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ABSTRACT

MODELING AND EVALUATION OF INTEGRATED DYNAMIC SIGNAL AND
DYNAMIC SPEED CONTROL IN SIGNALIZED NETWORKS

By

Hui Chen

A new integrated Dynamic Speed and Dynamic Signal (DSDS) control algorithm for
signalized networks is developed in this research. The algorithm is formulated as a dynamic
optimization problem with the objective of maximizing the number of vehicles released by the
network and minimizing the number of stops in the network. The control algorithm is optimized
by Genetic Algorithms (GAS).

The developed DSDS algorithm is applied to signalized networks. The benefits of
implementing a DSDS control algorithm on network efficiency are first evaluated through
looking at key measures of effectiveness (MOES). It is demonstrated that the algorithm is able to
reduce queues over time, avoid gridlocks, and improve system performance. Vehicle speed
profiles under DSDS control and dynamic-signal fixed-speed (DSFS) control are compared to
evaluate the advantages of control with dynamic speed on minimizing speed noise and speed
variation. DSDS control generates smoother flow profiles by reducing speed noise and speed
variation. The comparison provides evidence that implementing DSDS control in signalized
networks is an effective way to achieve safer and environmentally friendly signalized network
operations. The operational and safety enhancement brought about by the implementation of

DSDS varies depending on the levels of driver compliance. The microscopic simulation model



VISSIM is used to evaluate the impacts of different levels of driver compliance. Results show
that speeding and slow driving each have negative impacts on the performance of DSDS control.
Parallel GAs (PGAs) is investigated and deployed in order to improve computational
performance. Both a simple GA (SGA) and island PGAs are used to solve the DSDS control
problem, a standard GA-difficult, and a standard GA-easy problem. For all problems, savings in
computation resources were realized when PGA was used. The magnitude of improvements
brought about by a PGA depended on the difficulty of the problem. An empirical approach is
explored to configure Parallel Genetic Algorithms (PGASs) to optimize the DSDS control
algorithm developed in this research. Two of the most important island PGA parameters are
examined: the number of islands (subpopulations) and the migration rate. The results show 1)
increasing the number of subpopulations does not always bring worthwhile savings in time, 2)
increasing the number of subpopulations decreases the importance of migration rate, 3) there is
an optimal migration rate associated with each number of subpopulations and it is
problem-dependent, and 4) PGA configuration and performance with the standard benchmark
functions can be used as benchmarks to configure the PGA for problems of unknown complexity,
such as the DSDS control algorithm developed in this research. The results suggest that off-line

processing may be necessary to ensure optimal performance of the PGA.
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Chapter 1. Introduction

In the last two decades, congestion and safety have been two important issues in traffic
engineering. In the United States, travel demand continues to grow rapidly due to fast population
growth and increase in number of trips per capita. The increase in roadway capacity has been
much slower than the increase in travel demands because of various factors, such as cost,
community resistance, and environmental and social equity concerns, just to name a few.
Construction of new roadways to increase capacity cannot keep pace with population increase
and the resulting increase in travel demand. This explains why congestion is occurring everyday
in urban areas and is getting worse continually.

According to estimates by the Texas Transportation Institute, 437 urban areas in the United
States experienced 4.2 billion vehicle-hours of delay in 2007 [TTI 2007]. Congestion costs more
than $78 billion annually including more than 4.2 billion hours of delay and 2.9 billion gallons of
excess fuel consumed. These numbers have not accounted for the extra time that travelers and
freight shippers would plan for in regards to important trips because of the unreliability caused
by congestion areas. While congestion continues to worsen, safety issues also remain at a critical
level. There are about 42,000 people killed and 3.3 million seriously injured every year [National
Highway Traffic Safety Administration 2004]. The total cost of motor crashes is $231 billion
annually including medical expenditures and property damages. Given these statistics, efforts
must be made to improve roadway safety, use available roadway capacity more efficiently,

manage congestion with order, and improve reliability of traffic flow.



Congestion and safety issues are much more serious in metropolitan areas, where a large
portion of the traffic facilities consist of local streets and signalized intersections. Improving the
safety and operation of signal network systems has become one of the primary objectives of
many intelligent transportation system (ITS) applications such as advanced transportation
management system (ATMS), advanced traveler information system (ATIS), and vehicle
infrastructure integrations (VI1I). However, most of the research devoted to improving operations
in signalized networks has emphasized developing strategies that deal only with signal timing
parameters such as cycles, green splits, and offsets. In most of the existing control strategies,
speed limit has thus far only been used as a safety constraint.

Selection and management of vehicle speeds directly impact road safety and quality of
operation. Thus far only fixed speed limits have been used to guide drivers on their speed
selections in signalized network systems. A traffic network system with fixed speed limits has
limitations. For instance, drivers are constantly faced with changing conditions as they travel
along a road, e.g., changes in lane width, changes in horizontal and vertical alignments, the
presence of sink-source accesses and on-street parking, pedestrian and cyclist activity, etc. These
conditions all need to be taken into consideration when selecting a safe speed to travel. Even on
the same section of a roadway, different speed limits may be appropriate due to the change in
traffic demand, which could vary by time of the day, day of the week, and season of the year.

Actual vehicle speeds impact the effectiveness of signal control measures and subsequent
quality of traffic operations. For example, a signal control algorithm based on fixed speed (either

a speed limit or a fixed average speed value) is used to calculate the optimal offset and green



split for a specific movement at a certain time. However if the approaching vehicles travel at a
speed that is either slower or faster than the speed assumed in the algorithm (i.e. the fixed speed),
then the calculated “optimal” offset even the green splits are no longer optimal.

A more advanced and flexible control algorithm is one that combines the control of signal
timing and vehicle speed management. With the advances in wireless communications,
computation, sensor technologies and their deployment in intelligent transportation system
settings, it is possible to develop and implement such algorithms. Integrated Dynamic Signal and
Dynamic Speed (DSDS) control will not only improve the operational efficiency of a signalized
network but will also improve roadway safety, reduce harmful emissions, and reduce energy
consumption. It would achieve these benefits through reducing speed variations within a traffic
stream and improving the effectiveness of signal timing plans. The major task of this research is
to develop a control algorithm for signalized networks by applying dynamic signal control and
dynamic speed control techniques and then identify the operational, safety and environmental
benefits of the developed algorithm. Genetic algorithm (GA) is deployed in this study to
optimize the algorithms developed. While the validation of the developed models is performed
by using VISSIM, a microscopic simulation program, the evaluation of the algorithm has been

conducted on both macroscopic and microscopic levels.

1.1 Problem Statement




Thus far, most of the research on signalized network control algorithms has focused on
adjusting signal timing parameters only. In fact, due to the complexity of the control process in a
signalized network, controlling signals alone (without considering speed as another control
parameter) may not always produce optimal or even nearly optimal control strategies for
signalized networks. This is especially true when responding to special events such as highly
variable directional and bidirectional flows and large scale failures of system components (links
and/or intersections). Hence, it is necessary to develop new and more flexible control methods
which can tackle extreme traffic events and be fit for normal conditions as well.

In this section, the relationship between signal timing and vehicle speed is described first.
After that, difficulties and limitations in signal-only control algorithms are presented. The
potential advantages of using dynamic speed control and dynamic signal control are discussed at

the end.

1.1.1 Signal Coordination

Signal coordination is one of the most important methodologies for efficient operation of
signalized networks. Coordination aims at providing progression of traffic movements between
known origins and destinations. Currently, most of the traffic control algorithms for signal
coordination assume constant traveling speed over time on the same section of a road. This could
be the speed limit or other value determined based on engineering judgments for normal traffic and
environmental conditions. The following sub-sections briefly describe the basics of signal

coordination and point out the limitations of fixed-speed signal coordination algorithms.



One-way signal coordination: Signal coordination on one-way streets is relatively simple. The
offset between two adjacent intersections needs to be set to an ideal value to utilize the green time
efficiently. According to Roess et al. [Roess et al. 2004], the ideal offset is calculated by equation

(1-1)
ideal_oﬁ‘setz%—Q-h+l, (1-1)

where the parameters are defined as follows:

L = distance between signals, ft

S = average speed on the link between signals, ft/s

QO = number of vehicles queued per lane, veh

h = discharge headway of queued vehicles, s/veh

[ = start-up lost time, s

Because traffic conditions change over time, it is obvious that using constant speed value

(speed limit or average speed) over time in the calculation of ideal offset is problematic. In some
cases, there are long queues waiting at downstream intersections, vehicles released from upstream
intersections will not be able to accelerate to the pre-specified fixed speed value before reaching
the tail of the downstream queue. In other cases, drivers may choose to drive at higher speeds than
the fixed speed value used in the calculation of ideal offset if they are not aware of the speed that
they are supposed to be driving at. Overestimate or underestimate of actual vehicle speed will have

severe consequences on the effectiveness of signal coordination.



Signal coordination for two-way streets and networks: For a two-way street, it is assumed that
the offset of one direction is defined as offserl and the offset of the other is defined as offsetr2.

According to Roess et al. [Roess et al. 2004], the offsets of these two directions must satisfy:

offsetl+ offset2 = nC, (1-2)

where n is an integer and C is the cycle length.

Based on equation (1-2), if the offset of one direction is specified, then the offset of the other
direction is automatically set. If the offset is set to the ideal for one direction, it is not always
possible to have an ideal offset in the other direction.

Since it is difficult to find ideal offsets for both directions of a two-way street, one may believe
that a one-way street system is the solution. However, signal coordination for networks is much
more complicated. Even in one-way signal network systems, there still exist network closure
problems. Network closure refers to the fact that setting offsets for one direction on three links
automatically determines all offsets between all four signals in any set of four signals along a
traffic loop. For the grid network shown in Figure 1-1, if offsets1, offset2, and offset3 are specified,

the fourth offset offser4 is automatically determined.
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Figure 1-1 Network Closure Illustration

Offsets determined by the offsets of other directions or other links are called locked-in offsets.
If the offsets (that are not locked-in offsets) are set to ideal values, locked-in offsets may not be
suitable for the traffic they are serving. For instance, if offsets1, offset2, and offset3 in Figure 1-1
are set to ideal offset according to the traffic condition on the corresponding links, offset4 may not
be ideal offset for the traffic it is serving. In a network with two-way streets, the offsets for
secondary directions are also locked-in offsets, thus more of the offsets may not be suitable for the

traffic they are serving.

1.1.2 Inefficient Use of Green Time

In order to use green time efficiently, not only do offsets need to be ideal, but traffic is also
expected to pass the signal at or near saturation flow rate. But in reality, especially when traffic
demand is lower than capacity, vehicles enter the system at lower than saturation flow rate. If only
fixed speeds are used to guide drivers on the speed selection, vehicles may not be traveling in a

platoon and at the same time maintain saturation headway. In this case, more green time will be



needed to process the same number of vehicles traveling at longer time headways compared to the

case where vehicles are traveling at shorter headways.

1.1.3 Integrating Speed Control with Signal Control

Non-ideal offsets and inefficient use of green time have a negative impact not only on
operation of signalized networks, but also on safety and the environment. Speed control can play
an important role in the control of signalized networks. The integration of speed control (i.e.,
changing the speed as traffic conditions and signal timing parameters change) and signal control
may improve many aspects of traffic operations and safety along with significant benefits related
to energy consumption and harmful emissions. However, no such algorithm exists today. The
objective of this research is to develop, validate, and evaluate such an algorithm. In the integrated
Dynamic Speed and Dynamic Signal (DSDS) control algorithms developed, signal timing
parameters and speed parameters are optimized to achieve optimal system performance. It is
important to note that the speed parameters to be optimized as part of the integrated algorithm are
NOT traditional speed limit values which define maximum safe speed; they are the optimal speeds
for the corresponding traffic condition and signal timing. They are the speeds at which drivers are
expected to operate their vehicles under the DSDS control scheme. In this research, these speed
parameters are defined as dynamic optimal speeds, which adapt to different traffic conditions and

signal timing settings.

1.2 Research Objectives




The objective of this research is to develop an integrated dynamic signal control and dynamic
speed control algorithms for signalized networks, and then evaluate the advantages of the
developed control algorithm on various aspects of traffic operations, traffic safety, and the
environment. The algorithms developed will consider the queue effect to ensure the ability to deal
with oversaturated conditions as well as undersaturated conditions. The proposed research aims to
fulfill the following more specific objectives:

1. Develop analytical dynamic signal and dynamic speed (DSDS) control algorithms for
signalized networks

2. Develop a macroscopic simulation model to capture traffic flow conditions under
DSDS control algorithms and calculate necessary measures of effectiveness (MOES)

3. Optimize solutions using Genetic Algorithms and the macroscopic simulation model
developed in 2 by using simple Genetic Algorithm (SGA) and parallel Genetic
Algorithm (PGA)

4. Validate models using microscopic traffic simulation models

5. ldentify and quantify the operational, safety, and environmental benefits of the
algorithms by using microscopic traffic simulation models

6. Evaluate the impact of different levels of driver compliance on the effectiveness of
DSDS control models

7. Improving efficiency of GA for online-implementation of DSDS algorithms



1.3 Research Tasks

The following tasks were executed to achieve the above objectives:

A

B.

Review existing dynamic signal control literature on signalized networks

Review existing variable speed control literature

Review existing Genetic Algorithms-based techniques for solving signal control
problems and other transportation related problems

Formulate dynamic signal and dynamic speed control algorithm

Develop C++ based DSDS algorithms and macroscopic traffic simulation model that
will simulate traffic under DSDS control

Solve DSDS algorithms using both Simple Genetic Algorithm (SGA) and parallel
Genetic Algorithm (PGA)

Validate DSDS algorithms using a microscopic traffic simulation. VISIM will be used
Evaluate DSDS control to examine and demonstrate benefits on aspects such as safety
and the environment. The microscopic simulation software VISSIM will be used in
this task.

Quantify the improvement of PGA over SGA on solving DSDS algorithms. Evaluate
DSDS algorithms for on-line implementations.

Evaluate the impact of different numbers of subpopulations and migration rate on the

efficiency of PGA
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1.4 Dissertation Organization

This dissertation is organized in nine chapters. Chapter 1 introduces issues with signal-only
controls for signalized networks and outlines research objectives, tasks, and thesis organizations.
Chapter 2 provides the background and literature review for dynamic signal control algorithms,
variable speed limit (VSL), and genetic algorithms (GA). Chapter 3 presents the development of
the dynamic signal dynamic speed control (DSDS) models. Two different types of dynamic speed
control strategies are described. The procedure and results of validation of throughput, delay, and
number of stops models developed are presented in Chapter 4. Chapter 5 discusses how to use GA
to optimize the DSDS control algorithm. It also demonstrates the application of DSDS control
strategies to different sizes of signalized networks. Chapter 6 describes how DSDS control
improves safety of signalized networks by minimizing speed noises and speed variations. In
Chapter 7, the impact of different levels of driver compliance on the performance of DSDS models
are analyzed. Chapter 8 presents the use of parallel genetic algorithms (PGA) to optimize the
DSDS models and two other benchmark problems. An empirical approach of configuring PGAs is
also described. Conclusions and recommendations for future subsequent research are summarized

in Chapter 9.
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Chapter 2. Literature Review

Traffic signals and speed limit signs are the two most common control devices in signal
networks systems. So far numerous studies on signal controls have been conducted to optimize
signal timing settings, and hence, improve traffic operations. Among these studies, speed and
speed limits have only been considered as safety measures and are seldom considered as decision
parameters for a signal system. Until now, only fixed speed limits are applied in real signalized
networks.

The technologies of variable speed limits have only been developed and implemented on
freeways in the United States and some European countries. With the help of advanced electronic
and communication instruments, real-time dynamic speed information can be transmitted to
drivers via overhead variable speed signs or in-vehicle display systems. In this research, dynamic
optimal speed (i.e., the optimal or near-optimal speed at which drivers should drive at) is to be
applied to signal network systems.

The main objective of this research is to develop an integrated dynamic signal and dynamic
speed control algorithm for signalized networks. In the developed algorithm, the signal timing and
speed parameters are adjusted intelligently according to prevailing traffic conditions. In such an
algorithm, a larger number of traffic control parameters within dynamical systems are unavoidable.
Genetic Algorithms, a powerful optimization approach, has been used to solve such complex and

large scale optimization problems.
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The following sections of this chapter review the knowledge and background materials related
to variable speed limit/intelligent speed adaptation, dynamic signal, and Genetic Algorithms. In
the first section, the applications of variable speed limit are summarized. After that, various types
of dynamic signal control algorithms are presented. The last section describes the applications of

GA s in transportation engineering.

2.1 Variable Speed Limit

Safety, throughput, delays, and emissions are the key measures of effectiveness in measuring
the performance of any road segment. In general, all of these measures of effectiveness are greatly
affected by the speed of vehicles, and thus varying speeds could have significant impact on the
performance of a roadway section. The variable speed limit (VSL) system is a speed management
system that alters speed guidance on a segment of roadway and posts a variable speed on Variable
Speed limit signs or in-vehicle display devices. Such speed guidance can be advisory or mandatory.
The superiority of using such a speed management system is obvious. The optimal operating speed
of the same road may vary due to the constant change of traffic conditions, pavement, or
construction and maintenance activities. Using a speed management system will improve safety
and the capacity of the roadway segment in comparison to a fixed speed limit.

The variable speed limit system has been widely used for highway work zones and freeway
management. Coleman [Coleman 1996] reported that the potential risk of rear-end collisions on

freeways can be reduced if the traffic flow speeds are properly regulated with VVSL. Pei-wei Lin et
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al. [Lin et al, 2004] developed VSL adjustment algorithms to fulfill the objectives of queue
reduction and throughput maximization on highway work zones. Hegyi et al.[Hegyi et al., 2005]
also presented a model predictive control approach to optimally coordinate variable speed limits
for freeway traffic with the aim of suppressing shock waves. While different control algorithms are
developed for different objectives, VSL systems are used more and more extensively in United
State and some other European countries. Examples of the VSL system in Europe are discussed
below [Robinson, 2000].

Since 1993, a variable speed limit system has been operational on the F6 toll way, south of
Sydney in Australia. This system serves the objective of avoiding rear-end collisions during foggy
days. It is an advisory system and the suggested driving speeds are displayed on variable speed
limit signs, which are connected to loop detectors and visibility detectors. The determining factors
which dictate a speed limit is based on the visibility distance and the speed of proceeding vehicles.

The experiments on the VSL system in Finland started in 1994, and it is aimed at improving
road safety by influencing drivers’ behavior. The system operates on a rural highway. The
recommended speed limits are given based on current weather information. Survey results
indicated that 95 percent of drivers find the system more viable and satisfactory.

In France, a VSL system is active on a five mile urban section in Marseille. Speed limits are
determined according to both prevailing speeds and weather conditions.

A VSL system was enacted in Germany in 1970 to achieve multiple objectives, including
stabilizing flow under high demand, reducing crash probability, improving driver comfort, and

reducing environmental impacts. The system is used on three rural autobahns. The variable speed
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is calculated based on collected traffic and environmental data and then entered into a
computer-controlled algorithm. The German ministry of transportation has noted a reduction of
crash rate by 20 to 30 percent and better driver compliances to variable speed limit signs at the
same time.

The Netherlands has implemented VVSL systems in both urban and rural settings. The system
on urban highways is provided to promote safer driving behavior during foggy days. The posted
speed is reduced with the reduction in visibility. The mean speeds are decreased by 5-6 miles per
hour when fog is present. The enforceable system in the rural setting was installed in 1992 on a
section of the A2 motorway between Amsterdam and Utrecht. The objective of this system is to
suppress shockwaves and reduce crashes and congestion. Travel speed is determined by a
system-controlled algorithm based on one-minute averages of speed and volume across all lanes.
If an incident is detected, a speed reduction is applied. If the speeds are posted with a red circle,
they are enforced by photo radar, if posted without the circle, they are advisory. The results of this
system have been promising.

The United Kingdom used a VSL system on the M25 London Orbital to eliminate
stop-and-go traffic conditions. The system is enforced by photo radar, and the speed limits are set
based on vehicle volumes on the urban motorway. High driver compliance was reported and
accidents declined by 10-15 percent. With the help of the VSL system, although travel speeds were
lower, stop-and-go driving was greatly reduced. Meanwhile, adequate headways were maintained

and driver compliance was improved.

15



In the United States, a number of states including Colorado, Michigan, Minnesota, Nevada,
New Jersey, New Mexico, Oregon, and Washington have experimented with or deployed VSL
systems [Robinson et al. 2002]. Probably the largest VSL system in the United States is in New
Jersey [Wilkie 1997]. The VSL system on the New Jersey Turnpike uses approximately 120 signs.
It uses weather sensing equipment and loop detectors for collecting input data. The VSL system is
based on a logic that chooses the speed limit based on the average travel speed. The speed limits
are displayed in increments of 5 mph. The speeds can be reduced to a minimum of 30 mph due to
crashes, congestion, construction, ice, snow, fog, etc. The signs are used to provide motorists with
information on unusual roadway conditions and are enforced by the state police.

As noted above, the application of variable speed limit has, so far, been limited to freeways.
Use of a variable speed limit on freeways is successful; however, such applications have not been
developed for signalized systems before. Research on control of signalized networks has been
limited to optimizing signal timings. In this research, dynamic speed control algorithms have been

successfully developed and applied to the control of signalized networks..

2.2 Dynamic Signal Control

In contrast to the pre-timed or fix-timed signal control, the dynamic signal control adjusts
signal timing dynamically and intelligently according to prevailing traffic conditions. In this
section, the development of a real time signal control is reviewed and then summarized. The

dynamic signal has been combined with a dynamic speed control in this research.
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SCOOT (Split, Cycle, Offset, Optimization, Techniques) is one of the most famous adaptive
signal control software. In this software, a real-time signal control procedure was successfully
developed and applied [Bretherton et al. 1999, Hunt et al. 1991, Robertson and Bretherton 1991].
SCOOT is a model based system that is similar to off-line traffic network study tool TRANSYT
[Chard and Lines 1987, FHWA 1984]. Robertson’s recurrence relation is used to predict flow,
delays and stops of traffic movement slowed by signal timings based on flow and occupancy data
received from upstream detectors. Unlike TRANSYT however, SCOOT recalculates the
prediction of flow, delay, and stops every few seconds to ensure rapid response to changing traffic
conditions. Three optimizers are used in this SCOOT system. The cycle time optimizer computes
an optimum cycle length for the critical intersection in the network. The split optimizer then
assigns green splits for each intersection based on this cycle length and the offset optimizer
calculates offsets. Cycle length, green splits, and offsets are then recalculated and implemented if
required. This frequent update of traffic performance parameters and signal timings are made in
order to achieve the concept of adaptive control [Hunt et al. 1991].

SCATS(Sydney Coordinated Adaptive Traffic System) is another well-known software
[Lowrie 1982, Luk 1984]. It combines theoretical concepts of traffic movement at intersections
and empirical considerations using a so called “critical intersection” control philosophy. In this
scheme, interrelated intersections are grouped with one intersection in every group identified as
the critical intersection. Traffic demand at the critical intersection sets the cycle time for the group
in a real-time manner. Control parameters are adjusted in every cycle by small amounts in

accordance with traffic demand. Strategic decisions on the control parameters (i.e., using
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pre-defined library of split and offset plans) are made for the critical intersection and implemented
for other intersections in the group. This control scheme uses detectors at stop lines for both central
and local control decisions. Even though detectors are required at every intersection for full
adaptive control operation, the concept of critical intersection provides a flexibility to operate
adaptive controls with detectors installed only at the critical intersection.

OPAC is a real-time signal control algorithm based on the optimal switching of signal timings
[Gartner 1982, 1983]. OPAC uses dynamic programming to identify the optimal signal timing
sequence for arelatively long period (from 50 to 100 seconds). It was developed for use on a single
isolated intersection. In this control algorithm, time is divided into stages, which are sub-divided
further into an integer number of intervals. Each stage allows one to three signal changes. For any
given switching sequence at a specified stage, a performance function expressing the total delay is
calculated. The switching sequence that has minimum delay is chosen, and the first part of it is
implemented (using the rolling horizon concept). With this rolling horizon concept, OPAC defines
the optimal switching based on both actual vehicle arrivals and predicted arrivals. Prediction of
arrivals makes the model very sensitive to error in the estimation of future arrivals.

Other adaptive signal control algorithms include LA-ATCS [Vincent and Young 1986],
UTOPIA [Donati et al. 1984], PRODYN [Henry et al. 1983, Henry and Farges 1989], RHODES
[Head 1997, Head and Mirchandani 2001].

The models described above are well designed for undersaturated conditions. Under
oversaturated conditions, they cannot provide accurate control strategies because they do not

explicitly describe the over-saturation phenomenon. Yagar and Dion presented results to show that
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SCOOT performed well in moderate traffic conditions but had major deficiencies in oversaturated
and highly fluctuating conditions [Yagar and Dion 1996]. The most recent research on SCOOT
added a congestion term in its signal optimization function and a queue management strategy
known as gating to improve its congestion and incident management facilities. The field
experiment results show that the gating strategy would decrease delay by 26% [Bretherton et al.
1999]. Wolshon and Taylor also indicated in their study that SCATS was only effective at reducing
delay during low volume periods [Wolshon and Taylor 1999].

At high traffic demand, non-optimal signal timing could cause queues to develop at
intersections and therefore cause the intersection to operate under oversaturated conditions.
Oversaturation is a condition that occurs when queues of vehicles fill entire blocks and interfere
with the performance of adjacent upstream intersections [Pignataro et al. 1978]. Chaudhary
[Chaudhary 1997] has shown that queue spill back could result in a significant reduction of
capacity. The objective of signal control for oversaturated networks should be to prevent blockages
and gridlocks caused by queue spillback and efficiently use available green time. The studies done
by Abu-Lebdeh [Abu-Lebdeh 1999] and Park et al. [Park et al. 2000] provided a framework for
developing dynamic signal coordination and queue management algorithms for oversaturated
arterials. The work of Abu-Lebdeh [Abu-Lebdeh 1999] was based on dynamic queue management
of a single arterial system. Park et al. [Park et al. 2000] developed a mesoscopic simulator, which
was able to model oversaturated traffic conditions. Girianna et al. [Girianna and Benekohal 2002]

extended Abu-Lebdeh’s model to grid traffic networks with oversaturated intersections.
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In all these studies, only signal timing parameters (green split, cycle and offset) are considered
as control parameters. The first attempt of using speed control in signalized arterial systems was
made by Abu-Lebdeh [Abu-Lebdeh 2002]. An algorithm was developed to dynamically control
speed in conjunction with dynamic signals for control and management of a single urban arterial
and the results showed that integrating the control of these two kinds of parameters can improve
system performance including average travel speed, number of stops, and travel delay. Chen and
Abu-Lebdeh [Chen and Abu-Lebdeh 2006, 2007] developed a framework for integrating dynamic
speed control and dynamic signal control. That study proved the feasibility of integrating dynamic
speed control and dynamic signal control and provided preliminary assessment of the operational
improvements. However, not all potential benefits of using dynamic speed in signalized networks
were explored.

In the DSDS control algorithm developed in this research, speed is also considered as a control
parameter and not just a regulatory safety-based measure. The dynamic (variable/adaptive) speed
and dynamic (adaptive/real-time) signal control are combined to realize a whole new approach to

controlling or managing traffic in signalized networks.

2.3 Genetic Algorithms

Optimization based on Genetic Algorithms (GAs) has become very popular in recent years.
GAs have been successfully applied in many fields such as traffic control, computer science,

bioscience, statistics, and fluid mechanics, etc. These techniques are based on the mechanism of
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natural selection and natural genetics [Goldberg 1989] and are considered emerging optimization
tools due to the simplicity, minimal problem restriction, parallelism, and global perspectives that
they offer. GAs have also been successfully used in transportation engineering. Foy et al.[Foy et al.
1992] reported on using GAs to determine signal settings. Hadi and Wallace [Hadi and Wallace
1993] used GAs to obtain optimal signal coordination strategies. Memon and Bullen [Memon and
Bullen 1996] compared GAs to the Quasi-Newton gradient method and chose GAs for real-time
optimization of signals. Abu-Lebdeh [Abu-Lebdeh 1999, 2002], Girianna and Benekohal
[Girianna and Benekohal 2002] used GAs to obtain a near-optimal solution for signal coordination
and queue management along oversaturated arterials. Sadek et al. [Sadek et al. 1997] solved a
dynamic route assignment problem using GAs. Duerr [Duerr 2000] used GAs to dynamically
control right of ways for transit vehicles in mixed traffic arterials.

Most of the GA applications in transportation have only used Simple GA (SGA) due to its
simplicity. SGA operates on a group of chromosomes (a population of individuals) by selecting the
most influential individual through genetic forces. Parallel Genetic Algorithms (PGAS) distributes
the task of a single-population GA to different processors. As those tasks are implicitly parallel,
little time will be spent on communication, and thus, the algorithm runs much faster and finds
better results. Probably the first attempt to map Genetic Algorithms to existing parallel computer
architectures was made by Grefenstette [Grefenstette 1981]. PGAs have been applied in many
search, optimization, and machine learning problems [Belding 1995, Grefenstette 1981, Schnecke

and Vornberger 1996, Chen et al. 2004, 2005].
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2.4 Summary and Conclusions

This chapter reviews the previous studies on the variable speed limit, dynamic signal control,
and the application of Genetic Algorithms in traffic engineering. Research on the signalized
network control is dominated by signal timing control algorithms with fixed speed limits. Studies
on the variable speed limit are limited to applications on freeways and the results show that using a
variable speed limit has great potential on regulating traffic flow, improving operations, safety, and
driver compliances. With the advances in wireless communications, computation, sensor
technologies and their deployment in intelligent transportation system settings, it is possible and
necessary to develop and implement more advanced and integrated algorithms to control signal
timing and speed in order to achieve better operations for signal networks. As discussed earlier, the
speed parameters to be optimized in this study are optimal speeds that drivers are expected to drive
at. This is different from the traditional speed limit concept. These optimized speed parameters are

denoted as dynamic optimal speed.
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Chapter 3. Dynamic Signal and Dynamic Speed Control

Dynamic Signal and Dynamic Speed control (DSDS) algorithm developed in this research
integrates the dynamic signal and dynamic speed technologies. It provides optimal signal timing
and optimal speed combinations for prevailing traffic conditions. Two kinds of DSDS algorithms
are developed in this research: cycle-based and vehicle-based algorithms.

In the cycle-based algorithm, traffic departures, arrivals and queue status are evaluated at the
end of each cycle and only one speed decision is made for vehicles leaving the intersection during
the same cycle. The vehicle-based DSDS algorithm, on the other hand, will evaluate traffic
departures, arrivals, and queue status at an interval shorter than cycle length, and specify multiple
speed decisions in one cycle as needed. Additional information on cycle-based and vehicle-based
algorithms is discussed below.

The cycle-based DSDS algorithm should be employed when networks are operating at near or
over capacity, where vehicles enter the system at saturation flow rate. With proper signal timing
and dynamic speed control strategies, vehicles will maintain constant and tight headway and only
one speed decision is needed for vehicles leaving an intersection in the same cycle. The
vehicle-based algorithm should be employed when traffic demand is lower than capacity, where
vehicles enter the network at lower than saturation flow rate. Hence not all vehicles will travel in a
platoon and saturation flow rate cannot be reached if the system is controlled by cycle-based
DSDS algorithm. More green time will be needed to process the same number of vehicles traveling

at longer time headway compared to where vehicles are traveling at shorter headways. The

23



vehicle-based algorithm can specify a speed decision for each platoon or even each vehicle to help
regulate traffic flow to a desired pattern according to the system control strategy. For example, the
vehicle-based algorithm can reduce the headway between vehicles by setting a higher speed for the
following vehicle than the vehicle ahead until required headway is achieved. Thus less green time
is needed to process the same number of vehicles. As a result, system capacity can be used more
efficiently and delays will be reduced.

Both algorithms are developed to optimize traffic operation in signalized networks through
adjusting signal timing parameters and speed parameters according to prevailing traffic conditions.
In the following sections, the potential benefits of DSDS models are conceptually demonstrated
first. Then the development of a cycle-based DSDS algorithm and vehicle-based DSDS algorithm

are described along with the formulations.

3.1 Potential Benefits of DSDS

The idea of using speed as a control variable (as opposed to being a constraint) that can be
optimized dynamically and used in controlling signalized networks is explored in this research.
Such speed is an operating speed, not a speed limit. This section conceptually demonstrates how to
use dynamic operating speed to realize different control objectives including improved traffic flow
and safety.

The objectives of this research are to examine the deficiencies in the signal-only approach in

controlling signalized networks under different traffic conditions, conceptually explore possible
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remedies using dynamic speed algorithms, and then analyze the benefits of different control
algorithms. This section presents the ideas and the supporting evidence using a theoretical
approach as well as common assumptions on fundamental traffic properties.

The potential benefits of using dynamic speed control algorithms are discussed using the
traffic network system shown in Figure 3-1. In such a system, only two intersections are under
consideration. It is assumed that the signal timings are optimized by existing signal timing
algorithms with a fixed speed limit. As discussed before, network closure conditions, unbalanced
flow on different directions, and sub-optimal signal timing are inevitable, especially in larger
urban traffic signalized networks because of the changes in traffic condition over time. The
deficiency of control with signal-only control under different traffic conditions is discussed, and

dynamic speed control remedies are then described based on different control objectives.

Figure 3-1 Two-intersection system

3.1.1 Better Signal Coordination

When fixed speed is used in the optimization of signal timing, non-ideal offsets are inevitable
because of the change of traffic condition over time, network closures, roadway designs, and

unbalanced flow with different directions. Having a sub-optimal signal coordination plan has

25



negative impacts on the operation of signalized networks. Two examples are illustrated in Figure
3-2(a) and 3-3 (a).

In Figure 3-2(a), since the offset between intersections i and ; is smaller than the ideal offset,
the first vehicle (vehicle #4) released from intersection i during a typical cycle arrives at the
downstream intersection j and is stopped by the red light. Under this scenario, the total wasted
green time is ¢/. But if dynamic speed control is employed (in this case vehicles are guided to
travel at higher speeds than the fixed speed limit), then such a wasted green could be avoided. The
vehicle trajectories of the improved traffic flow due to use of DSDS are shown in Figure 3-2(b). In
this case, under the same signal timing plan, the system with dynamic speed control produces
higher system throughput, lower delay, less number of stops and shorter average travel time.

In the second case, shown in Figure 3-3(a), the offset between intersections i and ; is larger
than the ideal offset. Vehicle #4 was the first vehicle released from intersection i during a typical
cycle and arrived at intersection j before the traffic clears there. The vehicle has to slow down and
stop, and then accelerate to a desired speed. In this case, if the vehicles leaving intersection i are
guided to travel at lower speeds, smoother traffic flow could be achieved while system throughput,
delay, and travel time are kept the same. The smoother traffic flow achieved with dynamic speed
control as shown in Figure 3-3(b) is more favorable from safety, fuel consumption, and

environmental emission perspectives.
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Figure 3-2 Vehicle trajectories when actual offset is smaller than ideal offset
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3.1.2 Efficient Use of Green Time

If vehicles are traveling at uniform and saturation headways, green will only be wasted if the
offset is varied from the ideal one as shown in Figure 3-2(a). But vehicles enter traffic networks at
random and larger headways rather than uniform and tight headways as shown in Figure 3-4(a).
This is especially true for lower demand situations. Under such conditions, even though the offset
is set to ideal offset, green time can still be wasted between the vehicles if all vehicles are guided to
travel at the same speed. However, a vehicle-based dynamic speed control can potentially prevent
that.

When vehicles travel in the system with larger headways, more greens are required to process
the same number of vehicles. In order to use green time more efficiently, dynamic speed could be
used to guide the following vehicles to travel faster than the leading vehicle until tight headways
are achieved. Figure 3-4 (b) shows the improved traffic flow after a vehicle-based dynamic speed
control is implemented. Green saved in this case can be used to serve more vehicles if traffic
demand is high. If traffic demand is low, saved green can be used for other conflicting movement
such as left turning movement from an opposite direction or through and left turning traffic of a
crossroad. This is especially valuable when the network is experiencing unbalanced flow in

different directions, which is very common.
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3.1.3 Dynamic Speed Control Provides More Flexibility

Besides the potential benefits of operation, safety, and fuel consumption, dynamic speed
control also adds flexibility to the control of signalized networks. In many cases, dynamic speed
can supplement signal timing control and improve the effectiveness of signal timing control.
Consider the case where signal timings for the signals along a long corridor have been optimized
and coordinated for normal traffic conditions. If for any reason there is overflow and residual
queues on one or more links, the offsets between the signals at the end of these links need to be
changed according to prevailing (new) traffic conditions in order to maintain good signal
coordination. Such changes may necessitate changing of signal timing for more or even all signals
along the arterial. Changing in signal timings along the arterial might also impact the signal timing
and signal coordination on crossroads. Such transitions between different signal timings and
coordination plans may incur considerable delays [Pearson (Update 11/01/01)]. However, with
DSDS in place, good coordination can be achieved by adjusting only the speeds on the impacted
link or links. No changes to signal timings are needed elsewhere. Employing dynamic speed
control, in some cases, is easier and more cost effective to use than traditional signal-only control

algorithms.

3.2 Implementation of DSDS Algorithms

DSDS control in signalized networks is envisioned to be implemented in VII systems setups

with functionalities emulating those found in closed-loop control systems. Vehicles and
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infrastructure components are envisioned to be able to communicate and exchange information to
enhance both traffic operations and safety. As noted by the US Department of Transportation, the
“coordinated deployments of communication technology in all vehicles by the automotive
industry and on all major U.S. roadways by the transportation public sector are the fundamental
building blocks of the VI concept” [RITA [updated 2007]]. In a V11 setting, the roadway would be
divided into segments. Each segment has a “hot post” that collects data from traffic along that
particular segment using Dedicated Short Range Communications (DSRC). Vehicles can
communicate with roadside units (RSU), or “hot posts” and within themselves via the hot posts.
Hot posts of different roadway segments can communicate with each other. Operationally, a
vehicle would transmit anonymous on-board sensor data to an RSU every time it passes an RSU. A
vehicle would store time samples of the data it collected between successive RSUs and then
transmit these data samples as it passes the RSU. The anonymous data received at an RSU would
be sent to an aggregation point from which it is then forwarded to authorized subscribers (e.g.,
Traffic Operations Centers, DOTSs, etc.). Each aggregation point may receive data from several
thousand RSUs. All data are organized and ordered by the geographic coordinates from the
vehicles and would be available to authorized subscribers. At a higher level, each section of the
road “knows” what all other roadway segments are experiencing, which means that vehicles on
any given segment can “know” what is happening with traffic on downstream segments. A

simplified architecture of data flow is shown in Figure 3-5 [DOT 2005]
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Figure 3-5 Simplified architecture data flow (source: Ref. [DOT 2005]). For interpretation of
the references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation.

In signalized networks, a VII based DSDS system would require a display medium, which
could be either Variable Message Signs (VMS), or in vehicle display devices. The display media is
directly connected via dedicated communication channels to a traffic management center where
real time traffic data from the hot posts and traffic signals are collected, processed, and used in
decision making. There, near-optimal speeds are determined. The VMS and/or the in-vehicle
devices would be used to display a speed (depending on control objectives and level of information
made available to motorists) when a vehicle enters a link. If VMSs are used, they would be
installed overhead along with traffic signals. The VMSs can be used to provide lower information

levels where a group of vehicles are instructed to follow a given speed. Such a setup would limit
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the flexibility of the control algorithm, but would require less detection, computation and
communication resources. Departures, arrivals and queue status would be evaluated at the end of
each cycle and only one speed decision is made for vehicles leaving the intersection during the
same cycle. On the other hand, if in-vehicle devices are to be used to provide a higher level of
information whereby speed information can be customized for every individual vehicle (or
vehicles in a given platoon; in this case speeds of vehicles would be additionally constrained to
meet given safety thresholds). With this higher level of information more flexible control can be
provided, but in this case more detection, computation and communication resources will be
required. The arriving and departing volumes and queue status would be evaluated at smaller time

steps, all depending on the vehicle arrival rate.

3.3 Definitions and Variables

A sample network N(3,3) as shown in Figure 3-6 is used to demonstrate the development of
the algorithm. N (ny,nx) denotes a grid traffic network of ny intersections on all north-south
arterials and nx intersections on all east-west arterials. Such a network will have ny*nx signals and
2*[(ny+1)*nx+(nx+1)*ny] one-way links. Thick lines in the figure indicate independent arterials,
and small arrows indicate optimized greens. Detailed discussions on independent links are in

section 3.5.2., and on optimized greens are in Chapter 5.
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Figure 3-6 A sample grid network (Thick lines indicate independent arterials;
small arrows indicate optimized greens)

The definition of the variables used in this chapter are summarized and listed as follows:

S;: Saturation flow rate per lane of approach i, veh/hr;

LV Average effective vehicle spacing when stopped, ft/veh;

acc. Acceleration, ft/sec2 ;

L j),(m)): Length of the link between signal (i,/) and signal (/,m), f;
[: Start-up lost time for each phase, sec;

h: Average time headway between two vehicle, sec;

vu: Speed of start-up shockwave when signal turns green, fi/s;

vt.  Speed of stop shockwave when signal turns red, fi/s;

n:  Number of cycles to be simulated and evaluated:;

off (G, j),(1,m))k: Offset between signal (i,/) and (/,m) during cycle . In this study, an offset is

negative when downstream signal turns green first.
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When the following variables are used for one specific direction, an extra letter, which
indicates the direction, will be put in front of the variable name. For example, eg (i,/)k refers to

effective green time for the eastbound approach at signal (i,/) during cycle «.

(i j)k: Effective green time for an approach at intersection (i,j) during cycle , sec;

gs(ij)k: Starting time of green for an approach at intersection (i,/) during cycle ;

ds(i j)k: Dynamic Optimal speed on approach to intersection (i,/) during cycle &, fi/sec;

dv(i j)k: Discharged vehicles from an approach at intersection (i,/) during cycle k, number of

vehicles;

av(ij)k Vehicles received on an approach at intersection (i,j) during cycle &, number of

vehicles;

q¢ijk: Length of queue on approach at intersection(i,j) at the beginning of cycle &, number
of vehicles.

Other variables will be defined where they are first used.

DSDS algorithms are formulated as an optimization problem with the objective of
maximizing throughput. A disutility term is used to account for the queues accumulated at the
intersections and the stops caused by non-ideal offsets. To allow the algorithm to effectively deal
with over-saturated and under-saturated traffic conditions, a set of constraints are developed to
avoid unfavorable situations under oversaturated traffic conditions. Such unfavorable situations

include wasted green and queue spillback.

3.4 Constraints for Oversaturated Condition
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Control of oversaturated intersections requires two key constraints: 1) Use green time
efficiently to maximize system throughput; 2) Prevent spillback of downstream queues into
upstream intersections to avoid gridlock and subsequent capacity loss. Methods to satisfy these

constraints are discussed in the following sub-sections.
3.4.1 Use Green Efficiently

Using green time efficiently can be attained through strict and intelligent control of offsets. An
offset between two adjacent signals is set such that the first vehicle of an upstream traffic arrives at
the downstream signal when the tail of the downstream queue clears the intersection. In order to
differentiate from ideal offsets that are calculated based on fixed speed parameters, the offset that
can achieve this objective in DSDS algorithm is defined as compact offset and is denoted by c¢_off
in this dissertation. A compact offset can be computed based on link length L, queue length at
downstream intersection ¢, and dynamic optimal speed ds. Given an upstream signal (i,/) and a
downstream signal (Z,m), if the upstream vehicle starts from a stopping position, the compact offset

c_off can be calculated by
c_off = L+ds2. N [(2-ace) \ds(; e —q(1,mk - h (3-1)
i,k J

otherwise ¢_off should be calculated by

c_off =LIds(i, i)k =4(1,mk " (3-2)
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With compact offsets, tight average time headways 4 can be maintained under DSDS control.
Furthermore, it is assumed that vehicles can maintain this headway as they leave the intersection.
Using compact offsets not only provides efficient use of green, but also reduces the number of

stops.
3.4.2 Prevent Defacto Red

A defacto red condition develops when a signal is green but traffic can not move because of
backed-up traffic on the receiving link. In order to prevent this from happening, green time at the
upstream signal should be less than or equal to the sum of the effective green time of the
downstream signal, the offset between the two signals and the time that takes for a stopping
shockwave to propagate to the upstream intersection, as described by Abu-Lebdeh [Abu-Lebdeh

1999]. For two-signal system (i,/) and (/,n2), this condition can be expressed by:
8(i,j e < &(1,mk + (i, j Nt,m)k +L(i, j)(1,m)! vt (3-3)

where (i,j), ([,m) € N(ny,nx), k=1, 2,... n, and (i, j) is the immediate upstream signal to signal
(Lm). Here function g is the available green, off{(; ;)i,m)) denotes the actual offset between

intersection (z,7) and (,m), L, j)(1,m) is length of the link between intersection (,7) and (/,m), and

vt 1s the speed of the stopping shockwave.

3.5 Other Constraints
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Besides the constraints for oversaturated conditions described in the previous section, there

are also some other constraints that need to be satisfied under any traffic conditions.
3.5.1 Queue Storage Capacity

Queue along any link should be less than the storage capacity of that link:
q(i, j ke <9max- (3-4)

This constraint is also necessary under oversaturated conditions because the length of the
queue has to be short enough such that it does not block the traffic movements of the upstream

intersections. Depending on the specific queue management requirements, gmay IS Within the

range shown in equation (3-5)

L, j)t.m)
0 < : : ; 3-5
< dmax v (3-5)

where LV is the average vehicle spacing. When ¢.,a equals to zero, it represents the extreme
situation that no queue is allowed at the intersection. Note that this constraint could be adaptive

(i.e., time-dependent or traffic conditions-dependent).
3.5.2 Network Closure

For a signalized grid traffic network, the network closure constraints always exist, as
discussed by Roess et al [Roess et al. 2004]. For the grid network shown in Figure 3-6, if the

offsets of any three links of a loop are set for directional traffic flow, then the offset of the fourth
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link is automatically fixed. This constraint for a single loop can be extended and applied to the
whole network: if the offsets of all east-west streets are independently specified, then the offsets of
one north-south street “lock in” all other north-south offsets. Similarly, if the offsets of all
north-south streets are independently specified, then the offsets of one east-west arterial lock in all
other east-west offsets. If the locked-in offsets are not suitable for prevailing traffic conditions,
serious problems can develop especially for a congested network. Under congested conditions this
may lead to spillbacks and gridlocks, which can be catastrophic, especially during emergencies.

By using a dynamic speed controller in conjunction with the signal controller, a solution is
provided to this problem: the dynamic speed controller is responsible for activating and controlling
the optimal speed selection, and the signal controller would control the phasing and timing of the
signals.

In this research, streets are divided into two groups for a grid traffic network: independent
streets and dependent streets. Independent streets are those whose offsets are set to compact offset
independently, while the dependent streets are those that have the “locked-in” offsets. For instance,
as in the N(3,3) network shown in Figure 3-6, all east-west arterials are independent arterials and
arterial A(1,1), (3,1) is the only independent north-south arterial.

In the grid network shown in Figure 3-6, the loop consisting of intersections (1,1), (1,2), (2,2)
and (2,1) is used as an example to illustrate how to calculate the lock-in offset. If the offset
between intersection (1,1) and (1,2), offset between (2,1) and (2,2), and offset between (1,1) and
(2,1) are specified independently, the offset between signals (1,2) and (2,2) can be calculated by

the following equation:
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off((2,2)1,2))k = (NB_gs@) +offLa) 22k + VB _ (21 +off(21)2.2)k +EB _2(2,2)k )

3-6
- (NB _8S(L1)k + NB_g(1)k +off(L1)L2)k +EB _g(1,2)k &9

where gs denotes the start of green. The two letters before the variables are to indicate direction.
For example, NB_gs denotes the start of green for the northbound (NB) direction. The terms in the
first bracket on the right hand side of this equation calculate the time the northbound green at
signal (2,2) starts. The terms in the second bracket calculate the time the northbound green at

signal (1,2) starts.
3.5.3 Range of Control Parameters

Control parameters are the green splits, offsets, and dynamic optimal speed. Offsets on
independent streets are set to compact offset, and offsets on dependent links are locked in by
offsets for independent streets. Green splits and dynamic optimal speed should be within a
reasonable range. Equations (3-7) and (3-8) present the formulations of the allowable effective

green time and speed selection.
gmin < &(i, )k < &max (3-7)

dsmin <ds(j, j )k < dsmax (3-8)

3.6 Traffic Modeling-Macroscopic Simulation Model

In order to evaluate the effectiveness of any control strategy, traffic flow and queue states need

to be properly modeled. Macroscopic models are formulated to evaluate flows and queues at
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signalized intersections. A macroscopic model is sufficient for providing aggregated MOEs for

network level optimization and evaluations.

3.6.1 Cycle-Based Algorithm

In the cycle-based algorithm, speed decision is calculated when a signal turns green, while
flow and queues are evaluated at the end of each cycle. For a given cycle, the traffic volume
departing from any approach of signal (i,/) depends on the effective green time available,
saturation headway, queue at the beginning of the cycle, arrival flow from the upstream

intersection £, and the offset between the two signals. This is shown in the following equation,

m‘”(q(zuj)k v, j e @J i c_off{i, jXtme = oL, j)i,m)k
dv(i, j )k = min[q(z‘,j)k +av(i, j e £ oMl )(2"")]‘ ~MeiXm)e )J (3-9)
ifc_off(i, j)t,mk <o, jYt.m)k

where (i, 7)), ({,m) € N(ny,nx) and k=12,..n.

The queue status for cycle £+1 is determined by
q(i, Hk+1= 49, j)k + v, Hk =G, )k (@))€ Nynx), k=12,.n. (3-10)

Assuming that there is no sink and source between the two intersections, the arrival volume

can be calculated by

av(l,m)k =4V, )k Jfor @i, )),(l,m)e N(ny,nx), k =1,2,..n, (3-11)

42



where (i, j) is the immediate upstream signal to (/,m).

3.6.2 Vehicle-Based Algorithm

In the vehicle-based algorithm, speed decision is calculated when a vehicle leaves the
intersection. Compared to the cycle-based algorithm, flow and queue status need to be evaluated
and updated with a smaller time step At. The value of At is depending on the prevailing traffic
demand and control strategies. The departing volume for any given time interval from any

approach of intersection (i,j) can be calculated by

0 when signal is red
v, jye = . (3-12)

min [Q(i,j)HAt % (L _LV'Q(l,m)tJrAt)/LVj when sigal is green

where (i, j),(I,m) e N(ny,nx) and (i,j) is the immediate upstream signal of (/,m). The departing
volume for any given time interval should be less then the number of vehicles that can be
accommodated on the receiving link to prevent spillback.

The queue status at time ¢+ Az is determined by
q@i, j)e+Ar =496, )t VG, ) =D, ) () € N(ny,nx) (3-13)

where it is assumed that there is no sink and source between the two intersections. And the arrival

volume is calculated by

av(l,m)t =i, j)  Jfor @i, /),(1,m)e N(ny,nx), (3-14)
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where (i, j) is the immediate upstream signal to (/,m).

3.7 Objective Function

A fitness function is used to evaluate the effectiveness of a set of decision variables in

satisfying the control objective. The fitness function is calculated by:
T (c) = throughput — 1 - stop , (3-15)

where ¢ denotes a set of decision control parameters. The objective function is to maximize the

value of fitness function, as shown in equation (3-16)
max(T (c)) = max(throughput - A Stop) : (3-16)

The first term “throughput” in this equation is the throughput of a network and can be
calculated by adding up the number of vehicles released at all exit intersections of the network.
The second term “— A -stop” represents a disutility function which penalizes the occurrence of
both queues and stops caused by non compact offsets. Note that extra stops will only be caused by
a non-compact offset that is larger than compact offset. The number of stops can be calculated by
the following procedures.

As shown in Figure 3-7, ¢1 is the difference between the actual offset and compact offsets:
=off —c_off . (3-17)

£2 is the time that the stopping shockwave will travel before it meets the starting up shockwave

and can be calculated by the following equation:
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A*vu

2 =
! (vu —vt)

, (3-18)

where vu is the speed of the start-up shockwave and vt is the speed of the stopping shockwave.

t1
Distance(ft) > t2

-

Timeis)

Figure 3-7 Calculation of stops caused by non compact offset
The number of stops caused by the non-compact offset can be calculated by
stop(;, j ) =12/ h. (3-19)

Therefore the number of stops for one approach at intersection (i,j) during cycle £ can be

calculated by
stop(i, Ve = a(i, j+1)k + o, /Yo, j<Lk —c_offli, jYi, j+Lk J- vul(u—ve)-h - (3-20)

The number of stops needs to be calculated for all approaches and for all intersections. The

number of stops for the system can be calculated by
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n ny nx
stop= 3 X 2 (estop(i,j)k +wstop(j, j )k + nstop(i, j Yk +sst0p(i,j)k), (3-21)
k=1i=1j=1

where n is the number of cycles that are evaluated. The letter before the variable “stop” indicates

the direction. For example, estop ; ;) denotes the number of stops that occurred on the EB link of

intersection (i,j) during cycle k.

3.8 Delay Model

Except the throughput and number of stops, travel time delay is another important measure of
effectiveness (MOE) used in this research. Travel time delay is defined as the difference between
ideal travel time and actual travel time. Ideal travel time is defined as the travel time when vehicles
are continuously traveling at desired speeds. The two-intersection system in Figure 3-8 is used to
explain the calculation of travel time delay. Vehicle 1 is the first vehicle in the queue for cycle 1,
vehicle 2 is the first vehicle that leaves the upstream intersection during cycle 1. In this case, the
actual offset between the two intersections during cycle 1 is smaller than the compact offset.
Vehicle 2 leaves the upstream intersection at gs; (1), where gs;(1) is the time when signal at
intersection i turns green during cycle 1. It arrives at the downstream intersection at
gs; (1) +c _off (1) (see the definition of ¢ _off in section 3.3.1), and the time it leaves downstream
intersection j is also gs; (1) +c _off (1). Vehicle 4 is the first vehicle in the queue for cycle 2. It
leaves the upstream intersection at gs; (1) + (dv j(l)—q j(l))*h, where 4 is the average time

headway, and it leaves the downstream intersection at gs j (2) . Vehicle 6 is the first vehicle that

leaves the upstream intersection during cycle 2 and it serves as an example for the case when the
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actual offset is larger than the compact offset. Vehicle 6 leaves upstream intersection i at gs;(2),
and the time it leaves the downstream intersection jis gs j (2)+q j(2)*h . It is obvious that travel
time for wvehicle 2 is t2= c_oﬁ’j(k) , travel time for wvehicle 4 is t3=
gsj(2)—(gs,-(l)+(dvj(1)—qj(1))*h) and travel time for vehicle 6 is tzzoﬁj(2)+qj(2)*h :
Based on the examples discussed, for the first vehicle leaving the upstream intersection during

cycle k, the travel time on link i->j can be calculated by

off j (k) +q j(k)*h, if off j(k) = c _off j (k)
ti—> j(k) = (3-22)
c_off j(k), if off j (k) <c _off j (k)

where off b (k) is the actual offset between intersection i and j during for cycle k, ¢_ off b (k) is
the compact offset between intersection i and j for cycle k, ¢ j (k) is the initial queue at intersection

j for cycle k.
Except for cycle 1, the travel time of the first vehicle in the queue during cycle k& can be

calculated by
qti— (k) = gs j (k) (gs; (k=1) +(dv ; (k=1 — ¢ ; (k ~1)* /) (3-23)
The total travel time of vehicles in initial queue of cycle 1 can be calculated by

0; 00D,
2

aTi—s ;)= (3-24)

Because DSDS model will regulate traffic to maintain known and tight time headway to use
green as efficiently as possible, the following vehicles that leave link i->j during the same cycle

will have similar travel times as the first vehicle. Except for cycle 1, all of the vehicles in the queue
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at the beginning of a cycle will have the same travel time too. The total travel time of all vehicles
on link i->j during cycle k can be calculated by

qTi— ;W) +ti— j(k)*(dv(k) =g ;(K); k=1

Ti—s j(k) = (3-29)
qti—> j(k)*q (k) +tj—s j(k)*(dv ; (k) —q ; (K)); k>1

Distance(ft)
A

j B

Time(s)

Figure 3-8 Calculation of travel time delay

The total distance traveled by all vehicles on link i->;j during cycle k can be calculated by

4 (k)q (k) -1)
*SD+L;_~i*(dvi(k)—q;(k), k=1
Di— j(k) = 2 iy (@ 074, (3-26)
Ll'_>j*dv]'(k); k+#1

where L;_ j is the link length of link i->; and SD is the average distance headway for the vehicles

in the queue.
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The ideal travel time for cycle k can be calculated by
T _ij— j(k)=Di—s j(k)/ ds; (k) (3-27)

where ds; (k) is the desired speed on link i->j during cycle & (please refer to the variable list in
section 3.3).

Travel time delay on link i->j can then be calculated by

i =k§1<T,-_> V=T it ) (3-28)

If there are » intersections in the network, the total travel time delay of the network can be

calculated by equation (3-29)

n
d =¥ dig s (3-29)

i=2

3.9 Summary and Conclusion

Potential benefits and implementation of DSDS models are presented in this chapter. Two
types of DSDS models are developed for different traffic conditions. The cycle-based model is for
high demand conditions where vehicles are traveling in a platoon, and the vehicle-based model is
for lower traffic demand. A set of constraints were developed and they must be fulfilled during the
optimization process. The objective function of DSDS models is formulated to maximize the
throughput and decrease the number of stops caused by queue and non-compact offset.

Macroscopic models are developed to describe the traffic operations under DSDS control and
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calculate MOEs. And the models for calculating MOEs are validated by microscopic simulation in

the next chapter.
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Chapter 4. Validation of Throughput, Stop, and Delay Models

The models developed for calculating throughput, number of stops, and travel time delay are
either used in the objective function or used to evaluate the effectiveness of the dynamic speed and
dynamic signal (DSDS) models developed. Hence, it is very important to make sure that these
models are realistic and able to describe the operational performance of traffic flow in the
signalized networks. The accuracy of these models can ensure that a near-optimal solution be
achieved by an optimization process and provide accurate evaluation of the effectiveness of DSDS
models developed.

Ideally, the best way to validate the models is to use a real signal system. However, due to
limited resources, the throughput, number of stops, and travel time delay models are validated by
VISSIM, a microscopic traffic simulation software. VISSIM does not optimize signal timings but
is able to simulate traffic flows under given signal timings and speed control. In this chapter,
VISSIM is introduced first. Next validation procedures of developed models are presented. After
that, the validation results are given. At the end, the summary of validation results and concluding

remarks are given.

4.1 VISSIM

VISSIM is a discrete, stochastic, time step-based microscopic traffic flow simulation model
that has become increasingly popular. VISSIM is unique in the way that the roadway network

geometry is coded. Links and connectors are used to build any network of functional roadway
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classification [PTV 2005]. In comparison to the link-node based structure, this approach enables
the user to control vehicle paths as well as the interaction of vehicles within intersections (nodes).
With VISSIM, it is possible to model any kind of intersection or arterial/intersection networks with
a precision down to one millimeter.

In terms of operations, VISSIM is very flexible. It has the capability of modeling complicated
intelligent transportation system control strategies such as ramp metering, transit signal priority,
dynamic lane control signals, etc. VISSIM also provides a flexible platform with many
user-definable features and an Application Programming Interface (API) which allows users to
implement customized control logics. This is especially useful in modeling the DSDS control
algorithms that are developed in this research.

Several studies have investigated the performance of VISSIM compared to other popular
traffic microscopic simulation packages. Moen et al. [Moen et al. 2000], Bloomberg and Dale
[Bloomberg and Dale 2000], and Tian et al. [Tian et al. 2002] had investigated the performance of
VISSIM and compared it to CORSIM, a popular traffic microscopic simulator developed by the
Federal Highway Administration (FHWA) and studied it extensively over the past 30 years.
VISSIM compared favorably, especially in terms of analysis of complicated multi-model
transportation systems and systems with current or future ITE strategies. Other advantages of
VISSIM include [Leyva et al. 2004] :

e Driver behavior parameters are adjustable to provide flexibility in calibration and
validation.

e Superior 3D graphics with viewing from any position and angle.
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e Ability to “populate” non-transportation features such as buildings, trees and people
for high-quality graphic output.
e Dynamic traffic assignment — Ability to use O-D trip tables.
e Can use GIS layers and/or ortho photos to help define inputs and reference animation
output.
VISSIM has disadvantages of microscopic models as well. It can be very data intensive and
time consuming to construct a scenario, especially from scratch. In the next section, the procedures

of validation are presented by using VISSIM.

4.2 Validation Procedures

In this section, two major steps of the validation procedures using VISSIM are described.

These steps are model calibration and experiment setup.

4.2.1 Model Calibration

A basic two signal system as shown in Figure 3-1 is built in VISSIM and used for validating
MOE models. This basic network has 2 signalized intersections and a one-lane link. Length of the
link is 800 ft. All signals are assumed to have two phases. Turning movements are ignored.

Once the VISSIM network is constructed, multiple simulation runs are made to calibrate the
parameters used in the macroscopic level throughput, number of stops, and delay models

developed in chapter 3. The purpose of calibration is to ensure that the developed models can
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appropriately describe the same traffic conditions as in the VISSIM network. The calibrated
parameters include average time headway, the speed of start-up shockwave, stopping shockwave,

acceleration rate, and average stopping distance headway.

4.2.2 Experiment Setup

In this research, a total of 10 scenarios are tested with VISSIM. Each of these scenarios has
different initial queues, traffic demand, signal timings and desired speed. All scenarios were
simulated for 10 cycles. For each given scenario, simulation was performed with 5 different
random seeds. The throughput, number of stops, and delay values from VISSIM simulation were
recorded and the average values were compared to the results calculated from the developed
macroscopic models, which were described in Chapter 3. The simulation results are presented and

discussed in the next section.

4.3 Validation Results

The simulation results of VISSIM, including the throughput, number of stops, and delay, are
shown in Table 4-1, Table 4-2, and Table 4-3, along with the results calculated by the developed
MOE models. Statistical tests were conducted to determine the significance of the differences
between the MOEs obtained by VISSIM simulation and those calculated by developed models.
The lower part of the table shows the result of the paired t-test for the above MOEs. The paired

T-test considers the null hypothesis (NH) against the alternative hypothesis (AH). For throughput,
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NH claims that there is no significant difference between the throughput calculated from the

developed DSDS model and those from VISSIM simulation.

Table 4-1 Paired t-test for throughput

Difference in
No. VISSIM DSDS Difference percentage
(%)
1 215 211 4 1. 86
2 229 225 4 1.75
3 193 190 3 1. 55
4 265 272 -7 2.6
5 234 242 -8 -3.4
6 247 250 -3 -1.2
7 170 156 14 8.24
8 256 251 5 1.95
9 158 155 3 1.9
10 176 174 2 1.14
Paired t—test
t—value:0. 8406
critical t-value two-tail: 2.2622
P(T<=t) two tail:0. 4223

With the degree of freedom of 10-1 = 9, for the 5% level of significance, the critical T value
was 2.2622. For the throughput, the T-value was 0.8406, which is less than the critical T value.
Therefore the difference between the throughput calculated from the developed DSDS model and
those from VISSIM simulation was not significant at the 5% level, and NH is accepted. The
P-value is 0.4223, which was high and confirms that the NH is accepted. In other words, the
throughput calculated from the model was not significantly different than those that resulted from

VISSIM.
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Similarly, T = 1.9640 for the number of stops, and T = 0.1962 for delay. Both were less than
the critical T-values at the 5% level of significance, i.e., 2.2622. The number of stops and delay

calculated from the models were statistically equal to those of VISSIM simulation.

Table 4-2 Paired t-test for number of stops

No. VISSIM | DSDS | Difference | 2o erence in
percentage
(%)
1 0.03 0.03 0 0
2 0. 27 0. 26 0.01 3.7
3 0.02 0.02 0 0
4 0.57 0.55 0.02 3.51
5 0. 36 0. 36 0 0
6 0.07 0.07 0 0
7 0.01 0 0.01 0
8 1.08 1.06 0.02 1.85
9 0.04 0. 05 -0. 01 -25
10 0.6 0.59 0.01 1.67
Paired t-test
t—value:1. 9640
critical t-value two-tail: 2.2622
P(T<=t)two tail:0. 0811
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Table 4-3 Paired t-test for delay

No. VISSIM | DSDS | Difference | DLl erence in
percentage
(%)
1 4.5 4.7 -0.2 —4. 44
2 37 34.9 2.1 5. 68
3 0.2 0.1 0.1 50
4 17.7 17.7 0 0
5 18.4 18.9 -0.5 -2.72
6 19.3 21 -1.7 -8. 81
7 0.5 0.4 0.1 20
8 24.5 22.8 1.7 6. 94
9 14.6 15.6 -1 -6. 85
10 19.6 19.5 0.1 0.51
Paired t-test
t—value:0. 1962
critical t-value two-tail: 2.2622
P(T<=t) two tail:0. 8488

4.4 Conclusions

Throughput, number of stops, and delay models developed in chapter 3 are validated by using
the microscopic simulation program VISSIM. Ten different scenarios are tested and five random
seeds were used for all scenarios. The MOE values from VISSIM simulation were compared to
those calculated from the developed macroscopic models. The T-test was utilized to compare the
three MOEs. The results have shown that the differences of throughput, number of stops, travel
time and delay were not statistically significant. This confirmed that the developed models for
MOE calculation are valid and can be used to accurately evaluate traffic flow under the DSDS

control model developed in this research.
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Chapter 5. Using GA to Optimize DSDS Control

This chapter presents the procedures of using Genetic Algorithms (GA) to optimize a dynamic
signal and dynamic speed (DSDS) control. For the integrated DSDS algorithms developed in this
research, near optimal signal timings and dynamic optimal speeds need to be determined for
extended control period. The DSDS control is formulated as a large combinatorial optimization
problem. In this study, GAs are used to solve the problem due to their power, speed, and
effectiveness in solving optimization problems. GAs are searching techniques based on the
mechanism of natural selection and natural genetics [Goldberg 1989]. The process of optimization
by GA is realized by evolving a population of candidate solutions by repeatedly applying genetic
operators such as selection, crossover, and mutations. GA is regarded as a well established
optimization tool due to its simplicity and capability for solving large combinatorial problems and
parallelism.

The first step of optimization of the DSDS control is to code all decision control parameters
into chromosomes. The coding of decision control parameters and the calculation of all other
control parameters is described in the first section. Constraint handling and penalties are discussed
in the second section, followed by discussion of fitness calculation. The last section describes and
analyzes traffic operation as two sizes of traffic networks under near-optimal DSDS control

solutions.

5.1 Control Parameters
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Due to the presence of offset constraints and network closure constraints, not all control
parameters can be set independently. Therefore, not all control parameters need to be optimized by
GA. Control parameters that are directly optimized by GA are termed decision control parameters.
In order to apply GAs in this research, the first step is to identify the decision control parameters
and code them into a chromosome. The coding refers to the process of representing each decision
control parameter by a string of binary codes and then connecting all binary strings into a long
binary string called a chromosome. The detailed discussion of the cycle-based and vehicle-based

algorithms is given in the following sub-sections.

5.1.1 Cycle-Based Algorithm

In the cycle-based algorithm, green splits are shown by arrows in Figure 5-1 and dynamic

optimal speeds for all independent streets are decision control parameters.

A A 4
< T G.1) (3.2) (33) .
—+— —+—
< T @.1) 2.2) 2.3) .
N 1
4 (11) 1.2) 13)
< ) . . .
> —— ——
\ 4 v v

Figure 5-1 A sample grid network (Thick lines indicate independent arterials;
small arrows indicate optimized greens)
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These decision control parameters are coded into the chromosome and the rest of the control
parameters are calculated from corresponding decision control parameters. In order to use the
green time efficiently, offsets on all independent links are set to compact offsets. Given that the
arterial greens are decision control parameters and are coded into the chromosome, the green time

serving the crossroad traffic (gc) can therefore be calculated as follows:
g<(1,mkc = cvelei, j ) +off{(1,m) (i, j)k +0(1,m),(i,))k+1—&(L,m)k (5-1)

where (i, j),(I,m)e N(nx,ny), k = 1,2,...n, and (i, j) is the immediate upstream signal to (/,m).
This equation is a variation of the equation used by Girianna and Benekohal [Girianna and
Benekohal 2002].

Computation of the crossroad green splits starts from the independent North-South arterial. In
the sample network shown in Figure 3-6, signal (1,1) is used as a reference signal with a known
cycle length. Because the cycle length of reference signal (1,1) is already known, the crossroad
green times for signals on this North-South arterial that serve eastbound traffic can be calculated
by equation (5-1). Subsequently, all signals on this North-South arterial, whose signal lengths are
already known, become reference signals for the corresponding East-West arterials. Using this
information, the crossroad green time for other signals on East-West arterials that serve
northbound traffic can be calculated by equation (5-1).

Since dynamic optimal speed on all independent streets are specified by the GA and the offsets
on these streets are set to compact offsets, the offsets of the dependent streets can be calculated

using the offsets of independent links. An example is shown by equation (3-6). Dynamic optimal
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speeds on the dependent streets improve the utilization of green time and/or decrease the number
of stops by making locked in offsets on dependent streets as close to the compact offsets as
possible. In the cycle-based algorithm, the dynamic optimal speeds for the dependent streets are
computed as follows: 1) Set the calculated offset equal to the right hand side of equation (3-1) or
(3-2); 2) The solution from step 1) is then compared to the speed constraint shown in equation
(3-8). If the solution is larger than the maximum speed constraint, then the desired speed is set to

the maximum speed.

5.1.2 Vehicle-Based Algorithm

In the vehicle-based algorithm, the chromosome represents a set of green times of all streets
for the entire control period. Note that in the vehicle-based algorithm there are no dependent and
independent street designations and speeds are calculated subject to the start of optimized greens at
adjacent intersections. Speeds are calculated when vehicles leave the intersection. In order to use
green time efficiently, speeds are determined based on the following rules:

1) For the first vehicle that leaves the intersection after the signal turns green, the speed
selections are set so that the vehicle reaches the downstream intersection when the downstream
queue clears. For example, for signals (i, ) and (/, m), the speed selection can be calculated by

following equation:

(5-2)

where (i,j), (Lm) € N(ny, nx), k=1,2,...n, and (i, j) is the immediate upstream signal to (/,m).
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2) For the following vehicles, speed selections are set so that they maintain saturation
headway or other headway as specified in the control algorithm. This value may be time or traffic
conditions-dependent. These calculated speeds are also compared to the speed constraints. If the
solution is larger than the maximum value, then the dynamic optimal speed is set to the maximum
speed.

In both cycle-based and vehicle-based DSDS algorithms, not all control parameters are
directly optimized by the GA. Some of them are calculated from the variables that are optimized
directly by the GA. However, since the GA optimization is based on network-wide measures of
effectiveness (MOES) such as system throughput and number of stops at all intersections, all

control parameters are therefore near optimal from a network-wide perspective.

5.2 Constraint Handling: Penalty for Blockages and Spillbacks

In order to get feasible solutions, all constraints mentioned in the previous sections need to be
satisfied. Some of those constraints can be satisfied simply by manipulating the binary code in the

GA. Such constraints include control parameter constraints. For instance, if the green time

constraint iS gmax=60 and gmin=30, the total number of possible green time values must be

60-30=30. This number can be set equal to 2' and | equal to log2(30). As such five bits of binary

string should be used for each green variable. Some constraints, e. g., offsets constraint, have been
built into the formulating of the control algorithms. Other constraints, however, need to be checked

and evaluated during the search process. These constraints are referred to as implicit constraints. A
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GA can convert a constrained optimization problem into an unconstrained problem using penalties
for the implicit constraints violations [Dasgupta 1997, Goldberg 1989]. For instance, in this
research, the queue and defacto red constraints are implicit constraints. These two constraints are
checked for each pair of signals and if the queue constraints are violated, a queue penalty is applied

against the fitness function. The queue penalties are formulated as

P_q(i, j)tmk = - la(t,m)k —aMaX(1,m)). (5-3)
For the defacto red constraint violation, the penalty is formulated as

P_ni, j)\1,mk = 12 -(g(z', Ve = 8(,m)k + oM, jNt.mk +L(i, j)i,m)! velh,  (5-4)

where 4 and up are penalty coefficients and the values are decided based on control

strategies.

5.3 Fitness Value Calculation

Fitness values need to be returned to GA solver and are used to evaluate the goodness of
solutions. In this research, the fitness value is calculated by using the objective function value
minus the queue and defecto red penalties of all intersection pairs. Because fitness evaluation

function cannot return a negative value to the GA solver, the GA fitness function is formulated as:

fitness=T(c)->P_q-YP_r. (5-5)
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where T(c) is the fitness before the penalty shown in equation (3-15). The GA package Gallops
[Goodman 1996] is used in this research to optimize the DSDS controls. Results are presented in

the next section.

5.4 Experiment Setup

To assess the feasibility and demonstrate the advantages of a control using dynamic speed
with dynamic signals, both a combined dynamic-signal dynamic-speed (DSDS) control and a
dynamic-signal fixed-speed (DSFS) control are applied to two different sizes of over-saturated
grid networks, N(2, 2) and N(5, 4). Link lengths were 800 ft. For the major flow directions
(eastbound and northbound), constant and higher than capacity demand is assumed at the entrance
intersections. Also vehicles were assumed to enter the system at a saturation flow rate. Initial
queues were randomly chosen between 41 and 46 veh/lane (maximum is 53 veh/lane). For the
secondary directions, lower demands were assumed and vehicles entered the system at a lower
than saturation flow rate. Initial queues for secondary directions were set randomly between 5 and
10 vehicles. Minimum and maximum green times were set between 30 and 90 seconds,
respectively. Speeds range between 15 mile/hr and 50 miles/hr for the combined control and 40
mile/hr for the fixed speed control. Twenty cycles were simulated for the N(2,2) network and 40
cycles for the N(5,4). The GA solver developed by Goodman [Goodman 1996] was employed with
a population of 1000 and 1000 generations. All signals were assumed to have two phases and

turning movements were ignored.
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For the independent links, the offsets were set to compact offsets. For the dependent links,
dynamic speeds were adjusted such that locked-in offsets were as close to compact offsets as
possible. The GA optimizes the DSDS control parameters to maximize throughput and number of
stops on the major directions. Constraints were applied to queues on both major and secondary
direction links to prevent spillbacks. Once control solutions were obtained, traffic operations under
near optimal control solutions were simulated by using the macroscopic models developed in

chapter 3. Results are discussed in the next section.

5.5 Results and Discussions

5.5.1 Interrelationship between Queues, Offsets, and Speeds

Figures 5-2 and 5-3 for the small and large network, respectively, illustrate the
interrelationships between queues, offsets and speed on a typical dependent and independent link

under DSDS control.
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Figure 5-2 Interrelationship between queue, offset, speed in N(2,2)
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Figure 5-3 Interrelationship between queue, offset, speed in N(5,4)
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In general, it is clear that these three parameters are related to each other and this is true for
both dependent and independent links. The queues for these and all other links as well as all cycles
did not exceed the maximum queue length limit of 53 vehicles. Furthermore, queue lengths
decreased with time on all links. This demonstrates that the algorithm has the ability to dissipate
queues and prevent spillback. Offsets at the earlier stages were set to negative values which is a
desirable pattern to enable queue dissipation. After the queues decreased enough, or dissipated
completely, positive offsets were used for normal progression. Speed variation was not significant
in the small network, and this is expected as the dynamic signals alone can handle a simple
oversaturated network. For the larger network, the operations were more complex and the dynamic
speed had a more significant role to play, hence the wider variation. While the speed variation was
smaller on the independent links, the association between offsets and queue lengths was stronger
and that remained true over time. For the dependent links, the larger speed variation was associated
with a not-as-strong-association between offset and queue length. The explanation of these trends
is as follows: higher variation in speed on the dependent links is due to the fact that speed is
adjusted up or down to lessen the negative impact of the unfavorable “locked-in” offsets on these
links. For the independent links, offsets are optimal and hence there is no need for as much
intervention via speed change. Notably, when speeds on the independent links vary; it is due to the
less-than-favorable offsets on the dependent links. In other words, speeds and offsets on the
independent links could change in response to conditions on the dependent links if the offsets and
speeds on the dependent links, on their own, could not cope with the unfavorable traffic conditions.

These results demonstrate how queues, speeds, and offsets on both dependent and independent
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links are working together in concert to manage evolving traffic conditions and bring about

favorable traffic operations.

5.5.2 Impact of Dynamic Speed on Offsets

Figures 5-4 and 5-5 show the difference between actual (selected) offsets and the compact
offsets on typical dependent links in the small and large networks, respectively. Parts (a) of these
two graphs show the difference under dynamic-signal fixed-speed limit (DSFS) control, while
parts (b) show the difference under combined dynamic-signal dynamic-speed (DSDS) control.

It is clear that for both size networks the offset values were much closer to the compact offset
value under DSDS control than under DSFS control, although the difference was very small in the
small network. The advantage of control with dynamic speed was much clearer in the larger
network, thus suggesting that control with dynamic speed should create more difference in larger
systems. The closeness of the actual to the compact offsets was realized not only by adjusting the
speed on the dependent links, but also by optimally adjusting speeds on the independent links. The
logic here is that when adjusting speeds on the dependent links is not enough to realize a compact
offset on these links, speed on the independent links can be adjusted to change the offset on the
independent links and therefore change the offset on the dependent links indirectly. Therefore,
although the offsets between signals along the independent arterials were set to be compact under
both DSFS and DSDS controls, the offsets set by the combined signal-speed control (DSDS) were

more efficient from a system-wide perspective.
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Figure 5-4 Actual and compact offsets for a typical dependent link in N(2,2)
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5.5.3 Operation on Secondary Direction

The previous discussion focused on operations with the major directions. Traffic in the
secondary low-demand directions operated only in the shadow of the major direction traffic in the
following ways: it shared the same green time as the major directions, offsets were the locked-in
offsets, and speeds were adjusted based on traffic conditions on these links and the locked-in signal
timing parameters. Queue constraints were applied to the secondary directions to prevent
spillbacks. In effect, optimizing operations in the major directions determined the values of all of
the control parameters. Because of the secondary directions’ lower demand, this control
arrangement was sufficient to ensure smooth operations. Figures 5-6(a) and 5-6(b) are for
operations on typical secondary links in the small and large networks, respectively. The figures

demonstrate the changes in queue, offset, compact offset, and speed over time.
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Since MOEs for the secondary direction were not directly optimized, offsets on secondary
directions are not all compact offsets. Wasted green can be seen on these secondary approaches.
For both networks, there is a point beyond which the compact and actual offsets diverge. This is
the point where the actual offset could no longer be kept at the compact offset because further
speed adjustments were not possible as the speeds hit the maximum allowable value. This
happened earlier in the smaller network (cycle 5) than the larger network (cycle 9). At the
beginning of the control period for the secondary link in the larger network, while the major
direction was discharging its own queue, the queue on the secondary direction increased a little but
was cleared shortly after that. This is because sufficient green is given by the DSDS control based
on demand on the major direction; this green was more than enough for the queue on the secondary
direction. If turning movements are present, this wasted green can be used to process turning
movements on major directions. Speeds on the secondary directions were adjusted to minimize the
impact of the undesired offsets. At the later stage of the control period, speed hits the maximum set
by the speed constraint, and further improvement was not possible by only adjusting speed on the
secondary direction. Consider the case of major direction dependent links (NB links shown in
Figure 5-2 (b) and Figure 5-3 (b)). Further improvement can be expected by adjusting signal

timing and speed parameters on major directions.

5.5.4 Green Time Allocation

Figure 5-7 illustrates the variation of green time of the first and last signals on one independent

and one dependent arterial over the study period in the larger network. In both cases, the green time
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increased in the downstream direction at the early stage. This is desirable for oversaturated traffic
conditions as it helps clear the queues. After the queues were cleared, the lengths of cycles on both
arterials started to get closer to each other, although the differences on the dependent arterial were
larger. It is well known that a common cycle length is necessary for normal progression. In other
words, the control on both independent and dependent arterials first managed traffic in a way
suitable to clear the queues and once traffic conditions became more suited for normal forward
progression, the control adapted to those conditions. It is remarkable that the algorithm performed
in this manner over an extended period of time of 40 cycles without causing any spillbacks or grid

locks although it started with a network full of traffic.
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5.5.5 Network-wide MOEs

As shown in previous sections, the developed DSDS control algorithm worked well even in
over-saturated traffic conditions. It realized one of the most important objectives for the control of
over-saturated signal networks which is to effectively prevent queue spillback and gridlock. It also
provides a lot more flexibility compared to fixed speed signal control systems.

System-wide measures of effectiveness including throughput, number of stops, average travel
speed, and average delay were compared between DSFS and DSDS control algorithms. The
simulation results indicate that with comparable throughput, DSDS control yields 13.1
vehicle-hours per hour less delay and 635 fewer stops per hour in the larger network N(5,4). For
the small network, there were 2.7 vehicle-hours/hr less delay and 64 fewer stops per hour. These
reductions in delay and stops will amount to significant values over time. Higher average travel
speeds were observed in both networks under DSDS control. The improvement in a larger network
is more significant. This is expected because there are more dependent links in the larger networks

and it is these links that are the ones that DSDS reflects direct benefits.

5.6 Conclusions

DSDS control for N(2,2) and N(5,4) were solved using simple GA in this chapter. The
cycle-based DSDS algorithms were applied to major directions with high demand and
vehicle-based algorithms were applied to secondary directions with lower demand. The

experiments were carried out on simplified hypothetical networks. The traffic operation in traffic
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networks under DSDS control were analyzed to evaluate the feasibility and effectiveness of
developed DSDS controls. System wide MOEs were also compared to the same MOEs in traffic
networks under DSFS control. The results demonstrate that dynamic speed control and dynamic
signal control can be effectively integrated to control signalized networks. It provides an
alternative solution and more flexible approach to control signalized networks.

Based on the simulation results, the DSDS control provides near-optimal signal settings and
speed selections that were responsive to traffic conditions. Not only spillbacks and gridlocks were
prevented over extended control times, queue lengths were reduced over time as well. Green time
saved in secondary direction will turn into more improvement of operations such as throughput
and delay when turning movements are considered. As the network’s geometry and traffic
operations grow in complexity, DSDS will likely have a larger impact.

The developed DSDS control also coordinates signal control and speed selection on all links
over extended control time and obtains network-wide robust performance even under unfavorable

traffic conditions.
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Chapter 6. Minimizing Speed Variation and Speed Noise

In this chapter, the ability of the dynamic signal and dynamic speed (DSDS) model to
minimize speed variation and speed noise is analyzed by using microscopic simulator VISSIM.
First, an introduction of speed noise and speed variation is provided. Then the speed variation and
speed noise are discussed for signalized traffic systems. After that, the setup of simulation with

VISSIM is described and results are analyzed. The conclusions are summarized at the end.

6.1 Introduction

Vehicle speed noise and speed variation between vehicles have direct impact on road safety;,
fuel consumption, and emissions. Vehicle speed noise refers to the deviation of vehicle speed from
its desired travel speed and vehicle variation refers to the speed difference between vehicles in a
platoon. Thorton and Lyles [Thorton and Lyles 1996] had concluded that a major factor leading to
an accident is not speed itself, but the variation of speed. Oh et al. [Oh et al. 2005] also proved that
speed variation is the most distinguishing parameter between normal traffic conditions and traffic
conditions just prior to accidents occurring.

In previous studies about optimal speed profiles [Schwarzkopf and Leipnik 1977], it has been
proven that fuel consumption is approximately minimized by operating at a constant speed. The
magnitude of fuel consumption increases as a result of any deviation from the constant speed

[Chang et al. 2005]. Hence, in order to operate safer and more fuel conservative signalized
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roadway systems, efforts should be made to develop means to minimize speed noises and speed
variations.

One possible approach is to use the dynamic speed approach to intelligently adjust the optimal
speed for drivers according to changing road, weather, and traffic conditions. The DSDS control
developed in this research can effectively combine dynamic speed control with dynamic signal
control to build a more flexible control system. In this chapter, the advantages and capabilities of
the developed DSDS control are explored in reducing speed noises and speed variations by

analyzing vehicle speed profiles obtained from microscopic simulations.

6.2 Speed Noise and Speed Variation in Signalized Networks

In signalized networks, vehicle speeds are impacted by traffic signal operations, speed limit,
and traffic flow conditions. For example, Figure 6-1 shows a typical vehicle speed profile along
with a signalized arterial with fixed speed control. The profile during time period t1 is very typical
when a downstream queue is encountered by the subjected vehicle. The vehicle slowed down first.
After vehicles in the downstream queue accelerated to the desired speed and the queue dissipated,
the vehicle accelerated back to its desired speed. The profile during time period t2 shows the
situation when the vehicle encounters a red signal. The vehicle slowed down, stopped for a while,

and then accelerated back to the desired speed.
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Figure 6-1: Typical Speed profile of a vehicle in a signalized network.

Under both conditions reflected in Figure 6-1, the vehicle speed deviated from its desired
speed and thus speed noises occurred and, by implication, fuel consumption also increased.
However these two conditions have different impacts on the following vehicles: the first
condition will cause the following vehicle to decelerate and then accelerate while the second
condition not only causes the following vehicle to decelerate and then accelerate, but also causes a
more pronounced stopping and start-up shockwaves to travel upstream into the traffic platoon. The
longer t1 and t2 are, the higher the number of vehicles that are impacted. Also, speed variation is
higher during the acceleration and deceleration period because more interaction exists between

vehicles. As such, accidents are more likely to occur during this time period.
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Using dynamic speed control with dynamic signal control in signalized networks can help
minimize undesirable vehicle speed noises and speed variations by guiding drivers to travel with
optimal traveling speed, especially in over-saturated conditions where stop-and-go driving

patterns happen more frequently.

6.3 Experiment Setup

Microscopic simulation software VISSIM [PTV, 2005] is used to obtain the speed profiles for
vehicles under both dynamic-signal dynamic-speed (DSDS) control and a dynamic-signal
fixed-speed (DSFS) control. First, DSDS control and DSFS control are applied to an
over-saturated grid network N(5, 4). In the simulation, 40 cycles were simulated. Link lengths
were 800 ft. For the major flow directions (eastbound and northbound), constant and higher than
capacity demand is assumed at the entrance intersections, and initial queues were randomly chosen
between 41 and 46 veh/lane (maximum is 53 veh/lane). For secondary directions, lower demands
were assumed and initial queues were set randomly between 5 and 10 vehicles. Minimum and
maximum green times were set to 30 and 90 seconds, respectively. Speeds ranged between 15
mile/hr and 50 miles/hr for the combined DSDS control and 40 mile/hr for the fixed speed control.
The genetic algorithm (GA) solver developed by Goodman [Goodman 1996] was employed with a
population of 1000 and 1000 generations to ensure a near-optimal solution will be reached. All

signals in the network had two phases and turning movements were ignored.
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Once near optimal control solutions for DSDS and DSFS were obtained, signal timing and
optimal speed information were built into a VISSIM representation with the same physical
features. Speed profiles of vehicles were obtained and compared to analyze the advantages of
dynamic speed on speed noises and speed variations. Simulation results are discussed in the next

section.

6.4 Results And Discussion

6.4.1 Speed Profile of Individual Vehicles

Figure 6-2 shows the speed profile of the first vehicle arriving at a typical link in a typical

control cycle under both control scenarios.
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Figure 6-2: Speed profile of leading vehicle under DSDS and DSFS control
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Under DSDS control, vehicles are given guidance to have lower desired speed compared to
the DSFS control. The effect was that although both control schemes lead to almost the same
average speed, there was less time when the actual speed deviates from the desired speed. Because
of the minimum and maximum speed constraints, and the randomness inherent in driver behavior
which is explicitly accounted for in VISSIM but not accounted for in the macroscopic simulation
models that are used in obtaining the near-optimal solutions, speed noises were not completely
eliminated. However, the duration of time when actual speed deviated from the desired speed was

significantly shorter under the DSDS control.

6.4.2 Speed Trajectory of Vehicles in a Platoon

Figure 6-3 shows the speed profiles of a platoon of vehicles arriving at a link during one
typical cycle on a typical link. Part (a) is the speed profile of vehicles in a network under DSFS
control and part (b) is for DSDS control.

As noted in the previous section, the duration of speed deviation from the desired speed is
shorter under the DSDS control. Based on Figure 6-3, it is clear that vehicles impacted by the
stopping shockwave were fewer, and that the resulting speed noises for the following vehicles
were less. It was also found that speed variation was smaller in a traffic stream under DSDS
control. This is due to shorter acceleration and deceleration periods and less vehicles involved. All

of these conditions imply that traffic flow under DSDS control is safer and more fuel conservative.
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6.5 Conclusions

This Chapter evaluated the potential capability of DSDS control on reducing speed noises and
speed variation in signalized networks. The vehicle speed profiles obtained from a microscopic
simulation environment were analyzed and compared to the results acquired from DSFS control.
The results have shown that DSDS control is able to achieve smoother traffic flow by reducing
speed noises and speed variations. Such results indicate that dynamic speed control is an effective
and necessary addition to the signal control system for signalized networks. DSDS control
provides a more flexible and effective alternative to design safer and more fuel conservative

signalized network systems.
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Chapter 7. Impacts of Driver Compliance on Effectiveness of DSDS Control

It is a major traffic safety concern in all roadway environments that drivers do not comply with
traffic control devices (speed limits, traffic signals, traffic signs, etc.). Drivers’ compliance to
speed limits is of particular interest in signalized networks, in which slightly excessive speeds
could have a profound impact not only on safety, but also on the effectiveness of signal timing
control strategies. In this chapter, the impacts of drivers’ compliance on the effectiveness of
dynamic speed and dynamic signal (DSDS) control developed in this research were analyzed and

evaluated.

7.1 Introduction

According to Tignor and Warren, the compliance with speed limits is poor in general. On
average, 7 out of 10 motorists exceed the posted speed in urban areas. Compliance ranges from 3
to 99 percent. Compliance tends to be worse on low-speed roads, but better on roads with prima
facie limits or where the speed limit is based on more recent engineering studies. Here “better”
does not mean good compliance. It is found that less than 10 percent of the sites had more than 50
percent of obedience with the posted speed [Tignor and Warren 1991].

Both public education and enforcement have been used in order to achieve better driver
compliance and consequently improve safety and efficiency at intersections. However, some of the
improved enforcement methods, such as using of speed-cameras and increased police surveillance,

have been shown to have a very limited effect [Comte et al. 1997]. According to the study
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conducted by the Federal Highway Administration [FHWA, 1997], the majority of drivers will not
comply with a speed limit that they perceive as unreasonable for prevailing conditions. On the
other hand, properly established speed limits foster voluntary compliance and separate the
occasional high-risk driver from the vast majority of drivers [Tignor and Warren 1991]. Therefore,
the best way to promote drivers’ compliance is to treat it at the source, i.e. at the vehicle or
road-user level. The DSDS control algorithms developed in this research provide drivers with
optimal speed for prevailing traffic conditions and signal timings, hence it is reasonable to expect
that better driver compliance will be achieved under such optimal speed guidance.

Even though the dynamic optimal speed is the optimal speed for prevailing traffic conditions
and signal timings, some drivers may still drive at higher or lower speeds. When driver compliance
is lower than 100%, the DSDS algorithms are not likely to have the same safety and operational
enhancing effects as described in previous chapters. The analysis in this chapter provides
information to help understand how those unwanted driver behaviors will impact the net safety and

efficiency gain of the DSDS algorithms.

7.2 Experiment Setup

In order to estimate the impact of driver compliance on the safety and efficiency for the
developed DSDS control algorithms, microscopic simulation was conducted and results were
studied using the VISSIM package. The larger traffic network N(5,4), which has the same physical

features as the one used in Chapter 6, was built in VISSIM. Near optimal DSDS control solutions
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for this larger grid network N(5,4) were achieved by using the DSDS algorithm presented in
Chapter 3 and the GA solver developed by Goodman[Goodman 1996]. Signal timing and optimal
speed parameters were then built into the VISSIM network. Throughput, number of stops, and
delay were used as measures of effectiveness (MOES) to measure the performance of the DSDS
control at different levels of driver compliance. The effect of speeding and slow driving was
evaluated because they both have negative impacts on the performance of DSDS. Different levels
of driver compliance(10% speeding, 25% speeding, 50% speeding, 75% speeding, 90% speeding,
100% speeding, 10% slow driving, 25% slow driving, 50% slow driving, 75% slow driving, 90%
slow driving, and 100% slow driving) were simulated in 12 cases to analyze their impacts.
Speeding drivers were assumed to have a desired speed at 10miles/hr higher than optimal speed
and slow driving drivers a desired speed at 10miles/hr lower than the optimal speed. For example,
10% speeding represents the case when 10% of the drivers choose a desired speed at 10mile/hr
higher than optimal speed and the other 90% choose to follow optimal speed guidance. One
hundred percent speeding represents the situation when all drivers ignore the dynamic optimal
speed guidance and choose to drive at 10miles/hr higher than the optimal speed. Each case was
simulated with 5 different random seeds. The MOEs at different levels of driver compliances were
recorded and the results were compared to the case in which all drivers follow the dynamic optimal
speed guidance. Based on all of these simulation results, the impact of driver compliance on the
performance of DSDS control algorithms was assessed. The results and discussions are presented

in the next section.
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7.3 Results and Discussion

Figure 7-1 shows the change in throughput of a typical link in a N(5,4) network when the level
of driver compliance changes. Based on the results, speeding had very little negative impact on
throughput. On the other hand, the throughput decreased when the percentage of slow driving
drivers increased. However, the throughput reducing effect was smaller when the percentage of
slow driving drivers increased, such effects almost diminished when the percentage of slow

driving drivers reached somewhere between 50% and 75% .
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Figure 7-1 Throughput at different levels of driver compliance

Figure 7-2 shows the delay at different levels of driver compliance changes. The changes in
delay had very similar trends as the change of throughput. Compared to the impact of slow driving,
speeding had little negative impact on delay. Delay increased when percentage of slow driving

drivers increased. Moreover, the increasing effect was smaller when the percentage of slow driving
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drivers increased. After the percentage of slow driving drivers reached around 50%, this change in

delay was not significant while percentages of slow driving continued to increase.
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Figure 7-2 Delay at different levels of driver compliance

Figure 7-3 shows the number of stops per vehicle at different levels of driver compliance.
When the percentage of slow driving drivers increased, the number of stops increased initially and
became more stable after the percentage of slow driving drivers reached 50%. For the speeding
cases, the number of stops did not increase initially when the percentage of speeding drivers was
below 10%. After that, the number of stops increased in accordance with the increase in percentage

of speeding drivers.
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Figure 7-3 Number of stops at different levels of driver compliance

In signalized networks under DSDS control, vehicles are traveling in a platoon. Except the
leading vehicle for each platoon, other vehicles are traveling in a car following mode (i.e. not in
free flow). When a driver chooses to travel at a slower speed, all of the following vehicles have to
slow down. Thus, even a very small percentage of slow driving vehicles could slow down a larger
percentage of vehicles. Based on the results shown above, the greatest effect of slow driving
occurs when the percentage of slow drivers reached between 50% and 70%. Thereafter, the
performance of DSDS control will not drop dramatically while more drivers choose to drive more
slowly. On the other hand, a driver can travel faster only if the vehicles in front also travel faster.
Therefore, the impact of speeding only becomes obvious after there is a sufficient number of
speeding drivers to influence the speed of traffic flow at many points in the network. As shown in

Figure 7-3, the number of stops will start to increase only after more than 10% of drivers chose to
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drive faster. In a signalized traffic network under DSDS control, speeding will not increase waste
green because speeding vehicles arrive at the downstream signal before it is supposed to. Speeding

had very little negative impact on throughput and delay as shown in Figure 7-1 and 7-2.

7.4 Conclusions

This chapter explored the possible impact of driver compliance on the performance of the
DSDS control algorithm developed. Various tests were conducted under different speed conditions.
Of all the cases tested, half of them were used to evaluate the impact of slow driving and the other
tests were used to evaluate speeding. Based on the simulation results, both slow driving and
speeding had negative impacts on the performance of the DSDS control developed. Slow driving
decreased the system throughput, increased delay and the number of stops. Speeding increased the
number of stops but had very little impact on throughput and delay.

When a fixed speed limit is applied, the speed will not always be equal to dynamic optimal
speed. Speed limits can be higher or lower than the dynamic optimal speed. The 100% speeding
case can also be regarded as a situation where the speed limit is set higher than the dynamic
optimal speed while the 100% slow driving case can be regarded as the case where a speed limit is
set lower than dynamic optimal speed. Based on the simulation results, it can be concluded that

employing dynamic speed control in a signalized network will improve efficiency and safety.
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Chapter 8. Parallel Genetic Algorithms for Real-time Implementation of DSDS
Control

The developed DSDS algorithms are formulated as dynamic optimization problems and
solved by a simple genetic algorithm (SGA) in Chapter 5. The performance of SGA in terms of
computation time diminishes as the size of the network increases. Fast optimization techniques are
required for the DSDS control to be applicable in a real-time system. The objective of this chapter
is to explore the potential benefit of the Parallel Genetic Algorithm (PGA) on a developed DSDS
control algorithm.

GAs use a population, instead of individual points in their search. This attribute makes them
amenable to parallelization. Parallel Genetic algorithms (PGAS) can accelerate computations as
well as the optimization process. They are also less likely to get stuck at a local optimal solution
than serial GAs. Hence PGAs are not only faster algorithms, but more often lead to superior
numerical performance [Gordon and Whitley 1993].

Optimal performance of PGAs requires that all parameters be configured properly.
Configuring a PGA to ensure efficacy of its near-optimal solutions is not a straightforward
endeavor. This is, in part, due to GAs’ analytic opacity and in part due to the multitude of PGA
parameters that must be selected and the interaction therein. PGAs hold much promise for online
traffic control optimization but more needs to be learned on how to configure them for best
performance.

In this chapter, island parallel GA, which is one type of PGA, was used to solve the DSDS

control algorithms developed in this research. Two traffic networks with different sizes were tested
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to evaluate the performance of the PGA in regards to the change of size of the problem. In order to
verify the universality of the benefits PGAs have for traffic control problems, a PGA has also been
applied to two benchmark functions: Onemax function which is a GA-easy function and Bi-polar
function which is a GA- difficult (deceptive) function. These two benchmark functions are also
used to develop an empirical approach to configure PGAs. Such an approach has been tested on a
typical DSDS control problem. The GA solver developed by Goodman [Goodman 1996] was used
in all experiments in the study.

The remaining of this chapter is organized as follows. The background of GA and PGA are
introduced first. Next, the experiments and results of a PGA on traffic problems and two
benchmark problems are presented. After that, an empirical approach to configure PGASs is
described, followed by the experiments and results on PGA parameters. Conclusions are given in

the last section.

8.1 Backqgqround

SGA:s are powerful but can be inefficient, especially for hard and large-scale combinatorial
problems. This inefficiency can stem from one or more of the following three issues. The first has
to do with configuring the GA. This refers to how to determine what type of operators are needed,
and what parameter values are best. The second part has to do with candidate solutions
representation and/or stratification within the search space. The third issue concerns the GAs’

sequential computation process.
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For non-GA specialists, configuring a GA can be an involved task. Typically, good knowledge
of the structure and properties of the problem (objective function and constraints) is necessary to
select appropriate operators and parameter values. Good knowledge of efficient ways to represent
the problem is also necessary. At the same time, problem representation is more of an art than a
science. Efficient representation can have decisive impact on the performance of the
algorithm-both quality of solution and time to convergence.

With sequential computation, the evaluations are very time-consuming; hence performing the
many evaluations inherent in evolutionary search is sometimes impractical. This issue becomes
particularly acute when the optimization solutions are needed in real time, for example, in online
traffic control. The problems attributed to sequential computation can be addressed by using
parallel GAs (PGASs). PGAs are not only an extension of the traditional GA sequential model, but
they represent a new class of algorithms in that they may alter the behavior of the search. Thus not
only do PGAs run faster; they also require smaller number of evaluations of the target function to
solve difficult problems to near-optimality.

There are various potential “configurations” for PGAs. It is necessary that the chosen
configurations be suitable for the application at hand. In the following subsections, knowledge on

techniques for improving GA efficiency, PGAs, and Island PGA configurations will be provided.

8.1.1 Techniques for Improving GA Efficiency

Six courses of action commonly employed to make the application of GAs efficient, rapid, and

productive are: 1) selection of appropriate operators and parameter values, 2) appropriate
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problem-specific representations of candidate solutions, 3) faster/better evaluation of solutions (or
individuals), 4) structuring of individuals into subpopulations or various other classes that are
treated separately with respect to application of various operators, etc., 5) division of workload
among multiple loosely-coupled processors (as in a cluster or network, for example), and 6)
hybridizing GAs with other non-evolutionary search methods. It is intuitive that in order to obtain
the most from the GA, the first three areas need to be “done” right. The fifth action can be done
regardless of the structure of the GA employed or any of the other actions. The sixth area is less
fundamental to the functioning of the GA per se; it is more of a supplement, but for the right type of
problem, it can be valuable. A GA user will almost always get results even with a basic problem
representation and primitive selection of parameter values. Those results, however, can easily be
inferior, and the user might not know it. There is nothing about the GA’s mechanics that will either
assure optimal search or “warn” the user of bad search results.

Although this paper is primarily concerned with points 3 and 5, a brief discussion of the other
points is presented below.

Problem Representation: GAs can be used with either binary or real coding, and with many
forms, depending on the nature of the problem to be solved. A simple method of improving GA
performance is sometimes to change the genetic representation. Many researchers published
results showing that binary coding worked better for their applications, while other researchers
reported different results [Deb 2001]. Particularly for combinatorial optimization problems, the

topic of appropriate representations is the focus of a great deal of current research [Rothlauf 2001].
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There are certain advantages to each representation scheme that can be exploited for certain
applications. Further discussion of this topic is beyond the scope of this paper.

Appropriate Operators and Parameter Values: One approach to improving GA search
performance is to simply test different values for mutation rates, population size, number of
generations, etc. Selection of different values for those parameters has become easier since the
work of Goldberg and his students [Goldberg 1989, Sastry and Goldberg 2001,2002] helps to
provide some guidance regarding those parameters, given some characterization of the difficulty
of the problem. The Schema Theorem provides additional guidance [Goldberg 1989, Sastry and
Goldberg 2001]. In many cases, however, the use of those rules and guidelines requires specialized
knowledge of specific properties of the optimization problem, which may not be easy for typical
non-evolutionary computation researchers. If changing the configuration parameters has no effect
on the search performance, then a more fundamental problem may be the cause.

Hybrid or Mimetic Algorithms (Hybridizing GAs with Non-Evolutionary Search
Methods): Many researchers have found that it is beneficial to augment the GA with additional
search operators. Two types are commonly used — a generic local search (such as using simulated
annealing, non-linear sequential quadratic programming, neural nets, etc.) or problem-specific
heuristic search rules. In either case, it is possible to subject each individual generated by the GAto
local search, or to apply a local search only when particular “triggers” occur. In either case, it is
possible to replace the starting GA-generated genotype by the representation of the newly-created
solution (“Lamarckian” approach) or merely to assign the locally-optimized fitness to the original

GA-generated genotype (“Baldwinian” approach) [Rothlauf 2002].
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Faster Evaluation of Solutions: Even when the GA is optimally configured and the problem
is optimally represented, the user should ensure that the best solution is obtained as soon as
possible. This is a particularly critical point for real-time online optimization such as real-time
traffic controls. For these, the system operator is usually interested in the GA’s best solution so far.

In the domain of transportation, evaluation of a candidate solution often involves simulation
of one or more “scenarios” through some amount of simulated time. Anything that can be done to
reduce the time to evaluate each solution can contribute enormously to reducing total time to
identify good solutions. For example, rapid rejection and assignment of poor fitness (objective
function values) to solutions that perform poorly in an initial time period can reduce the average

evaluation time dramatically.

8.1.2 Parallel Genetic Algorithms

First, it is necessary to distinguish between Parallel GAs and parallel “implementations” of a
simple GA. By Parallel GA, we shall mean one in which the structuring of the population(s) is
into some set of demes or subgroups which are treated separately, whether these groups are very
large or as small as single individuals. A Parallel GA can be implemented on a single processor or
can be implemented across multiple, loosely connected processors, but in either case, the
generation of new individuals is affected by the structuring of the population into multiple groups.
This is a separate issue from whether or not the GAis implemented across multiple processors (e.g.,
a network of loosely-coupled computers). Either a simple GA or a Parallel GA can be

implemented on multiple processors, with no difference in the actual course of the search (unless
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asynchronous operation is allowed — see Cantu-Paz [Cantu-Paz 2000] for more discussion).
Below, we will discuss Parallel GA’s and also consider the possibilities of implementing them on
multiple processors, further speeding their search time, but without fundamentally affecting their
search trajectory. But a GA which uses multiple processors in parallel to evaluate the individuals
in a single GA population (below, the “Global Parallel GA”) will not be considered to be a parallel
GA in the strictest sense.

“Global Parallel]” GAs: Parallel hardware can be utilized with a simple GA in the
master/slave architecture. Here, an overall node called the master initializes and contains the entire
population and performs the selection operation and any needed rescaling of fitness. Anumber n of
“slave” nodes perform at least the function evaluations, in a parallel fashion, hence improving the
speed of execution of the GA. If individuals are passed in a group to each slave, the slaves may
also perform recombination and mutation in parallel, also relieving the master of some work. In
this type of implementation the algorithm has to balance serial-parallel tasks to minimize
bottlenecks hence the issue of a synchronous/asynchronous operation is an important
consideration. However, unless the imbalance among processors is large, either mode of operation
can produce similar results. The distributed evaluation GA is appealing when an objective function
evaluation is expensive, but the same advantages of parallel execution can be gained by parallel
GAs using parallel hardware as well.

Increasing the number of slaves, n, obviously will increase the efficiency of the GA; however,
the communication requirements also increase. Therefore there is a point beyond which adding

more slave nodes becomes counter-productive; however, for problems with long evaluation times
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for each individual, this limit is very large. Cantu-Paz and Goldberg derived a relationship that
determines the optimal number of nodes [Cantu-Paz and Goldberg, 1999].

Parallel GAs: In contrast to the “Global Parallel GA” described above, Parallel Genetic
Algorithms (PGAs) are based on GAs, but instead of considering a single fully-mixed (panmictic)
population (i.e., any individual can be crossed over with any other individual to produce offspring),
parallel GAs treat individuals as being divided into groups, or as spatially distributed in some
non-homogeneous fashion.

There are two types of Parallel GAs: 1) Island PGAs, and 2) Diffusion PGAs. The main
differences between those types are in the population structure and method of selecting individuals
for reproduction. The following subsections briefly describe these two types of PGA.

Island Parallel Genetic Algorithms: In Migration or Island or Coarse-Grained PGAs, the
population is divided into small clusters, each of which is treated as a separate breeding unit under
the control of a conventional GA. As noted in Figure 8-1.a, the Island PGA does not operate
globally on a single population. Occasionally, individuals from the various subpopulations (islands)
are permitted to migrate to other islands, where they may subsequently mate with other members
of that island. There are many different implementations (topologies) of the island PGA scheme —

some examples are shown in Figure 8-1.
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FIGURE 8-1: Different topologies of Migration PGA
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A few additional key parameters need to be defined when using an island PGA. The interval
between migrations and the number of individuals to migrate are the most notable. Additionally,
one has to decide which individuals are going to migrate. The topology is another decision that is
determined by the target subpopulation. Traditionally, the topology is a ring and one
individual—the best, or a randomly selected one—migrates at each migration step, which takes
place at predefined cyclic points in time. Many other migration schemes have also been
successfully employed. Typical pseudo-code for an island PGA follows:

-- For Each node (GAI)

WHILE not finished

SEQ
... Selection

... Reproduction

... Evaluation

PAR

... send emigrants

... receive immigrants

A notable advantage of island PGAs is a reduction in takeover time by superior individuals. A
classical problem, premature convergence, affects simple GAs (SGAs) more strongly than island
PGAs: when a superior individual is found, a simple GA will tend to begin converging toward that
individual, skewing all future searches. In contrast, until that individual or its descendants

propagate through all the subpopulations of an island PGA, search in the remaining islands goes on
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unaffected by that individual. It is possible that several superior individuals will exist in an island
PGA at any time and migration allows for their recombination, but delays the convergence of the
entire population to any of their genotypes.

The tradeoff is that in order to avoid an excessive number of function evaluations, each
subpopulation’s size must be smaller than the total population of the simple GA. Thus the choice
of number of subpopulations and subpopulation sizes is a subtle and problem-dependent issue,
which introduces some additional complication for the user of this GA. However, the advantages
of island parallel GAs have been demonstrated many times [Cantu-Paz 2000].

Hierarchical Genetic Algorithms (HGAs) are another category of island PGA. They use a
hierarchical topology for the layout of the subpopulations, as noted in Figure 8-2 [Lin 1994; Eby
1999]. In fact, if the GA subpopulations are also allowed to be heterogeneous (i.e., represent the
problem or calculate fitness differently), this hierarchical topology makes it possible to have
different layers performing different tasks. In one such implementation, the top layer concentrates
on refinement while the bottom layer mostly performs exploration (see Figure 8-2). This type of
implementation addresses the dilemma of having to choose between complex modeling that
requires a long time to compute a fitness function or coarser but faster models. Hierarchical GAs
with multiple models provide a way out of this problem through using distinct models for each

level of the hierarchy.
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Figure 8-2: 3-level Hierarchical GA

Arecent form of PGA uses the Hierarchical Fair Competition principle (“HFC”) to structure a
set of subpopulations [Hu et al. 2005]. Subpopulations are stratified according to fitness brackets,
and whenever a newly-created individual has fitness higher than the range of the bracket in which
it originates, it is moved out to a subpopulation with a fitness bracket corresponding to the
individual. This allows for rapid exploitation of high-fitness individuals through recombination
with others of like fitness, but keeps high-fitness individuals from taking over subpopulations
composed mostly of low-fitness individuals, thereby restricting future exploration.

Any of these forms of island PGA can be implemented almost trivially across multiple
computers or processors: each processor is assigned one or more islands, and communicates
migrants to/from other subpopulations (via a buffer or synchronously) at appropriate intervals.

Diffusion (Cellular) Parallel GA: A diffusion PGA (also know as a cellular or massively

parallel GA) is similar to the island PGA but overcomes the discontinuities generated by the island

105



PGA. Here the diffusion PGA represents the population as a single spatially distributed population
with individuals being assigned a location within some 2- or 3-dimension space. Mating is allowed
between individuals in the same or neighboring cells. Genetic operations take place in parallel
(conceptually, at least) for every node of the population, and every individual interacts only with
those in its neighborhood. The replacement policy typically destroys the considered individual by
overwriting it with the newly computed string. A typical structure of a diffusion PGA is shown in

Figure 8-3.
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Figure 8-3: Diffusion or Cellular PGA

In a diffusion PGA, the population is a single continuous structure, but each individual is
assigned a spatial location. Mating is only allowed within a small local neighborhood. For example,
in Figure 8-3, 1 (2,2) can only mate with I (1,2), 1 (2,1), I (2,3), I (3,2). This isolation-by-distance

property allows a high diversity, and the selection pressure is also weaker due to the local selection
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operator. The appearance of new species of solution in the grid and the refinement of existing
solutions are both permitted and desired. In that respect, a diffusion PGA allows a well-developed
balance between exploitation and exploration.

Diffusion PGAs have often been implemented on multiprocessors due to the close similarities
between the model and the physical arrangement of CPUs. Another possible approach is to
simulate the Diffusion PGA in a network of workstations. However, the same architecture can be
simulated on a single processor, at the cost of longer run times. A pseudo code for Cellular PGA is
as follows:

-- Each Node (li, j)

WHILE not finished

SEQuential

... Evaluate

PARallel

... Send self to neighbors
... Receive neighbors

... Select mate

... Reproduce

Cantu-Paz [Cantu-Paz 2000] discusses cellular PGAs in some detail, and provides more
information on their advantages and disadvantages relative to island PGAs. In the limit, a large

enough set of subpopulations and a small enough neighborhood for migration in an island PGA
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can yield an equivalence comparable to a cellular PGA. The distinction is largely conceptual,

rather than a firm boundary.

8.1.3 Island PGA Parameters

Island PGAs are the most widely used PGAs. In the Island PGA, the population is divided into
a number of subpopulations and each of these relatively large subpopulations evolves separately
on different processors. Each subpopulation is free to converge toward different optima. The
migration operator is employed to mix good features that emerge locally in the different
subpopulations. There are five parameters when using an Island PGA.

1.  Number of subpopulations

2. Migration topology is the migration route for the migrant solutions.

3. Migration interval defines how often migration occurs.

4. Migration rate defines the number of migrants that will move from the giving
subpopulation to the receiving subpopulation

5. Migrant selection and replacement policy defines which individuals in the giving
subpopulation migrate and which individual in the receiving subpopulation are replaced

For Island PGAs, the time to reach an optimal or near-optimal solution, consists of the
computation time plus the communication time. Intuitively, there are an optimal number of
subpopulations beyond which additional subpopulations will not significantly decrease the

optimization time. Meanwhile, the higher the migration rate is, the longer the time used to
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communicate between subpopulations is. Setting these two parameters to optimal values is
important.

Therefore, the problem PGA users face is two-fold: first they need to know how complex their
problem is, and then they must configure the PGA accordingly. In all cases users set parameters by
intuition or using some ad hoc rules. This is not sufficient if the PGA performance is to be optimal,
especially for on-line optimization as in real-time traffic control. The experiments in this chapter
explore ways to help resolve these two questions and to suggest some guidance on how to set two

of all PGA parameters, number of subpopulations and migration rate.

8.2 Experiments Setup

8.2.1 Two Benchmark Problems

The difficult problem uses the deceptive function described by Goldberg et al. [Goldberg
1989]. The difficult problem is a 30-bit function constructed by concatenating five copies of the
6-bit bipolar function shown in Figure 8-4. The overall 30-bit function has over 5 million local
optima and only 32 global optima. “Difficulty” used here refers to a high likelihood of the GA

getting stuck at local optima.
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The standard easy problem is that of maximizing a 30-bit one-max function as follows:

Maximize y..  xjc {0,1}
i=1

The one-max function counts the number of bits set to 1 in the string and uses that value as the
fitness of the individual. This is a simple function with one global optimum. It occurs when all
string digits are 1s. For the 30-bit string, the maximum value of the function is 30. “Easy” as used

here refers to a low likelihood of the GA getting stuck at local optima.
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8.2.2 Experiments on PGA efficiency

Three sets of experiments were conducted: 1) Experiments to compare SGA to PGA on the
traffic control problem, 2) Experiments to compare different PGAs on the traffic problem, and 3)
Experiments to compare SGA to PGA on standard easy and deceptive problems. In all experiments,
the migration rate was set to once every 5" generations with two migrants: the “best” and a
“randomly” selected individual. The two migrants would replace the closest two individuals from
a randomly selected “group” of individuals from within the recipient subpopulation. A form of
neighborhood migration was used. For traffic problems, the comparison was based on the
computation resources needed to reach the same or closely comparable near-optimal solution. For
the difficult and easy problems, the target was global optima. Different sizes of the traffic control
problem were tested to see how the performance of the PGA would change with the size of the
problem. Number of functions evaluations (FE) was used as a measure of computation resources.
The ratios of FEs correspond approximately to the ratios of CPU time. It is noted that for both
SGAs and PGAs there are many operators to choose from and parameter values to set. In the
experiments of this paper, no attempt was made to select the optimal combination of operators
and/or parameter values. However, in few of the experiments, different population sizes were used
to evaluate their impact on the GA performance. That will be clearly noted when describing the

respective experiments. Multiple independent runs were conducted in all experiments.

8.2.3 Experiments on PGA parameters
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The approach used to configure a PGA consists of 4 steps: 1) use offline experiments and
study the behavior of two extreme (one GA-easy and one GA-difficult) benchmark problems in
relation to the subject PGA parameters, 2) correlate the optimal choice of parameters to the level of
difficulty (deception) of the benchmark problem, 3) establish the level of difficulty of the problem
at hand (in our case it is the traffic control problem) by comparing its performance to that of the
known-complexity benchmark problems, and 4) use parameters as dictated by the benchmark
problems.

Three sets of experiments were conducted: 1) compare PGAs with different numbers of
subpopulations and different migration rates on the Onemax function, 2) compare PGAs with
different numbers of subpopulations and different migration rates on the Bipolar function, and 3)
compare PGAs with different numbers of subpopulations and different migration rates on the
traffic control problem. In this section, the migration rate was larger than what was used in
experiments on PGA efficiency, therefore communication time cannot be ignored. Optimization
time (time to reach the target), as opposed to the number of function evaluations needed, is the
basis for comparison. The target was the near-optimal solution (around 90% of the optimal fitness)
for the traffic problems, and the global optima for the difficult and easy problems. Neighborhood
migration was used. Migrants were randomly chosen from subpopulations as well as the
individuals that were replaced in the receiving subpopulation. Multiple independent runs were
conducted in all experiments to ensure statistical significance of differences between different

PGA parameter combinations.
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8.3 Results and Discussion

8.3.1 Results on PGA Efficiency

Results for Traffic problem: The experiments were carried out on two traffic systems. Asmall
system N(2,2) composed of 4 intersections for twenty cycles, and a large system N(5,4) with
twenty intersections for forty cycles. For each of the two systems, both SGA and PGA were
allowed the same computation resources to optimize control to maximize system output. The focus
was exclusively on the computational side of the problem and the comparison of the performance
of the SGA to that of PGA. The computation resources needed to reach the near-optimal solutions
were examined. A near-optimal solution is one that maximizes throughput and satisfies all

constraints.
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Figure 8-5 shows the performance of the SGA, PGA-4 and PGA-8 in a typical run. Part “a” of
the figure shows the entire run (until the SGA was able to reach the same fitness as PGA-4 and
PGA-8). Part “b” of the figure shows only the early part of the same run. It is very clear that the
PGAs outperformed the SGA by a significant margin. Figure 8-6 shows the equivalent results for
the small system. Similar trends were observed as in the small system. Of course, if enough time is
given to the SGA it will reach a comparable solution to the PGA. However the point of using a
PGA is to obtain high quality solutions in shorter time, as would be necessary for on-line traffic

control optimization.

Table 8-1 Number (and %) of FE needed to reach shown fitness--Large system

Fitness SGA PGA 4 subpop PGA 8 subpop
4000 28562(100%) 7254(25%) 5497(19%)
5000 57218(100%) 14770(26%) 8727(15%)
6000 117521(100%) 27201(23%) 15015(12%)
7000 278059(100%) 59219(21%) 28047(10%)
8000 1432277(100%) 215075(15%) 95605(6%)

Table 8-2 Number (and %) of FE needed to reach shown fitness--Smaller system

Fitness SGA PGA 4 subpop PGA 8 subpop
1000 1119(100%) 684(61%) 359(32%)
1200 3212(100%) 1914(59%) 494(15%)
1500 18467(100%) 5418(29%) 2051(11%)
2000 205473(100%) 31464(16%) 13501(8%)
2200 682496(100%) 173249(25%) 69194(10%)

Table 8-1 shows a numeric comparison of the performances of the SGA, PGA-4 and PGA-8.
The numbers of FE needed to reach the shown fitness were noted for each of the three GAs. The
number of function evaluations needed for the SGA was used as a benchmark and was taken as

100%. Compared to the SGA, the PGA-4 needed only between 15 and 26% of the number of FE to
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reach the same fitness, while the PGA-8 needed only between 6 and 19% of the number of FE.
Table 8-2 shows the equivalent results for the small system.

The choice of four and eight subpopulations in the PGA is only one among an infinite number
of choices. What influence would the number of subpopulations have on the performance of the
PGA? This question is answered in part in the results shown in tables 1 and 2. It is shown that
doubling the number of subpopulations, while keeping the total in all subpopulations the same,
cuts the number of FE needed by at least one half. The results will show that depending on the
complexity of the function being optimized, the relationship between number of subpopulations
and FE may not be a linear one.

Results for Bipolar function: The result of PGA implementation on the difficult (bipolar)

problem is noted in Figure 8-7.
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Figure 8-7: Results of PGA and SGA on Bipolar function
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An SGA, a PGA-4 and PGA-8 each with two population sizes (400 and 800) was used to find
the first of the 32 global optima of this function. The figure shows the average number of FEs to
reach the global optima, which is the criterion used to compare the three GAs. The PGA-4 used
less than one seventh (1/7) of the FEs that the SGA used to find the global optima. Doubling the
population size, however, reduced the effectiveness of the PGA. This is not surprising since there
is an optimal population size given the size and complexity of the problem being optimized. In this
work no attempt was made to determine the optimal population size and hence it is not necessarily
a “bad” sign that a smaller population size-PGA outperformed one with a larger population size.
The PGA-8 outperformed the PGA-4 by more than two folds for both population sizes. And within
the PGA-8 the lower population size outperformed the higher one although the difference is not as
marked as in the case of the PGA-4.

Results for Onemax function: Figure 8-8 summarizes the results of the experiments on the
easy (one-max) problem. The PGA-4 used around 25% of the FEs the SGA used to reach the
global optima. Doubling the population size reduced the effectiveness of the PGA. But this is
neither good nor bad; it reaffirms the notion that optimal choice of different parameter values (as
the population size) is necessary regardless of what type of GA is being used. Too large of a
population is not good since it wastes computation resources and too small of a population causes
genetic drift and leads to premature convergence. The PGA-8 outperformed the PGA-4 by more

than two folds (as was the case with the bipolar problem).
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8.3.2 Results on PGA Parameters

Results for Onemax Function: Performance of this function was evaluated with
subpopulations of 2,4,6,8,10,12,14 and 16 and a 10% migration rate. Another set of evaluations
was conducted with subpopulations of 2, 4,6,10 and 14 with migration rates of 5% 10%, 20%, 50%
and 100%. The 100% migration rate is an extreme case where all individuals are allowed to
migrate. This case serves as a benchmark. The results for Onemax function are shown in Figure

8-9.
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From figure 8-9(a), it is obvious that 6 subpopulations was the best number of subpopulation.
At-test was performed to verify that adding more subpopulation will not statistically decrease the
optimization time. From figure 8-9(b), it is clear that for all subpopulation counts, lower migration
rates help reach the optima quicker. When the number of subpopulation increases, the differences
between migration rates—especially lower ones--for a given number of subpopulations become
less marked. There also appears to be a decline in the impact of migration rate as the number of
subpopulations increases.

Results for Bipolar Function: Performance of this function was evaluated with
subpopulations of 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 with a 10% migration rate. Another set of
evaluations was conducted with subpopulations of 2, 4, 6, 10, and 14 with migration rates of 5%,

10%, 20%, 50%, and 100%. The results for the bipolar function are shown in figure 8-10.
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Figure 8-10(a) shows that the optimal number of subpopulations was 14. A t-test was
performed to verify that adding more subpopulations will not decrease the optimization time.
Figure 8-10(b) shows that the best combination for the number of subpopulations and migration
rate was 14 subpopulations and 20% migration rate. It is also noted that a 50% migration rate was
the best for the PGA with 2 subpopulations. This implies that increasing migration rate to a
reasonable level could help mitigate the impact of shortage of processors on difficult problems. As
the number of subpopulations increases, the differences due to migration rates decreases and
becomes almost nonexistent at the optimal number of subpopulations. The impact of migration
rates, regardless of values, declines as the number of subpopulations increases. This implies that
the migration rate is less important when more processors are available.

Results for traffic problem: Performance of this function was evaluated with subpopulations
of2, 4,6, 8,9, 10, and 14 with a 10% migration rate. In addition, subpopulations of 2, 4, 6, 10, and
14 were evaluated with migration rates of 5%, 10%, 20%, 50%, and 100%. Results for the traffic

optimization function are shown in figure 8-11.
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Figure 8-11(b) shows that the best combination of number of subpopulations and migration
rate was 10 and 5%, respectively. As the number of subpopulations increases the role of migration
rate becomes less significant although very high rates become counterproductive. The best
migration rate for PGA with 2 subpopulations was 50% on this problem. This may imply that
increasing the migration to a reasonable level could help mitigate the impact of shortage of
processors on large but not difficult problems. It is also noted that with the increase in number of
subpopulations, the difference between PGAs with different migration rate decreased, although

this decrease is less significant than in the bipolar function.

8.4 Conclusions and Recommendations

There are different ways to improve performance of GAs including use of Parallel GAs
(PGASs). This chapter presents an overview of different techniques to improve performance of GAs,
with particular emphasis on parallel GAs. This chapter also presents results from applications of a
simple GA (SGA) and migration PGAs on a traffic control problem, a standard GA-difficult, and
standard GA-easy problem. For all problems, savings in computation resources were realized
when PGAs were used. The advantage of PGAs is more pronounced for complex and difficult
(deceptive) problems. On the difficult problem tested in this research, a PGA with four
subpopulations was 7 times more efficient, and a PGA with 8 subpopulations was over 18 times
more efficient. For smaller and less complex problems, the impact of parallelism is less dramatic

when the computation resources are limited (such as limited time to obtain a solution). Use of
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Parallel GAs does not reduce the importance of seeking efficient problem-specific operators,
parameter values, and an efficient representation, but does magnify the effectiveness of such
choices and increase the range of options available.

The number of subpopulations and migration rate are two critical parameters for proper
configuration of PGAs. There are general guidelines on how to optimally select those two
parameters. Experiments were carried out on benchmark GA-difficult and GA-easy problems and
a traffic control problem. The benchmark problems are of known structure and complexity and
helped establish benchmarks or reference points that can be used as a guide in configuring PGAs
for problems of unknown difficulty. Time to reach an optimal or near optimal solution was used to
compare and assess performances. The time needed by a single-population (serial) GA is 100%
and was used as a reference.

Results show that more subpopulations reduce the time to reach a solution and there is a limit
beyond which more subpopulations may become counter productive. This limit is dependent on
problem difficulty. Larger number of subpopulations should be used for more difficult or larger
problems. Migration rate has more impact on difficult or larger problems, although difficulty has
more impact than size of the problem when choosing migration rates. The importance of migration
rate will decrease when more subpopulations are used. With limited computational resources,
migration rate is an option to improve the performance of the PGA for difficult and large problems.
For easier and smaller problems, a minimum migration rate should be used.

Difficulty of a problem, and hence, its time requirement, can be judged from the time

difference between a one-population GA (serial GA) and a 2-subpopulation PGA. The difference
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in times for the difficult and easy problems was obvious: 30% and 50%, respectively. This is a
useful, quick way to judge the difficulty of a problem. It can be used to decide on the optimal
number of subpopulations and migration rate. For the traffic control problem, the difference was
29% thus indicating that it is not a difficult problem although it is combinatorial. These
observations were confirmed when the time difference between one-population GA and a
14-subpopulation PGA were compared. For the easy, difficult, and traffic problem, the differences
were 57.7%, 91.7%, and 67.5%, respectively. Besides difficulty, size of the problem also impacts
time requirements but more experiments are still needed to ascertain the exact relationship
between problem size and number of subpopulations.

Based on the results reported here, the following recommendations may be made: for easy
and difficult problems of sizes similar to the ones used in this research, use 6 and 14 or fewer
subpopulations, respectively. For larger size problems, use a larger number of subpopulations than
specified here. However, the relationship between the increase in problem size and that of the
number of subpopulations is not clear at this point. More subpopulations may always be used but
that will not lead to a significant savings in time, and sometimes can even be counterproductive.
For difficult and large size problems, higher migration rates should be explored if computational
resources (processors) are limited. Lower migration rates should be used for easy problems.
Although some of these recommendations are not very specific, a “cookbook” approach to
configuring a PGA may not be feasible or even necessary given the nature and multitude of factors

that impact the performance of PGAs.
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Chapter 9. Conclusions and Future Work

9.1 Conclusions

In order to control the traffic flow more effectively and more flexibly, the integrated dynamic
speed and dynamic signal (DSDS) control algorithms have been developed in this research. The
developed DSDS control algorithms are optimized by exploring genetic algorithms (GAs) and
they have been used to optimize traffic operations in signalized networks.

Two types of DSDS algorithms are developed: cycle-based and vehicle-based. Signal timing
parameters and speed parameters are adjusted according to prevailing traffic conditions in both of
these algorithms. Compared to traditional traffic controls, the potential benefits of using DSDS
controls includes: better signal coordination, higher efficiency of green time, improved safety,
reduction of fuel consumption, and more flexibility. Models are developed to evaluate the traffic
flow in the signal network under DSDS control. The developed models have been validated by the
microscopic software VISSIM. By comparing the results from VISSIM and the developed
macroscopic DSDS control algorithm, it is concluded that the developed macroscopic models are
valid and can accurately evaluate traffic flow.

Genetic algorithms, a fast search and optimization technique based on the mechanism of
natural selection and natural genetics, have been used to optimize the DSDS control. Both
cycle-based DSDS algorithms and vehicle-based algorithms are implemented on simplified
hypothetical networks. The traffic operations under the DSDS control are compared to those under

the DSFS control. The results have shown that the developed DSDS control can be effectively
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integrated to control signalized networks. It provides an alternative solution and a more flexible
approach to control signalized networks.

The potential capability of the DSDS control on reducing speed noises and speed variation for
signalized networks has also been demonstrated in this study. The results have shown that the
DSDS control is able to achieve smoother traffic flow by reducing speed noises and speed
variations. It indicates that dynamic speed control is an effective and necessary addition to a signal
control system for signalized networks. The DSDS control provides a more flexible and effective
alternative in designing safer and more fuel conservative signalized network systems.

The impacts of driver compliance on the performance of the DSDS control algorithm have
been studied. Various tests have been conducted under different speed conditions. Both slow
driving and speeding have been evaluated. Based on the simulation results, speeding and slow
driving have negative impacts on the effectiveness of the DSDS algorithm. It can also be
concluded that employing a dynamic speed control in a signalized network will improve efficiency
and safety.

There are different ways to improve the performance of GAs including use of Parallel GAs
(PGAs). Parallel Genetic Algorithms (PGAS) save computation resources by distributing the
working load to different processors. Based on the results of the testing problems, it is found that
the savings are more significant for complex or larger optimization problems. The empirical
method described in this research provides guidance on how to configure two of the PGA

parameters, number of subpopulations and migration rate.
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9.2 Future Work

With the positive conclusions in this research, further extension of this research should be
considered. The research presented in this thesis can be further extended into the following areas:

(1) The DSDS algorithm in this research was developed based on simplified hypothetical
networks with only through movements. In order for the model to be practical for field
implementations, the algorithm needs to be extended to cover major turning movements,
stochastic effects of traffic flows, and demand-responsive plans. As the network’s geometry and
traffic operations grow in complexity, the DSDS will likely have a larger effect.

(2) This research analyzed operations of signalized networks under DSDS control and
oversaturated traffic demands in major directions and lower demands in secondary directions,
where the objectives are to avoid queue-spillbacks and grid locks to improve throughput and
minimize delay. The DSDS control algorithm can also be tested in different scenarios such as
incident management, special event traffic diverting management, and integrated corridor controls.
Different objectives for different scenarios can be realized by developing different objective
functions and fitness functions.

a) It is also valuable to explore potential applications of integrating the DSDS algorithm with
other ITS technologies such as dynamic route guidance to create an even more flexible and

comprehensive ITS system.
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b) From the computational side, more effective parallel GA strategies can be further
investigated. For example, one can explore what is the most efficient way for communication

among processors.
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