the range of amplitudes for A1, and then Γ̃n can be ob-

tained, from which all other results follow. This process will be presented subsequently

using examples.
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4.2 Harmonic Balance Using a Power Series in Torque

Amplitude

We now turn to a harmonic balance approach in which the absorber amplitudes are assumed

to have a special form, specifically as a power series in the applied torque amplitude. This

approach works since the torque amplitudes are non-dimensionalized by the twice the rotor

kinetic energy (JΩ2) and are therefore small in practice. This series expansion approach

yields convenient closed form solutions for the harmonic amplitudes for the absorber and the

rotor angular acceleration as a function of the applied torques and system parameters.

The absorber amplitudes are expressed as,

s1 = (
k∑
i=1

CiΓ̃
i
n) sin(nθ) + (

k∑
i=1

DiΓ̃
i
n) cos(nθ),

and

s2 = (
k∑
i=1

(EiΓ̃
i
n +GiΓ̃

i
2n)) sin(2nθ) + (

k∑
i=1

(FiΓ̃
i
n +HiΓ̃

i
2n)) cos(2nθ).

We have included the Γ̃n terms in the s2 equation in order to capture the effects of the inter-

nal resonances caused by the multiple harmonics imparted onto the rotor by the absorbers.

However, we do not include terms of the form
√

Γ2n in the s1 expansions, which would be

needed to capture the subharmonic vibration absorber [9, 22]. Inserting the above expres-

sions into Eq. (4.2), collecting orders of Γ̃n,2n, and balancing harmonics, linear equations

for the coefficients are obtained. The terms that are linear in the applied torque, C1, D1,
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E1, F1, G1 and H1, are found to be,

C1 =
4n(1 + α)(µ̃a,1 + µ̃a,1α + 2G1Γ̃2nn

2α)ε2

P1
(4.11)

D1 =
1

−P1
(−(2(1 + α)ε(−2ñ2

1(1 + α) + 2n2(1 + α− ε)

+ 4Γ̃2nH1n
3αε+ Γ̃2nn(1 + α)ε)))

(4.12)

E1 = F1 = 0

G1 =
2µ̃a,2nε

2

4µ̃2
a,2n

2ε2 + (ñ2
2 + n2(−4 + 4αε

1+α))2
(4.13)

H1 = −
ε(ñ2

2 + n2(−4 + 4αε
1+α))

4µ̃2
a,2n

2ε2 + (ñ2
2 + n2(−4 + 4αε

1+α))2
(4.14)

where,

P1 = 4ñ4
1(1 + α)2 − 16Γ̃2

2n(G2
1 +H2

1)n6α2ε2 − n2(1 + α)

× (8ñ2
1(1 + α− ε) + (Γ̃2

2n − 4µ̃2
a,1)(1 + α)ε2) + 4n4

× ((−1 + ε)2 + α2(1− 2Γ̃2
2nH1ε

2)− 2α(−1 + ε+ Γ̃2
2nH1ε

2))

Note that the above equations do not capture the perturbation away from the tautochrone,

ϕi, since they capture the linear response of the absorber. Solving for the higher order

expansions in Γn,2n, truncating at k = 5, one finds C2,4, D2,4, E3,5, F3,5, G2,4, H2,4 = 0,

and the expressions for C3,5, D3,5, E2,4, F2,4, G3,5, and H3,5 are complicated functions

of ε, ñ1,2, n, µa,1,2, and ϕ1,2. These expressions are given in Appendix B.2, and although

they are complicated in their general form, they simplify in many practical cases. Also, the

parameters in the expressions are always known explicitly, which allows one to simply insert

values into the expressions for an accurate representation of the absorber amplitude. Once
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the expressions for the constants are known, the absorber amplitudes can easily be found

through

|s|1 =

√√√√√(
k∑
i=1

CiΓ̃
i
n)2 + (

k∑
i=1

DiΓ̃
i
n)2, (4.15)

|s|2 =

√√√√√(
k∑
i=1

EiΓ̃
i
n +GiΓ̃

i
2n)2 + (

k∑
i=1

FiΓ̃
i
n +HiΓ̃

i
2n)2. (4.16)

With the amplitude of the absorbers known, operations similar to those above can be

performed in order to get an accurate representation of the rotor response, outlined as

follows: The absorbers’ responses are expanded using Eq. (4.1) and powers of the applied

torque as well as harmonics of each order are collected. The amplitudes of the first two

harmonics of the rotor angular acceleration, w′lin, when one keep only linear terms in the

torque amplitudes, are given by,

w′lin,n = Γ̃n

√√√√(C2
1n

4 + (1 +D1n
2 + α)2)

(1 + α)2
(4.17)

w′lin,2n = Γ̃2n

√
(16G12n4α2 + (1 + α + 4H1n2α)2)

(1 + α)2
. (4.18)

The higher harmonics that are imparted onto the rotor response by system nonlinearities

obviously cannot be captured by the linear response assumption. In order to capture these

higher harmonics, and obtain a more accurate representation on the order n rotor response,

one must include higher orders of Γn,2n in the approximation. The inclusion of these higher

order terms yields additional terms in all orders of the rotor response; these are presented

in their most general form in Appendix B.2 for reference.
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4.3 Examples

The accuracy of the equations formulated in the previous section will now be investigated

through some cases studies of special interest. We first look at the most general system

utilizing the general form of the approximations developed above, and extend the study to

include some special cases with simplifying assumptions, as well as the effects of perturbations

away from the tautochronic path.

4.3.1 Absorbers and Forcing at Two Orders

Assuming the system at hand consists of two absorbers, with one absorber having a tuning

twice of that of the other, as well as applied torques at each of these orders, one can use

Eq. (4.5) in its presented form, along with the solution for A2 as a function of A1 as

presented above, to capture the absorber amplitude as of function of torque. The absorber

amplitude approximations derived from assuming a power series in the applied torque can

also be utilized to look at the linear response assumption, done by simply truncating the

series expansions at k = 1 in Eqs. (4.15) and (4.16). The nonlinear responses can also be

used through the inclusion of the higher order terms in the expansions. For the subsequent

examples, the following non-dimensional parameters are used: ñ1 = 1.5 (corresponding to

a three-cylinder four-stroke engine), ñ2 = 3, α = 0.5, µa,1 = 0.1, µa,2 = 0.2, ε = 0.05,

and the relationship between the multiple torques is assumed to be Γ̃n = 0.25Γ̃2n with zero

phase between the two torques, which act directly at the resonant frequency of the absorbers

(n = ñ1 = 1.5, 2n = ñ2 = 3). There exists a maximum amplitude for each absorber, |s|max,

referred to as the “cusp amplitude” (since it corresponds to a cusp on many paths), which is

the maximum amplitude the absorbers can achieve, due to the fact that non-circular paths
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becomes undefined beyond this point. This amplitude is found by solving for |s|max from

g(|s|max) = 0. In practice, stoppers are implemented at an amplitude that are typically

close to, but less than this cusp amplitude. Due to the expansions in the absorber arc length

that are employed, this amplitude limit is not captured in the approximations, but is evident

in the numerical simulations.

We take a detour here to explain the comparisons between the two HB methods. As

previously mentioned, the absorber amplitude is expanded to O(s5i ). The accuracy of the

power series in the applied torque HB method does not improve with orders of torque greater

than O(Γ3), as shown in Fig. 4.1, due to the breakdown of the amplitude expansions of g(s)

and other path functions near the cusp of the path.
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Figure 4.1: Tautochronic epicycloid absorber amplitude, |s|, versus amplitude of fluctuating
torque, Γn for different numbers of truncation for the power series HB method.

Figure 4.2 exhibits the approximate absorber amplitudes as a function of the applied

torques using both HB methods, with numerical simulations of the coupled, nonlinear equa-
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Figure 4.2: Absorber amplitudes, |s1,2|, vs. amplitude of applied order torques, Γn,2n, from

the different harmonic balance (HB) approximations, with numerical simulations, for ϕ = 0
(tautochronic epicycloid).

tions of motion for baseline comparison. As is visible from Fig. 4.2, both of the harmonic

balance approximations provide an accurate representation of the absorber amplitude for

the entire range of torque. There exists a small error between the approximations and the

numerical simulations which occurs when the order ñ2 absorber approaches its amplitude

limit. The higher order approximations capture some of the non-linear effects of the system

at larger amplitudes, which is visible from the hardening of the absorber amplitude near the

cusp. Interestingly, the linear approximation is accurate for the order ñ1 absorber for the

torque range used here, which is due to the fact that we are using the tautochronic path, and

that this absorber does not get very close to its cusp value. Below we show that the accu-

racy of the linear response degrades as the perturbation away from the tautochrone becomes

non-zero. The accuracy of the linear approximation of the order ñ2 absorbers degrades sig-

nificantly even at a very small torque level. This is due to the parametric excitation of the

order ñ2 absorber by the order ñ1 absorber, resulting from the nonlinear coupling between
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the absorbers and rotor. The amplitude of the parametric excitation here is the square of

the order ñ1 absorber amplitude, for which the linear approximation will obviously break

down, but is captured by the higher order approximations.
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Figure 4.3: Rotor angular acceleration, yy′, harmonic amplitude approximations using the
amplitude expansions, vs. the amplitude of applied order torques, Γn,2n. (a) Full torque

range showing approximations out to O(Γ3
n). (b) The zoomed in region near the origin.
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The approximations of the harmonic amplitudes of the non-dimensional rotor angular

acceleration, yy′, versus the applied torques are shown in Fig. 4.3 for the power series HB

method. The linear harmonic balance approximation for the order n torque is in good

agreement with the numerical simulations for a limited torque range, which breaks down

when the order ñ1 absorber is at ≈ 50% of it’s amplitude limit. Including the higher

order terms in the approximation, the order n, as well as the order 2n and 3n harmonic

approximations, are also in good agreement with the numerical simulations, again deviating

in accuracy at the torque level which causes the absorber amplitude approximations to lose

some accuracy.

Figure 4.4 exhibits the harmonic amplitudes of the rotor angular acceleration as a function

of the applied torque amplitudes using the general HB method, with A2 expressed as a

function of A1, as given in Eq. (4.10). This assumption makes this method not as accurate in

predicting the rotor harmonic amplitudes. In fact, it can easily be shown that for a linearized

absorber/rotor model with zero damping, the absorber counteracts all of the applied torque

when perfectly tuned, resulting in only a DC response from the rotor [12]. Due to nonlinear

effects, however, the rotor angular acceleration is not identically zero, and the harmonic

amplitudes grow like nonlinear powers of the torque amplitudes, that is, like Γmn with m ≥ 2.

4.3.2 Multiple Absorbers with Single Order Forcing

It is of interest to consider the case of a rotor subjected to forcing at a single order and

fitted with multiple order absorbers. This has automotive applications, for example, in

multi-displacement engines [33]. In order to investigate the accuracy of the approximations

for this situation, one can set Γ̃2n = 0 in the above expressions (Eqs. (4.5), (4.6), (4.8),

(4.11) and (4.12)), resulting in some simplification of the formulas. Equation (4.5) and the

85



0 0.005 0.01 0.015 0.02 0.025

0

5

10

15e10−3

Γn, 4Γ2n

y
y
′

Order n, General HB

Order n, Simulations

Order 2n, General HB

Order 2n, Simulations

Order 3n, General HB

Order 3n, Simulations

Figure 4.4: Harmonic amplitudes of the rotor angular acceleration, yy′, predicted using
the general HB method vs. the amplitude of applied order torques, Γn,2n. The absorber

amplitudes A1 and A2 are assumed to satisfy Eq. (4.10).

expression for A2 are as presented above without the Γ̃2n terms, and the linear terms in the

expansions in Γn reduce to,

C1 =
µ̃a,1nε

2

µ̃2
a,1n

2ε2 +
(
ñ2

1 + n2
(
−1 + ε

1+α

))2
,

D1 = −
ε
(
ñ2

1 + n2
(
−1 + ε

1+α

))
µ̃2
a,1n

2ε2 +
(
ñ2

1 + n2
(
−1 + ε

1+α

))2
,

and the higher order terms can easily be found by setting Γ̃2n = 0 in the expressions provided

in the appendix. In this case the order ñ2 absorber is driven only through the nonlinear
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crosstalk with the order ñ1 absorber, and its amplitude is described through the E2 and F2

terms given in the appendix. An example of the absorber amplitude approximation, as a

function of Γn, and results from simulations, are shown in Fig. 4.5. It interesting to note

that the order ñ2 absorber grows in amplitude and reaches its cusp limits even though the

system is being forced only at n = ñ1. This is due to the aforementioned nonlinear crosstalk

between the multiple order absorbers, which is accurately captured by both harmonic balance

methods. As in Fig. 4.2, the approximations decrease in accuracy near the cusp amplitudes,

but are valid over a large torque range. The rotor responses for both HB methods (expansions

in Γn and general) are presented in Figs. 4.6 and 4.7, and exhibit the same trends as Figs. 4.3

and 4.4. The importance of the ratio of the absorber masses as a design parameter is made

evident in these figures, as both absorbers reach their respective amplitude limits for the

same level of torque in Fig. 4.5. This is a desirable feature of the response, which does not

hold for the example presented in Fig. 4.2.

4.3.3 Single Order Absorber with Single Order Forcing

We now turn to the simplest case, that is, a single order absorber with the rotor subjected

to a single order torque. The results are obtained from the above approximations by setting

α = 0 (the mass ratio between the different order absorbers), which results in the following

expressions for the linear terms in the expansions in Γn,

C1 =
µan1ε

2

−µ2
an

2
1ε

2 − (−n2
1 + ñ2

1 + n2
1ε)

2,
(4.19)

and

D1 =
ε(−n2

1 + ñ2
1 + n2

1ε)

−µ2
an

2
1ε

2 − (−n2
1 + ñ2

1 + n2
1ε)

2
. (4.20)
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Figure 4.5: Absorber amplitude, |s|, vs. amplitude of applied order n torque, Γn, from
different order harmonic balance (HB) approximations, with numerical simulations, for ϕ = 0
(tautochronic epicycloid).

Therefore, the first harmonic approximation for the amplitude of s, out to first order in Γ̃n,

that is, |s|lin, is thus given by truncating at k = 1 in which

(C2
1 +D2

1)Γ̃2
n = (

ε2

ñ4
1 + n4

1(ε− 1)2 + n2(2ñ2
1(ε− 1) + µ2

aε
2)

)Γ̃2
n.

The higher order terms in Γn for the absorber amplitude, C3 and D3, can also be included

and simplified by making the above assumptions to the expressions given in the appendix.

The relationship between Γn and the absorber amplitude A1 obtained from the general

harmonic balance method also simplify as follows,

Γ̃n =
32A1(−2ñ2

1 + n2(2− 2ε+ A2
1ñ

4
1ε) + 3A2

1εϕ)

(−64 + 5A4
1ñ

4
1(1 + ñ2

1)2 + 24A2
1(ñ2

1 + ñ4
1))ε

, (4.21)
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Figure 4.6: Rotor angular acceleration amplitude approximations using the amplitude ex-
pansions, yy′, vs. the amplitude of applied order n torque, Γn. (a) Full torque range showing

approximations out to O(Γ3
n). (b) The zoomed in region near the origin.

and the first three rotor harmonics simplify to,

w′n =
1

64
(64Γ̃n − A1n

2(−64 + A4
1ñ

4
1(1 + ñ2

1)2

+ 8A2
1(ñ2

1 + ñ4
1))),
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Figure 4.7: Harmonic amplitudes of rotor angular acceleration |yy′| vs. Γn, including ap-
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w′2n = A2
1nñ

2
1, (4.22)

and,

w′3n =
3

128
A3

1n
2ñ2

1(1 + ñ2
1)(16 + 3A2

1(ñ2
1 + ñ4

1)). (4.23)

The amplitude of the absorber as a function of Γn, using the harmonic balance approxi-

mations and compared to simulations of the full nonlinear equations of motion is shown in

Fig. 4.8. The linear absorber amplitude approximation is accurate here to ∼ 50% of the

torque which causes the absorber to reach its amplitude limit, and, in this case, with a single

absorber only, the general harmonic balance method is more accurate than the power series

in the applied torque method near the amplitude limits. This is due to the breakdown of

the expansions in the applied non-dimensional torque near the absorber cusps.

The two HB approximations of the harmonic amplitudes of yy′ versus Γn, and simulation

results, are shown in Figs. 4.9 and 4.10. The linear harmonic balance approximation is again
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Figure 4.8: Absorber amplitude, |s|/|s|max, vs. Γn, from the linear theory, the two nonlinear
harmonic balance (HB) approximations, and numerical simulations, for ϕ = 0 and α = 0.

shown to be in good agreement with the numerical simulations until the torque level ap-

proaches around 50% of that which causes the absorbers to reach their cusp limits, following

the deviation of the absorber approximations from the simulations. In order to increase the

accuracy of the order n approximation, as well as to estimate the amplitudes of the higher

harmonics on the rotor, we again must include the higher order terms in the expansions. As

shown in Fig. 4.9, the higher order approximations capture some of the nonlinear effects of

the order n torque as well as the order 2n and 3n torques, and provide reliable results out

to torque amplitudes at which the absorbers reach ≈ 70% of their cusp amplitude.

4.3.3.1 Non-Tautochronic Paths

The above results show good agreement between the theory and the numerical simulations

for the tautochronic path, up to certain torque levels near to where the absorbers reach

their cusps. We now investigate the accuracy of the method for non-tautochronic paths,
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Figure 4.9: Approximations of the harmonic amplitudes of yy′ obtained using the amplitude
expansions, vs. Γn, for ϕ = 0 and α = 0; comparison with simulation results are also
included.
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Figure 4.10: Approximations of the harmonic amplitudes of yy′ obtained using the general
HB method, vs. Γn, for ϕ = 0 and α = 0; comparison with simulation results are also
included.

specifically a circle. Utilizing the perturbation away from the tautochrone in the form of

h = ϕs4, we investigate the absorber and rotor responses for a circular path absorber. Shown
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in Fig. 4.11 is the estimated absorber amplitude versusΓn obtained using both harmonic bal-

ance approximations. As found by previous researchers, the circular path absorbers exhibit

an instability at a certain torque level which causes a jump in their amplitude [36]. This

occurs since, when the rotor spins at a constant speed, circular path absorbers behave similar

to a softening Duffing oscillator with bistability in the force response. This can be seen in

the numerical simulations in Fig. 4.11. However, the results from the power series harmonic

balance method fails to capture the large amplitude solution branch; this is expected, since

this approach does not allow for multiple solution branches. In contrast, the general har-

monic balance approach does capture the bistability, which is due to the fact that the form

of the amplitude is not constrained to be of a certain form, thus allowing multiple solutions

to be obtained. Figure 4.12 shows the rotor angular acceleration harmonics as a function of

Γn for the power series HB method along with simulation results. One can see that the nu-

merical simulations capture the amplification of the torsional vibrations due to the absorber

jump instability, but, as noted above, this HB approximation fails to capture the jump phe-

nomenon. Figure 4.13 shows the rotor response as estimated from the general HB method

along with simulations. This approximation is much more accurate than the power series

approach; it captures the jump instability, and is also very accurate in estimating the higher

order harmonics. In fact, one can easily calculate the torque level which causes the absorber

to go unstable, denoted here by Γ∗n. This is done by setting the derivative of Eq. (4.21)

with respect the absorber amplitude, A1, equal to zero, solving for the corresponding value

of A1, and inserting it back into Eq. (4.21). Performing these operations for the conditions

in Fig. 4.11, it is found that Γ∗n = 0.0083242, which matches the numerical simulation data

quite well.

It should be noted that in practice absorbers are often overtuned, that is, designed
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Figure 4.11: Absorber amplitude, |s|, vs. Γn, from the two HB approximations, along with
numerical simulations, for a perfectly tuned circular path absorber.

with ñ > n, in order to alleviate the absorber jump instability [3, 36]. This is especially

important for circular path absorbers, where detuning extends the stable torque range, but

at the expense of absorber effectiveness [3, 36]. Since increasing the detuning makes the

absorber response more linear over a large torque range, the power series HB method likewise

improves in accuracy, and becomes quite accurate when the absorber is overtuned as little as

2%. We present an example case for a circular path absorber overtuned by 5%, (ñ1 = 1.575).

The estimated absorber amplitude versus Γn for both HB methods, and comparisons with

simulations, are shown in Fig. 4.14. With the detuned absorber, the response is stable out to

a very large level of applied torque, specifically, about 6.3 times the torque level which caused

the perfectly tuned absorber to jump. Both harmonic balance estimations are very accurate
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Figure 4.12: Approximations of the harmonic amplitudes of the rotor angular acceleration
obtained using the series expansion HB method, vs. Γn, along with results from numerical
simulations, for a perfectly tuned circular path.
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Figure 4.13: Approximations of the harmonic amplitudes of the rotor angular acceleration
obtained using the general HB method, vs. Γn, along with results from numerical simula-
tions, for a perfectly tuned circular path.

out to large torque amplitudes here, and it can be shown the same accuracy follows for all

detuned absorber paths. The rotor response for the power series HB approach is shown in
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Fig. 4.15, and for the general HB method in Fig. 4.16. As expected from the accuracy of the

absorber response approximations, both methods are very accurate in predicting the rotor

harmonic approximations over a large torque range.
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Figure 4.14: Absorber amplitude, |s|, vs. Γn, obtained using different order HB approxima-
tions, along with results from numerical simulations, for a detuned circular path.

4.4 Experimental Testing

Utilizing the experimental setup described in Chapter 2, we investigate the accuracy of

the above analytical and numerical approximations. Single order tautochronic and circular

path absorber systems are tested, as well as multiple order tautochonic absorbers. The ex-

perimental data is found to confirm the accuracy of the harmonic balance approximations

developed above for all cases considered. The experimental observations are presented in

the same format as the above analytical and numerical investigations, beginning with mul-

tiple order absorbers and concluding with single order, non-tautochronic absorbers. When

showing experimentally measured quantities we use their normalized versions, matching the
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Figure 4.15: Approximations of the harmonic amplitudes of the rotor angular acceleration
obtained using the series expansion HB method, vs. Γn, along with results from numerical
simulations, for a detuned circular path.
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Figure 4.16: Approximations of the harmonic amplitudes of the rotor angular acceleration
obtained using the general HB method, vs. Γn, along with results from numerical simula-
tions, for a detuned circular path.

non dimensional quantities used in the analysis.
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4.4.1 Tautochronic Absorbers at Two Orders

Epicycloidal path absorbers tuned to orders ñ1 = 2.3 and ñ2 = 4.6, as described in Chapter 3

are tested to investigate the accuracy of the multiple order harmonic balance methods. The

physical parameters used in the subsequent experimental results are summarized in Table 4.1.

Table 4.1: Physical Multiple Order Epicycloidal Path Experimental Parameters.

Physical Parameter Definition Value
m1 Order ñ1 Absorber mass 0.4313 kg
m2 Order ñ2 Absorber mass 0.0482 kg
α Different order absorber inertia ratio 0.0106
R1,0 Rotor center to absorber 1 COM (at vertex) distance 0.12316 m

R2,0 Rotor center to absorber 2 COM (at vertex) distance 0.12 m

µa,1 Absorber 1 viscous damping 0.1

µa,2 Absorber 2 viscous damping 0.191

ε Absorber to rotor inertia ratio 0.18486
Ω Rotor mean speed 300 RPMs

Figure 4.17 shows experimental absorber amplitudes versus the amplitude of the fluctu-

ating part of the applied torque. The experimental torque is applied at a single order only,

n = 2.29, which excites the order ñ1 absorber resonantly, and the internal 2 : 1 resonance

drives the order ñ2 absorber. As visible from Fig. 4.17, both of the harmonic balance meth-

ods accurately predict the experimental absorber amplitudes. As expected, the general HB

method captures the large amplitude hardening of the order ñ1 absorber more accurately

than the power series HB method, although the power series method is more accurate at

lower torque levels, for both absorbers, due to the inclusion of damping in that approach. At

low torque levels, both the numerical simulations and the HB approximations differ slightly

from the experimental results, which could be due to a number of factors, perhaps most

importantly, assumptions made about the absorber damping. As described in Chapter 3,
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a constant effective absorber damping value is used for each absorber, whereas in fact the

absorber damping is estimated using coupled absorber/rotor free vibration data, and it is

known that the damping level depends on amplitude.

Considering the harmonics of rotor angular acceleration, as shown in Figs. 4.18 and 4.19

for the power series HB method and Figs. 4.20 and 4.21 the general HB method, the experi-

mental results track both predictions quite well, with negligible differences between the two

methods in terms of approximating the experimental results. Interestingly, recalling Fig. 4.7,

the accuracy of the general HB method in approximating the rotor harmonics for a similar

system was significantly less than that for the power series HB method. The explanation for

the increase in accuracy for the general HB method here can be attributed to the fact that

in Fig. 4.7, the order ñ1 absorber was being forced precisely at its tuning order, whereas

here there is a small (0.05%) detuning. Although this detuning is very small, the general

HB method improves drastically in accuracy, as noted in Section 4.3.3.1.

There exists some deviation in the order n rotor harmonic approximations at small torque

levels, specifically, the experimental data is larger in amplitude than the predictions. This is

due to the fact that the absorber amplitude at this level is smaller than the approximations,

thus not absorbing as much of the torsional oscillations as the model predicts. Also, near

the torque level which causes the order ñ2 absorber to reach it’s cusp, the order 2n and

3n experimental rotor harmonics are smaller in amplitude than predicted. This can be

attributed to two effects. First, the experimental rotor harmonics are computed by taking

a digital Fourier Transform of the measured time response of the rotor speed. As not all

experimental data samples are taken for the same time period, some leakage of the higher

rotor harmonic amplitudes could occur in the Fourier Transform computation, causing one to

calculate a lower amplitude of the desired harmonic than measured. Second, when decoupling
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Figure 4.17: Experimental absorber amplitudes, s, versus the amplitude of order n torque,
Γn compared against the harmonic balance approximations for multiple order absorbers. (a)
Series expansion HB method. (b) General HB method.
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Figure 4.18: Experimental rotor angular acceleration, yy′ vs. Γn for multiple order epicy-
cloidal absorbers compared against the power series HB approximation. (a) All three rotor
response orders, n, 2n, 3n. (b) Order n.

the absorber dynamics from those of the rotor, one must assume that the amplitude of the

applied mean torque balances the mean rotor damping torque, that is, T0 = c0Ω, thus
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Figure 4.19: (c) Order 2n. (d) Order 3n. Coorsponding with Fig. 4.18

eliminating the effects of the rotor damping from the model. Numerical simulations have

shown that if one increases the rotor damping and compensates for this by increasing the

mean torque level, the corresponding rotor angular acceleration amplitudes will be lower.
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Figure 4.20: Experimental rotor angular acceleration, yy′ vs. Γn for multiple order epicy-
cloidal absorbers using the general HB approximation. (a) All three rotor response orders.
(b) Order n only.

This is a higher order effect that we do not investigate here, but warrants further study.

Overall, both of the HB methods are accurate in predicting the absorber and rotor
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Figure 4.21: (c) Order 2n only. (d) Order 3n only. Coorsponding with Fig. 4.20

response of a system equipped with internally resonate multiple order absorbers, confirming

the utility of the HB methods for designing such systems.
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Figure 4.22: Experimental absorber amplitude, s, versus the amplitude of order n torque,
Γn compared against the harmonic balance approximations for a single order tautochronic
absorber.

4.4.2 Single Order Tautochronic Path Absorber

Utilizing the order ñ1 epicycloidal path absorber used above, with the order ñ2 absorber

locked, we investigate the validity of the HB approximations for a single order tautochonic

absorber. The parameters defined in Table 4.1 apply to this case, except for two: first, the

inertia ratio which changes to ε = 0.1642, due to only one absorber being active and the

other locked; and well the order of the applied torque is taken to be exactly at the absorber’s

tuning order, that is, n = ñ = 2.3.

The experimentally obtained absorber amplitude versus Γn is compared against both HB

methods and numerical simulations in Fig. 4.22.

Again, both HB methods accurately capture the experimental observations for a wide
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range of applied torque. The general method better captures some of the absorber hardening

near its amplitude limits, but both methods degrade in accuracy at this limit. Just as in

the multiple order absorber case, the experimental absorber amplitudes are smaller than the

predictions at small torque levels, which is consistent with the previous results. One can

see the effect of this error in estimating the absorber amplitude at small torque levels in the

corresponding order n rotor harmonic, as shown in Figs. 4.23 and 4.24 for the power series

HB method and in Figs. 4.25 and 4.26 for the general HB method.

The fact that the experimentally measured absorber amplitude is smaller than the pre-

dictions at the small torque levels again causes a similar error in the order n rotor response.

Interestingly, this trend does not seem to carry over to the higher order harmonics, mainly

due to their respective amplitudes being relatively small at this torque level. The accuracy of

both methods in approximating the higher order rotor harmonics is similar for this system.

The accuracy difference between the two methods is visible in the estimation of the order

n harmonic, where the accuracy of the general method is much lower than the power series

HB method. This is surprising, since in the multiple order absorber case, a .05% detuning

causes the general method to be much more accurate in modeling the order n torque, where

here we are forcing directly at the absorbers tuning order. Again, both methods are effective

overall in predicting the absorber and rotor response. Also, when the absorber is exactly

tuned, the absorber damping has a more significant effect, and it is included in the power

series method but not in the general method.

4.4.3 Single Order Circular Path Absorber

We now turn to an experimental investigation of circular path absorbers, which exhibit

nonlinear behavior at much smaller amplitudes, due to the softening nature of the path. A
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Figure 4.23: Experimental rotor angular acceleration, yy′ vs. Γn for a single order epicy-
cloidal absorber compared with the power series HB approximation. (a) All three rotor
response orders, n, 2n, 3n. (b) Order n.

perfectly tuned circular path absorber is first tested, followed by investigation a detuned

circular path absorber for different inertia ratios. In order to experimentally test circular
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Figure 4.24: (c) Order 2n. (d) Order 3n. Coorsponding with Fig. 4.23

path absorbers, the T-shaped compound pendulum absorber used in [32, 47] and shown

in Fig. 4.36 is used. It must be noted here that, unlike bifilar absorber suspensions, this

configuration allows the pendulum to rotate with respect to the rotor. One must then include
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Figure 4.25: Experimental rotor angular acceleration, yy′ vs. Γn for a single order epicy-
cloidal absorber compared with the general HB approximation. (a) All three rotor response
orders, n, 2n, 3n. (b) Order n.

the rotational inertia of the pendulum with respect to its center of mass when defining the

109



0 0.05 0.1 0.15
0

0.05

0.1

Γ (Order n)

y
y

′

 

 

Order 2n, Experiment

Order 2n, Simulations

Order 2n, General HB

Absorber Locked

(c)

0 0.05 0.1 0.15 0.2
0

0.05

0.1

Γ (Order n)

y
y

′

 

 

Order 3n, Experiment

Order 3n, Simulations

Order 3n, General HB

Absorber Locked

(d)

Figure 4.26: (c) Order 2n. (d) Order 3n. Coorsponding with Fig. 4.25

tuning order of the absorber, which can be found to be,

ñ =

√
RL

L2 + ρ2
,
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where R is the distance from the rotor center to pivot point of the absorber, L is the distance

from the pivot point to the absorber center of mass, and ρ is the pendulums radius of gyration.

The analysis presented in the previous sections is adequate for a point mass, or a bifilar

design, where the rotational inertia of the absorber with respect to its center of mass can be

grouped into the rotor inertia, J . Previous analysis [33,47] has shown that one can account

for this rotational inertia and formulate the non-dimensional absorber and rotor equations

of motion in the same form as Eqs. (2.2) and (2.3) by including a simple dimensional scaling

constant when describing the non-dimensional absorber arc length, defined as,

s =
Lφ

β
,

where φ is angle the absorber swings at with respect to its vertex position, and β is the

dimensional scaling constant. One then finds that by choosing β = L(1 + ñ2), the equa-

tions of motion for the compound pendulum absorber can be put into the necessary form

for comparison with bifilar absorbers. For the subsequent plots, the experimental physical

parameters used for these absorbers are presented in Table 4.2.

Table 4.2: Circular Path Absorber Physical System Parameters.

Circular Path Parameter Definition Value
m Absorber Mass 0.225 kg
R Rotor Center to Absorber Pivot Point Distance 0.118 m
L Absorber Pivot Point to Absorber COM Distance 0.051 m
ñ Absorber Tuning Order 1.315

ρ Absorber Radius of Gyration 0.03 m2

µa Absorber Viscous Damping 0.017
Ω Rotor Mean Speed 300 RPMs

We begin with a circular path absorber driven exactly at its tuning order, with n = ñ =
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Rotor 

Absorber 
Figure 4.27: Picture of the experimental circular path pendulum “T-shaped” absorber.

1.315, with an inertia ratio of ε = 0.1045. Figure 4.29 shows the experimentally obtained

absorber amplitude compared against both harmonic balance approximations and numerical

simulations versus the amplitude of the applied fluctuating torque, represented by Γn.

As with the comparisons with the numerical simulations presented in Section 4.3.3.1

above, the general method tracks the experimental data very accurately and also captures

the jump bifurcation. The power series method is accurate up to near the jump bifurcation,

but, as noted in Section 4.3.3.1, it fails to capture the bistability, and thus misses the large

amplitude response entirely. The corresponding rotor harmonics are presented inFigs. 4.29

to 4.32 and, as expected, the inability of the power series HB method to accurately predict the

absorber motion carries over to the rotor harmonics. For all subsequent circular path studies

we therefore present only the rotor harmonic approximations obtained from the general HB

method.
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Figure 4.28: Absorber arc length harmonic amplitude, |s| vs. Γn for a circular path ab-
sorber driven exactly at tuning; experimental results compared with both harmonic balance
approximations and simulations.

As evident from Figs. 4.31 and 4.32, the general HB method accurately captures the

increase in torsional vibrations due to the jump to the upper response branch of the absorber.

On that branch the absorbers are in phase with the applied torque, thus amplifying the rotor

torsional vibration at order n. Their exists some error between the HB approximations and

the experimental data after the jump occurs, due to the relatively large absorber amplitudes,

and the fact that expansions in the absorber amplitude were employed in the analysis.

We now look at the response of a circular path absorber when the applied torque is

detuned from the absorber order. We effectively detune the absorber by forcing at an order

less than the absorber’s tuning order, specifically we take n = 1.2492, which results in a

detuning of 5%. Shown in Fig. 4.33 is the absorber amplitude versus applied torque for a

system with an inertia ratio of ε = 0.0519, and again the general HB method accurately

predicts the absorber amplitude throughout the torque range. This method also accurately

captures the rotor harmonics, as presented in Figs. 4.34 and 4.35, although the experimental
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data for the order 3n harmonic does not exhibit a jump in amplitude as predicted by theory,

that is, the amplitudes of this harmonic are the same on both the upper and response

branches. The reason for this anomaly is not presently understood.

We now decrease the inertia ratio to, ε = 0.0189, by adding weights to the rotor to

increase its rotational inertia, in order to investigate the effects this parameter has on the

analytical predictions. Figure 4.36 shows the absorber amplitude versus the amplitude of

applied fluctuating torque for this case. This added inertia causes the absorber to jump at

a lower non-dimensional torque level, but otherwise there is no discernible difference in the

accuracy of the HB method. Once again, there is a slight error in the rotor harmonics, as

shown in Figs. 4.37 and 4.38, most notably in the order 2n and 3n harmonics. These errors

are not significant, however, as these harmonics are relatively small in this case, since in

this case the torque exerted on the rotor by the absorber has a smaller effect on the rotor

dynamics relative to that caused by the fluctuating torque.

4.5 Conclusions

Approximate, closed form expressions for pendulum absorbers and the corresponding rotor

dynamics have been developed. One form of the assumptions yields approximation predic-

tions for the applied fluctuating torque as a function of absorber amplitudes. The other

form of the approximations, using the assumption that the absorber amplitude is a power

series in the applied non-dimensional torque, gives predictions for the absorber amplitude

as a function of the applied torque. Both methods also give predictions for the harmoni-

cally rich rotor dynamics. The methods are found to agree with numerical simulations and

experimental results for a wide range of absorber configurations.
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Figure 4.29: Harmonics of the rotor angular acceleration, yy′ vs. Γn, for a circular path
absorber driven exactly at tuning; experimental results compared against the power series
harmonic balance approximation. (a) All three rotor response orders n, 2n, 3n. (b) Order
n.
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Figure 4.30: (c) Order 2n. (d) Order 3n. Coorsponding with Fig. 4.29
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Figure 4.31: Harmonics of the rotor angular acceleration, yy′ vs. Γn, for a circular path ab-
sorber driven exactly at tuning; experimental results compared against the general harmonic
balance approximation. (a) All three rotor response orders n, 2n, 3n. (b) Order n.
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Figure 4.32: (c) Order 2n. (d) Order 3n. Coorsponding with Fig. 4.31
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Figure 4.33: Amplitude of the absorber arc length, s vs. Γn for a 5% overturned circular
path absorber with ε = 0.0519; experimental results compared with both harmonic balance
approximations and simulations.
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Figure 4.34: Harmonics of the rotor angular acceleration, yy′ vs. Γn, for a 5% overturned
circular path absorber, withε = 0.0519; experimental results compared against the general
harmonic balance approximation. (a) All three rotor response orders n, 2n, 3n. (b) Order
n. 120
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Figure 4.35: (c) Order 2n. (d) Order 3n. Coorsponding with Fig. 4.34
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Figure 4.36: Amplitude of the absorber arc length, s vs. Γn for a 5% overturned circular
path absorber with ε = 0.0189; experimental results compared with both harmonic balance
approximations and simulations.
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Figure 4.37: Harmonics of the rotor angular acceleration, yy′ vs. Γn, for a 5% overturned
circular path absorber, withε = 0.0189; experimental results compared against the general
harmonic balance approximation. (a) All three rotor response orders n, 2n, 3n. (b) Order
n.
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Figure 4.38: (c) Order 2n. (d) Order 3n. Coorsponding with Fig. 4.37
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Chapter 5

Conclusions and Recommendations

for Future Work

5.1 Summary of Results

In this dissertation, the dynamics of rotational inertias equipped with pendulum-type ab-

sorbers tuned to multiple orders were investigated using analysis, simulations, and exper-

iments. To the author’s knowledge, this is the first study which maps out the response

characteristics of a multiple order absorber system subjected to multiple order torques. It

includes important information about the response amplitudes, phases, and stability, of the

absorber response, as well as the rich harmonic content of the rotor response. These results

are very useful for design strategies that yield optimal performance for rotors fitted with

pendulum absorbers.

The analytical findings are based on a dynamic model derived in Chapter 2. Here the

differential equations which govern the motion of a system composed of arbitrary numbers of

order ñ1 and order ñ2 absorbers attached to a rigid rotary inertia that is subjected to multi-

order torque harmonics were derived using energy methods. A formulation for the path of the

absorbers, which dictate is linear tuning and nonlinear behavior, was employed that allows for

small deviations from perfect linear tuning at small amplitudes, as well as from the desirable

tautochronic path at large amplitudes. Non-dimensionalization and scaling were employed
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to simplify the system parameters. Key small parameters were identified, specifically the

non-dimensional mean and fluctuating torques, and the absorber and rotor non-dimensional

viscous damping, which facilitate analysis, primarily by allowing one to decouple the absorber

dynamics to leading order in these parameters. Once the absorber dynamics are determined

from these equations, one can substitute these into the rotor equation to obtain its response.

Approximate solutions of the absorber equations were solved using perturbation methods

(in Chapter 2) and harmonic balance techniques (in Chapter 4).

In Chapter 2 perturbation methods were used to predict and evaluate system response,

using an expanded versions of the absorber equations of motion. These perturbation methods

yielded equations for the slowly varying absorber amplitudes and phases, which can be used

to estimate the steady state response characteristics, including stability. It was shown that

these slowly varying absorber amplitude and phase equations accurately captured the effects

of the internal resonance resulting when ñ2 ≈ 2ñ1, which arises due to the non-linear

kinematic coupling between the absorbers and the rotor. Using numerical continuation

methods on the perturbed equations, it was shown that a torque of sufficient amplitude

applied at order n, with a set of multiple order ñ1 absorbers tuned close to n, can cause

these absorbers to bifurcate to a non-synchronous response. It was also shown that a order 2n

torque can cause a set of multiple order ñ1 absorbers, when 2n ≈ ñ1, to undergo a period

doubling bifurcation, arising from parametric excitation effects, resulting in an unstable

response in which the absorbers become non-synchronous and their amplitudes grow until

they approach their limiting values. Interestingly, it was shown, by considering a general

torque space with both order n and 2n excitation harmonics, that these are actually the

same bifurcation, since both bifurcations result in non-synchronous behavior of the order

ñ1 absorbers. These instabilities are detrimental to system performance, most importantly
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since the absorbers reach their limits at lower torques than they would if the response

remained synchronous. Another interesting finding of the perturbation investigation is that

the addition of absorbers at order ñ2 generally increases the level of torque which causes the

non-synchronous bifurcations. This occurs through the attenuation of the higher order (most

notably, order 2n) harmonics imparted onto the rotor by the nonlinear dynamics of the order

ñ1 absorbers, which move at order n in steady state. This stabilization allows the order ñ1

absorbers to be tuned closer to resonance, thus increasing their ability to attenuate vibration

at order n. The perturbation equations also were shown to allow for a closed form solution

of the optimal ratio of inertias between the two different order absorbers, corresponding to

the situation in which both sets of absorbers reach their respective amplitude limits at the

same level of torque, which maximizes the system’s allowable torque range.

In Chapter 3 an experimental spin rig is described, along with results that verify the

analytical predictions of Chapter 2. The rig consists of a computer controlled motor driv-

ing a rotor to which up to four absorbers can be fitted. For examining the multi-order

response and stability results of Chapter 2, two absorbers at order ñ1 = 2.3 and two at

order ñ2 = 4.6, both with nearly-tautochronic paths, were fitted to the rotor. These ab-

sorbers use a bifilar suspension with self-centering rollers, which minimize rubbing friction

between the absorbers and their supporting flanges. The motor was programmed to provide

a torque composed of two orders, that is, a two term Fourier series, of general form. Steady-

state experiments were conducted for one absorber at each order free, in order to compare

against the synchronous response theoretical developments. Experimental runs were then

made with all four absorbers unlocked, which investigated the non-synchronous instabilities

uncovered analytically. The experimental data was shown to agree well with the analytical

and numerical predictions, and to the author’s knowledge, this is the first time that period
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doubling sub-harmonic absorber bifurcations were captured experimentally. The response

amplitudes and experimental instabilities were found to match the numerical continuation

results, proving the utility of these analytical tools in absorber design.

Chapter 4 describes an alternative to numerical simulations and the perturbation analysis

for describing the system response, specifically, a harmonic balance (HB) approach. The

advantage of this approach over perturbation methods is that it yields simple expressions

for response amplitudes and phases, although it cannot provide stability information. Two

HB approaches were employed. The general method employed provides accurate predictions

of single order absorber and rotor dynamics for a wide range of absorber paths, but requires

assumptions which cause the method to decrease in accuracy when analyzing multiple order

absorber systems. The other method, which employs expansions in the torque amplitude,

yields relatively simple, closed form expressions for the absorber and rotor dynamics as a

function of the applied torques, but fails to accurately capture some of the large-amplitude

non-linear absorber dynamics. Numerical simulations and experimental tests using the spin

rig were employed to verify the accuracy of these closed-form solutions. The data was

shown to agree with the predictions provided by these solutions in most cases. Two types

of absorbers were consider to experimentally verify the HB results: the epicycloidal path

absorbers of one and two orders described above, and simply pivoted circular path absorbers

of order ñ1 = 1.315. The power series HB method provides more accurate comparisons to

multiple order, nearly-tautochronic absorber data while the general method is more beneficial

when implementing a non-tautochronic path absorber. These closed-form expressions allow

designers to quickly and easily investigate the effects of system parameters on absorber

performance, which allows for a preliminary design tool for sizing absorbers. Of course,

prospective designs should be tested for dynamic stability using either simulations or the
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perturbation methods of Chapter 2.

5.2 Importance of Results

The results here advance our fundamental understanding of the system’s nonlinear dynam-

ics, and these provide guidance for improving their performance. The predictive nature of

the results will help shorten the design cycle for absorber systems, and the experimental

validation insures the fidelity of the analytical results.

5.3 Future Work

As described in this study, the addition of multiple order absorbers have multiple benefits.

They reduce the higher order harmonics generated by single order absorbers, they allow for

vibration attenuation of systems subjected to multiple order torques, and, in some cases, they

can stabilize the response of multi-order absorber systems. This study investigated absorber

tuned to two different orders, it would be interesting to examine nonlinear interactions and

the potential benefit of adding absorbers tuned to three or more orders (e.g., ñ, 2ñ, 3ñ).

Absorbers of order n generate three harmonics of noticeable magnitude on the rotor, with

the first order (n) used to counteract the applied torque, while the others actually add to

the overall fluctuations of the rotor response. Second order absorbers have a particular

role on the system response, since they affect second harmonics and thus can modulate the

effects of parametric excitation. While third order absorbers will not have such a specific

role, they may still be beneficial due to the fact that third harmonics are prominent on the

rotor. An interesting design problem would be to extend the present analysis to consider

the nonlinear interactions in sets of absorbers tuned to three orders, namely, how does one
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most effectively allocate the available inertia to each order absorber in order to achieve an

optimal design, for example, to minimize the root mean square of the rotor response. The two

order absorber problem studied in this dissertation borders the line in which perturbation

analysis becomes too complicated for the benefit gained, and adding three order absorbers

may send the complication over this line. A combined harmonic balance and simulation

study of three-order absorber systems would be the approach recommended that the author.

It would also be beneficial to conduct a study where sets of multiple order absorbers are

detuned, and map out the benefits and drawbacks such systems. In general, detuned ab-

sorbers are more stable but less effective in reducing torsional vibrations. A potentially ben-

eficial setup would incorporate detuned order ñ2 absorbers, which are implemented purely

for stabilization of the order ñ1 absorbers, but detuned so as to increase the torque range

the ñ2’s can safely operate in.

At the end of Chapter 2, a brief study is carried out on alternatives to the tautochronic

path, specifically cycloids. The analysis shows that the accuracy of the perturbation equa-

tions is not accurate for low order absorbers, in terms of their ability to capture the large

amplitude dynamics. This is due to the hardening nature of the cycloidal path, which causes

the absorber nonlinearity to no longer be weak. The accuracy of the perturbation methods

increases at the tuning order of the absorber increases, since a cycloid approaches the tau-

tochronic epicycloid as ñ becomes larger. For an accurate analysis of multiple order cycloidal

path absorbers, one must perform a strongly non-linear oscillator analysis, which would be a

rather complicated study involving averaging using the system described in terms of action-

angle coordinates. Again, it would be recommended to perform a numerical study when

investigating these strongly non-linear absorbers.

Currently, several automotive manufacturers are conducting research into the implemen-
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tation of pendulum absorbers, and the ideas in this study may be put into practice in the

near future.
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK133

A.1 Experimental Error Analysis

In this appendix we will attempt to quantify the experimental measurement error in the

CPVA testing device. The main measurements of interest include:

1. Absorber COM position, S

2. The speed of the rotor θ̇

3. The applied torque which includes the mean T0 and fluctuating Tθ (at order of interest),

where the position of the absorber(s) and the rotor speed are each measured with an encoder.

The applied torque on the rotor is measured from a feedback current that the motor outputs.

Each of these measurements will be discussed in more detail in the following sections. This

document follows the NIST experimental uncertainty guidelines [43].

Uncertainty in Absorber position: A U.S. Digital optical encoder is used to measure

absorber position. These encoders contain 4 channels which are A, -A, B, and -B. The two

negative channels are literally the negative of A and B, respectively. To eliminate the noise

in the encoder signal the positive channel is subtracted from the negative channel and then

divided by 2. The encoder has two sets of 360 equally spaced lines. The lines in each set

are spaced 90◦ apart, the so-called quadrature spacing, in order to obtain the direction of

rotation. The 360 lines yield 720 measurements for a complete encoder rotation, meaning

that with two sets of lines we get 1
4 degree resolution from this encoder. Therefore, assuming

the pulses are equally spaced on the encoder and we don’t miss any counts, the uncertainty

in the absorber position is

us = ±1◦

4
. (1)



Speed of rotor: The encoder on the rotor has 1000 pulses per revolution, which output

a frequency corresponding to speed of rotation. This frequency signal is then sent to a

frequency to voltage (F2V) converter in order to supply to the analog to digital converter

with a usable signal. The F2V converter measures the instantaneous frequency between two

pulses in pulses/sec. This frequency is divided by 1000 to obtain the frequency of the rotor

in Hz. This device is rated to be able to measure up to 25 kHz between pulses which means

approximately 25 Hz for 1000 pulses. An important check here was to make sure the F2V

converter could detect the frequency of the rotor during a torsional disturbance. This means

the rotor is now rotating at a mean speed with a oscillating part superimposed. In terms of

pulses going into the F2V this means that these pulses are no longer evenly spaced along the

time axis. Now their time spacing is modulated (i.e. they get closer and further apart, etc.)

due to the fluctuation about the mean rotor speed. The bandwidth of the F2V converter

turned out to be sufficiently large to resolve the frequency of the rotor pulses. Using the

specification sheet from the device manufacturer, the accuracy calibration of the device is

given as a maximum ±0.1% of the frequency span to be measured. Since the frequency at

the tuning order for the absorbers used in this study is about 10 Hz for mean speeds at

400 rpm, an estimate for the uncertainty in the F2V conversion using a 10 Hz span which

corresponds to an output voltage of 3 V (of the 5 V range) is

u
θ̇,F2V

= ±(3V)(.001) = ±3mV. (2)

After the signal leaves the F2V converter it is digitized by the National Instruments DAQ

board (PCI-6281). According to the specification sheet, the device has an absolute accuracy

of 1.05 mV with the built-in low pass filter turned off. The quantization step size for the 18
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bits at ±(10V) range is

QNI =
2 ∗ (10V)

218 − 1
= 7.6294 ∗ 10−5V. (3)

To obtain the quantization error from this we divide Q in half because at worst our actual

signal amplitude could have been exactly in the middle of the quantization step (i.e. Q/2),

in which case it would be rounded up and anything below is rounded down. Note that this

also assumes the maximum amplitude of our signal is approximately 10 volts which is the

maximum analog input voltage to the DAQ board. Although, this isn’t always the case, we

will approximate the quantization error as

QNI,error = QNI/2 = ±0.0381mV. (4)

Since the quantization error is about 3% of the absolute accuracy given in the NI DAQ

specification sheet, we will assume that the quantization error was accounted for in this

specification. Therefore the uncertainty in digitizing the speed signal uDAQ is

u
θ̇,DAQ

= ±1.05mV. (5)

Finally, the last bit of uncertainty is the overall noise floor of the signal’s Digital Fourier

Transform (DFT). This can be determined simply by taking an DFT of the speed signal in

LabView and then plotting the magnitude of the Fourier coefficients. One then estimates

the largest amplitude at which white noise is present (i.e. constant amplitude level at all
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frequencies). This is determined to be

u
θ̇,FFT

= ±0.02mV. (6)

The total uncertainty in the rotor speed is

u
θ̇,T

= u
θ̇,F2V

+ u
θ̇,DAQ

+ u
θ̇,FFT

= ±3.07mV. (7)

Torque Uncertainty: The torque measurement comes from a current feedback signal

that is multiplied by two calibration constants, one which converts the motor current to a

measurable voltage, and another, given by the motor manufacturer, which gives the motor

torque in Newton-meters from the inputted current. This signal is digitized by the motor

control box and the National Instruments DAQ board. The quantization for the motor

control box which is 8 bits at a ±(10V) range is

Qbox =
2 ∗ (10V)

28 − 1
= 78.43mV. (8)

Just like before we can approximate the quantization error as

Qbox,error = Qbox/2 = ±39.22mV. (9)

Digitizing the torque signal with the National Instruments DAQ board will have the same

uncertainty as calculated in equation (5). Similar to the rotor speed signal, the white noise
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level for the torque signal is estimated in the same way. This uncertainty is found to be

uTθ,DFT = ±2mV. (10)

The total uncertainty in the torque signal is then

uTθ,T
= u

θ̇,DAQ
+Qbox,error + uTθ,DFT = ±42.27mV. (11)

Combined Uncertainties for the Rotor Angular Acceleration and Rotor Inertia.

Using the uncertainties above, this section computes the combined uncertainty for the rotor

acceleration and the rotor inertia.

Rotor Angular Acceleration: The rotor angular acceleration at order n is computed as

follows

θ̈n = nΩθ̇n, (12)

where n is order of excitation, Ω is the mean speed that the fluctuation is about, and θ̇n is

the magnitude of the DFT of the rotor speed signal at order n. Assuming the fluctuations

in Ω and θ̇n are uncorrelated, the combined uncertainty for θ̈n is computed following the

NIST standards as follows:

u2
θ̈n

=

(
∂θ̈n
∂n

)2
u2
n +

(
∂θ̈n
∂Ω

)2
u2

Ω +

(
∂θ̈n

∂θ̇n

)2
u2
θ̇n
, (13)

which is essentially a first order Taylor series approximation of a function whose inputs are

measured quantities and whose output is the desired quantity one wishes to resolve from the

combined measurements. The function is squared in order to yield positive values for the
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combined uncertainty. We assume here that there is no error in the order of the torque signal

un = 0 which is generated in LabView 1. To estimate error in the ability of the PID to

maintain a constant speed (uΩ), an experiment is run with the rotor spinning at a constant

rate with PID active. The mean and standard deviation of the resulting rotor speed signal

is computed using basic statistics and the standard deviation yields uΩ which is

uΩ = ±2.39mV. (14)

The uncertainty in the rotor speed at order n (u
θ̈n

) had already been calculated in equation

(7). Taking the derivatives in equation (13) and using equations (14) and (7), the uncertainty

in the angular acceleration at order n is

u2
θ̈n

= (nθ̇n)2u2
Ω + (nΩ)2u2

θ̇,T
, (15)

which will provide error bars on a θ̈n measurement of ±u
θ̈n

.

Rotor Inertia: To compute the rotor inertia we use Newton’s law to obtain

J =
Tθn
θ̈n

, (16)

where Tθn
is the magnitude of the applied fluctuating torque at order n and θ̈n is the

angular acceleration of the rotor at order n calculated according to equation (12). Assuming

the fluctuations in Tθn
and θ̈n are uncorrelated, the uncertainty in the rotor inertia is

u2
J =

(
1

θ̈n

)2
u2
Tθn

+

(
Tθn

θ̈2n

)2
u2
θ̈n
, (17)

1Or the error in the generated order can be included in the deviation of the mean speed, Ω
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where uTθn
and u

θ̈n
are the uncertainties calculated in equations (11) and (15), respectively.

The error bars on the rotor inertia calculation will then be ±uJ .

B.2 Harmonic Balance Higher Order Approximations

The form of the expressions for the higher order expansions in Γ̃n,2n developed in Section 4.2

in their most general form are found to be as follows:

E2 = (4nñ2
1ε((C

2
1 −D

2
1)(−8µa,2n(1 + α) +G1Γ̃2

2nñ
2
2

× (1 + α + ñ2
2(1 + α + 16H1n

2α)))ε+ 2C1D1

× (ñ2
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2(1 + α)(−4 + Γ̃2

2nH1(1 + ñ2
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2)ε) + 8n2(2 + α(2

+ (−2 +G2
1Γ̃2

2nñ
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4
2)ε)))))

4nñ2
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where,

Q = ((8µ̃a,2n(1 + α)−G1Γ̃2
2nñ

2
2(1 + α + ñ2

2(1 + α
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2)ε) + 8n2(2 + α(2 + (−2 + 3G2

1

× Γ̃2
2nñ
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1) + 4F2(−2n+ Γ̃2n

× (H1 + Γ̃2
2nH3)ñ2
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2
2 +G1H1ñ
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where,
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The first through third harmonics in the rotor response are defined as,
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