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ABSTRACT

ESTIMATION AND EXPLOITATION OF LINKAGE DISEQUILIBRIUM IN
PIGS

By

Yvonne Martina Badke

The United States Pork Industry is an important source of income in rural America, and

its continued profitability and success can be facilitated through genetic improvement for

a variety of production and health traits. Prediction of genomic breeding values (GEBV)

based on high density genotypes has the potential to increase genetic progress. The overall

objective of this dissertation was to describe the structure of linkage disequilibrium (LD)

across the pig genome, assess the potential of genotype imputation from low to high density

genotypes, and estimate accuracy of genomic prediction in pure-bred pig populations using

either observed or imputed high density genotypes.

The first study focused on the estimation of LD and pairwise persistence of phase across

the genome of four US pig populations. Observed LD was high between adjacent SNP

(0.36-0.46) and persisted at high levels as pairwise distance between SNP increased to 1

Mb (0.20-0.25). Persistence of phase is a measure of prediction reliability of markers in

one population by those in another and ranged between 0.87 and 0.92 for pairwise SNP

distance <10 kb. We concluded that high estimates of LD between adjacent SNP in this

study are promising for the implementation of genomic selection, especially in conjunction

with genotype imputation to increase cost efficiency. However, persistence of phase appears

to be too low to indicate that the use of combined training panels would be advantageous

for accuracy of genomic prediction at the current marker density.

The second study focused on the accuracy of genotype imputation and variables affecting



imputation accuracy. Using a commercially available 10K tagSNP panel and a small reference

panel of 128 haplotypes average accuracy of imputation was 0.95. Increasing the size of the

haplotype reference panel led to an overall increase in imputation accuracy (IA = 0.97 with

512 haplotypes), but was especially useful in increasing imputation accuracy of SNP with

MAF below 0.1 and for SNP located in the chromosomal extremes. In addition, our results

show that randomly sampling individuals to genotype for the construction of a reference

haplotype panel is more cost efficient than specifically sampling older animals or trios with

no observed loss in imputation accuracy. From these results, we expected that losses in

accuracy of genomic prediction using imputed genotypes would be minimal.

In the third study we assessed the loss of prediction accuracy of GEBV obtained for

Yorkshire pigs using imputed instead of observed genotypes. Accuracy of genomic evaluation

using observed genotypes was high for three traits (0.65-0.68). Using genotypes imputed with

high accuracy (R2 = 0.95) for genomic evaluation did not significantly decrease accuracy of

prediction. The decrease in accuracy of genomic evaluation was significant when imputation

accuracy dropped toR2 = 0.88. Genomic evaluation based on imputed genotypes in selection

candidates is a cost efficient alternative for implementation of genomic selection in pigs.

Furthermore, genotyping animals at lower cost and low density, followed by imputation, can

result in increased accuracy by allowing more animals into the training panel.

In conclusion, we showed that accurate prediction of GEBV in a US Yorkshire population

is possible, and cost efficiency can be increased through the use of genotype imputation in

selection candidates. Furthermore, our results of LD for three other US pig populations

indicate that similar or high accuracy of prediction can be expected within each of these

populations. In addition, we briefly discuss how our results can be extended to prediction

of breed composition, and GEBV prediction and GWAS using whole genome sequence.
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Introduction
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Pigs are an important livestock species in the United States producing total sales of more

than $97 billion and directly employing almost 35.000 people around the country according

to 2011 estimates from the National Pork Producers Council. Genetic improvement through

breeding for meat quality, reproductive performance, and health traits is an important tool

to assure the pork industries competitiveness and continued success. There has been an in-

crease in lean percentage of roughly 0.1% per year since 2001 (USDA, 2009a) and the number

of piglets per litter has increased from 8.8 to 9.5 (USDA, 2009b). This progress in animal

performance and productivity can be attributed to a number of factors such as improvements

in overall herd health and housing, improved feeding, and genetic improvement through tra-

ditional breeding schemes. Traditional breeding describes the estimation of breeding values

(EBV) for all animals based on the performance of their relatives. Linear mixed models are

fitted to obtain predictions of performance of animals through their expected relationship

matrix combining information across all available relatives (Henderson, 1984). Favorably

ranking animals are further evaluated based on the information of their offspring to obtain

highly accurate EBV to be used in predictions for future generations. It has been conser-

vatively estimated that improvement from traditional genetic selection programs increases

revenue to the pork industry by more than $42 million annually (C. Schwab, personal com-

munication). A large number of studies to date have aimed to identify quantitative trait loci

(QTL) associated with economically important traits, such that the pig QTL database cur-

rently documents 8402 QTL from 356 publications (http://www.animalgenome.org/pigs/).

Certain traits, i. e. halothane sensitivity, could be traced back to the gene and the corre-

sponding mutation directly affecting the phenotype, allowing these loci to be directly used

in gene assisted selection (Meuwissen et al., 2013). However, the majority of phenotypes ap-

pears to be associated with a large number of loci with comparably small individual effects
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across the genome (Meuwissen et al., 2001) making selection based on single loci impossible

for most economic traits. A related attempt to utilize genetic information, mostly single nu-

cleotide polymorphisms (SNP), for breeding was marker assisted selection, where SNP were

tested for association with the phenotype and subsequent selection was based significantly

associated SNP (Meuwissen et al., 2013). However, due to imperfect linkage disequilib-

rium (LD) between the SNP used for selection and the underlying QTL (Meuwissen et al.,

2013) and ascertainment bias in selecting significantly related SNP (Meuwissen et al., 2001),

accuracy from this approach was generally unsatisfactory.

An alternative to traditional breeding schemes, and gene- or marker-assisted selection

has been proposed by Meuwissen et al. (2001). Based on the assumption that phenotypes

are associated with a large number of loci with small effects, many of which will fail to

reach statistical significance when QTL are mapped, they proposed a method of genomic

evaluation fitting a prediction equation to thousands of genetic markers in parallel to obtain

predicted genomic breeding values (GEBV; Meuwissen et al., 2001). As initially proposed,

genomic selection models were based on a two-stage design. In the first stage, a prediction

equation was fit to a training panel of animals with highly accurate EBV to estimate SNP

effects for all markers. In the second stage, the estimated SNP effects and observed genotypes

of selection candidates were used to calculate GEBV. GEBV, especially for young animals,

are expected to be more accurate than EBV due to the inclusion of both close and distantly

related animals, as well as the use of actual proportions of identity shared by descent (IBD)

between animals vs. the expected proportion of IBD that is used to estimate EBV. In

addition, GEBV are expected to increase the accuracy of selection for traits that are difficult

to measure such as health traits, life-time productivity, or those only available post-mortem.

Also, since this method allows selection of animals at a very young age it is expected to
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shorten generation intervals (Meuwissen et al., 2001; VanRaden et al., 2009).

Research and implementation of this method has been facilitated in several livestock

species through the recent availability of high density genotyping platforms for bovine

(Matukumalli et al., 2009), ovine (Archibald et al., 2010), chicken (Groenen et al., 2009), and

pig (Ramos et al., 2009). An impressive body of research including simulation experiments

and studies on real populations over the last few years have furthered our understanding

of variables affecting the accuracy of genomic evaluation and possible designs which can be

used to implement GEBV in the livestock industry (Daetwyler et al., 2013).

Among variables affecting the accuracy of genomic selection are the level of LD across

the genome, the composition and size of the training population, the statistical models used

for prediction (Meuwissen et al., 2013), the genetic architecture and heritability of the trait

(Hayes et al., 2009a), and in case genotype imputation is utilized the accuracy of imputation

(Weigel et al., 2010a). Interactions between these variables, like the genetic architecture of

the trait defining the optimal statistical model (Meuwissen et al., 2013) increase the difficulty

of choosing an optimal design.

When the Illumina PorcineSNP60 Genotyping BeadChip (Illumina Inc.; Ramos et al.,

2009) was first released in 2008 it introduced the possibility of enabling genomic selection

in swine breeding. It was the goal of this dissertation research to use this newly available

platform to assess the potential of genomic selection to be implemented into commercial

swine breeding.

Our initial step was to assess the extent of LD across the genome in four breeds of pigs and

estimate persistence of phase between the breeds. Extent of LD is an important precursor

for genomic selection (Hayes et al., 2009a), since the average LD between SNP is indicative

of the LD that can be expected between a QTL and neighboring SNP. We compared aver-
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age LD between both neighboring SNP and also SNP at an increasing distance, to assess

whether or not reducing the number of markers necessary to implement genomic selection

could potentially be reduced to increase cost efficiency (Badke et al., 2012). Persistence of

phase between populations is informative to assess the usability of training panels combining

animals across populations for genomic selection (Goddard et al., 2006; de Roos et al., 2009).

If phase is conserved between breeds to a large extent, then combining animals across breeds

to form a training panel will likely lead to an increase in selection accuracy (de Roos et al.,

2009). However, if persistence of phase between two populations is low then combining them

to form a training panel would have a negative impact on the resulting accuracy of genomic

selection (de Roos et al., 2009). Due to the relatively small size of pure-bred swine popu-

lations combining animals across populations to form a training panel for genomic selection

could decrease the initial investment necessary.

After assessing that LD in swine is comparably high between both neighboring SNP and

SNP at an increasing distance we considered options to implement low density genotyping

and genotype imputation to potentially increase cost efficiency of genomic selection (Badke

et al., 2012). Cost efficiency is critical in swine breeding to allow a widespread implementa-

tion of genomic methods, but accuracy of genomic prediction based on imputed instead of

observed genotypes depends on the accuracy of genotype imputation Weigel et al. (2010a).

Though overall cost of genotyping has decreased dramatically over the last few years it is

still not feasible for pig breeding operations to genotype young animals or selection candi-

dates using high density genotypes on the PorcineSNP60. We proposed to select a small

panel of maximally informative tagSNP (Qin et al., 2006) that could subsequently be used

to impute genotypes from low density back to the original high density array. Genotype

imputation from low density panels using a reference panel of haplotypes is computationally
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efficient and imputed genotypes can reach almost perfect accuracy at a much reduced cost

(Browning and Browning, 2009; Dassonneville et al., 2011; Gualdrón Duarte et al., 2013;

Huang et al., 2012; Wiggans et al., 2012). Accuracy of imputation mainly depends on the

amount of information available for imputation, such that a large reference panel of haplo-

types (Dassonneville et al., 2011) and the inclusion of linkage and LD information positively

impact the resulting accuracy (Gualdrón Duarte et al., 2013; Huang et al., 2012). It was

our second objective to select a maximally informative panel of low density SNP in four US

pig breeds using several selection strategies such as the physical distance between SNP, a

minimum threshold of LD between tagSNP (Qin et al., 2006), or the ability of each SNP to

accurately predict the genotypes of markers not included in the panel (Badke et al., 2013).

Since low density to high density genotype imputation necessitates the use of a reference

panel of haplotypes we also sought to investigate the effect of reference panel composition.

Parallel to our work on designing low density SNP panels the GeneSeek Genomic Profiler

for Porcine LD (GGP Porcine), a low density platform comprising roughly 10K, assembled

using the SNPspace software (C.P. Van Tassell, unpublished data) was released by GeneSeek

(Lincoln, NE). Recognizing the potential of a non breed-specific general low density panel for

industrial application in pig breeding we changed our focus from the design of breed-specific

low density platforms to perform a detailed assessment of genotype imputation accuracy

using the GGP Porcine to impute high density genotypes in Yorkshire pigs.

Finally, we combined the results obtained in our previous publications (Badke et al.,

2013, 2012) to investigate the accuracy of genomic evaluation in a US Yorkshire population

using both observed and imputed genotypes. Imputation accuracy observed in this Yorkshire

population was comparable to previous reports in dairy cattle (Dassonneville et al., 2011;

Wiggans et al., 2012) and we expect it can be further increased through the use of algorithms
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that combine information on linkage and LD to obtain imputed genotypes (Gualdrón Duarte

et al., 2013; Huang et al., 2012; Wiggans et al., 2012). Therefore, the loss of accuracy

in genomic evaluation when imputed instead of observed genotypes are used in selection

candidates is expected to be minimal, which would concur with previous results in dairy

cattle breeding (Dassonneville et al., 2011; Wiggans et al., 2012). We used a cross validation

design to implement genomic evaluation using a computationally efficient model and assessed

the accuracy of this evaluation for both observed genotypes, and genotypes imputed using

different size reference panels. In addition, we assessed the effect of several variables that

have previously been shown to influence accuracy of genomic evaluation such as relatedness

between training and prediction (Clark et al., 2012), and the accuracy of EBV used for

validation (Hayes et al., 2009a).

In conclusion, the overarching goal of this dissertation was to implement a scheme for

the adoption of genomic selection techniques into swine breeding, that would be optimally

fit to the structure and requirements of this population. We aimed to present a solution that

would yield highly accurate predictions while maintaining cost efficiency with respect to

initial and long-term investment. In addition, by releasing all data and code used to obtain

these results we hope to facilitate further research addressing issues within this specific

population, but also the translation of our approach to designing a genomic selection scheme

for other populations and species not currently employing these techniques.

Specifically the objectives of this dissertation were:

1. Estimate LD in the Duroc, Hampshire, Landrace and Yorkshire pig breeds using SNP

genotypes obtained using the Illumina PorcineSNP60 Genotyping BeadChip. Deter-

mine persistence of phase between breeds to assess the potential of mixed breed refer-

ence panels for both imputation and genomic selection in the future.
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2. Assess tagSNP selection strategies to obtain a maximally informative subsets of tagSNP

that effectively span the genome for each breed. In addition, report on imputation

accuracy of the recently released GeneSeek Genomic Profiler for Porcine LD (GGP-

Porcine, GeneSeek a Neogen Company, Lincoln, NE), a commercially available 10K

tagSNP panel.

3. Perform GEBV prediction for economically important production traits using high

density SNP genotypes for the Yorkshire breed, as well as genotypes imputed from the

GGP-Porcine. Assess the loss in accuracy when genotypes in selection candidates were

imputed from low to high density.
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Chapter 2

Estimation of linkage disequilibrium

in four US pig breeds

Badke, Y. M., Bates, R. O., Ernst, C. W., Schwab, C., & Steibel, J. P. (2012). Estimation

of linkage disequilibrium in four US pig breeds. BMC genomics, 13(1), 24.
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2.1 Background

The extent of non-random association of gametes at different loci, or linkage disequilibrium

(LD), has become the focus of many recent studies in both humans and animals (Amaral

et al., 2008; Conrad et al., 2006; Reich et al., 2001; Corbin et al., 2010). Gaining knowledge

of the distribution of LD in livestock populations is important for genetic mapping of eco-

nomically important traits such as disease resistance (Pritchard and Donnelly, 2001), and it

can reveal population history and breed development (Nordborg and Tavare, 2002; Tenesa

et al., 2007). Moreover, genome wide association (GWAs) studies as well as genomic selec-

tion in livestock rely on the existence of LD between causative variants and genetic markers

(Hayes et al., 2009a; Goddard and Hayes, 2009). Recent advances in genotyping technology

allow high density genotyping of single nucleotide polymorphisms (SNP) for several livestock

species such as cattle (Matukumalli et al., 2009), chicken (Groenen et al., 2009), and pigs

(Ramos et al., 2009) Obtaining high density genotypes from a sample of individuals allows

for the estimation of genome-wide LD and persistence of phase among breeds (Goddard

et al., 2006). Previous studies have shown that the extent and persistence of LD in livestock

(de Roos et al., 2008; Sargolzaei et al., 2008; Uimari and Tapio, 2011) is much larger than

that found in human populations (Reich et al., 2001), due to selection and smaller effective

population size in livestock species (Amaral et al., 2008; Harmegnies et al., 2006). Using

dense markers to cover the genome increases the likelihood of SNP markers to be in high LD

with causative genes altering important production phenotypes (Goddard, 2008). Meuwis-

sen and Goddard (2001) proposed that the merit of these markers in livestock would be in

the parallel use of all markers to derive genomic breeding values (GEBV) as a composite

score of all individual SNP effects rather than improving mapping of quantitative trait loci
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(QTL). The implementation of genomic selection using GEBV has been successful in dairy

cattle (Hayes et al., 2009a; VanRaden et al., 2009; Goddard and Hayes, 2007), and is cur-

rently being tested in laying chickens (Wolc et al., 2011) and pigs (Cleveland et al., 2010).

The reliability of GEBV prediction relies on the level of LD between markers and QTL, the

origin of such LD (either within family or population-wise), the number of animals used in

the training population as well as heritability of the trait (Hayes et al., 2009a). In this study

it is our objective to estimate and describe genome wide levels of LD in four pig breeds using

high density genotypes. We also estimate population-wise LD for a variety of panels with

lower marker density in order to estimate the number of markers needed to reach a given

level of LD. We estimate persistence of phase between the four breeds in this study as a

measure of relationship between these populations.

2.2 Results

2.2.1 Estimation of Linkage Disequilibrium

To estimate LD, we genotyped 351 animals in 117 sire/dam/offspring trios across four breeds

of pigs (Duroc, Hampshire, Landrace and Yorkshire) using the Illumina Porcine SNP60

BeadChip (Ramos et al., 2009). We used BEAGLE (Browning and Browning, 2009) to build

haplotypes and estimated pairwise r2 for all SNP on the same chromosome using equation

(2.1). Average r2 between adjacent markers within breed was estimated using equation (2.2).

Average r2 at various distances was computed by grouping all SNP combinations by their

pairwise distance in classes of 100 kb of length starting at 0 to 10 Mb. Figure 2.1 displays

an overview of the decline of r2 over distance in each breed. In addition, Table 2.1 displays

average r2 for adjacent markers and at 0.5, 1 and 5 Mb. The average r2 between adjacent
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SNP was largest in the Duroc animals (r2=0.46), followed by Hampshire (r2=0.44), whereas

Yorkshire and Landrace exhibited the smallest average r2 (0.39 and 0.36 respectively; Table

2.1). Marker pairs with an average distance of 1 Mb had an average r2 of 0.20 for Hampshire,

0.19 for Duroc, 0.16 for Yorkshire and 0.15 for Landrace. For all breeds, at least 54% of the

adjacent SNP had an r2 ≥ 0.2 and 44% r2 ≥ 0.3. For most chromosomes, average r2 between

adjacent SNP in Duroc and Hampshire was larger than average r2 in Landrace or Yorkshire.

In addition to estimating average r2 within distance classes, we also computed average r2

between adjacent markers for different marker densities. To obtain marker sets with various

SNP densities we sequentially removed markers from the current map using every second,

fourth, 10th, 50th, 100th and 200th marker (Table 2.2). Average r2 decreased between 6%

for Yorkshire to 15% for Hampshire when only 50% of the markers were used, with highest

average r2 for Duroc (r2=0.40) followed by Hampshire (r2=0.37), Yorkshire (r2=0.34) and

the lowest for Landrace (r2=0.30). Using only every 10th marker, average r2 decreased

to around 50% of the original r2 (r2=0.20-0.25), and using every 100th marker average r2

ranged from 0.05-0.07 at an average marker distance of 6.5 Mb, which was comparable to

the results found for average r2 at 5 Mb.
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Table 2.1: Average r2 at various distances in four breeds

Breed Adjacent 0.5Mb2 1Mb2 5Mb2

Duroc 0.46 0.26 0.19 0.06

Hampshire 0.44 0.25 0.20 0.08

Landrace 0.36 0.19 0.15 0.06

Yorkshire 0.39 0.21 0.16 0.05

1 Average r2 for SNP with adjacent map positions (exact spacing: 70 kb for Duroc, 74 kb
for Hampshire, 60 kb for Landrace, and 61kb Yorkshire).
2 Average r2 for SNP spaced 0.5 Mb, 1 Mb and 5 Mb apart
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Figure 2.1: Decay of average r2 over distance

Average r2 between markers in Duroc, Hampshire, Landrace and Yorkshire at various
distances in base pairs ranging from 0 to 10 Mb.

For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.
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Table 2.2: Average r2 between adjacent SNP for sparse marker panels

% of SNP kept 1
Duroc Hampshire Landrace Yorkshire

average

r2 2

average

distance

in kb 3

average

r2 2

average

distance

in kb 3

average

r2 2

average

distance

in kb 3

average

r2 2

average

distance

in kb 3

50% 0.4 141 0.37 148 0.3 120 0.34 123

25% 0.34 281 0.31 296 0.25 239 0.28 246

10% 0.25 703 0.23 740 0.2 597 0.21 613

2% 0.1 3,507 0.11 3,693 0.09 2,978 0.09 3,056

1% 0.05 7,026 0.06 7,399 0.05 5,963 0.05 6,127

0.50% 0.02 14,120 0.04 14,872 0.03 11,977 0.02 12,313

1Percentage of SNP included in the current set of markers
2Average r2 for SNP with adjacent map positions for the current set of markers
3Average distance in kb for SNP with adjacent map positions in the current set of markers



2.2.2 Persistence of Phase

Persistence of phase is a measure of the degree of agreement of LD phase for pairs of SNP

between two populations. To estimate persistence of phase, we calculated rij as the square

root of r2ij in equation (2.1) between all possible combinations of SNP i and j respectively,

using the sign of the non-squared numerator. If r2 between two markers is equal in two

populations, but their corresponding r has opposite sign, the gametic phase is reversed

(Uimari and Tapio, 2011). Persistence of phase over a certain genomic distance interval

can be estimated as the pairwise Pearson correlation coefficient (R
k,k′) of inter-marker rij

between two populations k and k (Equation 2.3). For all pairwise comparisons of breeds

we estimated R
k,k′ and the percentage of SNP with reversed sign of r. Similar to our

computation of average r2, we grouped SNP pairs in classes of inter-marker distances 100

kb long and computed persistence of phase within each class starting at 0 up to 10 Mb

(Figure 2.2). In theory, the Pearson correlation coefficient ranges between -1 and 1. Large

negative values are a result of high LD (r2) in both breeds but phase is reversed between

them. High positive values are a result of high r2 and equal phase in both breeds (Uimari

and Tapio, 2011). Correlation of phase between SNP less than 100 kb apart ranged from 0.73

for Duroc with Hampshire and Yorkshire to 0.82 for Landrace with Yorkshire. Considering

SNP pairs with an average distance of 0.9 to 1 Mb, correlation of phase decreased to 0.41 for

Duroc with Hampshire and to 0.57 for Yorkshire with Landrace (Table 2.3). Persistence of

phase decreased with increasing marker distance at a rate comparable to that observed for the

decrease in average r2 with increasing marker spacing. The slope of the decline was lower for

the correlation between Landrace and Yorkshire when compared to other breed comparisons.

Applying a z-test with Fishers transformation (Cohen et al., 2003) to the correlation of phase
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at <10 kb, the correlation of phase between Landrace and Yorkshire was significantly larger

(p < 0.001, n = 1520) than all other breed combinations. Results for the correlation of

phase were not significantly different (p > 0.05, n = 1520) in the Duroc-Hampshire, Duroc-

Landrace, Duroc-Yorkshire, Hampshire-Yorkshire, and Hampshire-Landrace pairings (Table

2.3). For these five population comparisons, the average proportion of SNP with r having

opposite sign ranged between 9-11% for SNP spaced within 10 kb and up to 45-49% for SNP

spaced between 4.9 and 5 Mb (Table 2.3). In general, the estimates of r with reversed sign

for the Landrace-Yorkshire were lower ranging from 9% to 45%. These results suggested a

closer population relationship between the Landrace and Yorkshire populations than among

all other populations.
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Figure 2.2: Correlation of gametic phase compared across breeds over distance
Correlation of Phase between breeds for SNP pairs grouped by distance in intervals 100 kb

long covering 0 to 5 Mb across the genome.
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Table 2.3: Pairwise breed comparison of correlation of phase and proportion of phase agree-
ment at various distances

Breeds Compared Distance1 Proportion of r

with opposite sign2

Correlation of

rij(k) and rij(k)
3

Duroc Hampshire

0-10kb 0.107 0.875

10-50kb 0.184 0.762

50-100kb 0.246 0.668

0.9-1Mb 0.391 0.408

4.9-5Mb 0.469 0.21

Duroc Landrace

0-10kb 0.108 0.872

10-50kb 0.186 0.773

50-100kb 0.251 0.681

0.9-1Mb 0.395 0.438

4.9-5Mb 0.485 0.19

Duroc - Yorkshire

0-10kb 0.104 0.87

10-50kb 0.195 0.761

50-100kb 0.252 0.67

0.9-1Mb 0.396 0.422

4.9-5Mb 0.468 0.201

Hampshire - Landrace

0-10kb 0.099 0.882

10-50kb 0.184 0.776

50-100kb 0.242 0.697

0.9-1Mb 0.392 0.441

4.9-5Mb 0.475 0.189
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Table 2.3: (cont’d)

Breeds Compared Distance1 Proportion of r

with opposite sign2

Correlation of

rij(k) and rij(k)
3

Hampshire - Yorkshire

0-10kb 0.113 0.871

10-50kb 0.189 0.771

50-100kb 0.249 0.686

0.9-1Mb 0.389 0.439

4.9-5Mb 0.459 0.245

Landrace - Yorkshire

0-10kb 0.087 0.921

10-50kb 0.16 0.842

50-100kb 0.204 0.783

0.9-1Mb 0.353 0.571

4.9-5Mb 0.448 0.297

1Interval length in kb
2Proportion of SNP pairs having r with reversed sign within the interval
3Correlation of phase between two breeds (k and k) within the given interval

2.3 Discussion

2.3.1 Extent of Linkage Disequilibrium

Current effective population size of the breeds used in this study was previously estimated,

using pedigree information, to be between 74 (Landrace) and 113 (Duroc, Yorkshire, (Welsh

et al., 2010)). Consistent with having the largest current effective population size, we find

that long range r2 (10 Mb, Fig. 2.1) estimated from our data was smallest for Duroc and

Yorkshire (0.035, 0.03). In Hampshire, a smaller effective population of 109 corresponded to
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higher r2 at 10 Mb (0.046). Due to the similar long range r2 (0.035) at 10 Mb we would

have expected the Landrace population to have an effective population size comparable to

that of Duroc and Yorkshire. However, using pedigree data Welsh et al. (2010) estimated

the current effective population size of Landrace to be 74. The reason for this discrepancy

remains unknown. Several previous studies investigated LD in pigs using reduced numbers

of microsatellite markers and fewer animals from commercial populations (Harmegnies et al.,

2006; Nsengimana et al., 2004). Nsengimana et al. (2004) found relatively large estimates of

LD (D) from 0.29 to 0.41 using 15 microsatellite markers. In contrast, using r2 instead of D

and thereby correcting for minor allele frequency, Harmegnies et al. (2006) found r2 ranging

from 0.15 to 0.19 for marker distance < 1 cM and 0.10-0.12 for markers spaced between 1 cM

and 5 cM, using 29 microsatellite markers on SSC15, comparable to our results of r2 between

0.16-0.22 for marker spaced between 1 and 5 Mb. Du et al. (2007) estimated r2 from 4,500

SNP markers in six commercial lines of pigs and found estimates of average r2 = 0.51 for

markers less than 0.1 cM apart, and estimates of 0.21 and 0.07 at marker distances of 1 cM

and 5 cM respectively. Similarly, our populations had average r2 of 0.15 to 0.20 and 0.05

to 0.08 at marker distances of 1 Mb and 5 Mb, respectively. A recent study conducted by

Uimari and Tapio (2011) used the same genotyping platform as our study to estimate r2 and

effective population size in Finnish Landrace and Yorkshire populations. Uimari and Tapio

(2011) found average r2 of 0.43 and 0.46 for adjacent markers in the Finnish Landrace and

Yorkshire populations, respectively, which was higher than our results of 0.36 for Landrace

and 0.39 for Yorkshire. In addition, Uimari and Tapio (2011) reported that the r2 for markers

spaced at 5 Mb decreased to 0.09 and 0.12 in the Finnish Landrace and Yorkshire breeds,

respectively. In the present study, r2 declined further to 0.05-0.06 at 5 Mb marker spacing

for Landrace and Yorkshire (Table 2.1). The higher average r2 for distant (r2 > 0.2 for 1
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Mb) markers in the Finnish populations could be explained by smaller effective population

size of the Finnish populations, causing higher r2 on average. This is partially confirmed by

comparing the estimated effective size of the Finnish populations (Ne = 91, 61 for Landrace

and Yorkshire, respectively) (Uimari and Tapio, 2011), to estimated effective population

sizes of the populations used in the current study reported by Welsh et al. (2010) (Ne = 74,

113 for Landrace and Yorkshire, respectively), where the current effective population size

for Finnish Yorkshire is approximately half that of our Yorkshire population. Compared to

recent estimates from Canadian populations we found estimates of average r2 for markers

with pairwise distance below 100kb to be consistent in Landrace (US: 0.34, Canadian: 0.31)

and Yorkshire (US: 0.37, Canadian: 0.32; Jafarikia et al., 2010). However, in Duroc estimates

of average r2 for markers with pairwise distance below 100kb were considerably higher in

the US population (0.42) compared to the Canadian population (0.31, Jafarikia et al., 2010).

2.3.2 Persistence of Phase

Persistence of phase can be used to infer upon the history of a species and relatedness of

breeds within that species as well as on reliability of across population GWA and GEVB

prediction (de Roos et al., 2008). Persistence of phase was previously reported for three

Canadian swine breeds (Duroc, Landrace, Yorkshire, Jafarikia et al., 2010). For SNP with

pairwise distance below 50kb we estimated persistence phase to be 0.88 between Landrace

and Yorkshire and 0.82 for both Landrace and Yorkshire with Duroc. In the Canadian breeds

persistence of phase also indicates a closer relationship between Landrace and Yorkshire

(0.82) and a more distant relationship between Landrace/Yorkshire and Duroc (Jafarikia

et al., 2010). We found correlation of phase of 0.82 for Landrace/Yorkshire with Duroc,

while the Canadian breeds had 0.66/0.65, indicating less agreement of phase even at short
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pairwise distance (Jafarikia et al., 2010). Our results showed that correlation of phase for

the pig breeds in this study ranged between 0.87 for Duroc-Yorkshire and 0.92 for Landrace-

Yorkshire for markers with pairwise distance <10 kb. Previous research in Australian cattle

breeds (de Roos et al., 2008) showed correlation of phase between 0.68 for Australian Angus-

New Zealand Jersey to 0.97 for Dutch Holstein-Black and White. At increasing marker

distance, correlation of phase for the pig breeds in this study decreased (range in r: 0.41 to

0.57) at an average pairwise marker distance of 1 Mb. This decrease however was less than the

decrease de Roos et al. (2008) observed in all but two of the cattle breeds they considered

(< 0.4 for markers spaced 1 Mb). While correlation of phase was similar between these

pig breeds and dairy cattle at short range (<10kb), the pig breeds showed generally larger

correlation of phase than the dairy cattle de Roos et al. (2008) at increasing marker distances.

If two populations diverged from a common ancestral population, their correlation of phase

can be expressed as r20(1 − c)2T , where r20 is a measure of LD in the common ancestral

population, c is the recombination distance between markers, and T is time since breed

divergence in generations (Sved et al., 2008). For markers as close as 10 kb the recombination

distance c will be almost 0, so that correlation of phase at those short distances can serve

as an estimation of r20 in the common ancestral population. Since correlation of phase was

comparable in the pig populations (0.87-0.92) for markers with pairwise distance below 10

kb to that reported in Australian cattle (0.80-0.97, de Roos et al., 2008), LD in the common

ancestral pig population is likely to be similar to that in the common ancestral population

of Australian cattle breeds. Larger correlation of phase at increasing marker distance (1

Mb) in the pig populations used in this study (0.41-0.57) compared to Australian cattle

breeds (< 0.40) suggests that T is smaller in our pig breeds than it is in the cattle breeds.

The expected correlation of r between two breeds can be expressed as e−2cT (de Roos
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et al., 2008). To estimate the time since breed divergence for the pig breeds in this study

we used SNP with pairwise distance between 10kb and 300kb, and estimated correlation of

phase for each 2.5kb interval. We calculated the linear regression of the natural logarithm

of the estimated correlation of phase onto the average pairwise distance c. The slope of

this regression is an estimate of −2T . Consequently, the slope divided by -2 is the number

of generations (T ) since these two breeds have diverged (de Roos et al., 2008). Results

suggest that the pig breeds in this study diverged approximately 40-66 generations ago. The

expected correlation of phase would decrease to 0.41 and 0.02 at 1 cM and 5 cM distance

respectively in the Yorkshire-Landrace comparison, assuming T of 40 and r20 of 0.92. We

observed a correlation of phase of 0.57 and 0.30 at 1 Mb and 5 Mb, respectively, between

these two breeds, indicating that a T of 40 may overestimate the actual time since breed

divergence. One possible cause of this observation is admixture between these two breeds,

causing more common LD between them than what would be expected from fully diverged

breeds (de Roos et al., 2008). We obtained the date of herd book closure for each of the

breeds in this study, and assuming a generation interval of approximately 2 years (Welsh

et al., 2010), Duroc, Hampshire, Landrace, and Yorkshire have existed as distinct breeds for

at least 38.5, 44.5, 31.5, and 30.5 generations, respectively. The time of herd book closure

does not directly indicate the time since breed divergence, since distinguishable breeds must

have existed before herd book closure. Nevertheless, the time of herd book closure further

supports our observation that Landrace and Yorkshire have developed as separate breeds

later than Duroc and Hampshire.
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2.3.3 Implications of estimated levels of LD for GEBV implemen-

tation

Our results have several important implications for future implementation of genomic se-

lection in swine. Accuracy of prediction of genome wide marker assisted selection can be

directly affected by the chosen marker density (resulting in average r2 between markers

and QTL), and the size of the training population (Hayes et al., 2009a). The currently

used marker panel, containing approximately 40,000 usable markers, had average r2 of ap-

proximately 0.4 between adjacent markers for all four breeds. That exceeds the level of

r2 = 0.2 simulated by Meuwissen et al. (2001) to reach prediction GEBV accuracy around

0.85. Furthermore, our results indicated that reducing the original marker panel to 10% of

the markers (3,000-4,000 SNP) still resulted in average r2 for adjacent markers exceeding

0.2 in all four breeds. On the other hand, recent research in Australian Holstein Friesian

cattle has shown (Moser et al., 2010) that using subsets of 3000-5000 SNP to estimate direct

genomic breeding values (DGV) could only reach 80% of the prediction accuracy previously

estimated using approximately 42,000 SNP. Such a reduction in prediction accuracy will be

unacceptable for most practical implementations. However, the accuracy of GEBV predicted

by low density panels can be increased through the use of genotype imputation (Weigel et al.,

2010a), where high density genotypes are imputed using low density SNP genotypes and a

high density reference panel of haplotypes (Browning and Browning, 2009). Weigel et al.

(2010b) used approximately 10% of 2,693 SNP from Bos Taurus chromosome 1 to impute

the full SNP set in a Jersey population. They found that using a high density reference

genotype panel (n = 2, 542 animals), the imputation accuracy of the non-typed markers was

between 0.86 and 0.94. Average r2 in our populations ranged from 0.36 to 0.48 for markers
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less than 100 kb apart, comparable to average r2 = 0.38 for markers spaced at <100 kb

in the Jersey population (Villa-Angulo et al., 2009). Assuming a comparable decline of LD

for increasing marker distance between the Jersey population and our pig populations, we

would expect to accurately impute approximately 90% of the high density genotypes, us-

ing a low density panel containing 10% of the markers. More recent results reported even

higher average accuracy of imputation (approximately 95%) when imputing 42,000 SNP in

the Bovine 50K using the 3K subset in Holstein cattle (Johnston et al., 2011). To assess

the accuracy of GEBV estimated from imputed genotypes Weigel et al. (2010a), used the

same Jersey population from their previous study (Weigel et al., 2010b), and they found that

the accuracy of GEBV based on imputed markers was 95% of the accuracy of the GEBV

estimated using the observed genotypes (Weigel et al., 2010a). As noted above average r2

is similar between the American Jersey population and our pig populations, suggesting that

future research in genomic selection in swine should explore the use of imputed low density

genotypes to increase cost efficiency. Previous research in humans (Huang et al., 2009), and

European Holstein cattle (Dassonneville et al., 2011) indicated that combining haplotypes

from closely related populations can increase the accuracy of genotype imputation, while re-

search in sheep suggests that breed specific reference haplotypes would yield better accuracy

(Hayes et al., 2012). The success of combined haplotypes for genotype imputation depends

on the relatedness between the populations. Further research is necessary to determine if

persistence of phase is large enough in our pig populations to increase imputation accuracy

when combining reference haplotypes across breeds. As noted by Goddard (2008), the accu-

racy of GEBV prediction can be expressed as a function of the LD of between marker and

QTL and the accuracy of estimated SNP effects. The loss in accuracy of GEBV prediction

caused by imputing instead of observing genotypes could be compensated by increasing the
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number of animals used to estimate SNP effects. If not enough animals are available for

the estimation of SNP effects, animals from different, but closely related, populations could

be combined to estimate SNP effects for GEBV prediction in both populations (Goddard

et al., 2006; Ibánez-Escriche et al., 2009). The squared short-range (<10 kb) correlation of

phase can also serve as the accuracy with which we can predict a marker-QTL association in

one population using known marker-QTL associations from another population. For the pig

breeds reported in this study the squared correlation of phase for close markers (0-100kb)

ranged from 0.53 to 0.67. To evaluate whether these accuracies would warrant the use of

a combined training population to estimate SNP effects accurately for both populations we

refer to a simulation study conducted by de Roos et al. (2009) estimating the accuracy of

GEBV prediction for combined training populations of highly, moderately and lowly related

populations. Correlation of phase for populations diverged approximately T = 30 genera-

tions ago was reported to be below 0.80 for markers with pairwise distance below 0.055 cM

(de Roos et al., 2009). We found correlation of phase between Landrace-Yorkshire of around

0.80 at a corresponding marker distance. de Roos et al. (2009) concluded that reliability

of GEBV prediction could be increased between 0.05-0.10 points in two populations, when

approximately 40,000 marker genotypes are available, heritability is h2 = 0.3 or higher, 1000

animals from each population were used to estimate SNP effects, and under the assumption

that QTL effects are the same for both populations (de Roos et al., 2009). In addition,

they found that for genetically distant populations, at least 1,000 animals with genotypes

and phenotypes available in each population were needed to avoid a decrease in the relia-

bility of prediction (de Roos et al., 2009). When SNP effects estimated in one population

are used to calculate GEBV for another population which diverged approximately T = 30

generations ago, the reliability of the predicted GEBV was 0.65 assuming both high marker

27



density (M = 40, 000) and heritability h2 = 1 (de Roos et al., 2009). Consequently, combin-

ing animals into a multi-breed panel to estimate SNP effects is likely to be only marginally

beneficial for the pig breeds in this study, given the estimated correlation of phase and the

large number of animals and markers required (de Roos et al., 2009).

2.4 Conclusions

We used the PorcineSNP60 chip (Ramos et al., 2009) to obtain high density genotypes

(34,000-40,000 SNP) from pig trios in four breeds. From this data we estimated r2 as a

measure of LD across the genome as well as correlation of r, which measures phase agreement

between breeds. We found r2 of approximately 0.4 for markers less than 100 kb apart, which

is higher than comparable estimates reported for North American Holstein cattle (Sargolzaei

et al., 2008) as well as various Australian cattle breeds (de Roos et al., 2008). The same was

true for average r2 between markers with pairwise distance larger than 1 Mb, indicating a

smaller past effective population size of these pig breeds. We also report a relatively slow rate

of decay of LD over distance, observing r2 around 0.2 at 1 Mb. The comparably high long

range LD is an indicator that good accuracy can be expected for future implementations of

GEBV in pigs using 10% (3,000-4,000) of SNP used in the current assay or less, along with

genotype imputation. We would encourage future research in genomic selection in swine

to especially focus on the possible benefits of the combined use of reduced marker panels

and genotype imputation. To successfully promote the use of genomic selection in swine it

will be necessary to increase cost efficiency while maintaining high accuracy of prediction.

Currently no low density panels for SNP genotyping are publicly available for swine, but

the presented results will be available to aid in the development of efficient SNP platforms.
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Relatively low persistence of phase reported here implies that the use of multi-breed panels

estimating SNP effects for genomic selection will likely be limited, especially when using low

density genotypes, but the merit of combining reference haplotypes for genotype imputation

should be further investigated.

2.5 Methods

2.5.1 Sample Design

For this study sire/dam/offspring trios of the Duroc, Hampshire, Landrace and Yorkshire

breeds were selected from the National Swine Registry (NSR) pedigree. Selected parents

were unrelated for at least two generations. All animals were genotyped using the Illumina

PorcineSNP60 (Number of markers M = 62, 163) Genotyping BeadChip (Illumina Inc.)

(Ramos et al., 2009) at a commercial laboratory (GeneSeek, a Neogen Company, Lincoln,

NE). All SNP showing Mendelian inconsistencies for a trio were set missing in that particular

trio. If one or more animals within a trio had missing genotypes in more than 10% of the

SNP that trio was eliminated from further analysis. Similarly, SNP were removed if they did

not have genotypes available for at least 90% of the samples across all breeds (MCallRate <

0.9 = 5080). Only autosomal SNP were considered in this study, leading to the exclusion

of all SNP with an uncertain map position on build 10 of the pig genome sequence, as well

as SNP on the sex chromosomes (Mnon−autosomal = 9308). To exclude non-segregating

SNP from the analysis we removed markers with minor allele frequency (MAF) below 5%

within each breed separately. The number of fixed SNP varied substantially between breeds:

we excluded MMAF < 5% = 13, 646 SNP in Duroc, MMAF < 5% = 15, 405 SNP in

Hampshire, MMAF < 5% = 7, 631 SNP in Landrace, and MMAF < 5% = 8, 665 SNP in
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Yorkshire. Additionally, SNP were excluded for failure to meet Hardy Weinberg Equilibrium

(p < 0.001) within breeds causing MHWE < 0.001 = 117, 85, 146, and 176 SNP to be

discarded in Duroc, Hampshire, Landrace, and Yorkshire respectively. After applying the

described filtering criteria, a total of 30, 26, 29, and 32 trios were included for the Duroc,

Hampshire, Landrace and Yorkshire breeds, respectively. And a total of 34,129, 32,370,

40,144 and 39,110 SNP spaced at an average distance of 70, 74, 60 and 61 kb satisfied the

SNP selection criteria for Duroc, Hampshire, Landrace and Yorkshire, respectively.

2.5.2 Estimation of average LD and persistence of phase

Haplotypes were obtained for the founder animals using the trio option of BEAGLE (Brown-

ing and Browning, 2009), phasing the genotypes by chromosome. Sampling animals in trios

was shown to yield improved accuracy of estimated haplotypes (Marchini et al., 2006). To

further increase haplotype accuracy, BEAGLE was set to run 100 iterations of the phasing

algorithm and sample 100 haplotype pairs for each individual per iteration. Additionally,

a short simulation experiment was conducted showing that for MAF above 5% average r2

can be reliably estimated from the current sample size (results not shown). Alleles for each

SNP were re-coded as 0/1, keeping the reference allele constant across all four populations,

allowing for later determination of phase agreement. Haplotypes and code needed to repro-

duce these results are publicly available at https://www.msu.edu/~steibelj/JP_files/

LD_estimate.html. For all pairs of SNP r2 was estimated, using allelic frequencies of the

founding animals, according to the following equation:

r2ij =
(pij − pipj)2

pi(1− pi)pj(1− pj)
(2.1)
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where pi, pj are the marginal allelic frequencies at the ith and jth SNP respectively and

pij is the frequency of the two-marker haplotype (Devlin and Risch, 1995), using the freely

available software R (Team, 2011). Marker pairs were grouped by their pairwise physical

distance into intervals of 100 kb starting from 0 up to 10 Mb. Average r2 for SNP pairs in

each interval was estimated as the arithmetic mean of all (Equation 1), with the pairwise

distance between the ith and jth element of the currently considered interval:

r̄2 =
1∑18

i=1(Ml − 1)

Ml−1∑
i=2

r2i,i+1 (2.2)

where r̄2 is the average of all adjacent SNP across 18 autosomes (l), with Ml SNP per

chromosome. To estimate average r2 between adjacent markers for different marker densities

a certain percentage of markers (50%, 75%, 90%, 95%, 99%, and 99.5%) were removed before

average r2 was estimated using equation 2. To select markers, an increasing proportion of

SNP were sequentially removed solely considering their map position, so that for instance:

to reduce a panel to 50%, every second marker was kept for analysis, for 25% every fourth

was kept and so on. To estimate persistence of phase only markers with minimum MAF of

5% in all breeds were included in the analysis, resulting in 22,340 common SNP across all

breeds. Correlation of phase was estimated for intervals of 100 kb (from 0 to 10 Mb). We

excluded markers with pairwise distance above 10 Mb to decrease the computational load.

Estimates of average r2 at larger distances are close to zero, which would cause correlation

of phase to be close to zero as well. Persistence of phase was then estimated as:

Rk,k′ =

∑
(i,j)∈p(rij(k) − r̄(k))((rij(k′) − r̄(k′))

s(k)s(k′)
(2.3)
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where R
k,k′ is the correlation of phase between rij(k) in population k and rij(k) in pop-

ulation k, s(k) and s(k) are the standard deviation of rij(k) and rij(k) respectively, and

r̄(k)/r̄(k′) are the average rij across all SNP i and j within interval p for population k and

k respectively.
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Chapter 3

Methods of tagSNP selection and

other variables affecting imputation

accuracy in swine

Badke, Y. M., Bates, R. O., Ernst, C. W., Schwab, C., Fix, J., Van Tassell, C. P., & Steibel,

J. P. (2013). Methods of tagSNP selection and other variables affecting imputation accuracy

in swine. BMC genetics, 14(1), 8.

33



3.1 Background

Recent advances in genotyping technology have facilitated the availability of high density

genotyping platforms in many livestock species. High density platforms including several

thousand single nucleotide polymorphisms (SNP) are available for cattle (Boichard et al.,

2012; Matukumalli et al., 2009; VanRaden et al., 2011), chicken (Groenen et al., 2009), sheep

(Archibald et al., 2010), and pig (Ramos et al., 2009).

These platforms can be used to increase the efficiency and accuracy of breeding programs

by implementing genomic selection (Hayes et al., 2009a; Meuwissen et al., 2001). Using SNP

data to inform breeding decisions allows animal breeders to select breeding stock prior to the

animals having progeny of their own, thereby accelerating genetic progress through shortened

generation intervals (Hayes et al., 2009a; Meuwissen et al., 2001).

Currently, genomic selection has been successfully implemented in dairy cattle based

on genotypes from the Illumina BovineSNP50 chip (Hayes et al., 2009a). In an effort to

increase cost efficiency, the use of low density (tagSNP) genotyping platforms was exploited

for dairy cattle (Dassonneville et al., 2011; Weigel et al., 2010a). If high density genotypes

are imputed from tagSNP with high accuracy, the loss of reliability of predicted genomic

breeding values is minimal (Berry and Kearney, 2011; Dassonneville et al., 2011; Weigel

et al., 2010a). High accuracy of imputed genotypes depends on the selection of tagSNP, as

well as the composition and size of the reference panel of haplotypes used for imputation.

If close relatives of all imputation candidates are genotyped at high density, untyped

markers can be recovered through linkage and segregation analysis (Habier et al., 2009),

where haplotypes can be traced through generations of directly related individuals using the

rules of Mendelian inheritance. However, in some species it may not be feasible to genotype

34



a large proportion of the pedigree at high density. In that case a small panel of reference

haplotypes can be used to impute all untyped markers by exploiting population-wide link-

age disequilibrium (LD) (Browning and Browning, 2009; Scheet and Stephens, 2006). This

approach was initially proposed in human genome-wide association studies (GWAS) and has

recently found application in plant (Hickey et al., 2012) and animal breeding (Berry and

Kearney, 2011; Hayes et al., 2012; Weigel et al., 2010a). A combination of imputation based

on segregation analysis and population-wide LD is currently being used in dairy breeding

(Dassonneville et al., 2011). While combining both approaches will increase accuracy of

imputation, eventually becoming the default method, cost-effective implementation of ge-

nomic selection in novel populations is likely to initially rely more on LD based imputation.

Consequently, in this paper we will concentrate on LD based imputation by investigating

tagSNP selection and haplotype reference panel construction.

Human geneticists have proposed a variety of approaches to select an optimal low density

set of tagSNP to achieve cost efficient imputation in GWAS (He and Zelikovsky, 2007).

These approaches include statistical criteria based on a pairwise threshold of LD between

SNP (e.g. Qin et al., 2006) and predictive ability, selecting tagSNP that provide the most

accurate prediction of all non-typed markers (He and Zelikovsky, 2006). On the other hand,

tagSNP sets used in livestock are mainly selected for equidistant spacing based on physical

position along the genome, and high minor allele frequency (MAF) to ensure segregation

(e.g. Boichard et al., 2012).

Crucial to successful implementation of genotype imputation using population wide LD

is the availability of a representative panel of reference haplotypes (Howie et al., 2011; Huang

et al., 2009). These panels are commonly built by genotyping a small number of trios or

a larger number of relatively unrelated individuals. The overall goal in either case is to
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collect genotypes that can be accurately phased (Marchini et al., 2006) into haplotypes

representative of population frequencies. As a result, we began our study by genotyping and

phasing a small number of trios in four US pig breeds (Badke et al., 2012, NTrios ∼ 30)

and further enriching this panel for the Yorkshire breed with a set of high density genotypes

from largely unrelated individuals (Nsamples = 889).

The objective of this study was to develop guidelines for the implementation of genotype

imputation in livestock populations having little or no prior use of genome-wide marker-

assisted-selection. First, we compared imputation accuracy resulting from three methods

of tagSNP selection using Yorkshire pigs genotyped with a high density SNP set (Illumina

PorcineSNP60). This includes a report on imputation accuracy of the recently developed

commercially available 9K tagSNP set referred to as the GeneSeek Genomic Profiler for

Porcine LD (GGP-Porcine, GeneSeek a Neogen Company, Lincoln, NE). Second, we assess

accuracy of imputation based on an increasing number of reference haplotypes to inform

the selection of an optimal reference panel of haplotypes. Finally, we discuss imputation

accuracy as a function of chromosomal location and MAF of non-observed SNP.

3.2 Methods

3.2.1 Genotypes

High density genotypes for approximately 30 sire/dam/offspring trios were obtained and

phased for each of four breeds of pigs (Duroc, Hampshire, Landrace, Yorkshire) in a previous

study (Badke et al., 2012). To ensure accurate phasing, the reference panel for imputation

used in this study was the 128 haplotypes from the Yorkshire sire/dam pairs previously

genotyped as parents in those trios. Animal protocols were approved by the Michigan State
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University All University Committee on Animal Use and Care (AUF# 03/09-046-00). The

haplotypes of these animals are freely available at https://www.msu.edu/~steibelj/JP_

files/LD_estimate.html.

Detailed information about data cleaning procedures, descriptive statistics of LD, and

correlation of phase between Yorkshire and other US pig breeds can be found in Badke et al.

(2012). In addition, DNA samples were collected from 920 Yorkshire pigs and sent to a

commercial laboratory (GeneSeek, a Neogen Company, Lincoln, NE) to be genotyped on the

Illumina PorcineSNP60 (Number of markers M=62,163) Genotyping BeadChip (Illumina

Inc.) (Ramos et al., 2009). Only animals with more than 90% genotype call rate were

considered for analysis, resulting in 889 animals used as the testing panel for this study. All

SNP included in the 128 haplotype Yorkshire reference panel were used for analysis. All data

from this study is available at https://www.msu.edu/~steibelj/JP_files/imputation.

html.

In our previous study (Badke et al., 2012) we reported breed specific LD and persistence

of phase among breeds for Duroc, Hampshire, Landrace, and Yorkshire pigs. We found that

persistence of phase between Yorkshire and the other breeds ranged between 0.42 and 0.57

for SNP spaced approximately 1MB apart (Badke et al., 2012). As a result the amount of LD

within the Yorkshire breed that could be recovered through haplotypes from another breed

ranges between 0.18 and 0.33, such that adding haplotypes of a second breed to impute

Yorkshire genotypes did not appear to be beneficial. For genomic selection, a simulation

study conducted by de Roos et al. (2009) found that persistence of phase between breeds

needs to be much larger than the reported value between Yorkshire and any of the other

three breeds to implicate any advantage for the use of mixed breed training panels. For this

reason we decided to use only Yorkshire haplotypes in the reference panel for imputation in
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this paper.

3.2.2 Genotype imputation and estimation of imputation accu-

racy

All imputations in this study were done using BEAGLE version 3.3.1 (Browning and Brown-

ing, 2009), a genotype imputation software that uses a reference panel of haplotypes to esti-

mate phase and impute missing genotypes in a set of unrelated individuals. Beagle was run

separately for each chromosome using 128 reference haplotypes from the trio design (Badke

et al., 2012, phased file) to phase and impute genotypes of the 889 un-phased testing ani-

mals. All SNP, except tagSNP, were masked as missing in the testing set. Beagle was run

for ten iterations of the phasing algorithm, drawing four samples per iteration. Previous

results from another study (Hayes et al., 2012), as well as a short experiment conducted

in this study (data not shown) found no increase in imputation accuracy when the number

of iterations or samples per iteration were increased. The output files from BEAGLE con-

tained the most likely imputed genotypes (AA, AB, BB), posterior genotype probabilities

(P (AA), P (AB), P (BB)), and posterior expected allelic dosage of the B allele derived from

the posterior genotype probabilities (i.e. 0 ∗ P (AA) + 1 ∗ P (AB) + 2 ∗ P (BB)) (Browning,

2011).

Imputation accuracy was estimated using three different measures that reflect different

influences of MAF and error counting. The proportion of correctly imputed alleles was

computed as

IA = 1−

M∑
i=1

Ni∑
j=1
|gij − ĝij |

2 ∗
M∑
i=1

Ni

(3.1)
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where gij is the observed allelic dosage of SNP i in individual j, ĝij is the corresponding

posterior expected allelic dosage obtained from BEAGLE output, M is the total number of

imputed SNP, and Ni is the number of individuals with called genotypes for SNP i. This

overall measure of imputation accuracy can be further decomposed into SNP-specific accu-

racy (IAi. = 1 −

Ni∑
j=1
|gij−ĝij |

2∗Ni
) and animal specific accuracy (IA.j = 1 −

Mj∑
i=1
|gij−ĝij |

2∗Mj
).

This measure of imputation accuracy will be biased upwards, especially for SNP with low

MAF, because even if imputation ignores LD information and is based solely on allele fre-

quency, the major allele would be correctly imputed for a large proportion of genotypes

(Hayes et al., 2012; Hickey et al., 2012). As tagSNP density decreases, imputation accuracy

of rare alleles further decreases as rare haplotypes become harder to identify due to longer

sequences of SNP missing (Hickey et al., 2012). Estimating the total percentage of correctly

imputed alleles for SNP with low MAF will be biased due to the large number of correctly

imputed major alleles masking the small number of misspecified minor alleles, which can be

overcome through the use of a more sensitive measure of accuracy for these SNP (Hickey

et al., 2012). In addition, if individuals carrying the minor allele are not correctly iden-

tified and their phenotype cannot be matched for GWAS this relatively small proportion

of incorrectly imputed alleles will further decrease power. A variety of measures have been

introduced to obtain estimates of imputation accuracy unbiased by MAF (Hayes et al., 2012;

Hickey et al., 2012; Zheng et al., 2011). We estimated the proportion of correctly imputed

alleles adjusted for MAF using the formula presented by Hayes et al. (2012):

IAMAF =
IA− IAFreq
1− IAFreq

(3.2)
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where IA is computed as described in equation (3.1) and IAFreq is the accuracy of impu-

tation based on genotypic frequencies estimated as:

IAFreq = p(AA)ref ∗ p(AA)val + p(AB)ref ∗ p(AB)val + p(BB)ref ∗ p(BB)val (3.3)

where p(AA)refi
, p(AB)refi

, and p(BB)refi
are the observed frequencies for genotypes

AA, AB, and BB for SNP i in the reference haplotypes and p(AA)vali
, p(AB)vali

, and

p(BB)vali
are the predicted genotypic frequencies in the testing population for SNP i.

IAFreq can be interpreted as the expected probability of correctly imputing a genotype in

the testing population by assigning a randomly sampled genotype from the haplotypes in

the reference panel. This measure was computed on a SNP-wise basis and averaged across

all SNP. To account for a slightly different number of genotypes observed within each SNP

(due to missing at random) the average was obtained by weighting the accuracy of each SNP

by the number of individuals with observed genotypes within each SNP.

Alternatively, another measure of imputation accuracy robust to MAF is the squared

correlation between the observed and imputed allelic dosage (Hickey et al., 2012). The

correlation was obtained on a SNP by SNP basis using the correlation function in R (Becker

et al., 1988). SNP wise correlation measures were weighted by the number of available

observations within the SNP to obtain an overall average imputation accuracy.

3.2.3 Methods of tagSNP selection

TagSNP were selected using three approaches: 1) evenly spaced based on physical position,

2) based on minimum pairwise LD with non-tagSNP (statistical selection), and 3) based

on marker predictive ability to accurately impute non-observed SNP genotypes (predictive
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selection).

To select evenly spaced SNP the total length of each chromosome was partitioned into

segments corresponding to the total number of tagSNP to be selected. Then, within each

segment the SNP closest to the segment center was identified and added as a tagSNP. If a

given segment was empty, no tagSNP was selected in that segment.

To implement a statistical search for tagSNP (He and Zelikovsky, 2006) we used the

freely available software package FESTA (Qin et al., 2006). FESTA performed a greedy

search, where each SNP i was either an element of the tagSNP set or in LD higher than a

threshold (r2t ) with an existing element of the tagSNP set. FESTA was run repeatedly for

increasing r2t ranging from 0.1 to 0.9 in 0.1 increments using estimates of LD based on 128

reference haplotypes.

To implement predictive tagSNP selection, we applied the following forward search al-

gorithm: First, we split the 64 Yorkshire reference animals into a randomly sampled set

of 10 individuals (training set) and 54 individuals (reference haplotypes). Second, all SNP

except one tagSNP in the training set were masked and imputed using the reference haplo-

types. Third, accuracy of all imputed SNP was estimated and saved. Steps two and three

were then repeated until all estimates of imputation accuracy were available for all potential

tagSNP (at first, the potential tagSNP are all SNP on the chromosome). Fourth, the SNP

that yielded the highest average accuracy of imputation among those not already chosen

as tagSNP was selected as a new tagSNP. Steps two through four were repeated until the

maximum number of tagSNP or a target imputation accuracy were reached. Because of

the high computational demand of this methodology, this approach was only applied to the

smallest available chromosome (SSC18), selecting tagSNP from 786 candidate SNP.

Concurrent to this research, a set of 9390 tagSNP (Release Date: April 2012) was as-

41



sembled by GeneSeek (Lincoln, NE) for the development of a commercial platform for low

density genotyping in swine. This assay has been marketed as the GeneSeek Genomic Profiler

for Porcine LD (GGP-Porcine; GeneSeek, Lincoln, NE). After production, the GGP-Porcine

contains approximately 8500 tagSNP (Jeremy Walker, personal communication). TagSNP

covering the entire genome were selected based on MAF in 13 commercial lines of pigs repre-

sented by four breeding companies and four purebred populations. The MAF were provided

by the breeding companies (identified simply as company A, B, C, and D). The number of

lines provided by these companies were 1, 1, 4, and 7. Additional estimates of MAF used

to identify tagSNP were obtained from our previous study (Badke et al., 2012) of four pure

breeds: Duroc, Hampshire, Landrace, and Yorkshire. The freely available SNPspace soft-

ware (C.P. Van Tassell, unpublished data) was used to select tagSNP. SNPspace was initially

developed to select SNP for the Illumina BovineSNP50 beadchip (Matukumalli et al., 2009).

The conceptual framework of SNPspace is briefly described in that study (Matukumalli et al.,

2009), but additional features have been added since that time. Relative weights on lines

or breeds of pigs ranged from 0.00625 to 0.25. SNPspace is based on a greedy algorithm,

where SNP scores account for breed or line specific MAF, region of the genome, and posi-

tion of SNP relative to previously selected tagSNP. Density of tagSNP was doubled within

5 Mbp of the chromosomal extremes, which has been shown to improve average accuracy

of imputation compared to tagSNP evenly spaced across the entire chromosome (Boichard

et al., 2012; Dassonneville et al., 2012).

3.2.4 Increasing reference panel size

To assess the effect of the number of reference haplotypes on imputation accuracy, we split

the available sample of 889 Yorkshire pigs into two groups: 1) a 200 animal testing panel,
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and 2) a 689 animal set of supplemental reference sires. Assignment to the two panels was

random.

To obtain imputation accuracy for a decreased set of reference haplotypes, we split the

original 128 reference haplotypes obtained from 64 Yorkshire animals into two groups of

64 reference haplotypes (corresponding to 32 animals) and estimated average imputation

accuracy in the 200 animal testing set. Then, we split the two groups of 64 reference

haplotypes further into two groups of 32 reference haplotypes and obtained four estimates

of imputation accuracy that were averaged into a single measure.

Subsequently, we compared imputation accuracy using trio based reference panels to

imputation accuracy based on randomly sampled reference panels. To this end, we randomly

sampled 16 animals from the 689 animal supplemental reference set and continued to add

individuals at random to obtain reference sets of 24, 32, 48, 64, 96, 128, 256, and 512 animals.

Each of these sets was phased individually using BEAGLE (Browning and Browning, 2009)

and then those haplotypes were used as reference panel to impute the 200 testing animals.

Finally, we assembled reference panels of haplotypes combining the original 128 haplo-

types from trios, with an increasing number of supplemental reference sires. To form these

reference panels 64, 128, 192, and 448 supplemental reference sires were randomly selected

and phased using the trio haplotypes as a reference panel. Both, the trio reference haplo-

types and an increasing number of supplementary reference haplotypes were then used to

impute the 200 animal testing set.

Because imputation accuracy was constant across chromosomes (see Results, section 3.1)

we conducted this experiment on chromosome SSC14, a medium sized chromosome that has

uniform coverage of SNP across its length. We expect results to extrapolate to all other

chromosomes.
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3.3 Results

3.3.1 Comparison of methods for tagSNP selection

Due to the high computational demand, we initially performed a comparison of methods

for tagSNP selection only on the smallest chromosome (SSC18). Statistical tagSNP selec-

tion requires fixing an r2 threshold (r2t ). Setting r2t = 0.2 resulted in the selection of 165

tagSNP, which produced imputation accuracy of 0.936. Increasing r2t to 0.3, led to a panel

of 235 tagSNP and an increased imputation accuracy of 0.956. In comparison, imputation

accuracy based on 165 and 235 tagSNP selected for predictive ability was 0.93 and 0.945,

respectively. Direct comparison to tagSNP sets selected for even spacing is more difficult

because of empty intervals, for which no tagSNP were selected, resulting in smaller than tar-

geted tagSNP sets. The evenly spaced tagSNP sets closest in size to 165 and 235 tagSNP were

as expected slightly smaller (161 and 224 tagSNP), and the resulting imputation accuracies

were slightly lower than those obtained using the other sets (0.92 and 0.941, respectively).

As expected, imputation accuracy increased with increasing densities of tagSNP regardless

of the selection method (Figure 3.1). Statistically selected tagSNP performed slightly better

than both, predictive and evenly spaced tagSNP (Figure 3.1), but all three methods resulted

in similar imputation accuracy. Selection of tagSNP using predictive ability required an at

least 500-fold increase in computation time for SSC18 compared to statistical and evenly

spaced selection. However, results of imputation accuracy indicate that predictive tagSNP

did not yield significantly higher imputation accuracy compared to tagSNP selected by other

methods. Therefore, only statistical and evenly spaced tagSNP were selected in an exhaus-

tive evaluation of imputation accuracy across all autosomes (Figure 3.1).
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Figure 3.1: Imputation accuracy based on tagSNP selected using 3 different methods
Average imputation accuracy (IA) as a function of the number of tagSNP selected using

three methods of tagSNP selection for SSC18: 1) evenly spaced (red square), 2) statistical
selection (black circle), or 3) predictive selection (green line).

When imputing across all autosomes, as observed on SSC18, imputation accuracy using

statistically selected tagSNP was slightly higher than that using evenly spaced tagSNP (Fig-

ure 3.2). In particular, to attain imputation accuracy of 0.95, 7036 statistically selected

tagSNP were necessary (r2t = 0.3). In comparison, 10540 evenly spaced tagSNP were neces-

sary to reach similar imputation accuracy. Imputation accuracy was virtually uniform across
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chromosomes ranging from 0.92 to 0.94 for r2t = 0.2 and from 0.94 to 0.96 for r2t = 0.3.

Figure 3.2: Imputation accuracy using evenly spaced or statistically selected tagSNP
Average imputation accuracy (IA) as a function of the number of tagSNP selected for: 1)

even spacing (red square), or 2) statistical selection (black circle) across all autosomes.
Imputation accuracy for 7323 tagSNP from the commercial 9K tagSNP set (green triangle)

with 95% highest posterior density interval.

We computed imputation accuracy based on 7323 tagSNP from the original list of 9K

tagSNP provided by GeneSeek that passed quality control in this study (MAF > 0.05,

CallRate > 0.9, assembled to an autosome under map build10) resulting in imputation

46



accuracy of 0.951 with a SNP-wise 95% highest posterior density interval equal to [0.84, 1]

(Figure 3.2). Accuracy of imputation using the commercial tagSNP was similar to that ob-

tained using statistically selected SNP, at comparable density (r2t = 0.3, MtagSNP = 7036).

The advantage of the proposed commercial platform is that it is not based on population

specific LD, thereby making it applicable across swine populations. For this reason all sub-

sequent results of imputation accuracy will be based on the tagSNP element of the Genomic

Profiler for Porcine LD.

3.3.2 Imputation accuracy using the commercial 9K tagSNP set

To assess accuracy of imputation as a function of chromosomal location we plotted imputa-

tion accuracy of each individual SNP versus chromosomal position (Figure 3.3). SNP within

5% of the chromosomal extremes had on average slightly lower imputation accuracy (0.949)

than the 10% in the center of the chromosome (0.972). As mentioned before, this property of

imputation accuracy has previously been observed for other low density sets (Boichard et al.,

2012; Dassonneville et al., 2012) and was anticipated during the tagSNP set design. Based

on these reports (Boichard et al., 2012; Dassonneville et al., 2012), the density of tagSNP

was approximately doubled within 5 Mbp of the chromosomal ends in the commercial 9K

tagSNP set.
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Figure 3.3: SNP-wise imputation accuracy by chromosomal location
SNP-wise imputation accuracy (IAi.) vs. the scaled chromosomal location of the SNP. The
red line is the weighted mean average estimated using a loess smoother (Cleveland et al.,

1992), and the green line represents average imputation accuracy (IA = 0.951).

Animal-wise imputation accuracy (IAi.) averaged 0.951 but the corresponding highest

posterior density interval ([0.917, 0.978]) was shorter than that observed for SNP-wise accu-

racy. Overall, all but 12 animals had imputation accuracy > 0.90 and 551 animals (62%) had

imputation accuracy above 0.95. Also, seven of the animals had a dam, sire, or grand-sire

in the reference panel (Badke et al., 2012), which resulted in on average higher accuracy of
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imputation in these animals (0.959). A group of 15 animals was identified with consistently

low imputation accuracy (i.e. < 0.91 for 9K tagSNP) across all sets of tagSNP selected.

An ongoing research project in our laboratory investigating breed composition, identified

all of the 15 low accuracy individuals as potentially having mixed breed ancestry (YiJian

Huang, unpublished data). Further assessing the pedigree of these 15 animals, we found that

nine of them were imported to the US, which could result in a slightly different haplotype

composition and the observed low accuracy of imputation, when only American Yorkshire

pigs had been used as reference. Another three animals of the remaining six US Yorkshires

with low imputation accuracy were identified as a family (sire, two offspring), such that the

observed low accuracy in the offspring is likely a result of the mixed breed ancestry of their

sire.

As noted before, to assess the effect of MAF of imputed SNP on imputation accuracy

required adjusting estimates of imputation accuracy for MAF. Imputation accuracy as a

function of MAF is presented in Figure 3.4, where imputation accuracy was estimated as

a) proportion of alleles correctly imputed, b) coefficient of determination (R2) between ob-

served and imputed allelic dosage (Hickey et al., 2012; Zheng et al., 2011), and c) proportion

of alleles correctly imputed adjusted for MAF (Hayes et al., 2012). The red line in all plots

represents the weighted mean average estimated using a loess smoother (Cleveland et al.,

1992). Loess consists of fitting smooth piecewise polynomial regressions to local subsets

of data and it is widely used in normalization of micro-array experiments (Steibel et al.,

2009). At first inspection, it can be seen that accuracy estimated as the proportion of cor-

rectly imputed alleles (Figure 3.4a) is highest for low frequency alleles and exhibits a small

decrease as MAF increases. However, the observed high proportion of correctly imputed

alleles in SNP with low MAF is based on the fact that high frequency alleles can be im-
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puted with high accuracy even if imputation is solely based on allele frequency (Hayes et al.,

2012; Hickey et al., 2012). For this reason, we computed R2 and the proportion of correctly

imputed alleles adjusted for MAF that provide estimates of imputation accuracy unbiased

by allele frequency. In other words, these measures are indicative of the performance of the

imputation algorithm in comparison to a baseline imputation based on genotypic frequencies

(Hayes et al., 2012; Hickey et al., 2012). When imputation accuracy is adjusted for MAF,

estimated accuracy is generally higher for intermediate allele frequencies (MAF ∼ 0.5) and

declines as MAF decreases (Figure 3.4 b/c). Average imputation accuracy considering only

the added benefit of the imputation algorithm was lower (IAMAF = 0.91, R2 = 0.81) than

the total proportion of correctly imputed alleles (IA = 0.951). The difference between the

proportion of correctly imputed alleles adjusted for MAF (Figure 3.4c) and estimates of R2

(Figure 3.4b) can be explained by the difference in error counting between these measures.

While the proportion of correctly imputed alleles adjusted for MAF is obtained by counting

the total number of wrongly imputed alleles, R2 is obtained from the squared difference

in imputed and observed alleles, thereby more heavily penalizing large differences between

observed and imputed allelic dosage.
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Figure 3.4: Three measures of SNP-wise imputation accuracy by MAF
SNP-wise imputation accuracy computed as A) the proportion of correctly imputed alleles (IAi.), B) the correlation between

imputed and observed allelic dosage (R2), and C) the proportion of correctly imputed alleles adjusted for MAF (IAMAFi.
),

as a function of MAF of the SNP. The red line is the weighted mean average estimated using a loess smoother.



3.3.3 Effect of numbers of reference haplotypes on imputation ac-

curacy

For all previous analyses in this paper we imputed genotypes of 889 individuals across all au-

tosomes using a reference panel of 128 Yorkshire haplotypes obtained from a sire/dam/offspring

genotyping design (Badke et al., 2012), phased with higher accuracy (Marchini et al., 2006).

Reducing the number of imputation animals from 889 to 200 had no impact on the observed

imputation accuracy. Imputation accuracy using all 128 haplotypes from the original ref-

erence panel was 0.959 on SSC14, which reduced to 0.939 when 64 haplotypes were used,

and further to 0.904 when imputation was based on 32 haplotypes (Figure 3.5). Therefore,

imputation accuracy larger than 0.90 can be obtained using the commercial 9K tagSNP set

with a reference panel of only 32 haplotypes, given that these haplotypes were phased at

high accuracy.
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Figure 3.5: Effect of number of reference haplotypes on imputation accuracy
Average imputation accuracy (IA) as a function of the number of haplotypes in the

reference panel used for imputation. Imputation accuracy was estimated for reference
panels composed of haplotypes from a trio design (blue triangle), reference panels

composed of haplotypes from randomly sampled sires (red circle), and reference panels
composed of both haplotypes from a trio design and haplotypes from randomly sampled

sires (black circle).

We further investigated if it is necessary to obtain reference haplotypes from a trio design,

or if accuracy can be replicated using a reference panel of randomly sampled individuals

genotyped at high density. In comparison to imputation accuracy obtained using a trio
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reference panel, imputation accuracy based on 32 and 64 reference haplotypes derived from

selected sires was slightly lower (0.875 and 0.926, respectively). However, accuracy from 128

reference haplotypes obtained from 64 randomly sampled individuals was 0.955, which is

practically identical to results obtained using 128 reference haplotypes from trios. Therefore,

if the reference panel of haplotypes is composed of more than 128 haplotypes, there is

no longer an advantage in using haplotypes obtained from a trio design. Alternatively,

the cost of assembling panels of 32, 64, and 128 reference haplotypes obtained from a trio

design involves the same genotyping cost as assembling panels of 48, 96, and 192 haplotypes

obtained from randomly sampled individuals. This is due to the fact that in a trio design

the offspring haplotypes are not used as part of the reference panel, since they are identical

to the parents transmitted haplotypes. Imputation accuracies for 48, 96, and 192 reference

haplotype panels from randomly sampled individuals were estimated to be 0.906, 0.947, and

0.965, respectively, which is either equivalent or higher than accuracy of imputation obtained

using the cost equivalent trio based reference panels (Figure 3.5). In addition, we compared

imputation accuracy from reference haplotypes of either 64 randomly selected individuals

or the 64 oldest individuals and found no difference in imputation accuracy (0.956, 0.953

respectively). Consequently, if no reference panel of haplotypes is available for a population,

according to the results of this study, it would be most cost efficient to assemble high density

haplotypes of randomly sampled individuals.

Previous research has indicated an increase in imputation accuracy can be expected

as the number of available reference haplotypes increases to a certain point (Howie et al.,

2011; Huang et al., 2009). We added randomly selected individuals to the reference panel

and obtained 256, 512, and 1024 reference haplotypes. These panels resulted in average

accuracy of imputation of 0.971, 0.978, and 0.985 respectively (Figure 3.5). Imputation
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accuracy only marginally increased when more than 256 haplotypes were used as reference

panel for imputation (up to 1.4% gain). Additionally, we assessed accuracy of imputation

from reference panels composed of the original 128 reference haplotypes from a trio design

and an increasing number of randomly sampled individuals added to that panel. In this

case, imputation accuracy based on reference panels with 256 and 512 haplotypes was 0.969

and 0.978 respectively, which is virtually identical to results obtained using reference panels

solely from randomly sampled individuals (Figure 3.5).

In addition to assessing the effect of an increased number of reference haplotypes on

average accuracy, we also investigated how it affects individual SNP with different MAF and

physical location. We found that as the size of the reference panel increases, imputation

accuracy (quantified as R2) improved more markedly for SNP with MAF below 0.1, such

that when the size of the reference panel is increased from 256 haplotypes to 512 haplotypes

the increase in accuracy for SNP with MAF below 0.1 was on average 0.06 points, while for all

other SNP the increase was only 0.02 points (Additional file 1: Figure 3.6). When imputation

was based on 1024 reference haplotypes imputation accuracy appears to be uniform across

allele frequencies. Similarly, we observed that imputation accuracy (proportion of correctly

imputed alleles) for SNP located in the 10% chromosomal extremes (5% on either side) could

be improved through an increase in the number of reference haplotypes (Additional file 2:

Figure 3.7). A reference panel containing 512 haplotypes was necessary to obtain maximal

imputation accuracy (IA = 0.99) for SNP located in the chromosomal center, while SNP in

the chromosomal extremes were imputed with accuracy of only 0.97, even when the number of

reference haplotypes was doubled (1024 reference haplotypes). Imputation accuracy observed

in SNP located in the chromosomal extremes was more than 0.02 accuracy units lower than

the average imputation accuracy of all remaining SNP irrespective of the reference panel
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size.

3.4 Discussion

3.4.1 Methods for tagSNP selection

Current algorithms for genotype imputation exploit population-wise LD (Browning and

Browning, 2009; Scheet and Stephens, 2006), familial LD from identity by descent (Abecasis

et al., 2002), or a combination of both (Hickey et al., 2011) to infer unobserved genotypes

conditional on tagSNP information. Virtually all methods for tagSNP selection aim at

identifying tagSNP that carry the maximum amount of information to impute unobserved

markers. This is attained by either directly quantifying the tagSNP ability to predict non-

typed SNP (predictive tagSNP selection) or indirectly by selecting tagSNP in high pairwise

LD with non-tagSNP (statistical tagSNP selection) (He and Zelikovsky, 2007).

A goal of this study was to select a minimal set of tagSNP that would yield acceptable

accuracy of imputation of non-tagSNP (Dassonneville et al., 2012; Weigel et al., 2010a). Since

genotype imputation utilizes information about the structure of LD to infer non-observed

SNP, we expected that tagSNP sets selected based on LD information, such as statistical and

predictive tagSNP selection, would yield higher accuracy of imputation than tagSNP selected

based solely on their physical location. In addition, we expected that directly assessing the

ability of each tagSNP to predict non-observed SNP (predictive selection) would yield an

improvement in imputation accuracy compared to tagSNP selected purely based on pairwise

thresholds of LD (statistical selection).

We found that at the lowest examined tagSNP density (1 tagSNP per Mb) accuracy of

imputation was below 0.87 irrespective of the method of tagSNP selection and that at least 2
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tagSNP per Mb were necessary to increase accuracy to at least 0.91. Accuracy of imputation

increased as tagSNP density increased, reaching a plateau accuracy of approximately 0.98

when tagSNP were spaced at an average distance of less than 125kb with negligible increases

beyond such density. Our results compare well to those of Weigel et al. (2010b), where

randomly selected tagSNP at an approximate density of 300kb were necessary to obtain ac-

curacy larger than 0.90 in the US Jersey cattle population using a similar type of imputation.

In our study, imputation accuracy of approximately 0.95 was obtained using between 7000

(average tagSNP spacing of 340kb) and 10000 tagSNP (average tagSNP spacing of 230kb),

depending on the method of tagSNP selection.

As expected, predictively and statistically selected tagSNP did yield higher accuracy of

imputation than evenly spaced tagSNP, but we found no difference in imputation accuracy

between tagSNP sets selected statistically or based on predictive ability. Comparing 300

tagSNP selected using predictive ability to 317 tagSNP obtained using statistical selection

(r2t = 0.4) on SSC18, we observed the same imputation accuracy (IA = 0.95). However, the

two sets are qualitatively different. For instance, the 300 predictive tagSNP only provide

statistical coverage (r2 ≤ 0.4) to 37% of non-tagSNP. The tagSNP sets also have on average

different MAF (MAFpredictive = 0.30, MAFstatistical = 0.27). We attribute the equiv-

alence in imputation accuracy of two different tagSNP sets to the extent of LD observed

across the genome in Yorkshire pigs (r2 = 0.16 at 1 Mb, Badke et al., 2012). Under these

conditions, precision of estimates of individual tagSNP imputation accuracy is likely com-

promised by collinearity, making selection of a single best predictive tagSNP at each step

of the forward search complicated (Vittinghoff et al., 2005). For example, the initial step of

the forward search for predictive tagSNP resulted in six SNP with predictive ability within

0.002 accuracy units of each other. Each of these SNP could have been selected as a starting
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point of the greedy search, resulting in different sets of tagSNP selected. Furthermore, the

implemented predictive forward search requires
Mti(2Mi−Mti+1)

2 imputation operations

per iteration step compared to only two with statistical selection, where Mi is the number

of SNP per chromosome and Mti is the number of selected tagSNP on that chromosome.

Consequently, even though both methods result in different tagSNP sets, statistical selec-

tion is a computationally efficient proxy for predictive tagSNP selection when moderate LD

between consecutive markers is present.

We show that tagSNP sets strictly selected for even spacing are slightly outperformed by

statistical or predictive tagSNP selection. However, it is possible to enhance the performance

of evenly spaced tagSNP through a few simple measures. TagSNP with high MAF seem to be

advantageous for genotype imputation (predictive tagSNP selection seemed to favor tagSNP

with high MAF) and their likelihood to segregate across populations will ensure that they

carry information for imputation in various populations. This has been exploited previously

in cattle for the assembly of the 3K platform (Dassonneville et al., 2012), as well as in

newer tagSNP sets aimed to further increase imputation accuracy (Boichard et al., 2012). In

addition to selecting evenly spaced tagSNP with high MAF, an increase in accuracy can be

obtained by increasing tagSNP density in the chromosomal extremes (Boichard et al., 2012).

The success of these enhancements of evenly spaced tagSNP is evident in the imputation

accuracy we report using the commercial 9K set (MtagSNP = 7323, IA = 0.951), which is

similar to results we found for statistical tagSNP sets for thresholds r2t = 0.3 (MtagSNP =

7036, IA = 0.952). In addition, although the recently released commercially available chip

has approximately 10% fewer tagSNP than the original 9K tagSNP list that was used for

this analysis, our conclusions regarding imputation accuracy are likely to uphold, due to the

fact that we based our analysis on a set of only 7323 tagSNP, which should be representative
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of the number of commercial tagSNP that will pass quality control in future study samples.

In summary, efficient tagSNP selection based on MAF and physical location is feasible

and more flexible than statistical tagSNP selection. Selecting evenly spaced tagSNP with

high MAF requires knowledge of the physical location of the SNP and the MAF across

populations of interest, while statistical tagSNP selection requires knowledge of the LD

structure, and would be population specific. As a result, selecting a tagSNP set with high

MAF and an increased density in the chromosomal extremes is more versatile than tagSNP

sets selected for predictive ability or based on statistical criteria while yielding the same

accuracy of imputation. In addition, the tagSNP set selected based on physical location

and MAF is expected to be useful for imputation as long as the 60K chip is being used

for genomic selection, because we do not expect selection to alter LD or MAF of selected

SNP in any particular way. If such tagSNP sets will be used across multiple closely related

populations it will be necessary to include a number of SNP that will be specific to a subset

of populations. In the case of the 9K tagSNP set more than 9000 tagSNP were selected

based on MAF across several populations and physical location of the SNP, but only 7323

of these SNP passed quality editing for the Yorkshire data in this study.

3.4.2 Factors affecting imputation accuracy

Accuracy of imputation is affected by several factors including the selection and density of

tagSNP as detailed above, the MAF and the physical location of the imputed SNP, as well

as the size and composition of the reference panel.

When evaluating imputation accuracy as a function of the tagSNP selection method and

density we have focused on average accuracy as a measure of overall performance. Assess-

ing the average accuracy of imputation is a good indicator of the performance of imputed
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genotypes, when all genotypes are used simultaneously to obtain a global measure. Such a

measure could be prediction of GEBV, which would be based on all SNP simultaneously,

such that a small number of wrongly imputed SNP is unlikely to greatly affect the ac-

curacy of prediction. Alternatively, some applications of imputed high density genotypes

may require high accuracy across all SNP. One example would be GWAS based on imputed

genotypes. For GWAS, SNP associations are assessed on a SNP by SNP basis, such that

wrongly imputed alleles for low frequency SNP are more likely to cause bias in the estimated

association, especially since phenotypes of interest are suspected to be associated with low

frequency alleles (Howie et al., 2011).

One of the factors directly related to the individual SNP imputation accuracy, is the

allele frequency of that particular SNP. To investigate imputation accuracy as a function

of MAF we used two measures of imputation accuracy that were unbiased by MAF (i.e.

IAMAF , R2). The adjusted proportion of correctly imputed alleles (IAMAF ) and the

correlation between observed and imputed allelic dosage (R2) are scaled differently, such

that the observed accuracy differs as a function of scale, but the comparative difference in

imputation accuracy as a function of MAF can be observed using either of the two accuracy

measures. We found that estimates of imputation accuracy adjusted for MAF (R2, IAMAF )

are lower (R2 = 0.73, IAMAF = 0.89) for SNP with MAF below 0.1, compared to SNP

with MAF above 0.1 (R2 = 0.82, IAMAF = 0.91), which has been previously noted by

Hayes et al. (2012) reporting results of genotype imputation in sheep and Hickey et al. (2012)

in lines of maize.

Another factor relating to individual SNP imputation accuracy is the physical location

of the SNP. Previous studies designing low density genotyping platforms have pointed out

the need to increase coverage of tagSNP in the chromosomal extremes due to difficulties
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in correctly imputing SNP located in those regions (Boichard et al., 2012; Dassonneville

et al., 2012). In the commercial 9K tagSNP set the density of tagSNP within 5Mbp of

the chromosomal extremes was approximately doubled to aid imputation accuracy. We

found that imputation accuracy using the 9K commercial tagSNP was still slightly lower in

the extreme regions (0.949) when compared to the chromosome center (0.972). The effect

however was alleviated in comparison to an equally spaced tagSNP set of comparable density,

where the average imputation accuracy in the chromosomal extremes was only 0.89.

We found a group of 15 animals that produced consistently low imputation accuracy

(IA ≤ 0.90), compared to all remaining animals (IA = 0.951). Nine of these animals were

identified as imports, such that the observed low accuracy of imputation is likely a result of

differences in haplotype frequencies between the US Yorkshire population that was used as

reference for imputation, and the population(s) from which these animals originated. The

remaining six animals were all identified as having potentially mixed breed ancestry based on

results of a concurrent research project in our laboratory (YiJian Huang, unpublished data).

In addition, we can infer from these results that if a population contains heterogeneous

sub-populations, such as a large number of imported animals or animals with cross-bred

ancestry, imputation accuracy will be decreased if this sub-structure is not accounted for

when sampling reference haplotypes.

We found that increasing the number of reference haplotypes led to an increase in aver-

age imputation accuracy. In addition to the number of reference haplotypes, their average

relatedness to the imputation candidates (Gualdron Duarte et al., 2012; Hayes et al., 2012;

Hickey et al., 2012; Huang et al., 2012), as well as accurate phasing of these haplotypes

(Browning and Browning, 2011) directly affect the resulting accuracy of imputation. In this

paper, we assessed the effect of phasing accuracy and the number of reference haplotypes.
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Previous research comparing phasing accuracy of unrelated or randomly sampled individuals

and trio designs (sire/dam/offspring), found that genotypes from trios can be phased with

higher accuracy (Marchini et al., 2006). The initial reference panel available in this study

was composed of the haplotypes of sire/dam pairs from a previous sample of trios that were

unrelated for at least two generations and therefore sampled to efficiently cover the Yorkshire

population (Badke et al., 2012). We found that for haplotype panels composed of 64 or less

haplotypes, imputation accuracy was higher when these haplotypes were obtained from the

trio design rather than a random sample of individuals (Figure 3.5). This advantage of the

trio design is likely due to the superior phasing accuracy as well as the sampling strategy

used to obtain these samples. However, adjusting sample size for the increased genotyping

cost in a trio design, we observed that imputation accuracy was equal or higher when im-

putation was based on haplotypes obtained from randomly sampled individuals instead of

trio reference haplotypes (Figure 3.5). Therefore, we conclude that if no reference panel is

available in a population the most cost efficient method for reference panel construction is

genotyping a random sample of individuals across the population.

Next we assessed imputation accuracy as a function of increasing reference panel size.

We found that a reference panel of 256 to 512 reference haplotypes is sufficient to obtain

imputation accuracy of IA = 0.97. If the size of the reference panel is increased beyond

1024 haplotypes (IA = 0.985) any further gain in imputation accuracy appears to be very

small. A similar type of response has been observed in human genotype imputation (Huang

et al., 2009). This relatively small number of reference haplotypes necessary to obtain high

imputation accuracy (IA = 0.97) is likely due to the relatively small effective population

size of the Yorkshire population (Ne = 113, (Welsh et al., 2010)), and consequently high

average LD even at decreased tagSNP density.
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After determining that increasing the size of the reference panel would increase accuracy

of imputation, we assessed whether accuracy would differ as a function of reference panel

composition. In general, when imputation experiments are conducted the older animals are

used as reference panel, while the younger animals serve as imputation candidates (Weigel

et al., 2010b; Zhang and Druet, 2010). We assessed whether imputation accuracy would

differ depending on the reference panel being composed of randomly selected individuals or

older individuals and found no advantage in imputation accuracy when selecting a reference

panel composed of older animals.

In addition to the observed increase in overall imputation accuracy, we found that in-

creasing the size of the reference panel is especially efficient at increasing the individual im-

putation accuracy of SNP that exhibited below average imputation accuracy (Howie et al.,

2011). SNP with MAF below 0.1 were imputed poorly in comparison to SNP with MAF

above 0.1 (accuracy measure R2, IAMAF ), but as reference panel size increased impu-

tation accuracy of these SNP improved, and for imputation based on 1024 haplotypes we

observed a uniform distribution of imputation accuracy (quantified as R2) across levels of

MAF (Additional file 1: Figure 3.6). An increase in the size of the reference panel increases

the precision of estimated frequencies of haplotypes containing rare alleles, which appears to

more efficiently boost imputation accuracy for the corresponding SNP (Howie et al., 2011).

SNP located in the 10% chromosomal extremes (5% on either side) also had on average

lower imputation accuracy than the remaining SNP. As reference panel size was increased

very little improvement could be observed in imputation accuracy of SNP located in the

center of the chromosome, due to these SNP already being imputed with accuracy close to 1.

However, imputation accuracy of SNP in the chromosome ends improved as reference hap-

lotypes were added to the panel, until reaching accuracy within 0.02 points of the average
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imputation accuracy of SNP in the remainder of the chromosome for imputation based on a

reference panel containing 1024 haplotypes (Additional file 2: Figure 3.7).

Although, we did not assess the accuracy of GEBV prediction based on imputed geno-

types in this paper, we can use results from dairy cattle breeding that show the promise of

imputed genotypes to predict GEBV. Based on the average imputation accuracy we observed

for Yorkshire pigs and previous results for GEBV prediction based on imputed genotypes

in dairy cattle we could expect that losses in accuracy of GEBV prediction as a result of

genotype imputation will be negligible. Wiggans et al. (2012) and Dassonneville et al. (2011)

reported correlation of GEBV from imputed genotypes (IA ≥ 0.96) with GEBV estimated

from high density genotypes larger than 0.93. Moreover, Weigel et al. (2010a), reported a

loss in accuracy of GEBV, estimated as the correlation between GEBV and direct genomic

value, between 0 and 5% when using genotypes imputed with low accuracy (IA = 0.91).

Since our estimates of imputation accuracy in the Yorkshire population are within the range

of those reported in dairy cattle (Dassonneville et al., 2011; Weigel et al., 2010a,b; Wiggans

et al., 2012), we expect GEBV estimated from imputed genotypes in Yorkshire pigs to be as

accurate as those currently used in the dairy breeding industry. Furthermore, these results

are expected to hold in other swine breeds with similar levels of LD (Badke et al., 2012).

3.5 Conclusion

In conclusion, high (IA ≥ 0.95) genotype imputation accuracy can be achieved in pigs

combining the newly available commercial 9K tagSNP set and a relatively small reference

haplotype panel (128 haplotypes), even when imputation is based only on population-wide

LD. Further improvements in imputation accuracy could be achieved through the inclusion
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of additional reference animals (IA = 0.97 with 512 reference haplotypes) and the use of

pedigree relations between reference and imputation animals in the imputation algorithm

(Gualdron Duarte et al., 2012; Huang et al., 2012; Wiggans et al., 2012). An important

result from this study is that an efficient design for reference panel construction is randomly

sampling individuals instead of specifically sampling older animals or trios. In addition, a

relatively small panel of reference haplotypes (≥ 128) can efficiently serve as a reference

panel for genotype imputation, such that any available high density genotypes in a livestock

population could potentially serve this purpose. For the pig species such panels are already

available for several populations (Badke et al., 2012). Finally, prospects for the use of

imputed genotypes in GEBV prediction are very positive based on the results from dairy

breeding that routinely use similarly accurately imputed genotypes for genomic evaluation

(Dassonneville et al., 2011; Weigel et al., 2010a; Wiggans et al., 2012). The methodology

used in this paper for construction of tagSNP sets and reference haplotype panels can be

easily applied in any future study population. Code and data to obtain and reproduce

the results presented is publicly available at https://www.msu.edu/~steibelj/JP_files/

imputation.html.
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3.6 Supplementary Materials

Figure 3.6: Effect of reference panel size on imputation accuracy of SNP as a function of
their MAF

Weighted mean average imputation accuracy (quantified as R2) as a function of MAF
depicted for imputation based on haplotype reference panels of increasing size.
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Figure 3.7: Effect of reference panel size on imputation accuracy of SNP as a function of
scaled physical location
Weighted mean average imputation accuracy (quantified as IA) as a function of the scaled
chromosomal location for imputation based on haplotype reference panels of increasing size.

67



Chapter 4

Accuracy of estimation of genomic

breeding values in pigs using low

density genotypes and imputation

Badke, Y. M., Bates, R. O., Ernst, C. W., Fix, J., & Steibel, J. P. (2013). Accuracy of

estimation of genomic breeding values in pigs using low density genotypes and imputation.

submitted to G3
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4.1 Introduction

Genetic improvement through breeding for lean growth, reproductive performance, meat

quality, and health traits is an important tool in the pig breeding industry to assure its con-

tinued competitiveness and success. The use of traditional estimated breeding values (EBV)

derived from pedigree information has lead to important advances in genetic improvement

but has several limitations (Dekkers et al., 2010). A number of important phenotypes, such

as disease resistance or lifetime productivity traits are difficult and expensive to observe or

can only be measured later in life, which impairs the estimation of highly accurate EBV.

Furthermore, EBV estimated from performance records of close relatives are based on the

expected instead of observed proportions of identity by descent between the animals.

The use of genomic breeding values (GEBV), estimated using a large number of genetic

markers across the genome is expected to overcome a number of these limitations (Meuwissen

et al., 2001; Dekkers et al., 2010). Genomic prediction is expected to improve the accuracy of

breeding values, especially for lowly heritable and complex traits and allow for the selection

of animals at a young age thereby shortening generation intervals (Hayes et al., 2009a;

VanRaden et al., 2009; Wiggans et al., 2011). A number of review papers have reported the

progress and success of genomic selection in dairy cattle (Hayes et al., 2009a; VanRaden et al.,

2009; Wiggans et al., 2011), and it is expected to be equally useful in pigs (Tribout et al.,

2012). High density genotypes in pigs can be obtained from the PorcineSNP60 BeadChip

(Illumina, San Diego, CA) containing roughly 62K SNP (Ramos et al., 2009). Previous

research based on this chip has reported on extent of linkage disequilibrium (LD) (Uimari

and Tapio, 2011; Badke et al., 2012), effective population size (Uimari and Tapio, 2011), the

correlation of phase between populations (Badke et al., 2012), and genome wide association
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studies (GWAS) performed for various traits e.g. boar taint (Duijvesteijn et al., 2010).

First implementations of genomic prediction in pigs included evaluations for total number

of pigs born in a litter and percent stillborn (Cleveland et al., 2010). Results of this study

indicated that GEBV in pigs can reach accuracies comparable to those observed in dairy

cattle if the training population is large enough (Cleveland et al., 2010). In addition, several

strategies to increase cost efficiency through the use of low density genotypes have been

explored but accuracy of GEBV was reasonable only for certain traits, likely due to differences

in the genetic architecture of the traits (Cleveland et al., 2010). However, when genotypes

were imputed with high accuracy results for genomic evaluation were promising for several

traits in a commercial pig population (Cleveland and Hickey, 2013).

The relatively high genotyping cost per animal currently limits the widespread commer-

cial use of high density genotypes for genomic selection purposes in pigs. One strategy to

improve the cost efficiency of genotyping schemes is the use of genotype imputation for a

portion of the population. In the interest of cost efficiency it is likely that selection can-

didates will not be genotyped using a high density array such as the PorcineSNP60, but

rather will be genotyped on a low density array like the recently released GeneSeek Genomic

Profiler for Porcine LD (GGP-Porcine: GeneSeek Inc., a Neogen Co., Lincoln, NE), a sub-

set of the PorcineSNP60 containing roughly 10K SNP. We showed (Badke et al., 2013) that

genotypes in pigs can be imputed from the GGP-Porcine to the PorcineSNP60 with accuracy

of R2 = 0.88 using LD based imputation algorithms with a reference panel of haplotypes as

small as 128 haplotypes. Imputation accuracy can be further improved by adding animals

to the reference panel (Badke et al., 2013), or in case of a pedigreed population exploiting

Mendelian segregation and population wide LD (Huang et al., 2012; Gualdrón Duarte et al.,

2013). We use genotypes imputed based on population wide LD, offering a strategy that
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can be applied universally in any population, for which a suitable reference panel can be

assembled.

Our objective was to assess how using imputed instead of observed genotypes would

affect the accuracy of genomic evaluations using an efficient G-BLUP fitting the prediction

equation to the realized genomic relationship matrix (Hayes et al., 2009b). We used two sets

of reference haplotype panels, small (N = 128) or a large (N ∼ 1800), to evaluate how an

increase in imputation accuracy affects the accuracy of genomic predictions.

4.2 Materials & Methods

4.2.1 Materials

4.2.1.1 Animals and Genotypes

Data used in this study was collected from 983 Yorkshire sires. High density genotypes for

these animals were obtained from samples provided by the National Swine Registry (NSR).

Genotyping was performed at a commercial laboratory (GeneSeek, a Neogen Company, Lin-

coln, NE) using the Illumina PorcineSNP60 BeadChip. The same dataset was previously

used to assess the effect of genotype imputation (Badke et al., 2013) and is publicly available

at:

https://www.msu.edu/~steibelj/JP_files/imputation.html. Animal protocols were ap-

proved by the Michigan State University All University Committee on Animal Use and Care

(AUF# 03/09-046-00). Genotyping rate of at least 90% of both animals and SNP and a

minor allele frequency of at least 5% were required for genotypes to be included in the anal-

ysis, leaving a total of 41248 markers in 983 animals. SNP that were not assigned to an
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autosomal position in map build 10.2 were excluded from the analysis. It was our goal to

estimate the genomic breeding value (GEBV) of male offspring of a sire and since sires will

not pass an X chromosome to their male offspring, these SNP do not contribute to the sons

GEBV (VanRaden et al., 2009). In addition to genotypes for 983 Yorkshire sires, a set of

128 Yorkshire haplotypes was available as a reference panel for genotype imputation from a

previous study (Badke et al., 2012). These haplotypes are also freely available at

https://www.msu.edu/~steibelj/JP_files/LD_estimate.html and details on the design

and phasing can be found in Badke et al. (2012).

4.2.1.2 Phenotypes

For every animal and their parents, estimated breeding values (EBV) and accuracies were

obtained for three traits from NSR through their traditional genetic evaluation. These

traits were: backfat thickness (BF), number of days to 250lb (D250), and loin muscle area

(LEA). Descriptive statistics of EBV and accuracies are presented in Table 4.1. All code

and data used in this paper has been assembled into an R package, accessible at: http:

//tinyurl.com/MSURGEBV.

4.2.2 Methods

4.2.2.1 De-regression of breeding values

De-regressed breeding values (dEBV) were used as response variables throughout the anal-

ysis. We computed individual animal dEBV and their weights (wi) with the parent average

removed following the procedure outlined by Garrick et al. (2009). After de-regression and

filtering a total of 965, 936, and 938 animals remained for the traits BF, D250, and LEA
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respectively (Table 4.1).
Table 4.1: Descriptive statistics of EBV

BF D250 LEA

¯EBV -0.03 4.57 0.61

r̄2EBV
× 0.74 0.67 0.75

N ? 965 936 938

h2 0.45 0.26 0.47

× average reliability of EBV
? number of animals with usable EBV

4.2.2.2 Estimation of genomic relationship matrix

The genomic relationship matrix was estimated from observed or imputed high density (∼

41K) SNP genotypes. Genotypes were expressed as allelic dosage, which is the number of

copies of the minor allele, such that genotypes were entered into a marker matrix M as a

decimal number in the interval [0, 2]. We obtained matrix Z by subtracting twice the allelic

frequency of the minor allele (pi), from columns of M (VanRaden, 2008). The genomic

relationship matrix was then calculated as:

G =
ZZ′

2
∑M
i=1 pi(1− pi)

(4.1)

where 2
∑M
i=1 pi(1− pi) is a normalizing constant (Wang et al., 2012) summing expected

variances across markers scaling G towards the numerator relationship matrix (VanRaden,

2008). The allele frequency pi was obtained using all available animals (N=983). Average

relatedness between animals was obtained from the row/column vectors of G. We quantified

relatedness in this study as the average of the top 10 relationships observed within the G
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matrix (rel10).

4.2.2.3 Implementation of prediction model

Using the genomic relationship matrix from equation (4.1) an animal-centric model for ge-

nomic evaluations can be written as:

y = 1nµ+ a + e (4.2)

where y is the vector of dEBV, µ is the overall mean, a is the vector of n animal effects

(a ∼ N(0,Gσ2
a)), and e is a vector of random residuals (e ∼ N(0,Rσ2

e)). The variance of

the dEBV is var(y) = Gσ2
a + Rσ2

e , where R is a diagonal matrix with diagonal elements

Rii = 1
wi

, the inverse of the weights of the dEBV (VanRaden et al., 2011). Equivalently,

the information in G can also be included in the incidence matrix of the animal effects a as

follows (Vazquez et al., 2010):

y = 1nµ+ Ca∗ + e (4.3)

where C is the Cholesky decomposition of G, such that G = CC′, µ is the overall mean,

a∗ is the vector of animal effects with a∗ ∼ N(0, Iσ2
a∗) noticing that a = Ca∗, and e is a

vector of residual effects e ∼ N(0,Rσ2
e) such that var(y) = CC′σ2

a∗+Rσ2
e = Gσ2

a∗+Rσ2
e .

The variance terms for models (4.2) and (4.3) are equal, such that the two models are in

fact equivalent if variance components are assumed known. Likewise, when estimating the

parameters under these two models we found virtually identical results, but model (4.3) was

computationally more efficient resulting in a two fold reduction in compute time (results not

shown). The BLR package (Pérez et al., 2010) in R (Team, 2011) was used to fit the mixed

model equations. Model parameters σ2
e and σ2

a∗ were sampled from their corresponding full
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conditional distribution using a Gibbs sampler. Prior distributions were elicited based on

equations presented by Pérez et al. (2010). The prior distribution of σ2
e and σ2

a∗ were an

inverse χ2 distribution with degrees of freedom df and scale S. To ensure proper priors with

finite expectations we set df = 3. The scale parameters were obtained as a function of the

df and assuming values of the genetic variance (Va) and error variance (Ve) (Pérez et al.,

2010):

σ2
e ∼ χ−2(dfe = 3, Se = Ve(dfe + 2))

σ2
a∗ ∼ χ−2(dfa = 3, Sa =

Va(dfa + 2)

Āii
)

where Āii, is the average inbreeding coefficient, set equal to 1 in this case, assuming no

inbreeding. Heritability was assumed to be h2 = 0.5, such that after the value for Ve was

arbitrarily set to 0.4, Va was estimated Va = Veh
2

1−h2 . The Gibbs sampler implemented in

BLR (Pérez et al., 2010) was used to obtain a total of 100,000 samples, 10,000 of which were

discarded as burn-in. The reported estimates of σ2
e , σ2

a∗, animal effects (a∗), and GEBV

(ŷ) were based on the posterior means of the remaining 90,000 iterations. We assessed

convergence of the MCMC chain as well as sensitivity to priors to ensure robustness of

estimates to priors (results not shown).

4.2.3 Genomic prediction under cross-validation

Accuracy of genomic evaluation was estimated in a 10 fold cross-validation design. Approx-

imately 10 % of the animals were randomly assigned to a validation panel (V ) in which

predictions would be made, while the remaining 90% were used as the training panel (T )

to estimate the parameters necessary for prediction. A total of 10 separate datasets were

created such that each animal would be used for validation once. Across cross-validation
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datasets we fit model (4.3) to the training animals, we refer to that subset by adding a

subindex T :

yT = 1nT µ+ CT a∗T + eT (4.4)

to estimate the BLUP of â∗T (VanRaden et al., 2011):

â∗T = C′T (GT + RT
σ2
e

σ2
a

)−1(yT − 1nT µ̂) (4.5)

where the matrices G and C are partitioned into block structure such that

 GT G′TV

GTV GV

 =

 CT 0

CTV CV


 C′T C′TV

0 C′V

 =

 CTC′T CTC′TV

CTV C′T CTV C′TV + CV C′V


(4.6)

The relation between the BLUP for a based on model (4.2) and â∗ based on model (4.3)

can be expressed as:  aT

aV

 =

 CT 0

CTV CV


 a∗T

a∗V

 (4.7)

The genomic breeding value of training animals in model (4.2) were computed as:

âT = CT â∗T = CTC′T (GT +RT
σ2
e

σ2
a

)−1(yT −1nT µ̂) = GT (GT +RT
σ2
e

σ2
a

)−1(yT −1nT µ̂)

Subsequently, the genomic breeding values of the validation animals âV were estimated from

âT using the following equation:

âV = GTV G−1
T âT = CTV C′T (GT + RT

σ2
e

σ2
a

)−1(yT − 1nT µ̂) (4.8)
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where σ2
e , σ2

a, and µ̂ are estimated using model (4.4) which is equivalent to applying model

(4.3) to the training animals.

4.2.3.1 Estimation of accuracy

Accuracy of genomic evaluation is the correlation between the estimated GEBV and the

unknown true breeding values (TBV) (Hayes et al., 2009a). However, the TBV are unknown.

Consequently, the accuracy of genomic evaluation has to be approximated using the available

information. Hayes et al. (2009a) proposed to express the correlation between GEBV and

TBV as a function of the correlation between GEBV and EBV:

r(GEBV,TBV ) =
cor(GEBV,EBV )

cor(EBV, TBV )
=
cor(GEBV,EBV )√

r2EBV

(4.9)

where r2EBV is the estimated reliability of the EBV. VanRaden et al. (2009) replaced r2EBV

with the arithmetic mean of the reliability of the EBV. Daetwyler et al. (2013) proposed to

report a simple Pearson correlation coefficient between GEBV and EBV to allow for compa-

rability of results across studies. We estimate accuracy of genomic evaluation as the Pearson

correlation coefficient between GEBV and EBV (r(GEBV,EBV )) and the Pearson correla-

tion coefficient adjusted for the average accuracy of the EBV to facilitate such comparison

(
r(GEBV,EBV )

r̄EBV
).

Accuracies of individual GEBV were obtained analogous to the accuracy of EBV in

an animal model (Goddard et al., 2011) through inversion of the mixed model equations

(Mrode, 2005; VanRaden, 2008; VanRaden et al., 2009; Strandén and Garrick, 2009; Clark

et al., 2012). The accuracy of â of the model (4.2) can be expressed as (Mrode, 2005;
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Strandén and Garrick, 2009; Clark et al., 2012):

râ =
√

1− (PEV/σ2
a) (4.10)

where PEV is the prediction error variance of â:

PEV = var(a− â) = (R−1 1

σ2
e

+ G−1 1

σ2
a

)−1 (4.11)

and σ2
a is the genetic variance such that:

var(a) = Gσ2
a (4.12)

Strandén and Garrick (2009) showed, that râ for all animals can be obtained from the

diagonals of:

râ =

√√√√√√√
{

G(G + R
σ2
e
σ2
a

)−1G

}
ii

{G}ii
(4.13)

and VanRaden (2008) showed that the accuracy of GEBV of the validation animals can be

obtained from the diagonals of:

râV
=

√√√√√√√√
{

GTV (GT + RT
σ2
e
σ2
a

)−1G′TV

}
ii{

GV

}
ii

(4.14)

This equation was used to estimate the accuracy of individual GEBV for validation animals.
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4.2.3.2 Genotype imputation

Linkage disequilibrium (LD) based genotype imputation was performed with BEAGLE ver-

sion 3.3.1 (Browning and Browning, 2009). We used the standard settings for BEAGLE:

ten iterations of the phasing algorithm, drawing four samples per iteration. Previous results

from our group (Badke et al., 2013) and other studies (Hayes et al., 2012) showed negligible

improvement in imputation accuracy as a result of an increase in iterations or samples per

iteration.

A matrix of ‘observed’ genotypes was created by imputing randomly missing genotypes

in the 983 Yorkshire sires (≤ 0.05%) supplementing the data with a reference panel of

128 Yorkshire haplotypes to improve imputation accuracy. Due to the small (≤ 0.05%)

percentage of randomly missing genotypes we expected accuracy of imputation very close

to 100%, and consequently treated these genotypes as ‘observed’ genotypes for all further

analysis.

We implemented two separate imputation experiments, which differ in the size of the high

density reference panel used for imputation: 1) a reference panel of 128 Yorkshire haplotypes

or 2) a reference panel combining the 128 Yorkshire haplotypes with the haplotypes of all

animals that are part of the training panel (∼ 1700 additional haplotypes) in the respective

cross-validation dataset. To assess the effect of genotype imputation on genomic predic-

tion we considered the following four scenarios: 1) the reference scenario where genomic

evaluation was based on observed genotypes in training and validation animals, 2) genomic

evaluation based on observed genotypes in the training animals and genotypes imputed from

a large reference panel (∼ 1800 haplotypes) in the validation animals, 3) genomic evaluation

based on observed genotypes in the training animals and genotypes imputed from a small
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reference panel (128 haplotypes) in the validation animals, and 4) genomic evaluation based

on imputed genotypes in training and validation animals using a small (128 haplotypes)

but representative reference panel for imputation. All genotype imputation and subsequent

estimation of imputation accuracy was implemented using the R package impute.R (Badke

et al., 2013). To compare average accuracy of genomic evaluation across these four scenarios

we fitted a linear model with the average accuracy of genomic evaluation as response vari-

able and the genotype imputation scenario as independent variable, adding the effect of the

random cross-validation dataset in which accuracy of genomic evaluation was estimated as

a random blocking factor.

4.3 Results

4.3.1 Accuracy of genomic evaluation and GEBV using observed

genotypes

When genotypes were observed in both training and prediction animals, accuracy of genomic

evaluation, measured as the weighted mean of the Pearson correlation coefficient between

EBV and predicted GEBV across 10 cross-validation datasets, was 0.68, 0.66, and 0.65 for

BF, D250, and LEA respectively (Table 4.2). When the measure of accuracy was adjusted for

the average reliability of the EBV of the training animals the observed accuracy of genomic

evaluation was 0.80, 0.82, and 0.76 for BF, D250, and LEA respectively (Table 4.2).
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Table 4.2: Estimates of accuracy for genomic evaluation and individual GEBV across imputation scenarios

trait scenario × imputation accuracy ? rEBV,GEBV
� r̄EBV

∓ rEBV,GEBV
r̄EBV

r̄GEBV HPD /

BF 1 (1, 1) 0.6810a 0.8510 0.7998 0.6852 [0.5395, 0.8211]

2 (1, 0.95) 0.6795a 0.7981 0.6861 [0.5467, 0.8164]

3 (1, 0.88) 0.6585b 0.7734 0.6684 [0.5498, 0.7909]

4 (0.88, 0.88) 0.6598b 0.7749 0.7014 [0.5727, 0.8267]

D250 1 (1, 1) 0.6603a 0.8020 0.8229 0.6575 [0.5073, 0.7948]

2 (1, 0.95) 0.6555ab 0.8170 0.6585 [0.5187, 0.7962]

3 (1, 0.88) 0.6521ab 0.8127 0.6412 [0.5213, 0.7771]

4 (0.88, 0.88) 0.6463b 0.8054 0.6750 [0.5345, 0.7985]

LEA 1 (1, 1) 0.6516a 0.8529 0.7639 0.6859 [0.5386, 0.8325]

2 (1, 0.95) 0.6491a 0.7610 0.6868 [0.5377, 0.8214]

3 (1, 0.88) 0.6278c 0.7360 0.6684 [0.5519, 0.8054]

4 (0.88, 0.88) 0.6364d 0.7461 0.7040 [0.5667, 0.8330]

× scenarios 1: no imputation, 2: imputation in prediction panel (R2 = 0.95), 3: imputation in prediction panel (R2 = 0.88),

and 4: imputation in all animals (R2 = 0.95)
? accuracy of genotype imputation R2 for training and validation animals: (R2

T ,R
2
V )

� Tukey HSD post-hoc comparison of accuracy of genomic evaluation across imputation scenarios
∓ average accuracy of EBV in the validation panel
/ 95% highest posterior density (HPD) interval of GEBV accuracy across validation animals



We observed a significant difference between the estimates of accuracy of genomic eval-

uation across ten randomly assigned cross-validation datasets for three traits (Table 4.3).

That variation across cross-validation datasets was partially explained by a significant effect

of the average EBV accuracy of validation animals on accuracy of genomic evaluation (Ta-

ble 4.3) in three traits and a significant effect of top 10 relatedness on accuracy of genomic

evaluation in D250. Another source of difference of accuracy of genomic evaluation across

cross-validation datasets could be the population structure. This would be revealed through

differences in estimated variance components. We did not expected differences in variance

components estimated from randomly assigned validation datasets. We confirmed this as-

sumption by studying the distribution of estimated heritability (
σ2
a

σ2
a+σ2

e
) and included the

obtained results in Supplementary Figure 4.3.

Table 4.3: Significance of variables affecting accuracy of genomic evaluation

folds × rel10 ? r̄EBV
�

trait F / p F † p F † p

BF 258 < 0.001 2.83 0.1013 11.73 0.0016

D250 229 < 0.001 5.18 0.0291 7.238 0.0109

LEA 311 < 0.001 2.06 0.1605 3.430 0.0725

× accuracy of genomic evaluation by randomly assigned folds of the cross-validation
? accuracy of genomic evaluation by average of the top 10 genomic relationship estimates of
animals in the validation set
� accuracy of genomic evaluation by average accuracy of EBV of validation animals by fold
/ df = c(9, 27)
† df = c(1, 35)

The average accuracy of the genomic evaluation and the assessment of the accuracy of

individual GEBV using equation 4.14 is equally important in a practical implementation of
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genomic selection. Average accuracy of individual GEBV was 0.69, 0.66, and 0.69 for BF,

D250, and LEA respectively with a 95% highest posterior density (HPD) interval ranging

from roughly 0.51 to 0.80 across all traits (Table 4.2).

As can be seen in Figure 4.1 accuracy of GEBV (rGEBV ) and accuracy of EBV (rEBV )

are not linearly related. accuracy of GEBV (rGEBV ) and accuracy of EBV (rEBV ) are

not linearly related. Accuracy of EBV was higher than the estimated accuracy of GEBV for

most animals in three traits, especially when rEBV > 0.8. For a few animals with rEBV

between 0.4 and 0.8 accuracy of GEBV was higher than their respective EBV accuracy. We

observed there was an almost linear increase (Figure 4.2) in rGEBV as top 10 relatedness

increased, which we found was statistically significant (p < 0.01).
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Figure 4.1: Accuracy of GEBV by observed accuracy of EBV for a) BF, b) D250, and c) LEA
rGEBV in relation to the animals rEBV , with the 1-1 line of the regression (green line) and a loess smoother (red line), which
is a local weighted mean of the rGEBV
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Figure 4.2: Accuracy of GEBV by average top 10 relatedness between the individual and training panel for (A) BF, (B) D250,
and (C) LEA
rGEBV in relation to the animals rel10, a loess smoother (red line), which is a local weighted mean of the rGEBV



4.3.2 Effect of genotype imputation on accuracy of genomic eval-

uation and GEBV

Accuracy of imputation (R2) for each animal was measured as the squared correlation be-

tween the observed and imputed allelic dosage across all SNP (Badke et al., 2013). Average

accuracy of imputation was R2 = 0.88 for the first scenario using a small (128) haplotype

reference panel, and it increased to R2 = 0.95, when a larger reference panel (∼ 1800 hap-

lotypes) was utilized. In our previous study (Badke et al., 2013) we found that increasing

the size of the reference panel led to an improved imputation especially of SNP that appear

difficult to impute, such as SNP with low (≤ 0.1) MAF and those located in the chromosomal

extremes. These results were replicated in this study (Supplementary Figure 4.4).

For BF we found that the average accuracy of genomic evaluation under scenario 2

(rGEBV,EBV = 0.6795), where genotypes in the validation animals were imputed with

high accuracy (R2 = 0.95), was not significantly different from the accuracy observed in the

reference scenario (rGEBV,EBV = 0.681), where all genotypes were observed. However

average accuracy of genomic evaluation was significantly lower (rGEBV,EBV = 0.6585,

rGEBV,EBV = 0.6598), when genotypes were imputed with lower accuracy (R2 = 0.88)

when using a small reference panel of haplotypes (scenarios 3 & 4). For D250 there was

no significant difference in accuracy of genomic evaluation between the reference design

(rGEBV,EBV = 0.6603) and the two scenarios where genotypes were imputed in the vali-

dation animals (Table 2). However, when genotypes were imputed in both training and val-

idation (scenario 4) accuracy of genomic selection was significantly lower (rGEBV,EBV =

0.6463). For LEA there was also no difference in accuracy of genomic evaluation between

the reference scenario (rGEBV,EBV = 0.6516) and scenario 2 (rGEBV,EBV = 0.6491).

86



There was a significant decrease in accuracy of genomic evaluation when genotypes were

imputed with lower accuracy (R2 = 0.88) in scenarios 3 (rGEBV,EBV = 0.6278) and 4

(rGEBV,EBV = 0.6364).

To assess the effect of genotype imputation on the results of a genomic evaluation we

compared the top 5% sires (n = 46), ranked by their estimated GEBV across imputation

scenarios. Again, scenario 1 was used as a reference design to compare how many of the

top 5% ranked animals were also top ranked under the imputation scenarios (2-4). The

proportion of top 5% ranked sires that were conserved when genotypes were imputed in

validation animals with high accuracy (scenario 2) was 0.96 for BF and 0.98 for D250 and

LEA. When genotypes were imputed in validation animals with lower accuracy (scenario 3)

the proportion of top 5% ranked sires decreased to 0.86, 0.92, and 0.87 for BF, D250, and

LEA respectively. When genotypes were imputed in training and validation the proportion

of top 5% sires conserved in comparison to the reference design showed a small increase

compared to the design with only validation animals imputed for BF (0.88), a small decrease

for D250 (0.89), and a more substantial decrease for LEA (0.81).

Accuracy of individual GEBV is estimated using the genomic relatedness between train-

ing and validation animals. Using genotypes imputed with high accuracy (R2 = 0.95) the

estimated rGEBV remained constant in all traits, compared to estimates obtained from

observed genotypes. When genotypes were imputed with less accuracy (R2 = 0.88) rGEBV

slightly decreased. However, when the genomic relationship matrix was obtained from im-

puted genotypes in both training and prediction animals (R2 = 0.88) the observed accuracy

of GEBV was higher than even the reference scenario across traits. Examining the estima-

tion procedure for rGEBV we found that this difference was due to smaller estimates of

the diagonal elements of the genomic relationship matrix between the validation elements

87



(GV ) in the scenario with all imputed genotypes. These diagonal elements were used to

scale values of rGEBV (equation 4.14), and smaller values in the denominator resulted in

the larger estimates of rGEBV we saw for animals in scenario 4. Comparing unscaled values

of rGEBV individual accuracy was higher in the reference scenario for all animals.

4.4 Discussion

4.4.1 Accuracy of genomic evaluation and GEBV using observed

genotypes

The size of the training population used to train the prediction equation in this study was

small compared to previous genomic evaluations published in swine (Cleveland et al., 2010,

2012), and especially compared to studies applying genomic evaluation in European (Dasson-

neville et al., 2011) or US dairy cattle (Weigel et al., 2010a; Wiggans et al., 2012). Observed

accuracy of genomic evaluation in this study was in good agreement with previously pub-

lished results for genomic evaluation in pigs, assessing five unspecified commercial traits

with comparable heritability (Cleveland et al., 2012) and earlier results for two reproductive

traits (Cleveland et al., 2010). Accuracy of genomic evaluation was high across three traits

(BF: rGEBV = 0.6810 D250: rGEBV = 0.6603, LEA: rGEBV = 0.6516). In addition,

we report accuracy adjusted for the fact that the Pearson correlation between EBV and

GEBV will underestimate the true quantity of interest (Luan et al., 2009). Assessing the

variation in accuracy of genomic evaluation across datasets of the cross-validation, we found

that the r̄EBV of the validation animals and their relatedness to the training animals were

significantly associated to the average accuracy of genomic evaluation. Higher accuracy of
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genomic evaluation of prediction animals with close relatives in the training population (Ha-

bier et al., 2010; Clark et al., 2012) and within closely related populations, with relatively

small effective population size, has been previously reported (Daetwyler et al., 2013). Accu-

racy of genomic evaluation in this study was high in spite of the limited number of animals

available for training and the inclusion of animals with relatively low EBV accuracy. Fur-

thermore, we obtained accurate genomic predictions using an equivalent model fitting the

genomic relationship matrix instead of a marker based matrix (Hayes et al., 2009b), thereby

greatly reducing the computational load. We expect that accuracy of genomic evaluation in

this population, and other US swine populations with comparable population structure and

LD (Badke et al., 2012), will be feasible for commercial implementation and could be further

increased through the inclusion of additional training animals with highly accurate EBV.

Besides assessing the accuracy of genomic evaluation we also reported accuracies for indi-

vidual GEBV. The accuracy of GEBV will be important to influence selection decisions, but

as proposed by Goddard et al. (2011), can also be approximated prior to the implementation

of genomic evaluation and used to inform the design of genomic selection in a population. As

expected, we observed that accuracy of GEBV increased with increased relatedness between

the animal and the training panel. Several previous studies in other populations and simu-

lation experiments also showed the importance of relatedness for the prediction of accurate

GEBV (Habier et al., 2010; Clark et al., 2012), especially when the training population was

small (Wientjes et al., 2013) as was the case in our study. In addition, we observed that accu-

racy of GEBV was higher than accuracy of EBV for only a few animals that had mostly low

accuracy of EBV. This finding is further supported by previous reports that implementation

of genomic evaluation would be most beneficial for young animals with little information on

their own and subsequently low accuracy of traditional EBV (VanRaden, 2008).

89



4.4.2 Effect of genotype imputation on accuracy of genomic eval-

uation and GEBV

Genotype imputation is an efficient tool to decrease the cost of obtaining high density geno-

types for selection candidates. It was the goal of this study to quantify the loss on accuracy

of genomic evaluation if GEBV were estimated from imputed rather than observed genotypes

in selection candidates. Comparing accuracy of genomic evaluation across four scenarios of

genotype imputation we found that for three traits there was no significant difference be-

tween genomic evaluation as a function of genotypes in validation animals being observed

or imputed with high accuracy (R2 = 0.95). Accuracy of genomic evaluation decreased in

comparison to the reference scenario when genotypes in selection candidates were imputed

with lower overall accuracy (R2 = 0.88). Especially when imputation was applied in training

and prediction animals we observed a decrease in accuracy of genomic evaluation, such that

while this would be the most cost efficient scenario, it would not be feasible as practical

implementation to obtain maximally accurate results of genomic evaluation. Accuracy of

genotype imputation is a function of the SNP density, the size of the reference panel, the

level of LD between adjacent SNP, and the SNP chromosomal location and MAF (Badke

et al., 2013). Combined with the results from this study that a minimum accuracy of im-

puted genotypes was necessary to conserve accuracy of genomic evaluation, these variables

can be used to design an optimally cost efficient scheme of genomic selection with genotype

imputation in a population without any current use of molecular markers to estimate genetic

merit. Once genomic selection has been successfully implemented, the constant influx of ad-

ditional animals with high density genotypes and accurate EBV will only serve to increase

the accuracy of both imputation and subsequent genomic evaluation. Previously published
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results support that while it is not feasibly to implement genomic prediction based on low

density genotypes (Habier et al., 2009; Cleveland et al., 2010), even if SNP were preselected

for association with the phenotype, accuracy of genomic evaluation is still feasible for prac-

tical implementation when genotypes in selection candidates are accurately imputed to high

density (Weigel et al., 2010a; Cleveland and Hickey, 2013). In addition, several studies also

support that an increase in imputation accuracy will facilitate results of genomic evaluation

nearly indistinguishable from those obtained from observed genotypes (Dassonneville et al.,

2011; Wiggans et al., 2012; Cleveland and Hickey, 2013) while the cost efficiency of low

density genotypes allows a much larger proportion of the population to be included in the

genomic evaluation procedure (Wiggans et al., 2012). In conclusion, an implementation of

genomic selection based on observed genotypes for training of the prediction equation and

GEBV predictions obtained from genotypes imputed with high accuracy appears to be a

promising approach to provide the swine breeding industry with a cost efficient procedure to

obtain GEBV for animals at a young age. A recent study assessing the accuracy of genomic

evaluation using high density genotypes and various imputation schemes in a commercial

pig population further supports these findings (Cleveland and Hickey, 2013).

We found that accuracy of individual GEBV was a linear function of the relatedness

between a validation animal and the respective training set. As has been previously shown

in the literature, animals that are highly related to the training population will have higher

rGEBV (Habier et al., 2010; Clark et al., 2012). For scenarios with observed genotypes used

in training animals the average rGEBV was in good agreement with the overall accuracy

of genomic evaluation. However, when genotypes were imputed in training and prediction

animals, the average rGEBV was notably larger than the accuracy of genomic evaluation,

which we found was an artifact of lower estimates of the diagonal elements of the G matrix.
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This was caused by a decrease in the variance of the allelic dosage of imputed genotypes

due to the relatively small number of reference haplotypes available. When the variance of

imputed allelic dosages was decreased, the deviation from the expected value estimated from

MAF (2p) also decreased, causing overall smaller estimates of Z and the resulting diagonal

elements of the G matrix. This increase in the homogeneity of allelic dosages in the imputed

genotypes causes the observed inflation in accuracy of estimated GEBV, such that in any

case when GEBV are obtained from imputed genotypes the estimated accuracy of GEBV

should be used with caution. The average GEBV accuracy notably exceeded the expected

accuracy of genomic evaluation in that scenario.

In conclusion, we found that results for accuracy of GEBV further support the notion that

genomic evaluation using high density genotypes imputed with high accuracy for selection

candidates is a feasible method to implement a cost efficient design for genomic selection

in swine. When genotypes were imputed with lower accuracy in training and prediction

animals accuracy of genomic evaluation was significantly decreased and estimates of accuracy

of GEBV were inflated. As mentioned before, all code and data used in this paper has been

made available through an R package, accessible at: http://tinyurl.com/MSURGEBV
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4.5 Supplementary Materials

Figure 4.3: Distribution of genomic heritability across 10 folds for a) BF, b) D250, and c) LEA
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Figure 4.4: Average accuracy of genotype imputation for imputation from a small (blue) or large (red) reference panel as a
function of (A) chromosomal location of SNP and (B) MAF



Chapter 5

General Discussion

Genomic selection is a valuable tool to genetically improve livestock and plant species

(Daetwyler et al., 2013). Direct use of genome wide marker information allows for accu-

rate selection of superior animals for breeding at a very young age, even if the phenotype

under selection is difficult to measure (Daetwyler et al., 2013). Furthermore, results from

dairy cattle breeding show that implementation of genomic selection can shorten generation

intervals while increasing the rate of genetic gain (VanRaden et al., 2009). Through the

availability of the PorcineSNP60 BeadChip (Ramos et al., 2009) implementation of genomic

selection for swine breeding has become a probable development (Cleveland and Hickey,

2013). It was the objective of this dissertation to assess variables affecting accuracy and

cost efficiency of genomic selection programs in four US pure-breed pig populations. We

intended to show how genomic selection could be optimally implemented meeting the swine

breeding industry’s requirements of high prediction accuracy and cost efficiency. In addi-

tion, we released computer algorithms and data to facilitate further research in these specific

populations and allow researchers working with other species to implement a similar set of

steps to investigate the usability and optimal design of genomic prediction.
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5.1 Objectives revisited and their impact on genomic

selection in swine breeding

1. Estimate LD and in the Duroc, Hampshire, Landrace and Yorkshire pig breeds us-

ing SNP genotypes obtained using the Illumina PorcineSNP60 Genotyping BeadChip.

Determine persistence of phase between breeds to assess the potential of mixed breed

reference panels for both imputation and genomic selection in the future.

LD describes the non-random association between gametes at different loci across the genome.

High genome wide pair-wise estimates of LD are an important precursor for genome wide

association studies (GWAS) and accurate genomic prediction. The level of LD in pigs was

previously measured using low density markers (Du et al., 2007; Harmegnies et al., 2006;

Nsengimana et al., 2004), but our study of LD in four US pig breeds (Badke et al., 2012) was

among the first to report genome wide levels of LD using a high density SNP panel (Jafarikia

et al., 2010; Uimari and Tapio, 2011). Indicative of a relatively small effective population

size we found average LD of approximately 0.4 for markers within 100kb of each other, and

0.2 when average distance between SNP was 1 Mb. Due to these relatively high estimates

of pairwise LD, even at increasing distance we projected that implementation of genomic

selection has the potential to achieve accuracy of prediction comparable to that observed in

dairy cattle populations. We based this projection on the fact that pairwise LD between

SNP is an important prerequisite for accurate prediction (i. e. Hayes et al., 2009a), and

that LD in these pig breeds was higher than reported estimates for dairy cattle populations

(de Roos et al., 2008). Since persistence of LD at increasing distances was high, genotype

imputation from a more cost efficient low density SNP panel should be considered in the

design of a genomic selection scheme.
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Implementation of genomic selection requires a large sample of training individuals with

highly accurate EBV to estimate SNP effects. Especially in small populations obtaining

a large number of adequate training animals is often cost-prohibitive. Combining training

animals across populations to reduce cost has previously been proposed and is based on the

assumption that the extent and phase of LD, and the effect of the QTL are conserved across

populations. We obtained estimates of correlation of phase, as a measure of persistence of

phase, for all pairwise comparisons among four US pig breeds. Our results suggest, that

persistence of phase between Duroc, Landrace, Hampshire, and Yorkshire is not sufficient to

support the hypothesis that combining any of these populations to train a prediction equa-

tion for genomic selection would be beneficial. Persistence of phase will generally increase

with increasing marker density, such that this recommendation should be reevaluated as the

density of the available SNP chip increases (Goddard et al., 2006). In conclusion, we found

promising levels of genome wide LD in these pig populations, but implementation of genomic

selection should remain breed specific as marker phase is not sufficiently conserved at the

current marker density.

2. Assess tagSNP selection strategies to obtain maximally informative subsets of tagSNP

that effectively span the genome for each breed. In addition, report on imputation

accuracy of the recently released GeneSeek Genomic Profiler for Porcine LD (GGP-

Porcine, GeneSeek a Neogen Company, Lincoln, NE), a commercially available 10K

tagSNP panel.

Although results presented in the previous chapter indicate that genome wide LD is sufficient

to support the expectation of accurate genomic prediction, implementation based on high

density SNP remained unlikely due to cost concerns. A common approach to decrease
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genotyping costs used in human (i. e. Howie et al., 2011), plant (Hickey et al., 2012), and

animal research (i.e. Wiggans et al., 2012) is genotype imputation. Accuracy of genotype

imputation depends on the effective size of the population, the size and composition of

the reference panel (Howie et al., 2011; Hayes et al., 2012), the proportion of tagSNP, the

location and MAF of untyped SNP (Badke et al., 2013; Hickey et al., 2012), and the type

of information used for imputation (Marchini and Howie, 2008). To establish a baseline for

imputation accuracy, we applied a population LD based imputation algorithm, mimicking

the case of a population with no pedigree available. In case linkage information is available

and utilized imputation accuracy is expected to further increase (Huang et al., 2012). Low

density SNP panels (tagSNP) selected exploiting population wide LD generally outperformed

tagSNP set selected for even spacing along the genome. However, if pairwise LD is exploited

the resulting panels are population specific. Therefore, when the GGP-Porcine was released

parallel to our efforts of tagSNP selection, we decided to refocus our attention and assess

genotype imputation accuracy based on this commercially available 10K platform.

Imputation accuracy (IA), measured as the proportion of correctly imputed alleles, was

high (0.95) when imputation was based on the GGP Porcine and a small reference panel

of 128 haplotypes. Relatedness to the reference panel had a positive impact on accuracy

of imputation even if it was not directly exploited through the imputation algorithm. SNP

within the chromosomal extremes or low MAF had on average lower accuracy of imputation

(Badke et al., 2013; Hickey et al., 2012). Increased density of tagSNP in the chromosomal

extremes was implemented to improve imputation accuracy of SNP located in these areas.

In the GGP Porcine tagSNP density is approximately doubled in the 10% extreme locations.

Secondly, increasing the size of the reference population did increase overall accuracy of

imputation, but especially imputation accuracy of SNP with low MAF or those located in
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the chromosomal extremes benefited from adding haplotypes. In our population an ideal

number of reference haplotypes to ranged between 1000-1200, beyond which any increase in

accuracy was marginal. This information can be utilized to optimize the allocation of funds

available to implement genomic selection between genotyping reference animals, genotyping

of selection candidates at low density, and phenotype collection. In conclusion, genotype

imputation from the commercially available GGP-Porcine is sufficiently high (IA = 0.95) to

expect that genomic prediction obtained from imputed genotypes will suffer only marginal

losses in accuracy compared to those obtained from observed genotypes. The design of

the GGP Porcine (Curtis P. Van Tassell, SNPSpace), selecting tagSNP evenly covering

the genome with maximal MAF to ensure segregation, can serve as an example for other

populations. Our results on individual and SNP specific accuracy can be used to design an

optimal reference panel of haplotypes and select individuals for imputation who are expected

to yield imputed genotypes with high accuracy.

3. Perform GEBV prediction for economically important production traits using high

density SNP genotypes for the Yorkshire breed, as well as genotypes imputed from the

GGP-Porcine. We assessed the loss in accuracy when genotypes in selection candidates

were obtained through a more cost efficient low density panel (GPP-Porcine) instead

of observed high density genotypes (PorcineSNP60).

Results from chapters 2 and 3 indicated that genomic selection in the Yorkshire pig pop-

ulation has the potential to be highly accurate, even if genotypes in selection candidates

are imputed. We implemented a ten-fold cross validation study to assess the accuracy of

genomic evaluation from observed genotypes, and the loss in accuracy of genomic evaluation

if genotypes were imputed. Genomic selection was implemented using a computationally
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efficient animal model, and accuracy of individual GEBV was calculated through inversion

of the mixed model equations. As expected, we found that accuracy of genomic evaluation

for three traits (back-fat thickness, loin muscle area, and # days till 250lb) were in good

agreement with the few available results from pig populations (Cleveland et al., 2010, 2012)

and mimicked previously observed accuracies for various dairy cattle traits (Dassonneville

et al., 2011). Higher relatedness between the training animals and the validation animals

had a positive impact on the observed accuracy, as did higher average accuracy of EBV in

the validation animals. We implemented three separate imputation scenarios: 1. genotypes

were imputed in the validation animals using ∼ 1800 reference haplotypes, 2. genotypes

were imputed in the validation animals using 128 reference haplotypes, and 3. genotypes

were imputed in all animals using 128 reference haplotypes. Accuracy of imputation was

assessed as the squared correlation (R2) between observed and imputed genotypes. The

first imputation scenario had the highest observed accuracy of imputation (0.95), which was

expected due to the larger number of reference haplotypes. Genomic evaluation based on

these genotypes did not show any significant difference from the reference design without

imputation in any of the traits. The second and third scenario had slightly lower accuracy

of imputation (0.88) and as a result a decrease in accuracy of genomic evaluation compared

to the reference design was observed in all three traits. However, while the average accuracy

of genomic selection was decreased when genotypes were imputed in all animals, estimates

for individual GEBV accuracy were inflated in this scenario. As a result we would not rec-

ommend using genotypes imputed in all animals for genomic selection in pig breeding. In

conclusion, we were able to replicate previous results from pig (Cleveland and Hickey, 2013)

and dairy cattle breeding (Dassonneville et al., 2011; Weigel et al., 2010a; Wiggans et al.,

2012), reporting that genomic evaluation based on highly accurate imputed genotypes in
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selection candidates is a cost efficient and equally accurate alternative to genomic evaluation

based on observed high density genotypes.

5.2 Future Directions

In chapter 2 we exploited haplotypes to estimate LD and persistence of LD across four breeds

of US pigs. We focused on levels of LD to assess the future potential of low density geno-

types in these populations for genotype imputation and genomic selection. Alternatively,

available haplotypes could be exploited for breed identification and quantification of breed

purity. Using high density genotypes to estimate breed composition could replace cost and

time consuming mating experiments to determine an animals purebred status. Recent re-

sults from our group (Huang et al., 2013) were successful in predicting an animals breed

composition using regression models, and identifying potentially non-purebred or crossbred

animals that should be further evaluated. The animals identified as non-purebred were

partially identical with a group of animals that had consistently low imputation accuracy

in chapter 3, implicating that this method was in fact able to identify individuals with a

distinct haplotype structure. However, for roughly half these animals differences in their

haplotype structure was not the result of cross-breeding, instead they were imported from

an unrelated population of the same breed. Further research is necessary to separate this

effect of breed composition vs. population of origin, and further validate the ability of high

density genotypes to reliable predict recent cross-breeding events in an animals pedigree.

Especially, it would be interesting to assess the effect of combining different populations of

the same breed to be used as a reference for breed composition predictions (e. g. Finnish

populations used in Uimari and Tapio, 2011). Another issues with using high density geno-
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types to predict breed purity is admixture between breeds. In chapter 2, using short-range

persistence of phase we approximated time since breed divergence between four US pig pop-

ulations to be between 40 and 60 generations, with white breeds having diverged from each

other more recently (40). However, long-range persistence of phase between all four breeds

is larger than the expected value based on the approximated time of breed divergence, pos-

sibly due to more recent admixture between the populations. Using high density genotypes

to obtain regression estimates of breed composition will likely reflect these past cross-over

events between populations. This creates the need for thresholds of significance to be estab-

lished indicating whether an individual’s divergence from its assigned breed is large enough

to necessitate further testing to assess the animals pure-bred status. To assess the abil-

ity of haplotypes obtained from high density genotypes to predict breed purity within and

across populations of the same breed a panel of reference haplotypes could be assembled.

Many populations, especially in commercial settings, will have haplotypes available from

previous research. Our results for reference panel design in chapter 3 suggest that in these

pig populations haplotypes from randomly sampled animals will not be at a disadvantage

compared to more complex sampling designs involving sire/dam/offspring trios or maximally

unrelated individuals provided a large (N ≥ 100) sample is assembled. As a result, using

available resources with minimal collection of additional genotypes from populations with

no previous genotyping should result in a usable reference panel for breed composition pre-

diction. Validation animals to assess the accuracy of breed composition predictions with

known cross-bred ancestry will be necessary. Especially commercial settings, where cross-

breeding is commonly implemented to obtain market pigs could provide validation animals

with genotypes already available.

In chapter 3 we estimated imputation accuracy from low (GGP Porcine) to high (Porci-
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neSNP60) density SNP arrays. Advances in genotyping technology caused a significant

decrease of the cost associated with sequencing, such that whole genome sequence is a likely

future source of data. Hayes et al. (2009a) noted that accuracy of genomic selection is a

function of the LD between the observed SNP and the QTL, such that accuracy can be

increased through an increase in marker density. If genomic selection is based on sequence,

prediction is no longer limited by the extent of LD between marker and causative polymor-

phism, as the later would be directly observed. As a result, accuracy of genomic selection

based on whole genome sequence is expected to be superior compared to results obtained

from high density SNP (Druet et al., 2013; Meuwissen and Goddard, 2010). In addition,

the currently observed decay in prediction accuracy observed over generations is expected to

significantly decrease when causative polymorphism are directly observed (Meuwissen et al.,

2013). Results from simulation experiments indicate that a 5-10% increase in accuracy of

genomic evaluation can be expected through the use of sequence data (Druet et al., 2013;

Meuwissen and Goddard, 2010), which needs to be further validated in real data. This

advantage appeared especially pronounced for QTL with low allele frequency (Druet et al.,

2013). Inclusion of whole genome sequence will result in a data structure including animals

with low, high, and sequence density SNP, such that genotype imputation will continue to be

an important tool of genomic analysis. Current implementation of genotype imputation in

livestock populations is mainly based on reference panels of haplotypes sampled from within

the population (Badke et al., 2013; Hayes et al., 2012; Wiggans et al., 2011). Accuracy of im-

putation from population specific reference panels appears to be superior to mixed reference

panels at the current marker density and persistence of phase between populations (de Roos

et al., 2009). However, due to the cost of whole genome sequence, whole-sequence reference

haplotypes will likely be sampled across populations, such that the resulting panels will be
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highly admixed (e .g http://www.1000bullgenomes.com/). Genotype imputation in hu-

man populations has shown that imputation in admixed populations from diverse reference

haplotypes can be highly accurate (Howie et al., 2009, 2011). In particular, a subroutine

implemented in Impute v2 sampling reference haplotypes based on a euclidean distance for

each imputation sample, thereby assembling a reference panel of ‘related’ haplotypes was

highly successful (Howie et al., 2011). Differently from human populations effective popula-

tion size in most livestock species is small and detailed pedigrees are available. As a result

across population reference panels can be assembled combining representative samples of

highly influential individuals (Druet et al., 2013) from each sub-population, and combining

pedigree information, such that whole sequence imputation can be based on both linkage

and LD information (e. g. AlphaImpute Hickey et al., 2011).

An initial study investigating the use of whole genome sequence for genomic research in

pigs should aim to address the following issues:

1. Optimal strategy for assembling a reference panel of haplotypes at sequence density.

Sequencing coverage is an important variable affecting the certainty with which heterozygotes

can be called (Druet et al., 2013). However, higher coverage will also lead to a substantial

increase in cost, such that the relation between the number of animals and minimal coverage

should be optimized to allow for a maximal sample size of accurately called haplotypes. Chen

et al. (2013) introduce a design that allows for increased variant detection and genotype

calling even at low coverage through the use of trios instead of unrelated individuals. Using

simulated data, emulating human populations, they found that 30 trios would outperform

90 unrelated individuals in numbers of variants detected for low coverage (1x-2x), but the

effect was reversed as fold coverage increased to 8x (Chen et al., 2013). They attributed this
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difference to the additional familial information available to resolve variants and genotypes at

low coverage in trios (Chen et al., 2013). In chapter 3 we compared reference haplotype panels

consistent of haplotypes derived from a trio design to cost equivalent haplotypes obtained

from unrelated individuals (Ntrio = 64, Nunrelated = 96) and found an advantage in

imputation accuracy using trio based panels as reference only for extremely small reference

panels (N ≤ 32/48). Similarly, this advantage of the trio design when the number of reference

haplotypes was very small is likely a result of the increased phasing accuracy that can be

obtained from a trio design (Marchini et al., 2006). Implementing the concepts of Chen

et al. (2013) and expanding them include other close relatives to increase the number of

variants detected and genotypes called could aid the assembly of whole sequence reference

haplotypes. Exploiting the availability of detailed pedigrees and overall high relatedness

between animals in livestock populations has the potential to facilitate accurate reference

panels derived from cost efficient low coverage whole genome sequence.

2. Implementation of genotype imputation and assessment of strategies to optimally ex-

ploit admixed reference haplotype panels.

Accuracy of imputation within a population can be maximized through the combined use of

pedigree (linkage) and LD information (Hickey et al., 2011). However, as we expect reference

panels for sequence imputation to be highly admixed, a shared pedigree may not be available

or very limited, such that direct exploitation of linkage may prove difficult. Implementation

of algorithms such as Impute that internally assemble a reference panel of ‘related’ individuals

(Howie et al., 2011) may be better suited to exploit admixed reference panels of haplotypes.

One approach to optimize overall accuracy could be an initial imputation based on the

few within population reference haplotypes using a combined linkage and LD algorithm.
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The results of that imputation are then followed by a secondary imputation focusing on

haplotypes that could not be resolved with appropriate certainty using the admixed reference

panel and an algorithm establishing indirect relationships between individuals. In addition,

variables affecting accuracy of imputation such as sequence coverage, MAF, marker location,

and size of the reference panel of haplotypes for high density to sequence imputation should

be assessed.

3. Assess the gain in accuracy of genomic evaluation if prediction is based on whole

genome sequence (imputed) compared to high density SNP.

Simulation studies have projected between 5-10% gain in accuracy (Meuwissen and Goddard,

2010) of genomic evaluation. However, a study by VanRaden et al. (2011) using simulated

ultra high density SNP for genomic prediction in comparison to the widely implemented 50K

SNP panel found only a small gain in accuracy as a function of increased marker density.

They concluded that the size of the training population had a greater impact on improving

prediction accuracy than the tested increase in marker density (VanRaden et al., 2011). In

chapter 4 we evaluated the accuracy of genomic evaluation in a US Yorkshire population using

a training population of approximately 850 animals per fold. Observed significant differences

in accuracy between folds of the cross-validation could indicate that this sample-size was not

large enough to obtain effects invariant of the current sample. Therefore, a simulation study

using the available pedigree and high density genotypes as a basis to obtain realistic ultra

high density genotypes (Hickey and Gorjanc, 2012) could be used to compare the effect of

increased training panel size vs. an increase in marker density in this population. The

possible benefits of genomic evaluation based on whole genome sequence should be weighted

against the additional costs collection of sequence data would incur.
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4. Assess the potential gain of using whole genome sequence for GWAS

GWAS based on sequence data has the potential to directly identify causative polymor-

phisms. This would enable research to focus on understanding the molecular processes in-

volved, instead of focusing on potential candidate genes within a QTL region. However, the

number of parallel tests would further increase, such that an even larger reference population

is likely necessary to provide enough power to allow detection of causative polymorphisms.

Many of these issues could be initially addressed in a simulation study using the geno-

type data and pedigree available from this research to inform the simulation design, using

e. g. the program presented by Hickey and Gorjanc (2012). In addition, if whole genome

sequence is already available for some animals the approach presented in Macleod et al.

(2013) that was utilized by Druet et al. (2013) to implement a simulation with similar ob-

jectives in cattle could further refine the design. Previous results in our own research (not

published) clearly indicate that simple simulation based on the estimated past and current

effective population size using a gene-drop model (Sargolzaei and Schenkel, 2009) will likely

lead to a pattern of LD that poorly represents real data, such that results cannot be extrap-

olated to real data examples. High density genotypes are currently publicly available for

four US pig populations (Badke et al., 2012) and a US commercial population (Cleveland

et al., 2012), while many more research projects have also collected high density genotypes

on various pig-breeds worldwide (e. g. Uimari and Tapio, 2011). In addition, a thorough

pedigree is available for the Yorkshire population utilized in this research. Initial efforts

are underway to collect whole genome sequence on a few select animals in Europe (Martien

Groenen, presentation). Collecting and combining this data should provide a solid base to
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obtain a simulated dataset that is an adequate representation of whole genome sequence

data in swine breeds. The diversity and size of the available data would allow the formation

of a ’simulation training panel’, used to estimate within and across population structure of

LD, time since divergence, as well as size of the ancestral population, and the formation of a

’simulation validation panel’, to which the obtained simulated data could be compared. To

assess the practicality of this design a smaller initial simulation based on solely the Yorkshire

data could use the estimates of r2 from chapter 2 to determine an approximate size of the an-

cestral population and use the available pedigree to obtain simulated high density genotypes

(Hickey and Gorjanc, 2012). Subsequently, the LD structure within the simulated geno-

types, as well as persistence of phase with the observed data of Hampshire, Landrace, and

Duroc can be estimated to assess similarity between the simulated and observed genotypes.

Phenotypes can be simulated based on a varying number of QTL that will be randomly

assigned to markers simulated above. The corresponding substitution effects of QTL could

be sampled from a t-distribution and phenotypes obtained by summing the respective QTL

effect and adding random residuals sampled from a normal distribution. The data released

as part of this study contains EBV, dEBV, and heritabilities for three economically impor-

tant traits in swine. The heritabilities as well as distribution of EBV can be used to inform

the choice of parameters for the simulation of phenotypes with the goal of mimicking the

structure of actual traits. Furthermore, an initial GWAS performed on these traits could

provide an estimate of the number of QTL with large and medium effects likely affecting

each trait, providing a basis for these parameters as well. Obtaining a simulated data set

reflective of the diversity and real structure of future data is important to ensure that results

can be extrapolated to the real data case and used to inform investment decisions for future

research.
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In conclusion, the results presented in this dissertation can directly inform design decisions

for the implementation of genomic evaluation in the US Yorkshire pure-bred population uti-

lized. Furthermore, due to the similarity of LD structure between the four breeds assessed in

chapter 2 we expect estimates of imputation accuracy of and accuracy of genomic evaluation

to be similar, once large enough samples of high density genotypes can be assembled, for

Landrace, Hampshire, and Duroc. Public availability of all data collected and computer

code written for this research facilitates the translation of the methods and design to other

populations. Combining the haplotypes of these four US pure-bred swine populations with

genotypes of other swine populations can facilitate a more detailed assessment of admixture

between populations and breed composition for individual animals. Also, the data can be

used as outlined above to inform simulation studies that will be able to allow a first assess-

ment of the usability of whole genome sequence data for genomic evaluation, especially with

genotype imputation, and genome wide association studies.
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