

A SMALL SCALE REAL TIME

COMPUTER GRAPHICS SYSTEM

Thesis for the Degree of M. S.

MlCHIGAN STATE UNIVERSITY

CHRISTOPHER SCUSSEL

1976

“‘3 '\‘u' /

ABSTRACT

A SMALL SCALE REAL TIME

COMPUTER GRAPHICS SYSTEM

by

Christopher Scussel

With the increasing popularity of graphic dis-

plays as a medium for computer interaction, and with

the advent of the relatively inexpensive small scale

computer, a need for an inexpensive add-on real time

graphics system has developed. A review of current

display technology indicates a lack of availability of

such a system.

This paper describes a system consisting of an

oscilloscope, an analog vector generator, IBM 1800

computer, and a set of FORTRAN compatible user level

subroutines. The system is capable of displaying up to

200 vectors, representing several three dimensional

wire frame objects, and can translate, rotate, deform,

and project them in perspective in real time. The

system is compatible with most modern minicomputers,

and if an oscilloscope is already available, the total

additional cost of hardware for the system is about

thirty dollars.

A SMALL SCALE REAL TIME

COMPUTER GRAPHICS SYSTEM

by

Christopher Scussel

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science

1976

To My Wife and Parents

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor

J. Forsyth, for his time, effort, and very helpful

organizational suggestions during the preparation of

the several drafts of this manuscript. Also, I would

like to thank the other members of my examination

committee, Professors R. Reid, J. Burnett, and

F. LeCureux, for their time, consideration, and sug-

gestions. And finally, I would like to thank Gary

Bergeron, senior in electrical engineering, for con-

structing the prototype vector generator.

iii

TABLE OF CONTENTS

LIST OF FIGURES

INTRODUCTION

1. Current Real Time Display Technology

1.1. Display Devices

1.1. Systems Utilizing Cathode Ray Tube Displays

1. Video Based Systems.

2. Oscilloscope Based Systems

3. High Performance Hardware Systems . . .

Systems Not Utilizing Cathode Ray

Tube Displays.

1. Plasma Panel Displays . .

2. Light Emitting Diode Matrices

3. Liquid Crystal Displays . .

Conclusions

Vector Generation.

Digital Vector Generation Techniques

. Binary Rate Multipliers . . .

. Digital Differential Analyzers .

. Integer-Scaled Proportioning. .

. Conclusions

Analog Vector Generation Techniques

. Exponential Techniques. . . .

. Interpolation Techniques .

. Integration Techniques. .

. Conclusions

Conclusions

Display Controller

. Display Controller Separate From Comput

. Computer As Display Controller

(Software Display Controller) . . .

. Conclusions

Conclusions.k
w

w
w
w
w
w
w
w
m
n
w
w
w
w
w
w
w
H
H
H

H
H
H
H

H
p

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

H
H
H
H

iv

Page

Page

2. The Prototype System 32

2.1. Display Device 32

2.2. Vector Generator. 33

2.3. Display Controller 36

2.4. Summary. 37

3. The Prototype Software System 39

3.1. User Level Routines. 41

3.1.1. Display Control 41

3.1.1.1. Activate Refresh-~VGON 41

3.1.1.2. Deactivate Refresh--VG¢FF 42

3.1.1.3. Erase Screen--ERASE 42

3.1.1.4. Reset System--VGEND 42

3.1.2. Object Generation. 43

3.1.2.1. Point Generation--P¢INT 43

3.1.2.2. Vector Definition--VECTR. 44

3.1.3. Object Manipulation 45

3.1.3.1. Object Positioning And Orientation--¢BP¢S . 45

3.1.3.2. Individual Point Repositioning--PNTMV . . 46

3.1.3.3. Display Buffer Update--UPDAT 47

3.1.4. Example Of Software Use. 48

3.2. Transformation Software 51

3.2.1. Rotation. 52

3.2.2. Translation. 56

3.2.3. Perspective Projection 56

3.2.4. Concatenation of Transformations. 57

3.2.5. Transformation Simplification. 59

3.2.6. Transform Limitations 60

4. Summary 62

Appendix--Listing of Prototype Software System. . . 80

LISTS OF REFERENCES. 81

LIST OF FIGURES

Figure Page

1. RC Circuit and Waveforms 22

2. Integrator Vector Generator 26

3. Prototype System Vector Generator 34

4. Software Overview 40

5. Example of Prototype System Software Use. . . 49

vi

INTRODUCTION

With the increasing popularity of graphic dis-

plays as a medium for computer interaction, and with

the advent of the relatively inexpensive small scale

computer, a need for an inexpensive add-on real time

graphics system has developed. A review of current

display technology indicates a lack of availability of

such systems. The purpose of this paper is to describe

an inexpensive stand-alone graphics system, designed

around a typical minicomputer. The system consists of

a display processor, display software, a hardware vec-

tor generator, and a display device. To help attain

the cost objective, the display processor is actually

the minicomputer, which shares its time between dis-

play processing, display refreshing, and normal

(non-display) processing. The display software allows

apparently continuous transformations on up to two

hundred vectors (typically) in three space, including

rotation and perspective, without requiring floating

point hardware, thus attaining the real time objective.

The vector generator is a small device consisting of

operational amplifiers and solid state switches, and

the display device is an unmodified laboratory oscil-

losc0pe. Since oscilloscopes are generally available

at minicomputer installations, the additional hardware

cost of the system is quite low.

The system is designed to provide the minicom-

puter user with small scale real time interactive

graphical capability, through the use of a set of

FORTRAN-compatible subroutines for generating and

manipulating wire-frame representations of objects.

A prototype of this system has been assembled, using

an IBM 1800 processor-controller as the minicomputer,

a low performance vector generator (total component

cost about thirty dollars), an object oriented software

system, and a laboratory oscilloscope associated with

the IBM 1800 installation. This system, hereafter

referred to as "the prototype system," is capable of

displaying multiple wire-frame objects undergoing

distinct rotational, translational, deformational, and

perspective transformations, in real time.

This paper is divided into three sections: a

review of current real time display technology, a des-

cription of the prototype system, and an explanation

of the prototype system software.

L

1. Current Real Time Display Technology

Even though real time graphics systems range

from rudimentary point drawing systems to extremely

expensive systems capable of generating images of shaded

polyhedral objects, all graphics systems can be broken

down into three basic parts: the display device, the

display generator, and the display controller. A small

scale system designed for real time operation cannot

currently hope to achieve a shaded image, so the best

that can be hOped for is line drawing capability. Thus,

the display generator is actually a line, or vector,

generator.

These three divisions are discussed below, and

the best candidates for a small scale real time gra-

phics system are selected.

1.1. Display Devices

The cathode ray tube has been the traditional

choice for electrovisual systems for many years, and

there are a number of ways in which it can be used in

a graphics system. Also, new forms of display devices

are beginning to emerge from the laboratory, such as

plasma panels and liquid crystal displays. Since the

choice of display device is crucial to the design of

the rest of the system, it is logical to begin with

an examination of the devices available.

1.1.1. Systems Utilizing Cathode Ray Tube Displays

1.1.1.1. Video Based Systems

Video devices utilize a raster scanned cathode

ray tube, similar to a television monitor. Some sys-

tems are designed to take advantage of this similarity

by using standard television format video signals to

drive the display. This enables such systems to use

a television monitor as a display device, making large

screen and multiple displays readily available, as

well as inexpensive.

The raster scan technique continually retraces

the screen in order to maintain the image, and so the

data comprising the image must be constantly resupplied

to the display. This may demand excessive data rates

from the computer. As an example, consider a display

with about 500 scan lines.and as many points per line,

where each point may be intensified or unintensified,

and suppose thirty frames per second are displayed.

This is similar to an ordinary television monitor,

except that such a monitor has many more than just two

intensity levels. The specified resolution generates

about 250,000 points for which intensity information

must be sent to the display thirty times per second.

Even though this information amounts to only one bit

per point, the required data rate is in excess of

7,000,000 bits per second, which is too fast for the

computer to provide directly unless it is doing little

more than refreshing the display.

Because of the excessive demand upon the com-

puter if it is driving the display directly, a buffer

memory is generally inserted between the two. This

shifts the high data rate to being between the display

and the buffer, and allows the computer to spend most

of its time performing display computations instead

of refreshing the display. Also, the computer need

transmit to the buffer only those points which have

changed state (dark to light or vice versa) since the

last frame. This results in a considerable decrease

in the amount of data transmitted, especially in the

case of line drawing or wire frame displays.

The buffer memory is comprised of integrated

circuits, either random access memories or shift registers.

While shift registers are inexpensive and require very

simple control circuitry, the average time for access

to a given point is one half of the time required to

refresh the display. In the example given above, this

is 0.0167 seconds, which is far too great to be tolerated.

Thus, shift register buffer memory is generally limited

to applications in which the display changes relatively

infrequently, and so the computer can afford to access

all the points of the screen sequentially in one frame.

Random access memories completely circumvent this

problem, although with increased cost and controller

complexity (in particular, the computer can be allowed

memory access only between accesses by the display).

Random access buffer memories are utilized in several

display systems designed specifically for use with

minicomputers having a sixteen bit word size and video

monitors.R1’ R2 These devices provide 256 by 256

resolution, yielding a one to one correspondence between

addressable display points and all possible sixteen

bit words. Such a system is not suitable for real

time applications, as the computer must generate lines

by accessing each point of the line, and so each line

may require on the order of a millisecond to be formed.

1.1.1.2. Oscilloscope Based Systems

Recently a number of display interfaces have

been marketed for use with a laboratory oscilloscope

as the actual display device. The simplest of these

interfaces is a point plotter, which is supplied with

points, in the form of digital coordinate pairs, by

the computer.R3 After entering a coordinate pair into

its single point buffer, the coordinates are converted

into voltages by a pair of digital to analog converters

and the beam of the oscilloscope is deflected to the

desired point, and that point is illuminated. The

computer must draw lines as a series of points, and

must periodically redraw the image if it is to remain

on the screen.

More sophisticated devices combine point plot-

ting capability with a refresh buffer and a vector

generator, so that the oscilloscope display may be

maintained without the attention of the computer.R4

The vector generator vastly lowers the required

computer-to-display data rate and the refresh memory

size, if the images to be produced consist mainly of

line segments. Generally, the refresh memory cannot

be accessed by the computer, and thus the refresh

memory must be completely cleared and reloaded in

order to make the slightest change in the display

(short of the addition of new line segments). This

is a property common to most display devices which

maintain refresh memory external to the computer ser-

viced by the display. The concept of "Shared memory"

for the computer-display interface has evolved to avoid

this difficulty (see section 2.3).

1.1.1.3. High Performance Hardware Systems

There are a number of commercially available

graphics systems which rely on fast special-purpose

hardware to maintain and transform the display on a

cathode ray tube.R5' R6 Such hardware usually includes

circuitry for rapidly performing matrix multiplication,

in order to facilitate translation, rotation, and per-

spective transformations. At least one system contains

not only this but also hardware for hidden surface

elimination and smooth shading of polyhedral objects.R8

This system is fast enough that objects consisting of

several hundred triangular faces may be displayed with

shading and transformed in real time. Unfortunately,

this capability is prohibitively expensive to all but

the largest computer graphics laboratories.

1.1.2. Systems Not Utilizing Cathode Ray Tube Displays

The cathode ray tube is far from ideal as an

electrovisual interface. It is bulky, requires unwieldy

voltages to accelerate and deflect its electron beam,

can smear moving images through phosphor persistence,

may be damaged by overly bright images, and is poten-

tially dangerous because of the risk of implosion.

Several alternative devices have been proposed which

avoid some of these problems: the plasma panel, light

emitting diode matrices, and liquid crystal displays.

Of these devices only the plasma panel is currently

commercially available, while the other two are still

undergoing development.

1.1.2.1. Plasma Panel Displays

The plasma panel is a flat, rectangular enclo—

sure containing 1ow pressure gas, which may be ionized

by applying a voltage across electrodes on opposite

sides of the device. The electrodes are arranged

vertically on one side, and horizontally on the other,

so that the gas may be made to ionize, and thus glow,

in a small, discrete point, by energizing one vertical

and one horizontal electrode. By exploiting the

difference between the sustaining and extinguishing

voltages of the gas, the panel can provide its own

memory, and thus maintain an image with neither com-

puter intervention nor external memory hardware. This

does not provide for gray scale, although it has been

shown that several stable ionized states of the gas

may be used to provide different intensities, but this

is still experimental.B1 The plasma panel display

suffers from the same data manipulation problems as

all the non-vector displays, namely, that a large amount

of information must be passed to the display in order

to move some part of the image. This can become a

serious problem in real time situations.

Plasma panel displays have just recently become

commercially available for use with small computers,

although their resolution (about sixty points per inch)

and size (about nine inches square) somewhat limits

their usefulness.R7' R9

10

1.1.2.2. Light Emitting Diode Matrices

These displays are constructed from subarrays

of integrated light emitting diodes. Each individual

diode is addressable in a manner similar to that of

a word in a plane of random access memory: by selecting

the row and column containing the desired diode. Light

emitting diodes respond to changes in current very

rapidly (within a few nanoseconds), and so smearing

is not a problem. Since they have no inherent memory

the display must be continually refreshed by the com-

puter or external circuitry. Even so, this task is

less difficult than with cathode ray tube systems,

because light emitting diodes are low voltage devices

and thus do not require high voltage drive circuitry.

Currently the cost of this type of display

is very high, even though its resolution is poor (at best

about fifty points per inch). This situation will

undoubtedly improve as integrated circuit technology

continues to advance.

1.1.2.3. Liquid Crystal Displays

Liquid crystal displays are based upon the

fact that certain chemicals change their light scat-

tering properties in response to an electric field.

A flat, rectangular cell with electrodes on the front

and back (similar to the plasma panel) containing

liquid crystal material can be made to selectively

ll

scatter or transmit incident light at each of the cells

formed by the matrix of electrodes. Note that the

display does not generate any light of its own; thus,

constrast is improved, rather than degraded, by high

ambient light conditions. By viewing scattered light,

a conventional display is presented. By viewing trans-

mitted light, the display becomes projecting, and thus

may generate very large images.

Liquid crystal displays are capable of inher-

ent memory, and share most of the data rate problems

of point addressable displays. In addition, they are

quite slow to respond to changes in the electric field,

and thus smear can be a severe problem for rapidly

moving images. Resolution is approaching one hundred

points per inch, but cost reliability are still major

problems. Further research should eliminate most of

these difficulties.

1.1.3. Conclusions

Cathode ray tube displays are the best selec-

tion for a small scale graphics system for two reasons.

First, their technology is well developed, allowing

relatively low cost through mass production and proven

driving circuitry design. Second, it can be used to

directly display lines, as opposed to the quantization

inherent in raster and matrix displays. This is a

12

result of the fact the cathode ray tube is an analog

device, and thus not limited to a fixed set of digital

inputs.

The benefits of both advantages may be had by

using an oscilloscope as the display device. Aside

from its self—contained power supplies and deflection

amplifier circuitry, the oscilloscope often has the

additional feature of being readily available at a

minicomputer installation, perhaps in connection with

maintainance of the computer and its peripheral equip-

ment.

Since the oscilloscope may be used in several

ways to generate images, it must be decided which

technique is appropriate for the desired graphics

system. In the small scale system considered here,

the images are to consist entirely of lines (or vectors),

so that the image generation problem reduces to one of

vector generation.

1.2. Vector Generation

Because many real time computer graphics

applications require lines to be drawn as part of the

completed image, it is worthwhile to have vector gener-

ation capability in the display hardware. Points can

then be generated by treating them as zero length

vectors, and thus a vector generator is sufficient to

generate most desired images. The vector generator

13

has no processing power, and simply draws a line seg—

ment between two specified endpoints. Also, the

vector generator has no refresh memory, and thus the

task of refreshing the display is left to the display

controller.

In an oscilloscope based graphics system,

vectors may be generated by either digital or analog

circuitry. Analog circuitry has the advantage that

it can be connected directly to the oscilloscOpe,

whereas digital circuitry requires digital to analog

converters in order to drive the oscilloscope. Digital

techniques will be treated first, then analog techniques.

1.2.1. Digital Vector Generation Techniques

Digital techniques generate a vector as a

sequence of points, and thus if the vectors comprising

the image are to be drawn fast enough to avoid flicker,

the hardware must generate the points very rapidly

indeed. For example, in a system designed to display

up to two hundred vectors with an average of two

hundred points each, and refresh the display thirty

time per second, points must be generated at a rate

of more than 1,000,000 per second. While this is not

excessive, it does require careful circuit design and

a simple sequential algorithm in order to be practical.

14

Three digital techniques are treated here:

binary rate multipliers, digital differential analyzers,

and integer-scaled proportioning.

1.2.1.1. Binary Rate MultipliersBl

An n-bit binary rate multiplier accepts as

input an n-bit number m and a sequence of clock pulses,

and during its 2n clock pulse period generates m more

or less regularly spaced pulses. Thus, by using two

binary rate multipliers with counters to accumulate

their output pulses, any given vector can be approxi-

mated. The algorithm and circuitry involved for the

binary rate multiplier is quite simple, and in fact

high speed implementations are available as a single

integrated circuit. Its major disadvantage is that

the m output pulses are not sufficiently equally spaced

in time to draw straight vectors, resulting in lines

which vary in intensity and direction along their length.

Note that since each circuit will go through one com-

plete 2n clock pulse cycle for each vector drawn, each

vector requires 2n clock pulses to be generated, regard-

less of its length and direction. While this tends

to simplify the display controller, it lowers the number

of vectors which may be displayed without flicker.

1.2.1.2. Digital Differential AnalyzersBl

The digital differential analyzer type of

vector generator seeks to determine the set of points

15

out of which to form the desired line segment by

approximating the solution to the differential equa-

tion which determines the line. This differential

equation is

where AX and AY are the X and Y coordinate differences

between the two endpoints of the line. There are various

forms of digital differential analyzer algorithms, all

of which are incremental in nature. That is, the next

step in the discrete solution is found by incrementing

either the X or Y coordinate (or both) of the previous

step. This means that a new point is generated for

each clock pulse, and so the desired vector may be

generated much more quickly than with the binary rate

multiplier form of vector generator. However, all

forms of the digital differential analyzer require

division to determine one or more of the parameters

involved in the algorithm. This division can be per-

formed in the vector generator, but this adds consider-

ably to the cost of the circuitry. On the other hand,

if the division is performed by the computer, it is

time consuming, and thus reduces the number of vectors

which can be displayed during one refresh cycle. The

division required by this type of vector generator is

its main fault. In some algorithms, the parameters

16

are set up so that the division operation becomes a

matter of shifting, after forcing the divisor (an

estimate of vector length) to be a power of two.

While this avoids the division, it causes some points

to be displayed more than once and displays some points

which should not be displayed.

1.2.1.3. Integer-Scaled Proportioning

This method takes advantage of the fact that

since the slope of any vector to be displayed is rational,

the parameters of the vector can be scaled up by an

integer (namely, the product of the X and Y differences

of the vector endpoints) in order to make all of the

parameters integral. Explicit multiplication is not

necessary, and so this method does not succumb to arith-

metic difficulties, as does the digital differential

analyzer. Since this type of vector generator is not

treated in (B1), it will be presented here in somewhat

more detail than the other two types of digital vector

generators.

This method is similar to the binary rate mul-

tiplier technique, in that it generates pulses which

are fed to counters, and the counters keep track of

the coordinates of the point which is to be displayed.

The method is iterative, and either one or both of the

counters is incremented during each iteration. A pair

of registers keeps track of which of the counters is

17

to be incremented. These registers maintain a scaled

version of the progress made in drawing the line seg-

ment, with the scaling such that in order for the

generated line segment to be as close as possible to

the desired line segment, the two registers should be

as close to being equal as possible. The desired

scaling results if, during each iteration, the counter

corresponding to the smaller of the two registers is

incremented, and that register is increased by the

component of the desired line segment along the other

coordinate. For example, if the X register is smaller,

the X counter is incremented, and the X register is

increased by the difference of the Y coordinates of

the endpoints of the desired line segments. If the

two registers are equal, then both counters are incre-

mented and both registers are increased.

The algorithm is defined in F¢RTRAN below,

where X and Y are the counters and XC and YC are the

registers. Notice that the coordinate differences

DXl and DYl are actually the differences plus one, and

the registers are initially these differences rather

than zero. This causes the algorithm to work for

horizonatal and vertical line segments, without

additional logic.

18

SUBROUTINE DRAW(XA,YA,XB,YB)

IMPLICIT INTEGER (A-Z)

DXl = XB-XA + 1

DYl = YB-YA + l

XC = DYl

YC = DXl

X = XA

Y = YA

CALL PLOT(X,Y)

l IF(X.EQ.XB .AND. Y.EQ.YB) RETURN

IF(XC-YC)2,3,4

2 X = X + 1

XC = XC + DYl

CALL PLOT(X,Y)

GO TO 1

3 X = x + 1

Y = Y + l

XC = XC + DYl

YC = YC + DXl

CALL PLOT(X,Y)

GO TO 1

4 Y = Y + 1

YC = YC + DXl

CALL PLOT(X,Y)

GO TO 1

END

In the above subroutine, (XA,YA) and (XB,YB) are the

endpoints of the vector to be drawn, with XBZXA and

YBZYA, and PLOT intensifies the given point on the

screen. By keeping the quantities X and Y in up/down

counters, the hardware can easily handle those cases

where XB<XA or YB<YA. Note that the algorithm involves

no multiplications or divisions, and generates a new

point during each iteration. It can be implemented

inexpensively with integrated circuitry, and is quite

fast. An additional feature of this particular method

is that the lines which are generated are symmetric

from endpoint to endpoint and balanced around the line

being approximated. This means that, aside from

19

generating visually pleasing lines, no extra points

will be intensified if a line is retraced opposite

its original direction.

1.2.1.4. Conclusions

Any of the three types of digital vector gen-

erators presented here are suitable for a low cost

graphics system. However, the integer-scaled propor-

tioning technique yields the best lines, far better

than those of the binary rate multiplier technique,

and completely avoids the divisions of the digital

differential analyzer methods. In addition, the

proportioning technique can elegantly handle any

combination of vector endpoints, whereas some of the

digital differential analyzer methods must split the

possibilities into several cases, which may complicate

the controller. Thus, the integer-scaled proportioning

technique is probable the best suited for a digital

vector generator in a small scale graphics system.

1.2.2. Analog Vector Generation Techniques

In the past analog generators have been dif-

ficult to work with and expensive, since their proper

and accurate operation depended upon careful adjust-

ment of complex circuitry. More recently, improvements

in integrated and hybrid circuit technology have

considerably reduced both the complexity and sensitivity

of analog circuitry, and so analog vector generators

20

have become more practical. This is fortunate, because

analog vector generators are inherently much faster

than digital ones, and can require less control cir-

cuitry. And, of course, analog generators actually

draw lines, as opposed to a series of points.

There are many forms of analog vector genera-

tions, most of which fall into three basic classes:

exponential, interpolation, and integration.

1.2.2.1. Exponential TechniquesBl

The exponential methods are based on the fact

that the charging curves of resistor-capacitor (RC)

circuits are all scale models of each other. Thus,

if simultaneous (but possibly unequal in magnitude)

voltage steps are input to identical RC circuits

(initially in equilibrium), the output voltages will

be such that a line segment will result, if they are

plotted parametrically. If the input voltage function

is

V. = Va for t<0
in

Vb for tzo

then the output voltage function of an RC circuit

with this input is

21

V = V for t<0
out a

Va + (Vb - Va)(l - exp(-t/RC)) for tZO .

Figure 1 shows this relationship.

This generator suffers from two basic problems:

the generated line segment does not attain its endpoint,

and the intensity of each vector varies along its

length. As can be seen from the output voltage func-

tion above, the "final" voltage value Vb is never

achieved, only approached as t approaches infinity.

Thus, a vector will be 99 percent complete when t is

4.61RC, but will still never attain its endpoint.

This problem can be somewhat alleviated by reducing

the resistances as each vector nears its endpoint,

and so increasing the rate at which the endpoint is

approached. This does not result in attainment of the

endpoint in a finite time unless the resistance values

are decreased to zero, but if the values become reason-

ably small, the endpoint is attained, practically

speaking, within an acceptably short period of time.

Correcting the varying intensity requires changing

the beam current to compensate for the changing beam

velocity across the screen. Since the function relat-

ing beam current and screen intensity is highly

nonlinear, adequate compensation is difficult to

achieve. One advantage of the technique is its freedom

22

R

V". I V001

lo

Vm

Va

’ 1

VA

V007

v3 ... _. _ _ ________

‘ I #p t

RC ZRC

VA

FIGURE 1. RC CIRCUIT AND WAVEFORMS

23

from drift; the relative error of the vector endpoints

does not increase between the first and last vectors

drawn during each frame.

1.2.2.2. Interpolation TechniquesB1

Interpolation schemes form a line segment by

taking a weighted average of the endpoints of the

segment, as the weights vary linearly between zero

and one:

V =Xa+W(Xb-Xa)

V =Ya+W(Yb-Ya) .

The particular form of the equations above demonstrates

why this is known as an interpolation technique. The

basic problem with this type of technique is keeping

the sum of the weights unity, or, in the equations

above, accurately performing the multiplication. This

difficulty may be circumvented by designing the vector

generator around a modified multiplying digital to

analog converter. However, the circuitry involved

in this approach is somewhat more complicated and crit-

ical than that of ordinary digital to analog converters.

Advantages of this technique are lack of drift

and uniform intensity along the length of each vector.

24

1.2.2.3. Integration TechniquesB1

Integration techniques involve the use of

operational amplifiers with capacitive feedback in

order to generate ramps with slopes prOportional to

the input voltages. When the output voltages are

plotted against each other on the display screen, a

straight line results. The orientation and length

of the line can be controlled by varying the integra-

tor time constants, the input voltages, or the

integration times.

An integrator with variable time constant

requires an electronically variable resistor or

capacitor, which are generally difficult to control

with the necessary accuracy. Also, changing the time

constants of the integrators changes the rate at which

the beam is swept across the screen, and thus the

intensity of the generated vectors will vary with their

length and orientation.

All vectors may be made to be of equal inten-

sity, without resorting to modulation of beam current,

if the beam sweep speed is held constant. Integration

time is then proportional to vector length, and the

integrator input voltages are pr0portional to the

components of the unit vector in the direction of the

desired vector. Notice that this essentially requires

the polar form of the vector, and that the integration

25

time be variable, but highly accurate (on the order

of one microsecond). While the required timing can

be performed in the vector generator hardware without

difficulty, the polar coordinate conversion is diffi-

cult and potentially time consuming whether done in

the vector generator, display controller, or the

computer itself.

Leaving the time constants and integration

time unchanged and modifying only the input voltages

is easily done, and has several advantages over these

other techniques. The ideal integrator transfer func-

tion is

Vout = -1/(RC) f Vin dt

)and thus if the initial point of a vector is (Xa,Ya

and the final point is (Xb,Yb) then the integrator

inputs are proportional to Xb-Xa and Yb—Ya; further,

the integrator outputs are initially Xa and Ya' and

change linearly to Xb and Yb. This is illustrated in

Figure 2. Since the differences Xb-Xa and Y -Ya can
b

be positive or negative, bipolar voltages must be

applied to the integrator inputs. The integration

time is constant, so each vector requires the same

amount of time to be drawn, and if the beam current

is constant, long vectors will be dimmer than short

26

F/ AV001

DISPLAY

7'3 <9

r
—
w

I
3
3

FIGURE 2. INTEGRATOR VECTOR GENERATOR

27

vectors. Even so, since each vector is traced at a

constant speed, it will be of constant intensity along

its length.

The main problem with the integrator type of

analog vector generator is integrator inaccuracy.

This stems mostly from feedback capacitor loading and

leakage, and operational amplifier output offset.

Capacitor loading is caused by the finite input impe-

dance of the operational amplifier draining the charge

of the capacitor, and capacitor leakage is due to the

imperfect capacitor dielectric. Operational amplifier

output offset is due to electrical imbalance within

the amplifier, and causes the output to be at a nonzero

voltage, even if the amplifier inputs are grounded.

The effect of capacitor loading and leakage is to

displace the vector endpoints and distort the vectors,

so that they appear to bend, in severe cases. These

effects tend to be about equally bad for each vector

in a given image. However, output offset is constantly

integrated by the integrators, and always has the same

sign, and thus accumulates, making each successive

vector endpoint more in error than the previous one.

Feedback techniques have been developed which minimize

these problems.Bl

28

1.2.2.4. Conclusions

The integration type vector generator is the

best suited analog technique for three reasons. First,

unlike the exponential method, the vectors it generates

have uniform intensity along their lengths. This is

especially useful with three dimensional displays,

since false depth cues are created by vectors which

grow dim at one end. Second, both the generator and

controller circuitry are simple, compared to that

required for the interpolation techniques. And third,

the inaccuracies of the integration method are readily

avoided for the short periods of time involved in gen-

erating a small scale display.

1.2.3. Conclusions

Analog vector generator techniques, particularly

the integration method mentioned above, can be satis-

factorily implemented in a small scale graphics system

at a lower cost than comparable digital generators.

This is due to the comparative complexity of the

controller required in the digital systems.

Also, a low cost vector generator will tend

to have poor resolution, since lowering resolution is

one way to lower cost. In an analog vector generator,

this affects only the possible positions of the vector

endpoints; the vectors themselves will still be line

segments. In a digital vector generator, lower

29

resolution implies coarser, less pleasing discrete

approximations to the desired vectors.

1.3. Display Controller

It is the responsibility of the display con-

troller to direct the display generation hardware, in

order to provide the desired images. The controller

is not always identifiable in a graphics system, since

it may be distributed in various other parts of the

system.

1.3.1 Display Controller Separate From Computer

The key feature of a display controller which

is separate from the computer is that the display can

be maintained on the screen without the intervention

of the computer. If the controller is sufficiently

powerful, a dynamic image, with rotating objects, for

example, can be displayed without the attention of the

computer. For a small scale system this is clearly

impractical, and so the controller is limited to the

ability to maintain only static displays.

If the controller is to maintain an image with-

out computer intervention, then it must have some type

of memory, either of its own or shared with the computer.

If the controller has its own memory, then the computer

must have some access to it, possibly via the controller

itself, in order to modify the display. If the computer

shares its own memory with the controller, then the

30

computer can expeditiously change the "controller

memory" in any desired manner.B3' B4

1.3.2. Computer As Display Controller (Software Display

Controller)

If the computer is fast enough and its software

efficiently coded, it is possible to have the computer

directly control the display generation circuitry.

This saves the display system the extra hardware and

expense of a separate controller, and gives the system

some extra versatility, in that the display controller

is actually software, and can be recoded to serve

specific needs. However, the computer must spend some

of its time maintaining the display, even if it is

not changing, and this essentially lowers the computer

power available to the process (such as a simulation)

which is being displayed by the system. As the com-

plexity of the image displayed rises, a greater propor-

tion of time is spent refreshing the display, until

the display begins to flicker or there is no compute

time left for the process being displayed.

1.3.3. Conclusions

A software display controller is preferable

in a small scale system. Such a controller involves

no extra hardware cost, and can be modified easily so

that it performs efficiently with the type of problem

being investigated with the system. Although this type

of

to

SC

31

of controller can cause available processing power

to decrease, this is not a serious problem in a small

scale system, since overly complex images are not

being attempted.

1.4. Conclusions

These considerations lead to the following

graphics system: display controller incorporated into

the computer, integrator type analog vector generator,

and an oscillosc0pe as the display device. Since a

suitable oscilloscope is generally associated with

a small computer installation, and an integrator vec-

tor generator is fairly simple, such a system meets

the low cost objective.

2. The Prototype System

The prototype system is a small scale real

time computer graphics system, composed of a labora-

tory oscilloscope, an inexpensive analog vector

generator, a software display controller resident in

an IBM 1800 computer, and FORTRAN compatible user level

routines for the IBM 1800. The first three of these

components are discussed below, and the last is dis-

cussed in the third chapter.

2.1. Display Device

An oscillosc0pe was chosen as the display device

because a small computer installation will often have

one already available, thus avoiding the costs involved

in purchasing some other type of display. Also, nearly

any modern oscilloscOpe will suffice, since the require-

ments of the system are quite moderate. If the system

is to display two hundred vectors in one sixtieth of

a second (thus refreshing at a rate of thirty Hertz

with 50 percent duty cycle), only 12,000 vectors per

second are being displayed. An oscilloscope with a

one megahertz bandwidth can easily reproduce the waveforms

required for such a display.

32

33

The small size of the oscilloscope screen is

potentially a disadvantage to a graphics system, since

the details of a complex image may be obscured. However,

this is unlikely to happen in a small scale graphics

system, since the displays cannot become excessively

complicated. Also, the beam can be deflected far off

the visible part of the screen with no:LLleffect other

than loss of time, which cannot be serious because of

the image simplicity. This relieves the system of the

burden of clipping the display, and leads to a substan-

tial reduction in display computation time.

2.2 Vector Generator

The prototype system vector generator is of

the analog integrator type. The problems inherent in

this type of vector generator have been overcome to

the point that performance is quite good, and yet cost

is held to a minimum.

A circuit diagram of the vector generator is

shown in Figure 3. Polystyrene dielectric capacitors

and field-effect transistor input operational ampli-

fiers are used to minimize capacitor leakage and

loading. Output offset effects are neutralized during

each refresh cycle by a trimming potentiometer connected

to the integrator summing junctions, which is adjusted

by hand while watching the display for best results.

This simple adjustment need be performed only rarely.

34

RESET

<--------- ‘T‘ —————————— “I

TO DISPLAY : I

CONTROLLER , '

: I112 IC2

<----- -I I
HOLD/RUN , :

' I
: I 8200pf

1/2 IC3 I I

’ ' ' +10v
xb—xa I 3.75K

I—_. 1/2 ICZ

X 00190?

.I TO SCOPE

: -: 43 K —10v

— 10 v +10v

10 K 10 K 10K

OFFSET

TRIM

IC1--MOTOROLA MC4580P

IC2,3"NATIONAL LHOO14

X CIRCUIT (Y CIRCUIT IDENTICAL)

FIGURE 3. PROTOTYPE SYSTEM VECTOR GENERATOR

35

Output offset if prevented from accumulating by the

solid state "RESET" switch, which resets the integra-

tors to zero volts output between refresh cycles, under

direction of the display controller. Since each refresh

cycle starts from this reset state, the image is quite

stable on the screen.

One of the most crucial parts of the vector

generator design is the solid state switch on the input

of each integrator. This is the "HOLD/RUN" switch,

which grounds the integrator inputs between the genera-

tion of successive vectors. During this time, the

digital to analog converters which provide the voltages

for the integrator inputs are receiving new digital

values from the display controller. The individual

bit switches in the digital to analog converters do

not all respond in the same length of time, so the

analog outputs make several transitions, instead of

a single one, as the new value is converted. This

results in impulse-like voltage spikes ("glitches"),

which when integrated displace the endpoints of consecu-

tive vectors. This cannot be tolerated, so the display

controller switches the integrator inputs from the

converter outputs to ground, whenever a new value is

being converted. While eliminating the glitch problem,

this technique causes the endpoints of each vector to

be somewhat brighter than the vector itself, since the

36

beam dwells there before beginning the next vector.

Generally this effect is not displeasing.

While on the subject of vector intensity, it

should be noted that although vector intensity is

inversely related to vector length, the oscillosc0pe

screen phosphor quickly saturates on the moderately

short vectors, thus preventing too wide a range of

vector intensities.

2.3. Display Controller

The prototype system display controller is

actually a refresh program in the IBM 1800 computer.

The user level routines maintain a list of X and Y

screen coordinate differences and beam controls, called

the refresh buffer, and periodically this list is traced

by the refresh program and transmitted to the vector

generator. A refresh cycle is begun whenever a timer

interrupts the computer and forces execution of the

refresh program. As a refresh cycle begins, the pro-

gram turns the "RESET" control line off, enabling the

vector generator. It then begins sending pairs of

X and Y screen coordinate differences to the digital

to analog converters, while sending the beam control

to the oscilloscope. While each pair of coordinates

is being converted, the program sets the "HOLD/RUN"

line to "HOLD", to avoid integrating converter glitches,

and then to "RUN" in order to draw the vector. At

37

the end of the refresh cycle, the beam control is

turned off, and the "RESET" line is turned on. Then,

the program sets the timer, and returns to the program

which was interrupted by the start of the refresh cycle.

Thus the time between the end of one refresh

cycle and the beginning of the next is constant. This

results in a lower refresh rate for complicated displays,

but prevents the system from stalling by spending all

of its time on display refreshing. If the lower limit

of refresh rate is R Hertz, and each vector requires

V seconds to be displayed, then the constant time above

is l/(2R), and the number of vectors which can be

displayed l/(2RV), assuming the computer spends half

its time refreshing the display, at most. For the

prototype system, V is about 200 microseconds, and so

about 167 vectors can be refreshed at fifteen Hertz,

while 50 percent of the processing power of the com-

puter is available for other computations. The IBM

1800 used in the prototype system is quite slow, with

a four microsecond cycle time. Modern minicomputers

are at least four times faster, and so a corresponding

performance improvement should be noted if such a

machine were used.

2.4. Summary

The combination of oscilloscope, integrator

type analog vector generator, and software display

38

controller provides for the display of 167 vectors

fifteen times per second while consuming only half of

the available processing time, even on a slow computer.

This is accomplished with a total hardware cost of

about thirty dollars, assuming the availability of an

oscilloscope.

3. The Prototype Software System

A set of FORTRAN compatible subroutines acts

as the interface between the prototype system and the

user of the system. These routines are object oriented,

that is, they are designed to facilitate the generation

and manipulation of wire frame skeleton objects in

3-space. A set of objects is defined by the user as

a collection of point sets, along with a set of vec-

tors which interconnect these points. The software

maintains a list of the points, and the object to which

they belong, and a list of vectors which constitute

a path for drawing the set of objects (note that some

of the vectors are dark vectors, representing a move

as Opposed to a draw). It also maintains a table of

object transformation parameters, specifying X, Y, and

z axis translations and rotations. Whenever the user

calls for a display update, each point is transformed

according to the parameters specified for the object

to which the point belongs, and a new image is traced

into the refresh buffer. This is diagramed in Figure 4.

The first section of this chapter is devoted

to a description of the user level routines and their

39

4O

SE OBJECT

VECTOR ” '1 PARAMETER

DEFINITION I '"°°"“' I SPECIFICATION

ROUTINE I ROUTINE

(VECTRI (655$) “'—

PO'NT INDIVIDUAL

DEFINITION POINT

ROUTINE REPOSITIONING

(pawn ROUTINE

(PNTMV)

V L V1 _ II

VECTOR POINT PARAMETER

BUFFER BUFFER BUFFER

I. ------------ ‘1

, ROTATION I

' TRANSLATION '

DISPLAY ' I

UPDATE I PERSPECTIVE l

(UPDAT) I I

I I '

I , _

' SCREEN I

I COORDINATE I

| POINT DUFFER I

.L > . I

l REFRESH |

I BUFFER

GENERATOR I

l ROUTINE I

l

, I

________ J I I I I

<
'
—

 :3353é3: I‘ 255:3: ILII’ZR'E‘? I

FIGURE 4. SOFTWARE OVERVIEW

41

use. The second section is a description of the

Operation of the transformation software.

3.1. User Level Routines

These routines are primarily designed to show

how the basic transformation and display software may

be interfaced to user-oriented software, and to show

that the transformation software is capable of func-

tioning in real time (as Csuri notes, "Too often systems

which are the result of a research experiment in hard-

ware or software design do not go beyond a beautiful

demonstration of potentialities.")BZ

The software is object oriented, and all

computations are performed in the object coordinate

system, down to the final transformation into screen

coordinates. The software is in three basic categories:

display control, object generation, and object

manipulation.

3.1.1. Display Control

3.1.1.1. Activate Refresh--VG¢N

The routine VG¢N first checks an initialization

flag, and initializes the display software system if

it is not set. In the prototype system, the hardware

does not have its own power supplies, and derives its

power (+10, -10, and +5 volts) from analog outputs on

the IBM 1800. So, as part of the initialization process,

42

these analog output lines are set to the appropriate

voltages. Also, the point and vector counts are set

to zero. Finally, the initialization flag is set,

to prevent subsequent call to VG¢N from causing

reinitialization, and the refresh programming is

activated. This activation consists of replacing a

timer interrupt vector with the address of the refresh

program, on the prototype system. The old address

is saved (see seCtion 3.1.1.4).

The second phase of VGON is always performed,

regardless of the setting of the initialization flag.

In this phase the timer is set for the time that is

to elapse between the end of one refresh cycle and

the start of the next, and started. VG¢N then returns

to the calling program, with the refresh programming

maintaining the display.

3.1.1.2. Deactivate Refresh--VG¢FF

This routine turns off the timer, preventing

timer interrupts and thus disabling the refresh pro-

gramming. VG¢FF then returns to the calling program,

with the display screen blank.

3.1.1.3. Erase Screen--ERASE

The ERASE routine is used to clear the screen,

and should be called only when the refresh programming

is active. ERASE first turns off the timer, disabling

43

the refresh programming. Then, the refresh buffer

is cleared, and the refresh vector count is set to

zero. Finally, the timer is restarted, reactivating

the refresh programming, with the display screen blank.

3.1.1.4. Reset System--VGEND

The VGEND routine restores the timer interrupt

address (see section 3.1.1.1.) after disabling the

timer, thus restoring the operating system of the com-

puter to its original state, in preparation for

terminating the run of the graphics program. VGEND

should be called only after the graphics software has

been initialized (by a call to VGON), so that the

location reserved for the saved interrupt address

indeed contains that address. VGEND returns to the

calling program, not to the Operating system, and thus

the system may be restarted with VGON.

3.1.2. Object Generation

3.1.2.1. Point Generation--P¢INT(IOBJ,IX,IY,IZ)

The POINT routine increments the point count

and stores the coordinates of the point specified by

the integer triple (IX,IY,IZ). Points thus stored

are used as vertices for wire frame representations

of objects. An integer object number, I¢BJ, is associ—

ated with the point, so that all points with the same

object number can be transformed as a single set, or

44

“object“ (see section 3.1.3). The actual value of

I¢BJ is not important, as long as the same value is

used for other points that are to be in the same object,

and the value used does not exceed the maximum number

of objects for which the system is configured. For

example, the prototype system is configured for a

maximum of ten objects, so the integers from one to

ten, inclusive, may be used as object numbers. Also,

the number of points which may be created is limited

by the amount of storage which the graphics software

has reserved for them. In the prototype system, up

to two hundred points may be created. Although points

are transformed in groups according to object number,

vectors may span between any two points, and thus

between points belonging to different objects (see

section 3.1.2.2).

3.1.2.2. Vector Definition--VECTR(IPNT,IBEAM)

The routine VECTR creates a vector from the

current point to the point with integer ordinal IPNT.

That is, the endpoint of the vector to be created is

the point which was created in the IPNT-th call to

P¢INT. The starting point for the vector is the endpoint

of the previous vector, so that the starting point of

the first vector is undefined. The integer argument

IBEAM controls the intensification of the vector; if

IBEAM is one, the vector is visible, and if IBEAM is

45

two, the vector is invisible. Thus, the first call

to VECTR should always have IBEAM equal to two, to

ensure that the vector with the undefined initial point

is not visible. Since a point ordinal is specified

to determine the endpoint of each vector, a vector

may span between any two points, even if the points

are in different "objects" for the purposes of transfor-

mations. Only the points are subjected to transformation,

and when the transformation parameters change so that

the screen coordinates of a point change, all the vectors

which have that point as an endpoint are altered so

as to end at the new position of the point. Thus, the

vectors act as "rubber bands" stretched between their

endpoints, and automatically follow the motions of the

endpoints, stretching and shrinking as the points move

relative to one another. There is a maximum number

of vectors which may be defined: the prototype system

is configured for a maximum of two hundred vectors.

In order to save time, no checking is performed against

this limit, and the results are unpredictable if it

is exceeded.

3.1.3. Object Manipulation

3.1.3.1. Object Positioning and Orientation-—

¢BP¢S(IOBJ,IXANG,IYANG,IZANG,IXM¢V,IYM¢V,IZM¢V)

The ¢BP¢S routine allows the user to specify

rotational and translational transformations to be

46

applied to the set of points with object number I¢BJ.

First, the specified set of points is rotated

IXANG degrees about X-axis. Then, the result is rotated

IYANG degrees about the Y-axis, and then IZANG degrees

about the Z-axis. The sense of rotation is right-handed

for the X and Y-axes, and left-handed for the z-axis,

meaning that a positive angle specification will cause

a rotation in the direction of the curl of the fingers

of the appropriate hand, if the thumb is pointing in

the positive direction of a given axis. The result

of the rotation transformations is then translated

IXM¢V units in the direction of the positive X-axis

(to the right on the screen), IYM¢V units in the direc-

tion of the positive Y-axis (towards the top of the

screen), and IZM¢V units in the direction of the posi-

tive z-axis ("into" the screen). The position and

orientation of the point set on the screen does not

change at the time of the call to ¢BP¢S. Rather, the

parameters of the call are stored in the parameter

buffer for that particular point set, and the new

transformations are performed when the display buffer

is updated by a call to the UPDAT routine (see section

3.1.3.3).

3.1.3.2. Individual Point Repositioning—-

PNTMV (I¢BJ , IPNT , IXM¢V, IYM¢V , IZM¢V)

The PNTMV routine allows individual point

positions to be changed, and thus change the "shape"

47

of a displayed object, even if all of its vertices

belong to the same point set. A particular point to

be moved is referenced as the IPNT-th point of the

I¢BJ-th point set, or "object." The translation para-

meters IXM¢V,IYM¢V, and IZM¢V are added to the

originally defined coordinates of the specified point,

and the sums replace the original coordinates. No

change is made to the display until the UPDAT routine

is called to recalculate the transformations (see sec-

tion 3.1.3.3). The routine can be used to translate an

entire point set (by using multiple calls), so that

if a rotation and a compensating translation are

specified for the translated point set, the effect is

to offset the axis of rotation. This increases the

versatility of the prototype rotation scheme (see section

3.2.1).

3.1.3.3. Display Buffer Update-—UPDAT

The UPDAT routine performs the transformations

specified by calls to OBPOS on the points defined by

calls to POINT and modified by calls to PNTMV. It

then creates a display buffer by tracing through the

point-to-point vectors specified by calls to VECTR,

using the screen coordinate representations of points

resulting from the perspective projection. Then, while

inhibiting display refresh, the new display buffer is

copied over into the refresh buffer area, and the refresh

48

vector count is set to the vector count of the new

buffer. Thus, all transformations which are specified

between calls up to UPDAT do not take effect until

UPDAT is called. After the refresh buffer is updated,

refresh is reactivated, and a refresh cycle is begun

immediately, in order to minimize the time the display

is blank after the buffer transfer is complete.

3.1.4. Example of Software Use

Figure 5 illustrates the use of the user level

routines in a short FORTRAN program segment. First,

the call to VGON initializes the software and activates

the display. Next, a small square base pyramid is

defined by calls to POINT and VECTR. The pyramid is

as high as its base is wide. The first DO loop

repeatedly calls OBPOS and UPDAT, moving the pyramid

slowly away from the user while rotating it twice about

its vertical axis. After this, VGOFF is called, blanking

the display, and a square is defined which surrounds

the pyramid, by calls to POINT and VECTR. A call to

OBPOS specifies no translations or rotations for this

new object, and when VGON is called to reactivate the

display, it shows the square in the plane of the screen,

and the pyramid quite far away. Note that the plane

of the screen is just the plane of perspective projec-

tion, and objects can pass through it with no effect,

since the eye point is located along the negative Z-axis.

100

200

300

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

49

VGON

PDINTII’IOOO’OQIOOO)

P01NTI191000909“1000I

POINT‘19-1000909’1000)

POINTIID'IOOOPOPIOOOI

POINTI1909200090)

VECTRIIPZI

VECTRIZPII

VECTRIBPII

VECTRI491)

VECTRIIPII

VECTRISPII

VECTRIZPII

VECTRI392I

VECTRISPII

VECTRI491I

DD 100 J=lc720

CALL

CALL

OBPOSI1909J1090909J*10I

UPDAT

CONTINUE

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

VGOFF

POINTI2930009300090I

P01NTI29'30009300090)

POINTI29’30009'300090I

POINTI2930009-300090I

VECTRIOPZI

VECTRITDII

VECTRIBPI)

VECTRI991I

VECTRIOPII

OBPOSI2909090909090I

VGON

DO 200 J310720

CALL

CALL

OBPOSI19090.090,097200-J*10I

UPDAT

CONTINUE

DO 300 J819360

CALL OBPOSI19J9090909090I

CALL OBPOSI29J9090909090)

CALL UPDAT

CONTINUE

CALL VGEND

FIGURE 5. EXAMPLE OF PROTOTYPE SYSTEM SOFTWARE USE

51

The second DO loop serves only to move the pyramid

back to the plane of the screen, while the square

remains stationary. The third DO loOp rotates the

square and pyramid in unison about the X-axis once.

This causes a dramatic perspective effect as the apex

of the pyramid and the top and bottom of the square

alternately approach and recede. After this single

rotation, the display system is reset with a call to

VGEND in preparation for terminating execution of the

program. If the program had a new set of images to

display, ERASE could be called instead of VGEND to

remove the previously defined objects from the graphics

system.

3.2. Transformation Software

The transformation routines are a critical

part of a real time graphics system which does not

have transformation hardware. If the display is to

be updated often enough to maintain the illusion of

motion, the routines which perform translation, rota-

tion, and perspective projection must be carefully

coded (generally in assembly language) so as to be as

fast as possible. As few minicomputers possess floating

point arithmetic hardware, it is generally impossible

to attain the necessary speed unless all the transfor-

mation calculations are performed using integer

arithmetic. The integer multiply and divide

52

instructions found on many minicomputers allow the

transformations to be rapidly performed.

3.2.1. Rotation

Rotation requires the evaluation of sums of

products, where the products are of object coordinates

and the sine or cosine of a rotation angle. This

involves two difficulties: the evaluation of trigono-

metric functions, and the handling of numbers less

than unity in magnitude, by using integer arithmetic.

In keeping with the integer orientation of the low

level display programming, an angle of rotation is

represented as an integer, indicating number of degrees

of rotation. Thus, if the angle is treated modulo

360, it may be used as a subscript to find the required

values in precalculated tables. It is common for

minicomputer divide instructions to have provisions

for obtaining the remainder upon division, so that the

modulo operation may be performed very quickly. However,

if the divide instruction lacks this feature, the remain-

der may be computed in a manner analogous to the FORTRAN

expression

N - N / 360 * 360 .

Once the angle is reduced to between zero and 359 degrees

by the modulo 360 Operation, it may be used directly

as a subscript to look up the corresponding sine and

53

cosine values, if enough memory is available to con-

tain the required tables. Each value occupies one

word, and two tables are required, so a total of 720

words is necessary, if separate tables are used.

However, because of the identity

cos(6) = sin(6 + 90°)

the cosine table can start at the ninety-first entry

in the sine table, so that the combined sine-cosine

table occupies 450 words. Although this is still a

good deal of memory to use for a table, it is not exces-

sive, and yields a very fast technique for obtaining

the values of sine and cosine. By exploiting the

symmetries of these functions, further compression of

the table can be accomplished, at the expense of more

programming to reference the table and a longer access

time. If sufficient memory is available to contain

the larger table, then such compression efforts serve

only to lower the performance of the system.

The significance of the one degree resolution

of the trigonometric functions is two-fold. First,

it allows the use of a very natural technique for

specifying angles: an integer number of degrees. This

is consistent with the idea of avoiding floating point

arithmetic, and is convenient for the user of the

system. Second, it provides a simple method for pro-

gramming animation. For example, if an object is

54

rotated through an angle which is increased by one

degree per frame, say, then the object will appear to

rotate continuously, if slowly, even though each change

of angle would be barely perceptible, if viewed by

itself. Thus, a number of rotation rates may be pro-

grammed by incrementing rotation angles by small integers.

Because of the modulo 360 computation involved in the

sine and cosine evaluations, angles in excess of

three-hundred sixty degrees are permitted, and in fact

angles as large as the maximum integer size imposed

by the word length of the minicomputer can be used.

In the prototype system, this limit is 32767, and thus

an object will rotate more than ninety times before

integer overflow occurs, causing a sudden jerk in the

otherwise smooth rotation.

Now, the required calculations may be performed

if the actual numbers stored in the trigonometric table

are scaled to fit the available integer range of the

minicomputer. Thus, with the sixteen bit orientation

of the prototype system, the trigonometric table entries

are scaled by a factor of 32767. A typical integer

:multiply instruction will form a thirty-two bit product

from two sixteen bit numbers (assuming a sixteen bit

word), so if a number is multiplied by a value from

the trigonometric table, the most significant word of

the product will be within one least significant bit

55

of half of the desired product. This is true because

the table is scaled by a factor of 32767, and the result

of the multiplication is scaled by a factor of 1/65536,

since only the most significant half of the product

is used. Therefore, two of the aforementioned "rotation

products" may be computed and added without fear of

overflow, or they may be shifted one bit to the left

before or after the addition, yielding the correct result,

within the two least significant bits.

The actual transformation equations used to

implement rotation depend upon the means chosen to

represent object orientation. One commonly used technique

specifies an axis of rotation (in terms of direction

cosines) and an angle through which the rotational

motion acts. This is somewhat inconvenient for the

user, since direction cosines are not a natural way

to specify a direction. Unfortunately, there seems to

be no convenient way for the user to specify a given

rotational motion. The prototype system attacks this

problem by providing the user with three ordered rotation

transformations: X-axis, Y-axis, and Z-axis rotations,

where the user specifies the number of degrees of each

rotation. The transformations are applied in the order

shown, allowing the general orientation capability

offered by the direction cosine techniques above, and

also providing a natural way for the user to specify

56

certain classes of orientations. This method has

performed moderately well, in terms of ease of use.

Also, it allows a good deal of computation optimization,

thus helping to assure smooth animation (see section

3.2.4).

3.2.2. Translation

Translation can be implemented by simply adding

the appropriate integer displacements to each coordi-

nate of each point involved. If all three coordinates

are treated identically, however, the resulting

"coordinate space" will be cubical, due to integer

range limitations, and thus has very limited depth

and perspective cues. This can be remedied by treating

the Z-coordinate separately (see section 3.2.6).

3.2.3. Perspective Projection

Generating a perspective image requires division,

which is generally a time-consuming operation, and thus

perspective projection is not provided in many inex-

pensive real time display systems. If the display

screen is the plane Z = 0, the eye point (Xe,Ye,Ze)

with Ze< 0, and the point to be projected (Xe,Ye,ze),

the projected point in screen coordinates is

K II

I
<

+ 33 m
(
D

*

I
'
D

With the exception of the division, the equations are

trivial to implement using integer arithmetic. A

typical integer division instruction acts on a thirty-two

bit dividend and a sixteen bit divisor to produce a

sixteen bit quotient and a sixteen bit remainder, if

possible, and this instruction can be used to provide

the division required by the perspective projection

equations. If the numerator is placed in the thirty—two

bit register and divided by the denominator, the required

quotient is obtained, scaled by a power of two depen-

dent upon where the numerator was positioned in the

dividend register. This scaling can be used to increase

the depth of field available from the system (see section

3.2.6).

3.2.4. Concatenation of Transformations

A significant increase in the speed of the

transformations can be realized if they are applied

simultaneously rather than one at a time. In a typical

graphics system, the transformations are represented

as matrices, and the transformations are applied by

multiplying the vector representation of the points

58

to be transformation matrices, so time may be saved

by computing the product of all the transformation

matrices beforehand, since matrix multiplication is

associative. While the matrix implementation is

straightforward and versatile, since transformations

may be added or deleted at will, it is relatively slow,

and thus is a luxury that cannot be afforded in a small

real time system. Instead, concatenation of transfor-

mations is accomplished while the transformations

themselves are being performed. Taking the prototype

system as an example, the order of transformations is

X-axis, Y-axis, and Z-axis rotations, X-axis, and Z-axis

translations, and X-axis and Y-axis screen coordinate

perspective projections. But instead of implementing

them in this order strictly, the software overlaps the

calculations as much as the available registers will

allow. The results of each calculation are used immedi-

ately, if possible, to eliminate unnecessary load and

store operations. This saves precious time during the

operation of transforming objects from their original

position and orientation down to screen coordinates,

which can make the difference between a real time

system and a jerky, eye—fatiguing graphics display.

The integrated character of the transformation coding

in the prototype system is evident from the program

listing (see appendix).

59

3.2.5. Transformation Simplification

Further enhancement of transformation speed

is possible if the transformation equations are reduced

to their simplest practical state. In the perspective

transformation equations, one addition and one subtrac-

tion can be eliminated from each equation if the eyepoint

is constrained to lie on the line X = Y = 0. This

limits the system to displays in which the projection

plane and the observer are stationary, and the objects

being displayed move relative to them. This is not a

serious limitation, because the user of the system is

always facing in the direction of the display, and thus

should receive the impression that the objects which

he is observing are in motion, rather than himself.

Three operations of addition or subtraction

may be eliminated from each rotation equation, if all

the axes of rotation pass through the origin:

X' (X - X0) - cos(ez) - (Y - YO)-sin(ez) + XO

becomes

I . _ o I

X X cos(02) Y Sin(02)

where (X0, Y0) is the point where the axis of rotation

(here, parallel to the Z-axis) intersects the plane

Z = 0. Since as many as six rotation equations must

be implemented (see section 3.1.3.1), the elimination

60

of these operations can save a good deal of time in

processing the transformations. In the prototype

system, this saves about 18 percent of the time which

would otherwise be spent in performing rotation com-

putations: 104 microseconds versus 128 microseconds

per expression evaluation. The IBM 1800 has a relatively

slow multiplication instruction, so that a machine

with a faster multiplication instruction will realize

a greater percentage gain in time by using the simpli-

fied equations (although the faster machine would

probably not need the increase in speed).

3.2.6. Transform Limitations

Because sixteen bit integers are used throughout

the transformation calculations (using the prototype

system as an example), the coordinates used to define

points (object vertices) must be sixteen bit integers.

This means that the object space is a cube, centered

on the origin (the center of the display screen), and

approximately 65,000 units on a side. This is many

times larger than the display screen (typically about

1,000 units in diameter), but lacks sufficient depth

for convincing perspective effects. This is overcome

by scaling during the concatenation process, so that

the depth of field is increased by a factor of sixteen.

During the computation of the denominator of the perspec-

tive factor, the Z-coordinate of the point being

61

processed is shifted three bits right, instead of

the normal one bit left, before the Z-coordinate

translation is added. This amplifies the effect of

the Z-axis translation by a factor of sixteen, without

distorting the cubical object space. Thus, whenever

a Z-axis translation is specified by the user, he

must be sure to use one sixteenth of the actual trans—

lation desired.

4. Summary

The prototype system described in this paper

is capable of displaying over 100 vectors, representing

as many as ten objects, and perform all the described

transformations fast enough to present a flicker-free

display. Fewer objects increases its vector count for

a flicker—free display, and more still may be displayed

by tolerating some degree of flicker. Static displays

may have up to 200 points before flicker becomes noticable.

The hardware cost of the system, exclusive of

the minicomputer and the oscilloscOpe, is about thirty

dollars. The software must of course be rewritten in

assembler for each different minicomputer, but this

is not difficult, and generally can be done by adapting

the prototype system code, provided in the appendix.

The IBM 1800 used in the prototype system is

quite slow, by modern standards, and so a new system,

using a minicomputer, should yield markedly better

performance.

Thus, the prototype system achieves its goal of

being a small scale real time minicomputer graphics system.

62

APPENDIX

ENT UPDAT

ENT OBPOS

ENT POINT

ENT VECTR

ENT VGOFF

ENT VGON

ENT VGEND

ENT ERASE

ENT PNTMV

#**#**#****#******************¥**#*********t****

*************#*#**********#******#******************

*** ***

*** *$*

##t VECTOR GENERATOR SOFTHARE VERSION 2 Pt:

*** **#

#** **#

MASTER'S THESIS PROGRAM *t*

R CHRISTOPHER SCUSSEL *tt

#** MICHIGAN STATE UNIVERSITY *t*

**P ENGINEERING COLLEGE COMPUTER OPERATIONS *tt

#** ***

*** ***

*************#*#***#****#**#**#********#************

**********#*#**$*****##**#**##***#***********#******

*

1

************************#*************¥*************

* t

* SOFTWARE CONFIGURATION CONTROL *

* *

*********#****************#********#***************#

4

MXPNT EOU 200 SET 200 POINTS MAXIMUM

MXVEC EOU 200 SET 200 VECTORS MAXIMUM

MXOBJ EOU 10 SET 10 OBJECTS MAXIMUM

LOGCO EOU 0 SET LOGIC 0 TO 0 VOLTS

LOGCl EOU 10000 SET LOGIC 1 TO 3 VOLTS

*

A

63

64

#*#*****#*#***#***#*****####*********#*********

3 t

* SOFTHARE PARAMETER STORAGE *

a *

##*#**#**#*#**#**********#*********#***********#

*

=PNTS DC NUMBER OF POINTS

=VEC DC NUMBER OF VECTORS

=VREF DC NUMBER OF VECTORS TO BE

* OISPLAYED BY REFRESH ROUTINE

LOGO DC LOGCO ADDRESSEO LOGIC 0

LOGl DC LOGCl ADDRESSED LOGIC l

*

#*#********#**#**##***#**#**#**#*#*#****#*#*****#***

g *

* DISPLAY UPDATE ROUTINE
*

t *

#**#*****#*****#*##******##*#**##**t**#***#*****#**#

*

UPDAT DC ENTRY POINT

LO L INTFG FETCH INITIALIZATION FLAG

BSC I UPDAT,+- RETURN IF NOT INITIALIZED

STX L3 X3NIN SAVE INDEX REGISTER 3

*

ROTATE' TRANSLATE, AND PROJECT POINTS

* DOWN TO SCREEN COORDINATES

#

LOX Ll PTSTR FETCH POINT STORAGE ADDRESS

LOX 13 =PNTS FETCH NUMBER OF POINTS

MOVLP LO 1 0 FETCH PARAMETER STORAGE ADDRESS

STO TEMPl

LOX IZ TEMPI PREPARE TO RETRIEVE PARAMETERS

LD 1 2 GET OBJECT Y-COORD

M 2 0 MULT BY SIN X

STO TEMPl STORE INTERMEDIATE

LD 1 3 GET OBJECT Z-COORD

M 2 l MULT BY COS X

S TEMPl SUBTRACT INTERMEDIATE

SLA l CORRECT FOR TRIG TABLE

STO TEMP3 STORE X-ROT Z-COORO

LD 1 2 GET OBJECT Y-COORD

M 2 1 MULT BY COS X

STO TEMPl STORE INTERMEDIATE

LD 1 3 GET OBJECT Z-COORD

M 2 O MULT BY SIN X

A TEMPl ADD INTERMEDIATE

SLA l CORRECT FOR TRIG TABLES

STO TEMPZ STORE XeROT Y-COORD

LO TFMP3 GET X-ROT Z-COORD

M 2 2 MULT BY SIN Y

TEMPI

TEMPZ

TEHPB

TEMP4

STO

LD

SLA

STO

65

STORE INTERMEDIATE

GET OBJECT X-COORO

MULT BY COS Y

SUBTRACT INTERMEDIATE

CORRECT FOR TRIG TABLES

STORE XY-ROT X-COORD

GET X-ROT Z-COORD

MULT BY COS Y

STORE INTERMEDIATE

GET OBJECT X-COORD

MULT BY SIN Y

ADD INTERMEDIATE

CORRECT TRIG AND ADJUST PERSPECTIVE

ADD Z-TRANSLATION

COMPUTE DISTANCE FROM EYE

STORE PERSPECTIVE FACTOR

GET XY-ROT Y-COORD

MULT BY SIN Z

STORE INTERMEDIATE

GET XY-ROT X-COORD

MULT BY COS Z

SUBTRACT INTERMEDIATE

CORRECT FOR TRIG TABLE

ADD X-TRANSLATION

ADJUST PERSPECTIVE

COMPUTE PERSPECTIVE

STORE X-SCREEN COORDINATE

GET XY-ROT Y-COORD

MULT BY COS Z

STORE INTERMEDIATE

GET XY-ROT X-COORD

MULT BY SIN Z

ADD INTERMEDIATE

CORRECT FOR TRIG TABLE

ADD Y-TRANSLATION

ADJUST PERSPECTIVE

COMPUTE PERSPECTIVE

STORE Y-SCREEN COORDINATE

ADDRESS OF NEXT PTSTR RECORD

DECREMENT COUNT

DO NEXT POINT

PREPARE T0 T0 UPDATE RFSTR

66

*

* CONSTRUCT IMAGE OF REFRESH STORAGE AREA

*

IMAGE SRA 16 ZERO AGCUMULATOR,

STO XPOS INITIALIZE X-POSITIDN

STO YPOS INITIALIZE Y-POSITION

LDX Ll VCSTR PREPARE TO RETRIEVE VECTORS

LDX I2 =VEC FETCH NUMBER OF VECTORS

LDX L3 PLTBF FETCH PLOT BUFFER ADDRESS

DRHLP LD 1 0 FETCH ENDPOINT ORDINAL

SLA l MULTIPLY BY 2

A I 0 FORM PRODUCT WITH 3

SLA 1 FORM PRODUCT WITH 6

A PTADR COMPUTE X ADDRESS

A ADDR4 COMPUTE X ADDRESS

STO XSTR+1 STORE ADDRESS

A ADDRI COMPUTE Y ADDRESS

STO YSTR+l STORE Y ADDRESS

XSTR LD L *-* FETCH X-SCREEN COORDINATE

S XPOS COMPUTE DIFFERENCE

STO 3 O STORE DIFFERENCE IN PLOT BUFFER

A XPOS RESTORE X-SCREEN COORDINATE

STU XPOS STORE CURRENT X-POSITION

YSTR LD L *-* FETCH Y-SCREEN COORDINATE

S YPOS COMPUTE DIFFERENCE

STO 3 I STORE DIFFERENCE IN PLOT BUFFER

A YPOS RESTORE Y-SCREEN COORDINATE

STO YPOS STORE CURRENT Y-POSITION

LD 1 l FETCH BEAM CONTROL

STO 3 2 STORE IN PLOT BUFFER

MDX 1 2 PREPARE TO FETCH NEXT VECTOR

MDX 3 3 PREPARE TO STORE NEXT VECTOR

MDX 2 -l DECREMENT VECTOR COUNT

MDX DRHLP LOOP BACK FOR NEXT VECTOR

*
#

XFER

EYEZ

XPOS

YPOS

PTADR

ADDRl

ADDRA

X3NIN

*
‘
*
1
$
*

LFVLl

67

TRANSFER PLOT BUFFER TO REFRESH STORAGE

LDX Il

LOX L2

LDX L3

XIO L

LD

STO

LD

STO

LD

STO

MDX

MDX

MDX

MDX

LD

STO

XIO

t
h
t
h
r
v
u
a
v
a
m
a

r
'
F

LDX 13'

BSC I

=VEC

PLTBF

RFSTR

TMOFF

0

w
k
v
n
a
w
r
d
h
'
o

-l

XFER

=VEC

=VREF

LEVLl

X3NIN

UPDAT

FETCH NUMBER OF VECTORS

FETCH PLOT BUFFER ADDRESS

FETCH REFRESH STORAGE ADDRESS

CEASE REFRESHING

DATA TRANSFER

DATA TRANSFER

DATA TRANSFER

DATA TRANSFER

DATA TRANSFER

DATA TRANSFER

INCREMENT ADDRESS

INCREMENT ADDRESS

DECREMENT VECTOR COUNTER

GO TRANSFER NEXT VECTOR

FETCH NUMBER OF VECTORS

SET NUMBER OF REFRESH VECTORS

TAKE AN IMMEDIATE REFRESH

CYCLE AND RESUME REFRESHING

RESTORE INDEX REGISTER 3

RETURN TO CALLING PROGRAM

CONSTANTS AND VARIABLES

DC

DC

DC

DC

DC

DC

DC

IOCC

855 E

DC

DC

1024

PTSTR-6

1

4

IAOOO

/04AO

EYE POINT Z-COORDINATE

X FOR GENERATOR CONVERSION

Y FOR GENERATOR CONVERSION

ADDRESS FOR ORDINAL POINT RECALL

1 FOR USE LOCALLY

4 FOR USE LOCALLY

TEMPORARY STORAGE FOR XRFG 3

IN NONINTERRUPT ROUTINES

GET AN EVEN ADDRESS

LEVEL 1 INTERRUPT BIT SET

PROGRAMMED INTERRUPT IOCC

68

#**********#********#***********************¥**¥****

#

*

*

ac:

REFRESH ROUTINE *

*

#************#**##**#*****#****************#*#**#***

RFRSH

OUTLP

RSTS

*

g

*

TIME

RSAVE

DC

STS

STD

STX 1

STX 2

XIO

LDX ll

MDX 1

LOX L2

XIO

LD 2

STO

LD 2

STO

LD 2

STO

XIO

MDX 2

MDX

MDX

X10

X10

LD

STO L

XIO

LDD

LDX I1

LDX I2

LDS

BOSC I

'
—

RSTS

RSAVE

RSAVE+2

RSAVE+3

TMOFF

=VREF

l

RFSTR

RNON

0

XOUT

1

YOUT

2

BMOUT

VC OUT

3

-l

OUTLP

STDBY

TMRST

TIME

/0006

TMON

RSAVE

RSAVE+2

RSAVE+3

D

RFRSH

REFRESH ROUTINE ENTRY POINT

SAVE STATUS

SAVE ACCUMULATOR

SAVE XREG l

SAVE XREG 2

PREVENT TIMER CYCLE STEALS

GET NUMBER OF REFRESH VECTORS

ADD EXTRA FOR LAST VECTOR

FETCH STARTING ADDRESS OF RFSTR

TURN RUN LINE ON

FETCH X-SCREEN COORDINATE

STORE IN ANALOG OUTPUT TABLE

FETCH Y-SCREEN COORDINATE

STORE IN ANALOG OUTPUT TABLE

FETCH BEAM CONTROL

STORE IN ANALOG OUTPUT TABLE

OUTPUT VECTOR TO GENERATOR

ADVANCE TO NEXT VECTOR ADDRESS

DECREMENT VECTOR COUNT

OUTPUT NEXT VECTOR

PLACE GENERATOR IN

RESET TIMER

FETCH RERESH CYCLE TIME

STORE AT TIMER LOCATION

TURN TIMER ON

RESTORE ACCUMULATOR

RESTORE XREG l

RESTORE XREG 2

RESTORE STATUS

RETURN AND TURN OFF INTERRUPT

STANDBY MODE

CONSTANTS AND VARIABLES

DC

855 E

855

-3

O

4

RERFESH CYCLE TIME

GET EVEN ADDRESS

STATUS SAVE STORAGE AREA

OTAB

XOUT

YOUT

BMOUT

SBTAB

IOCC'S

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

DC

IOOOO

/O420

IZODO

/0420

IOTZI

LOGI

lblOS

VOTAB

l6500

SBTAB

l6500

69

TIMER

TIMER

TIMER

TIMER

STATE -- OFF

STATE CONTROL IOCC

STATE -- C ON

STATE CONTROL IOCC

DUMMY WORD FOR TIMER STATUS IOCC

TIMER STATUS SENSE IOCC

SEND OUT LOGIC 1 ON

LINE 59 THE RUN LINE

TABLE ADDRESS FOR

ANALOG OUTPUT INITIALIZE WRITE

TABLE ADDRESS FOR

ANALOG OUTPUT INITIALIZE WRITE

ANALOG OUTPUT TABLES

TABLE TO OUTPUT VECTOR TO GENERATOR

SINGLE SCAN WITH NO INTERRUPT

ATTACH INPUT SWITCH LINE AND'

TURN IT OFF

ATTACH X-OUTPUT LINE AND

SEND X-VOLTAGE OUT

ATTACH Y-OUTPUT LINE AND

SEND Y-VOLTAGE OUT

ATTACH BEAM CONTROL LINE AND

SEND BEAM VOLTAGE OUT

ATTACH INPUT SWITCH LINE AND

TURN IT ON

TABLE FOR VECTOR GENERATOR STANDBY MODE

DC I4OOA

DC 7

DC LOGCO

DC 2

DC

DC 4

DC

DC 3

DC

DC 7

DC LOGCI

DC IAOOA

DC 7

DC LOGCO

DC 3

DC 3276?

DC 5

DC LOGCO

DC 2

DC 0

DC 4

DC 0

SINGLE SCAN WITH NO INTERRUPT

ATTACH INPUT SWITCH LINE AND

TURN IT OFF

ATTACH BEAM CONTROL LINE AND

TURN IT OFF WITH 10 VOLTS

ATTACH RUN LINE AND

TURN IF OFF

ATTACH X-OUTPUT LINE AND

SET IT TO 0

ATTACH Y-OUTPUT LINE AND

SET IT TO 0

70

********#***#**#***#*****#****#*******##*#**#*#****$

*

* OBJECT PARAMETER ENTRY ROUTINE

*

*

g

*

******#********#**##**#**#*****#*#***#******#*******

*

OBPOS DC

STX

LDX

LD

SLA

A

A

STO

LDX

LD

BSI

LD

STD

LD

STO

LD

BSI

LD

STO

LD

STO

LD

BSI

LO

STO

LD

STO

LD

STO

LD

STO

LD

STO

LDX

BSC

12

II

L3

L3

II

L3

L3

Il

L3

L3

II

N

~
J
x
<
n
o
~
q
x
n
o
~
r
x
n

II

II

I3

LI

X3NIN

OBPOS

O

' 3

O

PRMAD

TEMPS

TEMPS

I

ANGFX

SIN

0

COS

I

2

ANGFX

SIN

Z

COS

3

3

ANGFX

SIN

(
’
5

(
D

U
T

3NIN

ENTRY POINT

SAVE XREG 3

FETCH PARAMETER ADDRESS TABLE

FETCH OBJECT ORDINAL

MULTIPLY BY 8

FORM PRODUCT WITH 9

ADD PARAMETER TABLE ADDRESS

TRANSFER TO XREG 2

FETCH X-ANGLE

NORMALIZE ANGLE INTO XREG 3

FETCH SINE OF ANGLE

STORE IN PARAMETER TABLE

FETCH COSINE OF ANGLE

STORE IN PARAMETER TABLE

FETCH Y-ANGLE

NORMALIZE ANGLE INTO

FETCH SINE OF ANGLE

STORE IN PARAMETER TABLE

FETCH COSINE OF ANGLE

STORE IN PARAMETER TABLE

FETCH Z-ANGLE

NORMALIZE ANGLE INTO

FETCH SINE OF ANGLE

STORE IN PARAMETER TABLE

FETCH COSINE OF ANGLE

STORE IN PARAMETER TABLE

FETCH X-TRANSLATION

STORE IN PARAMETER TABLE

FETCH Y-TRANSLATION

STORE IN PARAMETER TABLE

FETCH Z-TRANSLATION

STORE IN PARAMETER TABLE

RESTORE XREG 3

RETURN TO CALLING PROGRAM

XREG 3

XREG 3

*

ANGFX

*

g

g

71

ANGLE NORMALIZATION ROUTINE

DC

SRT

D

SLT

BSC

A

STO

LDX

BSC

16

'360'

16

+2

‘360'

TEMPS

I3 TEMPS

I ANGFX

ENTRY POINT

PREPARE FOR DIVIDE

DIVIDE BY 360

GET REMAINDER

RESULT READY IF + OR 0

FORCE REMAINDER TO BE NONNEGATIVE

PREPARE TO LOAD INDEX REGISTER

PUT RESULT IN XREG 3

RETURN TO CALLING PROGRAM

CONSTANTS AND VARIABLES

PRMAD DC

TEMPS DC

'360'

t

*

DC

OBPRM-9 ADDRESS OF OBJECT PARAMETER TABLE

360

LOCAL TEMPORARY

USED IN ANGLE MANIPULATIONS

******#****#******#*******##*#********#******¢*#****

*

g

*

*

POINT ENTRY ROUTINE *

*

***********#***##*******###**********#*************t

*

POINT DC

LD

A

STO

SLA

A

SLA

A

STO

LDX

LDX

LD

SLA

A

A

STO

LD

STO

LD

STD

LD

STO

BSC

=PNTS

ONEI

=PNTS

l

=PNTS

I

PTADR

TEMP6

TEMP6

POINT

0

3

O

PRMAD

b
w
w
N
N
D
-
‘
T
—
T
O

ENTRY POINT FOR POINT ENTRY

FETCH NUMBER OF POINTS

ADD 1

STORE NEW NUMBER OF POINTS

MULTIPLY BY 2

FORM PRODUCT WITH 3

FORM PRODUCT WITH 6

ADD POINT STORAGE ADDRESS

PREPARE TO LOAD XREG 2

FETCH POINT ADDRESS

FETCH PARAMETER TABLE ADDRESS

FETCH OBJECT ORDINAL

MULTIPLY BY 8

FORM PRODUCT WITH 9

ADD PARAMETER TABLE ADDRESS

STORE AT POINT STORAGE ADDRESS

FETCH X-COORDINATE

STORE AT POINT STORAGE ADDRESS

FETCH Y-COORDINATE

STORE AT POINT STORAGE ADDRESS

FETCH Z-COORDINATE

STORE AT POINT STORAGE ADDRESS

RETURN TO CALLING PROGRAM

72

*******#***###**#****##*#******#****************##*#

* #

* VECTOR ENTRY ROUTINE #

* as:

********************#*#****#***#***#*************#**

*

VECTR DC ENTRY POINT FOR VECTOR ENTRY

LD L =VEC FETCH NUMBER OF VECTORS

A ONEI ADD I

STO L =VEC STORE NEW NUMBER OF VECTORS

SLA I MULTIPLY BY 2

A VCADR ADD VECTOR STORAGE ADDRESS

STO TEMP6 PREPARE TO LOAD XREG 2

LDX 12 TEMPb FETCH VECTOR STORAGE ADDRESS

LDX II VECTR FETCH PARAMETER TABLE ADDRESS

LO II o FETCH ORDINAL POINT REFERENCE

STO 2 o STORE AT VECTOR STORAGE ADDRESS

LD 11 1 FETCH HRITE CONTROL

S ONEI SUBTRACT 1

BSC 2 SKIP IF HRITE CONTROL HAS 1

LD BMOFF FETCH BEAM OFF VALUE

STO 2 1 STORE BEAM CONTROL IN VECTOR ENTRY

BSC LI 2 RETURN TO CALL ING PROGRAM

#

* CONSTANTS AND VARIABLES

TEMPb DC LOCAL TEMPORARY

ONEI DC I 1 FOR USE LOCALLY

VCADR DC VCSTR-2 VECTOR STORAGE ADDRESS

BMOFF DC 32767 BEAM OFF CONTROL VALUE

73

******#*********¥*****##****#**#***#*#**********#*#*

* 8

* POINT MOVE ROUTINE A

* #

#***#******#**##****#******#****#******##********#**

III

PNTMV DC ENTRY POINT FOR POINT MOVE

STX L3 X3NIN SAVE XREG 3

Lnx II PNTMV FETCH PARAMETER TABLE ADDRESS

LD II o FETCH OBJECT ORDINAL

SLA 3 MULTIPLY BY 8

A II 0 FORM PRODUCT HITH 9

A PRMAD ADD PARAMETER TABLE ADDRESS

STO OBCOO STORE ADDRESS FOR COMPARISON

LD II I FETCH NUMBER OF CHANGE POINT

STO PTNUM STORE AS COUNTER

LDX L2 PTSTR FETCH POINT STORAGE ADDRESS

LDX I3 =PNTS FETCH TOTAL NUMBER OF POINTS

PSRCH LO 2 o FETCH PARAMETER TABLE ADDRESS

CMP OBCOO COMPARE HITH NEEDED ADDRESS

MDX PSRCI PREPARE FOR NEXT POINT

MDX PSRCI PREPARE FOR NEXT POINT

MDX L PTNUM.-I CORRECT OBJECT.DECREMENT COUNT

MDX PSRCI PREPARE FOR NEXT POINT

LD II 2 FETCH X-DISPLACEMENT

A 2 1 ADD TO CURRENT X-COOROINATE

STO 2 I STORE NEH X-COOROINATE

LD 11 3 FETCH Y-DISPLACEMENT

A 2 2 ADD CURRENT Y-COORDINATE

STO 2 2 STORE NEH Y-CODRDINATE

LO TI 4 FETCH z-DISPLACEMENT

A 2 3 ADD z-COORDINATE

STO 2 3 STORE NEH Z-COOROINATE-T

LDX I3 X3NIN RESTORE XREG 3

BSC LI 5 RETURN TO CALLING PROGRAM

PSRCI MDX 2 6 ADVANCE ADDRESS TO NEXT POINT

MDX 3 -l DECREMENT POINT COUNT

MDX PSRCH SEARCH NEXT POINT

BSC LI 5 RETURN TO CALLING PROGRAM,

A SPECIFIED POINT NOT FOUND.

* ND ACTION TAKEN.

*

* CONSTANTS AND VARIABLES

OBCOO DC OBJECT PARAMETER TABLE ADDRESS

* USED TO FIND POINTS IN THE

* DESIRED OBJECT

PTNUM DC COUNTS NUMBER OF POINTS TO GO

* IN DESIRED OBJECT BEFORE THE

* DESIRED POINT IS FOUND.

74

****#******#**####*********************#***#**##****

t

*

t

*

HARDWARE INITIALIZATION AND DISPLAY CONTROL *

*

####***#*#**#*#********###**#**#***#*#*#*******i

t

a

*

VGON

ERASE

DISPLAY ACTIVATION

DC

LD

BSI

LD

STO

XIO

BSC I
—
o
f
'
r
'
r
'
f
"

DISPLAY

DC

XIO L

BSC I

DISPLAY

DC

BSI

LD

STO L

STO L

STO L

BSI

BSI

BSC I

ENTRY POINT FOR DISPLAY ACTIVATION

INTFG FETCH INITIALIZATION FLAG

INIT9+- INITIALIZE IF FIRST CALL

TIME FETCH INTERVAL FOR TIMER

/0006 SET TIMER FOR REFRESH INTERVAL

TMON TURN TIMER ON

VGON RETURN TO CALLING PROGRAM

DEACTIVATION

ENTRY POINT FOR DEACTIVATION

TMOFF TURN TIMER OFF

VGOFF RETURN TO CALLING PROGRAM

ERASE

ENTRY POINT FOR DISPLAY ERASE

VGOFF DEACTIVATE DISPLAY

INITO FETCH O

=PNTS SET NUMBER OF POINTS TO ZERO

=VEC SET NUMBER OF VECTORS TO ZERO

=VREF SET NUMBER OF REFRESH

VECTORS TO ZERO

RFCLR CLEAR REFRESH AREA

VGON REACTIVATE DISPLAY

ERASE RETURN TO CALLING PROGRAM

END-OF-SYSTEM-USAGE ROUTINE

DC

LD

BSC I

BSI

LD

STO

LD

STO L

BSC I

INTFG

VGEND’+“

VGOFF

INITO

INTFG

LVIAD

IOOOC

VGEND

ENTRY POINT

FETCH INITIALIZATION FLAG

RETURN IF NOT INITIALIZED

DEACTIVATE DISPLAY

FETCH ZERO AND

TURN INITIALIZATION FLAG OFF

FETCH STANDARD INTERRUPT ADDRESS

REPLACE IN INTERRUPT LOCATION

RETURN TO CALLING PROGRAM

INIT

*
*
*
*

FCLR

*
*
w
*
*
*

ELOOP

INTFG

INITO

INITI

LVIAD

INITIALIZATION

DC

XIO POWER

XIO BTRNS

STS L

STS L

LD L IOOOC

STO LVIAD

LDX LI RFRSH

STX LI IOOOC

LD INITO

STO L =PNTS

STO L =VEC

STO L =VREF

BSI RFCLR

LD INITI

STO INTFG

BSC I INIT

REFRESH

DC

LDX Ll 3*MXVEC

LD INITO

STO LI RFSTR-3

STO LI RFSTR-2

LD L BMOFF

STO LI RFSTR-I

MDX I -3

MDX ELOOP

BSC I RFCLR

75

THIS ROUTINE SETS INTERRUPT

ADDRESSES AND SYSTEM PARA-

METERS. IT IS CALLED WHEN

NECESSARY BY VGON.

ACTIVATE HARDWARE

TRANSFER BUFFERS FOR POWER SUPPLY

/OOObo/4O CORE UNPROTECT TIMER

IOOOC9/4O CORE UNPROTECT LEVEL 1 ADRS

FETCH STANDARD INTERRUPT ADDRESS

SAVE INTERRUPT ADDRESS

FETCH REFRESH ROUTINE ADDRESS

STORE AT INTERRUPT LOCATION

FETCH O

INITIALIZE NUMBER OF POINTS

INITIALIZE NUMBER OF VECTORS

INITIALIZE NUMBER OF VECTORS

FOR REFRESH ROUTINE.

CLEAR REFRESH AREA

FETCH I

PREVENT SUBSEOUENT ENTRY

RETURN TO CALLING PROGRAM

AREA CLEARING ROUTINE

THIS ROUTINE SETS THE ENTIRE

REFRESH AREA TO IOIOoBMOFF).

FETCH LENGTH OF REFRESH

FETCH ZERO

CLEAR FIRST WORD OF RECORD

CLEAR SECOND WORD OF RECORD

FETCH BEAM OFF VALUE

SET BEAM CONTROL TO OFF

SET UP FOR NEXT RECORD

JUMP BACK TO DO NEXT RECORD

RETURN TO CALLING PROGRAM

AREA

CONSTANTS AND VARIABLES

DC

DC

DC

DC

0

O

I

INITIALIZATION INDICATOR

0 FOR USE LOCALLY

1 FOR USE LOCALLY

SAVES STANDARD INTERRUPT ADDRESS

IOCC'S

855 E

DC

DC

DC

DC

0

PWRUP

IbSOO

l6440

ANALOG OUTPUT

76

GET AN EVEN ADDRESS

TABLE ADDRESS FOR POWER UP

ANALOG OUTPUT INITIALIZE WRITE

DUMMY WORD FOR BUFFER TRANSFER

BUFFER TRANSFER IOCC

TABLES

SINGLE SCAN WITH NO INTERRUPT

ATTACH POS AMP SUPPLY AND

SET IT TO 10 VOLTS

ATTACH NEG AMP SUPPLY AND

SET IT TO -IO VOLTS

ATTACH X-OUTPUT LINE AND

SET IT TO 0 VOLTS

ATTACH BEAM CONTROL LINE AND

SET IT TO IO VOLTS

ATTACH Y-OUTPUT LINE AND

SET IT TO 0 VOLTS

ATTACH RUN CONTROL LINE AND

TURN IT OFF

ATTACH LOGIC SUPPLY LINE AND

SET IT TO 5 VOLTS

ATTACH INPUT SWITCH LINE AND

TURN IT OFF

77

**********#****#*#*************##*******#******#*#**

at at

* ARRAY STORAGE USED IN DISPLAY ROUTINES *

a: we:

#**##*#**********#********************#*#*****

*

*

*

PTSTR BSS 6*MXPNT POINT STORAGE

*

* PTSTR STORAGE FORMAT

*

t

* SIX-HORD RECORDS, ORGANIZED AS FOLLOHS

O -- ADDRESS OF ASSOCIATED PARAMETER BUFFER

* l -- X-OBJECT COORDINATE

* 2 -- Y—OBJECT COORDINATE

* 3 -- z-OBJECT COORDINATE

* 4 -- X-SCREEN COORDINATE

* 5 -- Y-SCREEN COORDINATE

*

t

*

VCSTR BSS 2*MXVEC TRAVERSAL PATH STORAGE

VCSTR STORAGE FORMAT

TWO-WORD RECORDS, ORGANIZED AS FOLLOWS

O -- ORDINAL POINT NUMBER

I -- BEAM CONTROL

LTBF BSS 3*MXVEC REFRESH DATA BUFFER

PLTBF IS AN EXACT IMAGE OF THE

REFRESH BUFFER, SO THAT THE

REFRESH BUFFER MAY BE UPDATED

AT MAXIMUM SPEED

PLTBF STORAGE FORMAT

THREE-WORD RECORDS, ORGANIZED AS FOLLOWS

-- X-DIFFERENCE

- Y-DIFFERENCE

-- BEAM CONTROLfl
*
‘
*
'
*
!
I
*
i
¥
*
‘
§
*
*
*
‘
*
1
7
*
1
I
*
’
*
I
*
fl
-
*
i
t
*
‘
i

O

I

2

RFSTR BSS

#

RFSTR

* -----

t

t

t

*

*

t

t

*

DBPRM BSS

*

* OBPRH

* -----

t

* NINE-WORD

* 0 -- SINE

* l

* 2 -- SINE

* 3

t 4 -- SINE

* 5

*6

t 7

t 8

78

3*MXVEC REFRESH INFORMATION STORAGE

STORAGE FORMAT

THREE-WORD RECORDS, ORGANIZED AS FOLLOWS

O -- X-DIFFERENCE

I -- Y-DIFFERENCE

2 -- BEAM CONTROL

9*MXOBJ OBJECT PARAMETER STORAGE

STORAGE FORMAT

RECORDS, ORGANIZED AS FOLLOWS

OF X-ANGLE

-- COSINE OF X-ANGLE

OF Y-ANGLE

-- COSINE OF Y-ANGLE

OF Z-ANGLE

-- COSINE OF Z-ANGLE

-- X-TRANSLATION

-- Y-TRANSLATION

-- Z-TRANSLATION

79

TRIGONOMETRIC TABLE

THE FOLLOWING TABLE IS 5/4 PERIODS OF THE

SIN FUNCTION9 ROUNDED TO 15 BITS AFTER

MULTIPLICATION BY 32767. THE TABLE SERVES AS

BOTH A SINE AND COSINE TABLE: IN INCREMENTS

OF ONE DEGREE. FOR BREVITY. THE TABLE IS IN

CHARACTER CODE. IT OCCUPIES 450 WORDS.

/ 0 I 7.

I G 3

U
?
»
*
+
t
*
'
fl
4
*
§
'
*
4
+
*

IN EBC .

EBC .

EBC .

EBC .

EBC .

EBC .

COS EBC . K

EBC

EBC

EBC

EBC

EBC

EBC D 9I7 402 O ZFX V T

EBC 0 O M K O OIYGUEUCZAZ

EBC .0 D 8 S

EBC =

EBC

EBC

EBC

EBC

EBC

EBC

EBC

EBC

EBC

EBC

EBC

EBC

EBC

EBC

”

‘

x

I II
I-

0
0
0
0
0
0
0
0
0
0
0
0
0
0

6.

M

"
W

N

U
"

a S 80

O AZCZEUGUIY O 0 K M

T V X ZF 0 2 40

I G 3 .

=""==I=O . K

§
*
*
*

END

LISTS 0F REFERENCES

BI.

82.

BB.

34.

BIBLIOGRAPHY

Newman, William M., and Sproull, Robert F. Principles

of Interactive Computer Graphics. McGraw-Hill,

1973.

Csuri, Charles, 'Computer Animation', Proceedings

of the Second Annual Conference On Computer

Graphics and Interactive Techniques, Com-

puter Graphics, SIGGRAPH-ACM, Spring 1975.

Noll, A.M. "Scanned-Display Computer Graphics,

Communications of the ACM, March 1971.

Ball, N. A., Foster, H. 0., Long, W. H., Sutherland,

I. E., and Wigington, R. L., "A Shared

Memory Computer Display System." IEEE

Transactions on Electronic Computers,

October 1966.

80

LIST OF REFERENCES

The following companies market the hardware

described in the test.

R1.

R2.

R3.

R4.

R5.

R6.

R7.

R8.

R9.

Intermedia Systems, Cupertino, California, 1975

Lexidata Corporation, Lexington, Massachusetts, 1975

Data Translation Inc., 1975

Megatek, San Diego, California, 1975

Adage, Inc., Boston, Massachusetts, 1969

Vector General, Inc., Canoga Park, California, 1972

Applications Group, Inc., Maumee, Ohio, 1975

Evans and Sutherland Computer Corporation,

Salt Lake City, Utah, 1974

Owens-Illinois, Inc., Electro/Optical Display

Business Operations, Toledo, Ohio, 1975

81

HICHIGRN STRTE UNIV. LIBRRRIES

1 11111111111 ’ M
1

1

1
3 293101871139

