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ABSTRACT

A SMALL SCALE REAL TIME

COMPUTER GRAPHICS SYSTEM
by

Christopher Scussel

With the increasing popularity of graphic dis-
plays as a medium for computer interaction, and with
the advent of the relatively inexpensive small scale
computer, a need for an inexpensive add-on real time
graphics system has developed. A review of current
display technology indicates a lack of availability of
such a system.

This paper describes a system consisting of an
oscilloscope, an analog vector generator, IBM 1800
computer, and a set of FORTRAN compatible user level
subroutines. The system is capable of displaying up to
200 vectors, representing several three dimensional
wire frame objects, and can translate, rotate, deform,
and project them in perspective in real time. The
system is compatible with most modern minicomputers,
and if an oscilloscope is already available, the total
additional cost of hardware for the system is about

thirty dollars.
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INTRODUCTION

With the increasing popularity of graphic dis-
plays as a medium for computer interaction, and with
the advent of the relatively inexpensive small scale
computer, a need for an inexpensive add-on real time
graphics system has developed. A review of current
display technology indicates a lack of availability of
such systems. The purpose of this paper is to describe
an inexpensive stand-alone graphics system, designed
around a typical minicomputer. The system consists of
a display processor, display software, a hardware vec-
tor generator, and a display device. To help attain
the cost objective, the display processor is actually
the minicomputer, which shares its time between dis-
play processing, display refreshing, and normal
(non-display) processing. The display software allows
apparently continuous transformations on up to two
hundred vectors (typically) in three space, including
rotation and perspective, without requiring floating
point hardware, thus attaining the real time objective.

The vector generator is a small device consisting of



operational amplifiers and solid state switches, and
the display device is an unmodified laboratory oscil-
loscope. Since oscilloscopes are generally available
at minicomputer installations, the additional hardware
cost of the system is quite low.

The system is designed to provide the minicom-
puter user with small scale real time interactive
graphical capability, through the use of a set of
FORTRAN-compatible subroutines for generating and
manipulating wire-frame representations of objects.

A prototype of this system has been assembled, using

an IBM 1800 processor-controller as the minicomputer,

a low performance vector generator (total component
cost about thirty dollars), an object oriented software
system, and a laboratory oscilloscope associated with
the IBM 1800 installation. This system, hereafter
referred to as "the prototype system," is capable of
displaying multiple wire-frame objects undergoing
distinct rotational, translational, deformational, and
perspective transformations, in real time.

This paper is divided into three sections: a
review of current real time display technology, a des-
cription of the prototype system, and an explanation

of the prototype system software.



1. Current Real Time Display Technology

Even though real time graphics systems range
from rudimentary point drawing systems to extremely
expensive systems capable of generating images of shaded
polyhedral objects, all graphics systems can be broken
down into three basic parts: the display device, the
display generator, and the display controller. A small
scale system designed for real time operation cannot
currently hope to achieve a shaded image, so the best
that can be hoped for is line drawing capability. Thus,
the display generator is actually a line, or vector,
generator.

These three divisions are discussed below, and
the best candidates for a small scale real time gra-

phics system are selected.

1.1. Display Devices

The cathode ray tube has been the traditional
choice for electrovisual systems for many years, and
there are a number of ways in which it can be used in
a graphics system. Also, new forms of display devices
are beginning to emerge from the laboratory, such as

plasma panels and liquid crystal displays. Since the



choice of display device is crucial to the design of
the rest of the system, it is logical to begin with

an examination of the devices available.

1.1.1. Systems Utilizing Cathode Ray Tube Displays

1.1.1.1. Video Based Systems

Video devices utilize a raster scanned cathode
ray tube, similar to a television monitor. Some sys-
tems are designed to take advantage of this similarity
by using standard television format video signals to
drive the display. This enables such systems to use
a television monitor as a display device, making large
screen and multiple displays readily available, as
well as inexpensive.

The raster scan technique continually retraces
the screen in order to maintain the image, and so the
data comprising the image must be constantly resupplied
to the display. This may demand excessive data rates
from the computer. As an example, consider a display
with about 500 scan lines and as many points per line,
where each point may be intensified or unintensified,
and suppose thirty frames per second are displayed.
This is similar to an ordinary television monitor,
except that such a monitor has many more than just two
intensity levels. The specified resolution generates

about 250,000 points for which intensity information



must be sent to the display thirty times per second.
Even though this information amounts to only one bit
per point, the required data rate is in excess of
7,000,000 bits per second, which is too fast for the
computer to provide directly unless it is doing little
more than refreshing the display.

Because of the excessive demand upon the com-
puter if it is driving the display directly, a buffer
memory is generally inserted between the two. This
shifts the high data rate to being between the display
and the buffer, and allows the computer to spend most
of its time performing display computations instead
of refreshing the display. Also, the computer need
transmit to the buffer only those points which have
changed state (dark to light or vice versa) since the
last frame. This results in a considerable decrease
in the amount of data transmitted, especially in the
case of line drawing or wire frame displays.

The buffer memory is comprised of integrated
circuits, either random access memories or shift registers.
While shift registers are inexpensive and require very
simple control circuitry, the average time for access
to a given point is one half of the time required to
refresh the display. In the example given above, this
is 0.0167 seconds, which is far too great to be tolerated.

Thus, shift register buffer memory is generally limited



to applications in which the display changes relatively
infrequently, and so the computer can afford to access
all the points of the screen sequentially in one frame.
Random access memories completely circumvent this
problem, although with increased cost and controller
complexity (in particular, the computer can be allowed
memory access only between accesses by the display).
Random access buffer memories are utilized in several
display systems designed specifically for use with
minicomputers having a sixteen bit word size and video

monitors.Rl’ R2

These devices provide 256 by 256
resolution, yielding a one to one correspondence between
addressable display points and all possible sixteen

bit words. Such a system is not suitable for real

time applications, as the computer must generate lines

by accessing each point of the line, and so each line

may require on the order of a millisecond to be formed.

1.1.1.2. Oscilloscope Based Systems

Recently a number of display interfaces have
been marketed for use with a laboratory oscilloscope
as the actual display device. The simplest of these
interfaces is a point plotter, which is supplied with
points, in the form of digital coordinate pairs, by

the computer.R3

After entering a coordinate pair into
its single point buffer, the coordinates are converted

into voltages by a pair of digital to analog converters



and the beam of the oscilloscope is deflected to the
desired point, and that point is illuminated. The
computer must draw lines as a series of points, and
must periodically redraw the image if it is to remain
on the screen.

More sophisticated devices combine point plot-
ting capability with a refresh buffer and a vector
generator, so that the oscilloscope display may be
maintained without the attention of the computer.R4
The vector generator vastly lowers the required
computer-to-display data rate and the refresh memory
size, if the images to be produced consist mainly of
line segments. Generally, the refresh memory cannot
be accessed by the computer, and thus the refresh
memory must be completely cleared and reloaded in
order to make the slightest change in the display
(short of the addition of new line segments). This
is a property common to most display devices which
maintain refresh memory external to the computer ser-
viced by the display. The concept of "shared memory"
for the computer-display interface has evolved to avoid

this difficulty (see section 2.3).

1.1.1.3. High Performance Hardware Systems
There are a number of commercially available
graphics systems which rely on fast special-purpose

hardware to maintain and transform the display on a



cathode ray tube.RS' R6

Such hardware usually includes
circuitry for rapidly performing matrix multiplication,
in order to facilitate translation, rotation, and per-
spective transformations. At least one system contains
not only this but also hardware for hidden surface
elimination and smooth shading of polyhedral objects.R8
This system is fast enough that objects consisting of
several hundred triangular faces may be displayed with
shading and transformed in real time. Unfortunately,

this capability is prohibitively expensive to all but

the largest computer graphics laboratories.

1.1.2. Systems Not Utilizing Cathode Ray Tube Displays
The cathode ray tube is far from ideal as an
electrovisual interface. It is bulky, requires unwieldy
voltages to accelerate and deflect its electron beam,
can smear moving images through phosphor persistence,
may be damaged by overly bright images, and is poten-
tially dangerous because of the risk of implosion.
Several alternative devices have been proposed which
avoid some of these problems: the plasma panel, light
emitting diode matrices, and liquid crystal displays.
Of these devices only the plasma panel is currently
commercially available, while the other two are still

undergoing development.



1.1.2.1. Plasma Panel Displays

The plasma panel is a flat, rectangular enclo-
sure containing low pressure gas, which may be ionized
by applying a voltage across electrodes on opposite
sides of the device. The electrodes are arranged
vertically on one side, and horizontally on the other,
so that the gas may be made to ionize, and thus glow,
in a small, discrete point, by energizing one vertical
and one horizontal electrode. By exploiting the
difference between the sustaining and extinguishing
voltages of the gas, the panel can provide its own
memory, and thus maintain an image with neither com-
puter intervention nor external memory hardware. This
does not provide for gray scale, although it has been
shown that several stable ionized states of the gas
may be used to provide different intensities, but this

is still experimental.Bl

The plasma panel display
suffers from the same data manipulation problems as

all the non-vector displays, namely, that a large amount
of information must be passed to the display in order

to move some part of the image. This can become a
serious problem in real time situations.

Plasma panel displays have just recently become
commercially available for use with small computers,
although their resolution (about sixty points per inch)
and size (about nine inches square) somewhat limits

their usefulness.R7' RI
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1.1.2.2. Light Emitting Diode Matrices
These displays are constructed from subarrays
of integrated light emitting diodes. Each individual
diode is addressable in a manner similar to that of
a word in a plane of random access memory: by selecting
the row and column containing the desired diode. Light
emitting diodes respond to changes in current very
rapidly (within a few nanoseconds), and so smearing
is not a problem. Since they have no inherent memory
the display must be continually refreshed by the com-
puter or external circuitry. Even so, this task is
less difficult than with cathode ray tube systems,
because light emitting diodes are low voltage devices
and thus do not require high voltage drive circuitry.
Currently the cost of this type of display
is very high, even though its resolution is poor (at best
about fifty points per inch). This situation will
undoubtedly improve as integrated circuit technology

continues to advance.

1.1.2.3. Liquid Crystal Displays

Liquid crystal displays are based upon the
fact that certain chemicals change their light scat-
tering properties in response to an electric field.
A flat, rectangular cell with electrodes on the front
and back (similar to the plasma panel) containing

liquid crystal material can be made to selectively



11

scatter or transmit incident light at each of the cells
formed by the matrix of electrodes. Note that the
display does not generate any light of its own; thus,
constrast is improved, rather than degraded, by high
ambient light conditions. By viewing scattered light,
a conventional display is presented. By viewing trans-
mitted light, the display becomes projecting, and thus
may generate very large images.

Liquid crystal displays are capable of inher-
ent memory, and share most of the data rate problems
of point addressable displays. In addition, they are
quite slow to respond to changes in the electric field,
and thus smear can be a severe problem for rapidly
moving images. Resolution is approaching one hundred
points per inch, but cost reliability are still major
problems. Further research should eliminate most of

these difficulties.

1.1.3. Conclusions

Cathode ray tube displays are the best selec-
tion for a small scale graphics system for two reasons.
First, their technology is well developed, allowing
relatively low cost through mass production and proven
driving circuitry design. Second, it can be used to
directly display lines, as opposed to the quantization

inherent in raster and matrix displays. This is a
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result of the fact the cathode ray tube is an analog
device, and thus not limited to a fixed set of digital
inputs.

The benefits of both advantages may be had by
using an oscilloscope as the display device. Aside
from its self-contained power supplies and deflection
amplifier circuitry, the oscilloscope often has the
additional feature of being readily available at a
minicomputer installation, perhaps in connection with
maintainance of the computer and its peripheral equip-
ment.

Since the oscilloscope may be used in several
ways to generate images, it must be decided which
technique is appropriate for the desired graphics
system. In the small scale system considered here,
the images are to consist entirely of lines (or vectors),
so that the image generation problem reduces to one of

vector generation.

1.2. Vector Generation

Because many real time computer graphics
applications require lines to be drawn as part of the
completed image, it is worthwhile to have vector gener-
ation capability in the display hardware. Points can
then be generated by treating them as zero length
vectors, and thus a vector generator is sufficient to

generate most desired images. The vector generator



13

has no processing power, and simply draws a line seg-
ment between two specified endpoints. Also, the
vector generator has no refresh memory, and thus the
task of refreshing the display is left to the display
controller.

In an oscilloscope based graphics system,
vectors may be generated by either digital or analog
circuitry. Analog circuitry has the advantage that
it can be connected directly to the oscilloscope,
whereas digital circuitry requires digital to analog
converters in order to drive the oscilloscope. Digital

techniques will be treated first, then analog techniques.

1.2.1. Digital Vector Generation Techniques

Digital techniques generate a vector as a
sequence of points, and thus if the vectors comprising
the image are to be drawn fast enough to avoid flicker,
the hardware must generate the points very rapidly
indeed. For example, in a system designed to display
up to two hundred vectors with an average of two
hundred points each, and refresh the display thirty
time per second, points must be generated at a rate
of more than 1,000,000 per second. While this is not
excessive, it does require careful circuit design and

a simple sequential algorithm in order to be practical.
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Three digital techniques are treated here:
binary rate multipliers, digital differential analyzers,

and integer-scaled proportioning.

1.2.1.1. Binary Rate MultipliersBl

An n-bit binary rate multiplier accepts as
input an n-bit number m and a sequence of clock pulses,
and during its 2" clock pulse period generates m more
or less regularly spaced pulses. Thus, by using two
binary rate multipliers with counters to accumulate
their output pulses, any given vector can be approxi-
mated. The algorithm and circuitry involved for the
binary rate multiplier is quite simple, and in fact
high speed implementations are available as a single
integrated circuit. 1Its major disadvantage is that
the m output pulses are not sufficiently equally spaced
in time to draw straight vectors, resulting in lines
which vary in intensity and direction along their length.
Note that since each circuit will go through one com-
plete 2" clock pulse cycle for each vector drawn, each
vector requires 2" clock pulses to be generated, regard-
less of its length and direction. While this tends
to simplify the display controller, it lowers the number

of vectors which may be displayed without flicker.

1.2.1.2. Digital Differential AnalyzersBl

The digital differential analyzer type of

vector generator seeks to determine the set of points
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out of which to form the desired line segment by
approximating the solution to the differential equa-
tion which determines the line. This differential

equation is

where AX and AY are the X and Y coordinate differences
between the two endpoints of the line. There are various
forms of digital differential analyzer algorithms, all
of which are incremental in nature. That is, the next
step in the discrete solution is found by incrementing
either the X or Y coordinate (or both) of the previous
step. This means that a new point is generated for
each clock pulse, and so the desired vector may be
generated much more quickly than with the binary rate
multiplier form of vector generator. However, all
forms of the digital differential analyzer require
division to determine one or more of the parameters
involved in the algorithm. This division can be per-
formed in the vector generator, but this adds consider-
ably to the cost of the circuitry. On the other hand,
if the division is performed by the computer, it is
time consuming, and thus reduces the number of vectors
which can be displayed during one refresh cycle. The
division required by this type of vector generator is

its main fault. In some algorithms, the parameters
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are set up so that the division operation becomes a
matter of shifting, after forcing the divisor (an
estimate of vector length) to be a power of two.

While this avoids the division, it causes some points
to be displayed more than once and displays some points

which should not be displayed.

1.2.1.3. Integer-Scaled Proportioning

This method takes advantage of the fact that
since the slope of any vector to be displayed is rational,
the parameters of the vector can be scaled up by an
integer (namely, the product of the X and Y differences
of the vector endpoints) in order to make all of the
parameters integral. Explicit multiplication is not
necessary, and so this method does not succumb to arith-
metic difficulties, as does the digital differential
analyzer. Since this type of vector generator is not
treated in (Bl), it will be presented here in somewhat
more detail than the other two types of digital vector
generators.

This method is similar to the binary rate mul-
tiplier technique, in that it generates pulses which
are fed to counters, and the counters keep track of
the coordinates of the point which is to be displayed.
The method is iterative, and either one or both of the
counters is incremented during each iteration. A pair

of registers keeps track of which of the counters is
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to be incremented. These registers maintain a scaled
version of the progress made in drawing the line seg-
ment, with the scaling such that in order for the
generated line segment to be as close as possible to
the desired line segment, the two registers should be
as close to being equal as possible. The desired
scaling results if, during each iteration, the counter
corresponding to the smaller of the two registers is
incremented, and that register is increased by the
component of the desired line segment along the other
coordinate. For example, if the X register is smaller,
the X counter is incremented, and the X register is
increased by the difference of the Y coordinates of
the endpoints of the desired line segments. If the
two registers are equal, then both counters are incre-
mented and both registers are increased.

The algorithm is defined in F@RTRAN below,
where X and Y are the counters and XC and YC are the
registers. Notice that the coordinate differences
DX1 and DYl are actually the differences plus one, and
the registers are initially these differences rather
than zero. This causes the algorithm to work for
horizonatal and vertical line segments, without

additional logic.
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SUBROUTINE DRAW (XA, YA, XB,YB)
IMPLICIT INTEGER (A-2)

DXl = XB-XA + 1

DYl = YB-YA + 1

XC = DY1
YC = DX1
X = XA
Y = YA

CALL PLOT(X,Y)
1l IF(X.EQ.XB .AND. Y.EQ.YB) RETURN
IF (XC-YC)2,3,4
2 X=X+1
XC = XC + DYl
CALL PLOT(X,Y)

GO TO 1
3X=X+1
Y=Y+ 1

XC = XC + DY1

YC = YC + DX1

CALL PLOT(X,Y)

GO TO 1

4 Y=Y+ 1

YC = YC + DX1

CALL PLOT(X,Y)

GO TO 1

END
In the above subroutine, (XA,YA) and (XB,YB) are the
endpoints of the vector to be drawn, with XB>XA and
YB>YA, and PLOT intensifies the given point on the
screen. By keeping the quantities X and Y in up/down
counters, the hardware can easily handle those cases
where XB<XA or YB<YA. Note that the algorithm involves
no multiplications or divisions, and generates a new
point during each iteration. It can be implemented
inexpensively with integrated circuitry, and is quite
fast. An additional feature of this particular method
is that the lines which are generated are symmetric

from endpoint to endpoint and balanced around the line

being approxiqated. This means that, aside from
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generating visually pleasing lines, no extra points
will be intensified if a line is retraced opposite

its original direction.

1.2.1.4. Conclusions

Any of the three types of digital vector gen-
erators presented here are suitable for a low cost
graphics system. However, the integer-scaled propor-
tioning technique yields the best lines, far better
than those of the binary rate multiplier technique,
and completely avoids the divisions of the digital
differential analyzer methods. In addition, the
proportioning technique can elegantly handle any
combination of vector endpoints, whereas some of the
digital differential analyzer methods must split the
possibilities into several cases, which may complicate
the controller. Thus, the integer-scaled proportioning
technique is probable the best suited for a digital

vector generator in a small scale graphics system.

1.2.2. Analog Vector Generation Techniques

In the past analog generators have been dif-
ficult to work with and expensive, since their proper
and accurate operation depended upon careful adjust-
ment of complex circuitry. More recently, improvements
in integrated and hybrid circuit technology have
considerably reduced both the complexity and sensitivity

of analog circuitry, and so analog vector generators
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have become more practical. This is fortunate, because
analog vector generators are inherently much faster
than digital ones, and can require less control cir-
cuitry. And, of course, analog generators actually
draw lines, as opposed to a series of points.

There are many forms of analog vector genera-
tions, most of which fall into three basic classes:

exponential, interpolation, and integration.

1.2.2.1. Exponential TechniquesBl

The exponential methods are based on the fact
that the charging.curves of resistor-capacitor (RC)
circuits are all scale models of each other. Thus,
if simultaneous (but possibly unequal in magnitude)
voltage steps are input to identical RC circuits
(initially in equilibrium), the output voltages will
be such that a line segment will result, if they are
plotted parametrically. If the input voltage function
is

vV, = Va for t<0

in
Vb for t>0

then the output voltage function of an RC circuit

with this input is
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Vout = Va for t<0
Va + (Vb - Va)(l - exp(-t/RC)) for t>0 .

Figure 1 shows this relationship.

This generator suffers from two basic problems:
the generated line segment does not attain its endpoint,
and the intensity of each vector varies along its
length. As can be seen from the output voltage func-
tion above, the "final" voltage value Vb is never
achieved, only approached as t approaches infinity.
Thus, a vector will be 99 percent complete when t is
4.61RC, but will still never attain its endpoint.

This problem can be somewhat alleviated by reducing
the resistances as each vector nears its endpoint,

and so increasing the rate at which the endpoint is
approached. This does not result in attainment of the
endpoint in a finite time unless the resistance values
are decreased to zero, but if the values become reason-
ably small, the endpoint is attained, practically
speaking, within an acceptably short period of time.
Correcting the varying intensity requires changing

the beam current to compensate for the changing beam
velocity across the screen. Since the function relat-
ing beam current and screen intensity is highly
nonlinear, adequate compensation is difficult to

achieve. One advantage of the technique is its freedom
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from drift; the relative error of the vector endpoints
does not increase between the first and last vectors

drawn during each frame.

1.2.2.2. Interpolation TechniquesBl

Interpolation schemes form a line segment by
taking a weighted average of the endpoints of the
segment, as the weights vary linearly between zero

and one:

\' =Xa+W(Xb-Xa)
v =Ya+W(Yb-Ya) .

The particular form of the equations above demonstrates
why this is known as an interpolation technique. The
basic problem with this type of technique is keeping
the sum of the weights unity, or, in the equations
above, accurately performing the multiplication. This
difficulty may be circumvented by designing the vector
generator around a modified multiplying digital to
analog converter. However, the circuitry involved
in this approach is somewhat more complicated and crit-
ical than that of ordinary digital to analog converters.
Advantages of this technique are lack of drift

and uniform intensity along the length of each vector.
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1.2.2.3. 1Integration TechniquesBl

Integration techniques involve the use of
operational amplifiers with capacitive feedback in
order to generate ramps with slopes proportional to
the input voltages. When the output voltages are
plotted against each other on the display screen, a
straight line results. The orientation and length
of the line can be controlled by varying the integra-
tor time constants, the input voltages, or the
integration times.

An integrator with variable time constant
requires an electronically variable resistor or
capacitor, which are generally difficult to control
with the necessary accuracy. Also, changing the time
constants of the integrators changes the rate at which
the beam is swept across the screen, and thus the
intensity of the generated vectors will vary with their
length and orientation.

All vectors may be made to be of equal inten-
sity, without resorting to modulation of beam current,
if the beam sweep speed is held constant. Integration
time is then proportional to vector length, and the
integrator input voltages are proportional to the
components of the unit vector in the direction of the
desired vector. Notice that this essentially requires

the polar form of the vector, and that the integration
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time be variable, but highly accurate (on the order
of one microsecond). While the required timing can
be performed in the vector generator hardware without
difficulty, the polar coordinate conversion is diffi-
cult and potentially time consuming whether done in
the vector generator, display controller, or the
computer itself.

Leaving the time constants and integration
time unchanged and modifying only the input voltages
is easily done, and has several advantages over these
other techniques. The ideal integrator transfer func-
tion is

Vout = -1/(RC) [ Vin dt

and thus if the initial point of a vector is (xa'Ya)
and the final point is (xb,Yb) then the integrator
inputs are proportional to xb-xa and Yb-Ya; further,
the integrator outputs are initially Xa and Ya' and
change linearly to X, and Yb. This is illustrated in

Figure 2. Since the differences xb-xa and Y -Ya can

b
be positive or negative, bipolar voltages must be
applied to the integrator inputs. The integration
time is constant, so each vector requires the same

amount of time to be drawn, and if the beam current

is constant, long vectors will be dimmer than short
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vectors. Even so, since each vector is traced at a
constant speed, it will be of constant intensity along
its length.

The main problem with the integrator type of
analog vector generator is integrator inaccuracy.
This stems mostly from feedback capacitor loading and
leakage, and operational amplifier output offset.
Capacitor loading is caused by the finite input impe-
dance of the operational amplifier draining the charge
of the capacitor, and capacitor leakage is due to the
imperfect capacitor dielectric. Operational amplifier
output offset is due to electrical imbalance within
the amplifier, and causes the output to be at a nonzero
voltage, even if the amplifier inputs are grounded.
The effect of capacitor loading and leakage is to
displace the vector endpoints and distort the vectors,
so that they appear to bend, in severe cases. These
effects tend to be about equally bad for each vector
in a given image. However, output offset is constantly
integrated by the integrators, and always has the same
sign, and thus accumulates, making each successive
vector endpoint more in error than the previous one.
Feedback techniques have been developed which minimize

these problems.Bl
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1.2.2.4. Conclusions

The integration type vector generator is the
best suited analog technique for three reasons. First,
unlike the exponential method, the vectors it generates
have uniform intensity along their lengths. This is
especially useful with three dimensional displays,
since false depth cues are created by vectors which
grow dim at one end. Second, both the generator and
controller circuitry are simple, compared to that
required for the interpolation techniques. And third,
the inaccuracies of the integration method are readily
avoided for the short periods of time involved in gen-

erating a small scale display.

1.2.3. Conclusions

Analog vector generator techniques, particularly
the integration method mentioned above, can be satis-
factorily implemented in a small scale graphics system
at a lower cost than comparable digital generators.
This is due to the comparative complexity of the
controller required in the digital systems.

Also, a low cost vector generator will tend
to have poor resolution, since lowering resolution is
one way to lower cost. In an analog vector generator,
this affects only the possible positions of the vector
endpoints; the vectors themselves will still be line

segments. In a digital vector generator, lower
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resolution implies coarser, less pleasing discrete

approximations to the desired vectors.

1.3. Display Controller

It is the responsibility of the display con-
troller to direct the display generation hardware, in
order to provide the desired images. The controller
is not always identifiable in a graphicé system, since
it may be distributed in various other parts of the

system.

1.3.1 Display Controller Separate From Computer

The key feature of a display controller which
is separate from the computer is that the display can
be maintained on the screen without the intervention
of the computer. If the controller is sufficiently
powerful, a dynamic image, with rotating objects, for
example, can be displayed without the attention of the
computer. For a small scale system this is clearly
impractical, and so the controller is limited to the
ability to maintain only static displays.

If the controller is to maintain an image with-
out computer intervention, then it must have some type
of memory, either of its own or shared with the computer.
If the controller has its own memory, then the computer
must have some access to it, possibly via the controller
itself, in order to modify the display. If the computer

shares its own memory with the controller, then the
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computer can expeditiously change the "controller

memory" in any desired manner.B3' B4

1.3.2. Computer As Display Controller (Software Display
Controller)

If the computer is fast enough and its software
efficiently coded, it is possible to have the computer
directly control the display generation circuitry.

This saves the display system the extra hardware and
expense of a separate controller, and gives the system
some extra versatility, in that the display controller
is actually software, and can be recoded to serve
specific needs. However, the computer must spend some
of its time maintaining the display, even if it is

not changing, and this essentially lowers the computer
power available to the process (such as a simulation)
which is being displayed by the system. As the com-
plexity of the image displayed rises, a greater propor-
tion of time is spent refreshing the display, until
the display begins to flicker or there is no compute

time left for the process being displayed.

1.3.3. Conclusions

A software display controller is preferable
in a small scale system. Such a controller involves
no extra hardware cost, and can be modified easily so
that it performs efficiently with the type of problem

being investigated with the system. Although this type
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of controller can cause available processing power
to decrease, this is not a serious problem in a small
scale system, since overly complex images are not

being attempted.

1.4. Conclusions

These considerations lead to the following
graphics system: display controller incorporated into
the computer, integrator type analog vector generator,
and an oscilloscope as the display device. Since a
suitable oscilloscope is generally associated with
a small computer installation, and an integrator vec-
tor generator is fairly simple, such a system meets

the low cost objective.



2. The Prototype System

The prototype system is a small scale real
time computer graphics system, composed of a labora-
tory oscilloscope, an inexpensive analog vector
generator, a software display controller resident in
an IBM 1800 computer, and FORTRAN compatible user level
routines for the IBM 1800. The first three of these
components are discussed below, and the last is dis-

cussed in the third chapter.

2.1. Display Device

An oscilloscope was chosen as the display device
because a small computer installation will often have
one already available, thus avoiding the costs involved
in purchasing some other type of display. Also, nearly
any modern oscilloscope will suffice, since the require-
ments of the system are quite moderate. If the system
is to display two hundred vectors in one sixtieth of
a second (thus refreshing at a rate of thirty Hertz
with 50 percent duty cycle), only 12,000 vectors per
second are being displayed. An oscilloscope with a
one megahertz bandwidth can easily reproduce the waveforms

required for such a display.

32
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The small size of the oscilloscope screen is
potentially a disadvantage to a graphics system, since
the details of a complex image may be obscured. However,
this is unlikely to happen in a small scale graphics
system, since the displays cannot become excessively
complicated. Also, the beam can be deflected far off
the visible part of the screen with no ill effect other
than loss of time, which cannot be serious because of
the image simplicity. This relieves the system of the
burden of clipping the display, and leads to a substan-

tial reduction in display computation time.

2.2 Vector Generator

The prototype system vector generator is of
the analog integrator type. The problems inherent in
this type of vector generator have been overcome to
the point that performance is quite good, and yet cost
is held to a minimum.

A circuit diagram of the vector generator is
shown in Figure 3. Polystyrene dielectric capacitors
and field-effect transistor input operational ampli-
fiers are used to minimize capacitor leakage and
loading. Output offset effects are neutralized during
each refresh cycle by a trimming potentiometer connected
to the integrator summing junctions, which is adjusted
by hand while watching the display for best results.

This simple adjustment need be performed only rarely.
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Output offset if prevented from accumulating by the
solid state "RESET" switch, which resets the integra-
tors to zero volts output between refresh cycles, under
direction of the display controller. Since each refresh
cycle starts from this reset state, the image is quite
stable on the screen.

One of the most crucial parts of the vector
generator design is the solid state switch on the input
of each integrator. This is the "HOLD/RUN" switch,
which grounds the integrator inputs between the genera-
tion of successive vectors. During this time, the
digital to analog converters which provide the voltages
for the integrator inputs are receiving new digital
values from the display controller. The individual
bit switches in the digital to analog convekters do
not all respond in the same length of time, so the
analog outputs make several transitions, instead of
a single one, as the new value is converted. This
results in impulse-like voltage spikes ("glitches"),
which when integrated displace the endpoints of consecu-
tive vectors. This cannot be tolerated, so the display
controller switches the integrator inputs from the
converter outputs to ground, whenever a new value is
being converted. While eliminating the glitch problem,
this technique causes the endpoints of each vector to

be somewhat brighter than the vector itself, since the
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beam dwells there before beginning the next vector.
Generally this effect is not displeasing.

While on the subject of vector intensity, it
should be noted that although vector intensity is
inversely related to vector length, the oscilloscope
screen phosphor quickly saturates on the moderately
short vectors, thus preventing too wide a range of

vector intensities.

2.3. Display Controller

The prototype system display controller is
actually a refresh program in the IBM 1800 computer.
The user level routines maintain a list of X and Y
screen coordinate differences and beam controls, called
the refresh buffer, and periodically this list is traced
by the refresh program and transmitted to the vector
generator. A refresh cycle is begun whenever a timer
interrupts the computer and forces execution of the
refresh program. As a refresh cycle begins, the pro-
gram turns the "RESET" control line off, enabling the
vector generator. It then begins sending pairs of
X and Y screen coordinate differences to the digital
to analog converters, while sending the beam control
to the oscilloscope. While each pair of coordinates
is being converted, the program sets the "HOLD/RUN"
line to "HOLD", to avoid integrating converter glitches,

and then to "RUN" in order to draw the vector. At
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the end of the refresh cycle, the beam control is
turned off, and the "RESET" line is turned on. Then,
the program sets the timer, and returns to the program
which was interrupted by the start of the refresh cycle.
Thus the time between the end of one refresh
cycle and the beginning of the next is constant. This
results in a lower refresh rate for complicated displays,
but prevents the system from stalling by spending all
of its time on display refreshing. If the lower limit
of refresh rate is R Hertz, and each vector requires
V seconds to be displayed, then the constant time above
is 1/(2R), and the number of vectors which can be
displayed 1/(2RV), assuming the computer spends half
its time refreshing the display, at most. For the
prototype system, V is about 200 microseconds, and so
about 167 vectors can be refreshed at fifteen Hertz,
while 50 percent of the processing power of the com-
puter is available for other computations. The IBM
1800 used in the prototype system is quite slow, with
a four microsecond cycle time. Modern minicomputers
are at least four times faster, and so a corresponding
performance improvement should be noted if such a

machine were used.

2.4. Summary
The combination of oscilloscope, integrator

type analog vector generator, and software display
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controllef provides for the display of 167 vectors
fifteen times per second while consuming only half of
the available processing time, even on a slow computer.
This is accomplished with a total hardware cost of
about thirty dollars, assuming the availability of an

oscilloscope.



3. The Prototype Software System
A set of FORTRAN compatible subroutines acts
as the interface between the prototype system and the
user of the system. These routines are object oriented,
that is, they are designed to facilitate the generation
and manipulation of wire frame skeleton objects in
3-space. A set of objects is defined by the user as
a collection of point sets, along with a set of vec-
tors which interconnect these points. The software
maintains a list of the points, and the object to which
they belong, and a list of vectors which constitute
a path for drawing the set of objects (note that some
of the vectors are dark vectors, representing a move
as opposed to a draw). It also maintains a table of
object transformation parameters, specifying X, Y, and
Z axis translations and rotations. Whenever the user
calls for a display update, each point is transformed
according to the parameters specified for the object
to which the point belongs, and a new image is traced
into the refresh buffer. This is diagramed in Figure 4.
The first section of this chapter is devoted

to a description of the user level routines and their

39
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use. The second section is a description of the

operation of the transformation software.

3.1. User Level Routines

These routines are primarily designed to show
how the basic transformation and display software may
be interfaced to user-oriented software, and to show
that the transformation software is capable of func-
tioning in real time (as Csuri notes, "Too often systems
which are the result of a research experiment in hard-
ware or software design do not go beyond a beautiful
demonstration of potentialities.“)Bz

The software is object oriented, and all
computations are performed in the object coordinate
system, down to the final transformation into screen
coordinates. The software is in three basic categories:
display control, object generation, and object

manipulation.
3.1.1. Display Control

3.1.1.1. Activate Refresh--VG@N

The routine VG@N first checks an initialization
flag, and initializes the display software system if
it is not set. 1In the prototype system, the hardware
does not have its own power supplies, and derives its
power (+10, -10, and +5 volts) from analog outputs on

the IBM 1800. So, as part of the initialization process,
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these analog output lines are set to the appropriate
voltages. Also, the point and vector counts are set
to zero. Finally, the initialization flag is set,

to prevent subsequent call to VG@N from causing
reinitialization, and the refresh programming is
activated. This activation consists of replacing a
timer interrupt vector with the address of the refresh
program, on the prototype system. The old address

is saved (see section 3.1.1.4).

The second phase of VG@N is always performed,
regardless of the setting of the initialization flag.
In this phase the timer is set for the time that is
to elapse between the end of one refresh cycle and
the start of the next, and started. VG@N then returns
to the calling program, with the refresh programming

maintaining the display.

3.1.1.2. Deactivate Refresh--VG@FF

This routine turns off the timer, preventing
timer interrupts and thus disabling the refresh pro-
gramming. VG@FF then returns to the calling program,

with the display screen blank.

The ERASE routine is used to clear the screen,
and should be called only when the refresh programming

is active. ERASE first turns off the timer, disabling
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the refresh programming. Then, the refresh buffer
is cleared, and the refresh vector count is set to
zero. Finally, the timer is restarted, reactivating

the refresh programming, with the display screen blank.

3.1.1.4. Reset System--VGEND

The VGEND routine restores the timer interrupt
address (see section 3.1.1.1.) after disabling the
timer, thus restoring the operating system of the com-
puter to its original state, in preparation for
terminating the run of the graphics program. VGEND
should be called only after the graphics software has
been initialized (by a call to VG@N), so that the
location reserved for the saved interrupt address
indeed contains that address. VGEND returns to the
calling program, not to the operating system, and thus

the system may be restarted with VG@N.

3.1.2. Object Generation

3.1.2.1. Point Generation--P@INT(IOBJ,IX,1Y,I2)

The P@INT routine increments the point count
and stores the coordinates of the point specified by
the integer triple (IX,IY,IZ). Points thus stored
are used as vertices for wire frame representations
of objects. An integer object number, I@BJ, is associ-
ated with the point, so that all points with the same

object number can be transformed as a single set, or
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"object" (see section 3.1.3). The actual value of
IgBJ is not important, as long as the same value is
used for other points that are to be in the same object,
and the value used does not exceed the maximum number
of objects for which the system is configured. For
example, the prototype system is configured for a
maximum of ten objects, so the integers from one to
ten, inclusive, may be used as object numbers. Also,
the number of points which may be created is limited
by the amount of storage which the graphics software
has reserved for them. In the prototype system, up

to two hundred points may be created. Although points
are transformed in groups according to object number,
vectors may span between any two points, and thus
between points belonging to different objects (see

section 3.1.2.2).

3.1.2.2. Vector Definition--VECTR(IPNT, IBEAM)

The routine VECTR creates a vector from the
current point to the point with integer ordinal IPNT.
That is, the endpoint of the vector to be created is
the point which was created in the IPNT-th call to
PZINT. The starting point for the vector is the endpoint
of the previous vector, so that the starting point of
the first vector is undefined. The integer argument
IBEAM controls the intensification of the vector; if

IBEAM is one, the vector is visible, and if IBEAM is
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two, the vector is invisible. Thus, the first call

to VECTR should always have IBEAM equal to two, to

ensure that the vector with the undefined initial point
is not visible. Since a point ordinal is specified

to determine the endpoint of each vector, a vector

may span between any two points, even if the points

are in different "objects" for the purposes of transfor-
mations. Only the points are subjected to transformation,
and when the transformation parameters change so that

the screen coordinates of a point change, all the vectors
which have that point as an endpoint are altered so

as to end at the new position of the point. Thus, the
vectors act as "rubber bands" stretched between their
endpoints, and automatically follow the motions of the
endpoints, stretching and shrinking as the points move
relative to one another. There is a maximum number

of vectors which may be defined; the prototype system

is configured for a maximum of two hundred vectors.

In order to save time, no checking is performed against
this limit, and the results are unpredictable if it

is exceeded.

3.1.3. Object Manipulation

3.1.3.1. Object Positioning and Orientation--
@BP@S (I4BJ, IXANG, IYANG, IZANG, IXM@V, IYM@V, IZM@V)

The @BP@S routine allows the user to specify

rotational and translational transformations to be
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applied to the set of points with object number I@BJ.
First, the specified set of points is rotated
IXANG degrees about X-axis. Then, the result is rotated
IYANG degrees about the Y-axis, and then IZANG degrees
about the Z-axis. The sense of rotation is right-handed
for the X and Y-axes, and left-handed for the Z-axis,
meaning that a positive angle specification will cause
a rotation in the direction of the curl of the fingers
of the appropriate hand, if the thumb is pointing in
the positive direction of a given axis. The result
of the rotation transformations is then translated
IXM@V units in the direction of the positive X-axis
(to the right on the screen), IYM@V units in the direc-
tion of the positive Y-axis (towards the top of the
screen), and IZM@V units in the direction of the posi-
tive Z-axis ("into" the screen). The position and
orientation of the point set on the screen does not
change at the time of the call to @gBP@S. Rather, the
parameters of the call are stored in the parameter
buffer for that particular point set, and the new
transformations are performed when the display buffer
is updated by a call to the UPDAT routine (see section
3.1.3.3).
3.1.3.2. 1Individual Point Repositioning--
PNTMV (I@BJ, IPNT, IXM@V, IYM@V , IZM@V)
The PNTMV routine allows individual point

positions to be changed, and thus change the "shape"
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of a displayed object, even if all of its vertices
belong to the same point set. A particular point to
be moved is referenced as the IPNT-th point of the
IgBJ-th point set, or "object." The translation para-
meters IXM@V,IYM@V, and IZM@V are added to the
originally defined coordinates of the specified point,
and the sums replace the original coordinates. No
change is made to the display until the UPDAT routine
is called to recalculate the transformations (see sec-
tion 3.1.3.3). The routine can be used to translate an
entire point set (by using multiple calls), so that

if a rotation and a compensating translation are
specified for the translated point set, the effect is
to offset the axis of rotation. This increases the
versatility of the prototype rotation scheme (see section

3.2.1).

3.1.3.3. Display Buffer Update--UPDAT

The UPDAT routine performs the transformations
specified by calls to @BP@S on the points defined by
calls to PPINT and modified by calls to PNTMV. It
then creates a display buffer by tracing through the
point-to-point vectors specified by calls to VECTR,
using the screen coordinate representations of points
resulting from the perspective projection. Then, while
inhibiting display refresh, the new display buffer is

copied over into the refresh buffer area, and the refresh
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vector count is set to the vector count of the new
buffer. Thus, all transformations which are specified
between calls up to UPDAT do not take effect until
UPDAT is called. After the refresh buffer is updated,
refresh is reactivated, and a refresh cycle is begun
immediately, in order to minimize the time the display

is blank after the buffer transfer is complete.

3.1.4. Example of Software Use

Figure 5 illustrates the use of the user level
routines in a short FORTRAN program segment. First,
the call to VG@N initializes the software and activates
the display. Next, a small square base pyramid is
defined by calls to P@INT and VECTR. The pyramid is
as high as its base is wide. The first D@ loop
repeatedly calls @BP@S and UPDAT, moving the pyramid
slowly away from the user while rotating it twice about
its vertical axis. After this, VG@FF is called, blanking
the display, and a square is defined which surrounds
the pyramid, by calls to P¢INT and VECTR. A call to
@#BP@S specifies no translations or rotations for this
new object, and when VG@N is called to reactivate the
display, it shows the square in the plane of the screen,
and the pyramid quite far away. Note that the plane
of the screen is just the plane of perspective projec-
tion, and objects can pass through it with no effect,

since the eye point is located along the negative Z-axis.
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CALL VGON
CALL POINT(141000,0,51000)
CALL POINT(1,1000,509-1000)
CALL POINT(19=-100040,-1000)
CALL POINT(1,-1000,0,1000)
CALL POINT(1,0,2000,0)
CALL VECTR(1,2)
CALL VECTR(2,1)
CALL VECTR(3,1)
CALL VECTR(4,1)
CALL VECTR(1,1)
CALL VECTR(5,1)
CALL VECTR(2,1)
CALL VECTR(3,2)
CALL VECTR(5,1)
CALL VECTR(4,1)
DO 100 J=1,720
CALL 0BPOS(1909J904050,J%10)
CALL UPDAT

100 CONTINUE
CALL VGOFF
CALL POINT(2,3000,3000,0)
CALL POINT(24-3000,3000,0)
CALL POINT(29,-3000,-3000,0)
CALL POINT(2,3000,-3000,0)
CALL VECTRI(6,2)
CALL VECTR(7,1)
CALL VECTR(841)
CALL VECTR(9,1)
CALL VECTR(641)
CALL 0BPDS(29090¢9090+0+0)
CALL VGON
DO 200 J=1,720
CALL 0BPOS(140490+04050,7200=-J%10)
CALL UPDAT

200 CONTINUE
DO 300 J=1,360
CALL 0OBPOS(14J90,0,0,0,0)
CALL OBPOS(29J90904040,0)
CALL UPDAT

300 CONTINUE
CALL VGEND

FIGURE 5. EXAMPLE OF PROTOTYPE SYSTEM SOFTWARE USE
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The second D@ loop serves only to move the pyramid
back to the plane of the screen, while the square
remains stationary. The third D@ loop rotates the
square and pyramid in unison about the X-axis once.
This causes a dramatic perspective effect as the apex
of the pyramid and the top and bottom of the square
alternately approach and recede. After this single
rotation, the display system is reset with a call to
VGEND in preparation for terminating execution of the
program. If the program had a new set of images to
display, ERASE could be called instead of VGEND to
remove the previously defined objects from the graphics

system.

3.2. Transformation Software

The transformation routines are a critical
part of a real time graphics system which does not
have transformation hardware. If the display is to
be updated often enough to maintain the illusion of
motion, the routines which perform translation, rota-
tion, and perspective projection must be carefully
coded (generally in assembly language) so as to be as
fast as possible. As few minicomputers possess floating
point arithmetic hardware, it is generally impossible
to attain the necessary speed unless all the transfor-
mation calculations are performed using integer

arithmetic. The integer multiply and divide
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instructions found on many minicomputers allow the

transformations to be rapidly performed.

3.2.1. Rotation

Rotation requires the evaluation of sums of
products, where the products are of object coordinates
and the sine or cosine of a rotation angle. This
involves two difficulties: the evaluation of trigono-
metric functions, and the handling of numbers less
than unity in magnitude, by using integer arithmetic.
In keeping with the integer orientation of the low
level display programming, an angle of rotation is
represented as an integer, indicating number of degrees
of rotation. Thus, if the angle is treated modulo
360, it may be used as a subscript to find the required
values in precalculated tables. It is common for
minicomputer divide instructions to have provisions
for obtaining the remainder upon division, so that the
modulo operation may be performed very quickly. However,
if the divide instruction lacks this feature, the remain-
der may be computed in a manner analogous to the FORTRAN

expression

N - N/ 360 * 360 .

Once the angle is reduced to between zero and 359 degrees
by the modulo 360 operation, it may be used directly

as a subscript to look up the corresponding sine and
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cosine values, if enough memory is available to con-
tain the required tables. Each value occupies one
word, and two tables are required, so a total of 720
words is necessary, if separate tables are used.

However, because of the identity

cos(6) = sin(6 + 90°)

the cosine table can start at the ninety-first entry
in the sine table, so that the combined sine-cosine
table occupies 450 words. Although this is still a
good deal of memory to use for a table, it is not exces-
sive, and yields a very fast technique for obtaining
the values of sine and cosine. By exploiting the
symmetries of these functions, further compression of
the table can be accomplished, at the expense of more
programming to reference the table and a longer access
time. If sufficient memory is available to contain
the larger table, then such compression efforts serve
only to lower the performance of the system.

The significance of the one degree resolution
of the trigonometric functions is two-fold. First,
it allows the use of a very natural technique for
specifying angles: an integer number of degrees. This
is consistent with the idea of avoiding floating point
arithmetic, and is convenient for the user of the
system. Second, it provides a simple method for pro-

gramming animation. For example, if an object is
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rotated through an angle which is increased by one
degree per frame, say, then the object will appear to
rotate continuously, if slowly, even though each change
of angle would be barely perceptible, if viewed by
itself. Thus, a number of rotation rates may be pro-
grammed by incrementing rotation angles by small integers.
Because of the modulo 360 computation involved in the
sine and cosine evaluations, angles in excess of
three-hundred sixty degrees are permitted, and in fact
angles as large as the maximum integer size imposed

by the word length of the minicomputer can be used.

In the prototype system, this limit is 32767, and thus
an object will rotate more than ninety times before
integer overflow occurs, causing a sudden jerk in the
otherwise smooth rotation.

Now, the required calculations may be performed
if the actual numbers stored in the trigonometric table
are scaled to fit the available integer range of the
minicomputer. Thus, with the sixteen bit orientation
of the prototype system, the trigonometric table entries
are scaled by a factor of 32767. A typical integer
multiply instruction will form a thirty-two bit product
from two sixteen bit numbers (assuming a sixteen bit
word), so if a number is multiplied by a value from
the trigonometric table, the most significant word of

the product will be within one least significant bit
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of half of the desired product. This is true because

the table is scaled by a factor of 32767, and the result
of the multiplication is scaled by a factor of 1/65536,
since only the most significant half of the product

is used. Therefore, two of the aforementioned "rotation
products" may be computed and added without fear of
overflow, or they may be shifted one bit to the left
before or after the addition, yielding the correct result,
within the two least significant bits.

The actual transformation equations used to
implement rotation depend upon the means chosen to
represent object orientation. One commonly used technique
specifies an axis of rotation (in terms of direction
cosines) and an angle through which the rotational
motion acts. This is somewhat inconvenient for the
user, since direction cosines are not a natural way
to specify a direction. Unfortunately, there seems to
be no convenient way for the user to specify a given
rotational motion. The prototype system attacks this
problem by providing the user with three ordered rotation
transformations: X-axis, Y-axis, and Z-axis rotations,
where the user specifies the number of degrees of each
rotation. The transformations are applied in the order
shown, allowing the general orientation capability
offered by the direction cosine techniques above, and

also providing a natural way for the user to specify



56

certain classes of orientations. This method has
performed moderately well, in terms of ease of use.
Also, it allows a good deal of computation optimization,
thus helping to assure smooth animation (see section

3.2.4).

3.2.2. Translation

Translation can be implemented by simply adding
the appropriate integer displacements to each coordi-
nate of each point involved. If all three coordinates
are treated identically, however, the resulting
"coordinate space" will be cubical, due to integer
range limitations, and thus has very limited depth
and perspective cues. This can be remedied by treating

the Z-coordinate separately (see section 3.2.6).

3.2.3. Perspective Projection

Generating a perspective image requires division,
which is generally a time-consuming operation, and thus
perspective projection is not providedkin many inex-
pensive real time display systems. If the display
screen is the plane Z = 0, the eye point (xe,Ye,Ze)

with Ze< 0, and the point to be projected (Xe,Ye,ze),

the projected point in screen coordinates is
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With the exception of the division, the equations are
trivial to implement using integer arithmetic. A

typical integer division instruction acts on a thirty-two
bit dividend and a sixteen bit divisor to produce a
sixteen bit quotient and a sixteen bit remainder, if
possible, and this instruction can be used to provide

the division required by the perspective projection
equations. If the numerator is placed in the thirty-two
bit register and divided by the denominator, the required
quotient is obtained, scaled by a power of two depen-
dent upon where the numerator was positioned in the
dividend register. This scaling can be used to increase
the depth of field available from the system (see section

3.2.6).

3.2.4. Concatenation of Transformations

A significant increase in the speed of the
transformations can be realized if they are applied
simultaneously rather than one at a time. 1In a typical
graphics system, the transformations are represented
as matrices, and the transformations are applied by

multiplying the vector representation of the points
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to be transformation matrices, so time may be saved

by computing the product of all the transformation
matrices beforehand, since matrix multiplication is
associative. While the matrix implementation is
straightforward and versatile, since transformations
may be added or deleted at will, it is relatively slow,
and thus is a luxury that cannot be afforded in a small
real time system. Instead, concatenation of transfor-
mations is accomplished while the transformations
themselves are being performed. Taking the prototype
system as an example, the order of transformations is
X-axis, Y-axis, and Z-axis rotations, X-axis, and Z-axis
translations, and X-axis and Y-axis screen coordinate
perspective projections. But instead of implementing
them in this order strictly, the software overlaps the
calculations as much as the available registers will
allow. The results of each calculation are used immedi-
ately, if possible, to eliminate unnecessary load and
store operations. This saves precious time during the
operation of transforming objects from their original
position and orientation down to screen coordinates,
which can make the difference between a real time
system and a jerky, eye-fatiguing graphics display.

The integrated character of the transformation coding
in the prototype system is evident from the program

listing (see appendix).
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3.2.5. Transformation Simplification
Further enhancement of transformation speed
is possible if the transformation equations are reduced
to their simplest practical state. In the perspective
transformation equations, one addition and one subtrac-
tion can be eliminated from each equation if the eyepoint
is constrained to lie on the line X = Y = 0. This
limits the system to displays in which the projection
plane and the observer are stationary, and the objects
being displayed move relative to them. This is not a
serious limitation, because the user of the system is
always facing in the direction of the display, and thus
should receive the impression that the objects which
he is observing are in motion, rather than himself.
Three operations of addition or subtraction
may be eliminated from each rotation equation, if all

the axes of rotation pass through the origin:

xl

Il

(X - Xo) . cos(ez) - (Y - Yo)-sin(ez) + Xo

becomes

x'

Xocos(ez) - Y-51n(ez)

where (Xo, Yo) is the point where the axis of rotation
(here, parallel to the Z-axis) intersects the plane
Z = 0. Since as many as six rotation equations must

be implemented (see section 3.1.3.1), the elimination
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of these operations can save a good deal of time in
processing the transformations. In the prototype

system, this saves about 18 percent of the time which
would otherwise be spent in performing rotation com-
putations: 104 microseconds versus 128 microseconds

per expression evaluation. The IBM 1800 has a relatively
slow multiplication instruction, so that a machine

with a faster multiplication instruction will realize

a greater percentage gain in time by using the simpli-
fied equations (although the faster machine would

probably not need the increase in speed).

3.2.6. Transform Limitations

Because sixteen bit integers are used throughout
the transformation calculations (using the prototype
system as an example), the coordinates used to define
points (object vertices) must be sixteen bit integers.
This means that the object space is a cube, centered
on the origin (the center of the display screen), and
approximately 65,000 units on a side. This is many
times larger than the display screen (typically about
1,000 units in diameter), but lacks sufficient depth
for convincing perspective effects. This is overcome
by scaling during the concatenation process, so that
the depth of field is increased by a factor of sixteen.
During the computation of the denominator of the perspec-

tive factor, the Z-coordinate of the point being
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processed is shifted three bits right, instead of

the normal one bit left, before the Z-coordinate
translation is added. This amplifies the effect of
the Z-axis translation by a factor of sixteen, without
distorting the cubical object space. Thus, whenever

a Z-axis translation is specified by the user, he

must be sure to use one sixteenth of the actual trans-

lation desired.



4. Summary

The prototype system described in this paper
is capable of displaying over 100 vectors, representing
as many as ten objects, and perform all the described
transformations fast enough to present a flicker-free
display. Fewer objects increases its vector count for
a flicker-free display, and more still may be displayed
by tolerating some degree of flicker. Static displays
may have up to 200 points before flicker becomes noticable.

The hardware cost of the system, exclusive of
the minicomputer and the oscilloscope, is about thirty
dollars. The software must of course be rewritten in
assembler for each different minicomputer, but this
is not difficult, and generally can be done by adapting
the prototype system code, provided in the appendix.

The IBM 1800 used in the prototype system is
quite slow, by modern standards, and so a new systenm,
using a minicomputer, should yield markedly better
performance.

Thus, the prototype system achieves its goal of

being a small scale real time minicomputer graphics system.
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APPENDIX



ENT UPDAT

ENT oBPOS
ENT POINT
ENT VECTR
ENT VGOFF
ENT VGON

ENT VGEND
ENT ERASE
ENT PNTMV

2k 2 3k 2 2 2 o ade ok ok o 2 ok 3 3¢ ok o 2k o0k ok ok Kk a ag o o K ok e e ko R Rk Aok ok kR K e ik ok koK ok
30 2 20 20 200 25 3 ok ok 2 2k 3 o ok ke ok ok ok K ok kol ok ol o ok ol o ok s 3k oK XK ok 2 ok ok ok o o K oK ko ok ki

o %k ik
o %k % t 2 1 J
*x%  VECTOR GENERATOR SOFTWARE VERSION 2 %
L 2 3 ] * kg
o K ax *k k
*%x%  MASTER'S THESIS PROGRAM oy
*%x%  CHRISTOPHER SCUSSEL 23
#*%%x  MICHIGAN STATE UNIVERSITY *x
*x%  ENGINEERING COLLEGE COMPUTER OPERATIONS *x
X% X *x ik
o o £ 3 £ 3

a3 3 3 2 2k 3k 2 3k 2 Ak e Ak 2 2k Ak 3k 2 ok ok Akl Ak ek e Ak o He 3k A A A 3k Ak e ofe ak e ok ok ok 3k o ak ok ok Kk
a0 o 2k 2 3 2 3k 2k 2 ok 2k 3k 2k 2k 3 3k 3 3k 3 3 3 ok 3k 3 3k ok 2 o Ak ok ok ok ok e A ale Ak A ok e 3 ok s e o ok e ok ok Ak %
*

*

o o o oo oo o o o e R oo o ok el o A o A o o ok ok ok
* *
* SOFTWARE CONFIGURATION CONTROL *
* *

2 3 2k 2 e 2 2 3k 3k A e e o ok ok e Ak e 2k 2k Ak ok 3k ok 3k Ak e 3k 3k ok x A Ak x 2k Ak 3k e e ok Ak Ak 2 ok a3k ok kax
*

MXPNT EQU 200 SET 200 POINTS MAXIMUM

MXVEC EQU 200 SET 200 VECTORS MAXIMUM
MX0BJ EQU 10 SET 10 OBJECTS MAXIMUM

LOGCO EQU 0 SET LOGIC O TO O VOLTS

LOGC1 EOQU 10000 SET LOGIC 1 TO 3 VOLTS

*

*
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e 2k 20 2 o o e 2 ok ok s ke ok o 2 2 ot 2 e ok o ok e ol o e o o o o ok o o e o o o o o e ke o o e ol 3 o ok ook ok

* *
* SOFTWARE PARAMETER STORAGE *
* *

3 ik 2 ol e o e o 2 3k e 2 2 s A e ok Ak A A ode 3k a3k kv e 2 3k e ok 2k Ak e ok e ok Ao e ok ok Ak ok ok ok Xk ok K
*

=PNTS DC NUMBER OF POINTS

=VEC 0OC NUMBER OF VECTORS

=VREF DC NUMBER OF VECTORS TO BE

* DISPLAYED BY REFRESH ROUTINE
LOGO DC LOGCO ADDRESSED LOGIC O

L0Gl ©DC LOGC1 ADDRESSED LOGIC 1

*

it ot o o a9 e e e 28 2 o o o ok ok ok o ok ok o e o ok ol o o ok o ok ke e ok ok o o e o ok ok ke o 3 ook Ak Aok
% *
* DISPLAY UPDATE ROUTINE *
* *

% %k 3 2x % A A A 3 Bx e A 4k ok ok e Ak 3 A A ok 2k Ak Ak Ak 3k Ak e 3k 3k 3k 3K 3k 3 Ak 3 A B 2k A e 2k A A Ak Ak o ke xak Aok
*

UPDAT DC ENTRY POINT
LD L INTFG  FETCH INITIALIZATION FLAG
BSC I UPDAT,+- RETURN IF NOT INITIALIZED
STX L3 X3NIN SAVE INDEX REGISTER 3
*
* ROTATE, TRANSLATE, AND PROJECT POINTS
* DOWN TO SCREEN COORDINATES
*
LPX L) PTSTR  FETCH POINT STORAGE ADDRESS
LDX I3 =PNTS  FETCH NUMBER OF POINTS
MOVLP LD 10 FETCH PARAMETER STORAGE ADDRESS
STO TEMP]
LDX 12 TEMP1  PREPARE TO RETRIEVE PARAMETERS
LD 12 GET OBJECT Y-COORD
M 20 MULT BY SIN X
STO TEMP1  STORE INTERMEDIATE
LD 13 GET OBJECT Z-COORD
M 21 MULT BY COS X
S TEMP1  SUBTRACT INTERMEDIATE
SLA 1 CORRECT FOR TRIG TABLE
STO TEMP3  STORE X-ROT Z-COORD
LD 1 2 GET OBJECT Y=COORD
M 21 MULT BY COS X
STO TEMP1  STORE INTERMEDIATE
LD 13 GET OBJECT Z-COORD
M 2 0 MULT BY SIN X
A TEMP1  ADD INTERMEDIATE
SLA 1 CORRECT FOR TRIG TABLES
STO TEMP2  STORE X-ROT Y-COORD
LD TEMP3  GET X-ROT Z-CODURD

M 2 2 MULT BY SIN Y



TEMP)
FEMP?2
TEMP3
TEMP,
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STORE INTERMEDIATE

GET OBJECT X-COORD

MULT BY COS Y

SUBTRACT INTERMEDIATE
CORRECT FOR TRIG TABLES
STORE XY=ROT X-COORD

GET X-ROT Z-COGRD

MULT BY COS Y

STORE INTERMEDIATE

GET OBJECT X-COORD

MULT BY SIN Y

ADD INTERMEDIATE

CORRECT TRIG AND ADJUST PERSPECTIVE
ADD Z-TRANSLATION

COMPUTE DISTANCE FROM EYE
STORE PERSPECTIVE FACTOR
GET XY-ROT Y-COORD

MULT BY SIN 2

STORE INTERMEDIATE

GET XY=-ROT X-COORD

MULT BY COS 2

SUBTRACT INTERMEDIATE
CORRECT FOR TRIG TABLE
ADD X=TRANSLATION

ADJUST PERSPECTIVE
COMPUTE PERSPECTIVE

STORE X-SCREEN COORDINATE
GET XY=-ROT Y-COORD

MULT BY COS 2

STORE INTERMEDIATE

GET XY=-ROT X-COORD

MULT BY SIN 2

ADD INTERMEDIATE

CORRECT FOR TRIG TABLE
ADD Y-TRANSLATION

ADJUST PERSPECTIVE
COMPUTE PERSPECTIVE

STORE Y-SCREEN COORDINATE
ADDRESS OF NEXT PTSTR RECORD
DECREMENT COUNT

DO NEXT POINT

PRFPARE TO TO UPDATE RFSTR
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% CONSTRUCT IMAGE OF REFRESH STORAGE AREA
%*
IMAGE SRA 16 ZERO ACCUMULATOR
ST0 XP0OS INITIALIZE X-POSITION
STO YPOS INITIALIZE Y-POSITION

LOX L1 VCSTR PREPARE TO RETRIEVE VECTORS
LDX 12 =VEC FETCH NUMBER OF VECTORS
LDX L3 PLTBF FETCH PLOT BUFFER ADDRESS

DRWLP LD 10 FETCH ENDPOINT ORDINAL
SLA 1 MULTIPLY BY 2
A 10 FORM PRODUCT WITH 3
SLA 1 FORM PRODUCT WITH 6
A PTADR COMPUTE X ADDRESS
A ADDR4 COMPUTE X ADDRESS
STO XSTR+1 STORE ADDRESS
A ADDR1 COMPUTE Y ADDRESS
STO YSTR+1 STORE Y ADDRESS
XSTR LD L *-x FETCH X~SCREEN COORDINATE
S XPOS COMPUTE DIFFERENCE
STO 30 STORE DIFFERENCE IN PLOT BUFFER
A XPOS RESTORE X-SCREEN COORDINATE
STO XPOS STORE CURRENT X-POSITION
YSTR LD L %% FETCH Y-SCREEN COORDINATE
S YPOS COMPUTE DIFFERENCE
STO 31 STORE DIFFERENCE IN PLOT BUFFER
A YPOS RESTORE Y-=SCREEN COORDINATE
STO YpP0s STORE CURRENT Y-POSITION
LD 11 FETCH BEAM CONTROL
STO 32 STORE IN PLOT BUFFER
MDX 1 2 PREPARE TO FETCH NEXT VECTOR
MDX 33 PREPARE TO STOURE NEXT VECTOR
MDX 2 =1 DECREMENT VECTOR COUNT

MDX DRWLP LOOP BACK FOR NEXT VECTOR
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3*

TRANSFER PLOT BUFFFR TO REFRESH STORAGE

Lhx 1I1 =VEC FETCH NUMBER OF VECTORS

LDX L2 PLTBF FETCH PLOT BUFFER ADDRESS

LhPX L3 RFSTR FETCH REFRESH STORAGE ADDRESS
XI0 L TMOFF CEASE REFRESHING

XFER LD 20 DATA TRANSFER
STO 30 DATA TRANSFER
LD 21 DATA TRANSFER
STO 31 DATA TRANSFER
Ln 2 2 DATA TRANSFER
STO 32 DATA TRANSFER
MDX 2 3 INCREMENT ADDRESS
MO X 33 INCREMENT ADDRESS
MDX 1 -1 DECREMENT VECTOR COUNTER
MD X XFER GO TRANSFER NEXT VECTOR
LD L =VEC FETCH NUMBER OF VECTORS
STO L =VREF SET NUMBER OF REFRESH VECTORS
X10 LEVL1 TAKE AN IMMEDIATE REFRESH
* CYCLE AND RESUME REFRESHING

LDX I3 X3NIN RESTORE INDEX REGISTER 3
BSC 1 UPDAT RETURN TO CALLING PROGRAM

* CONSTANTS AND VARIABLES
EYEZ OC 1024 EYE POINT Z~-COORDINATE
XPOS DC X FOR GENERATOR CUNVERSION
YPOS OC Y FOR GENERATOR CUNVERSION
PTADR DC PTSTR-6 ADDRESS FOR ORDINAL POINT RECALL
ADDR1 DC 1 1 FOR USE LOCALLY
ADDR4 DC 4 4 FOR USE LOCALLY
X3NIN OC TEMPORARY STORAGE FOR XREG 3
* IN NONINTERRUPT ROUTINES
*
* 10cC
*

BSS E O GET AN EVEN ADDRESS
LFVL1 OC /4000  LEVEL 1 INTERRUPT BIT SET

0oC /04A0 PROGRAMMED INTERRUPT I0CC
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2% 3 o 3 2 ok e o e ok 3 2 ok 3k o ok o 3 sk 2k o e ok 3 ok 3 ok xR 3k ok 2 e ek 3 Xk ok o ok ke e e ok ok ok ok ok %

* *
* REFRESH ROUTINE *
* *
o Ak e 2 2 X 2 A X e o ok A A e ok o ok ok Ak ok e 2k Ak de e ok ok 2k ok Xk 2k ok ok 3k 3k 3 2 ok 3Kk e ok 2 o A e o ok Ak ek
RFRSH DC REFRESH ROUTINE ENTRY POINT

STS RSTS SAVE STATUS

STD RSAVE  SAVE ACCUMULATOR

STX 1 RSAVE+2 SAVE XREG 1

STX 2 RSAVE+3 SAVE XREG 2

X10 TMOFF  PREVENT TIMER CYCLE STEALS

LDX 11 =VREF GET NUMBER OF REFRESH VECTORS

MDX 11 ADD EXTRA FOR LAST VECTOR

LDX L2 RFSTR  FETCH STARTING ADDRESS OF RFSTR

X10 RNON TURN RUN LINE ON
OUTLP LD 20 FETCH X-SCREEN COORDINATE

STO X0UT STORE IN ANALOG OUTPUT TABLE

LD 21 FETCH Y-SCREEN COORDINATE

STO YOUT STORE IN ANALOG OUTPUT TABLE

LD 2 2 FETCH BEAM CONTROL

STO BMOUT  STORE IN ANALOG OUTPUT TABLE

X10 VCOUT  OUTPUT VECTOR TO GENERATOR

MDX 2 3 ADVANCE TO NEXT VECTOR ADDRESS

MDX 1 -1 DECREMENT VECTOR COUNT

MDX OUTLP  OUTPUT NEXT VECTOR

X10 STDBY  PLACF GENERATOR IN STANDBY MODE

X10 TMRST  RESET TIMER

LD TIME FETCH RERESH CYCLE TIME

STO L /0006 STORE AT TIMER LOCATION

X10 TMON TURN TIMER ON

LDD RSAVE  RESTORE ACCUMULATOR

LDX Il RSAVE+2 RESTORE XREG 1
LDX 12 RSAVE+3 RESTORE XREG 2
RSTS LDS 0 RESTORE STATUS

BOSC 1 RFRSH RETURN AND TURN OFF INTERRUPT
x

-

* CONSTANTS AND VARIABLES
TIME ©OC -3 RERFESH CYCLE TIME
BSS € O GET EVEN ADDRESS

RSAVE B8SS 4 STATUS SAVE STORAGE AREA
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* 10CC*'S
TMOFF DC /0000 TIMER STATE -- OFF
DC /0420 TIMER STATE CONTROL 10CC
TMON DC /2000 TIMER STATE -- C ON
DC /0420 TIMER STATE CONTROL I0CC
TMRST DC DUMMY WORD FOR TIMER STATUS I0CC
DC /0721  TIMER STATUS SENSE I0CC
RNON  DC LOG1 SEND OUT LOGIC 1 ON
nC /6105 LINE 5, THE RUN LINE
VCOUT DC VOTAB  TABLE ADDRESS FOR
DC /6500  ANALOG OUTPUT INITIALIZE WRITE
STDBY DC SBTAB  TABLE ADDRESS FOR
DC /6500  ANALOG OUTPUT INITIALIZE WRITE
*
*
x ANALOG OUTPUT TABLES
x e e e e o -
* TABLE TO OUTPUT VECTOR TO GENERATOR
VOTAB DC /400A SINGLE SCAN WITH NO INTERRUPT
DC 7 ATTACH INPUT SWITCH LINE AND
DC LOGCO  TURN IT OFF
DC 2 ATTACH X=OUTPUT LINE AND
XOUT  DC SEND X-VOLTAGE OUT
DC 4 ATTACH Y-OUTPUT LINE AND
YOUT 0C SEND Y-VOLTAGE OUT
DC 3 ATTACH BEAM CONTROL LINE AND
BMOUT DC SEND BEAM VOLTAGE OUT
DC 7 ATTACH INPUT SWITCH LINE AND
DC LOGC1  TURN IT ON
*
* TABLE FOR VECTOR GENERATOR STANDBY MODE
SBTAB DC /400A  SINGLE SCAN WITH NO INTERRUPT
DC 7 ATTACH INPUT SWITCH LINE AND
DC LOGCO  TURN IT OFF
oC 3 ATTACH BEAM CONTROL LINE AND
DC 32767 TURN IT OFF WITH 10 VOLTS
DC 5 ATTACH RUN LINE AND
DC LOGCO  TURN IF OFF
DC 2 ATTACH X-0OUTPUT LINE AND
DC 0 SET IT TO O
DC 4 ATTACH Y-OUTPUT LINE AND
DC 0 SET IT T0 O
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¥ 2 e 2 2 2 2 o 3 A ok A 3 2k 2 e A 2 e Ak ko e k2 Ak 2 ok e 2 o ko Ak Xk kool e d sk e o ok ok ok ok afkalk X

%X

* OBJECT PARAMETER ENTRY ROUTINE

*

%*x
*®

*

e 3 3 A 2k 2k o 2 o Ak ok 2 o ke ke ok e 2 2 o v e Xk ok e o e 3k x o 3 ko 3k e o ok a s ok o ok o ok ok ok ok %k

*

08P0OS DC
STX
LDX
LD
SLA
A
A
STO
LDX
LD
BSI
LD
STO
LD
STO
LD
BS1I
LD
STO
LD
STO
LO
BSI
LD
STO
LD
STO
LD
STO
LD
STO
LD
STO
LDX
BSC

L3
Il

11

11

12
Il

L3
2
L3
2
Il

L3
2
L3
2
Il

L3
2
L3
2
Il
2
Il
2
Il
2
I3
L1

X3NIN
osPOS
0

3

0
PRMAD
TEMPS
TEMPS
1
ANGF X
SIN

0

cos

1

2
ANGF X
SIN

2

cos

3

3
ANGF X
SIN

o »
o
wn

3NIN

NX®O g dwm

ENTRY

POINT

SAVE XREG 3

FETCH PARAMETER ADDRESS TABLE

FETCH

OBJECT ORDINAL

MULTIPLY BY 8
FORM PRODUCT WITH 9

ADD PARAMETER TABLE ADDRESS

TRANSFER TO XREG 2

FETCH

NORMALIZE ANGLE INTO XREG 3

FETCH
STORE

X=ANGLE

SINE OF ANGLE
IN PARAMETER TABLE

FETCH COSINE OF ANGLE

STORE
FETCH

NORMALIZE ANGLE INTO XREG 3

FETCH
STORE
FETCH
STORE
FETCH

NORMALIZE ANGLE INTO XREG 3

FETCH
STORE
FETCH
STORE
FETCH
STORE
FETCH
STORE
FETCH
STORE

IN PARAMETER TABLE
Y-ANGLE

SINE OF ANGLE

IN PARAMETER TABLE
COSINE OF ANGLE

IN PARAMETER TABLE
Z-ANGLE

SINE OF ANGLE

IN PARAMETER TABLE
COSINE OF ANGLE

IN PARAMETER TABLE
X=TRANSLATION

IN PARAMETER TABLE
Y-TRANSLATION

IN PARAMETER TABLE
Z-TRANSLATION

IN PARAMETER TABLE

RESTORE XREG 3

RETURN TO CALLING PROGRAM
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* ANGLE NORMALIZATION ROUTINE
ANGFX OC ENTRY POINT
SRT 16 PREPARE FOR DIVIDE
D 1360" DIVIDE BY 360
SLT 16 GET REMAINDER
BSC +17 RESULT READY IF + OR O
A '360! FORCE REMAINDER TO BE NUNNEGATI VE
STO TEMPS PREPARE TO LOAD INDEX REGISTER

LDX I3 TEMPS PUT RESULT IN XREG 3

BSC I ANGFX RETURN TO CALLING PROGRAM
*

*

* CONSTANTS AND VARIABLES

PRMAD DC OBPRM-9 ADDRESS OF OBJECT PARAMETER TABLE
TEMPS5 DC LOCAL TEMPORARY

'360' DC 360 USED IN ANGLE MANIPULATIONS

%*
*x

e e 3 2 2 3 3 3 3 2 e e e e e e 2k A oA e e e ok 3k ko e e e e o ok 3k o e 2 3 3 ade o ok ok ok ok ok o o ak sk 2k

* *
* POINT ENTRY ROUTINE *
* *

3 2% 3 e 3 2 3k o e e 3k 3 o g A A e A Ak e Ak Ak Ak 2k e o o e 2 ok ok 3k ok ok Ak 3 ok ok 3k ok 2 ok ok ok ok ok e X ke ok
*

POINT DC ENTRY POINT FOR POINT ENTRY
LD L =PNTS FETCH NUMBER OF POINTS
A ONE1 ADD 1
STO L =PNTS STORE NEW NUMBER OF POINTS
SLA 1 MULTIPLY BY 2
A L =PNTS FORM PRODUCT WITH 3
SLA 1 FORM PRODUCT WITH 6
A L PTADR ADD POINT STORAGE ADDRESS
STO TEMP6 PREPARE TO LOAD XREG 2

LDX 12 TEMPé6 FETCH POINT ADDRESS
LDX TI1 POINT FETCH PARAMETER TABLE ADDRESS

LD It o FETCH OBJECT ORDINAL

SLA 3 MULTIPLY BY 8

A I1 0 FORM PRODUCT WITH 9

A L PRMAD ADD PARAMETER TABLE ADDRESS
STO 2 0 STORE AT POINT STORAGE ADDRESS
LD Il 1 FETCH X-COORDINATE

STO 21 STORE AT POINT STORAGE ADDRESS
LD Il 2 FETCH Y-COORDINATE

STO 2 2 STORE AT POINT STORAGE ADDRESS
LD I1 3 FETCH Z-COORDINATE

ST0 2 3 STORE AT POINT STORAGE ADDRESS
BSC L1 &4 RETURN TO CALLING PROGRAM
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s e e o e e 2 ok 2 ko Xk e o ek e ok ko e xx o ol s ok o o e ko ik 3k o XXk o o ok o ok kol o X ok ok ok e

x *
*x VECTOR ENTRY ROUTINE *
x *

3K 2 3 3k 2k 2k 3 3 2 2 ok 3 Xk ok 2 ok A A B Xk ok o dk d Aok Xk gk e A ke Ak Ak o 2k 3k xk ae ok ak ok 3k ok 2k 2 %ok ok
*

VECTR DC ENTRY POINT FOR VECTOR ENTRY
LD L =VEC FETCH NUMBER OF VECTORS
A ONE1 ADD 1
STO L =VEC STORE NEW NUMBER OF VECTORS
SLA 1 MULTIPLY BY 2
A VCADR ADD VECTOR STORAGE ADDRESS
STO TEMP6 PREPARE TO LOAD XREG 2

LDX 12 TEMP6 FETCH VECTOR STORAGE ADDRESS
LDX I1 VECTR FETCH PARAMETER TABLE ADDRESS

LD I1 0 FETCH ORDINAL POINT REFERENCE
STO 20 STORE AT VECTOR STORAGE ADDRESS
LD I1 1 FETCH WRITE CONTROL
S ONE1 SUBTRACT 1
8SC 4 SKIP IF WRITE CONTROL WAS 1
Lo BMOFF FETCH BEAM OFF VALUE
STO 21 STORE BEAM CONTROL IN VECTOR ENTRY
BSC L1 2 RETURN TO CALL ING PROGRAM

*

* CONSTANTS AND VARIABLES

TEMP6 DC LOCAL TEMPORARY

ONEl DOC 1 1 FOR USE LOCALLY

VCADR DC VCSTR-2 VECTCR STORAGE ADDRESS

BMOFF DC 32767 BEAM OFF CONTROL VALUE
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280 2 e 2 2k 2 3k e 2 3 o 2 a0 o e o 2k 3k 2K ik ok ok ol ok ak ke e ok 38 3k 3k ok 3k ok i 3k 3k af a2 o ok ok ok 3k Kok ek

*

% POINT MOVE ROUTINE *

%x

*

% 3k 2k 3k 5 Xk 3k 3 2 2 Qe A e o Ak Ak 2 3 Ak Bxok Bx Ak ok k%o o ok e Ak Ax ko Ak Ak vk ki o ok ok ok e Ak o ok ek ok

%*
PNTMV DC
STX
LDX
LD
SLA
A
A
STO
LD
STO0
LDX
LDX
PSRCH LD
CMP
MDX
MD X
MDX
MDX
LD
A
ST0
Ln
A
STO
LD
A
STO
LDX
8SC
PSRC1 MDX
MDX
MD X
8SC

BCOD DC

TNUM DC

* %0 O N NN

L3
Il
Il

Il

Il

L2
13
2

—  ~

L]

™ v -y
WN=WNN=™NNN=NN -~

-~
-

X3NIN
PNTMV
0
3
0
PRMAD
0BCOD
1
PTNUM
PTSTR
=PNTS
0
08COD
PSRC1
PSRC1

ENTRY POINT FOR POINT MOVE
SAVE XREG 3

FETCH PARAMETER TABLE ADDRESS
FETCH OBJECT ORDINAL

MULTIPLY BY 8

FORM PRODUCT WITH 9

ADD PARAMETER TABLE ADDRESS
STORE ADDRESS FOR COMPARISON
FETCH NUMBER OF CHANGE POINT
STORE AS COUNTER

FETCH POINT STORAGE ADDRESS
FETCH TOTAL NUMBER OF POINTS
FETCH PARAMETER TABLE ADDRESS
COMPARE WITH NEEDED ADDRESS
PREPARE FOR NEXT POINT
PREPARE FOR NEXT POINT

PTNUM,-1 CORRECT OBJECT,DECREMENT COUNT

PSRC1

3NIN

COWVMXWWHENNVWE =N

!
b

PSRCH

PREPARE FOR NEXT POINT
FETCH X-DISPLACEMENT

ADD TO CURRENT X-COORDINATE
STORE NEW X-COORDINATE
FETCH Y-DISPLACEMENT

ADD CURRENT Y-COORDINATE
STORE NEW Y-COORDINATE
FETCH Z-DISPLACEMENT

ADD Z-COORDINATE

STORE NEW Z-COORDINATE
RESTORE XREG 3

RETURN TO CALLING PROGRAM
ADVANCE ADDRESS TO NEXT POINT
DECREMENT POINT COUNT
SEARCH NEXT POINT

RETURN TO CALLING PROGRAM,
SPECIFIED POINT NOT FOUND,
NO ACTION TAKEN.

CONSTANTS AND VARIABLES

OBJECT PARAMETER TABLE ADDRESS
USED TO FIND POINTS IN THE
DESIRED OBJECT

COUNTS NUMBER OF POINTS 70 GO
IN DESIRED OBJECT BEFORE THE
DESIRED POINT IS FOUND.
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* *
* HARDWARE INITIALIZATION AND OISPLAY CONTROL =
* %

3% 2 ok k2 2 2 o 2x e e 2k 2 o ok X 2 ok 2 X Ak 3k 2k 3k o e e v e ok 3k o ak ik 2 o 2 e ok 2 o ok oke e ok ke ok kol K
*

* DISPLAY ACTIVATION

*

VGON DC ENTRY POINT FOR DISPLAY ACTIVATION
LD INTFG FETCH INITIALIZATION FLAG
BSI L INIT,+~- INITIALIZE IF FIRST CALL
LD L TIME FETCH INTERVAL FOR TIMER
STO L /0006 SET TIMER FOR REFRESH INTERVAL
X1I0 L TMON TURN TIMER ON
8SC I VGON RETURN TO CALLING PROGRAM

*

* DISPLAY DEACTIVATION

*®

VGOFF DC ENTRY POINT FOR DEACTIVATION

XI0 L TMOFF TURN TIMER OFF
BSC 1 VGOFF RETURN TO CALLING PROGRAM

* DISPLAY ERASE

™

ERASE DC ENTRY POINT FOR DISPLAY ERASE
BS1I VGOFF DEACTIVATE DISPLAY
LD INITO FETCH O

STO L =PNTS SET NUMBER OF POINTS TO ZERO
STO L =VEC SET NUMBER OF VECTORS TO ZERO
STO L =VREF SET NUMBER OF REFRESH

* VECTORS TO ZERO
BSI RFCLR CLEAR REFRESH AREA
BS1 VGON REACTIVATE DISPLAY
BSC 1 ERASE RETURN TO CALLING PROGRAM

*

* END-OF~-SYSTEM=USAGE ROUTINE

*x

VGEND DC ENTRY POINT
LD INTFG FETCH INITTALIZATION FLAG
BSC I VGEND,+- RETURN IF NOT INITIALIZED
BS1 VGOFF DEACTIVATE DISPLAY
LD INITO FETCH Z2ERO AND
ST0 INTFG TURN INITIALIZATION FLAG OFF
LD LV1AD FETCH STANDARD INTERRUPT ADDRESS

STO L /o000C REPLACE IN INTERRUPT LOCATION
BSC VGEND RETURN T CALLING PROGRAM

by
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* INITIALIZATION
*
INIT ©OC THIS ROUTINE SETS INTERRUPT
* ADDRESSES AND SYSTEM PARA-
* METERS. IT IS CALLED WHEN
* NECESSARY BY VGON.,
*
X10 POWER ACTIVATE HARDWARE
XI0 BTRNS TRANSFER BUFFERS FOR POWER SUPPLY
STS L /00064740 CORE UNPROTECT TIMER
STS L /000C,/740 CORE UNPROTECT LEVEL 1 ADRS
LD L /7000C FETCH STANDARD INTERRUPT ADDR ESS

STO LV1AD SAVE INTERRUPT ADDRESS
LDX L1 RFRSH FETCH REFRESH ROUTINE ADDRESS
STX L1 s000C STORE AT INTERRUPT LOCATION

LD INITO FETCH O
STO L =PNTS INITIALIZE NUMBER OF POINTS
STO L =VEC INITIALIZE NUMBER OF VECTORS
STO L =VREF INITIALIZE NUMBER OF VECTORS
* FOR REFRESH ROUTINE,
BSI RFCLR  CLEAR REFRESH AREA
LD INITl  FETCH 1
STO INTFG  PREVENT SUBSEQUENT ENTRY
BSC I INIT RETURN TO CALLING PROGRAM
*
* REFRESH AREA CLEARING ROUTINE
*
RFCLR DC THIS ROUTINE SETS THE ENTIRE
* REFRESH AREA TO (0,0,BMOFF).,
*x
LDX Ll 3%*MXVEC FETCH LENGTH OF REFRESH AREA
ELOOP LD INITO FETCH ZERO
STO L1 RFSTR-3 CLEAR FIRST WORD OF RECORD
STO L1 RFSTR-2 CLEAR SECOND WORD OF RECORD
LD L BMOFF  FETCH BEAM OFF VALUE
STO L1 RFSTR-1  SET BEAM CONTROL TO OFF
MDX 1 -3 SET UP FOR NEXT RECORD
MDX ELOOP  JUMP BACK TO DO NEXT RECORD
BSC I RFCLR RETURN TO CALLING PROGRAM
*
* CONSTANTS AND VARIABLES
*
INTFG DC 0 INITIALIZATION INDICATOR
INITO DC 0 0 FOR USE LOCALLY
INIT1 DC 1 1 FOR USE LOCALLY
LV1AD DC SAVES STANDARD INTERRUPT ADDRESS
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BSS E
nc
oC
oC
oC

0
PWRUP
/6500

/6440

ANALOG OUTPUT
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GET AN EVEN ADDRESS

TABLE ADDRESS FOR POWER UP
ANALOG OUTPUT INITIALIZE WRITE
DUMMY WORD FOR BUFFER TRANSFER
BUFFER TRANSFER 10CC

TABLES

ocC
oC
oC
0oC
ocC
DC
oC
oC
oC
oC
oC
oC
oC
0oC
ocC
oC
oC

/4010
0
32767
1
-32768

SINGLE SCAN WITH NO INTERRUPT
ATTACH POS AMP SUPPLY AND
SET IT TO 10 VOLTS

ATTACH NEG AMP SUPPLY AND
SET IT TO -10 VOLTS

ATTACH X-=0UTPUT LINE AND

SET IT TO O VvOLTS

ATTACH BEAM CONTROL LINE AND
SET IT TO 10 VOLTS

ATTACH Y=0UTPUT LINE AND

SET IT TO O VOLTS

ATTACH RUN CONTROL LINE AND
TURN IT OFF

ATTACH LOGIC SUPPLY LINE AND
SET IT TO 5 VOLTS

ATTACH INPUT SWITCH LINE AND
TURN IT OFF
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x® *
* ARRAY STORAGE USED IN DISPLAY ROUTINES *
* *

2 2 2 e ol afe 2k o o o ok e 3 3k 36 3 o ok e o ok ok 3k e 3k ok 3k o Ak ok ok 3k 2k ke X Kk ko ok ok kR Rk ok Kk K
x
%*
*

PTSTR BSS 6*MXPNT POINT STORAGE

%

* PTSTR STORAGE FORMAT

* -

*

* SIX-WORD RECORDS, ORGANIZED AS FOLLOWS

* 0 -- ADDRESS OF ASSOCIATED PARAMETER BUFFER
% 1 -- X-OBJECT COORDINATE

* 2 -- Y-0BJECT COORDINATE

* 3 == 7-DBJECT COORDINATE

* 4 -- X-SCREEN COORDINATE

* 5 == Y-SCREEN COORDINATE

*x

=

*

VCSTR BSS 2%MXVEC TRAVERSAL PATH STORAGE

VCSTR STORAGE FORMAT

TWO-WORD RECORDSy ORGANIZED AS FOLLOWS
O -— ORDINAL POINT NUMBER
1 -- BEAM CONTROL

LTBF BSS 3%MXVEC REFRESH DATA BUFFER
PLTBF IS AN EXACT IMAGE OF THE
REFRESH BUFFER, SO THAT THE
REFRESH BUFFER MAY BE UPDATED
AT MAXTMUM SPEED

PLTBF STORAGE FORMAT

THREE-WORD RECORDS, ORGANIZED AS FOLLOWS
0 -- X-DIFFERENCE
1 == Y-DIFFERENCE
2 == BEAM CONTROL

2% % 3¢ % g % 3¢ 3 g4 3 3 W O W 5 W o5 W o ¥ o *
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RFSTR BSS 3%MXVEC REFRESH INFORMATION STORAGE
*

* RFSTR STORAGE FORMAT

X cececce cecceecee ccecemee=

*x

* THREE-WORD RECORDS, ORGANIZED AS FOLLOWS
* 0 -- X-DIFFERENCE

* 1 —- Y-DIFFERENCE

% 2 -- BEAM CONTROL

»n

*x

OBPRM BSS 9%MX0BJ OBJECT PARAMETER STORAGE
*

* OBPRM STORAGE FORMAT

*® —eeee cemmc—e emce--

*

* NINE-WORD RECORDS, ORGANIZED AS FOLLOWS
* 0 -- SINE OF X-ANGLE

* 1 -- COSINE OF X-ANGLE

* 2 -- SINE OF Y-ANGLE

* 3 -—- COSINE OF Y-ANGLE

* 4 -- SINE OF Z-ANGLE

* 5 == COSINE OF Z-ANGLE

% 6 == X=TRANSLATION

* 7 == Y=-TRANSLATION

* 8 —= Z-TRANSLATION
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TRIGONCMETRIC TABLE

THE FOLLOWING TABLE IS 5/4 PERIODS OF THE

SIN FUNCTION, ROUNDED TO 15 BITS AFTER
MULTIPLICATION BY 32767. THE TABLE SERVES AS
BOTH A SINE AND COSINE TABLE, IN INCREMENTS
OF ONE DEGREE. FOR BREVITY, THE TABLE IS IN
CHARACTER CODE. IT OCCUPIES 450 WORDS.

/ 0 ( Te
( G 3

o3 3t g 36 g g8 I g

IN EBC
€EscC
EBC
EBC
EsC
ERC
cos EBC
EBC
EBC
EsC
EBC
EBC
EBC
EBC
EBC
EBC o =
EsC .
EBC .
EBC o
EBRC N
EBC .
EBC « = $ 8 D
ERC «0 A2CZEUGUIY 0O O K M 0 0Q
EBC . TV XZF 0 2 4Q7 9

D)
0
+
+
.

-~

D 9(7 402 O IFX vV T
QO0OMKDO OIYGUEUCZA2
$

e ® ¢ © ¢ 6 ¢ & g ¢ g 0 4 o
X

)
o
o
@®

p -]
-
p.-]
!
#*
e 6 o 6 0 0 0 0 0 0 0 0 0 0

G T

o
nw w
w
[
.

6

wn
W Wy
ne
I
[ ] o o & o

~ O
.

EacC
EBC
ERC
esC
ERC
EsC

( G 3 .

M o« | + + 9 o o

LI - R 1] ( °

R 3 K Y
=8 v 0 v = =(=0 . K o

® 900 000000 0000080000000 000OOGDLGOOS

i * o o3

END
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