THE INFLUENCE OF PLANTING DENSITY ON THE EARLY GROWTH OF RED PINE

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY DANIEL GEORGE NEARY 1972

3 1293 10195 98**4**3

THESIS

LIBRA: Y
Michigan tate
University

	. ~	
21:-		
The same of the sa		
<u> </u>		
1		
↓		
ä		
1		
<i>j</i>		
<i>f</i>		
/		
f		
1		
·		

ABSTRACT

THE INFLUENCE OF PLANTING DENSITY ON THE EARLY GROWTH OF RED PINE

By

Daniel George Neary

This study examined the impact of planting density on the early growth of red pine (Pinus resinosa Ait.) in northern Michigan. The influences of five densities (500, 750, 1000, 1500, and 2000 trees/hectare) were evaluated in terms of (1) changes in red pine growth, (2) root competition and distribution, (3) biomass and nutrient distribution, and (4) intensity of snow damage. The observations, made over a three-year period, were concluded when the plantation was nine years old.

Stem and crown growth during the period of 19691971 indicated that more growth had occurred in the lower
density plots. The DBH of trees in plots with 500 trees/
hectare was significantly greater than the DBH of trees
in plots with 2000 trees/hectare. A DBH greater than
5.1 cm (2 inches) was observed in 77 percent of the
trees in the 500 trees/hectare plots and in only 28 percent of the trees in the 2000 trees/hectare plots.

There were no significant stem height differences. Needle lengths were significantly longer in the 500 trees/hectare plots.

Root competition was studied by means of soil moisture determinations and excavation of red pine root systems. No significant moisture variations attributable to tree density were observed. Root excavations revealed an unequal distribution of roots in the growing space allotted to each tree. About 45 percent of the horizontal root system showed a distinct tendency to become oriented along the planting furrow. Evidence indicating root competition far in advance of crown closure was observed.

Trees sampled in 1968 and 1971 were separated into needle, branch, stem, and root components, weighed, and analyzed for nutrient content. No significant differences were noted between the component parts and the stand densities.

The amount of snow damage in the plantation was related to the stocking level. Plots with 2000 trees/hectare suffered three to four times as much damage as those with 500 trees/hectare. Most of the injury was concentrated on the fourth whorl from the top of the tree at about 75 cm above the ground. Trees in plots with 1000, 1500, and 2000 trees/hectare lost 30 to 40 percent of the branches in that whorl compared to 15 to 30 percent for the 500 and 750 trees/hectare plots.

THE INFLUENCE OF PLANTING DENSITY ON THE EARLY GROWTH OF RED PINE

Ву

Daniel George Neary

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Forestry

578.

Dr. for

cour

Dr.

mit

for the

ful

res

Growing

ACKNOWLEDGMENTS

The author would like to express his gratitude to Dr. Gary Schneider, chairman of his guidance committee, for his excellent guidance and assistance throughout the course of this study. Appreciation is also extended to Dr. Victor Rudolph, Dr. Donald White, Maurice Day, and Dr. Peter Murphy, the other members of the guidance committee.

A very special thank you is extended to Maurice Day for his assistance, inspiration, and companionship during the field phase of this study.

Finally, the author would like to express his gratefulness to his wife, Vicki, for her invaluable help as research assistant, typist, and companion.

TABLE OF CONTENTS

																	Page
LIST	OF	TA	BLE	s .	•	•	•	•	•	•	•	•	•	•	•	•	v
LIST	OF	FI	GUR	ES	•	•	•	•	•	•	•	•	•	•	•	•	viii
VITA		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	×
Chapt	ter																
I.	• ,	INT	RODI	JCT:	ION	•	•	•	•	•	•	•	•	•	•	•	1
II.	• :	REV	IEW	OF	LIT	'ERA	TURI	Ξ.	•	•	•	•	•	•	•	•	3
III.	. '	THE	ST	JDY	ARE	A.	•		•	•	•	•	•	•	•	•	10
			Reg:	iona t Hi	al C isto	lim ry	Soil ate •	•	•		•	•	•	•	•	•	10 11 11 12
IV	•	FIE	LD 1	PROC	CEDU	RES	•	•	•	•	•	•	•	•	•	•	15
				ls ind	• Veg		tior			•	•	•	•	•	•	•	15 16 17 18
							rowr			th •	•	•	•	•	•	•	18 18
			Snow Bior			re •	•	•	•	•	•	•	•	•	•	•	19 20
V.	• :	RES	ULT	S Al	ND D	ISC	USSI	ON	•	•	•	•	•	•	•	•	22
			Cli	nate	e .	•	•	•	•	•	•	•	•	•	•	•	22
					pera cipi		e. ion	•	•	•	•	•	•	•	•	•	22 23

Chapter

(

3

.

VI. SUMM

LITERATURE

APPENDIX

Chapter													Page
	Relat Solar			_		•	•	•	•	•	•	•	23 23
	Soils .	•		•	•	•	•	•	•	•	•	•	24
	Soil Soil			-	•	•	•	•	•	•	•	•	24 26
	Ground V Stem and					•	•		•	•	•	•	32 35
	Stem Stem Needl Summa	Diame e Gro	eter owth	Grov	vth •	•	•	•		•	•	•	35 41 44 47
	Root Dev Snow Dam	_			•	•	•	•	•	•	•	•	47 61
	New D Old D Whorl	amage				•	•	•	•	•	•	•	62 67 67
	Summary Biomass	• •	• •	•	•	•	•	•	•	•	•	•	72 74
	Nutri Bioma				Lon	•	•	•	•	•	•	•	74 75
VI. SU	MMARY AND	CONC	CLUS	IONS	•	•	•	•	•	•	•	•	76
LITERATUR	E CITED.	•		•	•	•	•	•	•	•	•	•	80
APPENDIX		•		•	•		•	•	•	•	•	•	87

LIST OF TABLES

Table		Page
1.	Block comparison of total height and DBH of all trees, fall 1971	35
2.	Mean annual terminal leader growth of the 12 sample red pine trees in each spacing	36
3.	Yearly precipitation in the eastern end of the Upper Peninsula partitioned according to red pine growth phases	39
4.	Mean annual height and DBH of the sample trees for three growing seasons	42
5.	Diameter distribution for all trees by spacing, below and above a DBH of 5.1 cm	43
6.	Mean weekly circumference growth by density, 1971	43
7.	Mean annual needle growth on 12 sample trees per spacing for three growing seasons	45
8.	Percentage distribution of the root systems according to the angle of the roots with the planting furrow	55
9.	Summary of the number of whorls and branches damaged during three winters on a per-tree basis, by spacing	62
10.	Number of damaged branches/tree during the winter of 1970-1971 classified according to the percentage damage to the vascular system	65
11.	Snow damage during the winters of 1968-1969 and 1969-1970 classified as either remaining branches or missing branches	70

Table		Page
12.	Distribution of snow damage during the last three winters by whorl and damage category	. 70
13.	Comparisons of changes in the nitrogen and potassium distribution in young red pine from 1968 to 1971	. 74
14.	MetricEnglish equivalent measurements .	. 87
15.	Minimum, maximum, and mean air temperatures within the plantation during the growing seasons of 1969, 1970, and 1971	. 88
16.	Precipitation in the plantation during the growing seasons of 1969, 1970, and 1971	. 89
17.	Weekly minimum, maximum, and mean relative humidities within the plantation during the 1971 growing season	. 90
18.	Mean daily solar radiation values over weekly periods during the summer of 1971	. 90
19.	Percent soil moisture (by weight) for vary- ing spacings during 1969 in the 0 to 15 centimeter depth range	. 91
20.	Percent soil moisture (by weight) for vary- ing spacings during 1971 in the 0 to 15 and 15 to 30 centimeter depth range	. 92
21.	Block and spacing comparisons of percentage of ground area covered by herbaceous vegetation, 1971	. 93
22.	Average tree height on each .04 hectare plot before and after thinning, 1968	
23.	Average leader growth by spacing during the 1969 through 1971 growing seasons	
24.	Average height and DBH of three sample trees per plot at the end of the growing season, 1968 to 1971	
25.	Diameter distribution for all trees by plot, below and above a DBH of 5.1 centimeters	

Page		rable
98	ly tree circumference growth measurements y band dendrometer for observed spacing, 971	26.
99	age needle growth by spacing during the 969 through 1971 growing seasons	27.
100	pine root orientation with the furrow coording to diameter class	28.
101	e-year summary of snow damage to ranches, 1968-1971	29.
102	nsity of snow damage by percent dis- uption of the vascular cambium during he winter of 1970-1971	30.
103	damaged branches remaining on or missing rom trees during the winters of 1968-1969 nd 1969-1970	31.
104	ary of the number of snow damaged ranches by whorl classified in terms f recent damage/old damage, 1968-1971	32.
105	entage of branches in Whorl IV killed nd damaged by snow	33.
106	ass distribution of the needles, ranches, stem, and roots of young red	34.

LIST OF FIGURES

Figur	e	Page
1.	Plot map for the red pine spacing study in the N 1/2, SE 1/4, T43N, RlW, Michigan Meridian	13
2.	Soil horizon description for the modal Kal- kaska sand profile within the study plan- tation	27
3.	Soil moisture variations in the 0 to 15 centimeter depth of Kalkaska sand during the summer of 1969	29
4.	Soil moisture variations in the 0 to 15 centi- meter depth of Kalkaska sand during the summer of 1971	30
5.	Soil moisture variations in the 15 to 30 centimeter depth of Kalkaska sand during the summer of 1971	31
6.	Change in ground vegetation from east to west within the plantation	34
7.	Three-year mean annual leader growth of 12 sample trees per spacing	37
8.	Maximum and minimum terminal growth of contrasting spacings over a three-year period	40
9.	Maximum and minimum needle growth, by corresponding spacing, for a three-year period	46
10.	500 trees/ha. plot: (A) after the thinning in 1968 to simulate initial stocking level and (B) in 1971Note: no crown closure	49

Figur	e	Page
11.	2000 trees/ha. plot: (A) after the thinning in 1968 to simulate initial stocking level and (B) in 1971Note: crown closure	51
12.	Three-dimensional distribution of red pine roots in .86 cubic meters of soil for tree No. 1, 2000 trees/hectare	53
13.	Partially excavated root of red pine exhibit- ing orientation in the furrow	57
14.	Excavated root system representative of machine-planted red pine	59
15.	Snow damage "line" in 1971 at about 75 cm above the ground, 2000 trees/ha	64
16.	Branches per tree damaged and killed in the winter of 1970-1971 by density level	66
17.	Branch vascular cambial separation for the 90-100 percent snow damage category	69
18.	Percentage of all branches in Whorl IV damaged and killed	73

VITA

DANIEL GEORGE NEARY

Candidate for the degree of Master of Science

FINAL EXAMINATION: February 21, 1972

GUIDANCE COMMITTEE:

Dr. Gary Schneider (Chairman), Department of Forestry

Mr. Maurice Day, Department of Forestry

Dr. Victor Rudolph, Department of Forestry

Dr. Donald White, Department of Forestry

Dr. Peter Murphy, Department of Botany

DISSERTATION: The Influence of Planting Density Upon the Early Growth of Red Pine

BIOGRAPHICAL ITEMS:

Born October 1, 1946, Chippewa Falls, Wisconsin Married August 29, 1970, to Vicki Oien

EDUCATION:

University of Wisconsin--Eau Claire, 1964-1967 Michigan State University, B.S., 1969

PROFESSIONAL EXPERIENCE:

September, 1970--Present

NDEA Fellow, Department of Forestry, Michigan State University

August, 1969--May, 1970

Ensign, U.S. Naval Reserve

Summer, 1968

Crew Chief, C.F.I. Project, Plumas National Forest, Quincy, California

Summer, 1967

Field Biologist, Clear Creek Camp, Philmont Scout Ranch, Cimarron, New Mexico

September, 1965--June, 1967

Biology Teaching Assistant, University of Wisconsin at Eau Claire, Eau Claire, Wisconsin

ORGANIZATIONS

Society of American Foresters

Xi Sigma Pi

Michigan Academy of Science, Arts, and Letters

CHAPTER I

INTRODUCTION

Within its natural range, red pine (Pinus resinosa Ait.) was once most abundant in the northern regions of Minnesota, Wisconsin, and Michigan. Following extensive logging operations, settlement clearing, and a series of catastrophic fires in the latter half of the 19th century, red pine stands in this region were considerably reduced. In the past 70 years red pine has made a comeback under the impetus of abundant natural regeneration and widespread planting programs.

When a plantation is to be established, an important management decision involved is that of the number of trees to plant per hectare. Since the initial stocking density may have significant and lasting effects on the growth of the stand, this decision is an important one. Many plantations of red pine in northern Michigan have been established at close spacings that necessitate precommercial thinning. Part of the rationale is that maximum plant productivity results only when a stocking level is reached that fully utilizes the site. Related

to this is the theory that competition between two individuals in a stand does not occur until crown closure. Furthermore, it has been believed desirable to maintain an adequate stocking surplus from the beginning of the rotation to cover losses due to insect and disease attacks. However, with the recent emphasis on the economics of forest operations, the amount of capital investment in plantation establishment has begun to exert considerable influence on the initial spacing decision.

It is generally recognized that the periodic thinning of red pine plantations is a desirable silvicultural practice for obtaining maximum economic returns. However, most thinning studies have been established in stands of relatively high density where trees have often reached merchantable size. The effects of the initial stocking density on the early development of the trees, and on the subsequent results obtained by thinning are not taken into account. The objective of this study is to determine the most silviculturally desirable initial density level for red pine in northern Michigan.

CHAPTER II

REVIEW OF LITERATURE

The choice of the proper spacing in a red pine plantation requires careful consideration of the wide array of environmental factors influencing growth and development. The interactions of these factors with spacing result in either advantageous or disadvantageous conditions for tree growth. The pros and cons of wide spacing in conifer plantations have been enumerated by Morrow (1964) and Wilde (1964). They stressed that the choice of spacing be based upon such factors as the nature of the soil, composition and density of competing vegetation, species growth patterns, climate, moisture regime, insect and disease hazards, the type of wood product desired, and financial feasibility.

Growth responses to wide spacings have been documented by several thinning studies conducted in natural and planted stands. Eyre and Zehngraff (1947) reported that a 23-year-old natural red pine stand thinned to a spacing of 3.0 x 3.0 meters (1080 stems/hectare) 1

Refer to Appendix Table 14 for the English system equivalents for these and subsequent measurements.

stimulated more diameter growth, suffered less from glaze damage, and had significantly more trees in larger diameter classes than narrower spacings. In Canada, Berry (1965) pointed out that a 4.3 x 4.3 meter spacing (550 stems/hectare) established in a 13-year-old red pine plantation resulted in greater diameter growth, increased taper, larger average basal area growth, more than double the volume growth per tree, and little difference in height growth in comparison with the original spacing of 2.1 x 2.1 meters. A subsequent study by Berry (1969) showed that height growth in the 4.3 x 4.3 meter spacing decreased for four years following the thinning operation before returning to normal.

Barrett (1965) reported that a dense stand of ponderosa pine (Pinus ponderosa Laws.) thinned to five densities ranging from 150 to 2470 stems/hectare resulted in twice as much diameter increment and total height growth on the widest spacing as on the closest spacing. In plots with the competing understory vegetation removed, diameter growth in the wider spacings was even greater.

While thinning studies enable delineation of some of the advantages and disadvantages of wide spacings, they do not consider growth response differences resulting from initial planting spacing. Consequently, several research projects have been conducted to analyze the growth of red pine over a range of initial spacings.

Byrnes and Bramble (1965) reported the results of a 30-year-old red pine stand originally planted at spacings of 1.5 x 1.5, 1.8 x 1.8, 1.8 x 2.4, and 3.0 x 3.0 meters (4310, 2990, 2240, and 1081 trees/hectare). In comparison to the 1.5 x 1.5 spacing, the 3.0 x 3.0 meter-spaced trees were approximately 7.5 centimeters larger in DBH (diameter at 1.37 meters), 1.65 meters taller, more windfirm, and maintained the greatest rate of volume increase in addition to suffering no losses from mortality factors. The 3.0 x 3.0 meter-spaced plots had six times as many trees and contained seven times the volume of wood in trees classed 18 cm or greater in DBH than the 1.5 x 1.5 meter-spaced plots.

The growth and yield of 25-year-old red pine planted in three different spacings in southern Michigan were summarized by Lemmien and Rudolph (1959). A 3.0 x 3.0 meter spacing was superior to either a 1.8 x 1.8 or 2.4 x 2.4 meter spacing since it produced nearly as much volume per hectare in larger, more merchantable trees. Also, thinnings were more easily applied, the access for cultural operations improved, and establishment costs lowered.

One of the most extensive studies on the growth of red pine planted at different densities was reported by Stiell (1964) in Ontario. The experiment measured the growth of seedlings planted in furrows 2.1 x 2.1,

3.0 x 3.0, and 3.7 x 3.7 meters apart (220, 1080, and 750 stems/hectare). After 20 years, the 3.7 x 3.7 spacing resulted in the greatest stem diameter growth, the largest average branch diameter, the fastest rate of volume growth per tree, the longest crown length, and the greatest foliage weight. Height growth and the number of branches per whorl appeared to be independent of spacing. Both total basal area and basal area increment were greatest in the closest spacing. Stiell concluded that the 3.7 x 3.7 meter spacing probably offered the best opportunity for shortening the rotation of red pine and increasing net economic returns.

Berry (1970) reviewed the growth of 16-year-old red pine planted in five spacings ranging from 1.2 x 1.2 to 4.3 x 4.3 meters (6730 to 550 stems/hectare). He noted that as spacing increased, the average DBH was increased 47 percent. However, while height growth was unrelated to spacing, a trend for closely spaced trees to have smaller stem diameters and narrower crowns existed. Crown closure and subsequent competition probably reduced radial growth throughout the entire length of the stem.

The environmental factors responsible for the growth responses of red pine have been under study by a number of forest scientists. Such aspects of red pine growth as root distribution, precipitation and

temperature effects, soil moisture and temperature effects, growth patterns, and snowfall effects have been examined. While Rudolf (1957) reviewed the general silvical characteristics of red pine, basic physiological and phenological information has been provided by Krenholz (1934), Duff and Nolan (1953), Kozlowski and Ward (1957), and Kozlowski and Peterson (1962). Richards et al. (1962) discussed stand development and site index for red pine plantations in New York. DeMent and Stone (1968) examined the influences of soil type and soil physical properties on red pine growth. Tree growth and development as a function of soil moisture, soil temperature, and soil nutrients have been investigated recently by Leaf et al. (1970) in red pine plantations.

The root system of red pine, its distribution, and its association with other tree roots has been discussed by Day (1941), Garin (1942), Brown and Lacate (1961), and Stiell (1970). Root growth responses have also been studied in some detail by Krenholz (1934), White and Wood (1958), and Merritt (1968).

Considerable research interest has centered around the interrelationships between rainfall, soil moisture, and tree growth. Early work on the effects of precipitation on red pine growth was done by Motley (1949), Stoeckeler and Limstrom (1950), and Dils and Day (1952). They showed the close relationship between radial growth

and rainfall. Della-Bianca and Dils (1960), Bay (1963), and Bay and Boelter (1963) observed the effects of stand density on soil moisture and radial growth. Zahner and Donnelly (1967) studied the correlations of water deficits with radial growth in young red pine. effects of ground vegetation on red pine growth was investigated by Shaw et al. (1968), and Wilde et al. (1968). They noticed a reduction in tree growth with depletion in soil moisture caused by high rates of weed species transpiration. Clements (1965, 1970), by correlating rainfall with radial growth in red pine, pointed out how moisture conditions during the formation of buds in one year significantly affected shoot growth the following year. Buds with an adequate moisture supply were larger, produced more needle primordia, broke dormancy earlier, and provided a greater needle photosynthetic surface that resulted in greater radial growth than those with a moisture deficit.

Heavy snow accumulations, characteristic of
Michigan's upper peninsula, prompted several studies to
be conducted that dealt with the effects of stand density
on snow buildup and damage. Red pine proved to be the
least susceptible to snow damage of all the native
conifers of the region following a late fall snow storm
containing wet snow and high winds (U.S. Forest Service,
1939). Stoeckeler and Rudolf (1949) and Godman and

Omstead (1962) showed greater snow damage in closely spaced Lake States conifer stands than in widely spaced stands. However, with wider spacings, snow accumulation increases were directly proportional to soil moisture increases as reported by Dils and Arend (1956), Weitzman and Bay (1959), and Hansen (1969).

CHAPTER III

THE STUDY AREA

Location and Soils

The study area of about 22 hectares in size is located in the eastern end of Michigan's upper peninsula approximately 48 kilometers south of Sault Ste. Marie on the Munuscong State Forest. It is situated in the N 1/2, SE 1/4, Section 35, Township 43 North, Range 1 West, Michigan Meridian.

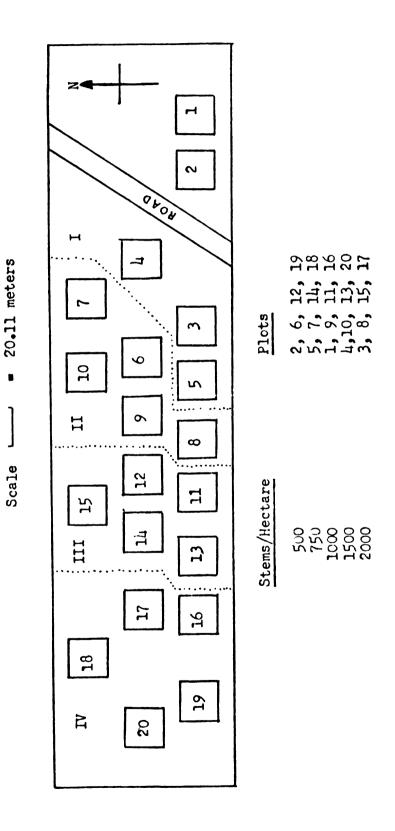
The tract containing the study plots lies on a nearly level portion of an east-west oriented ridge at 244 to 247 meters above sea level. The ridge consists of Engadine Dolomite and Manistique Dolomite overtopped with varying depths of glacial debris. The soil that formed from the glacier deposited material is classified as Kalkaska. It is a well-drained typic haplorthod that has developed in deep sands containing little or no calcareous material. While the soil does contain stray chunks of dolomite, the bulk of the parent material originated from igneous rocks of the Canadian Shield. The textural range of the Kalkaska Series grades from

sand to loamy sand. The solum ranges in depth from 51 to 114 cm with occasional weak cementation of the upper B horizon. The textural characteristics of this soil result in slow runoff, rapid permeability, and excellent drainage. Consequently, the Kalkaska tends to be drouthy during dry spells. Productivity is low to high for hardwoods, and medium to high for conifers (Soil Conservation Service, 1965).

Regional Climate

The general climate of the upper peninsula of Michigan is marked by low to moderate rainfall with cool to warm summers and cold winters. For the record period of 1931 to 1960 the weather in the study area was characterized by an average annual temperature of 5.5 degrees Centigrade. The average January temperature was -9.4 degrees while the average July temperature was 18.9 degrees. The growing season averaged 120 to 130 days for the period involved. Annual precipitation has averaged between 69 and 71 cm with an annual snowfall of 203 to 229 cm contributing one-third of the moisture (Senninger, 1963).

Past History


The original vegetation of the area was primarily northern hardwoods. Around 1885, a 22-hectare tract was homesteaded by the Morrison family of Pickford, Michigan.

Old growth hardwoods were felled and burned. Evidence of this burning still exists in charcoal deposits found at the bottom of the Ap soil horizon. Corn, potatoes, various vegetables, and livestock forage crops were grown on the cleared land. The farm was abandoned in the early 1900's and the fields left fallow. During the 1930's the state of Michigan acquired this land in lieu of delinquent taxes and turned over its administration to the Department of Natural Resources. In the fall of 1962, two portions of the old Morrison farm were planted with 3-0 red pine nursery stock using a T6 tractor with a Killifer plow followed by a DNR planting machine with a 23 cm planting shoe.

Study Design

The original stocking level of 2000 to 2250 trees/
hectare was altered by an intermediate thinning in the
spring of 1968 in order to study the effects on subsequent growth by simulating a range of initial stocking
densities. The red pine at that time had grown for five
summers in the plantation and were about 1.5 meters tall.
The experimental design was a randomized block design
consisting of five treatments in each of four blocks
(Figure 1). Treatments of 500, 750, 1000, 1500, and 2000
trees/hectare were selected, and 20 plots, each 1/25th

Personal recollection of Mr. Clayton Morrison of Pickford.

Plot map for the red pine spacing study in the N 1/2, SE 1/4, T43N, RlW, Michigan meridian. Figure 1.

hectare in size, were established. The randomized block design was used to eliminate as a source of error an observed east-west gradient in tree height and ground vegetation. Every effort was made to keep the plots uniform in terms of tree height and ground vegetation.

CHAPTER IV

FIELD PROCEDURES

A wide variety of study methods were used to evaluate the influences of climate, soils, and vegetation on red pine growth.

Climate

Climatic factors have been measured since 1969.

At weekly intervals during the growing season of that year, air temperature and rainfall were recorded at 30.5 cm above ground. Both minimum-maximum thermometers and small bucket-type rain gages were installed in plots 6, 9, 8, 20, and 18. During the summer of 1970 the thermometers and rain gages were located in plots 1, 9, 11, and 16. In 1971 the minimum-maximum thermometers were placed in plots 1, 9, 11, and 16 at 30.5 and 152.4 cm above the ground, and in plots 2, 3, 6, and 8 at 30.5 cm above the ground. Rain gages were located in plots 14, 1, and 19. Previous records showed little precipitation variation in the plantation. A pyrheliometer and hygrothermograph were installed on plot 14, the plot designated as the main weather station. The pyrheliometer

was placed on the ground in an open area subject to minimal shading. The hygrothermograph was set in a ventilated, double-roofed shelter with the temperature sensor 30.5 cm above the ground. Temperature and precipitation recordings were made daily except Saturday and Sunday from June 18 to September 5, 1971. The solar radiation and relative humidity recordings were continuous during the same period.

In addition to the plot weather records, weather summaries from Dunbar Forest Experiment Station, Detour, and Kincheloe Air Force Base were obtained to put the study area within the perspective of the general climate pattern of the eastern end of Michigan's upper peninsula. These weather stations are, respectively, 21 kilometers northeast, 39 kilometers eastsoutheast, and 21 kilometers northwest of the plantation.

Soils

Soil descriptions were made in August of 1968.

Profiles of the soil were exposed and described in plots
7 and 10 since these two locations proved to contain the
modal soil characteristics of all the plots. At weekly
intervals during the 1969 growing season, gravimetric
soil moisture samples were taken at designated points
in plots 6, 9, 8, 20, and 18 from the top 15 cm of the
soil.

In the summer of 1971 gravimetric soil moisture determinations were again made in all plots for the 0 to 15 cm depth, and in plots, 1, 2, 3, 4, and 5 (Block I) and 16, 17, 18, 19, and 20 (Block IV) for the 15 to 30 cm depth. Sampling points were located in the furrows at an intermediate distance from the surrounding trees. Weekly samples were spaced at least 150 cm apart to eliminate variations in soil moisture due to previous sampling holes.

Ground Vegetation

A detailed ground vegetation survey was made by subdividing each of the 20 plots into nine square subplots. A one meter square quadrat was then located at the center of each subplot or in the nearest open area from the center of the subplot. Each species group was rated on a scale of 0 to 10 according to the percent of the surface area covered. A preliminary examination of the 20 plots resulted in the selection of the following thirteen categories for use in the survey:

- 1. Polytrichum s.p.--Hair Cap Moss
- 2. Rumex acetosella L.--Dock
- 3. Hieracium florentinum All.--Kingdevil
- 4. Hieracium aurantiacum L.-Orange Hawkweed
- 5. Euphorbia esula L.--Leafy spurge
- 6. Fragaria vesca L.--Strawberry
- 7. Rubus idaeus L.--Raspberry
- 8. Poa spp.--Grasses
- 9. Agropyron repens (L.) Beauv.--Quack Grass
- 10. Lichen
- 11. Asclepias syriaca L.--Milkweed
- 12. Pteris aquilinum (L.) Kumn.--Bracken Fern
- 13. Bare Ground

Red Pine Measurements

Stem and Crown Growth

Needle length and length of the current terminal shoot were measured at one- or two-week intervals in 1969, 1970, and 1971 on three sample trees within each plot. The average needle length was measured at the base of the year's current shoot. The terminal shoot length was taken from the topmost whorl to the base of the terminal bud. In 1971 one representative tree on the edge of each of the 20 plots was chosen for monitoring with a circumference dendrometer. An aluminum band was placed at the DBH mark on each tree on June 16. Each band was measured for increase in circumference at weekly intervals.

Root Development

The root system was examined for three representative red pine trees of the 500 and 2000 stems/hectare densities and one of the 1000 stems/hectare density.

A 1.2 x 1.2 meter area was established around each tree, and a 0.3 meter wide trench was dug to a depth of about 0.6 meters around the central 1.2 x 1.2 meter block.

Care was taken to ensure that the roots were not removed from the trench along with the soil material. Following excavation, the root patterns were mapped along both the vertical and cross-sectional views from each

face of the block around the tree. The roots were labelled according to four diameter classes:

- 1. 0.0 to 6.3 mm
- 2. 6.4 to 12.6 mm
- 3. 12.7 to 18.9 mm
- 4. 19.0 mm +

After the mapping was completed, the block of soil remaining around each tree was excavated to trace the roots found in the trenches back to their tree of origin. Each tree was then cut at ground line and sectioned into stem, branches, needles, and roots for biomass analysis. No attempt was made to obtain that portion of the root system outside of the original excavation area.

Snow Damage

As the result of unusual winter weather conditions during the study period, one additional set of measurements was made. Three successive winters of heavy snow accumulation resulted in extensive snow damage to the plantation. A damage survey was undertaken to determine if the extent of injury could be related to the various densities used in the spacing study. The survey included measuring the upper six whorls in each tree in every plot for the following:

- 1. Number of branches in the whorl
- 2. Height of the whorl from the ground

- 3. Number of branches damaged in the 1970-1971 winter
- 4. The percentage damage from the 1970-1971 winter
 - (a) 90-100%: Branches killed or about to die
 - (b) 50-90%: Branches more than 50% pulled from their sockets and still alive
 - (c) Less than 50%: Branches lightly damaged
- 5. Average diameter of recently damaged branches
- 6. Damage from the winters of 1968-1969 and 1969-
 - (a) Total number of branches damaged
 - (b) Estimate of the number of branches in the whorl before any damage occurred
 - (c) Number of intact branches
 - (d) Number of damaged branches
 - (e) Number of missing branches

Biomass

In 1969 a number of trees were collected for biomass analysis. Individual trees from plots 1 through 5 and representative trees from Blocks II through IV were obtained. The trees were then separated into stem, branches, and foliage for determination of oven dry weight and nutrient content. The nutrient analysis was

ha

La

re

handled by the Michigan State University Plant Analysis
Lab. The same procedure was used in 1971 on the trees
removed during the root study.

Ter

gro wer

20

Jul

per

Cer

cal of

Jul

bel the

197 in

deg

CHAPTER V

RESULTS AND DISCUSSION

Climate

Temperature

The mean temperatures observed at 30.5 cm above the ground during the growing seasons of 1969 through 1971 were quite similar. A maximum mean temperature of about 20 degrees Centigrade usually occurred in mid or late July. Minimum temperatures in the plantation during the periods of record were generally in the 0- to 10-degree Centigrade range, while the maximums were characteristically in the 25- to 38-degree range. The normal pattern of hot days and cold nights during the months of June, July, and August occasionally resulted in temperatures below 0 and above 38 degrees. Temperatures recorded at the standard height of 152.4 cm (5 feet) above ground in 1971 were generally 1 to 4 degrees cooler. Those recorded in the open area outside the plantation averaged 0 to 3 degrees cooler because of increased air circulation.

Pre

du:

Wee

be:

sur

im

buo 19

in

Re

ti:

in af

mi

So:

of

The

can

Precipitation

Rainfall in the eastern half of the upper peninsula during the summer months is uneven due to the sporadic thundershowers that provide most of the precipitation.

Weekly oscillations of 0 to 8.5 cm of precipitation have been recorded in the course of the 1969-1971 growing seasons (Figures 3 and 4 on pages 29 and 30). Late summer and early fall rainfall appears to be the most important since it affects the development of the terminal bud, and ultimately the growth of the tree (Clements, 1970). This relationship is discussed in more detail in the section on shoot and crown growth.

Relative Humidity

The relative humidity in the plantation was continually monitored during the 1971 growing season. The normal daily pattern for the relative humidity resulted in a minimum reading of less than 40 percent in the early afternoon, and a maximum of 99 to 100 percent between midnight and dawn.

Solar Radiation

Incoming solar radiation during the growing season of 1971 averaged 408 langleys/day (gram-calories/cm²/day). The week of maximum solar radiation (507 langleys/day) came as might be expected after the summer solstice.

·...../

Th da

So

to dr

sa Oc

> oc so

> pe we

Wa

fo

ar

pi an

th be

lu re

L.

fo

The maximum rate of insolation observed was 691 langleys/day while the minimum was 80 langleys/day.

Soils

Soil Profile

The modal soil profiles described in 1968 belong to the Kalkaska series. This series consists of well-drained typic haplorthods that have developed in deep sands containing little or no calcareous material.

Occurring mainly in the lower peninsula, Kalkaska soils occupy about 216,000 hectares in Michigan. There are some small aggregates in the eastern half of the upper peninsula. This series is usually associated with the well-drained Rubicon, Karlin, Grayling, Graycalm, and Wallace soil series. Collectively, this group accounts for 1.6 million hectares of the 15 million hectare land area of Michigan.

Kalkaska soils are usually found on level and pitted plains, or on dry, bench land with low relief and short slopes. The original vegetation cover for this series was sugar maple (Acer saccharum Marsh.), beech (Fagus grandifolia Ehrh.), yellow birch (Betula lutea Michx. f.), hemlock (Tsuga canadensis (L.) Can.), red pine (Pinus resinosa Ait.), white pine (Pinus strobus L.), and occasionally jack pine (Pinus banksiana Lamb.).

The description of the Kalkaska modal profile is as follows:

0.

В

A.

В

В

C:

se U.

The Kalkaska Series

SOIL PROFILE:	KALKASKA SAND
02 05-00 cm	Black (10YR2/1) well-decomposed leaf litter with a high proportion of mineral soil; weak, medium, granular structure; very friable; many fine roots; very strongly acid; abrupt smooth boundary.
A2 00-23 cm	Sand; light brownish gray (10YR6/2); single grain, structureless loose; few fine roots; very strongly acid; abrupt irregular boundary. 10-31 cm thick.
B2ih 23-28 cm	Sand; dark reddish brown (5YR2/2); weak, medium, granular structure; massive in chunks; very friable with some strongly cemented chunks of ortstein occurring in the lower part of this horizon and the B22ir, B23ir, and the upper B3 horizon; many fine roots occurring the friable portion of the horizon, only a few roots penetrate the ortstein chunks; very strongly acid; abrupt irregular boundary. 5-25 cm thick.
B22ir 28-38 cm	Sand; dark brown (7.5YR3/2); very weak, coarse, granular to medium subangular, blocky structure; massive in chunks; very friable with strongly cemented chunks of ortstein, very strongly cemented; clear irregular boundary. 5-15 cm thick.
B23ir 38-58 cm	Sand; brown to dark brown (7.5YR4/4); very weak coarse to medium granular structure; very friable with a few weakly cemented chunks of ortstein; medium acid; clear irregular boundary. 10-38 cm thick.
B3 58-96 cm	Sand; yellowish brown (10YR5/4); very weak, coarse, granular structure; very friable; medium acid; gradual wavy boundary. 15-51 cm thick.
C1 58-96 cm	Sand; yellowish brown (10YR6/4); single grain structureless loose; medium acid.

¹Soil Conservation Service, 1965, Kalkaska soil series description. National Cooperative Soil Survey, U.S. Department of Agriculture Soil Conservation Service.

Figure 2 presents the representative soil profile of the area as it was described in the original Soil Conservation Service field report in 1968. The legend for the abbreviations used in the description is shown below:

- 1. Boundary
 - (a) as--abrupt smooth
 - (b) ab--abrupt broken
 - (c) ai--abrupt irregular
 - (d) gi--gradual irregular
 - (e) gw--gradual wavy
- 2. Structure
 - (a) fsbk--fine subangular blocky
 - (b) vfsbk--very fine subangular blocky
 - (c) sg--single grain
- 3. Consistence
 - (a) vfr--very friable
 - (b) 1--loose

Additional soil characteristics were also noted within the profile. Chunks of ortstein were common throughout the B horizon. The C2 horizon was found to contain colored bands about 0.6 to 1.5 cm thick and nearly 6 cm apart. Particles of charcoal, relicts of the original forest that was cut and burned, were evident at the bottom of the Ap horizon. Stray pieces of dolomite were noticeable at ground level and in the surface horizons.

Soil Moisture

Soil moisture in sandy soils is seldom adequate over the entire growing season for plant growth, and

	Depth (cm)	Boundary	Color	Structure	Structure Consistence	Hď	Texture	NO3	д	K Ce	Ca ha)	Mg
A A	17.5	ช	10YR4/1	fsbk	vfr	4.7	sand	6.0	8.0	17.1 164.2 28.5	164.2	28.5
A2	22.5	ab	5YR5/2	fsbk	vfr	5.1	sand	4.0	4.6	5.7	5.7 164.2 28.5	28.5
BAyer	30.0	ai	5YR2/2	vfsbk	vfr	5.0	sand		21.7	17.1	364.8	42.2
B22ir	39.6	ai	5YR3/4	vfsbk	vfr	5.2	sand		27.4	11.4	11.4 164.2	28.5
1/5/	47.5	ai	7.5YR4/4	vfsbk	vfr	5.2	sand		29.6	11.4	164.2	28.5
В3	!	gi	10YR4/4	sg	П	5.3	sand	ı	68.4	5.7	5.7 164.2 13.7	13.7
	67.5											
1												
5 <mark> </mark> 1		gw	10YR6/4	sg	1	5.4	sand	1	39.9	11.4	11.4 164.2 13.7	13.7
	130.0									!		
C2			10YR6/4	5g	1	5.3	sand	1	34.2	11.4 164.2 28.5	164.2	28.5

Soil horizon description for the modal Kalkaska sand profile within the study plantation. Figure 2.

thus often becomes a critically important factor in tree growth. The ability of well-drained soils to hold water is primarily a function of the silt and clay present in the profile. Sands normally have less than 7 percent of their profiles in the silt and clay fractions. Thus, their ability to hold water available for tree use is reduced. For soils of sand texture the mean range of available soil moisture is between 3 and 8 percent by weight (Broadfoot and Burke, 1958; Miller, 1970). Soil moisture levels in sandy soils are consequently influenced to a great extent by precipitation patterns.

The seasonal soil moisture pattern for 1969 in the 0 to 15 cm portion of the soil profile is shown in Figure 3. Two soil moisture trends are evident. The general decline in moisture over the summer reflects both soil moisture depletion due to evapo-transpiration and a decreasing frequency of rainfall in the latter part of the summer. Abrupt increases in soil moisture are a direct response to increased rainfall. The lack of large oscillations and the maintenance of high soil moisture levels can be directly tied to the abundant rainfall in June.

The soil moisture regime during the summer of 1971 in the 0 to 15 and the 15 to 30 cm of the soil is portrayed in Figures 4 and 5. No statistical differences are noted between spacing and soil moisture. Only

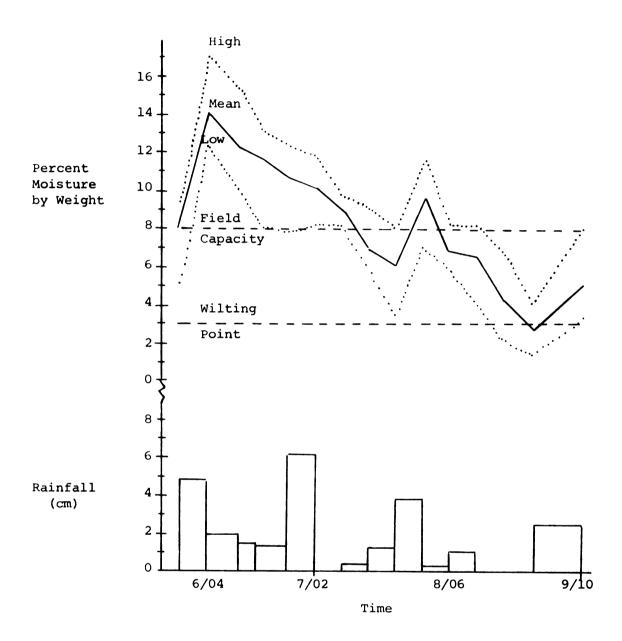


Figure 3. Soil moisture variations in the Q to 15 centimeter depth of Kalkaska sand during the summer of 1969.

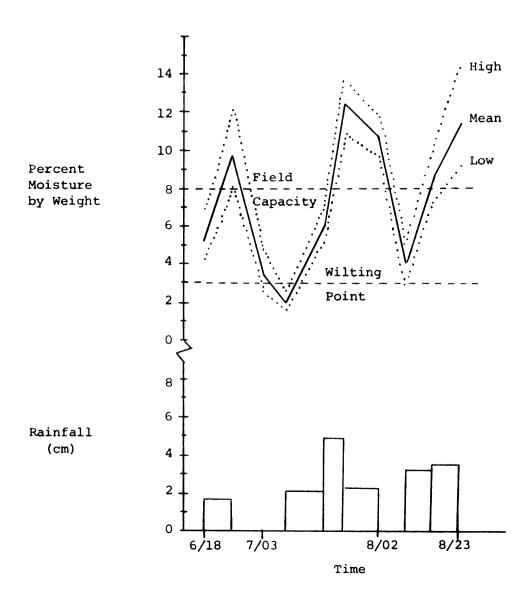


Figure 4. Soil moisture variations in the 0 to 15 centimeter depth of Kalkaska sand during the summer of 1971.

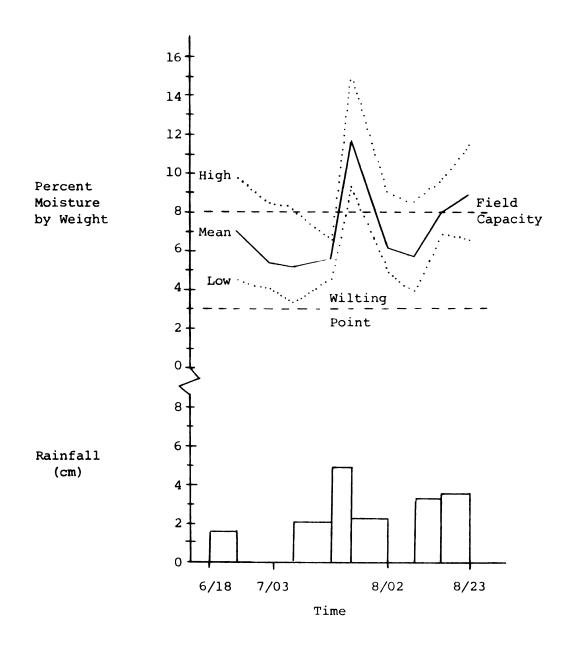
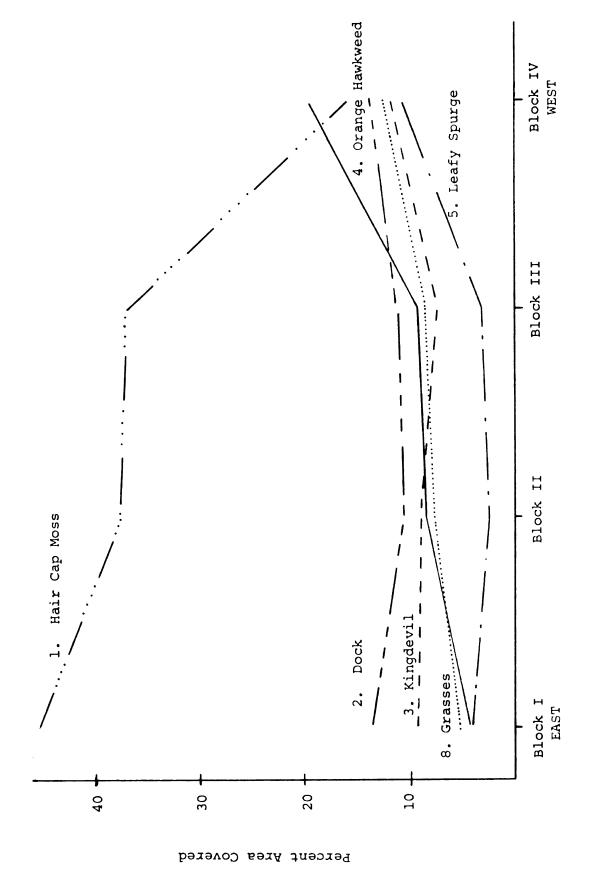


Figure 5. Soil moisture variations in the 15 to 30 centimeter depth of Kalkaska sand during the summer of 1971.

differences between weeks (due to variation in weekly rainfall) are significant. In comparison to the 0 to 15 cm depth, the 15 to 30 cm depth has similar moisture fluctuations but of lesser magnitude. The 1971 soil moisture pattern shows the trend of direct response to rainfall but does not show a gradual pattern of soil moisture depletion over the summer. The abundant rainfall that characterizes the early summer of 1969 is absent in 1971. Thus, soil moisture in the upper 15 cm of soil drops to below the wilting point in early July, recovers quickly with abundant rain, and drops suddenly again with the first dry period. Compared to 1969, 1971 is characterized by greater soil moisture stress at an earlier point in the growing season.

The failure to detect significant soil moisture differences between plots of different density in 1971 may have been due to both insufficient sampling points and/or sampling frequency. Although diameter and needle growth responses are directly influenced by moisture availability, and significant diameter and needle growth differences were observed, the methods employed to determine soil moisture were unable to detect any significant differences.


Ground Vegetation

The ground vegetation was studied to determine possible effects of herbaceous competition on tree

growth. An observable east-west vegetation gradient was measured in the study area. It was recognized that tree density could be a significant factor influencing the establishment of several of the more competitive herbaceous plants.

A profile view of the vegetation present is contained in Figure 6. Proceeding from Block I through Block IV the percentage of the ground surface covered by hair cap moss drops from around 45 percent to less than 20 percent. Correspondingly, the percentage of the plot areas covered by the group consisting of orange hawkweed, grasses, kingdevil, and leafy spurge increases from approximately 20 percent in Block I to 40 percent within Block IV.

Table 1, summarizing the heights of all the trees by blocks, shows that as of 1971 both the average tree height and DBH of Block IV are significantly lower than those of Blocks I, II, and III. The reaction in tree growth in Block IV may reflect competition with herbaceous vegetation. Unfortunately, the percentage of ground surface covered by orange hawkweed, kingdevil, leafy spurge, and the grasses is misleading as it does not present an adequate picture of the soil volume occupied by the roots of those plants. Occupying a large portion of the surface horizons and, in the case of leafy spurge, often extending as deep as the red pine

Change in ground vegetation from east to west within the plantation. Figure 6.

Table 1.	Block comparison	of total	height and	DBH of
	all trees, fall 1	L971.	_	

DI cole	Height ^l	DBH1	
Block	(m)	(cm)	
I	3.23 a	5.06 a	
II	3.12 a	4.91 a	
III	3.18 a	4.99 a	
IV	2.92 b	4.30 b	

¹ Means not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

roots, such roots utilize a great deal of the limited available soil moisture. This increases the moisture stress potential which in turn results in tree growth reductions.

The herbaceous vegetation distribution showed no relationship to tree density. Thus it can be concluded that tree variations found in different spacings are due to factors other than herbaceous vegetation distribution.

Stem and Crown Growth

Stem Height Growth

The measurements of the terminal leader growth of the three sample trees on each plot over the last three growing seasons is summarized in Table 2 and illustrated in Figure 7. The 1969 growing season resulted in the 500 and 750 trees/hectare spacings having the least

Table 2. Mean annual terminal leader growth of the 12 sample red pine trees in each spacing.

The second second	1	Growthl	
Trees/Hectare	1969	1970 (cm)	1971
500	48.33 b	56.08 a	62.85 a
750	48.67 ab	52.04 a	61.04 a
1000	55.67 ab	51.67 a	60.58 a
1500	60.34 a	51.71 a	59.38 a
2000	50.99 ab	48.17 a	56.62 a

¹ Means not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

growth. This was the first year after the 1968 intermediate thinning operation which simulated the initial stocking levels. The slower growth of the trees in these two spacings is similar to that reported by Berry (1969). He noted that a ten-year-old red pine stand thinned from 2000 to about 500 stems/hectare suffered reduced height growth for three years following the thinning. The reduction in height growth was most likely due to increased root and branch growth as a response to expanded growing space. However, in this case the decrease in growth was much shorter in length.

In 1970 the situation changed considerably as height growth tapered off in the 1000, 1500, and 2000 trees/hectare plots and increased in the 500 and 750 trees/hectare plots. This reduction was probably the

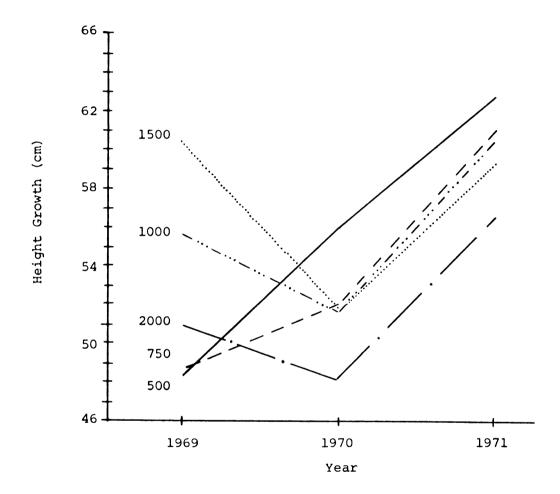
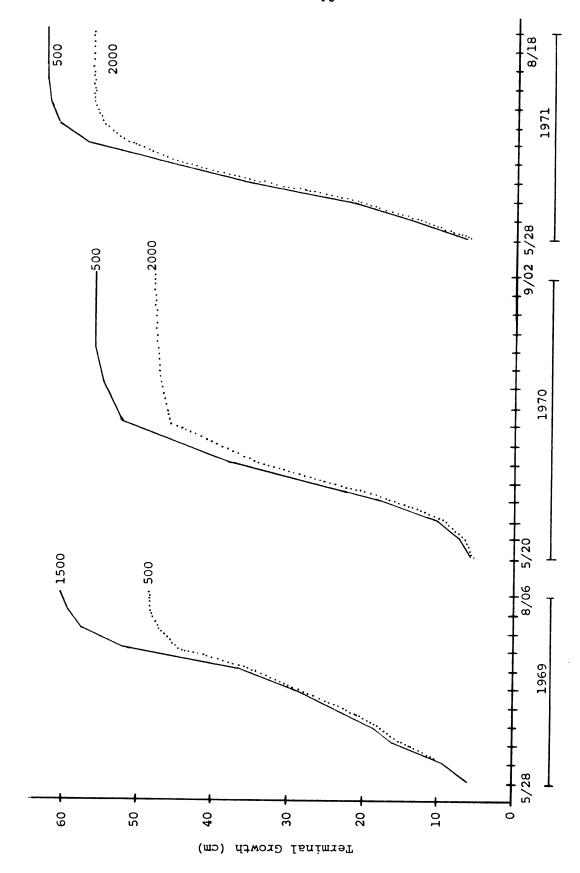


Figure 7. Three-year mean annual leader growth of 12 sample trees per spacing.

result of soil moisture deficiency. The 1970 growing season was characterized by less precipitation during (1) previous year's bud development period, (2) pre-growing season, and (3) shoot extension period (Table 3). A study by Clements (1970) showed that the amount of red pine shoot growth in one year is significantly affected by the available moisture during the period of bud development (July-September) of the previous year. Low amounts of moisture result in short terminal buds and consequently less leader growth the following summer. Also, severe soil moisture deficiency during any one summer will result in shoot growth reduction for that period (White, 1958). With rainfall during the bud development period of 1969 being 9 cm below normal and 17 cm less than that of the previous year, the amount of available soil moisture was most likely reduced. Competition in the 1000, 1500, and 2000 trees/hectare plots further limited the availability of soil water. in the 500 and 750 stems/hectare plots were probably spaced far enough apart to avoid moisture competition. Consequently, the terminal buds produced in the three densest spacings resulted in 1970 leader growth that was less than that of the two widest spacings. Also, the low rainfall (2 cm below normal) during May and June of 1970 probably contributed to the reduced shoot growth in 1970.

Table 3. Yearly precipitation in the eastern end of the Upper Peninsula partitioned according to red pine growth phases.


Year	Pre-Growing Season OctApr.	Shoot Extension May-June	Bud Development July-Sep.
		(cm)	
Meanl	37.69	15.90	24.66
1968 ²	42.06	19.18	32.94
1969	46.08	23.62	15.54
1970	39.12	13.92	33.81
1971	44.15	14.40	26.39

¹ Mean for the years 1940-1969 using station data from Sault Ste. Marie, Dunbar Forest Experiment Station, Newberry, and Mackinac City.

Growth of the terminal leader in 1971 increased for all the densities due to abundant rainfall in the bud development period of 1970. Indeed, the leader growth for 1971 was the best of the three years. The fastest growing sample tree in the plantation grew 76 cm.

The differences between the fastest growing and slowest growing trees each year were minimal until early or mid-July (Figure 8). In 1969 the leader growth in the 500 stems/hectare plots slowed down considerably after July 16th. The reduction in growth for that density was probably due to a shift toward root extension. The trees would use up a considerable amount of their

Average of Dunbar, Detour, and Kincheloe Air Force Base.

Maximum and minimum terminal growth of contrasting spacings over a three-year period. Figure 8.

photosynthetic products in expanding roots into adjacent soil areas from which competing trees were thinned (Shier, 1970). During the 1970 and 1971 growing seasons, the slowdown in the rate of terminal growth began in early July. This point occurred about mid-way into the growing season. It marked the completion of 90 percent of the leader growth and the initiation of bud formation.

The total height of the sample trees on each plot has been recorded for the past four years (Table 4). In 1968 the difference between the fastest and slowest growing plots was 8.8 cm. By 1971 this difference had increased to 25.1 cm. This coincides with results obtained by Stiell (1964) on a 20-year-old red pine. He found no more than 30 cm difference between the heights of trees in densities of 750 and 2200 trees/hectare. If the 500 trees/hectare plots continue at their present rate of increase they will have grown about 55 cm taller than the 2000 trees/hectare density at age 20 years.

Stem Diameter Growth

When DBH was first measureable in 1970, the 500 trees/hectare spacing averaged 0.7 cm greater in diameter than the 2000 trees/hectare spacing (Table 4). The following year this difference between the extremes of the spacing range increased to 1.0 cm. In both years, the DBH for the 500 trees/hectare plots was significantly greater than that of the 2000 trees/hectare plots. This

Table 4. Mean annual height and DBH of the sample trees for three growing seasons.

Trees/		Total		Total	DBHl		
Hec- tare	1968	1969	1970	1971	1970	1971	
		(m)			(cm)		
500	1.594 a	2.098 a	2.670 a	3.321 a	3.89 a	5.52 a	
750	1.532 a	2.030 a	2.603 a	3.223 a	3.48 ab	5.01 ab	
1000	1.575 a	2.077 a	2.588 a	3.213 a	3.58 ab	5.08 ab	
1500	1.569 a	2.080 a	2.606 a	3.202 a	3.33 ab	4.93 ab	
2000	1.506 a	2.008 a	2.489 a	3.070 a	3.18 b	4.54 b	

¹Means not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

same trend of increasing diameter growth with a decrease in tree density has been noted by Stiell (1969), Berry (1970), and others.

The diameter distributions of all the trees by spacing is summarized in Table 5. In the 500 stems/ hectare plots, 76.8 percent of the trees have a DBH greater than 5.1 cm. In the 2000 trees/hectare plots only 27.9 percent of the trees fall in this diameter class. While the densest spacing has four times as many trees/hectare as the lightest spacing, it has only one-third as many trees greater than 5.1 cm in DBH.

Weekly circumference growth was monitored in 1971 on four trees per spacing by means of a band dendrometer (Table 6). No significant differences were observed in the overall circumference growth by density level.

Table 5. Diameter distribution for all trees by spacing, below and above a DBH of 5.1 cm.

Trees/Hectare	DBH =	< 5.1 cm	DBH =	DBH = > 5.1 cm		
Trees/ nectare	No. of Trees	Percentage	No. of Trees	Percentage		
500	20	23.2	67	76.8		
750	37	43.0	59	57.1		
1000	80	47.4	89	52.6		
1500	128	51.6	120	48.4		
2000	235	72.2	91	27.9		

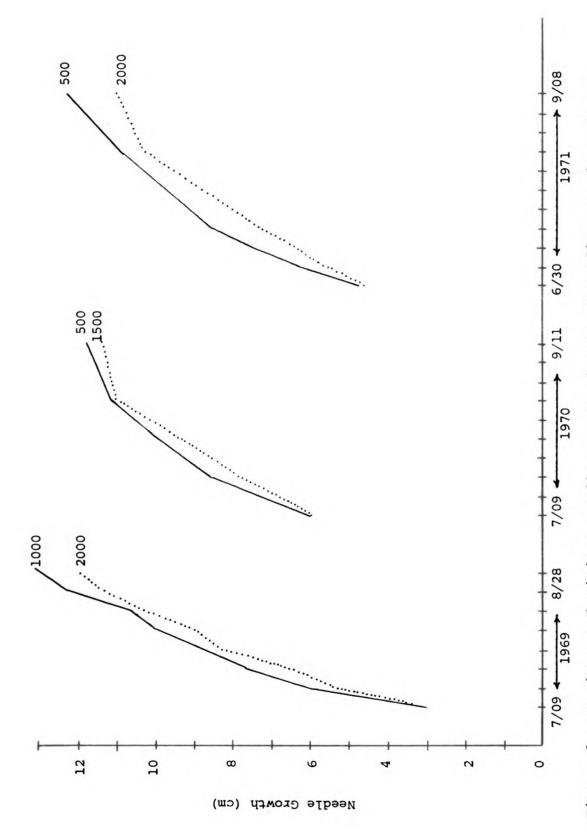
Table 6. Mean weekly circumference growth by density, 1971.

		Trees/Hectare						
Date	500	750	1000	1500	2000			
			(mm)					
6/23	4.2	3.5	3.6	4.2	4.0			
6/30	4.4	4.3	5.2	3.0	4.2			
7/07	3.4	1.4	3.0	3.8	2.3			
7/14	1.8	2.6	2.9	1.8	2.3			
7/21	0.7	0.7	0.4	0.4	1.2			
7/28	4.3	3.7	3.8	4.3	3.5			
8/04	2.2	3.3	1.5	2.0	2.5			
8/11	4.0	2.3	3.5	3.0	2.5			
8/18	2.2	2.2	3.8	2.7	2.0			
8/25	2.8	3.5	3.7	3.0	3.7			
9/08	2.5	2.5	2.5	2.0	2.0			
Total	32.5	30.0	32.0	30.2	30.2			

However, a continuous growth decrease occurred over the first five measurement periods, followed by an equally steady increase in circumference during the remaining observational period. The diameter growth decline reflected a drought period between June 25th and July 9th. The combination of low rainfall, high solar radiation, and considerable evapo-transpiration resulted in the depletion of soil moisture below the wilting point (Figure 4, page 30). Heavy precipitation between July 19th and July 24th alleviated the soil moisture stress, and circumference growth resumed at a rate comparable to that observed on June 30th. Succeeding dry and wet periods accounted for the remaining fluctuations in growth.

Needle Growth

The measurements of needle length on the developing leader were made to evaluate differences in photosynthetic capability. Trees with longer needles would possess a larger photosynthetic surface area, and thus possess greater growth potential (Berry, 1965). Table 7 illustrates the needle length differences over a three-year period. The observable needle growth differences appear to parallel to some extent the changes in leader growth (Figure 9). Changes in the total needle length can be best explained in terms of the precipitation record. Studies by Clements (1970) and others have described


Table 7. Mean annual needle growth on 12 sample trees per spacing for three growing seasons.

Trees/Hectare 1	1969	1970 (cm)	1971
500	12.67 ab	11.83 a	12.36 a
750	12.68 ab	11.50 a	11.96 ab
1000	13.00 a	11.50 a	11.27 ab
1500	13.00 a	11.42 a	11.09 b
2000	12.00 b	11.46 a	11.04 b

¹ Means not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

the correlations of needle growth with moisture availability. Good needle growth in 1969 was the result of adequate rainfall during the bud development phase of 1968, and high pre-growing season and early summer rainfall (Table 3). The decrease in needle length in 1970 was the result of low rainfall during the bud formation period of 1969, the pre-growing season, and the shoot extension period. In 1971 abundant precipitation occurred in the previous year's bud development period and during the pre-growing season.

However, except for the 500 and 750 trees/hectare plots, overall needle length declined. This does not agree with the results obtained by Clements (1970). Perhaps the extensive snow damage which occurred in

Maximum and minimum needle growth, by corresponding spacing, for a three-year period. Figure 9.

the three closest spacings reduced the physiologic vigor of the trees and consequently resulted in less needle growth.

Summary of Growth Responses

The growth responses of Pinus resinosa Ait. to different spacing levels are keyed to the availability of soil moisture. Significant height growth differences over the range of spacings occur only with limiting soil moisture levels. Diameter growth appears to be quite sensitive to the water status of the tree. With decreased competition in the wider spacings, greater diameter increases result. Needle lengths also exhibit a dependence upon soil moisture.

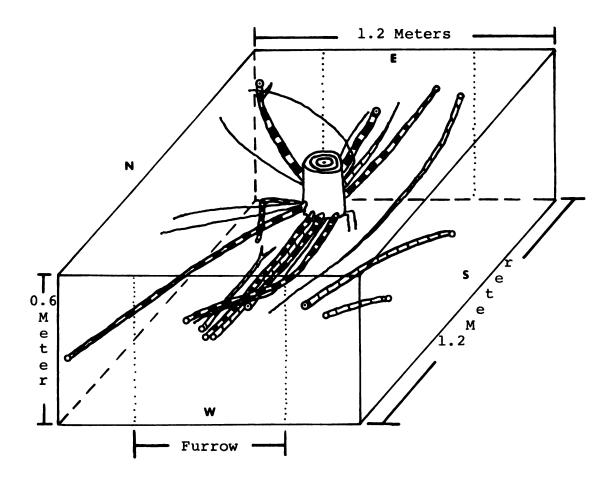
The plots with 500 and 750 trees/hectare are generally characterized by higher levels of soil moisture availability. Thus more significant growth responses can be expected in these than in the 1000, 1500, and 2000 trees/hectare plots. If the present trends continue, the wider-spaced plots will contain trees that are taller in height and greater in DBH at rotation age than the narrower-spaced plots (Stiell, 1964). Figures 10 and 11 illustrate the growth that has occurred in three growing seasons.

Root Development

An important phase of young red pine growth that is often overlooked is root development. Red pine saplings

Figure 10. 500 trees/ha. plot: (A) after the thinning in 1968 to simulate initial stocking level and (B) in 1971--Note: no crown closure.

Figure 11. 2000 trees/ha. plot: (A) after the thinning in 1968 to simulate initial stocking level and (B) in 1971--Note: crown closure.


usually possess an extensive system of lateral roots that occupies much of the upper 30 cm of the soil profile.

These roots perform the important function of obtaining moisture from the surface soil horizons (Day, 1941).

It has often been assumed that tree competition between individuals in a stand is minimal until crown closure occurs. This is based on the theory that tree roots are widely dispersed and sufficiently separated to minimize competition before the crowns become closed. The occurrance of any competition between two young trees would thus depend on close root proximity, a large number of roots growing in close association, and dry soil moisture conditions.

The root excavation phase of this study was conducted to determine whether or not root associations were occurring which might lead to competition for minerals or water. Such competition would most likely affect the growth of the red pine before crown closure. Of the seven root systems excavated and mapped, Figure 12 presents a representative view.

The root systems of the excavated trees were typical of those characterized for red pine by Day (1941), and Brown and Lacate (1961). However, they also possessed a different trait, that of a marked tendency towards orientation and concentration within the furrow. In Figure 12 a distinct cluster of roots is noticeable running from

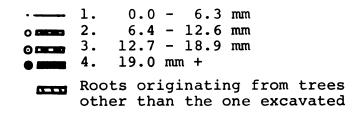


Figure 12. Three-dimensional distribution of red pine roots in .86 cubic meters of soil for tree No. 1, 2000 trees/hectare.

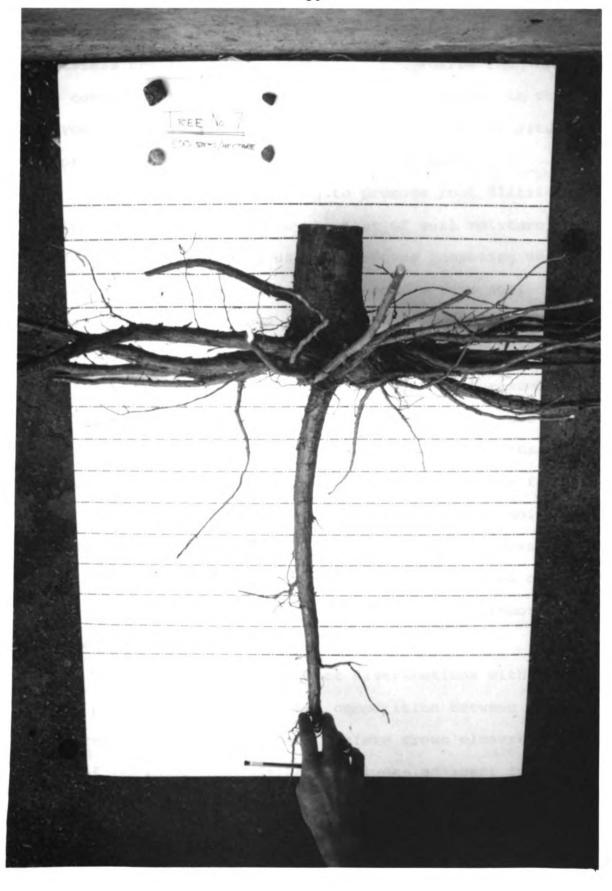
east to west. These roots are lined up directly along the planting furrow. The root originating from the tree immediately to the west and traversing under the excavated tree is quite prominent. Due to its alignment it is in direct competition with two or more trees to the east in the same row. Another item of interest is the nearly complete absence of root extension in a southerly direction from the root collar of the tree.

Quantifying these orientations presents a more precise picture of the root distribution that has taken place in all seven trees. Table 8 summarizes the percentage distribution of the root systems of the excavated trees in terms of their orientation to the planting The numbers of roots in each of the four furrow. diameter categories were tabulated according to their angle (0, 45, or 90 degree) with the furrow. The number of roots in each category was then weighted according to the respective cross-sectional area to give relative importance to the larger roots. The percentage distribution of the root system for each tree was thus determined by dividing the weighted sum for each angle classification by the overall weighted sum for the tree (see Appendix, Table 28).

The lack of uniform root distribution around the root collar results from furrow planting. As the planter proceeds along it plows open the furrow, parts the soil,

Table 8. Percentage distribution of the root systems according to the angle of the roots with the planting furrow.

	Root Angle				
Tree No.	0	45	90		
	8	8	8		
1	56.0	28.0	16.0		
2	41.8	29.1	29.1		
3	45.0	40.0	15.0		
4	50.0	46.9	4.1		
5	31.2	59.4	9.4		
6	44.4	36.1	19.5		
7	48.6	34.3	17.1		
Mean	45.2	39.1	15.7		


and deposits the seedlings. When the seedlings are dropped from the moving planting machine, the roots contact the ground first and thus become strung out horizontally behind the stem. Evidence of this was often visible in the form of roots emerging from the collar at one point, being wrapped halfway around the root collar, and then extending out along the furrow line (see Figures 13 and 14).

The distinct root alignment along the furrow may also be due to compression of the soil by the planting machine. The physical process of parting the soil enough to position a seedling results in a certain amount of soil compaction on either side of the slit. Roots

Partially excavated root of red pine exhibiting orientation in the furrow. Figure 13.

Figure 14. Excavated root system representative of machine-planted red pine.

developing from the newly planted seedling subsequently meet less resistance in the soil of the furrow than in the compacted furrow walls, and thus grow better in the furrow. Ferrill and Woods (1966) noted a similar situation in pines established with planting bars.

Another factor operating to promote root distribution within the furrow may be that of soil moisture differential. Furrowing usually removes competing vegetation from the planting strip and leaves bare soil exposed. The furrow thus acts as a zone relatively free of herbaceous species that compete for water. functions as a good water collector. During the summer of 1971 a slight droughty period was ended by a substantial rainfall. A few hours after the rain had begun, observations on moisture penetration into the soil were taken with a soil probe. On the bare soil furrows the moisture had permeated to a depth of 60 cm. On adjacent areas with herbaceous vegetation the rain had penetrated only These advantageous moisture conditions promote greater root development in the furrows.

These observations on root distributions within the study plantation indicate that competition between trees in a red pine stand does exist before crown closure occurs. Most of the root competition is between adjacent trees in the same row rather than between adjacent trees in

different rows. It appears that greater initial spacing between trees may be required than above ground appearances might suggest.

Snow Damage Survey

Damage to the plantation from heavy snow accumulations during the three winters of 1969, 1970, and 1971 were assessed for intensity and distribution. The damage has been most apparent on lateral branches about 75 cm above the ground (Figure 15).

The general extent of the injury to the trees within the plantation is presented in Table 9. One apparent trend is the increasing amount of damage with increased tree density. Note that the number of whorls damaged per tree more than doubled from the 500 to 2000 trees/hectare spacing. The amount of old damage (1968-1969 and 1969-1970 winters) tripled over the range of spacings. The quantity of new damage (1970-1971 winter) increased by a factor of four as the density increases from 500 to 2000 trees/hectare. The statistical analysis of the old and new damage resulted in declaring fewer of the old damage means significantly different. This was a consequence of greater within-spacing variation in the old damage than in the new damage analysis of variance.

Of the recently injured branches, larger diameter branch damage occurred in the wider spacings. This was an obvious reflection of the spacing growth differences.

Table 9. Summary of the number of whorls and branches damaged during three winters on a per-tree basis, by spacing.

	Injury Type ^l							
Trees/ Ha.		horls amaged	Old Damage		New	Damage	Diam- eter	
	No. (Br	No./Tree anches)	No. No./Tree (Branches)		No. No./Tree (Branches)		(cm)	
500	68	0.78 a	60	0.69 a	34	0.39 a	2.11 a	
750	140	1.09 ab	126	0.98 ab	87	0.68 ab	1.80 ab	
1000	242	1.43 bc	261	1.54 ab	174	1.03 bc	2.11 a	
1500	389	1.57 bc	446	1.81 b	266	1.08 bc	1.80 ab	
2000	595	1.82 c	663	2.02 b	529	1.62 c	1.75 b	

¹ Means within each category not followed by the letter are significantly different at the 5 percent level (Tukey's test).

Absence of crown closure in the wider-spaced plots has allowed low branches to continue to grow in diameter (Stiell, 1964). Thus any damage to lower branches in the plots with fewer trees/hectare would automatically involve branches with greater diameters.

New Damage

The snow injury occurring during the winter of 1970-1971 was divided into three damage categories. Depending on the degree of vascular system disruption, the damage was assessed as 0-50, 50-90, and 90-100 percent (Table 10, Figure 16).

Snow damage "line" in 1971 at about 75 cm above the ground, 2000 trees/ha. Figure 15.

Table 10. Number of damaged branches/tree during the winter of 1970-1971 classified according to the percentage damage to the vascular system.

Trees/Hectare	Damaged Branches/Tree ¹			
	90-100%	50-90%	0-50%	
500	0.18 a	0.20 a	0.01 a	
750	0.42 ab	0.22 a	0.04 a	
1000	0.74 bc	0.32 a	0.03 a	
1500	0.76 bc	0.30 a	0.02 a	
2000	1.17 c	0.38 a	0.07 a	

Means within each category not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

Branches in the 90-100 percent damage class were either torn entirely off the tree or died in the course of the following growing season. Damage in the 50-90 percent class usually left the branch alive, but often hanging down onto a lower whorl. Branches with less than 50 percent damage were difficult to locate since they healed over quickly.

The types and distribution of the new damage are shown in Figure 11. It is quite evident from the graph that a majority of the branches damaged were in the 90-100 percent class. In that class, the 2000, 1500, and 1000 trees/hectare plots have respectively six, four, and four times as many branches killed per tree than the 500 trees/hectare plots. Also, while the amount of damage observed in the 500 trees/hectare plots was

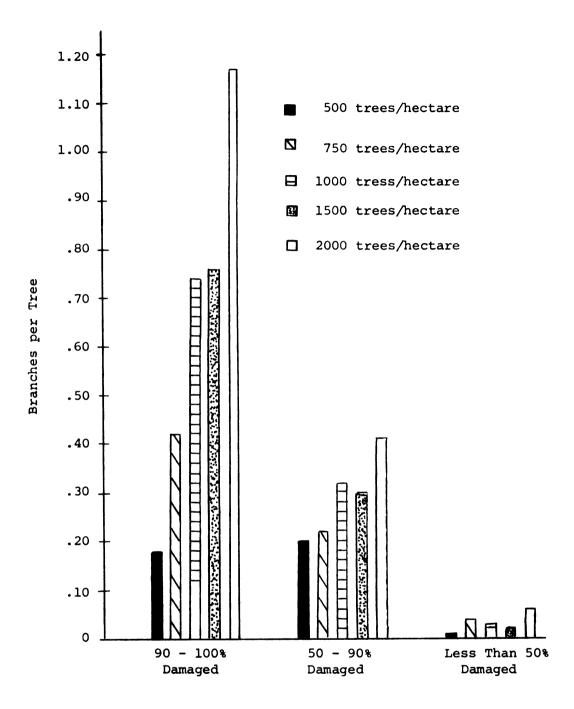


Figure 16. Branches per tree damaged and killed in the winter of 1970-1971 by density level.

equally distributed among the 90-100 and 50-90 percent damage categories, the more closely spaced plots contained an ever-increasing proportion of damage in the 90-100 percent category (Figure 17).

Old Damage

Branches damaged during the winters of 1968-1969 and 1969-1970 were recorded as either remaining on the tree or missing (Table 11). The branches remaining category contains branches once classified as 0-50 and 50-90 percent damaged, while those classes as missing fell into the category of 90-100 percent damaged. The most notable part of the old damage is again the trend toward an increasing amount of damage with increased tree density. The numbers of branches missing and remaining are approximately equal across the range of spacings. No differences in the branches missing category could be declared significant, even though the magnitude of the differences between the means is similar to that of the branch remaining category, because of large within-spacing variations.

Whorl Damage Profile

To obtain a better perspective of the snow injury, it is necessary to examine the height and whorl distribution of the damage (Table 12). This table presents the

Figure 17. Branch vascular cambial separation for the 90-100 percent snow damage category.

Table 11. Snow damage during the winters of 1968-1969 and 1969-1970 classified as either remaining branches or missing branches.

Trees/Hectare	Branches	/Treel	
	Remaining	Missing	
500	0.36 a	0.44 a	
750	0.53 ab	0.47 a	
1000	0.75 bc	0.82 a	
1500	0.90 bc	0.90 a	
2000	0.95 c	1.07 a	

¹Means within each category not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

Table 12. Distribution of snow damage during the last three winters by whorl and damage category.

	New Damage				Old Damage			
Whorl	Branches	90-100%	50-90%	0-50%		branches	Branch Left	Branch Gone
I	2	2 (100%)	0 (0%)	0 (0%)		0	0 (0%)	0 (0%)
II	66	56 (85%)	2 (3%)	8 (12%)		7	0 (0%)	7 (100%)
III	357	289 (81%)	48 (13%)	20 (6%)		90	26 (29%)	64 (71%)
IV	468	343 (73%)	117 (25%)	8 (2%)	8	85	271 (31%)	614 (69%)
v	184	62 (32%)	127 (66%)	5 (3%)	5	57	448 (80%)	109 (20%)
VI	3	(0%) 0	3 (100%)	(0%) (0%)		17	14 (82%)	3 (18%)

old and new damage to the top six whorls of all the trees in the study plots. The tabulated whorl heights are:

Whorl	Average Height
	(m)
I	2.5
II	2.0
III	1.5
IV	0.7
V	0.5
VI	0.3

Starting with Whorl I (top whorl), the amount of injury increases from two branches, reaches a maximum in Whorl IV with 1,353 branches, and then decreases to 20 branches in Whorl VI. Damage to Whorl IV is twice that of Whorl V and three times that of Whorl III. Not only is the damage heaviest in Whorl IV, but 73 percent of the newly injured branches, and 69 percent of the previously injured branches are in categories implying death and/or complete removal from the stem. The danger of such a concentrated removal of branches lies in the possibilities of completely girdling the stem and thus killing the tree. While only two trees in the 20 plots were thus far killed outright by snow damage, many trees were observed to have a large portion of their xylem exposed at Whorl IV. It

remains to be seen what further stand mortality occurs in the next few years as a result of reduction in tree vigor associated with this snow injury.

A closer view of the intense damage to Whorl IV is presented in Figure 18. Trees in plots with 2000 trees/ hectare had 40 percent of their branches in Whorl IV damaged to some extent, while trees in plots of 500 trees/ hectare suffered injury to only 15 percent of their branches. In terms of branches killed, the closer-spaced trees were hit three to four times as hard as the wider-spaced trees. Statistical analysis of the damaged and killed categories showed that the 500 and 750 stems/ hectare densities had significantly lower incidences of injury than the other three densities.

Summary

The observed snow damage appears to be closely correlated to plantation density. The primary climatic mechanism resulting in this type of snow damage has a sequence of events beginning with the melting of the snow-pack in the spring. Snow in the widely spaced and more exposed plots melts faster than the snow in the more closely spaced and shaded plots. Slowly melting snow retains much of the melt water in pore spaces, thus increasing its density by a factor of two to four times. It is this dense snow, bearing down on the branches, that causes the injury. The position of the damage on

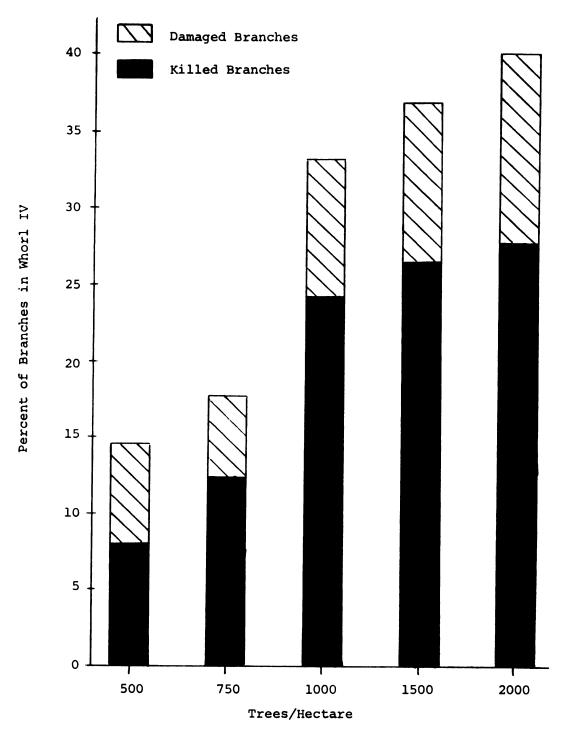


Figure 18. Percentage of all branches in Whorl IV damaged and killed.

the tree is a function of: initial snow depth, height of the tree, surface area of the branches in each whorl, and the depth of the snow when it reaches a critical density.

Biomass

Nutrients

Plant nutrient analyses were performed in both 1968 and 1971 to determine if any variations in nutrient content had arisen as a consequence of the differences in stand density. Only the nitrogen and potassium results were available from the 1971 analysis. No significant differences attributable to the spacing of red pine could be found. The mean values of nitrogen and potassium for the various portions of the tree are presented in Table 13.

Table 13. Comparisons of changes in the nitrogen and potassium distribution in young red pine from 1968 to 1971.

Tree Portion		Mean Grams of Biomass	Nit	Nitrogen		Potassium	
	Year		8	Grams	8	Grams	
Needle	1968	1229	1.33	16.3	0.38	4.7	
	1971	3675	1.23	45.2	0.28	10.3	
Branches	1968	675	0.40	2.7	0.20	1.4	
	1971	2584	0.36	9.3	0.14	3.6	
Stem	1968	411	0.35	1.4	0.20	0.8	
	1971	2096	0.35	7.3	0.14	2.9	
Roots	1968 1971	_ 1314	- 0.44	- 5.8	- 0.16	2.1	

Biomass Distribution

No relationship of biomass to spacing was evident in the trees collected during 1968. The mean dry weight of the above ground portion of each tree was found to be 2.315 kg. This weight was composed of 53.3 percent needles, 29.0 percent branches, and 17.1 percent stem.

The trees used for the biomass analysis in 1971 showed no evident trends that could be associated with the level of spacing. The root biomass averaged 1.314 kg while the above ground portion averaged 8.356 kg, of which the needles made up 44.4 percent, the branches 30.5 percent, and the stem 25.1 percent. These percentages reflect the changes that have occurred over the three-year growth period from 1968 to 1971. The foliage portion of the biomass decreased 9.9 percent while the stem and branch components increased 7.4 and 1.5 percent respectively. The three years of growth produced three times as much needle biomass, four times as much branch biomass, and five times as much stem biomass as the trees possessed in 1968.

CHAPTER VI

SUMMARY AND CONCLUSIONS

Historically, most artificial stands of red pine in northern Michigan have been planted at relatively close spacings of 2.4 x 2.4 meters (2000 trees/hectare). Close spacings have been considered to be desirable since it was believed that: (1) maximum plant productivity resulted only when the site was fully utilized, (2) sufficient numbers of seedlings were necessary to provide for adequate growing stock, and (3) inter-tree competition did not occur until after crown closure. However, Lemmien and Rudolph (1959), Stiell (1964), Byrnes and Bramble (1965), and Berry (1970) have cast doubt on the silvicultural and economical desirability of close spacing in young red pine plantations.

The tree growth of both stem and crown during 1969 through 1971 indicates that better growth is occurring in the plots with 500 trees/hectare (4.8 x 4.8 meters). Terminal shoot growth appears to be best in this density, and is least affected by dry conditions. While no significant differences in the height growth have occurred,

the 500 trees/hectare plots are gradually gaining in height, and the DBH of these trees has already become significantly greater than that of the 2000 trees/hectare plots (2.4 x 2.4 meters). The percentage of trees with a DBH greater than 5.1 cm (2 in) grades from about 28 percent for that of the 2000 trees/hectare plots to about 77 percent for that of the 500 trees/hectare plots. This trend of increasing tree diameter with increasing distance between individual trees strongly points to greater volumes per tree, and hence greater value per tree, in the low density plots by the end of the rotation.

At this point in the rotation period, maximum productivity, in terms of tree biomass, is occurring in the high-density plots. This is due solely to the numbers of trees involved (2000 vs. 500 trees/hectare). As Lemmien and Rudolph (1959), Stiell (1964), and Byrnes and Bramble (1965) have shown, the same phenomenon does not hold true over the entire rotation. After 30 or 40 years of growth, the volume of wood produced per hectare in high- and low-density stands tends to be equalized. However, in the low-density stands that volume is concentrated in fewer, larger diameter trees.

The analysis of root patterns and growth has revealed that competition between red pine in a plantation definitely occurs before crown closure. Roots showed a definite tendency to become oriented along the

furrow line. In several instances roots were observed to extend from one tree and traverse under two or more adjacent trees in the same row and direction. The unequal distribution patterns arising as a consequence of furrow planting led to early competition in the red pine plantation and a subsequent loss of potential growth. Thus more growing space has to be allowed than is apparent from above ground stem and crown features.

Heavy snowfalls, common in the upper peninsula of Michigan, cause considerable damage in conifer plantations. The snow damage observed for the past three years in the study plantation has resulted in significant damage that bears a direct relationship to the density of the plantation. Plots with 2000 trees/hectare suffered three times as much injury in the 1968-1969 and 1969-1970 winters, and four times as much injury in the 1970-1971 winter than the 500 trees/hectare plots. Much of the snow damage was concentrated at about 75 cm above ground level in the fourth whorl from the tops of the trees. In that whorl, the 2000, 1500, and 1000 trees/hectare plots lost over 33 percent of all the branches in the whorl (twice that of the 500 and 750 trees/hectare plots). This heavy loss of branches was severe enough in several instances to completely girdle and kill the tree. Many trees remained alive, but were supported only by narrow strips of cambium around the whorl. Severe injury of this sort often

reduces the tree's vigor and predisposes it to subsequent insect or disease attack.

Spacings ranging from 4.8 x 4.8 to 3.9 x 3.9 meters, which result in densities between 500 and 750 trees/ hectare respectively, appear to be the most desirable for the growth of young red pine. This indicates that a change toward lower initial plantation densities from those commonly used at the present is necessary. However, evaluation of studies such as this must be carried out over an entire rotation before any firm decision on altering planting density can be made. The low densities possess several distinct advantages that make their use worth consideration:

- (1) establishment costs are lowered by as much as onehalf;
- (2) precommercial thinnings are not required;
- (3) greater DBH and volume increments per tree result;
- (4) the rotation is shortened.

The use of lower densities in plantations should result in larger, higher quality trees. This coupled with reduction in planting costs, elimination of cultural operations, and a decrease in the rotation period would improve the economic feasibility of red pine plantations in northern Michigan.

LITERATURE CITED

- Barrett, James W. 1965. Spacing and understory vegetation affect growth of ponderosa pine saplings. U.S. Department of Agriculture Forest Service, Pacific Northwest Forest and Range Experiment Station, Research Note PNW 27.
- Baskerville, G. L. 1965. Dry matter production in intermediate balsam fir stands. Forest Science Monographs No. 9, 42 pp.
- Bay, Roger R. 1963. Soil moisture and radial increment in two density levels of red pine. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Research Note LS-30, 4 pp.
- , and Don H. Boelter. 1963. Soil moisture trends in thinned red pine stands in northern Minnesota.

 U.S. Department of Agriculture Forest Service,

 Lake States Forest Experiment Station, Research

 Note LS-29, 3 pp.
- Berry, A. B. 1965. Effect of heavy thinning on the stem form of plantation grown red pine. Canadian Department of Forestry, Forest Research Branch, Department of Forestry Publication No. 1126, 16 pp.
- . 1969. Height growth reduced following heavy thinning in a young red pine plantation. Bi-Monthly Research Notes 25(4): 37-38.
- and crown growth. Bi-Monthly Research Notes 26(5): 50-51.
- Broadfoot, Walter M. and Hubert D. Burke. 1958. Soil moisture constants and their variations. U.S. Department of Agriculture Forest Service, Southern Forest Experiment Station, Occasional Paper 166, 27 pp.

- Brown, W. G. E. and D. S. Lacate. 1961. Rooting habits of white and red pine. Canadian Department of Forestry, Forest Research Branch, Technical Note 108, 16 pp.
- Buckman, Robert E. and Roland G. Buchman. 1962. Red pine plantation with 48 sources of seed shows little variation in total height at age 27 years. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Technical Note 616, 2 pp.
- Byrnes, W. R. and W. C. Bramble. 1955. Growth and yield of plantation grown red pine at various spacings. Journal of Forestry 53: 562-565.
- Challinor, David. 1968. Alteration of surface soil characteristics by four tree species. Ecology 49(2): 286-290.
- Clements, John R. 1965. Growth responses of red pine seedlings to fall and spring water supply.

 Canadian Department of Forestry, Petawawa Forest Experiment Station, Internal Report PS-2, 13 pp.
- . 1970. Shoot responses of young red pine to watering applied over two seasons. Canadian Journal of Botany 48(1): 75-80.
- Climate of Michigan By Stations, 1940-1969. Michigan Weather Service in cooperation with the U.S. Department of Commerce, Weather Bureau.
- Cooley, John H. 1969. Initial thinning in red pine plantations. U.S. Department of Agriculture Forest Service, North Central Forest Experiment Station, Research Paper NC-35, 6 pp.
- Day, Maurice W. 1941. The root system of red pine saplings. Journal of Forestry 39: 468-472.
- Della-Bianca, Lino and Robert E. Dils. 1960. Some effects of stand density in a red pine plantation on soil moisture, soil temperature, and radial growth.

 Journal of Forestry 58: 373-377.
- DeMent, James A. and E. L. Stone. 1968. Influence of soil and site on red pine plantations in New York. II. Soil type and physical properties. Bulletin 1020, Cornell University Agriculture Experiment Station, New York State College of Agriculture, Ithaca, New York, 25 pp.

- Dils, Robert E. and John L. Arend. 1956. Snow accumulation under red pine of different stand densities in lower Michigan. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Technical Note No. 460, 2 pp.
- and Maurice W. Day. 1952. The effect of precipitation and temperature upon the radial growth of red pine. The American Midland Naturalist 48: 730-734.
- Duff, G. H. and Norah J. Nolan. 1953. Growth and morphogenesis in the Canadian forest species. I. The controls of cambial and apical activity in Pinus resinosa Ait. Canadian Journal of Botany 31(4): 471-513.
- Eyre, F. H. and Paul J. Zehngraff. 1947. Spacing of young red pine. U.S. Department of Agriculture Forest Service, Lake States Experiment Station, Station Paper No. 8, 6 pp.
- Fayle, D. C. F. 1968. Radial growth in tree roots. Technical Report No. 9, Faculty of Forestry, University of Toronto, 183 pp.
- Ferrill, Mitchell D. and Frank W. Woods. 1966. Root extension in a longleaf pine plantation. Ecology 47(1): 97-102.
- Friesner, Ray C. 1943. Correlations of elongation in primary, secondary, and tertiary axes of Pinus strobus and Pinus resinosa. Butler University Botanical Studies 6: 1-9.
- Garin, George I. 1942. Distribution of roots of certain tree species in two Connecticut soils. Bulletin 454, Connecticut Agricultural Experiment Station, New Haven Connecticut.
- Gerloff, G. C., D. D. Moore, and J. T. Curtis. 1964.

 Mineral content of native plants of Wisconsin.

 Research Report 14, Experiment Station, College
 of Agriculture, University of Wisconsin, Madison,
 Wisconsin, 27 pp.
- Glerum, C. and Pierpont. 1968. The influence of soil moisture deficits on seedling growth of three coniferous species. Forestry Chronicle 44(5): 26-29.

- Godman, G. M. and R. L. Omstead. 1962. Snow damage is correlated with stand density in recently thinned jack pine plantations. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Technical Note No. 625, 2 pp.
- Gordon, J. C. and P. P. Larson. 1970. Redistribution of C¹⁴ labelled reserve food in young red pines during shoot elongation. Forest Science 16(1): 14-20.
- Hannah, Peter R. 1969. Stemwood production related to soils in Michigan red pine plantations. Forest Science 15(3): 320-326.
- Hansen, Edward A. 1969. Relation of snowpack accumulation to red pine stocking. U.S. Department of Agriculture Forest Service, North Central Forest Experiment Station, Research Note NC-85, 4 pp.
- Heiberg, S. O., L. Leyton, and H. Loewenstein. 1959. Influence of K fertilizer on red pine planted at various spacings on a K-deficient site. Forest Science 5(2): 142-153.
- Kozlowski, Theodore T. 1958. Water relations and growth of trees. Journal of Forestry 56: 498-502.
- and Theodore A. Peterson. 1962. Seasonal growth of dominant, intermediate, and suppressed red pine trees. Botanical Gazette 124(2): 146-154.
- and Richard C. Ward. 1957. Seasonal height growth of conifers. Forest Science 3(1): 61-66.
- Krenholz, Raymond. 1934. Leader, needle, cambial, and root growth of certain conifers and their interrelations. Botanical Gazette 96(1): 73-82.
- Leaf, Albert L. et al. 1968. Growth and development of

 Pinus resinosa plantations subjected to irrigation and fertilizer treatments, pp. 97-118.

 In C. T. Youngberg and C. B. Davey (ed.), Tree
 Growth and Forest Soils: Proceedings of the Third
 North American Forest Soils Conference. Oregon
 State University Press, Corvallis.
- Lemmien, W. A. and Victor J. Rudolph. 1959. Growth and yield of red pine in three spacings. Quarterly Bulletin of the Michigan Agriculture Experiment Station 42(2): 421-427.

- Merritt, Clair. 1968. Effect of environment and heredity on the root growth patterns of red pine. Ecology 49(1): 34-40.
- Miller, Elwood L. 1970. Studies of environmental factors affecting jack pine (Pinus banksiana Lamb.) regeneration. Ph.D. Thesis, Michigan State University, 102 pp.
- Morrow, Robert R. 1964. Another look at plantation spacing. Tree Planter's Notes 67: 13-15.
- Motley, Jerry Anne. 1949. Correlations of elongation in white and red pine with rainfall. Butler University Botanical Studies 9: 1-8.
- Richards, N. A., R. R. Morrow, and E. L. Stone. 1962.

 Influence of soil and site on red pine plantations in New York. I. Stand development and site index curves. Bulletin 977, Cornell University Agriculture Experiment Station, New York State College of Agriculture, Ithaca, New York, 24 pp.
- Rudolf, Paul O. 1957. Silvical characteristics of red pine. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Station Paper 44, 32 pp.
- Schier, G. A. 1970. Seasonal pathways of C¹⁴ photosynthate in red pine labelled in May, July, and October. Forest Science 16(1): 2-13.
- Senninger, Earl J. 1963. Atlas of Michigan. Flint Geographical Press, Flint.
- Shaw, Byron H., R. R. Maeglin, and S. A. Wilde. 1968.
 Soil water supply—its consumption by forest
 stands and weed cover. Advancing Frontiers of
 Plant Sciences 21: 141-155.
- Shirley, Hardy L. and Lloyd J. Meuli. 1939. The influence of soil nutrients on drought resistance of two year old red pine. American Journal of Botany 26: 355-360.
- Soil Conservation Service. 1965. Kalkaska soil series description. National Cooperative Soil Survey, U.S. Department of Agriculture Soil Conservation Service.

- Stiell, W. M. 1964. Twenty year growth of red pine planted at three spacings. Canadian Department of Forestry, Forest Research Branch, Department of Forestry Publication No. 1045.
- _____. 1969. Stem growth reaction in young red pine to the removal of single branch whorls. Canadian Journal of Botany 47(8): 1251-1256.
- _____. 1970. Some competitive relations in a red pine plantation. Publication No. 1275, Department of Fisheries and Forestry, 10pp.
- Stoeckeler, J. H. and G. A. Limstrom. 1950. Reforestation research findings in northern Wisconsin and upper Michigan. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Station Paper No. 23, 34 pp.
- and Paul O. Rudolf. 1949. Winter injury and recovery of conifers in the upp-r midwest. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Station Paper No. 18, 20 pp.
- Strand, R. F. 1968. The effect of thinning on soil temperature, soil moisture, and root distribution of Douglas-fir, pp. 295-304. In C. T. Youngberg and C. B. Davey (ed.), Tree Growth and Forest Soils: Proceedings of the Third North American Forest Soils Conference. Oregon State University Press, Corvallis.
- Strothmann, R. O. 1967. The influence of light and moisture on the growth of red pine seedlings in Minnesota. Forest Science 13(2): 182-191.
- U.S. Forest Service. 1939. Comparative resistance of native Wisconsin trees to snow breakage. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Technical Note No. 152, 1 p.
- Veatch, J. O. 1941. Agricultural land classification and land types of Michigan. Special Bulletin 231, Agricultural Experiment Station, Michigan State University, East Lansing, 67 pp.
- Weitzmann, Sidney and Roger R. Bay. 1959. Snow behavior in forests of northern Minnesota and its management implications. U.S. Department of Agriculture Forest Service, Lake States Forest Experiment Station, Station Paper No. 69, 18 pp.

- White, Donald P. 1958. Available water: the key to forest site evaluation. Forest Soils Conference, September 8-11, 1958, 11 pp.
- and Robert S. Wood. 1958. Growth variations in a red pine plantation influenced by a deep lying fine soil layer. Soil Science Society of America Proceedings 22(2): 174-177.
- Whitmore, F. W. and R. Zahner. 1966. Development of the xylem ring in stems of young red pine trees. Forest Science 12(2): 198-210.
- and . 1967. Evidence for a direct effect of water stress on tracheid cell wall metabolism in pine. Forest Science 13(4): 397-400.
- Wilde, S. A. 1964. Plantation spacing and site conditions. Tree Planter's Notes 65: 12-31.
- as a factor depressing forest growth. Weed Research 8(3): 196-204.
- Zahner, R., B. H. Lotan, and W. D. Baughman. 1964. Earlywood-latewood features of red pine grown under simulated drought and irrigation. Forest Science 10(3): 361-370.
- and J. R. Donnelly. 1967. Refining correlations of water deficits and radial growth in young red pine. Ecology 48(4): 525-530.

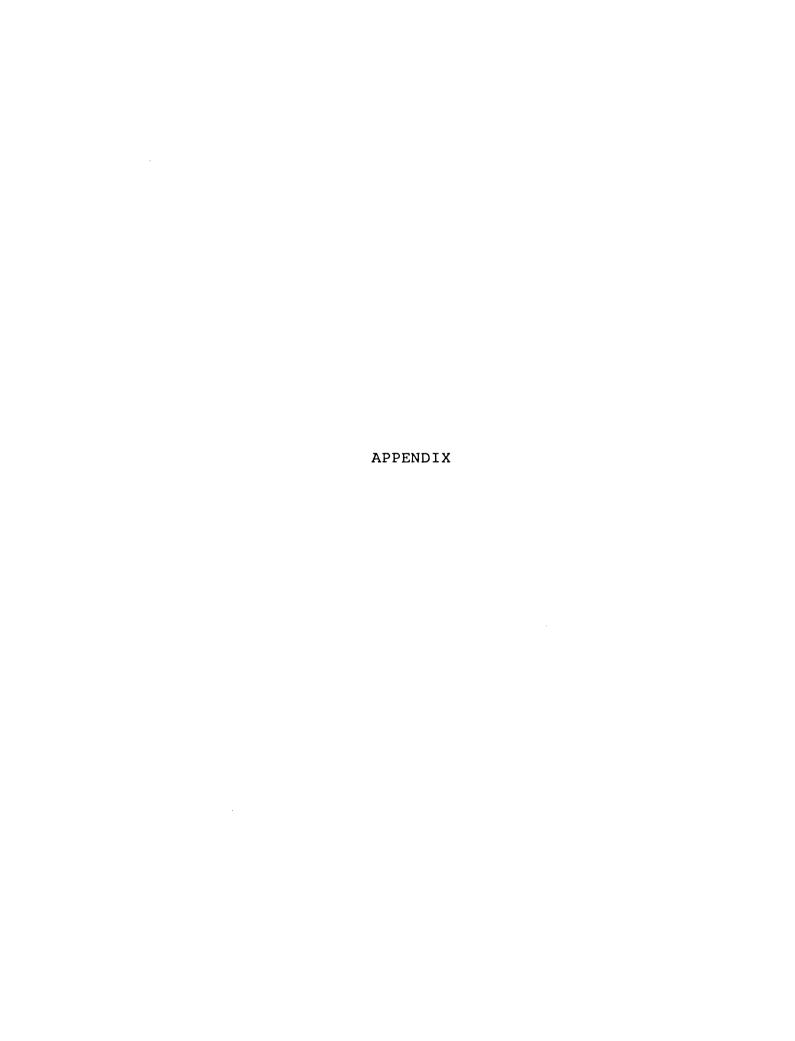


Table 14. Metric--English equivalent measurements.

```
1 Hectare = 2.47 Acres
                     1 Acre = 0.405 Hectares
                     1 \text{ Foot} = 0.305 \text{ Meter}
                     1 \text{ Meter} = 3.3 \text{ Feet}
                     1 Inch = 2.5 Centimeters
                     1 Centimeter = .4 Inch
                 500 Trees/Hectare = 200 Trees/Acre
                 750
                                        = 300
                             **
                                                       **
                1000
                                        = 400
                1500
                                        = 600
                                                       **
                                                       **
                2000
                                         = 800
 500 Trees/Hectare = 4.82 \times 4.82 \text{ Meters} = 14.7 \times 14.7 \text{ Feet}
 750
                        = 3.94 \times 3.94
                                                   = 12.0 \times 12.0
            **
1000
                        = 3.41 \times 3.41
                                                   = 10.4 \times 10.4
                                            11
                                                                        11
1500
            11
                        = 2.85 \times 2.85
                                                       8.7 x
                                                                8.7
                                                                        **
                        = 2.43 \times 2.43
                                                   = 7.4 x
2000
                                                                7.4
```

Table 15. Minimum, maximum, and mean air temperatures within the plantation during the growing seasons of 1969, 1970, and 1971.

		Distance	Above Ground	
Date	30.5	cm	152.4 c	m
	Average Min/Max	Mean	Average Min/Max	Mean
		(Degrees	Centigrade)	
1969				
6/25 7/02	-3.9/25.0 3.3/28.3	10.6 15.6	-	-
7/09 7/16	0.6/29.4 8.3/36.7	15.0 22.2	- -	- -
7/23	6.7/36.7	21.7	_	
7/30 8/06	6.7/33.3 8.3/36.1	20.0 22.2	-	- -
8/13	7.2/34.4	21.1	_	-
8/20	-0.6/35.6	17.8	-	-
8/28 9/10	1.7/38.9 3.3/33.9	20.0 18.9	-	_
1970				
6/03	1.1/24.4	12.8	-	-
6/10 6/24	-2.2/35.0 -1.7/36.1	16.7 17.2	-	_
6/30	1.7/35.0	18.3	~	-
7/09	3.9/36.1	20.0	-	-
7/22 8/05	5.6/36.7 0.6/35.6	21.1 17.8	- -	_
8/19	3.3/37.8	20.6	-	_
9/02	-0.6/31.1	15.6	-	_
9/11	5.6/30.6	17.8	-	-
9/14 1971	-1.1/26.7	12.8	-	_
6/22	6.7/33.3	20.0	8.3/28.9	18.9
6/29	10.6/32.2	21.7	11.1/27.8	19.4
7/06	8.3/32.8 10.6/32.2	20.6 21.7	8.9/28.3	18.9 19.4
7/13 7/20	9.4/28.9	18.9	10.6/28.3 10.0/25.0	17.8
7/27	7.8/28.9	18.3	7.8/25.6	16.7
8/03	7.2/24.4	16.1	6.7/22.2	14.4
8/10	10.0/30.0	20.0	10.0/26.7	18.3
8/17	6.1/27.2 5.0/29.4	16.7	5.0/25.0	15.0 15.6
8/24 8/31	9.4/21.1	17.2 15.6	4.4/26.7 9.4/20.0	14.4

Table 16. Precipitation in the plantation during the growing seasons of 1969, 1970, and 1971.

Date	Amount (cm)
	1969
6/04	4.85
6/12	1.98
6/18	1.52
6/25	1.35
7/02	6.20
7/09	0.00
7/16	0.28
7/23	1.24
7/30	3.84
8/06	0.30
8/13	1.04
8/20	0.00
8/28	0.00
9/10	2.51 25.11 Total
	1970
6/03	6.73
6/10	0.00
6/24	2.03
6/30	0.10
7/09	1.73
7/22	8.46
8/05	2.34
8/19	0.10
9/02	5.56
9/14	1.27 28.32 Total
	1971
6/09	7.80
6/22	0.30
6/29	1.37
7/06	0.25
7/13	0.97
7/20	1.12
7/27	1.61
8/03	1.98
8/10	0.10
8/17	3.15
8/24	3.43
8/31	1.93
9/08	0.76 24.77 Total

Table 17. Weekly minimum, maximum, and mean relative humidities within the plantation during the 1971 growing season.

Date	Percent Relative Humidity				
	Minimum	Maximum	Mean		
6/22	33.3	99.7	66.5		
6/29	33.9	100.0	66.9		
7/06	30.7	99.7	65.2		
7/13	26.0	99.4	62.7		
7/20	32.6	99.6	66.1		
7/27	47.1	99.1	73.1		
8/03	39.3	97.3	68.3		
8/10	36.3	99.3	58.2		
8/17	43.9	100.0	71.9		
8/24	41.6	99.3	70.4		
8/31	49.9	96.7	73.3		

Table 18. Mean daily solar radiation values over weekly periods during the summer of 1971.

Week Ending:	Langleys/Day (gm-cal/cm ² /day)
6/22	499.32
6/29	506.92
7/06	491.73
7/13	467.05
7/20	487.93
7/27	370.22
8/03	454.08
8/10	388.73
8/17	341.11
8/24	311.37
8/31	281.31
9/07	296.81

Table 19. Percent soil moisture (by weight) for varying spacings during 1969 in the 0 to 15 centimeter depth range.

Date		Trees/Hectare ¹						
	500	750	1000	1500	2000	_		
5/28	8.9	8.1	8.6	5.2	9.4	8.0		
6/04	12.6	13.7	12.4	17.1	14.7	14.1		
6/12	11.0	13.6	10.1	11.4	15.4	12.3		
6/18	11.8	12.9	13.3	8.1	13.1	11.8		
6/25	7.8	11.9	10.9	12.4	10.7	10.7		
7/02	8.2	11.9	9.8	11.1	10.0	10.2		
7/09	8.1		9.7		9.3	9.0		
7/16	6.3	5.8	9.1	7.8	6.0	7.0		
7/23	5.8	3.5	6.9	6.5	8.0	6.1		
7/30	10.3	7.1	11.6	10.4	9.2	9.7		
8/06	7.5	5.9	6.6	6.4	8.2	6.9		
8/13	7.7	4.0	6.1	7.0	8.1	6.6		
8/20	6.7	2.2	4.0	4.4	4.8	4.4		
8/28	4.1	2.7	2.4	3.1	1.4	2.8		
9/10	8.2	3.4	5 .4	4.8	4.5	5.3		

¹The soil moisture determinations were made in one plot for each spacing.

Table 20. Percent soil moisture (by weight) for varying spacings during 1971 in the 0 to 15 and 15 to 30 centimeter depth range.

Date		Tre	es/Hecta	rel		Average
	500	750	1000	1500	2000	_
6/18 A ² B	6.9	4.9	5.0	4.9	4.3	5.2
6/25 A	10.0	12.2	10.4	8.5	8.0	9.8
B	9.8	5.3	4.5	8.8	6.4	7.0
7/03 A	4.1	4.2	4.8	3.0	2.5	3.7
B	4.3	8.5	5.9	4.1	4.2	5.4
7/09 A	2.0	2.2	2.6	1.6	1.7	2.0
B	3.3	8.3	5.6	4.3	4.4	5.2
7/19 A	6.2	7.2	5.7	5.7	5.3	6.0
B	5.4	6.2	6.6	5.6	4.6	5.7
7/24 A	10.3	13.7	12.4	13.1	12.6	12.5
B	12.3	14.8	9.3	12.6	10.2	11.8
8/02 A	11.7	11.6	9.6	11.1	9.6	10.7
B	5.9	5.6	4.9	8.9	5.5	6.2
8/09 A	4.9	4.2	5.1	2.9	3.2	4.0
B	8.5	6.5	3.9	4.6	4.9	5.7
8/16 A	9.8	8.5	9.1	8.3	7.2	8.6
B	8.3	7.3	6.8	9.5	7.8	8.0
8/23 A	11.8	14.2	13.2	9.4	9.0	11.5
B	11.3	8.0	7.3	11.4	6.5	8.9

¹The soil moisture determinations for the 0 to 15 cm depth were made at a selected point in each plot. Those for the 15 to 30 cm depth were made at the same points in each plot of Blocks I and IV only.

 $^{^{2}}$ A = 0 to 15 centimeters B = 15 to 30 centimeters

Block and spacing comparisons of percentage of ground area covered by herbaceous vegetation, 1971. Table 21.

				Percent	Area	Cover			
Vegetation		Block				Tre	Trees/Hectare	tare	
	н	II	III	IV	200	. 750	1000	1500	2000
Moss	45.1	37.3	36.8	15.8	34.7	31,3	43.7	29.9	29.5
Dock	13.6	10.5	11.1	13.7	16.8	13.0	11.2	11.9	9.6
Kingdevil	6.3	8	7.1	11.8	8.5	8.6	10.1	11.1	8.1
Orange Hawkweed	4.2	8.2	0.6	19.6	9.7	10.8	7.0	6.5	17.3
Leafy Spurge	4.1	2.3	3.0	10.6	3.2	3.9	1,6	12.4	4.0
Strawberry	1.2	1.5	1.2	6.0	6.0	1.6	0.7	2.4	0.5
Raspberry	0.4	2.9	1.7	2.2	2.7	1.1	0.7	1.5	3.1
Grasses	5.4	7.8	9.8	12.3	7.8	7.6	0.6	6.2	12.1
Quack Grass	0.0	1.4	0.7	2.9	0.0	2.6	0.0	2.1	1.5
Lichen	10.9	13.1	11.2	7.2	9.6	10.8	11.0	11.6	10.2
Milkweed	0.2	0.0	0.5	0.5	0.2	0.5	0.5	0.0	0.2
Fern	0.2	0.0	0.7	0.0	0.0	0.2	0.0	0.0	0.9
Bare Soil	4.4	5.8	7.4	2.5	5.8	6.7	4.8	4.7	3.2

Table 22. Average tree height on each .04 hectare plot before and after thinning, 1968.

			Before	: Cutting	After	Cutting
Plot	Block	Stems/Ha. Spacing	Trees	Ave. Ht.	Trees	Ave. Ht.
				- (m) -		- (m) -
1	1	1000	95	1.52	42	1.60
2	1	500	85	1.52	22	1.66
3 4	1 1	2000 1500	106	1.53	82	1.61
5	1	750	102 101	1.46	62 32	1.39 1.70
5	1	750	101	1.54	32	1.70
6	2	500	110	1.51	22	1.68
7	2	750	107	1.33	32	1.50
8	2 2	2000	96	1.44	82	1.49
9	2	1000	101	1.52	42	1.62
10	2	1500	105	1.51	62	1.56
11	3	1000	98	1.49	42	1.52
12	3	500	114	1.54	22	1.66
13	3	1500	92	1.54	62	1.54
14	3	750	108	1.51	32	1.60
15	3	2000	95	1.36	82	1.41
16	4	1000	96	1.36	42	1.43
17	4	2000	99	1.31	83	1.35
18	4	750	89	1.27	32	1.35
19	4	500	94	1.38	22	1.53
20		1500	92	1.39	62	1.42
		Block ar	d Treat	ment Summar	<u>EY</u>	
Block	1		97	1.51	48	1.59
Block			103	1.52	48	1.57
Block			101	1.49	48	1.55
Block			94	1.34	48	1.42
500 7	Trees/He	ctare	100	1.49	22	1.63
	Trees/He		101	1.41	32	1.54
	rees/He		97	1.47	42	1.54
	Trees/He		97	1.47	62	1.48
	Trees/He		99	1.41	82	1.46

Table 23. Average leader growth by spacing during the 1969 through 1971 growing seasons.

		T	rees/Hectar	е	
Date	500	750	1000	1500	2000
			(cm)		
1969	***************************************				
5/28 6/04 6/12 6/18 6/25 7/02 7/09 7/16 7/23	5.67 3.33 5.67 3.67 5.00 6.33 5.67 9.33 2.33	5.67 3.33 6.00 5.00 5.00 7.67 7.67 4.33 3.00	6.00 3.67 7.33 3.67 5.67 8.33 7.00 9.67 2.67	5.67 3.67 6.33 3.67 5.00 6.00 6.67 15.00 5.33	5.33 3.33 6.33 3.33 5.00 7.00 7.00 9.67 2.67
7/30 8/06	1.33 0.00	$\begin{smallmatrix}1.00\\0.00\end{smallmatrix}$	0.33 1.33	2.00 1.00	1.00 0.33
Totall	48.33 b	48.67 ab	55.67 ab	60.34 b	50.99 ab
1970 5/20 5/28 6/03 6/10 6/24 7/09 7/22 8/05 8/19 9/02 Totall	5.58 1.45 3.10 7.68 20.28 14.07 2.80 1.12 0.00 0.00 56.08 a	5.24 1.33 2.90 7.51 18.91 13.42 1.94 0.46 0.29 0.04 52.04 a	5.13 1.34 2.92 6.97 19.66 13.47 1.51 0.33 0.34 0.00	5.10 1.31 3.04 6.98 19.74 12.63 2.28 0.63 0.00 0.00 51.71 a	5.32 1.28 2.82 6.84 18.49 11.15 1.27 0.66 0.25 0.09 48.17 a
1971 5/28 6/09 6/16 6/23 6/30 7/07 7/14 7/21 7/28 8/04 8/18 Totall	6.67 7.15 9.60 12.90 11.04 9.49 4.00 1.05 0.35 0.05 0.05	5.92 7.54 10.09 12.82 12.48 7.47 3.09 1.04 0.37 0.13 0.08 61.04 a	6.17 7.51 10.15 13.04 11.55 7.66 3.25 0.71 0.29 0.09 0.16	5.95 7.04 9.50 12.37 12.02 7.00 3.74 1.21 0.42 0.04 0.09 59.38 a	5.87 7.05 9.56 12.51 10.89 6.37 2.96 1.08 0.21 0.04 0.00 56.62 a

¹ Means not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

Table 24. Average height and DBH of three sample trees per plot at the end of the growing season, 1968 to 1971.

		Total		D	ВН	
Plot	1968	1969	1970	1971	1970	1971
		(Met	ers)		(c	m)
1	1.646	2.134	2.661	3.252	3.74	5.08
2 3 4 5	1.411	1.899	2.478	3.170	3.81	5.41
3	1.615	2.155	2.652	3.271	3.63	5.00
4	1.472	1.929	2.429	2.987	2.97	4.39
5	1.676	2.195	2.713	3.322	3.68	5.21
6	1.753	2.225	2.774	3.368	3.68	5.21
6 7 8	1.503	1.972	2.569	3.191	3.56	4.90
8	1.494	1.996	2.469	3.033	3.05	4.44
9	1.637	2.173	2.734	3.362	3.73	5.33
10	1.594	2.185	2.752	3.392	3.63	5.08
11	1.563	2.073	2.621	3.322	3.73	5.33
12	1.646	2.225	2.835	3.536	4.44	6.10
13	1.554	2.051	2.569	3.170	3.48	5.08
14	1.524	2.033	2.652	3.240	3.30	4.75
15	1.484	1.960	2.417	2.947	3.05	4.39
16	1.454	1.929	2.338	2.917	3.12	4.57
17	1.433	1.920	2.417	3.027	2.97	4.32
18	1.423	1.920	2.478	3.139	3.38	5.16
19	1.564	2.042	2.501	3.210	3.63	5.26
20	1.655	2.155	2.673	3.261	3.23	5.16

Table 25. Diameter distribution for all trees by plot, below and above a DBH of 5.1 centimeters.

Plot Trees		DBH =	< 5.1 cm	DBH =	DBH = > 5.1 cm		
		Number	Percentage	Number	Percentage		
1	42	16	38.1	26	61.9		
2 3 4 5	22	4	18.2	18	81.8		
3	82	48	58.5	34	41.5		
4	62	35	56.5	27	43.5		
5	32	7	21.9	25	78.1		
6	21	4	19.0	17	81.0		
7	32	18	56.2	14	43.8		
8	82	54	65.9	28	34.1		
8 9	42	17	40.5	25	59.5		
10	62	27	43.5	35	56.5		
11	43	19	44.2	24	55.8		
12	22	2	9.1	20	90.9		
13	62	24	38.7	38	61.3		
14	32	9	28.1	23	71.9		
15	81	62	76.5	19	23.5		
16	42	28	66.7	14	33.3		
17	81	71	87.7	10	12.3		
18	32	21	65.6	11	34.4		
19	22	10	45.5	12	54.5		
20	62	42	67.7	20	32.3		

Table 26. Weekly tree circumference growth measurements by band dendrometer for observed spacings, 1971.

1		Т	rees/Hecta	re	
Date	500	750	1000	1500	2000
			(mm)		
6/23	4.2	3.5	3.6	4.2	4.0
6/30	4.4	4.3	5.2	3.0	4.2
7/07	3.4	1.4	3.0	3.8	2.3
7/14	1.8	2.6	2.0	1.8	2.3
7/21	0.7	0.7	0.4	0.4	1.2
7/28	4.3	3.7	3.8	4.3	3.5
8/04	2.2	3.3	1.5	2.0	2.5
8/11	4.0	2.3	3.5	3.0	2.5
8/18	2.2	2.2	3.8	2.7	2.0
8/25	2.8	3.5	3.7	3.0	3.7
9/08	2.5	2.5	2.5	2.0	2.0
Total ²	32.5 a	30.0 a	32.0 a	30.2 a	30.2 a

Dendrometer bands were placed on one tree in each plot on 6/16.

²Means not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

Table 27. Average needle growth by spacing during the 1969 through 1971 growing seasons.

		Tre	es/Hectare	:	
Date	500	750	1000	1500	2000
			(cm)		
1969					
7/09 7/16 7/23 7/30 8/06 8/13 8/20 8/28 Total	3.00 2.67 2.00 0.67 1.67 1.33 1.00 0.33	3.67 2.00 1.67 1.00 1.67 1.67 0.00	3.00 3.00 1.67 1.00 1.67 1.67 0.00	3.33 3.33 1.00 1.33 1.00 1.33 0.35	3.00 2.33 1.33 1.67 0.67 1.33 1.00 0.67
1970					
7/09 7/22 8/05 8/19 9/11	5.95 2.66 1.39 1.21 0.62	5.92 2.16 1.54 1.38 0.50	5.33 2.69 1.44 1.12 0.92	5.93 1.99 1.50 1.62 0.38	5.85 2.15 1.78 1.14 0.54
$\mathtt{Total}^{\mathtt{l}}$	11.83 a	11.50 a	11.50 a	11.42 a	11.46 a
1971 6/30 7/07 7/14 7/21 7/28 8/04 8/18 9/08 Total ¹	4.72 1.48 1.33 1.03 0.61 0.55 1.30 1.34	4.64 1.34 1.08 0.99 0.74 1.07 1.15 0.95	4.52 1.26 1.08 0.75 1.09 0.58 1.36 0.63	4.42 1.36 1.10 0.66 0.91 0.69 1.24 0.71	4.62 1.06 0.74 0.90 0.78 0.72 1.53 0.69

lmeans not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

Table 28. Red pine root orientation with the furrow according to diameter class.

								
Tree	Root Angle	1.	2.	3.	4.	No. of Roots	Weighted Total	% of Root System ¹
1.	0°	2	3	2	0	7	14	56.0
	45°	2	1	1	0	4	7	28.0
	90°	2	1	0	0	3	4	16.0
	Total	6	5	3	0	14	25	100.0
2.	0°	2	4	1	0	7	13	41.8
	45°	2	2	1	0	5	9	29.1
	90°	1	4	0	0	5	9	29.1
	Total	5	10	2	0	17	31	100.0
3.	0°	1	4	0	0	5	9	45.0
	45°	2	1	0	1	4	8	40.0
	90°	3	0	0	0	3	3	15.0
	Total	6	5	0	1	12	20	100.0
4.	0°	6	3	0	1	10	16	50.0
	45°	3	6	0	0	9	15	46.9
	90°	1	0	0	0	1	1	4.1
	Total	10	9	0	1	20	32	100.0
5.	0°	4	1	0	1	6	10	31.2
	45°	2	4	3	0	9	19	59.4
	90°	1	1	0	0	2	3	9.4
	Total	7	6	3	1	17	32	100.0
6.	0°	6	5	0	0	11	16	44.4
	45°	4	1	1	1	7	13	36.1
	90°	2	1	1	0	4	7	19.5
	Total	12	7	2	1	22	36	100.0
7.	0°	3	4	2	0	9	17	48.6
	45°	5	2	1	0	8	12	34.3
	90°	2	2	0	0	4	6	17.1
	Total	10	8	3	0	21	35	100.0

 $^{^{\}mbox{\scriptsize l}}\mbox{\scriptsize Percent}$ of horizontal root system that was identified and mapped.

Three-year summary of snow damage to branches, 1968-1971. Table 29.

٠ +		Damaged	Dama	ge Cat	egory	E /	E .	() E/
FIOL	TLEES	Branches	90-100%	50-90%	0-50%	90-1008	50-908	bran./rree 0-50%
-	4.2		96	24	C	9	נר	0
1 (1 C				,	•	•	•
7	7.7	-			0	٠,	7	•
ო	82				7	٦.	4.	0.
4	61		48	16	0	0.79	0.26	00.0
S	32	22		7	0	4.	. 2	0.
9	21		Ч	7	0	0	٦.	0
7	32			8	ო	۳,	.2	0
ω	82			30	10	9	٣,	٦.
6	42		19	ω	႕	0.45	0.19	0.02
10	62	57		14	0	9•	.2	0.
	43		36	11	Н	ω	.2	0
				ഹ	Н	0	.2	0
			28	15	4	0.94	0.24	90.0
					0	٣,	۲.	0.
15	82	105		23	œ	6	.2	
16		48			ო	œ	.2	0
17	81	111	92	32	ო	0.94	0.40	0.04
		27			7	4.	۳.	0
		11	-	4	0	۳,	۲.	0
		89	37		7	•	• 4	0.

Intensity of snow damage by percent disruption of the vascular cambium during the winter of 1970-1971. Table 30.

1 Damage ²	s Bran./Tree	6	5	2.40	4.	0.	2	5	2,30	•	9•	6	٣.	2.32	9	6	9.	4.	.5	1,55	œ.
019	Branches			197			9		189			85	7	144	22					34	
el	Ave. Diameter	5	4.	1.88	9	œ	6	∞.	1.78	0	0.	۲.	7	1.70	9	.7	.7	9	9	1.78	.5
New Damage	Bran./Tree	٦.	5	1.65	0	9.		.7	2.17	•	6.	.1	٣.	1.24	4.	.2	۲.	'n	∞.	0.50	۲.
	Branches			135			m		178			48	7	77	15					11	
Whorls/	77.00	9		1.77	4.	۲.	5	6.	2.02	6.	۳.	.5	5	1.82	∞.	.7	9	9•	4.	1.27	•
Whorls	70			145		37	11		166					113	7					28	
Trees				82			21		82					62			42			22	
Plot		1	7	က	4	2	9	7	œ	6	10			13		15	16			19	

 $^{
m l}$ Damage from the winter of 1970-1971.

 $^{^2\}mathrm{Damage}$ from the winters of 1968-1969 and 1969-1970.

Table	31. 8	Snow damaged bran of 1968-1969 and	nches remaining 1969-1970.	on or	missing from trees du	during the winters
Plot	Tree	Branches	Damage C	Category	Remaining	Missing
		Daillayed	Remaining	Missing	branches/ rree	branches/ rree
П			33	47	7.	
7			4	6	۲.	4.
m	82	197	81	116	66.0	1.41
4			47	41	7.	9
S	32				9.	4.
9		9	Ŋ	7	.2	4.
7				6	٣,	.2
∞	82	189	92	97	1.12	1.18
0				10	4.	٣,
10					ω.	.7
		85	41	44	6	0
		7	ហ	2	.2	0
					0.	۳,
14	32	22	12	10	0.38	0.31
					6	0.
					ω	.7
					.7	•
18	32	51	23	5 8	0.72	88.0
		က			.7	
					6	∞.

Table 32. Summary of the number of snow damaged branches by whorl classified in terms of recent damage/old damage, 1968-1971.

			, , , , , , , , , , , , , , , , , , ,	Whorl ¹		
Plot	I	II	III	IV	V	VI
1	0/0	0/1	0/1	34/46	16/28	0/4
2	0/0	0/0	0/0	9/8	4/5	0/0
2 3 4	0/0	4/0	41/8	71/120	18/67	1/2
	0/0	6/0	16/4	32/48	10/35	0/1
5	0/0	1/0	0/0	11/13	10/21	0/0
6	0/0	0/0	0/0	3/4	0/1	0/1
7	0/0	5/0	2/0	10/10	6/9	0/0
8	0/0	29/4	75/15	60/115	13/55	1/0
9	0/0	0/0	4/0	14/17	10/12	0/0
10	0/0	0/0	19/2	34/64	4/34	0/0
11	0/0	0/0	12/11	24/50	12/34	0/0
12	0/0	0/0	0/0	2/4	5/3	0/0
13	0/0	2/2	22/10	42/90	11/40	0/2
14	0/0	0/0	1/0	10/12	4/10	0/0
15	0/0	0/0	65/15	27/92	13/54	0/0
16	0/0	1/0	17/4	23/36	7/26	0/1
17	0/0	9/0	54/7	28/61	20/45	0/3
18	0/0	5/0	6/6	6/23	10/22	0/0
19	0/0	0/0	2/1	3/12	6/19	0/1
20	2/0	4/0	21/6	25/59	15/47	1/2
Sub Total	2/0	66/7	357/90	468/885	184/557	3/17
Total	2	73	447	1,353	741	20

¹The whorls are numbered consecutively starting with the top whorl and proceeding down the stem for six whorls.

Table 33. Percentage of branches in whorl IV killed and damaged by snow.

					· · · · · · · · · · · · · · · · · · ·
Plot	Branches Damaged	Branches Killed	Original Branches	% Damaged	% Killed
1	80	55	194	41.2	28.4
	17	13	98	17.3	13.3
2 3 4	191	145	393	48.6	36.9
4	80	59	266	30.1	22.2
5	24	19	152	15.8	12.5
6	7	2	101	6.9	2.0
7	20	12	131	15.3	9.2
8	175 ·	114	363	48.2	31.4
9	31	20	189	16.4	10.6
10	98	65	268	36.6	24.3
11	74	55	183	40.4	30.1
12	6	3	110	5.5	2.7
13	132	101	289	45.7	34.9
14	22	18	144	15.3	12.5
15	119	82	331	36.0	24.8
16	59	47	169	34.9	27.8
17	89	58	316	28.2	18.4
18	29	18	118	24.6	15.3
19	26	13	91	28.6	14.3
20	84	58	234	35.9	24.8
					
Trees/H	ectare			$\mathtt{Damaged}^{\mathbf{l}}$	Killed
50	0			14.6 a	8.1 a
7 5	0			17.8 ab	12.4 ab
100	0			33.2 bc	24.2 bc
150	0			37.1 bc	26.6 bc
200	0			40.2 c	27.9 c

¹Means in each category not followed by the same letter are significantly different at the 5 percent level (Tukey's test).

Table 34. Biomass distribution of the needles, branches, stem, and roots of young red pine.

Tree	Trees/ Ha.	Needles	Branches	Stem	Total Above Ground	Roots	Total
				-(gram	s)		
1968							
1	1000	1278	846	539	2663	_	_
1 2 3	500	1356	752	425	2533	-	_
3	2000	1312	676	382	2370	_	_
4 5	1500	1088	532	352	1972	_	-
5	750	1110	571	358	2039	-	-
Mean	-	1229	675	411	2315	-	-
1971							
1	2000	4596	2039	1869	8504	1117	9621
2	1000	3518	2004	2044	7566	1067	8633
3	500	4503	4392	2890	11785	1687	13472
4	2000	3476	2660	2009	8145	1141	9286
5	2000	3254	2854	2156	8364	1674	9938
1 2 3 4 5 6 7	500	3244	2044	2075	7363	1346	8709
7	500	3137	2096	1631	6864	1164	8028
Mean	-	3675	2584	2096	8356	1314	9670

