
SECURITY AND PRIVACY IN RESOURCE CONSTRAINED WIRELESS NETWORKS

By

Kanthakumar Mylsamy Pongaliur

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2012

ABSTRACT

SECURITY AND PRIVACY IN RESOURCE CONSTRAINED WIRELESS
NETWORKS

By

Kanthakumar Mylsamy Pongaliur

Wireless networks use radio waves as a communication medium which allows for faster

and cheaper deployment. The networks being wireless, are out in the open, which makes

them vulnerable to malicious users that can hinder their performance. Of the several types

of wireless networks, we focus on security and privacy in wireless sensor networks (WSN) and

cognitive radio mobile ad-hoc networks (CR-MANET). The devices in these networks are

limited in resources such as energy, low power radio, etc. CR-MANET devices are mobile,

requiring them to run on limited amount of energy supplied by batteries, and conserve energy

by reducing communication cost using low power radios. In addition, sensor devices have

limited storage and a slower CPU. The purpose of a WSN is to sense and report event

occurrences, whereas a CR-MANET provides improved spectrum utilization.

We studied three kinds of attacks on WSN. The first type of attack is on the source

privacy of sensor nodes. This attack happens because an important characteristic of events

detected by sensor devices is bound to the location of event occurrence that can be revealed

by compromise of detecting sensor device’s source privacy. Thus, protecting privacy of event

detecting sensor device is of paramount importance for which we present an encryption based

solution to protect source privacy under eavesdropping and node compromise attacks. The

second type of attack by the malicious entity can be invasive in nature, which could possibly

cause damage to the device, or can be passive as in side channel attacks. A comprehensive

study of side channel attacks on WSN is presented, along with a process obfuscation tech-

nique. The third type of attack is on the propagation of data packet generated by the sensor

device. The detected event data is sent to the base station. If a malicious entity is able to

prevent such event reporting packets from reaching the base station and segregate the attack

zone, it will be able to carry out its malicious activity without getting caught. To cover such

scenarios, a proactive dynamic camouflage event generation solution is presented.

CR-MANET devices sense for vacant licensed spectrum and improve its utilization in an

opportunistic manner. Accurate licensed spectrum occupancy detection by a CR-MANET

device is hampered by signal fading, hidden terminal problems, etc. Spectrum occupancy

decision can be improved by cooperative spectrum sensing (CSS). However, CSS is made

difficult by the presence of malicious users. The malicious users can have two goals: one is

to disrupt the network, another is to manipulate the network for its own personal gains. The

malicious users can create havoc in a CR-MANET by falsifying spectrum sensing informa-

tion leading to interference with the primary user. The devices in a CR-MANET are mobile,

which gives an opportunity for the malicious entity to hide behind the changing neighbor-

hood. We present three solutions to overcome the spectrum sensing data falsification attack

and incorrect reporting of signal measurement due to byzantine failures. The first is a multi-

fusion based distributed spectrum sensing (MFDSS) using reputation propagation. In the

second solution, a continuously evolving virtual neighbor cluster of past neighbor devices

aid in validating the input gathered from the current neighboring devices (ReNVaS). Third,

a recursive partitioning around medoids based clustering is performed to identify a tightly

bound set of valid inputs for decision making (TMC). A unified and non-unified decision

making strategy is presented using ReNVaS and TMC. MFDSS performs better in a fast

changing network while performance of unified fusion is better in a slow mobility network

with respect to primary user spectrum occupancy detection accuracy.

To my parents

iv

ACKNOWLEDGMENTS

Pursuing a Ph.D. was a long but eventful experience. During this journey, there were many

people without whose support and guidance, I would not have been able to reach this far.

First and foremost, I am extremely grateful to Dr. Li Xiao for her guidance, vision and

unending patience. We spent hours brainstorming ideas, she helped me define the problems

and taught me to write research papers. Without the immense support and encouragement

I would not have been able to complete my dissertation.

I would like to express my gratitude to Dr. Matt Mutka, Dr. Vidyadhar Mandrekar, and

Dr. Alex Liu for sparing their precious time to serve on my dissertation committee. Their

valuable suggestions helped tremendously to shape this thesis.

I would like to thank my colleagues in the ELANS lab. They inspired me and their

friendship helped me to remain focused on days when things didn’t seem to go right. We

bounced ideas of each other which resulted in some wonderful research collaborations.

I would like to thank my parents and my brother for their unconditional love and support.

Their love provided me inspiration and was my driving force. Last but not the least, I would

like to thank my wife Meena, whose love and encouragement helped me finish this journey.

v

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

Chapter 1 Introduction . 1
1.1 Attacks on Source Privacy . 2
1.2 Side Channel Attacks . 3
1.3 Event Data Propagation Prevention Attack 4
1.4 Attacks on Cognitive Radio Networks . 5
1.5 Layout . 10

Chapter 2 Attacks on Source Privacy . 11
2.1 Problem Statement . 12

2.1.1 Network Model . 13
2.1.2 Threat Model . 14

2.2 SPENA Scheme . 15
2.2.1 Preliminaries . 16
2.2.2 SPENA . 18

2.2.2.1 One-way Hash Function . 18
2.2.2.1.1 Hash-chain Usage 19

2.2.2.2 Intermediate Packet Transformation 20
2.2.2.2.1 Selection of Rehash Nodes 20
2.2.2.2.2 Packet Transformation 21

2.2.2.3 Packet Reception and Verification 22
2.2.3 SPENA Example . 24

2.3 SPENA Protocol . 27
2.3.1 Single Path Routing . 28
2.3.2 Flooding . 29

2.4 Analysis and Evaluation . 30
2.4.1 Security Analysis . 30

2.4.1.1 Super-local Eavesdropper 31
2.4.1.1.1 Impact of Rehash Probability Parameter (ρ) 33

2.4.1.2 Stealth Mode . 34
2.4.1.3 Super-local Eavesdropping and Stealth Mode 36

2.4.1.3.1 Random Node Compromise 37
2.4.1.3.2 Compromise Neighboring Nodes 38
2.4.1.3.3 Compromised Nodes in a Geographical Area 39

vi

2.4.2 Overhead Analysis . 40
2.4.2.1 Smaller Hash Usage and Collision 41

2.4.3 Comparison . 43
2.5 Related Work . 47
2.6 Summary . 49

Chapter 3 Side Channel Attacks . 51
3.1 The Attack Model . 53
3.2 Electromagnetic Leakage Attack- A case study 55

3.2.1 Experimental Setup . 56
3.2.2 Observations . 57

3.3 Taxonomy of Attacks and Countermeasures 59
3.3.1 General Countermeasures . 59

3.3.1.1 Obfuscation . 59
3.3.1.1.1 Code Obfuscation 59
3.3.1.1.2 Process Obfuscation 61

3.3.1.2 Tamper-proofing . 62
3.3.2 Taxonomy of Attacks . 63

3.3.2.1 Power Analysis Attacks . 63
3.3.2.1.1 Countermeasures 64

3.3.2.2 Electromagnetic Leakage Attacks 64
3.3.2.2.1 Countermeasures 65

3.3.2.3 Optical Side Channel Attacks 66
3.3.2.3.1 Countermeasures 67

3.3.2.4 Traffic Analysis Attacks . 67
3.3.2.4.1 Countermeasures 68

3.3.2.5 Timing Attacks . 69
3.3.2.5.1 Countermeasures 69

3.3.2.6 Fault Analysis Attacks . 70
3.3.2.6.1 Countermeasures 70

3.3.2.7 Acoustic Attacks . 70
3.3.2.7.1 Countermeasures 71

3.3.2.8 Thermal Imaging Attacks 71
3.3.2.8.1 Countermeasures 71

3.4 Related Work . 72
3.5 Summary . 73

Chapter 4 Event Data Propagation Prevention Attack 75
4.1 Node Classification and Metrics Definition 78

4.1.1 Node Classification . 78
4.1.2 Metrics Definition . 79

4.1.2.1 Impact of Coefficients . 81
4.2 Attack Model . 82
4.3 Mobile-Node Route Design . 83

4.3.1 Node Selection . 83

vii

4.3.2 Route Design . 84
4.4 Attack Fingerprinting . 85

4.4.1 Sybil Attack . 85
4.4.2 Wormhole Attack . 86
4.4.3 Selective Forwarding Attack . 87
4.4.4 Sinkhole Attack . 88

4.5 Secure Architecture . 88
4.5.1 Camouflage Events . 89
4.5.2 Embedding Route Information . 90

4.5.2.1 Shortened Relative Neighbor Address 92
4.5.2.2 Encoding the Path Address 94
4.5.2.3 Decoding the Path Address 95

4.5.3 Packet Meta-analysis . 96
4.5.3.1 Packets Received . 97
4.5.3.2 Packets Lost . 100
4.5.3.3 Verification . 100

4.6 Simulation Results . 102
4.7 Summary . 110

Chapter 5 Attacks on Cognitive Radio Network 112
5.1 Network Model and Problem Statement . 115
5.2 Multi-Fusion based Distributed Spectrum Sensing 117

5.2.1 Architecture and Working Model . 118
5.2.1.1 Sensing Data Fusion . 119

5.2.1.1.1 Outlier Detection 121
5.2.1.1.2 Data Fusion Incorporating Reputation 122

5.2.1.2 Decision Fusion . 124
5.2.1.3 Reputation Management . 126

5.2.1.3.1 Reputation Calculation 127
5.2.1.3.2 Reputation Propagation 128

5.2.2 Analysis and Results . 128
5.2.2.1 MFDSS Analysis . 129

5.2.2.1.1 Malicious Reputation Information Propagation . . 129
5.2.2.1.2 Freshness of Reputation Information 130
5.2.2.1.3 Malicious Neighborhood Probability 132

5.2.2.2 Overhead Analysis . 134
5.2.2.2.1 Sensing Data Exchange and Fusion 134
5.2.2.2.2 Reputation Data Exchange and Fusion 135
5.2.2.2.3 Decision Exchange and Fusion 136

5.2.2.3 MFDSS Parameter Analysis 137
5.2.2.4 Results . 140

5.3 Recursive Validation and Clustering for Distributed Spectrum Sensing 143
5.3.1 Recursive Validation and Clustering Schemes 144

5.3.1.1 Recursive Neighbor Validation Scheme 145
5.3.1.1.1 Virtual Neighbor Cluster 145

viii

5.3.1.1.2 Decision Cluster 146
5.3.1.2 Tight Medoid Clustering . 149
5.3.1.3 Data Fusion . 150

5.3.1.3.1 Non-unified Decision Making 153
5.3.1.3.2 Unified Decision Making 153

5.3.2 Analysis and Results . 154
5.3.2.1 Overhead Analysis . 157

5.3.2.1.1 Malicious Neighborhood Analysis 159
5.3.2.2 Results . 159

5.4 Related Work . 166
5.5 Summary . 169

Chapter 6 Conclusion . 172

BIBLIOGRAPHY . 177

ix

LIST OF TABLES

Table 2.1 SPENA Table of Notations . 30

Table 2.2 Attack Distribution . 39

Table 4.1 D-CENDA Table of Notations-1 . 78

Table 4.2 D-CENDA Table of Notations-2 . 84

Table 4.3 Node Distribution . 92

Table 4.4 Node 23 Neighbor Address . 93

Table 4.5 Address Encoding . 94

Table 5.1 MFDSS Table of Notations . 119

Table 5.2 Energy Measurement Range for Different Error Rates 137

Table 5.3 Malicious Attack Scenarios . 140

Table 5.4 ReNVaS Table of Notations . 144

Table 5.5 Covered Neighbors . 153

Table 5.6 Malicious Majority Neighborhood 159

x

LIST OF FIGURES

Figure 2.1 Sensor Network . 14

Figure 2.2 Event Packet . 16

Figure 2.3 SPENA Event Packet . 20

Figure 2.4 Hash Tables with Sliding Windows 22

Figure 2.5 Packet Reception and Verification 23

Figure 2.6 SPENA Network Example . 25

Figure 2.7 SPENA Example Packet . 25

Figure 2.8 Packet Progression . 26

Figure 2.9 Hash Verification . 27

Figure 2.10 SPENA Protocol Packet Structure 28

Figure 2.11 Packet Comparison . 33

Figure 2.12 Minimum Rehash Probability . 34

Figure 2.13 Probability of Compromising all Rehash Nodes 38

Figure 2.14 Consecutive Route Nodes Compromised 39

Figure 2.15 Random Walk Overhead . 44

Figure 2.16 Random Walk Privacy . 45

Figure 2.17 Fake Packet Generation Overhead 46

Figure 3.1 Attack Model . 54

xi

Figure 3.2 Experiment Setup . 56

Figure 3.3 EM Radiation while Transmitting 0’s and 1’s. ‘For interpretation
of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation’ 58

Figure 3.4 Obfuscation . 61

Figure 4.1 Node Classification . 79

Figure 4.2 Critical Nodes Case 1 . 81

Figure 4.3 Critical Nodes Case 2 . 81

Figure 4.4 Attack Taxonomy . 86

Figure 4.5 Wormhole . 87

Figure 4.6 Packet Route . 93

Figure 4.7 Sinkhole Attack . 103

Figure 4.8 Selective Forwarding Attack . 105

Figure 4.9 Sybil Attack . 106

Figure 4.10 Wormhole Attack . 107

Figure 4.11 All Attacks . 108

Figure 5.1 Multi-Fusion based Distributed Spectrum Sensing 119

Figure 5.2 Decision Fusion Example . 125

Figure 5.3 Malicious Neighborhood Information 131

Figure 5.4 Malicious Device Information . 131

Figure 5.5 Freshness of Reputation Information 132

Figure 5.6 Malicious Neighborhood Probability 133

xii

Figure 5.7 Primary Energy Threshold Sensitivity 138

Figure 5.8 PET with 10% Malicious Devices 138

Figure 5.9 PET with 30% Malicious Devices 139

Figure 5.10 Byzantine Failure Outlier Detection 141

Figure 5.11 Spectrum Detection Accuracy . 142

Figure 5.12 Recursive Neighborhood Validation 147

Figure 5.13 5% Measurement Error . 155

Figure 5.14 10% Measurement Error . 156

Figure 5.15 15% Measurement Error . 156

Figure 5.16 20% Measurement Error . 157

Figure 5.17 Recursive Validation- Dynamic Network 5% Measurement Error . . 160

Figure 5.18 Recursive Validation- Dynamic Network 20% Measurement Error . . 160

Figure 5.19 Spectrum Sensing Accuracy Improvement for Recursive Validation . 161

Figure 5.20 Spectrum Sensing Accuracy for Non-unified Fusion 162

Figure 5.21 Incorrect Decisions for Non-unified Fusion 163

Figure 5.22 Spectrum Sensing Accuracy for Unified Fusion Vs WSPRT 164

Figure 5.23 Incorrect Decisions for Unified Fusion 164

xiii

Chapter 1

Introduction

With the advancement of technology, the variety of applications and the possibility of at-

taining high throughput in wireless networks has increased significantly. This has led to

the development of different forms of wireless networks designed for specific tasks to cater

from field monitoring using sensor networks to attaining high throughput by monitoring

the spectrum occupancy by the primary user in a cognitive radio network. The increase in

the wireless networks application domain has been inversely proportional to the size of the

devices with the devices becoming smaller. As an example, a typical sensor device measures

the size of a matchbox (IRIS, MICA2, etc.) with the smallest ones being of the size of dust

particles [1]. The reduced size introduces limitations like low processing power and battery

life, limited memory, etc. This decrease in the form factor (smaller size) helps the sensor

device to be inconspicuous in the sensing area and is useful for tracking events without be-

ing recognized. Another wireless device is a mobile ad-hoc device equipped with a cognitive

radio which is capable of sensing for spectrum availability. With cognition, the device can

opportunistically use unoccupied licensed spectrum, thereby improving the spectrum usage

and throughput. The sensor networks and the cognitive radio networks are similar in char-

acteristics. Sensor networks sense the environment to detect the occurrence of events, while

a cognitive radio network senses the spectrum to check if it is vacant. The former results in

the report of events while the later helps to improve spectrum utilization.

The reduced form factor, the growth in the number of applications, the wireless com-

1

munication medium and the introduction of different technologies has created new security

problems. In these wireless networks, the attacks can be on the privacy of the sensor devices,

side channel attack on sensor devices, attacks on data collected or exchanged by the sensor

devices, and mal-intent in the spectrum sensing ability of a cognitive device. In this thesis,

of the several types of attacks possible, we study the prior mentioned attacks; identify their

unique properties and present solutions to prevent the same.

1.1 Attacks on Source Privacy

Sensor networks have significant salience to different fields, ranging from military applica-

tions to personal health monitoring. The sensor devices use wireless transmissions, which is

out in the open and can be overheard in the communication vicinity. Without precaution,

a malicious entity overhearing packet transmission can trace-back the packet to the source.

This can lead to the position of the source being revealed along with the location and time

of event occurrence. Considering a mission critical military application or a simple envi-

ronmental application, any leakage of information such as event location or time can prove

beneficial to the adversary and costly to the network goal. Hence, irrespective of the applica-

tion type, privacy of the monitored event holds importance which in turn requires providing

privacy to event reporting source nodes. Maintaining Source Privacy under Eavesdropping

and Node Compromise Attacks (SPENA) is a scheme that aims to maintain source privacy

under eavesdropping by the malicious devices which are also capable of compromising sensor

nodes. A one-way hash chain based keying mechanism is used to hide the source information.

The one-way hash function generates a series of one-time use keys. This is further used to

obfuscate an additional partial hash by dynamically selected nodes preventing a trace-back

2

by the adversary. SPENA addresses super-local eavesdropping and node compromise attacks

by malicious devices. The functioning of SPENA is evaluated under different attack scenar-

ios and found to perform exceptionally well when compared to existing state of the art with

modest overhead. Eavesdropping is an attack type that is also classified under side channel

attacks.

1.2 Side Channel Attacks

In side channel attacks, an adversary accesses a sensor device in a non-invasive (i.e., non-

tampering) manner and gains confidential information by observing the node under normal

operation. In such attacks, the goal of the adversary is to deduce the inner workings of the

hardware or the software. The adversary may use a variety of techniques such as power

analysis (simple power analysis and differential power analysis), execution cycle frequency

analysis, timing information (on data movement into and out of the CPU) analysis, elec-

tromagnetic leakage analysis, acoustic emission analysis, etc. The unique characteristics of

sensor devices make the prevention of side channel attacks more challenging. We present a

comprehensive study of side channel attacks on sensor devices. To begin with, a three-phase

attack model on sensor nodes is formalized. Second, a proof of concept is presented with

experimental results to show the feasibility of electromagnetic radiation leakage attacks us-

ing readily available equipment. Third, a family of side channel attacks on sensor devices

is identified, which include electromagnetic radiation leakage attacks, optical side channel

attacks, traffic analysis attacks, power analysis attacks, timing attacks, fault analysis at-

tacks, acoustic attacks, and thermal imaging attacks. For each type of the attack, viable

countermeasures are presented to limit vulnerability. Also proposed is a technique called

3

‘process obfuscation’, which can be used to counter a variety of side channel attacks.

The two attack forms discussed so far do not consider manipulation of the event data

itself. The next attack is on the event information sensed and the event reporting packet

generated by the sensor device.

1.3 Event Data Propagation Prevention Attack

The side channels and source privacy attacks are used to gain knowledge of the information

available at the sensor devices. Another form of attack which is of importance is one in which

the adversary is aware of the event information and wants to prevent that information from

reaching the base station. In such attacks, collaborative adversaries’ goal is to segregate part

of the network in order to prevent event reporting packets from reaching the base station,

by either dropping or by corruption of the packet. Also, if the events are sporadic, the base

station will not be able to differentiate between non-occurrence of an event and non-report

of an event due to malicious activity. This is important in military applications such as

detecting heavy artillery movement.

To overcome this problem, a Dynamic Camouflage Event based Malicious Node Detection

Architecture (D-CENDA) is presented. D-CENDA is a proactive architecture in which the

base station exploits the spatial and temporal information of the camouflage event to detect

the malicious device. D-CENDA uses a multi-phase approach that includes camouflage

event generation, planning the mobile-node tour, encoding the address in the packet, packet

analysis by the base station, detection and verification of the malicious node. A camouflage

event is a reputable event generated in response to a base station request. The camouflage

event generator is a mobile-device which can be mounted on robot or an unmanned aerial

4

vehicle. This mobile-device traverses the path decided by the base station and generates the

camouflage events at regulated intervals of time. These events are called camouflage events

since they mimic the real events, but are not real events in the true sense. A simple solution

is for the base station initiating a camouflage event from the node by sending a message,

but a powerful adversary can overhear the communication and allow such event packets.

The nodes which are in the sensing range of the camouflage event location will detect the

event and report back to the base station. A lightweight address encoding scheme wherein

each node encodes the shortened relative address of the node from which it received the

packet is presented. Each node also maintains the information about the overheard packet

transmissions by the neighbors. For this, a bloom-filter [2] and a bit-array based method is

presented, which are used for verification before branding a node malicious. The performance

of D-CENDA is analyzed and compared to existing solutions. The results indicate that D-

CENDA is not only able to identify the malicious device zone with high accuracy, but also

recognize the attack type.

So far we saw attacks on the meta-information about the events in the form of compromise

of source privacy, attacks on side-channels and attacks on the collected event information.

The next type of attack is on the functioning of the cognition feature of a cognitive radio

mobile ad-hoc network. This directly affects the throughput of the secondary user network

and in some cases the feasibility of the network itself.

1.4 Attacks on Cognitive Radio Networks

In the attacks so far, we looked at sensor devices with limited resources and how the attack

on either the data collected or the device itself (hardware/software) posed problems. The

5

growth in technology has led to development of intelligent devices which can deduce for

themselves whether they should be communicating on a particular spectrum. These devices

have been given cognitive features to be aware of the surrounding environment. Using a

cognitive radio, the device can sense the environment and deduce if the spectrum is vacant or

occupied. This is required because most of the spectrum has been awarded to a few licensed

users (primary users), but this licensed spectrum has been found to be severely underutilized.

Hence, FCC has mandated that the licensed spectrum can be utilized by unlicensed users

(secondary users) when it is detected to be vacant, i.e. not being currently occupied by

the primary user. One important requirement is that the secondary users (SU) should not

interfere with the primary users (PU). This calls for accurate spectrum sensing and decision

making which is made difficult by signal fading, shadowing, hidden terminal problems, etc.

Due to these problems, some devices may be unable to reliably sense the spectrum, while

the devices surrounding them may not be affected by these problems and hence sense the

spectrum accurately. This has led researchers to believe that utilizing cooperative spectrum

sensing can provide a robust solution. Cooperative spectrum sensing performs well, because

you have multiple devices working together to improve the detection accuracy of primary

user spectrum occupancy. Incorrect measurements by a few devices can be overcome by the

collective accurate inputs from other devices. This becomes difficult to attain in the presence

of malicious secondary users. The goals of a malicious user can be two pronged: one, they

may want to disrupt the primary user network. Second, the adversary may wish to utilize

the entire vacant spectrum band for itself when the primary user is not present. Such an

attack launched by malicious devices encouraging other devices into making an incorrect

decision about PU spectrum occupancy by spreading wrong data is called spectrum sensing

data falsification attacks (SSDF).

6

To overcome this problem of malicious secondary users, a lot of research studies have

utilized centralized cooperative spectrum sensing. A centralized cooperative spectrum sens-

ing solution is robust since it will make decisions taking inputs from a large number of

secondary users. When you consider the mobile secondary devices forming a cognitive radio

mobile ad-hoc network, a centralized spectrum sensing approach is infeasible due to the ab-

sence of appropriate infrastructure. Additionally, the secondary users in such a network may

be resource constrained and have limited energy, low power radios, etc. Since the devices

are mobile, they depend on battery as a source for energy. Energy from a battery can last

from a few hours to a few days depending on usage. This is particularly important when you

consider small form factor hand held CR-MANET devices like smartphones, personal digital

assistant, etc. The small form factor does not allow the device to accommodate larger bat-

teries. One of the easier ways to conserve energy is by using low power radios, which restricts

the transmission range. Communication consumes much higher energy compared to compu-

tation. It is noted that transmitting 1Kb of data over 100m consumes the same amount of

energy as executing 3 million instructions on a processor with 100MIPS/W power [3], [4].

Hence, the solutions for a CR-MANET constrained in resource like energy should have the

least possible communication overhead. In such cases, a distributed cooperative spectrum

sensing solution gives the best opportunity for accurate spectrum occupancy detection.

In this thesis we present three solutions to overcome the problem of SSDF attacks and

byzantine failure of devices. The first solution is called ‘Multi-Fusion based Distributed

Spectrum Sensing’ (MFDSS). MFDSS includes three steps, namely, sensing data fusion,

reputation propagation and fusion, and decision fusion. Unlike existing distributed schemes

where a device presents only a local decision to its neighbor, in MFDSS the device transmits

the actual measured sensing data to its neighbor. Collection of the actual data instead

7

of a binary decision from its neighbor allows the data collector to pre-process it prior to

data fusion. It is our understanding that to catch byzantine failure you require information

with much higher granularity than having a binary decision information. Also, compared

to centralized approaches, the amount of data inputs is limited in distributed cooperative

spectrum sensing, thereby hindering the use of statistical methods requiring large inputs.

The effect of erroneous information due to SSDF attacks that escape detection during outlier

detection are suppressed using a reputation scheme. During this, the remaining cohesive

observations are weighed by their reputation and are fused to make a local decision about

the presence of primary user signal. This is the data fusion step. This local decision data is

exchanged with the neighbors and fusion of these decisions is performed to reach the final

decision. This step is the decision fusion. Although this entire process occurs locally at

one hop radius requiring only one hop communication, it incorporates sensing information

from two hop neighbors, thereby encompassing inputs from a larger area. The devices are

mobile leading to changing network topology and changes in neighborhood. To cater to

the changing dynamics, we present a reputation propagation and fusion method based on

the reputation of devices and the timestamp of the last update of the reputation. This has

three benefits: First, it provides an opportunity for devices to make robust decisions using

propagated reputation of new neighbors. Second, the reputation of a malicious device is

propagated which reduces its likelihood to hide its malicious activities under the changing

neighborhood. Third, it helps to maintain the freshness of the reputation information. In

addition, to prevent attacks similar to a sybil attack wherein a device takes different identities

in order to escape from bad reputation, we introduce an incubation period during which the

data is collected, but not utilized for decision making.

The next two solutions are called ‘Recursive Neighbor Validation’ (ReNVaS) and ‘Tight

8

Medoid Clustering’ (TMC). In the recursive neighbor validation method every device main-

tains a virtual cluster of all the devices with which it has been neighbors in the past. The

set of devices in the virtual cluster which have good reputation are used to validate the

input from the neighboring devices before they are incorporated in the decision cluster. In

the tight medoid clustering scheme, the inputs from the neighbor are recursively clustered

to find the tightest bound set of inputs and these get added to the decision cluster. Since

the neighborhood changes frequently, the medoid clustering scheme may not incorporate

any reputation information. The data in the decision clusters are fused to make a decision

about spectrum occupancy. We present two fusion algorithms: ‘non-unified data fusion’ and

‘unified data fusion’.

MFDSS, ReNVaS, and TMC are evaluated, their overheads analyzed and performance

compared to existing studies. MFDSS has a quick decision turnaround time. Compared

to ReNVaS, MFDSS requires two sets of one hop communication and intermediate data

processing to reach a primary user decision. ReNVaS needs to grow recursively to fetch

inputs from devices further away (to validate the neighbor inputs) which may need additional

time depending on the recursion number. In a very fast paced network, a combination of

ReNVaS and TMC (using unified or non-unified fusion) ends up using just TMC for decision

making, which is not as robust as a reputation propagation scheme like MFDSS. Unified

fusion and non-unified fusion perform extremely well in a slow mobility network, with the

unified data fusion incorporating ReNVaS and TMC performing the best with the lowest

number of false negatives in primary user spectrum occupancy detection. In a fast paced

mobile network, MFDSS performs better and the performance degrades gracefully as the

number of malicious users grow beyond 40%.

9

1.5 Layout

Chapter 2 discusses the importance of source privacy in a sensor network and presents a

solution to mitigate the same. Chapter 3 introduces the side channel issues and presents

various countermeasures. Chapter 4 presents event data propagation prevention attack and

provides a dynamic camouflage event based malicious node detection architecture to over-

come the same. In Chapter 5, we discuss the spectrum sensing data falsification attacks in

cognitive radio network and three solutions to overcome it. Finally, we present the conclusion

in Chapter 6.

10

Chapter 2

Attacks on Source Privacy

A sensor network is composed of low-cost sensing devices which sense the environment for

event occurrences and report back to the base station. The sensor devices use wireless

transmissions, which is out in the open and can be overheard in the communication vicinity.

Without precaution, a malicious entity overhearing packet transmission can trace-back the

packet to the source. This can lead to the position of the source being revealed along

with the location and time of event occurrence. Source privacy is generally compromised

by the meta or contextual information of a packet, and not by the actual content of the

packet. This has led many researchers to note that, source privacy cannot be addressed

by encryption alone. A significant amount of studies guided towards using some form of

simulating the source [5], [6], [7], [8], [9] or using a random walk [5], [10] has been performed

to guarantee source privacy. The primary drawback of these approaches is the amount of

overhead incurred to simulate a source or to redirect traffic randomly. Additionally, the

studies so far only consider eavesdropping (mostly local, but some global) adversaries, while

a malicious adversary that can easily compromise nodes is not considered as part of the threat

model. We consider a strong threat model, in which the adversary compromises nodes while

being able to eavesdrop over the communication network. The adversary has access to all

the cryptographic elements of the compromised node.

In this chapter an encryption based method called ‘Maintaining Source Privacy under

Eavesdropping and Node Compromise Attacks’ (SPENA) to improve source privacy is pre-

11

sented. A one-way hash chain based keying mechanism is used to hide the source information.

The one-way hash function generates a series of one-time use keys. This is further used to

obfuscate an additional partial hash by dynamically selected nodes preventing a trace-back

by the adversary. The threat model considered allows the adversary to super-locally eaves-

drop, while also being able to compromise nodes. In super-local eavesdropping, the adversary

eavesdrops over a local area but can overhear communication over significantly larger cov-

erage area than a sensor node. An example of such an adversary is a laptop class attacker.

When a node is compromised, the adversary has access to all the cryptographic informa-

tion available to the node. The case in which the adversary has access to data packets of

past communications (stored at the compromised node) is also considered. In addition, in

SPENA, the base station can recover a corrupt packet by querying an intermediate node and

estimating the location of the compromised node. This is presented as part of the SPENA

protocol for working in a single path routing as well as a flooding based approach. A de-

tailed analysis of SPENA is provided and a comprehensive comparison with existing schemes

is presented to show its effectiveness and efficiency.

The Chapter is organized as follows. In Section 2.1, the problem statement is presented.

The SPENA scheme is described in Section 2.2. The SPENA protocol is presented in Section

2.3. This is followed by the analysis and evaluation in Section 2.4. Section 2.5 details the

existing research on source privacy. Finally, the summary is presented in Section 2.6.

2.1 Problem Statement

In this section, we begin by describing the sensor network model followed by a threat model

with the adversary having super-local eavesdropping capability, and the ability to compro-

12

mise a limited number of sensor nodes. Based on the network and the threat model, the

problem statement is defined.

2.1.1 Network Model

The sensor network is a homogeneous network of sensor devices spread over a vast area. The

sensor devices detect events and report back to the base station. The base station is secure

and extremely powerful when compared to the deployed sensor devices. SPENA can be used

for many applications requiring source node privacy. One class of applications is for tracking

species of endangered animals or birds. Entities of such species need to be protected from

hunters and poachers as they have great market value, while at the same time they need to

be studied. The application considered is one in which the sensor network is deployed in a

forest for sensing endangered birds (e.g. bald eagle). It is a homogeneous network, except

for a secure base station, and consists of light weight sensor nodes dispersed over a large

area. Nodes sense the environment for the presence of endangered bird(s), and on detecting

the same, report back to the base station. The occurrence of the events can be sporadic

and irregular in nature. Multiple sensor nodes can detect the event and will independently

report it back to the base station. Aggregation of the data occurs at the base station. This

scenario is depicted in Figure 2.1.

The base station gathers the information and is able to correlate it to identify the presence

of the tracked entity, while also being able to study the flight patterns and their nesting

habits. Given the tracked entity being swift and airborne, it could result in multiple sensors

detecting the event in a short period of time, and then not having any detection for a

prolonged duration of time. The assumption is that, if the bird swooped down at a particular

location, it did so to either prey or to get water, and this increases the possibility of the bird

13

Figure 2.1: Sensor Network

descending to that location thereby requiring source location privacy (secrecy) for the event

reporting packet. In some applications the event can be sporadic, but it must be noted that

there is still other communication between the sensor nodes, resulting in the generation of

packet traffic.

2.1.2 Threat Model

The adversary is a super-local eavesdropper, and inconspicuously eavesdrops over a sensor

network. By super-local eavesdropping capability, we mean the adversary can overhear

communication at much larger distances compared to a sensor node. This overhearing radius

can be up to 5 times that of a regular sensor node, thereby providing the adversary a much

larger overhearing area (up to 25 times) as compared to the sensor node. It also possesses

the ability to compromise nodes. The adversary can be a single entity or a malicious network

in itself that senses over the deployed sensors. The adversary can operate in two modes:

1. Super-local eavesdropper: The adversary in this mode is passive in nature, and can

listen to the packet being transmitted over a large area in the network. The adversary

can either have a very powerful transceiver to overhear the communication, or may

14

have a network of its own to achieve eavesdropping. As a super-local eavesdropper,

the adversary overhears the communications and can correlate the transmission of the

packet over multiple hops. Although, the adversary cannot ascertain the contents of

the packet when it eavesdrops over the transmission, it has the capability to compare

two packets.

2. Stealth mode: An attacker in the stealth mode can compromise a node and get access

to all the cryptographic information stored in the node. In this mode, the adversary

takes control over the sensor node, and can decode the packet, and get information as

available to any rightful sensor node. The adversary can either compromise a certain

percentage of nodes randomly selected from the network, or can compromise nodes

which are geographically close to each other. Another attack form would be to com-

promise neighboring nodes.

The goal of the adversary is to identify the location and time of event occurrence, either

by passive super-local eavesdropping or using intrusive node compromise. Alternately, the

adversary may employ both. The problem is to conceal the event occurrence location and

time by protecting source privacy under an eavesdropping and node compromise attack.

2.2 SPENA Scheme

SPENA is a source privacy protection scheme which uses one-way hash chains and mapping

functions. The basic idea is introduced in the preliminaries subsection, and the details of

the scheme are presented in the second subsection.

15

2.2.1 Preliminaries

In SPENA, a one-way hash chain is used to hide the source information. A one-way hash

chain is a series of hash values generated by a one-way hash function. A basic idea of our

approach is as follows. First, a unique hash function is used to generate a hash for source

identification. This function is available at the source node and the base station. Second,

dynamically selected intermediate nodes on the routing path alter the packet resulting in a

change to the packet structure. Altering the packet structure disorients the packet trace-

back by the adversary. This modification of the packet structure is done such that the base

station can verify the information and connect it to the source generating the same. Third,

on receipt of a corrupt packet, the base station is able to query the rehashing intermediate

nodes for the packet.

DstID SrcID Hash Payload | SrcID
Obfuscating

Partial Hash
Rehash

Seed
Filler

Payload

Length

Figure 2.2: Event Packet

SPENA can be used with a single path routing or a flooding based routing method.

The event packet structure in SPENA is presented in Figure 2.2, and it has the following

parameters:

1. DstID (Destination-id): It is the destination id of the packet. This is base station for

event packets.

2. SrcID hash (Source-id Hash): A unique hash of the source that is used to identify it

at the base station.

3. Obfuscating partial hash (OPH): This is generated by the source using the same hash

function used to create the SrcID hash, and will be modified by dynamically selected

16

intermediate nodes.

4. Rehash seed: Used to determine the intermediate nodes to reconstruct the packet en

route to the base station.

5. Payload Length: The length of a payload in the packet.

6. Payload: Payload is the actual data transmitted in the packet. It is encrypted using

the symmetric key shared by the source node and the base station. In the application

presented in Section 2.1, the payload consists of start time and duration of event

occurrence.

7. Filler: Filler is used to provide a standard length to the packet and is populated with

random garbage data. Having a constant packet size is required to prevent the adver-

sary from tracking the packet based on increase in packet length during packet trans-

formation. Keeping all the packets the same length forces the adversary to consider all

packets while tracking back, and it cannot discount any packet analysis requirement

based on the packet length. Using a garbage filler marginally increases the overhead,

but the overhead is still very less compared to existing random walk or fake packet

generation schemes as shown in Section 2.4.3.

In the pre-deployment phase, each node is bootstrapped with four functions and a sym-

metric key. A hash function to generate the one-way hash chain, a second one-way hash

function, a mapping function, and a rehash function. The entries from the hash chain are

used as source-id (SrcID) hash and the obfuscating partial hash (OPH) as depicted in Figure

2.2. The hashes (SrcID hash and OPH) perform two critical functions. First, they provide

privacy to the packet by preventing an adversary from performing a trace-back to the source.

17

Second, they help the base station to verify the validity of the packet received. Additionally,

two event reporting packets from the same source will have different SrcID hash, protecting

the network from an adversary by preventing the source of the two packets to be correlated.

The second one-way hash function and the mapping function are used to select the inter-

mediate nodes for modifying the packet. These selected nodes use the rehash function to

hash the OPH into a fixed length, which is then encrypted using the key. Additionally, the

rehashing node concatenates the SrcID hash from the received packet to the payload which

is then encrypted using the symmetric key of the rehashing node. It updates the payload

length field with the new payload length and subtracts the corresponding amount of bits

from the filler field so as to maintain the standard packet size. The new filler field is filled

with random garbage bits. The rehashing node replaces the SrcID hash with the hash from

its hash-chain. The symmetric key is unique and known only to the base station and the

corresponding sensor node.

2.2.2 SPENA

As introduced earlier, SPENA uses a one-way hash function to hide the source information,

a rehashing scheme to dynamically select the intermediate nodes for altering the packet, and

finally, packet reception and verification at the base station. These steps are elaborated in

the following subsections.

2.2.2.1 One-way Hash Function

One-way hash function is attractive to use in sensor networks, because the values can be

verified in a fraction of the time as compared to a digital signature. Given the resource

constraints in sensor networks, the light chain method is used to generate the hash chain as

18

described in [11]. Light chain generates a smaller hash when compared to the other methods.

This is advantageous to use in sensor network given the limitations on the packet size and

helps reduce the communication overhead. It can be further truncated without reducing the

effectiveness with the use of two hash values, the SrcID hash and the OPH. It should be also

noted that, as in all hash chain usages, it is used in the reverse order and once the elements

are exhausted, the hash is reset by the base station. This is easily performed since the base

station keeps track of the hash value usage. When the hash chain entries near exhaustion

(less than 10% of entries are unused), the base station resets it by transmitting a new seed

to the sensor node. This packet is encrypted using the unique key shared by the sensor node

and the base station. This procedure consumes energy and will dictate the number of hash

entries to be stored at the senor node. The number of entries stored at the sensor node has

a tradeoff with the frequency of hash chain reset.

2.2.2.1.1 Hash-chain Usage Hash chain in SPENA is used for source identification

and creating packet obscurity by certain randomly selected nodes on the packet path. This

is different from the traditional sense of hashing that is primarily used for checking packet

integrity in the form of a message digest.

Consider a network of n sensor nodes. Hi() is the one-way hash function for node i,

generating a sequence of values h1i , h
2
i , ... etc. When node i wants to send an event packet

to the base station, and has already utilized m − 1 entries from the one-way hash chain, it

generates a packet shown in Figure 2.3, where hmi is the mth entry in the hash chain of node

i.

The entry hmi (SrcID hash) and hm+1
i (obfuscating partial hash) are consecutive entries

generated by the hash function. The hash value hmi identifies the source at the receiver (base

19

DstID
Rehash

Seed

m
ih

1
|)(m

i Ki
PayloadR h +é ùë û []| Ki

Payload i Filler
Payload

Length

Figure 2.3: SPENA Event Packet

station). A hash size of 4 bytes is used to prevent collisions while usage of smaller hash size

is discussed later. hm+1
i is used for obscuring the packet during its traversal by dynamically

selected nodes along the packet route and also functions as a message authentication code

for the packet. The source modifies hm+1
i to encode payload information in the obfuscating

partial hash where R is the rehash function and Ki is the key for node i as seen in the third

field in Figure 2.3. In single-path routing, these obfuscating partial hash altering nodes are

easily identifiable at the base station. For flooding, an approach is presented in Section 2.3.

2.2.2.2 Intermediate Packet Transformation

The intermediate packet transformation occurs at selected nodes on the path of the packet

en route to the base station. It has 2 steps: Selection of rehash nodes, and packet transfor-

mation.

2.2.2.2.1 Selection of Rehash Nodes The random selection of rehashing nodes on

the packet path is done using the rehash seed and a set of two functions: a one-way hash

function and a mapping function. The functions are set in the node during pre-deployment

bootstrapping, while the seed is read from the packet. This one-way hash function is different

from the one used to generate the SrcID hash and the obfuscating partial hash. This method

was used in [12] to generate random checkpoints and shown to be feasible to use in sensor

networks.

For a node j, the one-way hash function is represented as Fj(x), where x is the rehash

20

seed. The mapping function is fρ(y), where ρ is the rehash probability and y = Fj(x). The

mapping function has a range of {0, 1}. For the range of output from the hash function,

the mapping functions maps to 1 with probability ρ and to 0 with probability 1 − ρ. Such

a system of using two functions is beneficial because it gives the base station a simple way

to change the rehash probability by just replacing the mapping function using a broadcast.

When a node j receives a packet, it calculates fρ(Fj(x)), and if the result maps to value 1, it

modifies the packet before forwarding to the next hop. If the mapping function maps to 0, it

forwards the packet unmodified. The number of intermediate nodes selected for rehashing is

set by the base station using the rehash probability parameter ρ. Additionally a rehashing

node will hold the packet introducing a random delay of d time units. This delay forces the

adversary to consider all the packets that passed through the node in the d time units while

tracing back since the packet is reconstructed.

2.2.2.2.2 Packet Transformation The intermediate packet transformation occurs at

nodes where the mapping function maps to a value of 1, as described in selection of re-

hash nodes. Here, the rehashing node j saves a copy of the packet before applying the

transformation to it as follows:

1. SrcID hash: The value is replaced by a SrcID hash corresponding to rehashing node j.

2. OPH: OPHj = [R(OPHPacket)]Kj where OPHPacket is the obfuscating partial hash

read from the packet, R is the rehash function and Kj is the key shared between the

node j and base station.

3. Payload: Concatenate the SrcID hash received in packet to the payload and encrypt

this with the symmetric key of node j. Payloadj = [R(PayloadPacket|h
m
i)]Kj ,

21

where PayloadPacket is the payload of the received packet, hmi is the SrcID hash of

the received packet. Additionally, the network can decide to concatenate only partial

SrcID hash to the payload in an attempt to reduce the overhead. This can lead to

collisions, which can be deciphered by the base station with the knowledge of network

topology.

4. Payload Length: Length of the new payload.

5. Filler: Reduce the size of the filler to accommodate for the increased payload size and

fill with garbage data.

2.2.2.3 Packet Reception and Verification

On receiving a valid packet presented in Figure 2.3, the base station uses a sliding window

approach to look for the source-id corresponding to the SrcID hash within the sliding windows

of the hash table maintained for each node.

Hash(1)

.

.

.

.

.

.

Window

Window

Window

.

1

1h

2

1h

*

1h

Hash(2)

.

.

.

.

.

.

1

2h

2

2h

*

2h

Hash(n)

.

.

.

.

.

.

1

n
h

2

n
h

*

n
h

Figure 2.4: Hash Tables with Sliding Windows

A sliding window approach helps improve the search efficiency since the base station

does not need to go through the whole hash table. This helps scale with the increasing

22

traffic. The length of the sliding window is governed by the packet loss rate in the network.

The larger the packet loss rate, the larger this window is. When a valid packet is received,

the starting point of the window is moved beyond SrcID hash in the table corresponding

to the source. This is depicted in Figure 2.4. One optimization is to search only a subset

of nodes for a possible match. With the knowledge of network topology, the base station

can deduce the subset of nodes which could possibly be the previous rehashing node. This

subset of nodes can again belong to only the downstream nodes, i.e. the nodes which should

be propagating the packet to the current node and topologically lie further away from the

base station compared to the node under consideration. It further reduces the subset of

nodes for which reverse lookup needs to be performed thereby improving the efficiency in

terms of time and computation required.

SrcID Hash

Lookup Src ID (SID)

Decrypt Payload using key of SID

If address at end

of payload == SID

Yes

Extract Src ID hash
No

OPH

Verified

Accept Packet

Yes

Reject Packet
No

Figure 2.5: Packet Reception and Verification

The base station, on receiving the packet does a reverse lookup on the SrcID hash to

identify the source of the packet. The assumption is that the packet has undergone at least

23

one rehash transformation during its traversal. It applies a recursive process as depicted in

Figure 2.5, until it reaches the true source-id of the packet. During this process, the base

station identifies the intermediate nodes responsible for rehashing the obfuscating partial

hash. With this knowledge, the base station applies the rehashing process to the value of

obfuscating partial hash starting with the hash value as encoded by the source. If the base

station reaches the same value as received in the packet, this verifies the integrity of the

packet received.

2.2.3 SPENA Example

Consider a twenty node network with one base station as depicted in Figure 2.6. Node 5

detects an event that it wants to report to the base station. From the hash chain generated

by function H5(), the source node has used m− 1 entries for past communications. Hence,

it generates an event detection packet with the structure depicted in Figure 2.7, where hm5

is the SrcID hash and hm+1
5 is the obfuscating partial hash. The rehash seed value is set to

3, and the rehash probability (ρ) is 0.3.

The packet is transmitted to node 7, which reads the seed value (3), and calculates

f0.3(F7(3))). The result maps to 0, resulting in the packet to be forwarded unaltered to

node 10. Node 10 repeats the process, and this time the rehash probability is true resulting

in packet rehash. The rehash is performed using the pre-defined key shared between the

base station and node 10. This takes the current OPH parameter as input and returns an

encrypted hash of the same length as OPH parameter. It replaces the SrcID hash hm5 by

the SrcID hash of node 10 (hm10). Next, it calculates the new payload by concatenating hm5

to payload ([Payload|hm5]k10) and encrypting with its key. The payload length field is set

to 12 and the filler field size is reduced to 6 bytes. The filler is filled with garbage data.

24

 Sensor Node

Base station

13
17

10

11
20

15

14

16 12

19

18

8

9

3

1

7

6

2

4
5

Source

Obfuscating Node

Figure 2.6: SPENA Network Example

DstID 3 5
mh

1
5

5

|)(m

K
PayloadR h +é ù

ë û []
5

| 5
K

Payload8 Filler

Figure 2.7: SPENA Example Packet

Additionally, the rehashing node adds a random delay before forwarding the packet. This

delay may result in a reordering of the packets in the queue resulting in further obfuscation

and help prevent timing based attacks.

The packet is transmitted over multiple hops to the base station, with each intermediate

node performing the actions as described. During the packet progression, node 20 is selected

as a rehashing node while nodes 17, 1, and 18 are not. This transformation of the packet as

it progresses through the path is depicted in Figure 2.8.

The base station on receiving the packet, performs a reverse lookup on the SrcID hash

value (hm20), and identifies node 20 as the source. It decrypts the payload with the key for

node 20 and compares the address field at the end of decrypted payload to 20. It does not

match and the base station reads the SrcID hash from the end of the payload. Doing a

reverse lookup, it identifies the source and repeats the process until it reaches the source-id

25

Base station

Node 7

Node 10

Node 17

Node 1

Node 20

Node 18

[]
5

| 5
K

PayloadDstID 3 5
mh

1
5

5

|)(m

K
PayloadR h +é ù

ë û Filler (10B) 8

[]
5

| 5
K

PayloadDstID 3 5
mh

1
5

5

|)(m

K
PayloadR h +é ù

ë û Filler (10B) 8

DstID 3 10
mh Filler (6B) 12

1
5

5
10

(|))(m

K
K

R PayloadR h +é ùé ùê úë ûë û
[] 5

5
10

| 5 | m
K

K

Payload hé ù
ê úë û

DstID 3 10
mh Filler (6B) 12

1
5

5
10

(|))(m

K
K

R PayloadR h +é ùé ùê úë ûë û
[] 5

5
10

| 5 | m
K

K

Payload hé ù
ê úë û

DstID 3 10
mh Filler (6B) 12

1
5

5
10

(|))(m

K
K

R PayloadR h +é ùé ùê úë ûë û
[] 5

5
10

| 5 | m
K

K

Payload hé ù
ê úë û

DstID 3 20
mh Filler

(2B)
16

1
5

5
10

20

((|)))(m

K
K

K

R R PayloadR h +
é ùé ùê úé ùê úë ûê úë ûë û

[] 5 10
5

10
20

| 5 | |m m
K

K
K

Payload h h
é ùé ùê úê úë ûê úë û

Node 5

DstID 3 20
mh Filler

(2B)
16

1
5

5
10

20

((|)))(m

K
K

K

R R PayloadR h +
é ùé ùê úé ùê úë ûê úë ûë û

[] 5 10
5

10
20

| 5 | |m m
K

K
K

Payload h h
é ùé ùê úê úë ûê úë û

Figure 2.8: Packet Progression

information as depicted in Figure 2.5. Starting with the input given by the source OPH,

the base station performs the rehashing process using the rehashing nodes hash functions as

shown in Figure 2.9. The base station compares the final result with the obfuscating partial

hash value received in the packet. If the two are equal, a valid packet is received.

If an invalid packet is received, the base station queries the intermediate rehashing nodes

for the copy of the packet stored with them, given that the SrcID hash and the rehash seed

are not modified. In single path routing, the intermediate node transmits the packet to a

26

 Hash result =
5

10
20

1
5((|)))(

K
K

K

mR R PayloadR h +
é ù

é ùê úé ùê úë ûê úë ûê úë û

Figure 2.9: Hash Verification

different neighbor to forward the packet to the base station or can use a selective flooding

scheme. Before transmitting the packet, the node modifies the packet to identify itself as

the source, but includes the original SrcID hash for the base station to identify the actual

source information. This is further elaborated in Section 2.3.

2.3 SPENA Protocol

In this section, the nuances of a working protocol is detailed and consider two routing

schemes. The first scheme uses single path routing to forward packets from source to the

base station. The other routing method considered is flooding, which happens to be the

foundation for many routing protocols since it is easily manageable in sensor networks.

Even the single path routing scheme uses flooding principles to respond to a verification

query packet as discussed further.

The protocol requires three packet types, and the functionality of these packet types

is the same for both ‘single path routing’ as well as ‘flooding’. The difference is in the

implementation of these packets and the header structure.

1. Event data packet (EDP): An event data packet is generated by a sensor node in

response to an event detection.

2. Verification query packet (VQP): A verification query packet is generated by the base

station to query the intermediate rehashing nodes on receipt of a corrupt packet.

27

3. Verification response packet (VRP): A verification response packet is generated by a

rehashing intermediate node in response to a verification query packet sent by the base

station.

2.3.1 Single Path Routing

The EDP structure for single path routing (SPR) is different from the packet structure de-

scribed in Section 2.2. In single path routing, the packets from a source node follow the

same route to reach the base station. Hence, it is safe to assume that the base station is

aware of the path followed by the packets. This makes it seem that the requirement of in-

termediate rehashing nodes encoding their SrcID hash information as unnecessary. But, one

of the characteristics of SPENA is transformation of the packet en route to the base station

requiring SrcID hash encoding. The packet structures for the SPR scheme are depicted in

Figure 2.10.

DstID SrcID Hash Payload
Obfuscating

Partial Hash

Rehash

Seed

Payload

Length
Filler

(a) Event Data packet

DstID SrcID TypeSrcID Hash

(b) Verification Query Packet

DstID TypeQNID Hash SrcID Hash
Obfuscating

Partial Hash

Rehash

Seed
Payload

Rehash

Node ID

(c) Verification Response Packet

Figure 2.10: SPENA Protocol Packet Structure

In VQP and VRP, the source-id from the original packet (SrcID Hash) is used as a packet-

id. The SrcID field in VQP is the base station. Type is a packet type identifier. In response

28

to the VQP, the VRP is broadcast (selective flooding) back to the base station. A flooding

based scheme is used for VRP to overcome the problem of the presence of compromised

nodes on the single path routing route. If the VRP packet is transmitted back over the same

single path routing route, there is a high probability that it could be corrupted by the same

compromised node responsible for corrupting EDP.

The base station queries the intermediate rehashing node using the VQP. The DstID

(destination id) is the id of the queried sensor node. The SrcID Hash is the source-id hash

of the packet for which this query is run. Type identifies the packet to be of type VQP. In

response to VQP, the node will respond with VRP. It creates a VRP packet with DstID as

the base station and broadcasts it using selective flooding. The same process as applied to

EDP is applied to VRP, but the rehashing nodes will include their hashed id in the packet

similar to EDP packets in case of flooding. The ‘QNID Hash’ is the hash identifying the

queried node at the base station. The ‘obfuscating partial hash’ is generated by the queried

node and it has the same usage as the OPH in EDP. The structure of VQP and VRP is the

same in both single path routing and flooding.

2.3.2 Flooding

Flooding is a technique in which a node broadcasts a packet and the neighboring nodes

will repeat this process until the packet reaches the base station. The difference from single

path routing is the lack of path knowledge at the base station when using flooding. To

overcome this, the intermediate rehashing nodes on the packet path are required to encode

their address into the packet header. It is shown in the next section that the overhead to

achieve the same is minimal. In this scheme, the base station can recover by backtracking

the packet information to the last non-malicious node provided the packet is not completely

29

corrupted. Under such a case, the base station can decide to query the neighborhood nodes

for overheard packet transmission using the VQP. Even if the base station does not decide to

recover the packet using VQP, it still knows the region of the presence of an adversary and

can instruct the nodes to bypass the area while forwarding packets to it. Additionally, if it

is a regional node compromise, in a flooding based approach the packet could have reached

the base station using another path.

2.4 Analysis and Evaluation

The analysis for SPENA in terms of its robustness and evaluation of the protocol overhead

while comparing it with other existing methods is presented.

2.4.1 Security Analysis

To check SPENA’s ability to withstand different attacks, the adversary is provided with

varying capabilities and we measure the effectiveness of SPENA against each form of the

adversary. For this, we consider the adversary to be in super-local eavesdropper mode and

then give it additional capabilities of node compromise in super-local eavesdropper stealth

mode. The notations used are listed in Table 2.1.

Table 2.1: SPENA Table of Notations

Symbol Definition
n Number of nodes
d Delay introduced by rehashing node
l Average path length
e Number of rehash nodes on path
c Total compromised nodes
p Packet generation rate
ρ Rehash probability
v Rehashing node address size

30

2.4.1.1 Super-local Eavesdropper

A super-local eavesdropping adversary can overhear packet communication over a large part

of the network. The adversary can compare two packets as string length of bits, but it

cannot decrypt the contents of the packet. Also, the adversary can compare packets (same

packet over different hops) and identify if the packets are the same. When packet traversal

occurs from source to the destination, the adversary can overhear the packet transmission

and verify if the packet transmitted over different hops are the same. For example, in Figure

2.6, the adversary can overhear packet transmissions from node 10 to node 17, and from

node 17 to node 1, and verify if it is the same packet.

In SPENA, a rehash node selection method dynamically selects the rehashing nodes on

the packet path, and the number of selected nodes is determined by the rehash probability

parameter (ρ). These selected nodes modify the packet structure by reconstructing the

SrcID hash, OPH, payload, filler, and payload length fields while maintaining the same

packet length. This results in the packet received and the packet forwarded by the node

seem different to the eavesdropper. Hence, while tracing back, the adversary cannot follow

the packet path without considering all the packets generated. It should be noted that in

addition to the event packets, there will be other communication among the nodes resulting

in generation of a large number of packets, which makes it costly for the adversary to perform

detailed analyses on each hop. The rehash algorithm uses the rehash probability parameter

ρ (defined by the rehash function and the rehash seed) and this determines the number of

nodes selected for rehashing. Consider a network of size n with an average path length of l

hops. Given the rehash probability parameter ρ, the number of intermediate nodes selected

for rehashing is l · ρ. The packet generation rate is p packets per node per unit time, giving

31

the total number of packets generated in the network in a unit time as p · n. The number of

packets generated over the period of time over l hops with each hop utilizing one unit time

is p · n · l. For the duration of l hops, the number of packets generated, considering each

rehashed packet as a different packet is (n · p · l)(1 +
ρ(l+1)

2).

In the case without the usage of our scheme, the overheard packet transmissions across

the nodes can be correlated by the adversary using simple bit comparison, since the packet

is retransmitted without any alterations. Using this correlation, the packet can be traced

back to the source and the identity of the source revealed. Also, this is independent of the

number of packets generated. In SPENA, the packet gets altered en route to the base station,

hence the adversary cannot apply a simple bit comparison to setup a correlation. Under the

circumstances of doing an in depth packet analysis, the adversary will have to compare the

packet with (n ·p · l)(1+
ρ(l+1)

2) packets considering no additional delay is introduced by the

rehashing nodes. For a network of 500 nodes, the number of packet comparisons required

for varying path lengths and different rehash probability is presented in Figure 2.11. The

packet generation rate is 0.1, and the rehash probability is 0.1.

If d is the random delay introduced, the average number of packets forwarded by each

node is d · p · l. The adversary will now need to consider each of the source of d · p · l packets

as a potential sender of the packet. If it randomly selects a neighbor to be the sender, the

probability of selecting the valid sender is 1
q , where q is the number of neighbors forwarding

packets. On selecting the valid neighbor, it needs to consider all the packets that were

transmitted from the neighbor to the node in the last d time units i.e. d · p · l. This gives

an overall probability of tracing the packet back as (1
d·p·l·q)

ρ·l. The higher the delay, the

larger is the set of packets required to be analyzed, but the drawback being the increased

cumulative delay introduced in packet delivery at the base station.

32

0 10 20 30 40 50
0

5000

10000

15000

20000

25000

30000

35000

Path Length

N
u

m
b

e
r

o
f

P
a

c
k
e

t
C

o
m

p
a

ri
s
o

n

Rehash Prob = 0.1

Rehash Prob = 0.2

Rehash Prob = 0.3

Rehash Prob = 0.4

Rehash Prob = 0.5

Figure 2.11: Packet Comparison

A network with a long path l or a big neighborhood is beneficial to our scheme. Hence,

either a network with a long path length l or a dense network with a big neighborhood,

which are both characteristics of a sensor network bodes well to our scheme. Also, high

packet generation rate reduces the probability of a successful trace-back. In a random sensor

network deployment, the factor under the control of the base station is the rehash probability,

which can be increased to reduce the probability of a successful trace-back. It should be noted

that the base station is significantly more powerful than a sensor node and with advent of

technology, it can handle a very high packet rate even in a large network.

2.4.1.1.1 Impact of Rehash Probability Parameter (ρ) The higher value of ρ re-

sults in increased processing by the intermediate nodes. This can add to energy consumption.

Additionally, it will have an impact on the length of address addition to the packet as each

rehashing node encodes the SrcID hash from the packet received. However, the higher ρ

33

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

Path Length

M
in

 R
e

h
a

s
h

 P
ro

b
a

b
ili

ty

Figure 2.12: Minimum Rehash Probability

value leads to increased selection of intermediate rehashing nodes, thereby obfuscating the

packet further. At least one node is required to be selected as a rehashing node, hence based

on the value of l, there is a minimum requirement for ρ. Taking into consideration an error

of 10%, the minimum ρ value for different path lengths is depicted in Figure 2.12. It should

be noted that the probability of successful communication is not dependent on ρ, but on

channel charateristics and is the same as in communication without rehashing.

2.4.1.2 Stealth Mode

In the stealth mode, the adversary is a powerful entity that can compromise a set of sensor

nodes. We analyze if the access to cryptographic information due to node compromise allows

an adversary to identify the original source of the packet when using SPENA. The adversary

has access to all the functions and the keys at the node. On receipt of the packet at the

compromised node, it can read the entire packet and scrutinize each component of the packet.

34

Hence, access to each component in the packet is first analyzed.

1. DstID: Readable and is available in plain text.

2. SrcID hash: This is a hash value generated by a one-way hash function, and unless the

source itself, or the base station is compromised, this information is secure. Addition-

ally, this field changes when it is updated to the SrcID hash of the selected rehashing

node.

3. Obfuscating partial hash: This is again a hash value generated by the one-way hash

function, which may have been rehashed en route to the compromised node. Access to

this hash value in its true form (as encoded by the source) or the rehashed form does

not leak any information about the source.

4. Rehash Seed: The seed value can be used by the adversary to identify if it needs to

rehash the packet and has no correlation to the source generating the packet.

5. Payload Length: It identifies the length of the payload and does not leak any other

information.

6. Payload: It is an encrypted field and without access to decryption keys does not disclose

any information.

7. Filler: The filler is garbage data which is changed at each rehashing node.

A compromised node can belong to one of the three types, an intermediate node, an

intermediate rehashing node, or a source node. The function of an intermediate node is to

forward the packet as it is. An intermediate node compromise does not yield any additional

information when compared to the information already gained by eavesdropping. When the

35

intermediate node is a rehashing node, the adversary gains the knowledge of the incoming

packet and its transformed next hop. By itself, this does not provide any advantage, but

when used with eavesdropping this becomes useful to the adversary. A compromise of all

rehash nodes on the packet path will allow the adversary to trace-back the packet while

performing eavesdropping. Access to the key and the functions at the compromised node

will not allow the adversary to decode the passing packet since the payload is encrypted

using the symmetric key of the source node and the source-id is hidden in the form of a hash

value and can be mapped to the source node only by the base station. The last case, i.e.,

compromise of the source node will reveal the source information. It can be seen that, just

compromising the nodes does not give the adversary much advantage unless the source node

is compromised, but when done in addition to eavesdropping, it becomes a useful tool. So,

further analysis of stealth mode is done in addition to the adversary having eavesdropping

capability.

2.4.1.3 Super-local Eavesdropping and Stealth Mode

This is the most advanced form of attack in which the adversary eavesdrops over a large

portion of the network with ability to compromise nodes and access the cryptographic in-

formation.

The method of selecting the compromised nodes is categorized into three types. In the

first method, the compromised nodes are randomly selected by the adversary and they can

be dispersed anywhere in the whole network. In the second case, the compromised nodes

are bound to a geographical area and the nodes are assumed to be interconnected. This

can occur if the adversary plans on compromising nodes by picking a neighboring node of

the last compromised node. The second method can be assumed to be a special case of the

36

first method wherein all the randomly compromised node happen to be together. Third,

the adversary can compromise all available sensor nodes within a given radius. This is the

easiest scenario, but is less plausible, since the adversary may not apply its resources to

perform such an attack unless it is absolutely certain of the origination of the packet in the

geographical area.

2.4.1.3.1 Random Node Compromise In random node compromise, the adversary

selects r% of nodes to be randomly compromised. Random node compromise is employed

by the adversary when it lacks the ability to intelligently select nodes to compromise. Given

the network of size n, the number of compromised nodes on a given packet route is c·l
n ,

where c is the total number of compromised nodes given by r·n
100 . This gives us the number

of compromised nodes on a path as r·l
100 . Let’s analyze the worst case scenario when all

the rehash nodes on a packet path are compromised, because, the only possibility for an

adversary to do a successful trace-back is when all the rehash nodes are compromised. If

the number of rehash nodes on the packet path is e, the probability of selecting all e rehash

nodes is
(c
e

)

/
(n
e

)

. An example is depicted in Figure 2.13, which shows the probability of an

adversary compromising all the rehash nodes under different network sizes given the number

of compromised nodes is 25.

It is noted that as the number of nodes grows larger than a few hundred, the probability

of all rehash nodes being compromised decreases significantly. For example, the probability

of 3 rehash nodes compromised in a 400 node network when 25 randomly selected nodes

are compromised is 0.00021. Also, with the increase in the number of rehash nodes, this

probability value decreases further.

37

100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

7

of Nodes

P
ro

b
a

b
ili

ty
 (

in
 %

)

Rehash nodes = 2

Rehash nodes = 3

Rehash nodes = 4

Rehash nodes = 5

Figure 2.13: Probability of Compromising all Rehash Nodes

2.4.1.3.2 Compromise Neighboring Nodes The r% of nodes compromised belong to

a neighborhood. By neighborhood, we imply that the nodes can all reach each other, albeit

over multiple hops. When considering a path of length l, the worst case scenario occurs if

all the c compromised nodes belong to the same path. We are interested in the cases where

c < l, because if c ≥ l, then the source itself is compromised and it is not possible to protect

its privacy. With ρ as the rehash probability, the trace-back will be unsuccessful as long as

c < l − 2 · 1ρ . Figure 2.14 depicts the minimum number of consecutive nodes on a route

that needs to be compromised for different path lengths with varying rehash probabilities.

A neighboring node compromise scenario is used by the adversary with the hope that

sufficient consecutive nodes on a given path are compromised to reveal the source informa-

tion. Another case in point is to compromise nodes surrounding an area so as to either

track packets originating from the area (source tracking) or track packets to a particular

destination.

38

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Path Length

C
o

n
s
e

c
u

ti
v
e

 R
o

u
te

 N
o

d
e

s
 C

o
m

p
ro

m
is

e
d

Rehash Prob = 0.2

Rehash Prob = 0.3

Rehash Prob = 0.4

Rehash Prob = 0.5

Figure 2.14: Consecutive Route Nodes Compromised

2.4.1.3.3 Compromised Nodes in a Geographical Area Compromising nodes in a

geographical area is employed when the adversary estimates the presence of the source node

in the area. To ease the analysis we assume the geographical area to be circular with an

attack radius equal to transmission range t. The number of compromised nodes will vary

with the attack radius. Let us consider a sensing range of 25m. To have a unit coverage

over 1000x1000 area, 509 nodes are needed. Simulation results of the average compromised

nodes and maximum compromised nodes are presented in Table 2.2.

Table 2.2: Attack Distribution

Attack radius Avg Compromised Node Max Compromised Node
13 1.17 5
25 1.6 8
50 4.19 13

From Table 2.2, a very uneven distribution with the node compromise area being densely

populated is required for such a scenario. If all the rehashing nodes on the packet path are

39

compromised, and if the adversary overhears over the whole network path, it will be able to

trace the packet back to the source. Hence, there needs to be at least one rehashing node

that is not compromised. The distance between the first and the last rehashing node on the

path is l − 2 · 1ρ . In the worst case scenario where all the compromised neighbor nodes are

on the path, if (l − 2 · 1ρ) > a (where a is the longest path possible within the compromised

geographical area), then the source information is secure, since at least one of the rehashing

nodes is still un-compromised.

2.4.2 Overhead Analysis

It is accepted that any inclusion of security principles will incur additional overhead. It

needs to be seen if the overhead incurred is within reasonable limits and whether the trade

off against increased energy consumption and delay is justified. This analysis is performed

only for the event data packets and not for the verification query packet and the verification

response packets, since the verification packets are additional features used to recover a

corrupted packet and not to provide source privacy.

The packet is assumed to be the standard 36 byte packet. Instead of the source-id, a

hash generated by a one-way hash function with the SrcID hash equal to 4 bytes instead

of the regular 2 bytes is used. The obfuscating partial hash can be either 1 or 2 bytes as

dictated by the base station. This obfuscating partial hash can be any pre-decided part of

the 4 byte hash generated by the one-way hash function. The rehash seed and the payload

length together are 1 byte long. Hence, in SPENA, an event packet uses 4 additional bytes

in a regular sensor packet of size 36 bytes.

40

2.4.2.1 Smaller Hash Usage and Collision

The size of SrcID hash is recommended to be 4 bytes long while the OPH can be smaller at 2

bytes long. The reason OPH can be short is because it is used in addition to the SrcID hash

for packet validation purposes and doubles as a message authentication code. If a system

requires to save on overhead and further reduce the SrcID hash, it can do so provided it

satisfies the following condition. The base station is aware of the topology of the network to

deduce collisions to identify the actual source. In SPENA, the rehashing node needs to be

one of the nodes within the downstream (nodes which forward packet to the current node

in order to be forwarded to the base station) neighborhood. So the first step for the base

station is to discard any node which does not satisfy this condition. If the two colliding

nodes satisfy the condition, the base station can decode the packet considering both sources

and if it reaches a termination as presented in Figure 2.5 and also satisfies the condition of

verification using the OPH, that source is accepted as the correct source.

SPENA also uses additional space for the intermediate nodes to program the SrcID hash

information into the payload. For this purpose, a partial SrcID hash is used and not the full 4

bytes to conserve overhead and trade off a small percentage of accuracy, in the case where the

partial hash can belong to more than one node. Under these circumstances, the base station

makes an estimate of the rehashing node based on the geographical location. The space

reserved for the address will depend on the number of rehashing intermediate nodes selected.

Also, it should be noted that the payload in an event packet for an application like tracking

for endangered birds is small, hence allowing the rest of the packet to be used for header. So,

to improve the accuracy, the base station can decide on allowing the intermediate rehashing

nodes to include a larger partial address hash. For applications requiring larger payload, the

41

data can be split and transmitted in multiple packets, thus preserving the accuracy (with

larger hash sizes) but increasing the overhead. If v is the size of the intermediate rehashing

node address size, the overhead is calculated as 4+v·l·ρ
36 .

The rehashing nodes introduce a random delay of d units. The intermediate node checking

for rehash variability takes minuscule amount of time compared to the delay introduced. On

a l hop path with rehash probability of ρ, the total time taken for the packet to traverse

its path is l(1 + ρ · d). The delay parameter can be set by the base station based on the

applications real-time requirements.

The storage of the hash chain entries in the sensor node consumes memory. For a standard

IRIS mote with 128KB program flash memory (512KB measurement flash memory), to store

128 hash chain entries takes 512B of memory. To store up to 250 hash chain entries, it takes

less than 1% of the program flash memory. Additionally, the number of hash chain entries

to be stored in a node can be decided by the base station. A smaller number of entries will

require the base station resetting the chain more frequently which consumes communication

energy. Hence, based on the application, the base station needs to decide the chain length.

Next, the additional processing occurring at each node is considered. It is noted that

transmitting 1Kb of data over 100m consumes the same amount of energy as executing 3

million instructions on a processor with 100MIPS/W power [3]. Kaps, et al. [4] measured

the energy consumed to encrypt a packet using SHA-1 as 43.32nJ , while the total energy to

transmit a packet at maximum power is 93.3µJ , making transmission costlier by an order

of 3. This makes the intermediate node processing energy consumption insignificant when

compared to the communication cost incurred. Also, only a few nodes are involved in the

packet reconstruction process, while the other nodes only use the rehash seed to check if

they are selected as a rehashing node for this packet.

42

The number of address lookups and packet verification will put an additional load on the

base station. Considering the base station to be running on a standard server configuration,

having a quad-core CPU, with 8GB of RAM, it should be able to administer any amount of

packets generated within practical limits. If the sensor network grows beyond a certain size,

multiple base stations can be used, allowing implicit load balancing while also conserving

the resources of the intermediate sensor nodes (reducing packet propagation overhead).

2.4.3 Comparison

SPENA is compared with destination controlled anonymous routing protocol for sensornets

(DCARPS) [13], random walk [5], and fake event packet generation [6] [8]. DCARPS uses

a label-switching method, while SPENA uses a hash chain and intermediate packet altering

scheme to hide source traversal information. SPENA is lightweight and makes much less

assumptions while considering a strong threat model. DCARPS requires the base station to

have knowledge of the topology of the network, and our solution makes no such assumption.

The base station creates a routing tree and routing paths in DCARPS and is relayed to the

nodes. SPENA has no such requirements and has the advantage of being set to work with

single path routing as well as flooding based protocols. In DCARPS, all the nodes on the

path need to decrypt and re-encrypt the packet with a new label, while in SPENA, only a

fraction of the nodes are required to reconstruct the packet before forwarding. Additionally,

in SPENA, this reconstruction is done such that it allows the base station to validate the

packet, whereas in DCARPS it is only used for routing. Node compromise attacks are not

considered in DCARPS.

Comparing SPENA to technique involving random walk [5]. The length of the random

walk determines the distance from the source to which a local eavesdropper can trace-back.

43

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Path Length

O
v
e

rh
e

a
d

Random Walk Length = 10

Random Walk Length = 15

Random Walk Length = 20

Random Walk Length = 25

SPENA

Figure 2.15: Random Walk Overhead

When you consider an eavesdropping adversary, a random walk scenario fails, since the

eavesdropper can trace-back the packet to the source through the random walk. The overhead

involved in random walk is higher than SPENA and is presented in Figure 2.15. The random

walk length values of 10, 15, 20, and 25 are the number of random hops over which the

packet propagates before moving towards the base station. Rehashing value is set to 0.1 for

SPENA, and the filler is such that it compensates for the largest path size. For analysis,

longest path length of 40 hops is assumed. Thus, the number of rehashing nodes is 4,

requiring a filler of size 8 bytes to maintain a fixed packet size even after transformation.

This gives us an overhead of 0.34, i.e., the total additional overhead required for SrcID hash,

OPH, rehash seed and payload length, rehashing node address (total 12 bytes) over 36 bytes

when the intermediate node incorporates a 2 byte hash address in the payload. We define

privacy in random walk based methods as the length of distance the random walk takes the

source information away from the actual source when compared to the path length. Figure

44

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Path Length

P
ri
v
a

c
y

Random Walk Length = 10

Random Walk Length = 15

Random Walk Length = 20

Random Walk Length = 25

Figure 2.16: Random Walk Privacy

2.16 presents the privacy achieved for the same path lengths and random walk lengths as

presented in Figure 2.15. The overhead is the resources (energy in our case) consumed due

to propagation over the random path before the packet starts its journey towards the base

station. As the overhead is reducing for random walk, the privacy achieved also reduces as

in Figure 2.16 while the overhead of SPENA is constant irrespective of the path lengths.

The other methods using fake packet generation [6] [8] by nodes to emulate a packet

introduce extremely large overhead. This is an obfuscation technique and is only successful

under heavy load of fake packet generation. If one node detects an event and generates the

event reporting packet, there needs to be at least one more source node generating a fake

event reporting packet. Under these circumstances it is seen that, of all the traffic generated,

50% of the traffic corresponds to fake traffic. Furthermore, to increase security will incur

more overhead in the form of fake packets. Hence, the valid functionality of such a system is

dependent on the amount of fake packets generated and the scenario providing very minimal

45

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Source Nodes (%)

O
v
e

rh
e

a
d

Fake Packet Generating Nodes = 20%

Fake Packet Generating Nodes = 30%

Fake Packet Generating Nodes = 40%

Fake Packet Generating Nodes = 50%

SPENA

Figure 2.17: Fake Packet Generation Overhead

source privacy still has more overhead than SPENA. Additionally, the fake packet generation

scheme does not consider node compromises.

Figure 2.17 presents the overhead incurred in fake packet generation compared to SPENA.

Different numbers of fake packet generating nodes are considered, with the number ranging

from 20% to 50% of all nodes. The ‘source node (%)’ on x-axis corresponds to the number

of actual source nodes in the network as a percentage of all nodes. It is seen that any

form of fake packet generation technique will have significantly higher overhead compared

to SPENA. Even the conservative case of having just 20% of sensor nodes generating fake

packets results in higher overhead compared to SPENA.

46

2.5 Related Work

There has been a lot of research to incorporate the security principles in sensor network.

Protocols like TinySec [14], TinyPK [15], SERP [16] have been developed to provide security

and to maintain integrity of data. In [17], Roosta, et al. presented a taxonomy of attacks

on sensor networks and emphasized how traffic analysis attack can leak source information.

Privacy in sensor networks has been studied in detail with some researchers giving sig-

nificance to hiding the base station while others providing source privacy. Kamat, et al.

developed a phantom routing technique for flooding as well as single-path routing [5]. They

were among the earlier groups to research source privacy and present multiple techniques to

guarantee the same. First technique uses fake sources, with nodes sending fake event packets

to confuse the adversary. The second technique called phantom routing, involves taking a

random walk before forwarding the packet towards the base station in an attempt to increase

the complexity of the adversary to backtrack to the source. Although the schemes are robust,

they have a large overhead involved and may not withstand attacks under a collaborative

adversary model.

In [6], Mehta, et al. similarly present two techniques; namely periodic collection and

source simulation to wade off global eavesdropping attack. The source simulation technique

is similar to the fake sources technique presented in [5]. In periodic collection, each node

reports back to the base station periodically, irrespective of whether it detects an event or

not. The weakness in case of periodic collection type technique is the latency incurred as

well as overhead, while in source simulation, it is the overhead involved.

Wang et al. [10] present a privacy-aware parallel routing scheme to maximize the source

trace-back time for adversary. The event packets from the same source are routed over

47

different paths to the base station. Additionally, a weighted random stride routing is pro-

posed that breaks the entire routing into strides. Although it is a nice scheme, one of the

restrictions is the requirement of knowledge of sensor locations to know the forwarding an-

gle. Unless a method to deduce the angle is provided, it becomes a special case of random

walk technique discussed by Kamat et al. [5]. Also, the parallel routing scheme will not be

effective in protecting source privacy in case of a global eavesdropping adversary.

In [13], Nezhad, et al. present an exhaustive label switching based protocol to provide

source and base station anonymity. One of the drawbacks is the requirement of the availabil-

ity of global network information to the base station. With the knowledge of the topology

of the network, the sink constructs a routing tree (sink as the root) with each link having

a separate label. When a node receives a packet, it switches the label of the packet to the

upstream link and the packet gets propagated. Other than the base station requiring global

knowledge of the network, each node needs to perform detailed processing and reconstruction

of the packets passing through them.

Shao, et al. present a statistically strong source anonymity scheme for sensor networks

[8]. The authors use a exponentially distributed dummy traffic generation scheme called

FitProbRate. The scheme differs from other similar studies such that the dummy traffic is

not generated at a constant rate but at a dynamic rate decided by the Fitprob parameter.

This scheme is a vast improvement over source simulation and fake sources, but again has

the drawback of having overhead due to dummy packet generation even though it will not

be as much as source simulation presented in [6].

All the studies discussed so far only consider a passive adversary. Most consider a lo-

cal eavesdropping adversary while some provide solution to a global eavesdropping adver-

sary. SPENA considers an eavesdropping adversary having node compromise capabilities.

48

A packet altering scheme is presented, which has lesser overhead compared to a source sim-

ulation or random walk scheme. Also, when compared to a label switching scheme like [13],

SPENA does not need every node on the path to perform packet transformation and does

not need the base station to be aware of the network topology.

2.6 Summary

Source privacy of sensor node generating an event packet is important as it can give away

the event occurrence location. Existing techniques consider an eavesdropping adversary and

refrain from providing source privacy solutions to an intrusive node compromise attack with

eavesdropping. In this chapter, a hash-chain based source information hiding scheme is pre-

sented first. Second, a packet reconstruction strategy by dynamically selected intermediate

nodes on the packet path that can protect source privacy under eavesdropping attacks while

also tolerating node compromise attacks, is presented. Third, using the same one-way hash

chain function, a packet verification method for the base station to validate a received packet

is provided. Fourth, a packet recovery and node compromise area identification method is

discussed in the form of SPENA protocol. Finally, the protocol is analyzed under different

attack scenarios, and evaluated with regards to its efficiency in terms of overhead.

SPENA is compared to random walk based schemes, fake packet generation methods, and

DCARPS which uses a label switching method. Random walk and fake packet generation

methods have increasingly high overhead as the path length increases, whereas SPENA has

a constant communication overhead irrespective of path length. This is because privacy in

random walk based methods is dependent on the distance of the random walk. Fake packet

generation schemes are obfuscation techniques which will be successful only under heavy

49

load of fake packets. Hence, SPENA is able to provide better source privacy than either of

the two methods incurring a much lesser overhead.

When compared to DCARPS, SPENA does not require the base station to know the

topology and only dynamically selected nodes reconstruct the packet in SPENA which re-

duces the computation overhead. In SPENA, the reconstruction of the packet has a second

benefit as it is performed such that the base station can validate the packet, whereas in

DCARPS it is only used for routing. The evaluation results exhibit the superior ability of

SPENA to withstand the different attacks such as eavesdropping and node compromise while

preserve source privacy with a modest overhead.

50

Chapter 3

Side Channel Attacks

Wireless sensor networks (WSN) are a special class of networks which primarily consist

of a number of autonomous sensors to collaboratively monitor physical and environmental

conditions. In Chapter 2 we saw why protecting the source privacy of nodes in a sensor

network is important. The eavesdropping attack on source privacy was introduced which is

also classified under side channel attacks.

The sensors, due to their small form-factor and limited physical shielding are vulnerable

to attacks, in particular non-invasive attacks. Although it is possible for adversaries to

launch invasive attacks once they obtain access to the sensor node, there are many reasons

due to which the adversaries prefer non-invasive attacks. Some of these are listed below:

1. The adversary may not have direct physical access to the node, for example, the node

is embedded within a concrete wall or beneath a road surface.

2. The node is built with tamper resistant material.

3. The adversary does not want his attack to be discovered, especially when sensor nodes

are used in critical (such as military) applications.

4. The adversary may have access to only one node and would not want to damage it

using invasive attacks.

This chapter considers side channel attacks, in which an adversary accesses a sensor

51

node in a non-invasive (i.e., non-tampering) manner and gains confidential information by

observing the node under normal operation. In such attacks, the goal of the adversary is to

deduce the inner workings of the hardware or the software. The adversary may use a variety

of techniques such as power analysis (simple power analysis and differential power analysis),

execution cycle frequency analysis, timing information (on data movement into and out of

the CPU) analysis, electromagnetic leakage analysis, acoustic emission analysis, etc.

Previous research on side channel attacks has studied information leakage from monitors

[18], keyboards [19–21], consumer mobile devices (such as PDAs, pagers) [22], IC chips

[23], smart cards [24], etc. However, no previous study has focused on preventing side

channel attacks on sensor nodes. Compared to other computing devices, sensor nodes are

particularly vulnerable to side channel attacks due to two major reasons. First, sensor nodes

are typically deployed in unsafe and unsupervised environments and could be easily accessible

to adversaries. Second, sensor nodes are typically not encapsulated in tamper-proof bodies

due to the demand on reducing manufacturing costs. Under these circumstances, the attacker

may initiate attack on a part of the node by collecting leaked information that is available

at close proximity. Thus, even a node that is compliant with FCC regulations may still be

leaking sufficient information through its side channels for an adversary to obtain confidential

information. As sensor nodes are increasingly being deployed in safety critical environments

such as battle fields and power grids, preventing side channel attacks is indispensable in

securing sensor networks. Because of the non-invasive nature of side channel attacks, they

are often used together with other kinds of (possibly invasive) attacks.

The unique characteristics of sensor nodes make the prevention of side channel attacks

more challenging. First, sensor nodes have low CPU power. A sensor node typically runs a

4-8MHz micro-controller. Second, sensor nodes have a small amount of memory. A sensor

52

node has RAM and flash memory in the order of few hundred Kilobytes. Third, sensor

nodes have limited battery life. Some sensor nodes are powered by two AA batteries [25],

and some are powered only by type-5 hearing aid batteries [26]. Fourth, sensor nodes have low

bandwidth. They have a restrictive wireless bandwidth of 19.2 Kbps. This low bandwidth

channel becomes even more important because of the hostile environment where the channel

might have lossy characteristics. They generally have an integrated on board antenna with a

transmission range of 100 - 300Ft. Fifth, sensor nodes are often deployed in unguarded and

even hostile environments. Last but not least, most of their physical components are usually

exposed. These physical constraints make previous solutions for preventing side channel

attacks on resource rich devices unsuitable for sensor nodes, since most of the solutions

increase the power consumption.

The chapter presents a comprehensive study of side channel attacks, by presenting an at-

tack model, a proof of concept with experimental results, describe the family of side channel

attacks on sensor devices and providing countermeasures. The rest of this chapter is orga-

nized as follows. The attack model is described in Section 3.1. In Section 3.2, the feasibility

of a side channel attack by taking the electromagnetic attack as a special case is presented.

A family of side channel attacks on sensor nodes is identified and countermeasures for each

attack is presented in Section 3.3. Section 3.4 presents the related work. Finally the chapter

is summarized in Section 3.5.

3.1 The Attack Model

In this attack model, it is assumed that an adversary can get close to a sensor node, but

the physical access of the node is restricted. The adversary is a laptop class attacker. An

53

adversary may use specialized attack strategies for different components of a node. Depend-

ing on the type of node or the functionality of the node, an adversary can adapt its attack

strategies. For example, if an adversary identifies the node as a gatherer of event informa-

tion, which means the node needs to write the information into memory, the adversary may

focus on obtaining information leakage during memory access cycles.

The adversary can use commercially available equipment such as Agilent E7401A EMC

Analyzer, Agilent 11955A biconical antenna, or a log-periodic antenna. The biconical an-

tenna is large in size and can measure up to 300MHz while the log-periodic antenna can

measure up to 2GHz.

Training Phase

Attack Phase Accumulation Phase

In
fo

rm
a

ti
o
n

Data

Laboratory

Field of sensor deployment

Figure 3.1: Attack Model

Our attack model consists of three phases as depicted in Figure 3.1. It follows the

principles of a template attack [27].

54

1. Training Phase: Depending on the functionality of the sensor node from which

the information leakage is studied, adversaries may train themselves by studying the

information leakage from a similar sensor node performing the same functionality.

This training process could iterate multiple times, thereby making it easy to decipher

the information leaked. This phase can be accomplished by the adversary at its own

convenience and does not need the adversary to be in the field of sensor deployment.

2. Accumulation Phase: In this phase, the adversary passively monitors the environ-

ment in which the node is deployed and in the due process gathers the data leaked.

3. Attack Phase: In this phase, the adversary uses the information learned in the train-

ing phase to decipher the valid information from the data gathered in the accumulation

phase. The attack phase can be either integrated with the accumulation phase and

implemented dynamically in the field; or it can be a stand alone phase, implemented

in a static manner after the completion of the accumulation phase possibly in a more

equipped environment.

3.2 Electromagnetic Leakage Attack- A case study

A proof of concept by demonstrating the feasibility of side channel attacks on sensor nodes is

presented. For this purpose, electromagnetic leakage attacks are studied with commercially

available equipment.

55

Distance 0’, 3’, 10’

Anechoic Chamber

Sensor Node

Antenna

Analyzer

Figure 3.2: Experiment Setup

3.2.1 Experimental Setup

The experiments were conducted in a radio frequency anechoic chamber to suppress the

electromagnetic wave analogy of echo’s i.e. reflected electromagnetic waves and also reduce

the interference of electromagnetic radiations from other devices. The setup depicted in

Figure 3.2 is used for our measurements.

1. Tmote-sky sensor node: Program Space 48kB, RAM 10kB, Frequency 2400-2483 MHz.

These types of sensor nodes are popular and commercially available.

2. Log-periodic antenna: It is used to capture electromagnetic emission up to 2GHz

frequency.

3. Agilent E7401A EMC Analyzer: It is used to analyze the electromagnetic radiations

captured by the antenna.

In the experiment there were two varying factors. The data the sensor node transmits

and the distance of the antenna from the transmitting sensor node. The sensor node was

programmed to send consecutive zeros or consecutive ones at different intervals of time. The

56

experiments were conducted by placing the antenna at different distances of 10 feet, 3 feet,

and less than 1 feet (close to 0 feet) from the sensor node. It was decided to send zeros

and ones because we wanted to study the electromagnetic radiation under fundamental

but antipodal data. Different distances of measurement were selected to see if there was

any prominent variance in the electromagnetic radiation strength over distance. This was

important because of the low power attribute of the sensor nodes. Additionally, different

distances helped us gauge if a physically inaccessible sensor node (for example, a node hidden

behind a fence) can still leak information.

3.2.2 Observations

Upon studying, we made two important observations:

1. EM radiation correspond to data: Unique peaks were observed in the frequency read-

ings that correspond to the input. These readings were consistent over multiple runs

emphasizing the correlation between the input and the unique peaks. The bottom

plots within the Figure 3.3 represents the idle state, while the top plot in Figures 3.3a

and 3.3b represents the resultant electromagnetic radiations while transmitting data

packets containing zeros and containing ones when the measurement distance is 0 foot

i.e. the antenna was right next to the transmitting node. Similarly, the top plot in

Figures 3.3c and 3.3d represents the electromagnetic radiation while transmitting data

packets containing zeros and ones when the measurement distance is 10 feet. As de-

picted in the graphs, distinctive peaks are observed at 350MHz and 530MHz (marked

in Figure 3.3b) while transmitting packet containing ones that are absent while trans-

mitting packets containing only zeros. This leads to the conclusion that there exists

57

(a) Transmit 0’s, Distance 0 feet (b) Transmit 1’s, Distance 0 feet

(c) Transmit 0’s, Distance 10 feet (d) Transmit 1’s, Distance 10 feet

Figure 3.3: EM Radiation while Transmitting 0’s and 1’s. ‘For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
dissertation’

a strong correlation between the electromagnetic radiation and the data processed in

the sensor.

2. Non-degradation of signal strength over distance: There was no significant impact of

distance over signal strength. This observation was critical because under certain

circumstances, the adversary may not get to be in close proximity with the sensor

node. Consequently, we only present results from two sets of observations depicted in

58

Figure 3.3. It is noticed the use of an anechoic chamber highly reduced the ambient

noise. An anechoic chamber replicates a rural or forest environment characteristics

wherein there is not much interference from other devices.

3.3 Taxonomy of Attacks and Countermeasures

In this section, the different types of side channel attacks on sensor nodes is described and the

countermeasures for each attack type proposed. The goal of these countermeasures is not to

fully prevent side channel attacks, but to make the attacks practically infeasible. We begin

by providing two general countermeasures which will be applicable to multiple side channel

attacks, and they may be used in conjunction with other attack-specific countermeasures

followed by the taxonomy of attacks and their specific countermeasures.

3.3.1 General Countermeasures

The two general countermeasures are obfuscation (code obfuscation, process obfuscation)

and tamper-proofing.

3.3.1.1 Obfuscation

Obfuscation techniques are used to conceal the meaning of a certain computation by making

it obscure and harder to understand. Code obfuscation [28] has been proposed previously

as a technique to limit side channel information leakage. In this chapter, a new obfuscation

technique, called process obfuscation, to circumvent side channel attacks is proposed.

3.3.1.1.1 Code Obfuscation Code obfuscation is a process that has been studied well

previously [28] and it can be described as follows. Suppose that (part of) an algorithm

59

consists of a loop where the execution of a given set of instructions depends on certain input

values. If, from some side channel information (e.g., timing, power consumption etc.), one

can distinguish which set of instructions is processed and retrieve some secret data (if any)

involved during the course of the algorithm. To prevent this from happening, the code can

be created such that the different paths of the execution cycle take the same amount of time

or the same execution path over different execution cycles takes different amount of times.

This can be achieved by using fake instructions in the code so as to either maintain the

execution time over different paths or to randomly differ the execution time over the same

path. Code obfuscation techniques for prevention of side channel attacks has been classified

as follows:

1. Data Independent Calculations: The basic idea behind this technique is to make the

amount of time for performing operations independent of the data being processed.

2. Blinding: Blinding is a technique in which the content of the message is disguised

before it is signed. This technique is inspired from blinding signatures [29], which was

further elaborated by Kocher [30]. It is especially useful for preventing electromagnetic

side channel attacks.

3. Avoid conditional branching: This technique avoids conditional branching wherever

possible. In the case where a conditional branch is required, take precautions to enforce

the same execution time in each branch. This is further elaborated under timing attacks

in Section 3.3.2.5.

If the sensor node is capable of simultaneously possessing multiple encryption algorithms

(depending on memory/space availability), it can randomly select the encryption algorithm

60

it uses. In doing so, it will be required to make the side channel characteristics like power

consumption, timing etc. of the same order. Otherwise, it may defeat the purpose of having

such an implementation.

3.3.1.1.2 Process Obfuscation Process obfuscation is a technique in which reactive

decisions are taken during runtime to mask the process being executed. For an example as

shown in Figure 3.4a, process obfuscation can be attained by executing process0 followed

by a fake execution of process1 when process0 must be executed, and by executing a fake

execution of process0 followed by process1 when process1 must be executed. Obfuscating

a process can be achieved in two ways, namely a proactive methodology which involves

obfuscation of each and every process and a reactive methodology which obfuscates only those

processes that can end up leaking information through the side channel. Given the resource

constraints of a sensor node, the proactive approach is not suitable and its recommended to

use the reactive approach.

process0

process1

process0

process1

=

Fake Process

(a) Process Obfuscation

Process

Library

If n/p > λ
Select m

processes

Execute

Processes

Cryptographic module

Yes

No

(b) Process Obfuscation Example

Figure 3.4: Obfuscation

61

Next, a simple methodology is discussed which can attain process obfuscation while con-

suming just the minimum resources. The reactive method will base on the past transmissions

or computations. If the past n computations had a recurring pattern p and the frequency

of recurrence of the pattern p in n is greater than the leakage threshold λ, it will need to

take a deviation from the actual processing and perform obfuscation. Unless some counter-

measure is taken, the recurring pattern will leak information. The value of λ can be varied

and will be based on the sensitivity of data under consideration. The pattern can be simple

computations such as consecutive bit shift operations.

A library of simple generic processes is maintained which can be summoned by the

processor. This set of processes will be of different complexity in terms of execution time,

computation power, memory accesses required. It should be noted that the larger and more

varied the library the better the obfuscation. Figure 3.4b represents a simple flow of process

obfuscation. The process obfuscation happens in three steps. First, the condition of recurring

pattern is checked to see if its required to add obfuscation. This is done by the obfuscater

module. In the second step a set of m processes are randomly selected from the process

library. The value of m can range from 1 to infinity. In the third step, the m processes

selected are executed and the control returns back. Process obfuscation is done only in the

cryptographic module to limit cost. When the control shifts to process execution in step

3, there should not be noticeable delay. For this purpose the processes are located in fast

access memory to minimize load times.

3.3.1.2 Tamper-proofing

A sensor node in a tamper-proof body ensures that any attempt to break the body results

in all confidential information in the node being destroyed. The main hindering factor of

62

building sensor nodes in tamper-proof bodies is cost. Indeed, there are many advantages

of tamper-proofing other than obstructing side channel attacks. For example, a tamper-

proof body could prevent wear and tear due to environmental factors, thereby increasing

the overall life of the node assuming the availability of sufficient power. In practice, the

encapsulating body of a sensor node may not need to be tamper resistant for preventing side

channel attacks. A simple cover over the sensor node sometimes suffices and reduces the

strength of certain side channel leakages, while restricting access to internal components.

3.3.2 Taxonomy of Attacks

Side channel attacks on sensor nodes are classified into eight categories, namely power anal-

ysis attacks, electromagnetic leakage attacks, optical side channel attacks, traffic analysis

attacks, timing attacks, fault analysis attacks, acoustic attacks, and thermal imaging at-

tacks. For each type of attack, the corresponding countermeasures are presented.

3.3.2.1 Power Analysis Attacks

In power analysis attacks, an adversary studies the power consumption of devices, especially

the cryptographic modules. Power analysis attacks require close proximity to a sensor node,

so that an adversary can measure the power consumption of the sensor node. Since it requires

very close proximity to the sensor node, it can also be classified in the semi-invasive class of

side channel attacks. Power analysis attacks were first studied by Kocher et al. [31]. There

are two types of power analysis, namely simple power analysis (SPA) and differential power

analysis (DPA). In simple power analysis, the adversary studies the power traces visually

to interpret type of activity. For example, SPA can distinguish power consumption across

conditional branches where the difference is significant. If the difference is insignificant,

63

simple power analysis attack will be unsuccessful. In differential power analysis, the adver-

sary studies the power traces and is able to apply mathematical and statistical principles to

determine the intermediate values.

3.3.2.1.1 Countermeasures The countermeasures are implemented by either prevent-

ing or complicating power analysis attacks. Prevention of power analysis attack can be easily

achieved by introducing a tamper resistant body. This increases the one time cost of the

sensor node, but will allow the node to conserve the power usage when compared with other

countermeasures. Replacing the power source when the battery runs out will be an inherent

issue with having a tamper resistant body. Complicating the power analysis attacks can be

achieved by several strategies, which are as follows:

1. Power randomization: Power randomization is a technique in which a hardware module

is built into the chip that adds noise to the power consumption [32]. This countermea-

sure is simple and easy to implement, but is not energy efficient. Also, it adds to the

fabrication cost of the device.

2. Novel Circuit designs: In [33], Wagner et al. gave solutions to design hardware circuits

that mask the changes in power consumption so as to increase the cost of a power

analysis attack.

3. Obfuscation: Obfuscation is a good solution to prevent SPA, but is susceptible to

DPA [31].

3.3.2.2 Electromagnetic Leakage Attacks

Electromagnetic radiations are emitted and propagate following Maxwell’s equations.

64

∇ ·D = ℓf

∇ · B = 0

∇× E = −
∂B

∂t

∇×H = Jf +
∂B

∂t

(3.1)

The electromagnetic (EM) radiations attain importance when they are hardware gener-

ated emissions, especially emissions from the cryptographic module. Electromagnetic leakage

attacks have been shown to be more successful than power analysis attacks on chip-cards [34].

In the case of sensor nodes, the circuitry is exposed and hence leads to stronger emanations

of EM radiations.

Similar to power analysis, electromagnetic analysis can be performed at two levels of

sophistication, namely a simple analysis called simple electromagnetic analysis (SEMA) and

a differential analysis called DEMA. Furthermore, the emanations can be either direct ema-

nations from a component or a mixture of emanations from a group of components. There

has been studies considering both circumstances and contrary to the thought, the multiplic-

ity of signals has been found to be useful [34]. Experiments were performed to study EM

emanations from sensor nodes, which was discussed in Section 3.2.

3.3.2.2.1 Countermeasures Unlike power analysis attacks, electromagnetic leakage at-

tacks can be completely non-invasive while being equally effective. The basic countermeasure

to prevent electromagnetic information leakage is to encompass the node with a casing so

as to prevent access to individual components in a sensor node. The countermeasures as

follows:

1. Secret Shares: Secret shares is a technique in which the original computation is divided

65

probabilistically such that the power subset of shares is statistically independent. The

use of secret shares was proposed by Goubin et al. [35]. One drawback is increased

power consumption.

2. Masking: The next countermeasure is to use masking methods. Masking is a scheme

in which the intermediate variable is not dependent on an easily accessible subset of

secret key [36]. This results in making it impossible to deduce the secret key with

partial information gathered through EM leakage.

3.3.2.3 Optical Side Channel Attacks

The intensity of light emissions from a monitor or liquid crystal display could be used to

study the contents of the last displayed screen. Given the form-factor, optical side channel

attacks on sensor nodes are formulated differently from the attacks on devices that use a

visual display to output information. The sensor nodes have light emitting diodes (LED),

which have two primary purposes. The first purpose is in debugging the application program

while programming the node. The second use of the LED is for the purpose of signaling.

LEDs are externally visible to both a user as well as an adversary, unless the node is used

for an application in which they are not in the line of sight.

There are often multiple sets of LEDs on a sensor node having different functionality.

These LEDs can leak valuable information. For example, the adversary can program his

attacking station to listen to the channel only when there is an optical signal from the

node, thereby conserving a lot of its (adversary’s) battery. Another case is during node re-

programming by the base station. The adversary is alerted about the occurrence of changes

to the node by just observing the optical side channel.

66

3.3.2.3.1 Countermeasures First, its required to prevent LEDs from leaking any con-

fidential information by the way they light up. Any signaling information, which can be used

by legitimate users for their application, can also be used by adversaries with malicious in-

tent. Second, sensor node programmers should remove the debugging information for which

the programmer gets a feedback from the LED, before sending it to production. This is an

important requirement because in the event of a malfunction, the execution of the debug

code may result in information leakage from the optical side channel.

3.3.2.4 Traffic Analysis Attacks

Traffic analysis attacks are attacks that analyze traffic flow to gather topological information.

This traffic flow could divulge information about critical nodes, such as the aggregator node

in a sensor network. Such attacks primarily relate to the intermittent transmissions that are

inherent in sensor networks. Due to the limited energy capacity of nodes and the fact that

the transceiver component of a node consumes the most power, the nodes in a sensor network

limit the use of the transceiver to transmit or receive information either at a regulated time

interval or only when an event has been detected. This generally results in an architecture

comprising some aggregator nodes (also called supersensor or actor) within a sensor network.

Aggregator nodes are the sensor nodes whose primary purpose is to relay transmissions from

nodes to the base station in an efficient manner, instead of monitoring events like a normal

node.

The added functionality of acting as a hub for information gathering and preprocessing

before relaying makes aggregator nodes an attractive target to side channel attacks. If a

node is frequently in active states (instead of idle states), there is high probability that the

node is an aggregator node. Such leakage of information is highly undesirable because the

67

leaked information could be strategically used by adversaries in the accumulation phase of

an attack.

Another emerging security concern with regards to traffic analysis attacks involves around

guarding the source privacy. By performing a traffic analysis, the adversary can identify the

source of event leading to location where the event occurred. This was described in detail in

Chapter 2.

3.3.2.4.1 Countermeasures It is practically inefficient to prevent adversaries from iden-

tifying aggregator nodes because camouflaging traffic in sensor networks is power intensive.

Consequently, the focus is on preventing adversaries from identifying valid aggregation cy-

cles of aggregator nodes. One solution to counter such attacks is to have each aggregator

node execute dummy operations that resemble the average power consumption curve ob-

served during the normal operation of the aggregator node. This additional requirement on

aggregator nodes, despite the fact that it would result in additional power consumption, can

be met, because unlike ordinary nodes in a sensor network, aggregator nodes are typically

equipped with longer battery lives owing to their integral nature and functionality with the

sensor network.

Apart from simulating the power consumption of a genuine process execution, the two

necessities that the execution of the dummy process must incorporate to be successful in

thwarting the accumulation phase are to use a different dummy execution process each time

or have a low repetition rate. This should help prevent the attacker from finding a pattern

that would differentiate the execution of a dummy process from the normal execution of

an aggregator node. The second requirement relates to the timing of the execution of the

dummy process. Depending on whether there is a pattern to the timing of the execution of

68

a dummy process, an adversary may be able to identify and disregard the dummy process.

For example, if an adversary is capable of identifying the presence or absence of a radio

transmission, the attacker can disregard any power consumption curve computed during the

absence of transmission signal. Similarly, if the dummy process is not executed every time

the aggregator node receives a transmission, the attacker will be able to identify invalid

transmission. Hence, to ensure the effectiveness of this scheme, the dummy process must be

executed each time the aggregator receives a transmission as well as randomly during idle

periods. The advantage of incorporating dummy processes in an aggregator is to minimize

the ease of identifying transmission flow in a sensor network that can be used to identify the

base station of the sensor network, which could be highly confidential in critical applications

(such as military applications).

3.3.2.5 Timing Attacks

The timing attack involves exploiting the variance in execution time for different branches

in the cryptosystem. This becomes all the more important in sensor networks subject to the

slower processors used in the nodes. The slower processors will enhance even small difference

in computation time over different branches. Timing attacks could also study the number

of memory accesses and the time variance in doing the same.

3.3.2.5.1 Countermeasures One of the most relevant countermeasure for such attacks

is using more clock cycles such that branching does not effect the execution time. Also, the

memory access times should be standardized to be the same over all accesses. Since time

as a resource is available in abundance in a sensor network (as compared to power), slowing

down the access times by adding sufficient delay to normalize the access times should be the

69

priority.

3.3.2.6 Fault Analysis Attacks

Fault analysis attacks (also called fault induction attacks) are attacks in which useful in-

formation gets leaked out due to occurrence of fault in the cryptosystem. The faults may

occur naturally or be induced by adversaries. Adversaries may inject faults in two ways.

One is to give programs invalid input, which may cause buffer overflows. The other is to use

equipment such as a laser pointer to illuminate SRAM (EPROM and EEPROM can also be

modified) to flip some bits in memory [37]. Fault analysis attacks have been discussed in

detail by Biham and Shamir [38]. The importance of checking cryptographic protocols for

faults was detailed by Boney et al. [39].

3.3.2.6.1 Countermeasures To counter fault analysis attacks, use redundancy to catch

injected faults. The idea is similar to N-version programming by Avizienis et. al. For certain

critical function, it is recommended to deploy multiple implementations of the same function.

Given an input, process it using the various different implementations and compare the

outputs. A selection module could be incorporated to decide the valid output. The selection

could be as simple as: accept the result only if τ% of redundant modules have the same result

output. Although sensor nodes have limited resources, critical regions usually comprise the

crypt functions, which need to be secured.

3.3.2.7 Acoustic Attacks

There are two types of acoustic emissions that have been studied previously: acoustic emis-

sions from keyboards [19, 20] and acoustic emissions from computing components such as

70

CPU and memory [40]. Acoustic emissions are produced by a keyboard when different keys

are pressed and can be used to identify the keys being pressed with extra triangulation infor-

mation. Acoustic emissions from computing components have been demonstrated by Shamir

et al. to be exploitable [40]. As sensor nodes typically do not have keyboards, the acoustic

emission from its exposed computing components is the real concern.

3.3.2.7.1 Countermeasures One practical and effective countermeasure for acoustic

attacks is to encapsulate a sensor node in sound absorbing material. Another countermeasure

is to introduce random acoustic noise of similar frequency to obfuscate acoustic emissions

from sensor nodes.

3.3.2.8 Thermal Imaging Attacks

Thermal imaging attacks differ from acoustic attacks in that the emission being exploited is

heat instead of sound. Such attacks often exploit the infrared images emanating from CPUs.

3.3.2.8.1 Countermeasures To counter thermal imaging attacks, one approach is to

use a dual layered case with the inner layer a highly conducting surface and the outer

layer made of a non-conducting material. When heat is generated from internal computing

components, the inner, highly conducting surface will quickly dissipate the heat around. The

outer layer prevents accesses to the temporary hot spots formed on the inner layer, thereby

preventing any information leaked in the form of heat.

71

3.4 Related Work

Roosta et al. was the first to briefly discuss the possibility of side channel attacks (also re-

ferred to as tempest attacks) in sensor networks [17]. The study of side channel attack dates

way back to early twentieth century when R.E. Priestley wrote about it in [41]. Okeya et al.

demonstrated the feasibility of side channel attacks by passively monitoring the power con-

sumption waveform of IC chips using an oscilloscope [42]. They presented differential power

analysis attacks by selective forgery of MAC and demonstrated how several key bits may be

extracted. Similarly, Kocher et al. showed that monitoring the electrical power consump-

tion of a smart card running the DES algorithm was sufficient to retrieve the secret key [31].

Gratzer et al. successfully demonstrated a side channel attack with neither the knowledge of

any information about the algorithms nor the microprocessor power consumption model [43].

Cryptographic techniques to counter side channel attacks on smart cards and IC chips

have been proposed by Micali et al. in physically observable cryptography [44]. Alternately,

theoretical approaches like building private circuits in a boolean context have been proposed

to counter side channel attacks. Using this approach, any n-gate circuit that is allowed to

leak up to ‘t’ bits at a time, can be converted to a perfectly secure circuit of size O(nt2) with

an increase in circuit size by factor of O(t2). The limitation of the technique is its weakness

to probing attacks where the information retrieval is dependent on a limited number of

physical wires. Ishai et al., in a follow up paper, proposed a method to detect tampering

even in a fully compromised circuit followed by self destruction of the circuit [33].

Chevallier-mames et al. proposed a low cost solution in terms of both complexity and

computational speed, which creates side channel atomic blocks where the whole code of a

process appears as a succession of blocks that are indistinguishable by simple side channel

72

analysis [45]. This method has the advantages of being inexpensive and generic.

Batina et al. talked about fault attacks that reveal secret information by inserting faults

into the device cryptosystem and concluded that clear box testing is necessary in the case

of side channel attacks and testing cannot be limited to black box [46]. To gauge the

effectiveness of the various strategies proposed to counter side channel attacks, evaluation

needs to be performed at the field level. Kocher provided means for testing and evaluating

how the various secure strategies to counter side channel attacks perform in practice [47].

Acoustic side channel attacks with sound emanating from a keyboard was studied by

Asonov et al. [19]. This was further revised by Zhuang’s group in [20]. Similarly, Shamir

and Tromer provided a proof of concept of vulnerable acoustic emissions from computing

components [40].

Most of the studies discussed here corresponds to systems in general. Among the few

that have an architecture of the order of a sensor node is the smart card. The smart card can

be considered to have similar limitations as the sensor node though it does not involve any

distributed processing as in the case of sensor network, which brings in unique side channel

vulnerabilities.

3.5 Summary

The lack of physical shielding and the deployment in open environments make sensor nodes

particularly vulnerable to side channel attacks. In this chapter, a comprehensive study of

side channel attacks on sensor nodes is presented with four key contributions. First, a three

phase attack model applicable to side channel attacks on sensor nodes is introduced. The

three phases are training phase, accumulation phase, and attack phase. Second, experi-

73

mental results on conducting electromagnetic leakage attacks on Tmote-sky sensor nodes is

presented. The experiments were performed in an anechoic chamber to replicating environ-

mental conditions of a rural or forest area (interference less). The results show the feasibility

of launching side channel attacks on sensor nodes with a strong correlation between the

electromagnetic radiation and the data processed by the sensor. Another observation was

the non-degradation of signal over smaller distances. This gives the opportunity to the

adversary to read the electromagnetic side channel without getting too close to the sensor

node. Third, the obfuscation techniques are discussed and a process obfuscation method

is proposed, which can be used as a countermeasure for a variety of side channel attacks.

Finally, detailed taxonomy of side channel attacks on sensor nodes is presented and for each

type of attack, guidelines and approaches to thwart the attack is provided.

74

Chapter 4

Event Data Propagation Prevention

Attack

Sensor networks find application in different disciplines ranging from research to practical

on-field military interests. Provided the vast scope, securing a sensor network is critical given

the deployment scenario wherein the nodes may be left unattended over long durations of

time. The sensor network can be under attack from different types of adversaries, some

intentional (malicious user) and some unintentional like environmental conditions.

In this chapter, collaborative adversaries are considered whose goal is to segregate part of

the network in order to prevent event reporting by either dropping or corruption of packets.

Also, if the events are sporadic, the base station will not be able to differentiate between non-

occurrence of an event and non-report of an event due to malicious activity. This is important

in military applications such as detecting heavy artillery movement. There have been several

studies to protect the sensor network from different kinds of adversaries trying to launch

various types of attacks. Protocols like TinySec [14], SPIN [48], TinyPK [15], SERP [16]

have been developed to provide security and to maintain integrity of the communication

data. Pirzada et al. [49] use a trust model like a reputation scheme to identify the sinkholes

and wormholes in the network. In this scheme, they guarantee that the packet reaches the

base station using a trusted path, but do not detect the malicious nodes in network.

75

The research studies so far have provided solutions which work in an inside-out fashion,

i.e. the onus of identifying such mal-intent is left to the sensor nodes. There have been

numerous reputation based systems, which use this methodology attempting to solve the

problem of intrusion detection and mal-behavior detection of sensor nodes [50–52]. Krontiris

et al. design an IDS to specifically detect sinkhole attacks [53]. In [54], Ngai et al. provide

a scheme to analyze packets to detect the intruder. Many of the existing approaches tend

to prevent a specific attack type. Even the primary goal of an intrusion detection system is

to detect an intrusion while identifying the attack type is secondary. An extension of the

intrusion detection system is the intrusion prevention system, which is a real time reactive

system to block malicious activities. In [55], Su et al. present an intrusion detection and

prevention system. What is lacking is a proactive architecture that can detect a malicious

attack while also being able to identify the type of attack. The threat model considered is a

collaborative attack to segregate a region so as to disallow event packets in this region from

reaching the base station. The adversary is a laptop class attacker which can perform four

types of attack, namely sinkhole attack, selective forwarding, wormhole and sybil attack to

achieve the same.

Dynamic Camouflage Event based Malicious Node Detection Architecture (D-CENDA)

uses a multi-phase approach that includes camouflage event generation, planning the mobile-

node tour, encoding the address in the packet, packet analysis by the base station, detection

and verification of the malicious node. A camouflage event is a reputable event generated in

response to a base station request. The camouflage event generator is a mobile-node which

can be mounted on robot or an unmanned aerial vehicle. This mobile-node traverses the

path decided by the base station and generates the camouflage events at regulated intervals

of time. These events are called camouflage events since they mimic the real events, but

76

are not real events in the true sense. A simple solution is for the base station initiating a

camouflage event from the node by sending a message, but a powerful adversary can overhear

the communication and allow such event packets. The nodes which are in the sensing range

of the camouflage event location will detect the event and report back to the base station.

A lightweight address encoding scheme is provided wherein each node encodes the shortened

relative address of the node from which it received the packet. Each node also maintains

the information about the overheard packet transmissions by the neighbors. We present a

bloom-filter [2] and a bit-array based scheme which are used for verification while branding

a node malicious.

Performance of D-CENDA is compared with CHEMAS by Xiao et al. [12] and sinkhole

intrusion detection algorithm (IDA) by Ngai et al. [54]. CHEMAS and sinkhole IDA provide

protection against individual attack types and is seen that D-CENDA shows marked improve-

ment in malicious node detection while having significantly less false positives. Moreover,

D-CENDA is able to identify the type of malicious activity and is flexible to include other

attack types. Additionally, results of D-CENDA in relation to the results from CENDA is

presented.

The chapter is organized as follows. Classification of nodes and definition of metrics

is discussed in Section 4.1. The attack model is presented in Section 4.2. As part of the

architecture, design of the mobile route for the camouflage event generator is discussed

in Section 4.3. This is followed by attack fingerprinting in Section 4.4. Then, security

architecture is described in Section 4.5. Finally, the results are presented in Section 4.6,

followed by the summary in Section 4.7.

77

4.1 Node Classification and Metrics Definition

This section presents the node classification and metrics definition.

Table 4.1: D-CENDA Table of Notations-1

Symbol Definition
n Number of nodes
fi Forwarding number of node i
fmean Mean of forwarding numbers
CI Critical index
Ui Unit areas having node i coverage
Ca Set of nodes sensing over unit area a
CoI Coverage inheritance of node i
bi Boolean value of node i is cut vertex
di Feedback on usage of node i
CA Cumulative Attack

4.1.1 Node Classification

Let n be the number of nodes and fi is the count of the number of nodes to which node

i forwards the packet. This is the forwarding number of node i. fmean is the mean of

the forwarding number of all nodes. At network initialization, the forwarding number of a

node is set to be inversely proportional to its distance from the base station. An example is

presented in Figure 4.1. Based on the forwarding number, the nodes are classified as follows:

1. Regular nodes: Nodes forward packets for two or less nodes including itself.

2. Routing nodes: Routing nodes forward packets for more than two nodes but less than

the fmean.

3. Backbone nodes: Nodes forward packets for greater than or equal to fmean.

78

Regular Nodes = {ni} ∀ i where fi ≤ 2

Routing Nodes = {ni} ∀ i where 2 < fi < fmean

Backbone Nodes = {ni} ∀ i where fi ≥ fmean

(4.1)

3

5

1

8

7

6

2

4

9

10

Base station

Regular Node

Routing Node

Backbone Node

f1= 1

f2= 3

f3= 4

f4= 1

fmean= 3.2

Figure 4.1: Node Classification

4.1.2 Metrics Definition

Critical Index (CI) is a per node metric, which is the availability of sensor coverage over an

area. The sensing area is divided into m unit regions. Each node i senses over a set of unit

areas called Sensing Area. Ui is a set of unit area’s over which node i has sensing coverage.

Each unit area will be monitored by a set of nodes called Sensing Nodes represented as Ca

where a is the unit area identifier. The Coverage Inheritance (CoIi) of a node i is defined

as the average of Ca where area a belongs to the set Ui.

79

CoIi =

∑

aCa
|Ui|

where a ∈ Ui (4.2)

The coverage inheritance is an inverse property i.e. higher the coverage inheritance of a

node, lesser is its importance. It is an acquired factor because the value of this parameter is

dictated by other peer nodes sensing the region.

Next, an active component called progressive feedback (di) is added. The progressive

feedback is the dynamic component which changes based on the real time usage of a node.

A node can be close to the base station but can remain redundant until another node fails

and the packets need to be routed through it. Also, progressive feedback is different from

forwarding number as it is based on the practical usage of the node in the past time periods

and not a calculated theoretical parameter. The CI of a node is computed based on the

Forwarding Number and the CoI of the node. The CI of a node is calculated as follows:

CIi = αfi +
β

CoIi
+ γbi + ρdi Where α + β + γ + ρ = 1 (4.3)

where α, β , γ and ρ are constant coefficients, bi is a boolean variable identifying if node

i is a cut-vertex. di is the usage of node i in the network over the last time period. Based

on the node usage as a sensing unit or as a forwarding entity, the critical index gets updated

in real time. If a node is a cut-vertex, the importance of the node increases manifold, as the

loss of this node can partition the network resulting in some nodes to be unable to reach the

base station. The constant coefficients are set based on the application.

80

4.1.2.1 Impact of Coefficients

An analysis is performed to study the impact of constant coefficients on the number of critical

nodes selected. It was done to see the variance of critical nodes selected when compared

to the critical nodes selected when each parameter was given the same weight of 0.25. The

threshold value of critical index (normalized) is set to 0.25. It should be noted that a lower

threshold value will result in higher number of nodes selected as critical nodes. The total

number of nodes is 512. It was seen that initially 371 nodes were identified as critical. After

5 runs of simulation, two cases of analysis were performed with the weights as follows:

325 37 46

Default case Case 1

Figure 4.2: Critical Nodes Case 1

343 29 28

Default case Case 2

Figure 4.3: Critical Nodes Case 2

1. α = β = γ = 0.2 and ρ = 0.4

The resultant number of critical nodes after 5 periods of simulation is depicted in

81

Figure 4.2. It is seen that, of the 371 critical nodes only 325 nodes were reselected as

critical nodes, but in addition 37 new nodes were selected as critical nodes. 46 nodes

which were selected initially as critical nodes were not selected.

2. α = β = γ = 0.3 and ρ = 0.1

Similarly, number of critical nodes and its variance compared to the default is depicted

in Figure 4.3.

It is seen that the changes in the weights impacts the critical nodes selected. Giving a higher

weight to progressive feedback has its own pros and cons. As discussed earlier, a node may

not be currently used, but can be significant in routing packets if another node which is

currently heavily used goes down. Hence, depending on the application, it is important to

give the proper weightage to each of the parameters.

4.2 Attack Model

The adversary is a laptop class attacker and on capturing a node, it has access to everything

on the node. Also, the malicious entity would want to capture the nodes such that the

minimum number of node captures result in the maximum damage. Being a powerful node,

it is reasonable to assume that the malicious entity can overhear communication over a

larger area compared to the sensor node and can make informed decisions about the nodes it

wants to attack. The malicious entity captures a node and does one or more of the following

attacks: Sinkhole attack, Wormhole attack, Sybil attack or Selective Forwarding attack. The

goal of the attacker is to segregate a region such that event packets do not get reported from

the region, but may allow other communication. The modus operandi of the threat model

82

is to increase the value of Cumulative Attack (CA), where cumulative attack is defined as

follows:

CA =

∑

Cp
|p|

Where Cp − critical index of node p (4.4)

The adversary wants to compromise a node and perform attack from the list above in

order to achieve the goal of region segregation. The attacks can be composite in nature,

i.e. occurrence of multiple different types of attacks simultaneously.

4.3 Mobile-Node Route Design

The mobile node is the camouflage event generator. The route followed by this node governs

the location and time of the camouflage event which in turn determines the nodes that will

detect this event. The design of an optimized route is critical due to the following reasons: A

poorly designed mobile node route can cost the network dearly in the form of event detection

by unwarranted nodes and having the network flooded by these packets. The second reason

is the waste of time and energy of the mobile node to follow a non-prime path. The process

includes a node selection preliminary step.

4.3.1 Node Selection

It is costly to protect all nodes. Under attack, it is required to be able to identify and protect

the nodes which are critical to the network functioning. Hence, the nodes are prioritized

based on their role and importance. This importance could be dictated by different factors

like location, power, etc. Based on the classifications and definitions in Section 4.1, select a

subset of nodes such that they satisfy the requirements and is depicted in Algorithm 1.

83

Table 4.2: D-CENDA Table of Notations-2

Symbol Definition
CN Set of critical nodes
MCN Maximum coverage node
Cm Set of unit areas
Lc Camouflage event location set
CovAreas Set of unit areas covered
T Sensing range of node
τ Critical index threshold
Xn Set of all nodes
Xp Set of privileged critical nodes
T Sensing range of node

Algorithm 1: Node Selection

Input: {CovArea} ⇐ Cm, {CN} ⇐ φ, Xn = {Nodes}
Output: Critical nodes in {CN}
for xi ∈ Xn and CIi > τ do

{CN} ⇐ {CN}+ xi
{CovArea} ⇐ {CovArea} − Ui

while {CovArea} 6= {φ} do
MCN ⇐ xi where (((xi ∈ Xn) and (xi /∈ CN))

and xi = (max(Un − {CovArea})))
{CovArea} = {CovArea} − Ui
{CN} = {CN}+MCN

4.3.2 Route Design

M is the mobile route, L1, L2..., Lc are the locations on route M where the event generation

occur and c is the number of stops in the mobile route. If the routing paths of the packets

is known, find the subset of nodes in Xn which should detect the event such that all nodes

in CN either detect the event or are on the routing path of node detecting the event. Let

this subset of nodes which detect the event be the set of privileged node represented by Xp.

If the routing paths of the packets is unknown, the set CN is the set of privileged node

represented as Xp. The goal is to find set of locations La in the field such that all nodes

in Xp are at a distance of sensing range or less from at least one location in Ln. This is

84

presented in Algorithm 2. In the event of having multiple mobile vehicles, the set Xp is

geographically partitioned into the number of mobile vehicles available and the mobile route

can be planned for each of the partitions independently. The next step is to calculate the

shortest path to cover the locations in set Lc. This is formulated similar to the traditional

‘Traveling Salesman Problem’ but with an optimization exception to allow the mobile node

to revisit any prior visited location.

Algorithm 2: Camouflage Event Location Selection

Output: Set of event locations {Lc}
{Lc} ⇐ {φ}
while {Xp} 6= {φ} do

for Cm /∈ {Lc} do
SenseCovm ⇐ Count(Distance(Xp, Cm) ≤ T)

MaxCovArea =Max(SenseCovm)
{Lc} = {Lc}+MaxCovArea
{Xp} = {Xp} − {Node Xi Sensing MaxCovArea}

4.4 Attack Fingerprinting

In this section the attacks are modeled based on the characteristics possessed by each attack

type. A high level classification based on some of the parameters used in D-CENDA is shown

in Figure 4.4. A detailed information about the attacks is presented in [56] and [17].

4.4.1 Sybil Attack

The basis of sybil attack depends on two factors, first the ease of acquiring different identities,

and second, the amount of damage a node can inflict by acquiring the identity. In our system

which is based on the node’s response to the real-world-like camouflage events, a node will

not be able to tarnish the reputation of another node since the neighborhood of the nodes

85

Received

Packet

Sinkhole
Selective

Forwarding

Wormhole

Delayed/

hops

Traceable

Sybil

No Yes

No

Yes

No

Figure 4.4: Attack Taxonomy

is set and the peers are not required to maintain reputation. The control of managing the

reputation lies with the base station.

In D-CENDA, the sybil attack possesses characteristics similar to wormhole attack in

which case, the non-verification of the trace-back path to the originating node indicates the

presence of malicious activity.

4.4.2 Wormhole Attack

Lemma: It is not possible for the colluding nodes to do significant damage and thwart being

identified in case of wormhole attacks in D-CENDA.

Successfully tracing back to the source under wormhole attack: Consider the scenario in

Figure 4.5 wherein the source node s sends packet to the base station. The nodes 3 and 4

collaborate to launch a wormhole attack. In this case, node 4 will fake a relative address of

a neighbor before forwarding the packet since it cannot specify that it received the packet

86

s

1

2

4 3

6

5

Worm Hole

BS

Figure 4.5: Wormhole

from node 3. For the base station to be able to trace-back to the source, it needs to satisfy

the following. There needs to exist a valid path from node 4 to source with h + 1 number

of hops where h is the number of hops from node 3 to the source. Let there exist a path P

satisfying this condition. It needs to satisfy the per-hop condition such that relative addresses

encoded in the packet from source to node 3 match that of a new path from node 4. Also,

the effectiveness of a wormhole attack depends on how farther away the traffic is re-routed

in the network, thereby increasing the resource consumption in the network. If it needs to

satisfy the first condition i.e. to maintain the hop count, the collaborating attacking nodes

within the network cannot reroute the packet across large distances.

4.4.3 Selective Forwarding Attack

Selective forwarding attack is a form which can be easily confused with sinkhole attack.

Also, a bad channel leading to packet losses can imitate a selective forwarding attack. To

differentiate this attack from packet losses due to bad channel or interference, some knowledge

of the channel condition is required which is not in the scope of this thesis. But to differentiate

it from a sinkhole attack, it is required to gather packet loss information over a larger period of

87

time. For this purpose, the dynamics of analysis for sinkhole attack and selective forwarding

attacks are different. For selective forwarding attacks, the information collection period has

to be longer compared to sinkhole attack. Hence, in D-CENDA while a sinkhole attack

can be identified within a few rounds, identifying the selective forwarding attack requires to

gather information over multiple rounds. In our simulation, to detect a selective forwarding

attack the analysis of the data collected over 5 rounds is performed.

4.4.4 Sinkhole Attack

In sinkhole attacks, the node advertises a low cost path to the base station and may or

may not evince itself to be within the neighborhood of a larger number of nodes than it

actually is. The base station knows the location and neighborhood information of all the

nodes and can trace the loss of packets to within a few hops of this malicious node. This

attack type can be identified by analyzing the packets lost and then verified by querying the

bloom filters/bit-arrays of neighborhood nodes in the identified region.

4.5 Secure Architecture

The secure architecture is a sequence of processes for proactively identifying the malicious

nodes in the network. It begins with the initiator in the form of camouflage event generator

and ends with a verifier using which the base station verifies the mal-intent of the node

before qualifying it as a malicious node. It is a standalone module, which consists of the

camouflage events, embedding path information, packet meta-analysis, and verification.

88

4.5.1 Camouflage Events

The events generated by the mobile nodes are called camouflage events. To the base station,

the camouflage event possesses some distinct properties which are not characteristic of real

world events. These properties are as follows:

1. The base station is aware of the location of the event occurrence (L).

2. The base station knows the precise time of the occurrence of the event (T).

3. With the knowledge of the location and time of event occurrence, the base station

knows the set of sensor nodes that detect the event (SN).

The mobile node starts traversing the route designed by the base station. While traversing

the path, it stops at the designated location and generates the camouflage event. The nodes

sensing the event respond back to the base station. The sensor nodes cannot differentiate

this event from an actual event and hence it is handled like a real world event. It needs to

be emphasized because event type anonymity is crucial to this methodology. If a malicious

node can differentiate this event from a real world event, it can treat just these events like

a well-behaved node to escape detection. In D-CENDA, the onus of detecting malicious

behavior is on the base station. The sensor nodes only need to record overheard packet

transmissions by the neighbors.

The base station collects all packets that were generated and have traversed through the

network. For each packet received by the base station in response to a camouflage event,

there are two types of nodes involved. The event notifier node which reports the occurrence

of the event and the intermediate nodes through which the packet traversed to reach the

base station. At a higher level every packet received by the base station provides one bit

information about each of the nodes involved in the delivery of the packet.

89

Depending on routing, there are two distinct cases that are considered. One in which the

packet follows the same path for a set period of time. In this case the base station is aware

of the path the packet traverses. Hence, when the packet reaches the destination, the base

station knows the nodes which propagated the packet to it. In the second case, instead of

following a particular route, the packet follows geographical routing. For the base station to

know the path traversed by the packet, the intermediate nodes need to append additional

information. In the absence of this additional information the base station can only make

an educated guess about the intermediate nodes using the knowledge of the location of the

nodes and their sleep cycles.

4.5.2 Embedding Route Information

In the absence of fixed route, a scheme is devised in which the nodes append the route

information to the packet before transmitting over the next hop. This address information

being attached to the packet can be of three types.

1. Absolute address: In this case the node appends the absolute address of the neighbor

from which it received the packet. The drawback of this scheme is the amount of space

it takes to represent the absolute node address.

2. Relative address: Taking advantage of the knowledge of the node distribution by the

base station, a scheme is presented in which the nodes appends the relative address of

the neighbor node from which it received the packet.

3. Shortened relative address: The direction of the flow of the event packets is towards

the base station. Using this, the neighbor nodes are identified that should forward the

90

packet to the node and take into consideration only these nodes while encoding the

neighbor address in the forwarded packet.

Absolute address is suitable if the number of nodes is small, resulting in shorter address.

But the number of nodes in a sensor network can be large, making the absolute address

longer. The length of the relative address is dictated by the number of neighboring nodes.

To analyze the overhead disparity between the absolute address and relative addresses, sim-

ulations were run to study the distribution of the nodes based on the following parameters:

number of nodes, area of field, type of distribution. The type of distribution can be uniform

or non-uniform. In uniform distribution, the nodes are homogeneously spread in the sensing

area, which leads to the nodes having a very even neighborhood resulting in relative address

length close to the mean of all relative address lengths. If the distribution is non-uniform,

for densely distributed areas, the nodes are programmed such that only a set of nodes are

active at a point of time. This set of nodes can be mutually exclusive to non active nodes.

Using the availability of the topology at the base station, the relative address is further

enhanced by using a shortened relative address. This is achieved by classifying the neigh-

boring nodes as upstream and downstream neighbors. An upstream neighbor node is a valid

node from which this node receives a packet to forward to the base station. The other nodes

which should not send the packet to this node to forward to the base station are classified

as downstream neighbor nodes. Since a node should be only receiving packets from its up-

stream neighbor nodes, the relative address can be shortened to only encode these neighbors

and is called shortened relative address.

Table 4.3 displays the comparison between the absolute address length and the relative

address length for different area sizes and different node densities. The absolute address

91

Table 4.3: Node Distribution

Node Area(m2) Average Hops AAL∗ RALψ SRALµ

512 1000 X 1000 8 72 32 24
1000 1000 X 1000 8 80 34 26
2000 1000 X 1000 7 77 38 31
3000 1000 X 1000 7 84 38 31

* Absolute Address Length (bits)
ψ - Relative Address Length (bits)

µ - Shortened Relative Address Length (bits)

length is calculated as the average number of hops multiplied by the number of bits needed

to represent the absolute address. Let us consider the case in which the area is 1000 x 1000,

with 512 nodes (this gives us a coverage of four times unit density since 128 nodes are needed

for unit density coverage while assuming sensing range of 50m). It is seen that the average

path length is eight hops and the average neighborhood is 14.12. Also, on an average four

bits are needed to represent the relative address of the neighbor (average neighborhood ≤

16). Along with the average path length of eight hops, 32 bits are required to represent the

path from the source to the destination.

4.5.2.1 Shortened Relative Neighbor Address

The address and representation of the neighbor A for node B is based on two factors. The

absolute node identifier of A and the number of neighbors of node B. The relative addresses

are assigned in the increasing order of neighbors node identifier. For node 23 in Figure

4.6, the relative address and shortened relative address of the neighbor nodes are listed

in Table 4.4. The relative address can be represented using four bits while the absolute

address can require up to seven bits. The neighbors which forward packet to a node are the

upstream neighbor of the node and all other neighbor nodes are downstream nodes. The

downstream neighbors all have shortened relative address of 0, while the upstream neighbors

92

have an incremental address starting from 1 based on their absolute address. Using this

classification the address encoding length can be further reduced. It is seen to have address

length shortening (up to 25%) when using the shortened relative address.

29

75

16

69

23

52
17

10

27

99
35

61
41

14

79 32

A

B

Figure 4.6: Packet Route

Table 4.4: Node 23 Neighbor Address

Aid Rid SRid
10 0 1
16 1 0
17 2 0
27 3 0
35 4 2
75 5 0
99 6 3

Aid - Absolute Node identifier
Rid - Relative Address

SRid - Shortened Relative Address

93

4.5.2.2 Encoding the Path Address

When a node receives a packet it appends the relative address of the node from which it

received the packet and encrypts it before forwarding it over the next hop. If node o received

the packet from node m, the encryption is shown below, where [data]PKo is the encryption

of data with the key of node o.

[Address||RAm|o]PKo
Where A||B − Append B to A

RAm|o − Relative address of m w.r.t o

(4.5)

Table 4.5: Address Encoding

Node 23 Node 27 Node 32

Aid SRid
10 1
16 0
17 0
27 0
35 2
75 0
99 3

Aid SRid
14 0
16 1
17 2
23 3
32 0
41 0

Aid Rid
14 1
27 2
41 3

Aid - Absolute Node id
SRid - Shortened Relative Node id

94

[Addr]PK35

↓

[[Addr]PK35||10]PK23

↓

[[[Addr]PK35||10]PK23||11]PK27

↓

[[[[Addr]PK35||10]PK23||11]PK27||10]PK32

(4.6)

In Figure 4.6, the event is detected by node 35 and it is transmitted to the base station via

nodes 23, 27, 32. Table 4.5 lists the shortened relative address for the three nodes receiving

the packet. Each node before forwarding the packet over the next hop, encodes the relative

address information in the packet as follows. Node 23 will encode the relative address of

node 35 which is 2 before transmitting to node 27. Node 27 will encode the relative address

of node 23 which is 3 before forwarding the packet to node 32 and so forth. This is depicted

in Equation 4.6.

4.5.2.3 Decoding the Path Address

When the base station receives the packet, it knows the sender of the last hop of the packet.

In Figure 4.6, the last hop forwarder is node 32. The base station also knows the neighbors

of node 32. On decoding the packet using the key specific to node 32, the base station knows

the relative address of the node which forwarded the packet to node 32. Looking up the

table, the base station identifies that the packet was received from node 27. Recursively, the

95

base station can trace the complete path back to the sender. This is represented as follows:

[EncryptedAddress]PK32 =⇒ [EncryptedAddress1 || 10]

↓

[EncryptedAddress1]PK27 =⇒ [EncryptedAddress2 || 11]

↓

[EncryptedAddress2]PK23 =⇒ [EncryptedAddress3 || 10]

↓

Node35

(4.7)

4.5.3 Packet Meta-analysis

Let Xi be the set of packets that are generated as a result of a camouflage event. Let Ri be

the set of packets that were received by the base station and Li is the set of packets that

were not received.

Ri ⊆ Xi, Li ⊆ Xi, Ri + Li = Xi (4.8)

The base station maintains records of characteristics for the different attack types for

each node. This record consists of a set of parameters which are updated by the base

station whenever a packet is generated for a camouflage event. As a packet is received or

not-received, the record for the nodes gets updated accordingly.

A set of four parameters is maintained for each node; packets generated, packets re-

ceived, packets lost, packets garbled. Packets generated is a parameter which keeps track

of the packets generated by the node in response to the camouflage event. Packet received

96

is a parameter of the node which represents the number of packets successfully received

when the node was either the source of the packet or an intermediate node forwarding the

packet. Packet lost parameter of a node tracks the packets that were lost and is statistically

determined to see what path the packet should have taken to reach the base station. Using

this information, the intermediate nodes are also marked for the packet lost. The packet

garbled parameter tracks the number of packets which were successfully received, but cannot

be traced back to the source.

4.5.3.1 Packets Received

These are the packets which are received by the base station in response to a camouflage

event. The hop count and the total time elapsed between the camouflage event and the

time of reception of the packet are calculated. This is possible because of the availability of

the temporal information about the occurrence of the event. The base station checks if the

number of hops and the time of delivery is within the deviance limits for the particular node.

If either of the two parameters lie beyond the threshold limits, a path analysis is performed.

If the number of hops is within the limits (called Hop-Validity) and if the time elapsed

is also within deviance (Time-Validity), the nodes packet received parameter is marked. If

either of hop-validity or time-validity fails, a path analysis is performed for the packet. The

first step in path analysis is to do a trace-back to the source. Under certain circumstances

like a wormhole attack, the trace-back to the source may not be successful. If the trace-back

is successful, a per-hop analysis is performed for the packet received. In a per-hop analysis,

each pair of consecutive intermediate nodes are considered and verified to see if they adhere

to the upstream-downstream requirement.

Let Pi be the packet sent by node Ns to report an event E. m is the number of hops

97

and t is the time taken by the packet to reach the base station. he and te are normalized

expected number of hops and time.

Hop V alidityi =
m− he
he

T ime V alidityi =
t− te
te

(4.9)

If either of the two validity fails, the packet is traced back to the source based on the

encoded relative addresses. If relative address is used and trace back to the source is success-

ful, for each hop of the packet, let node xt be the transmitter and node xr be the receiver

of the packet. Check if node xr is a downstream neighbor of node xt. If it is not xr, mark

node xt. If the trace-back fails, mark the packet garbled parameter similar to the packet

lost parameter. This is presented in Algorithm 3. If shortened relative address is used, and

if any of the neighborhood address is 0, query the node which received the packet from the

downstream neighbor and mark that node.

The table gets populated over a period of time and we perform a short term analysis

and a long term analysis. Each of these analysis caters for a particular type of attack. The

short term analysis is done to identify wormhole, sybil and sinkhole attacks while a long

term analysis is performed to identify a selective forwarding attack. The long term analysis

has sufficient information that helps us to differentiate between the sinkhole and selective

forwarding attacks. Also, it helps us differentiate between a dead node and a malicious

node performing a selective forwarding attack. The reasoning behind this is the fact that to

identify a selective forwarding attack, it is needed to gather information over longer durations

as compared to other attack types.

98

Algorithm 3: Node Marking

Input: N → all nodes, Ri → received packets
Li → lost packets, xn → nodes on path of packet Pn
for Pi ∈ Ri do

if ((HopV alidityi) || (T imeV alidityi)) fails then
Initiate Source Trace-back
while (ni 6= Ns) || (TracebackAdd! = φ) do

p = NumNeighbors(ni)
RelAddLen = sizeofbitlength(binary(p))
RelAdd = RelAddLength LSB of TracebackAdd
ni = Lookup → RelAdd(ni)
TracebackAdd = TracebackAdd−RelAdd

if Source Trace-back == SUCCESS then
for (Node n ∈ xn) do

if n ∈ path of Pi then
if xr is downstream neighbor of xt then

xt → SuspectNode

else
Intermediate Node Identification (Node n ∈ xn) → Path of Pi
Mark PacketGarbled(n)

for Pi ∈ Li do
Intermediate Node Identification
for (Node n ∈ xn) → Path of Pi do

Mark PacketLost(n)

Marked Node Analysis
for (Node n ∈ N) do

if PktLost(n) ≥ 1 then
u ∈ UpstreamNeighbor(n)
if PktLost(n) >

∑

PktLost(u) then n⇒ suspectnode

if PktGarbled(n) ≥ 1 then
u ∈ UpstreamNeighbor(n)
if PktGarbled(n) >

∑

PktGarbled(u) then
n⇒ suspectnode

99

4.5.3.2 Packets Lost

With the knowledge of the occurrence of the events, the base station expects a set of packets

from a group of nodes. If there is malicious activity, there may be loss of packets. For each

packet lost the base station is able to trace-back the packet loss to within a subset of nodes.

This is depicted in Algorithm 3.

4.5.3.3 Verification

Verification is the process performed by the base station before finalizing the node as ma-

licious. To pinpoint the node which was responsible for the packet loss from within the

subset of nodes, each node maintains a simple but efficient data structure which works on

the principle of bloom filter and stores overheard packet transmissions. Two methods are

presented to maintain the overheard packet transmission.

1. Bloom filter: Each node maintains multiple counting bloom filters. These are used to

mark the overheard packet information during different intervals of time. The nodes

overhear the packet transmissions of their neighbors and mark information into the

bloom filter using the relative address of the neighbor. The number of bloom filters

maintained by each node will decide the granularity of the information stored. For

example, information maintained in a single bloom filter over a period of time t will

give us less accurate description of events compared to 10 bloom filters maintained by

the node for each of t/10 time intervals.

2. Bit-array: It is seen in Section 4.5.2, each node will have a maximum of 32 active neigh-

bors when the node itself is active. If a node has a higher neighborhood density, the

100

sleep cycles are programmed such that a node has a maximum of 32 active neighbors.

Since the total number of neighbors are few, the second method is to use bit-arrays

to store overheard packet transmission. Use of bit-array simplifies the amount of com-

putation required at a sensor node to gather and store the data. Additionally, when

the node is queried by the base station, it is a simple lookup operation by the sensor

node to respond to the query. Also, converting a bit-array into a counting bit-array

will require replacing the individual bits by multiple bit cells. Although it is not the

most optimal method, but it is the most simplistic method, particularly considering a

energy constrained sensor node.

The base station can query the neighboring downstream nodes to check if they overheard

the packet transmission by the node over a particular interval of time. As for the response to

the query, the architecture provides two options. One, the queried node responds back to the

base station with its bloom filter or bit-array representation and the base station processes

it to decipher the information. In the second case, the node processes the data structure to

extract the data and replies back with only the required information. The two methods have

their own advantages and disadvantages. In the first method where the sensor node returns

the entire structure as a response, the base station might be saved from making repeated

queries to the same node about its different neighbors. Another significant advantage of this

method is the discreteness with regards to the node under investigation. The drawback is

the increased packet size. In the second method, the communication cost is less, but the

base station will need to query the node about a specific neighbor and cannot be discrete

like in the first method. Hence there is loss of anonymity and it can be qualifying factor in

certain military applications.

101

For un-received packets over a period of time, the base station can trace the packets

loss to a subset of nodes from the information it gathers for every un-received packet. The

base station queries multiple neighbors (this number can be configured) of these nodes to

check if they overheard a packet being transmitted by their neighbor at a particular time

interval. The responses are analyzed to check the presence of suspect nodes. The nodes

are aggressively marked as suspect, hence this verification process plays a important role in

keeping the false positives low while detecting malicious node. It will be seen in the results in

Section 4.6, that the percentage of the false positives considering critical nodes is low (6.5%

in sinkhole attacks, 8% in selective forwarding attacks, 9.75% in Sybil attacks, and 10.5%

in wormhole attacks). The low false positive rates indicate that the exoneration of the non-

malicious suspect nodes is high, displaying the higher probability of successful verification

by the base station.

4.6 Simulation Results

The simulations were performed over an area of 500x500m, having 125 nodes so as to have

a unit coverage over the entire field with each node having sensing range of 25m. The

critical index threshold is 0.25 and the four parameters (α, β, γ, ρ) were each set to 0.25.

The simulation is performed in Matlab. There were two varying factors in the attacks.

First, the number of malicious (compromised) nodes was varied as 5%, 10%, 15%, 20%. The

compromised nodes were randomly selected but the critical nodes were given a higher priority

to be under attack considering a worst-case scenario with a sophisticated attacker. Second,

the attack type of the compromised nodes were again randomly assigned. The base station

gathered data over multiple runs. The results of D-CENDA is presented while keeping the

102

results from CENDA for a quick comparison and also include the results in sinkhole intrusion

detection algorithm by Ngai et al. [54] and CHEMAS by Xiao et al. [12] where relevant.

5 10 15 20
80

85

90

95

100

Percentage Malicious Node

D
e
te

c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

Sinkhole IDA

(a) Sinkhole Detection

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 P

o
s
it
iv

e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

Sinkhole IDA

(b) Sinkhole False Positive

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 N

e
g
a
ti
v
e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

Sinkhole IDA

(c) Sinkhole False Negative

Figure 4.7: Sinkhole Attack

Figure 4.7a depicts the detection success, when all the malicious nodes are performing

sinkhole attack. Even though the success rate of identifying the malicious node was not

100%, the subset of malicious node which are critical were identified accurately. There

are two reasons for this, the critical nodes have connectivity to the base station and the

camouflage events are generated to cover the critical nodes. It is also seen that the success

103

rate of detecting all malicious nodes is higher for D-CENDA compared to CENDA. This is

a result of having dynamic selection of critical nodes which results in selection of some new

non-critical malicious nodes for detection purpose that will not occur in CENDA. The results

from [54] (sinkhole IDA) have been included for comparison, and it is seen that D-CENDA

outperforms sinkhole IDA with respect to malicious node detection success rate.

The false positive rate when only considering the critical nodes is slightly higher as

compared to the false positive rate when the entire set of malicious nodes was considered.

Again, as the number of malicious nodes increased there is an increase in the false positive

rate. This is because a node is aggressively marked as suspect to get lesser false negatives,

with assurance that the verification discards the false positives as depicted in Figure 4.7b.

Even in false positives accuracy an improvement is seen in D-CENDA. The false negative

rate when considering the critical nodes was much lower compared to the false negative rates

of the whole malicious nodes set (Figure 4.7c).

The next set of results comprise the malicious nodes all performing selective forwarding

attack. The results are presented when the nodes randomly dropped 30% of the packets.

It was seen that this drop percentage affected the number of rounds the camouflage event

generator needed to make, to get accurate results. Lower the drop percentage, higher was

the number of rounds needed by the mobile-node, but again lower drop percentage means

a less severe attack. The overall performance of D-CENDA was better than CENDA for

all the cases except when the percentage of malicious nodes was 15%. This was happening

because the dynamic selection of critical nodes changes the critical nodes which are under

observation. As mentioned earlier, identifying a selective forwarding attack required us to

gather data over multiple runs and the change in nodes under observation within those runs

resulted in some undetected malicious nodes. This was seen to happen for critical nodes in

104

5 10 15 20
80

85

90

95

100

Percentage Malicious Node

D
e
te

c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(a) Selective Forwarding Detection

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 P

o
s
it
iv

e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(b) Selective Forwarding False Positive

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 N

e
g
a
ti
v
e
 (

%
)

CENDA All Malicious Node
CENDA Critical Node

D−CENDA All Malicious Node
D−CENDA Critical Node

(c) Selective Forwarding False Negative

Figure 4.8: Selective Forwarding Attack

the 5% and 20% cases. The results are presented in Figures 4.8a, 4.8b, 4.8c and are similar to

sinkhole. Unlike in sinkhole, the analysis to detect selective forwarding attack is performed

over 5 rounds by the mobile-node. In other words, it was slower to catch a malicious node

performing selective forwarding attack.

Figures 4.9a, 4.9b, 4.9c represents the detection success, false positives and false negatives

for the network under sybil attack. The assumption was that at a point in time, a node can

acquire the identity of another node, but does not have access to cryptographic information

105

5 10 15 20
80

85

90

95

100

Percentage Malicious Node

D
e
te

c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(a) Sybil Detection

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 P

o
s
it
iv

e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(b) Sybil False Positive

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 N

e
g
a
ti
v
e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(c) Sybil False Negative

Figure 4.9: Sybil Attack

of the node. When comparing the performance of D-CENDA with CENDA, D-CENDA

performed better in most cases and no worse than CENDA in the rest.

In the next simulation, all randomly selected malicious nodes launch a wormhole attack.

A wormhole attack is different from other attacks due to the fact that a single attack will

have at least two colluding nodes. In wormhole attack, randomly selected nodes collude with

each other and launch the attack by directing the traffic to the other side of the network.

The results for the wormhole attack is presented in Figures 4.10a, 4.10c, 4.10d. When

106

5 10 15 20
80

85

90

95

100

Percentage Malicious Node

D
e
te

c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(a) Wormhole Detection

5 10 15 20
50

60

70

80

90

100

Percentage Malicious Node

D
e
te

c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(b) Wormhole Detection 1 of 2 Nodes

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 P

o
s
it
iv

e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(c) Wormhole False Positive

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 N

e
g
a
ti
v
e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(d) Wormhole False Negative

Figure 4.10: Wormhole Attack

considering all malicious nodes, CENDA outperformed D-CENDA, and while considering

only the critical nodes the performance was comparable. Under the circumstance when just

one of the node is directing traffic to another part of the network, the model had difficulty

in identifying the other colluding node since it was only directing traffic to the base station

and was not doing anything malicious per se. This is depicted in Figure 4.10b. When only

one of the nodes is launching a wormhole attack, D-CENDA outperforms CENDA. This can

be accounted to the dynamic selection of critical nodes which results in looking out for the

107

more active malicious nodes.

5 10 15 20
80

85

90

95

100

Percentage Malicious Node

D
e
te

c
ti
o
n
 S

u
c
c
e
s
s
 R

a
te

 (
%

) CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(a) All Attacks Detection

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 P

o
s
it
iv

e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(b) All Attacks False Positive

5 10 15 20
0

5

10

15

20

Percentage Malicious Node

F
a
ls

e
 N

e
g
a
ti
v
e
 (

%
)

CENDA All Malicious Node

CENDA Critical Node

D−CENDA All Malicious Node

D−CENDA Critical Node

(c) All Attacks False Negative

Figure 4.11: All Attacks

The next set of simulations involved malicious nodes having equal distribution of all the

four attack types. The results for the same are shown in Figures 4.11a, 4.11b, 4.11c. In short

term analysis, i.e. when analyzing each round of camouflage event packets, it was difficult

to differentiate the sinkhole attack from selective forwarding. Analyzing the camouflage

packets over multiple rounds produced sufficient information to demarcate the same. The

results provided in Figures 4.11a, 4.11b, 4.11c are for five rounds of camouflage events.

108

On comparing the results of D-CENDA with CENDA, it is seen that the results are

improved while giving significant overhead savings by using a shortened relative address.

With dynamic adaptation on the selection of critical nodes, the nodes on high usage paths

are better protected. Hence, those nodes which are not selected as critical initially are

also covered for malicious node detection. Additionally, usage of progressive feedback in D-

CENDA impacts the critical nodes selected while incorporating real time information as seen

in Section 4.1.2.1. This further improves the ‘all malicious node’ detection in D-CENDA.

Additionally, the speed and computational benefit of using a bit-array over bloom filter can

be seen, although it consumes a little more memory.

The performance of D-CENDA is compared with the results from CHEMAS by Xiao et

al. [12] and with intruder detection algorithm by Ngai et al. [54]. The simulation results in

Figures 4.7a, 4.7b, 4.7c indicate that the performance is at par with the two methods while

having the advantage of being able to detect and differentiate multiple attack types at the

same time. Also, with CHEMAS [12], the success of detecting the malicious nodes drops

off drastically with the increase in the number of malicious nodes. For CHEMAS, in a 400

node network, the detection success percentage (in parenthesis) for the number of malicious

nodes 1(99%), 2(97%), 3(95%), 4(94%), 5(92%). It should be also noted that D-CENDA

is a proactive architecture, hence the probability of catching the malicious node without

any legitimate event packet loss is higher. The verification of the packet transmissions

from the neighbor node helps in drastically reducing false positives in the case of sinkhole

and selective forwarding attacks. Additionally, D-CENDA can prevent region segregation

malicious attacks. With regards to conserving energy, based on the requirement or attack

type anticipated, the verification part of the system can be turned on/off. As a by product,

the system is able to detect any dead nodes due to energy exhaustion or due to environmental

109

conditions.

4.7 Summary

D-CENDA is a proactive architecture to detect malicious nodes in the sensor network. It

can be used in complementary to an existing system and is controlled by the base station.

A mobile-node based camouflage event generator scheme is used to overcome the problem of

region segregation by malicious nodes trying to prevent event reporting packets from reaching

the base station. This is important in case of sporadic events, wherein the base station

cannot differentiate between non-occurrence and non-report of events. The camouflage event

based malicious node detection system uses a bloom-filter based verification procedure before

labeling a node malicious. A node-classification scheme based on the role and importance of

the node in the network is provided. A light weight path marking system using shortened

relative addresses to indicate the path traversed by the packet to reach the base station is

presented. Using our shortened relative address gives up to 25% address length shortening

compared to a relative address and over 60% address length shortening over using absolute

address.

The effectiveness of the system when the network is under different attacks such as

sinkhole attack, selective forwarding attack, sybil attack and wormhole attack is examined

using simulations and the results demonstrate this. Additionally, composite attacks of the

prior mentioned four attack types are also analyzed.

D-CENDA can identify close to 100% critical nodes under sinkhole attack, while iden-

tifying more than 93% of all compromised critical nodes in selective forwarding and sybil

attacks. The false positive rate (incorretly assuming a node as malicious) is high because

110

we aggressively mark nodes as a suspect with assurance that they will be released during

verification. D-CENDA can identify one of the two collaborating nodes under wormhole at-

tack. The other collaborating node in wormhole attack was only receiving the traffic from its

colluding partner and transmitting it to the base station, hence making it difficult to identify

it as malicious. If both nodes are directing traffic to different parts, we had 89% detection

success. Additionally, compared to existing systems, which identify attacks of single type,

D-CENDA can differentiate attack of four types and in future this can be further enhanced

to identify other attack types as well.

111

Chapter 5

Attacks on Cognitive Radio Network

In the chapters so far we have been primarily looking at data delivery security or providing

privacy to the data generating device. With the data having been secured, we will look

at improving the spectrum utilization of a special type of network called cognitive radio

mobile ad-hoc network (CR-MANET) in the presence of malicious users. The basic premise

behind increasing spectrum utilization is to have the cognitive devices make good decisions

even when under attack by malicious users. In cognitive radio network, the primary users

are the licensed users that have the prerogative to use the spectrum. The sole use of the

spectrum by the primary user has led to its significant underutilization. This prompted

the FCC to allow the secondary users to access the licensed spectrum in an opportunistic

manner, but without interfering with the primary user. The secondary users equipped with

a cognitive radio are allowed to use the spectrum only when it is idle, i.e. the spectrum

is not currently occupied by a primary user. In order to not interfere with the primary

user, it is important for the secondary users to correctly identify spectrum occupancy by

the primary user. This is a complex problem that is made difficult by signal fading and

hidden terminal problems faced by the secondary user. Akyildiz et al. detail in [57] how the

multi-hop architecture, dynamic changing topology, and the absence of a central authority

further adds to the complexity of efficient functioning of CR-MANET. Another problem

with being mobile is the limited amount of energy available to the device. The devices in

CR-MANET run on power supplied by a battery, which can last from a few hours to a

112

few days depending on the usage. Communication is one of the more resource intensive

operations by a CR-MANET device, which has resulted in the use of low power radios to

conserve energy which limits the transmission range. Hence, a solution for reliable spectrum

sensing should be energy efficient and have low communication overhead. As a recourse,

distributed cooperative spectrum sensing (DSS) to identify the presence of primary user

signals is gaining momentum because of its robustness against hidden terminal problem and

signal fading.

Reliable spectrum sensing and accurate data fusion for decision making are two important

requirements for the distributed cooperative secondary user network to function optimally.

Reliable spectrum sensing can be achieved by using a cooperative system collecting data from

many devices, while accurate data fusion is required to segregate erroneous and malicious

data and utilize only valid information in decision making. Invalid data can be spread by

the devices under three circumstances: First, due to device malfunction; such a malfunction

is called byzantine failure and by nature it occurs due to arbitrary failure of components.

Second, due to signal fading, or the device facing a hidden terminal problem. Third, false

spectrum information can be spread by devices with malicious intent. Such an attack is

called spectrum sensing data falsification attack (SSDF) [58]. The intent behind SSDF is to

force the data collector into making an incorrect decision about the primary user spectrum

occupancy. A malicious user may do this to either disrupt the network or with selfish

motives so that it can utilize the network for personal gains when the data collector makes

an incorrect decision.

An incorrect spectrum occupancy decision can cause two types of errors: one is a false

positive wherein the spectrum is identified to be occupied, but in reality the spectrum is

vacant. This error causes the spectrum to be non-utilized leading to reduction in throughput

113

of the secondary user network. The other type of error is the false negative in spectrum

detection, i.e. the spectrum is detected to be vacant while the primary user is transmitting

over the spectrum band. This error can lead to the secondary user signal colliding with

the primary user signal causing interference which is strictly prohibited and can lead to

strong ramifications. Hence, it is important to accurately identify the primary user spectrum

occupancy.

A network of mobile devices augments problems for distributed cooperative spectrum

sensing. One reason being the continuously changing neighborhood due to device mobility.

Another being the limited number of inputs available for attaining the final decision. Ad-

ditionally, some of these inputs will be inaccurate due to the problems specified earlier or

could be incorrectly reported on purpose by malicious users. A malicious users can hide its

mal-activity under the changing neighborhood, hence it is important to be able to validate

the inputs being used in the data fusion. We present three solutions to this problem. The

first solution is ‘Multi-fusion based Distributed Spectrum Sensing’ (MFDSS). The second

solution is called ‘Recursive Neighbor Validation’ (ReNVaS) and the third solution is called

‘Tight Medoid Clustering’ (TMC).

The organization of the chapter is as follows: The problem is defined in Section 5.1.

Section 5.2 presents the multi-fusion based distributed spectrum sensing methodology which

includes the framework and analysis (Section 5.2.2.1) and the results (Section 5.2.2.4). The

recursive validation and clustering schemes are discussed in Section 5.3. Related work follows

as Section 5.4 and finally the summary is presented in Section 5.5.

114

5.1 Network Model and Problem Statement

We first describe the network model and define the problem based on this model. The

network consists of two types of devices: the primary user and the secondary users. There

is one primary user that is licensed to use a particular spectrum. This primary user has a

powerful transmitter having a transmission range of up to 100 kilometers. The primary user

is represented as N . The secondary users are mobile ad-hoc devices that want to form a

network (MANET) with other mobile ad-hoc devices and opportunistically use the primary

user spectrum. The secondary users in the network are represented as nx where x uniquely

identifies each secondary user. The primary user is powerful and cannot be compromised.

Compared to a primary user, the secondary users have limited resources such as energy,

transmission range etc., and are prone to compromise. Also, being a MANET, the secondary

user network is spread over a few square kilometers.

The secondary users are equipped with a cognitive radio, which allows them to sense the

spectrum for the presence of the primary user signal. This is achieved by measuring the RSS.

If the spectrum is identified to be vacant, the secondary user can utilize the spectrum. The

secondary users being mobile and resource constrained, face the hidden terminal problem,

signal fading or byzantine failures which could cause the secondary user to make an inaccu-

rate spectrum occupancy detection. To overcome this, the secondary users use distributed

cooperative spectrum sensing which could introduce inputs from malicious secondary users

launching spectrum sensing data falsification attacks (SSDF). The malicious user launches

a SSDF attack to convince other secondary users into making an incorrect decision about

primary user spectrum occupancy.

The errors (intentional and unintentional) in reported signal (RSS) can be of three types:

115

signal measurement error, intentionally modified signal measurements reported by malicious

users, and incorrect measurement reported by devices due to byzantine failures. The de-

vices measure the signal in the spectrum which includes an error that can be caused by

signal fading, hidden terminals, or inferior sensors. The error e/2 is defined as a maximum

measurement error (in percentage) by a device, hence every device has a measurement error

between −e/2% and e/2%. The measured signal which is reported by device nx is repre-

sented as sx(t). Let s
∗(t) be the actual signal strength. The malicious devices report a signal

measurement with a maximum malicious modification of f% to the measured signal. Hence,

in addition to the error in the measured signal, the malicious devices modify the reported

signal as follows:

sx(t) = s∗x(t)± (s∗x(t) ∗ ((0 : e/2)± (0 : f/2))) (5.1)

A device undergoing byzantine failure will report a signal which can have up to 100% error

in it, but unlike a signal measurement reported by a malicious device, it is unintentional. It

can produce incorrect measurement with error greater than 100%, but in such cases those

inputs can be easily identified as outliers and removed from computation. Hence, we assume

the byzantine failure devices to have errors up to 100%.

sx(t) = s∗x(t)± (s∗x(t) ∗ (0 : 50%)) (5.2)

The goal of the malicious devices is to manipulate the data inputs so as to force incorrect

decision making by neighboring devices. If g∗(t) is the final decision by the neighbor ∗, the

goal of the malicious device is defined in Equation 5.3.

116

∀i where i ∈ {neighbor}, gi(t) = 1 when PU = 0

∃i where i ∈ {neighbor}, gi(t) = 0 when PU = 1

(5.3)

Goal: The network goal is to correctly identify the primary user spectrum occupancy

under signal fading, hidden terminal problems, byzantine failures, and in the presence of

malicious secondary users.

5.2 Multi-Fusion based Distributed Spectrum Sensing

MFDSS includes three steps, namely, sensing data fusion, reputation propagation and fusion,

and decision fusion. Unlike existing distributed schemes where a device presents only a local

decision to its neighbor, in MFDSS the device transmit the actual measured sensing data

to its neighbor. Collection of the actual data instead of a binary decision from its neighbor

allows the data collector to pre-process it prior to data fusion. MFDSS presents the ability to

detect extreme outliers and remove them before further processing. It is our understanding

that to catch byzantine failure you require information with much higher granularity than

having a binary decision information. Also, compared to centralized approaches, the amount

of data inputs is limited in CR-MANET, hindering the use of statistical methods requiring

large inputs. The effect of erroneous information due to SSDF attacks that escape detection

during outlier detection are suppressed using a reputation scheme. During this, the remaining

cohesive observations are weighed by their reputation and are fused to make a local decision

about the presence of primary user signal. This is the data fusion step. This local decision

data is exchanged with the neighbors and fusion of these decisions is performed to reach the

final decision. This step is the decision fusion. Although this entire process occurs locally at

117

one hop radius requiring only one hop communication, it incorporates sensing information

from two hop neighbors, thereby encompassing inputs from a larger area. The devices are

mobile leading to changing network topology and changes in neighborhood. To cater to

the changing dynamics, we present a reputation propagation and fusion method based on

the reputation of devices and the timestamp of the last update of the reputation. This has

three benefits: First, it provides an opportunity for devices to make robust decisions using

propagated reputation of new neighbors. Second, the reputation of a malicious device is

propagated which reduces its likelihood to hide its malicious activities under the changing

neighborhood. Third, it helps maintain the freshness of the reputation information.

5.2.1 Architecture and Working Model

Multi-Fusion based Distributed Spectrum Sensing (MFDSS) is a semi-global sensing data

collection scheme. The data collected in MFDSS is considered semi-global in regards to

the CR-MANET secondary user network and not with respect to the primary user network.

This data is fused and the intermediate resultant local decision is exchanged with neighbors

for further fusion to make a final decision. The data collected from neighboring devices may

contain incorrect or malicious elements that need to be fixed. We consider two important

aspects while dealing with incorrect data. First, remove any extreme points in the data set

using outlier detection. This takes care of incorrect data resulting from byzantine failures.

Second is to suppress any remaining malicious data caused by a SSDF attack using a rep-

utation mechanism. The reputation of the devices are maintained locally, but utilizing the

inherent feature of mobility of the devices, the reputation is propagated opportunistically.

MFDSS is a three step process consisting of sensing data fusion, reputation propagation and

fusion, and decision fusion. Table 5.4 lists the notations used in MFDSS.

118

Table 5.1: MFDSS Table of Notations

Symbol Definition
sm(t) Sensing results of device m at time t
lm(t) Data fusion result at device m
dm(t) Local data fusion decision of device m
gm(t) PU spectrum occupancy decision at m
rmi Reputation of device i at m
PET Primary energy threshold
F1[] Sensed energy data fusion
F2[] Decision inputs fusion
MRI Malicious reputation information propagation
FRI Freshness of reputation information metric

5.2.1.1 Sensing Data Fusion

The secondary user sense the environment for the presence of primary user signal which

can be of three types: energy detection, cyclostationary feature detection, or matched filter

detection [59]. We use energy detection. The reason to use energy detection is because the

secondary devices are not resource abundant in CR-MANET and the other methods require

larger amount of resources.

5

4

8

6

0

3

2 1

7
9

10

11

s
3
(t)

s
2
(t)

s

1
(t)

s
4
(t)

d
0
(t)

d
0
(t)

d
0
(t)

d
0
(t)

d
3
(t)

d
2
(t)

d
1
(t)

d
4
(t)

Figure 5.1: Multi-Fusion based Distributed Spectrum Sensing

119

Every secondary user collects the current sensed information from its immediate neigh-

bors. This is depicted in Figure 5.1 which has 12 secondary users. For clarity, we only

present one device performing the local data fusion, while in practice every secondary user

performs this operation. There are no separate decision centers and every device acts as a

decision center for itself. The secondary user 0 collects the sensed information at time t,

namely s1(t), s2(t), s3(t), and s4(t) from its neighbors 1, 2, 3, and 4 respectively. There are

two steps in the local decision making process. First, the secondary user needs to identify

any outliers if present. Second, the collected data is weighed into using the reputation of the

neighbor and used in the local decision making process.

During outlier detection and data fusion, the availability of the reputation value is a

criteria used by the device to decide whether the sensing input should be included in outlier

detection and data fusion. If the reputation of a neighboring device is not present, the device

is put in an incubation period during which the inputs are not incorporated in the decision

making process, but the device is given a reputation value based on their input and the final

decision. This incubation period impacts a device during initial network joining, but plays a

significant role in discouraging an adversary from taking different identities trying to avoid

bad reputation or performing an attack similar to sybil attack. For example, if device 0 did

not have reputation information about device 2, the input s2(t) will be excluded from outlier

detection and data fusion, and its decision d2(t) excluded from decision fusion (described in

Section 5.2.1.2) during the incubation period. This value s2(t) will be used as a basis for

updating the newly initialized reputation value of device 2 at device 0. It should be noted

that the device 2 is unaware whether its sensed result is used at device 0. This is because,

device 0 may not have reputation of device 2, but device 2 could have received reputation

information about device 0 through reputation propagation as discussed later in the section.

120

The length of the incubation period is selected randomly by the device and it ranges between

1 and φ time periods.

5.2.1.1.1 Outlier Detection The first step after collection of the energy samples from

the neighbors is to remove the extreme outliers. Although a reputation based mechanism is

good to suppress bad data, a device which has a good reputation but has failed recently can

survive feeding incorrect information till its good reputation wears out. Till then it adversely

impacts the local decision of the data collectors. Hence, outlier detection is required to

remove any extreme values before the data fusion. A detailed study of outliers in statistical

data is presented by Barnett et al. in [60].

There are two ways to handle outliers in a data set. One is to accommodate a modified

value of the outliers. The second way is to discard it from future computations. In a

cognitive radio network when neighboring devices detect and report PU signals which are

far different, it is better to discard these extreme outliers since the measurement of energy

values by immediate neighbors should not be too different. This can be done because we only

discard the extreme outliers while the effect of any mild outliers present will be suppressed

in further processing. To identify outliers we want a robust yet simple procedure to detect

them. If the number of outliers can be estimated and the contamination proportion (defined

as the ratio number of incorrect results to total sample size) is less than 0.21, we can use

sample kurtosis and significance tables provided by D’Agostino et al. [61] as in Equation 5.4.

This value of 0.21 only considers device failure rate as in this step we are looking at catching

incorrect inputs due to byzantine failures. The extreme outliers are generally caused by

byzantine failures and if the failure rate of the devices is known, the number of extreme

outliers can be estimated. This works well for small sample sizes [60] which is characteristic

121

of our secondary user model.

T =
n
∑n
i=1(si(t)−

˜s(t))4
[

∑n
i=1(si(t)−

˜s(t))2
]2 (5.4)

If we cannot estimate the number of outliers we propose to use the modified z-test made

famous by Iglewicz et al. [62] wherein the median and the median absolute deviation are

considered instead of the mean and the standard deviation respectively.

MAD(t) = ũ where u = {|si(t)−M(t)|}

Zi(t) = 0.6745 ·
(si(t)−M(t))

MAD(t)

(5.5)

For the collected data si(t), the median (M) and median absolute deviation (MAD)

are calculated as in Equation 5.5. The observations with absolute Zi score greater than

3.5 [62] are considered as outliers and will be discarded from further computations. Both

the methods are computationally inexpensive and suits well to function in a distributed CR-

MANET. A simplistic overhead non-intensive outlier detection works because in this stage

we are trying to catch only extreme outliers primarily caused by Byzantine failures.

5.2.1.1.2 Data Fusion Incorporating Reputation The remaining observations that

survived the outlier detection are used to compute the local decision for the presence of the

primary user signal. The reputation of the individual neighbor as maintained in the data

fusing device is used to weigh the data. Rm is the reputation set maintained at a secondary

user m. Rm = {rmi, tmi}, where rmi is the reputation of secondary user i maintained by

secondary user m, tmi is the latest time period when rmi was updated. If s1(t), s2(t), ...,

sx(t) is the final set of observations and rm1, rm2, ..., rmx are neighbor devices corresponding

122

reputation values belonging to a set Rm. The weights for each observation are calculated as

in Equation 5.6.

wmj =
rmj
x
∑

i=1
rmi

⇒

x
∑

i=1

wmi = 1

lm(t) =
x
∑

i=1

si(t) · wmi

(5.6)

The weighted mean and standard deviation for energy samples is calculated. The hy-

pothesis to test for presence or absence of primary user occupation can lead to two types of

errors with each type having a cost associated with it. The first type of error occurs when

spectrum is identified as occupied by PU, when in reality the spectrum is unoccupied. This

error reduces the efficiency of spectrum utilization by the secondary user but does not impact

the primary user. The second error is the local decision being a vacant spectrum while the

primary user is occupying the spectrum. This error is critical since it can interfere with the

spectrum usage by the primary user which is strictly prohibited by the FCC. With this in

consideration, we develop the hypothesis utilizing two primary energy thresholds (PET).

H0 : (lm(t) < PET2) OR

((PET2 ≤ lm(t) ≤ PET1) AND (σ < EDT))

H1 : Otherwise

(5.7)

EDT is the energy deviation threshold. The two primary energy thresholds are PET1 and

PET2 where PET2 < PET1. The two primary energy thresholds will vary vastly depending

on the distance of the CR-MANET from the primary user location and are closely bound

to the error in the sensing measurement. The PET2 is a hard threshold below which the

123

spectrum is identified to be unoccupied, but to be certain and to provide resiliency to non-

interference with the PU, if the spectrum energy is estimated to be borderline (between PET1

and PET2), we verify the deviation in the inputs before marking the spectrum vacant. This

is required to prevent a few mild outlier inputs impacting and producing a false-negative

final decision. The final decision on the occupancy of the primary user is defined by the null

hypothesis indicating the absence of PU occupancy (dm(t) = 0) and is depicted in Equation

5.7.

5.2.1.2 Decision Fusion

The local decisions computed by each device is broadcast to its neighbors. After collecting

the local decisions, each device performs a fusion over it to reach the final decision. MFDSS

does this to incorporate the measurement by devices over two hops as compared to just one

hop. This gives the devices inputs’ over a larger area of sensed measurements. Figure 5.2

depicts an example scenario of how this is established. In the example, F1[x] is a data fusion

function over energy measurement inputs x as depicted in Section 5.2.1.1 and is a fusion

process using Equations 5.6, and 5.7. Similarly F2[x] is fusion over the local decision inputs

x. gm(t) is the final decision on the occupancy of the spectrum by the primary user by device

m at time t.

Consider the case of device 3 in the example depicted in Figure 5.2. It is immediate

neighbors with devices 2 and 4 while it is two hop neighbors with devices 1 and 5. The

first data fusion on energy samples by three devices is given in Equation 5.8. The result is

exchanged by the neighboring devices and the final result calculated by device 3 is shown in

Equation 5.9.

124

4 5 3 2 1

s1(t) s2(t) s3(t) s4(t)

s2(t) s3(t) s4(t) s5(t)

d1(t) d2(t) d3(t) d4(t)

d2(t) d3(t) d4(t) d5(t)

 Data

Exchange

 Decision

Exchange

Figure 5.2: Decision Fusion Example

d3(t) = F1[s2(t), s3(t), s4(t)]

d2(t) = F1[s1(t), s2(t), s3(t)]

d4(t) = F1[s3(t), s4(t), s5(t)]

(5.8)

g3(t) = F2[d2(t), d3(t), d4(t)]

≈ F2[F1[s1(t), s2(t), s3(t), s4(t), s5(t)]]

(5.9)

It is seen that the final data fusion occurs over two hops giving us an area coverage of up

to 9 times that achieved by a solo device taking decisions independently. When considering a

MANET which is spread over a few square miles, this additional primary user signal sensing

reach is significant especially in overcoming signal fading and hidden terminal problems.

Additionally, it must be noted that all communication occurs between one-hop neighbors

only. In MFDSS, to keep it light-weight and simple, we use majority fusion for making the

final decision as in Equation 5.10.

125

gm(t) =

1 if
∑

(dx) > (count(dx)− sum(dx))

0 otherwise

(5.10)

Quantitatively, this decision making process is robust as it considers much larger set of

inputs from devices. Let each device have a neighbors. In a 2 hop radius the number of

neighbors are (a · (a − 1)). If the neighbors have b common neighbors, the total number of

devices in the final decision process is (a · (a− 1))− (a · b). Simulating a 200 device network

spread uniformly over 2000 × 2000 area with a communication range of 250m, the average

number of one hop neighbors is 9 and the average number of two-hop neighbors is 23. We

show in Section 5.2.2, how the additional inputs from the two hop neighbors along with

reputation propagation makes MFDSS robust.

5.2.1.3 Reputation Management

Robust maintenance of reputation in a CR-MANET is as important as the actual sensing

data collected. There has been a large amount of research on reputation management in

MANET, P2P networks and also at the application layer such as in eBay. The primary goal

of reputation mechanisms in MANET and P2P systems is to gather reputation information

involving packet forwarding or delivery which is a visible and measurable entity. For example,

a packet forwarded is overheard by another device which can vouch for the device forwarding

packets (watchdog mechanism). In case of cognitive radio devices, the reputation is awarded

based on the reported values of the spectrum measurement which cannot be easily verified

as this value is affected by the environment. Our reputation propagation scheme inherits

characteristics from the transitive property of Eigen-trust algorithm in P2P networks [63]

where if a device i trusts a device j, i will trust the devices j trusts; and the trust management

126

using maturity based model [64]. The principles of maturity based model is used in the

reputation propagation.

With regards to reputation, there are two types of devices, the assessor device and the

assessed device. The assessor device maintains the reputation value of the assessed device.

It should be noted that in MFDSS every device is an assessor of reputation of every other

device. Reputation management consists of two parts. One, the reputation calculation

wherein the reputation of the assessed device is calculated based on its input data and the

final decision by the assessor device. The other is the proactive propagation of reputation.

Algorithm 4: Reputation Calculation

if si(t) < PET2 then
di(t) = 0

else
di(t) = 1

if si(t) /∈ outliers then
if di(t) == gm(t) then

rmi = rmi + 1
else

if dm(t) == gm(t) then
if gm(t) == 0 then

rmi = rmi - 1
else

rmi = rmi - 2

else
rmi = rmi − 1

timemi = t

5.2.1.3.1 Reputation Calculation The reputation of the neighborhood devices are

updated as depicted in Algorithm 4. m is the device-id of the assessor device and i is the

device-id of a neighbor. si(t) is the value of the report from the neighbor device i. dm(t)

is the local sensing decision and gm(t) is the final decision at device m. Let rmi be the

current reputation of device i at device m. A device reporting an outlier value is penalized

127

by reducing its reputation value by 1. A device reporting a value corresponding to non-

occupancy of the spectrum by PU, but the fusion result is PU presence, it is penalized more

for the false-negative input compared to a false-positive. A false-negative on PU occupancy

can lead to interference with the PU spectrum usage. Such interference is unacceptable

given the FCC guidelines while compared to a false-positive which may only reduce the

opportunity of the SU to utilize a vacant spectrum.

5.2.1.3.2 Reputation Propagation The secondary users are mobile and the neighbor-

hood changes frequently. The new neighborhood of the user will consist of some secondary

users that were neighbors at an earlier time period and some new users who become neighbors

for the first time. Additionally, the reputation information of some devices could be obsolete

and may need to be updated. To improve the efficiency, we use a reputation propagation

mechanism in which a device will import the reputation information from a neighbor if the

reputation of the neighbor as seen by this secondary user is above the reputation threshold

(τ) and the reputation value is fresh i.e. the reputation was updated in the last γ time-

periods. On receiving the reputation information, device m performs a fusion operation on

all the reputation sets it received. The fusion operation performed is depicted in Equation

5.11.

rmi =
〈

rpi
〉

| ((t− tpi < γ) AND (rmp > τ))

tmi =
⌊〈

tpi
〉⌋

| ((t− tpi < γ) AND (rmp > τ))

(5.11)

5.2.2 Analysis and Results

In this section we analyze the ability of MFDSS to withstand different attacks and handle

incorrect information propagated due to byzantine failures or hidden terminal problems. It

128

is generally accepted that incorporating any security feature in a CR-MANET will incur

some overhead. Hence, we analyze the additional overhead due to the scheme and present

its justification. The security analysis involves studying the impact of the different attack

scenarios as well as the ability of the devices to withstand byzantine failures. For this purpose

we simulated CR-MANET in Matlab. The secondary user network is spread over an area of

2000× 2000 meters and the number of secondary users varied as 50, 100, 150, and 200. The

devices are loosely time synchronized and stay at a location for 10 time units before they

move to a randomly selected location within a distance of 250meters. We run the simulation

for 1000 time units. The presence of the primary user follows a beta distribution [65]. This

gives us a realistic model to study the malicious activity given the primary user presence

following a real-world distribution. We first present the MFDSS analysis, then overhead

analysis followed by parameter analysis, and finally the simulation results.

5.2.2.1 MFDSS Analysis

There is research which considers the usage of cognitive radio networks in a mobile ad-

hoc network but without considering the mobility aspect of the devices. The aspect of not

considering mobility while solving a CR-MANET problem is a very strong assumption which

is not acceptable since mobility of devices leads to changing neighborhood. Any form of a

reputation system in a continuously changing topology will fail as it allows the malicious

devices to hide behind the changing neighborhood. Hence, we first analyze the probability

of malicious devices to hide behind the changing neighborhood.

5.2.2.1.1 Malicious Reputation Information Propagation The total number of sec-

ondary devices is set to 50, 100, 150, and 200, while there is only one malicious device. Every

129

device except the malicious device moves a random distance up to 250 meters, but the ma-

licious device always moves 250 meters to get as far away from the current neighborhood

as possible. This is done for the cases with traditional reputation maintenance systems and

compare it against MFDSS.

Figure 5.3 presents the proportion of neighbors having reputation information about the

malicious devices called Malicious Reputation Information (MRI). We define MRI as the

percentage of neighboring devices aware of the correct reputation of the malicious device.

The MRI metric indicates how easily a malicious device can hide in a neighborhood with a

lower value representing higher success. It can be clearly seen that in a CR-MANET with

mobility, propagating the reputation of the devices tremendously reduces the possibility

of the malicious devices hiding behind the changing neighborhood. Figure 5.4 depicts the

same scenario as MRI, but shows the number of devices in the network that are aware of

the presence of the malicious device in the network. It shows the availability of malicious

device’s reputation information at other devices. It can be seen that MFDSS does very well

compared to a non-propagating reputation scheme.

5.2.2.1.2 Freshness of Reputation Information The freshness of reputation informa-

tion (FRI) metric is important since a device may have received bad reputation for incorrect

sensing due to signal fading or hidden terminal problems and not due to any malicious be-

havior. Unlike a static network, since the devices move in CR-MANET, the issues due to

hidden terminal and signal fading can change and the devices may be able to attain valid

sensing results thereby improving their reputation. In reputation non-propagation schemes,

a device may contain the reputation but it could be stale. An incorrect stale reputation

is worse than having no reputation at all. Figure 5.5 presents the percentage of average

130

Figure 5.3: Malicious Neighborhood Information

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

160

180

200

Number of Runs

#
 o

f
D

e
v
ic

e
s
 h

a
v
in

g
 M

a
lc

io
u
s

D
e
v
ic

e
‘s

 I
n
fo

rm
a
ti
o
n

50 Devices, No Propagation

50 Devices, MFDSS

100 Devices, No Propagation

100 Devices, MFDSS

150 Devices, No Propagation

150 Devices, MFDSS

200 Devices, No Propagation

200 Devices, MFDSS

Figure 5.4: Malicious Device Information

131

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Number of Runs

%
 F

re
s
h
 R

e
p
u
ta

ti
o
n
 I
n
fo

rm
a
ti
o
n

50 Periods, MFDSS

50 Periods, No Propagation

75 Periods, MFDSS

75 Periods, No Propagation

100 MFDSS

100 Periods, No Propagation

Figure 5.5: Freshness of Reputation Information

FRI metric in the network with MFDSS reputation propagation scheme as compared to a

reputation non-propagation scheme. There are three freshness values considered 50, 75, and

100 units. When considering 50, if a device has reputation information which is older than

50 time units, then it is considered stale. We can see from the figure that in a reputation

non-propagation scheme, the overall freshness of the information deteriorates very quickly.

While considering information up to 100 time periods old as fresh, in MFDSS more than

95% of reputation information is fresh.

5.2.2.1.3 Malicious Neighborhood Probability The multi-fusion model covers a

larger area that adds significantly to the resiliency of distributed sensing under device fail-

ures and attacks. Consider a network of n devices. Let p be the percentage of malicious

devices. The total number of malicious devices is p·n
100 . In a simple majority scenario, if the

132

5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage Malicious Devices

M
a
jo

ri
ty

 M
a
lic

io
u
s
 N

e
ig

h
b
o
rh

o
o
d
 P

ro
b
a
b
ili

ty
One Hop Neighbors

Two Hop Neighbors

Two Hop Neighbors, Inputs from One Hop

Figure 5.6: Malicious Neighborhood Probability

number of malicious devices are greater than half the inputs for fusion, it results in a wrong

decision. Let s be the average neighborhood size, then the probability of having greater than

s/2 malicious devices in the neighborhood is
∑s
m=s2

(
n·p
100
m)·(

n−
n·p
100

n−m)

(ns)
.

The results for a network with 200 devices spread over an area of 2000 × 2000 meters

with a communication range of 250 meters was simulated and found to have an average

neighborhood of 9 devices and a two hop neighborhood of 23 devices. To have a complete

influence when considering a majority fusion, there needs to be greater than half the devices

that are malicious. So, when considering one hop neighborhood, the number of malicious

devices should be 5 or more and when considering two-hop neighborhood, it should be 12

or more. Figure 5.6 presents the results of probability of occurrence of malicious devices in

either one-hop or two-hop neighborhoods.

The plot for one hop neighbors in Figure 5.6 shows the probability of finding 5 or more

133

malicious devices in a one-hop neighborhood for a random distribution of devices. The two

hop neighbors plot shows the probability of finding 12 or more malicious devices in a two hop

neighborhood. We see that considering a two-hop neighborhood definitely provides a higher

resiliency against malicious SSDF attacks. The devices are all mobile and although we do

not consider a collaborative attack model, it is interesting to consider if the malicious devices

can collaborate with other malicious neighbors and the malicious devices could all move in to

one hop neighborhood so as to gain a majority strength and dupe a good device into making

a wrong decision. We calculate the probability of finding enough malicious devices within a

two hop neighborhood so as to be able to gain a majority in a one-hop input scenario and

see that any model based on just collecting inputs from one hop neighbors will deteriorate

drastically as the number of total malicious devices in the system increases. This result is

plotted as ’two hop neighbors, inputs from one hop’ in Figure 5.6.

5.2.2.2 Overhead Analysis

In overhead analysis we consider the additional overhead required by MFDSS on top of the

regular overhead needed for a practical functioning of CR-MANET. This would encompass

the following steps leading to additional overhead.

5.2.2.2.1 Sensing Data Exchange and Fusion In the most basic CR-MANET, where

each device senses and makes decisions by itself, there is a possibility for the device to make a

wrong decision due to the following factors: incorrect sensing due to fading, hidden terminal,

etc. Hence, the basic CR-MANET for comparison with MFDSS uses distributed spectrum

sensing, but only considers fusion of the decisions from the immediate neighborhood devices.

When considering the decision instead of actual sensed value under byzantine failure of

134

the devices, the device is still correct 50% of the cases i.e., if a device randomly responds

with a PU-present or PU-absent decision without any malicious intentions, it is still correct

50% of the times. This becomes critical when PU presence is reported as PU-absent. The

probability of catching and marking a result due to byzantine failure is high in MFDSS since

we do not lose granularity of information collected which would happen when reducing it to

a binary value. It should be noted that when considering just this step, there is no additional

overhead.

5.2.2.2.2 Reputation Data Exchange and Fusion Correct and up to date reputa-

tion management of the devices is important for proper functioning of the model and this

incorporates overhead in the form of storage space, exchange of reputation information, and

the fusion process. In our model, we consider storing two parameters (reputation and times-

tamp) for each device with reputation parameter taking a byte while the timestamp is 2 bytes

long. The device-id is 2 bytes long. Hence, in a n device network, each device may need

to store at worst 5 · (n− 1) bytes of reputation information. Even if the number of devices

increases, this storage space only increases linearly. This is not an issue for mobile devices

with laptop or a tablet PC form factor, but when considering resource constrained devices

like smartphones, GPS, personal digital assistant, etc., this increase in storage space require-

ment can be detrimental, but still workable since even a 1000 device network (considered

large for CR-MANET) only requires 5KB of storage space.

The next factor to consider is reputation propagation and the overhead involved. The

number of times the reputation set gets exchanged depends on the mobility of devices.

We would like to note that the reputation set is only exchanged between one hop neighbors,

hence a device reaching a new neighborhood can broadcast its reputation set to its neighbors.

135

Additionally, the reputation set can piggyback the sensing data packet as a device will only

require this reputation set before performing a sensing data fusion, thereby eliminating the

overhead for reputation propagation.

5.2.2.2.3 Decision Exchange and Fusion The research studies so far consider only

one fusion, be it the sensing data fusion or decision fusion. MFDSS gathers information

over a much larger area, thereby providing resiliency against hidden terminal and signal

fading. The overhead involved in performing such a fusion can be considered additional and

when compared to a single fusion model it is double. When comparing the overhead with a

centralized model, where each device responds back to the base station (central authority),

it is still less because, even as the network grows, the exchange of information happens only

between one hop neighbors in MFDSS. In the centralized approach the number of hops the

packet travels is governed by the path length which grows with network size. Also, each

device consumes the same amount of energy, hence having fairness in energy consumption

compared to the centralized approach in which the devices on the high traffic path will

expend more energy forwarding packets. All the three exchanges are broadcast over one hop

only. Hence, not considering the actual time the transmitter has to transmit (depending on

the data length in the packet), we can assume the three transmissions to consume energy

of the same order (let this be EX). Also, the sensed data transmission and reputation

set transmission can be achieved in the same packet. This gives us the total transmission

overhead of 2 · EX , which is twice that of basic CR-MANET.

136

Table 5.2: Energy Measurement Range for Different Error Rates

Error (%) Primary User Absent Primary User Present
10% [0, 1.1 ∗ ǫ] [0.9 ∗ ǫ, 2 ∗ ǫ]
20% [0, 1.2 ∗ ǫ] [0.8 ∗ ǫ, 2 ∗ ǫ]
30% [0, 1.3 ∗ ǫ] [0.7 ∗ ǫ, 2 ∗ ǫ]
40% [0, 1.4 ∗ ǫ] [0.6ǫ, 2 ∗ ǫ]

5.2.2.3 MFDSS Parameter Analysis

We performed simulations with varying parameter values to study their impact on the per-

formance of MFDSS. There are two primary energy threshold values in MFDSS. Primary

energy threshold-1 (PET1), which is the higher cut-off parameter is used to ascertain the

presence of the PU signal. Primary energy threshold-2 (PET2) parameter is instrumental

in deciding the vacancy of the spectrum and plays a more critical role than PET1 since an

occupied spectrum if resolved to be unoccupied by the secondary user can result in interfer-

ence with the PU which is not acceptable. Hence, we study the impact by varying the PET2

values while keeping all the other parameters constant. PET1 was set a value of 1.1 ∗ ǫ, and

an error rate of 10%, where ǫ is the energy threshold. The values for PET2 was varied as

follows: 0.8∗ǫ (ǫ−2), 0.9∗ǫ (ǫ−1) ,ǫ, 1.1∗ǫ (ǫ+1) wherein, when the value of PET2 is 1.1∗ǫ

it is equal to PET1. The number of malicious devices was also varied as 10%, 20%, 30%,

40% and the results are plotted in Figure 5.7. The malicious devices respond with random

energy value within the error bounds for the sensing data input and since we are studying the

impact of PET2, the decision input from the malicious device is the decision fusion result.

It can be seen that MFDSS performs the best when the PET2 value is ǫ − 1 which can be

attributed to the error amount 10% in reporting the values by the neighborhood devices.

To study the performance correlation between the error in signal strength measurement

to the primary energy threshold values we varied the PET2 values as 0.7 ∗ ǫ (ǫ− 3), 0.8 ∗ ǫ

137

40

50

60

70

80

90

100

Primary Energy Threshold−2

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

ε−2 ε−1 ε ε+1

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.7: Primary Energy Threshold Sensitivity

40

50

60

70

80

90

100

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Primary Energy Threshold−2
ε−3 ε−2 ε−1 ε

Measurement Error 10%

Measurement Error 20%

Measurement Error 30%

Measurement Error 40%

Figure 5.8: PET with 10% Malicious Devices

138

40

50

60

70

80

90

100

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Primary Energy Threshold−2
ε−3 ε−2 ε−1 ε

Measurement Error 10%

Measurement Error 20%

Measurement Error 30%

Measurement Error 40%

Figure 5.9: PET with 30% Malicious Devices

(ǫ − 2), 0.9 ∗ ǫ (ǫ − 1),ǫ (PET1 value set at 1.1 ∗ ǫ) while varying the error rate in the

measurement as given in Table 5.2. We performed it for different amounts of malicious

devices (10%, 20%, 30%, and 40%) and saw a similar trend in all four cases. We present

results for 10% and 30% malicious devices as depicted in Figures 5.8 and 5.9 respectively.

It can be seen that the primary energy threshold value has a strong correlation with the

measurement error and is not dependent on the amount of malicious devices. For example,

in Figure 5.8, we get the most accurate spectrum sensing for PET2 value of 0.8 ∗ ǫ when

the measurement error is 20%. Hence, if the amount of measurement error can be estimated

(out of scope of this thesis) which is generally dependent on the enviromental factors and

the measuring sensor, the PET2 value can be set accordingly.

139

5.2.2.4 Results

We simulate the functioning of MFDSS under different attack scenarios. The number of

devices is 200, and the devices move every 10 time-periods to a random destination within

250 meters.

Table 5.3: Malicious Attack Scenarios

Sensing Data Input Decision Input
Report energy value of PU signal absence PU absent (0)
Report energy value of PU signal absence PU present (1)
Report energy value of PU signal absence Data fusion result
Report energy value of PU signal presence PU absent (0)
Report energy value of PU signal presence PU present (1)
Report energy value of PU signal presence Data fusion result

Report random energy value PU absent (0)
Report random energy value PU present (1)
Report random energy value Data fusion result

MFDSS incorporates three fusion phases: data fusion, decision fusion, and reputation

fusion. The malicious devices could present an incorrect input to the data fusion phase, or

the input to decision fusion could be with malicious intent. The different combination of

attacks studied is depicted in Table 5.3. The table features two columns, the first column

(sensing data input) corresponds to the sensed input provided by the malicious devices to its

neighbors. This can be of three types, namely, PU signal always absent, PU signal always

present, and a random value. The second column or the decision input corresponds to the

decision value a malicious device shares with its neighbor and it can be PU always absent,

PU always present, or the actual data fusion result.

The first set of results we present compares the performance of the outlier detection

strategy when strong outliers are present due to Byzantine failures. In the Figure 5.10 we

present two cases based on if the byzantine failure rate can be estimated. For this purpose

140

we varied the Byzantine failure rate between 2% and 10% in increments of 2%. It is seen

that the sample Kurtosis method performs slightly better than the modified z-test when

the estimate can be done while the modified z-test performs better in the case when the

Byzantine failure rate cannot be estimated. For the remaining of the results, we assume that

the byzantine failure cannot be estimated and hence use modified z-test.

2 4 6 8 10
80

84

88

92

96

100

% Byzantine Failure Rate

%
 B

y
z
a
n
ti
n
e
 F

a
ilu

re
 D

e
te

c
ti
o
n
 A

c
c
u
ra

c
y

Sample Kurtosis with estimation

Modified Z−index

Sample Kurtosis no estimation

Figure 5.10: Byzantine Failure Outlier Detection

The number of malicious devices is varied between 10% and 50%, with up to 2% of all

devices undergoing byzantine failure. A device undergoing byzantine failure could be either

a good or a malicious device. A malicious device also performs a sybil attack and changes its

identity with 30% probability every 100 time periods. The simulation is run for 1000 time

periods and the devices move randomly every 10 time periods. The results of the simulation

is presented in Figure 5.11. We also did some simulations with number of malicious devices

under 6%, but do not present the results as the detection accuracy is upwards of 99% and

141

close to 100% for such cases. The results show that when the malicious users are 30% or

lower, we have better than 83% detection accuracy and after that as the number of malicious

users increase, the detection accuracy reduces but gracefully with having better than 65%

accuracy even when the number of malicious users is 50%. The detection accuracy starts

degrading faster when the number of malicious devices are greater than 50%.

10 20 30 40 50
30

40

50

60

70

80

90

100

% Malicious Devices

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y

PU Absent, PU Absent

PU Absent, PU Present

PU Absent, Valid

PU Present, PU Absent

PU Present, PU Present

PU Present, Valid

Random PU, PU Absent

Random PU, PU Present

Random PU, Valid

WSPRT

Figure 5.11: Spectrum Detection Accuracy

The Figure 5.11 shows the results of MFDSS compared with WSPRT model by Chen

et al. [66, 67] and we see that MFDSS outperforms WSPRT by a wide margin. When the

number of malicious devices are greater than 30%, we see a drastic drop in performance of

WSPRT. This is because in its current form, WSPRT is not completely suited to a CR-

MANET. WSPRT calculates apriori probability for miss detection and false positives based

on the device location and uses the path loss model depending on the environment which

may not be accurate. Second and a more important factor is the reputation of the device and

142

number of samples required. Due to the mobility of the devices, in WSPRT the secondary

user does not have enough opportunity to collect the samples from devices about which it

had reputation information, thereby impacting the results tremendously. The third factor

impacting the performance of WSPRT was the ability of the malicous device to change

identity to appear as a new device and take advantage of non-availability of reputation

information with the SU device in WSPRT. These factors are addressed in MFDSS which

shows in the resiliency of results especially when the number of malicious devices are high

(close to 50%) and degrades gracefully beyond that.

5.3 Recursive Validation and Clustering for Distributed

Spectrum Sensing

In the recursive validation method every device maintains a virtual cluster of all the devices

with which it has been neighbors with in the past. The set of devices in the virtual cluster

are used to validate the input from the neighborhood devices before they are incorporated

in the decision cluster. In the tight medoid clustering scheme, the inputs from the neighbor

are recursively clustered to find the tightest bound set of inputs and these get added to the

decision cluster. Since the neighborhood changes frequently, the medoid clustering scheme

may not incorporate any reputation information. The data in the decision clusters are fused

to make a decision about spectrum occupancy. We present two fusion algorithms: non-unified

data fusion and unified data fusion. Results for two types (based on different dynamism) of

networks is presented to verify the performance of the model. ReNVaS performs well in a

network with low churn but the performance falls when the network memberships changes

frequently. Non-unified and unified fusions using ReNVaS and TMC give better performance

143

Table 5.4: ReNVaS Table of Notations

Symbol Definition
nx Secondary user x
s∗x(t) True signal strength at device x at time t
sx(t) Sensing results of device x at time t
e Measurement error
f Malicious device signal modification
lx Neighborhood list of device x
V Cx Virtual cluster of x
DCx Decision cluster of x
V Li Validity List of i
∇ Min neighbors for validation

in a high churn network with unified fusion keeping the false negatives in spectrum detection

to a very low value.

5.3.1 Recursive Validation and Clustering Schemes

The basic idea is to provide a low cost yet highly efficient cooperative scheme to make a

correct decision in a completely distributed manner under poor environmental conditions,

presence of malicious devices, and byzantine failures. We present two device input selection

strategies that will be used in the decision making process. The first method is called

recursive neighbor validation scheme (ReNVaS) and the second method is called tight medoid

clustering (TMC). ReNVaS uses past neighbor information to form a virtual neighborhood

cluster that is used to validate the current inputs. The tight medoid clustering strategy uses

the partitioning around medoid clustering algorithm recursively in order to find the tightest

bound set of inputs. The resultant set of device inputs from the two methods is called the

decision cluster. Following this, we present two data fusion methods utilizing the decision

cluster to make an accurate decision in a distributed manner.

144

5.3.1.1 Recursive Neighbor Validation Scheme

In a CR-MANET, the devices are mobile resulting in continuously changing neighborhood.

This presents situations in which many devices in the neighborhood are either unfamiliar

or have not been a neighbor in a long time resulting in the information provided by these

devices to be unreliable. To solve this unfamiliarity scenario we present forming virtual

neighbor clusters. The purpose of members of this virtual neighbor cluster is to provide

validation to the inputs.

5.3.1.1.1 Virtual Neighbor Cluster The virtual neighbor cluster is a device cluster

set maintained at each device that comprises of the neighborhood devices with which the

device came in contact with during its movement through the network. This virtual neighbor

cluster set continuously changes due to the mobility of the devices. The virtual cluster at a

device is represented using a m-tuple where each entry represents a set of information about

each device in the virtual cluster. A virtual cluster set at a device x is represented as follows:

Cx =(cx1, cx2, cx3, ..., cxm)

Where cxm = (dm, rm, tm)

(5.12)

where dm is the device-id of device m, rm is the reputation information of device m as

seen by this device, and tm is the time-stamp of the last update about the reputation of

device m.

Maintaining the virtual neighbor cluster The devices are mobile and they move around

in the network area. As the device navigates through the network it comes in contact with

a number of devices. These devices with which it comes into contact can belong to one of

the two types. The first type is of devices which are new neighbors and are coming into the

145

vicinity of each other for the first time. When this happens it adds a new tuple to its virtual

cluster as follows:

Cx =Cx + cxm

Where cxm = (dm, 1, CurrentT imestamp)

(5.13)

The second type is when it comes across devices which were neighbors in the past. These

devices already have an entry in the virtual cluster and it is updated as follows:

Cx[m] =(dm, rm + (−1)q, CurrentT imestamp)

where q = 0 if sm(t) = FinalDecision

q = 1 Otherwise

(5.14)

Over the period of time there will be memberships in the virtual cluster that become stale.

Those stale tuples are not discarded immediately but they will be utilized for validation only

if the timestamp is within a set number of past time periods.

5.3.1.1.2 Decision Cluster The decision cluster is a set of inputs collected at a device

based on the reports that it receives from the neighboring devices. The purpose of forming

a decision cluster is to shortlist a subset of device inputs which will be used to perform the

fusion and make a decision on the primary user presence. All devices sense the spectrum for

primary user signal. This primary user signal measurement is exchanged with the neighboring

devices. So, along with its own signal measurement every device has the inputs from its

neighbors.

We have two types of devices: the requester device and the validated device. The re-

quester device is the device that is currently collecting the inputs from all the neighbors, and

146

5

4

8

6

0

3

2 1

7
9

10

11

(s3(t), l3)

(s2(t), l2)
(s1(t), l1)

(s4(t), l4)

Figure 5.12: Recursive Neighborhood Validation

the validated devices are its neighbors considered one at a time. In the recursive neighbor

validation scheme each input report is validated using the neighbor reports belonging to the

validated device which are in the virtual neighbor cluster of the requester device. In the

first step, the requester device request inputs from its neighbors. The neighboring device

provide their primary user signal energy measurement inputs along with the device infor-

mation (device-id’s) about their immediate neighbors. On receipt of this information, the

requester initiates a dialog with the devices in the neighbor list provided by the validated

device provided they satisfy the following conditions: The device should be in the virtual

neighbor cluster of the requester device and the reputation and last time of update of the

device should be within the parametric threshold values as seen by the requester device. A

malicious node could do a selective forwarding attack and may try to only forward those

neighbor device information whose measurements concur with its own measurement. There

is a good possibility that those devices whose measurements concur with the validated de-

vice are malicious and have poor reputation information at the requester device or have no

147

reputation. In either case, such devices will not be polled to provide their measurements to

validate the device input. Hence, such a selective forwarding attack will fail.

Consider the network shown in Figure 5.12. There are 12 devices and each of the device

will be performing the formation of decision cluster. For ease of understanding, we present

the decision cluster formation for device 0. It receives the spectrum sensing information

from all neighbors and the neighborhood set of each neighbor respectively. In this example,

device 0 receives the following information from device 3: (S3(t), l3) where l3 = (0, 8, 9, 10).

Algorithm 5: Recursive Neighborhood Validation

Input: n → all secondary users
for nx ∈ n do

Sense spectrum for PU signal measurement (sx(t))
Exchange sx(t) and lx(self neighborhood list) with neighbors
for each neighbor ni of nx do

NumRecursion = 1
FailValidity(ni) = 1
while ((FailValidity(ni)) AND (NumRecursion <= RecursionThreshold)) do

for each ny ∈ li do
if ny ∈ V Cx then

if ny is good then
V Li = V Li + ny

// CheckValidity(ni, V Li) in Algorithm 6

if CheckValidity(ni, V Li) then
DCx = DCx + ni
FailValidity(ni) = 0

else
FailValidity(ni) = 1
NumRecursion = NumRecursion + 1
li = li + NumRecursion-hop neighbors of ni

Upon receiving the information, device 0 requests the sensing information from those

devices in l3 for whom there is information in the V C0 and the reputation information as

maintained is above a set threshold level and the tuple is not stale. If the conditions are

met, the requester device asks for the energy measurement input and its neighborhood list

148

from the device. In the example, it will be from devices 8, 9, and 10 (device 0 being itself).

This process is repeated for all the devices in the neighborhood list provided by the neighbor

device. This subset of devices which satisfy the conditions are used to substantiate the input

from the validated device. It is particularly important to use the neighborhood information

to validate each input because devices which are further apart may see different readings

due to signal fading or obstruction. If the input is validated, it is added to the decision

cluster. If the input is not validated, a second round of inputs is gathered to validate the

input from the neighbor which encompasses 2-hop neighbors. This process is repeated until

the input is validated or we reach the recursion threshold. The recursion threshold is the

maximum number of recursions performed to validate a neighbor. The process of decision

cluster formation and input validation is presented in Algorithms 5, and 6.

Algorithm 6: Check Validation

Input: ni → validated device
V Li → Validating list for device i
M̄i = Mean of (si(t), s{V Li}

(t))

σi = Standard Deviation of (si(t), s{V Li}
(t))

if (si(t) < M̄i + σi) AND (si(t) > M̄i − σi) then
return true

else
return false

5.3.1.2 Tight Medoid Clustering

In the tight medoid clustering (TMC) scheme, the requester devices asks for energy measure-

ments from all its neighbors. When the neighbors respond with their measurements, they

also include the measurements from all their neighbors along with a qualifying confidence

factor corresponding to each neighbor measurement. If the device has the reputation infor-

mation maintained as part of ReNVaS, this value becomes the confidence factor, otherwise

149

the confidence factor is 1. The availability of reputation information is not mandatory and

TMC can function even without it. Upon collecting the information, the requester device

creates a union of all the inputs while removing the duplicates and taking an average of the

confidence factors of those duplicates. The presence of duplicate measurements is used for

cross verification of intention of devices reporting them. This is further elaborated in Section

5.3.1.3. For the resultant set of inputs the requester runs a recursive partitioning around

medoid (PAM) clustering on these inputs to partition them into sets. It starts by setting the

number of clusters to 1 and recursively increases the number of cluster as long as it satisfies

the following condition: The largest cluster has at least τ number of inputs. τ is the min-

cluster-size parameter which depends on the estimation of the number of malicious devices in

the network. τ is set to be inversely proportional to the number of malicious devices. If the

number of malicious devices cannot be estimated, τ is set to m/2 to accommodate the worst

case scenario of having up to 50% of the devices being malicious. We assume the maximum

number of malicious devices to be 40% of all devices. This is depicted in Algorithm 7.

5.3.1.3 Data Fusion

In this phase, the data in the decision clusters formed previously are synthesized to reach a

final decision. In order to do so, the device needs to decide which of the two decision clusters

to use for data fusion. We present two methods for the decision making process. The data

fusion of the values in the decision clusters follows the following hypothesis. If δ is the energy

threshold for the presence of primary user signal, null hypothesis indicating primary user

150

Algorithm 7: Tight Medoid Clustering

Input: ni → requester device; li → neighbor list of ni;
Si = {(deviceid, measurement, ConfidenceFactor, NumMeasurements)}
while nm ∈ li do

while np ∈ lm do
if np ∈ Si then

Update Si for deviceid np as (np, measurement + sp(t), ConfidenceFactor
+ cp, NumMeasurements + 1)

else
Add an entry for np to Si

while np ∈ Si do
measurement = measurement/NumMeasurements
ConfidenceFactor = ConfidenceFactor/NumMeasurements

a = 1
validMaxCluster = 1
while validMaxCluster do

KMi = k-mediods(Si, a)
if ∃(maxClusterSize(KMi)) > τ then

DCi = LargestCluster(KMi)
a = a + 1

else
validMaxCluster = 0

return DCi

signal is as follows:

H0 :

∑

(S{DCx}(t))

|DCx|
> δ

H1 :

∑

(S{DCx}(t))

|DCx|
≤ δ

(5.15)

In CR-MANETs, due to the mobility of the devices, it is possible that the devices do not

have sufficient reputation information about other neighborhood devices to make a proper

validation of the input so as to be included in the decision cluster. This can happen under the

following conditions: a highly dynamic network in which the devices joining the network and

attrition of the devices from the network happens at a very high rate. Second, every device

after joining the network requires a stabilization period during which it is acquiring network

parameters in the form of reputation of other devices. Third, a device can be at the edge

151

of the network having topological inhibitions from having sufficient neighbors to validate

it. In such cases, a good device does not get a fair chance of getting validated using the

recursive neighbor validation scheme. The tight medoids clustering scheme uses statistical

measurements to reduce the size of the decision cluster depending on the estimation of the

amount of malicious devices present. If an estimate cannot be made, the worst case scenario

of having up to 50% of devices being malicious is assumed. Both the methods have their

drawbacks which can be overcome by using a combination of the two methods.

Every device gathers the sensing information from its neighbors. This collection of in-

formation requires two communication sequences over one hop. In the first sequence every

device collects the information about the neighbors and in the second sequence the devices

exchange the sensing information of each of their neighbors. When a device collects inputs

from its neighbors and forwards those inputs to its neighbor, a malicious device can eas-

ily modify the values its neighbors presented before forwarding it to the requester device.

To overcome this problem, the requester device cross verifies the input from one neighbor

against the inputs from other neighbors on the measurements from a common neighbor. For

example, in Figure 2.1, device 0 is the requester device. Devices 2 and 3 share a common

neighbor 10. During cross verification if device 2 and 3 report different values of energy

measurement for device 10, it raises a red flag and the inputs from the devices 2 and 3 are

used unless they can be verified using other neighbors. We studied how many devices share

neighbors and the results are presented in Table 5.5. This was done for different number

of secondary devices (50, 100, 150, 200). The results are an average over 50 topologies. It

is seen that the number of uncovered devices (a device which does not have any common

neighbor with another device in the requester device’s neighborhood) keeps reducing dras-

tically as the device density in the network increases. In the example in Figure 2.1, device

152

Table 5.5: Covered Neighbors

devices total neighbors covered neighbors % uncovered
50 100.8 89.2 11.5
100 418.9 411.9 1.6
150 954.6 951.9 0.2
200 1687.4 1686.3 0.06

1 does not have any common neighbor with any of the other neighboring devices of device

0. Hence, it will be classified as an uncovered neighbor. A network with 200 devices spread

over 2000 by 2000 area has 99.94% of neighbors covered with at least one common neighbor

which can be used for cross verification. If a device is uncovered, its input is not used, hence

deterring a device from reporting incorrect neighborhood results. This verification process

will be a deterrent against sybil attacks as well. This works because it is a non-collaborative

attack model.

5.3.1.3.1 Non-unified Decision Making Upon receiving the inputs, the requester de-

vice (i) runs a check as presented in Algorithm 8 to decide on the scheme to use for the

formation of the decision cluster. This gives us the final decision gi(t). For using ReNVaS,

the minimum number of neighbors that should be available to validate is given by ∇. ∇ is

set to half the average neighborhood size.

5.3.1.3.2 Unified Decision Making The second fusion method for primary user spec-

trum occupancy detection uses both strategies (ReNVas and TMC) to decide on the occu-

pancy. The devices make the preliminary decisions for the two strategies and combines them

to make the final decision as follows: gi(t) = (Dr ∨ Dm), where Dr is the result of recursive

validation and Dm is the result of tight medoid clustering in device i at time t. This allows

for the stringent check of the primary user spectrum occupancy and if the spectrum is iden-

153

Algorithm 8: Non-unified Decision Making

Input: ni → requester device
li → neighborhood list of ni
li[] → Two hop neighborhood list of ni
foreach ni ∈ n do

MedoidClustering = 0
foreach nx ∈ li do

if (|V Ci
⋂

lx| < ∇) AND (|V Cx
⋂

lx[]| < 2 ∗ ∇) then
MedoidClustering = MedoidClustering + 1

if MedoidClustering > ∇ then
MedoidClustering() // Algorithm 7

else
RecursiveValidation() // Algorithm 5

tified to be occupied by either of the two strategies, it results in the final decision to be of

occupied. This can lead to some additional false positives but it reduces the probability of

any false negatives as we see in the next section. This can be further optimized to reduce

the false positives, but is currently out of the scope of this thesis and is good to investigate

in future.

5.3.2 Analysis and Results

It is generally accepted that any security feature incorporation in a protocol will add some

amount of overhead. In this section we first analyze the amount of additional overhead

generated by the scheme. Next, we perform security analysis by simulating the CR-MANET

in Matlab. Two types of networks are simulated. One type of network is a stable network

and the other is a network with fast changing network memberships (dynamic network).

The secondary user network is spread over an area of 2000 x 2000 meters and the number

of secondary users are 200. The CR-MANET devices move around in the network following

the random waypoint model. Each device picks a random location within 250 meters off its

154

current position and moves to this new location. It stays in that location for a set timeperiod

before repeating the process. Every device moves in this manner independent of other

devices. This simulation is run for 1000 timeperiods and each device senses the spectrum for

the presence of primary user signal. We simulated four levels of signal measurement errors,

namely, 5%, 10%, 15%, and 20%. For example, if the signal measurement error is e%, the

device measurement will range between (s(t)−s(t)∗(e/2)%) and (s(t)+s(t)∗(e/2)%) where

s(t) is the actual signal. The number of malicious devices was varied as 10%, 20%, 30%, and

40% of all the devices in the network. The malicious device reported signal measurement

with a distortion of upto 50% of the measured signal i.e. s(t)± s(t) ∗ (0 : 25%). In another

set of simulations, we added dynamism to the network membership by adding 10% new

devices every 100 timeperiods and 10% of existing devices left the network at that time. 2%

of random devices undergo byzantine failures.

1 2 3 4
60

65

70

75

80

85

90

95

100

Number of Validation Recursions

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.13: 5% Measurement Error

155

1 2 3 4
60

65

70

75

80

85

90

95

100

Number of Validation Recursions

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.14: 10% Measurement Error

1 2 3 4
60

65

70

75

80

85

90

95

100

Number of Validation Recursions

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.15: 15% Measurement Error

156

1 2 3 4
60

65

70

75

80

85

90

95

100

Number of Validation Recursions

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.16: 20% Measurement Error

5.3.2.1 Overhead Analysis

In the traditional CR-MANET, every device senses the spectrum and takes a decision on

primary user occupancy. This makes the secondary user network extremely vulnerable to

different problems like signal fading, hidden terminal or byzantine failures and the device

will ultimately make incorrect decisions. Hence, for comparison purposes we consider the

traditional CR-MANET to be performing a cooperative spectrum sensing with the one-hop

neighbors and utilizing the results by performing a simple average fusion.

In ReNVaS, the formation and storage of the virtual cluster information has the following

overhead. For every device we store 3 parameters of information (device-id, reputation, and

timestamp). The reputation is 1 byte long, while the device-id and timestamp are 2 bytes

long. In the scenario where a device has a virtual cluster size of n−1 (has information about

every other device in the network), the total storage space taken is 5 ∗ (n− 1). Unlike some

157

networks such as sensor networks, a CR-MANET is generally a mid-size network with a few

thousand devices giving us a storage overhead of 5 ∗ j KB where 1 ≤ j ≤ 10.

Our model requires the devices to exchange the information twice over one-hop, hence the

amount of transmission overhead compared to a traditional CR-MANET is double. However,

when you compare the transmission overhead to a centralized cognitive radio network, it is

much less and more fair. This is because in this model every device expends the same amount

of energy while in a centralized model, the devices on high traffic path end up spending more

energy. After the collection of information, if the recursive validation approach is used, the

communication overhead will grow depending on the number of recursions used to validate

the neighbor input. A device can cap the number of recursions and we will see in the results

that the most cost effective solution is when going up to two recursions to validate the

devices.

Let c be the neighborhood size of a device. v is the validation recursion number and

ρv−1 is the cumulative number of devices validated till recursion v − 1 where ρ0 = 0. The

number of hops of communication for validation recursion at each recursion is calculated as

2 ∗ v ∗ (c − ρv−1) ∗ c
v−1. Total communication overhead for w recursions is calculated as

shown in Equation 5.16.

w
∑

v=1

2 ∗ v ∗ (c− ρv−1) ∗ c
v−1 (5.16)

We see that as the number of recursions increases, the overhead increases significantly.

Hence, we need to balance the number of recursions of validation based on the overhead. In

the next section we will see that having 2 recursions gives the most cost effective solution

while having 3 recursions gives us slightly more accurate results but at a higher cost. We do

158

% Malicious Malicious majority neighborhood (%)
10 0.1
15 0.7
20 2
25 4
30 9
40 20

Table 5.6: Malicious Majority Neighborhood

not analyze the computation overhead since it is negligible compared to the communication

overhead.

5.3.2.1.1 Malicious Neighborhood Analysis The attack considered is a non-collaborative

attack and we assume the total number of malicious devices is less than 40%. But since the

devices are mobile, and due to uneven distribution, the number of malicious devices in a

neighborhood will be different. Table 5.6 shows the percentage of devices whose neighbor-

hood (including themselves) has a malicious majority when the total number of devices is

200. When having up to 25% malicious devices, the number of devices having a malicious

majority neighborhood is 4% and of those close to 2% were malicious themselves. Hence, of

the good 75% devices, only 2% were affected by malicious majority which can be also seen

in the results.

5.3.2.2 Results

In this section we present the results from our network simulation as described earlier. Figure

5.13 presents the results for ReNVaS when the sensing measurement error is 5% for different

number of malicious devices present in the network. Similarly, Figures 5.14, 5.15, 5.16

present the results for signal measurement errors of 10%, 15%, and 20% respectively. This

set of results presented is for a stable network without changes in the network membership

159

1 2 3 4
60

65

70

75

80

85

90

95

100

Number of Validation Recursions

S
p

e
c
tr

u
m

 D
e

te
c
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.17: Recursive Validation- Dynamic Network 5% Measurement Error

1 2 3 4
55

60

65

70

75

80

85

90

95

100

Number of Validation Recursions

S
p

e
c
tr

u
m

 D
e

te
c
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.18: Recursive Validation- Dynamic Network 20% Measurement Error

160

for the duration of simulation. We see that the signal error measurement does not have as

much impact compared to the amount of malicious device.

A separate set of network simulations were performed for the more dynamic network de-

scribed earlier. The new devices joining the network do not have any reputation information

of existing devices in the network and this impacts the overall performance. The degradation

in overall performance happens because enough devices cannot be validated. This can be

seen in Figures 5.17 and 5.18, where we present results for 5% and 20% measurement error

respectively. Comparing the results in Figure 5.17 with the results in Figure 5.13, we see a

significant drop in the primary user detection accuracy with changes to network member-

ship. This happens because, with additional dynamism the overall performance of recursive

validation falls due to its dependence on reputation information which is unavailable at some

new devices.

Figure 5.19: Spectrum Sensing Accuracy Improvement for Recursive Validation

Figure 5.19 shows the improvement in performance over different recursions for different

161

error rates in the measurement. Each bar represents the improvement over different number

of validations for number of malicious devices (10%, 20%, 30%, and 40%) for the four mea-

surement error rates of (5%, 10%, 15%, and 20%). It can be seen that the most improvement

happens when going from one round of validation to two rounds of validation. This seems

to hold true especially when the number of malicious devices is high (20%, 30%, and 40%).

Beyond that, for increased number of validations, we only see a slight improvement. Also,

as deduced in the overhead analysis, this additional improvement from having 3 or 4 rounds

of validations has an associated cost which cannot be always justified.

5 10 15 20
60

65

70

75

80

85

90

95

100

Measurement Error (%)

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

10% Malicious Devices

20% Malicious Devices

30% Malicious Devices

40% Malicious Devices

Figure 5.20: Spectrum Sensing Accuracy for Non-unified Fusion

The next set of results in Figures 5.20, and 5.21 show the performance of non-unified

decision making scheme for the dynamic network described earlier. Based on the deductions

from Figure 5.19, the recursion threshold for device validation was set to 2. Figure 5.20

presents the spectrum detection accuracy which gives us better than 70% detection even when

the number of malicious devices is 40% and the measurement error rate of 20%. Figure 5.21

presents the incorrect decisions along with the amount of false positives and false negatives.

162

5 10 15 20
0

5

10

15

20

25

30

Measurement Error (%)

In
c
o
rr

e
c
t
D

e
c
is

io
n
s
 (

%
)

10% Malicious (All False)

20% Malicious (All False)

30% Malicious (All False)

40% Malicious (All False)

10% Malicious (False +ve)

20% Malicious (False +ve)

30% Malicious (False +ve)

40% Malicious (False +ve)

10% Malicious (False −ve)

20% Malicious (False −ve)

30% Malicious (False −ve)

40% Malicious (False −ve)

Figure 5.21: Incorrect Decisions for Non-unified Fusion

A false positive is when the spectrum is found to be occupied while the primary user is

not using it. A false negative is when the spectrum is decided by the secondary user to be

unoccupied while the primary user is using the spectrum. In the non-unified data fusion

method the number of false positives and the number of false negatives occur at the same

rate. A false positive result only reduces the secondary user throughput whereas a false

negative decision will cause interference with the primary user.

The results in Figures 5.22 and 5.23 are for the unified decision making scheme and

is compared to the performance of WSPRT by Chen et al. [66]. The spectrum detection

accuracy of the unified scheme is similar to the one of non-unified decision making, but the

false negative rate is far less than the false positive rate as shown in Figure 5.23. This happens

because when either of the two decision cluster schemes (ReNVaS or TMC) conclude that the

spectrum is occupied, the unified decision is that of spectrum occupied. It results in some

additional false positives but the amount of false negatives reduces considerably. We also see

163

5 10 15 20
60

65

70

75

80

85

90

95

100

Measurement Error (%)

S
p
e
c
tr

u
m

 D
e
te

c
ti
o
n
 A

c
c
u
ra

c
y
 (

%
)

10% Malicious− Unified

10% Malicious− WSPRT

20% Malicious− Unified

20% Malicious− WSPRT

30% Malicious− Unified

30% Malicious− WSPRT

40% Malicious− Unified

40% Malicious− WSPRT

Figure 5.22: Spectrum Sensing Accuracy for Unified Fusion Vs WSPRT

5 10 15 20
0

5

10

15

20

25

30

Measurement Error (%)

In
c
o
rr

e
c
t
D

e
c
is

io
n
s
 (

%
)

10% Malicious (All False)

20% Malicious (All False)

30% Malicious (All False)

40% Malicious (All False)

10% Malicious (False +ve)

20% Malicious (False +ve)

30% Malicious (False +ve)

40% Malicious (False +ve)

10% Malicious (False −ve)

20% Malicious (False −ve)

30% Malicious (False −ve)

40% Malicious (False −ve)

Figure 5.23: Incorrect Decisions for Unified Fusion

164

that the performance of unified scheme is on an average 10% better than WSPRT. One of

the reasons is the mobility of devices causing imperfect input parameters for WSPRT. This

happens because WSPRT calculates the apriori probabilities for miss detection and false

positives based on the device location.

Unified and non-unified fusion using ReNVaS and TMC work well in a network with slow

mobility and the neighborhoods are set for brief periods of time. This is because, recursive

neighbor validation approach requires to communicate over multiple hops depending on the

recursive cycle. If the network has fast changing neighborhoods, the performance of ReNVaS

and TMC is affected, since enough information cannot be gathered in a short period of

time for ReNVaS to function optimally. Under such circumstances, the unified and non-

unified fusion (using ReNVaS and TMC) approach falls back to just using tight medoid

clustering, which is not as robust as MFDSS using reputation. In a fast mobility network,

MFDSS performs better due to its quicker decision making. This is because, in MFDSS we

require one hop communication broadcast (twice) to exchange data so as to collect enough

information to make a decision. Additionally, this also impacts the overhead of the two

mechanisms. MFDSS has modest constant communication overhead whereas ReNVaS has

increasing communication overhead which is governed by the number of recursions required

to validate the neighbor. Hence, if communication overhead is a concern, MFDSS is better

suited than ReNVaS and TMC. If accuracy of spectrum sensing has higher priority compared

to overhead and the network mobility is not fast, unified fusion utilizing ReNVaS and TMC is

better suited. In a fast paced mobile network, MFDSS performs better and the performance

degrades gracefully as the number of malicious users grow beyond 40%.

165

5.4 Related Work

Compared to a wireless network, a cognitive radio network introduces new security chal-

lenges. In addition to the security concerns with the wireless network, a cognitive radio

network needs to also consider the attacks of the following types: primary user emulation

attack, spectrum sensing data falsification attack (SSDF), and lion attacks to name a few.

The research community is gearing up to addressing these challenges with a lot of studies

governed towards these specific attack types. Jayaweera et. al. have done significant amount

of work in extending the research in cognitive radio networks [68–71].

The SSDF attack was coined by Chen et al. in [58] where they defined it as the security

threat to distributed spectrum sensing by malicious secondaries transmitting false spectrum

sensing data. There can be three cases when the secondary transmits wrong data. One, when

there is byzantine failure and the secondary is unable to gather correct information. Second,

when the secondary is maliciously spreading false data to harm the network. The third is

when a malicious secondary transmits false data with selfish motives to use the spectrum for

its personal gain by transmitting that a primary user is occupying the spectrum.

Wang et al. present a reputation based system to calculate the suspicion level of a device

and assigns trust and consistency [72]. They remove untrustworthy users in the primary user

decision making process, thereby making it robust. One of the drawbacks in this system is

the assumption of presence of only one malicious secondary user. In an SSDF attack, there

generally is two or more devices which may or may not be collaborating to make maximum

use of the attack. Another drawback is the requirement of a centralized base station which

collects all the information to make a decision. Although, such a system conforms to the

IEEE 802.22 requirement, it may not work with an ad-hoc network requiring distributed

166

decision making.

Zeng et al. [73] present a trusted node assisted cooperative spectrum sensing to iden-

tify malicious nodes and remove the sensing reports based on reputation while making the

decision on the presence of a primary user. The requirement of the trusted nodes and a

centralized system make it infeasible to use such a system in an ad-hoc network. An outlier

detection technique is used by Kaligineedi et al. [74]. In this paper, the authors pre-filter the

data by removing the outliers based on a simple quartile based outliers detection mechanism.

Additionally, similar to the reputation based schemes, a trust value is calculated and the

higher trusted nodes are rewarded in the form of bigger weights in the primary user presence

decision.

Another class of studies use some kind of outlier detection to discard inputs which are very

different. A variation of this class of solutions is to use some kind of validation of the inputs

before utilizing them in decision making process. Kaligineedi et al. [74] pre-filter the inputs

using a quartile based outlier detection mechanism and use a trust based system similar

to the ones described earlier to provide weights to the inputs in the final decision making

process. Min et al. [75] present a centralized approach but uses a location based shadow

fading correlation to validate the inputs before using them in the decision making process.

This is a centralized approach and the secondary devices are assumed to be stationary, hence

maintaining the neighborhood. Due to a fixed location and fixed neighborhood they get an

opportunity to use consistent measurement parameters while validating the inputs which is

not feasible considering changing location and continuously changing neighborhood in case

of CR-MANETs.

Hyder et al. [76] present an adaptive reputation-based clustering scheme which uses the

partitioning around medoid clustering. Equal size clusters are formed using the previous

167

sensing history and current reputation of the devices. Since it is a centralized system and

the devices are stationary, a reputation based system is feasible. Applying the same to a

distributed system with less number of inputs available and without consistent reputation

information is infeasible. In ReNVaS we propose the use of device reputation to only decide

whether the device input is used to validate a neighbor input. The manipulation of this

reputation by a malicious device does not impact the outcome directly like it does in the

existing approaches where reputation is factored into providing weights in the data fusion.

Secondly, with a highly dynamic network a reputation system will fail due to the lack of

availability of sufficient reputation information. Hence, a singular reputation or a trust

based system will not be always feasible in a CR-MANET. Our approach provides a fall

back under those circumstances and we device a recursive partitioning around medoid based

clustering to weed out any outliers. The result is a tight bound cluster whose size is inversely

proportional to the estimation of the number of malicious devices.

The study by Chen et al. is the first to present a distributed spectrum sensing scheme

in CR-MANET without a centralized base station for data fusion and decision making [66].

They make an assumption that signal fading is not significant and takes the local decision

as sufficient. Additionally, the reputation mechanism is local and does not incorporate any

global information into it. Another drawback is the time or the number of samples it takes

for the weighted sequential probability ratio test to reach a decision. MFDSS does not make

the assumption of signal fading and takes into consideration the semi-global decision while

awarding reputation at the local neighborhood. We collect the actual sensed values instead of

the decision at the first phase which is important to weed out any outlier data generated due

to byzantine failure or with malicious intent. Also, we incorporate a reputation propagation

mechanism which drastically reduces the number of samples a node will need to collect to

168

reach a decision as we are able to award higher weighting factor to inputs from good devices.

The ability of forming a quicker decision helps implement MFDSS in a highly mobile ad-hoc

network. Additionally, MFDSS is more robust as it incorporates inputs from neighbors over

2 hops, so it is comparatively more secure from a small concentration of malicious devices

which can negatively impact the decision when considering smaller input sizes. The same is

true for ReNVaS and TMC as we will see in results and analysis in Section 5.3.2.

5.5 Summary

In this chapter we study the problem of improving spectrum utilization by a cognitive radio

mobile ad-hoc network in the presence of malicious users. The goal is to identify the primary

user spectrum occupancy in the presence of malicious users launching spectrum sensing

data falsification attacks (SSDF), incorrect sensing data collected due to signal fading or

hidden terminals, and byzantine failures. We present three solutions, namely multi-fusion

based distributed spectrum sensing (MFDSS), recursive neighborhood validation scheme

(ReNVaS), and tight medoid clustering (TMC) to overcome the problem.

The features of the multi-fusion based distributed spectrum sensing are as follows: First,

we present a sensing data exchange scheme with outlier detection followed by its fusion uti-

lizing weighted reputations. This step helps in identifying any outlier data input due to

byzantine failure. Second, to prevent a malicious user from hiding under changing neighbor-

hood, we present a reputation propagation and fusion scheme to gather valid and maintain

fresh reputation of devices. In addition, an incubation period is introduced to discourage

malicious devices from changing identity to wear off negative reputation. Third, a decision

fusion scheme is presented which utilizes the reputation of devices to suppress the input

169

provided by malicious users. A unique feature of MFDSS is the implicit consideration of

input from devices from a much larger area, thereby discounting the impact due to concen-

tration of malicious devices withing a small region, even though the exchange of information

occurs over one hop only. Fourth, we present a security and overhead analysis to corrob-

orate the valid functionality of the model under different attack scenarios and present the

MFDSS primary energy threshold analysis. MFDSS shows greatly improved performance

compared to existing solutions, while preventing the malicious device from hiding under

changing neighborhood. When the malicious devices are less than 30%, MFDSS has better

than 83% spectrum detection accuracy. As the number of malicious devices grows larger,

MFDSS is seen to degrade gracefully.

The core features of the recursive neighbor validation and clustering schemes is as follows:

We present the formation and maintenance of a virtual cluster of past neighbors which is

used for validation of inputs from the current neighbors. For a dynamic network with

high device attrition, we present a recursive algorithm using partitioning around medoids

clustering to find the tightest bound set of signal measurement inputs. These device inputs

from the two schemes (ReNVaS and TMC) form a decision cluster. We present two strategies

for data fusion of the decision cluster generated by ReNVaS and TMC, namely, non-unified

fusion and unified fusion. The performance of ReNVaS is studied under two types of network

conditions, one being a stable network while the other having continuously changing network

memberships (dynamic network). It performs well under stable network conditions, while in

a dynamic network the performance is affected due to the lack of availability of reputation

information. Performance of ReNVaS and TMC are further studied under the non-unified

and unified fusion in dynamic network conditions. Non-unified and unified fusion show

improved performance with both having better than 70% detection accuracy even when the

170

number of malicious devices is high (40%) and at high error rate (20%). The difference

being in non-unified fusion we have similar amounts of false negative and false positive rates,

whereas in unified fusion we have significantly smaller number of false negatives compared

to false positives, which is good as it agrees more with the FCC regulations.

To conclude, the results show that unified fusion using ReNVaS and TMC performs the

best with great accuracy and has the smallest number of false negatives in a slow mobility

network. In case of a fast mobility network, the performance of unified and non-unified

fusion is not as good as MFDSS. This happens because ReNVaS requires multiple recursions

to acquire sufficient inputs so as to validate the inputs from its neighbors. This may not be

possible at high mobility and unified/non-unified fusion fall back on TMC for the decision

cluster which is not as robust as MFDSS.

171

Chapter 6

Conclusion

In this thesis we researched security and privacy in wireless sensor networks and cognitive ra-

dio mobile ad-hoc networks. Sensor networks are unique because they can be inconspicuously

deployed in the environment to sense for event occurrence. They help gather information in

inhospitable environments and are one of the important developments in wireless networks.

While a sensor network allows us to monitor event occurrences, there is another form of

wireless network called cognitive radio mobile ad-hoc networks (CR-MANET), which senses

the spectrum for occupancy by the primary user. When the spectrum is identified to be

vacant, the CR-MANET device can opportunistically use the spectrum. This helps in im-

proved spectrum utilization. While there are significant advantages with the advancement

in the wireless technology, it brings its own security challenges. The sensor devices have a

small form factor, which is advantageous for it to be inconspicuous, but introduces limita-

tions such as limited battery, slow CPU, memory, etc.; while the CR-MANET devices are

mobile which requires them to get their power from energy constrained batteries.

The sensor devices should be able to report the detected event information in a timely

manner. This event information is bound to the location of the event detecting device.

Hence, if the event detecting device is identified, it can lead to the event location being

disclosed to an adversary, which can be harmful to the network goal. It is imperative to

secure the privacy of the event detecting sensor device. In this thesis we present maintaining

source privacy under eavesdropping and node compromise attacks (SPENA) which uses a

172

one-way hash chain based keying mechanism to hide the source information. Dynamically

selected intermediate nodes on the path to the base station reconstruct the packet such that

the adversary cannot correlate between the incoming and outgoing packets. The analysis

and results indicate a superior performance in maintaining source privacy with modest a

overhead.

The sensor network is deployed in the open and generally without supervision. The

devices have limited physical shielding, which exposes them to side channel attacks. We

performed a comprehensive study of different side channel attacks feasible on the sensor net-

works, while presenting countermeasures to prevent the same. A proof of concept is presented

with experimental results to show the feasibility of electromagnetic radiation leakage attacks

using readily available equipment. We also present a technique called process obfuscation

which protects the sensor devices from a number of side channel attacks.

Another problem in sensor network occurs if the event generated packets do not reach the

base station. The base station will not be able to differentiate between the loss of sporadic

event packets and non-occurrence of events. The adversaries’ goal here is to segregate the

network region such that event packets from a particular region do not reach the base station

and the adversary can carry out its malicious activities without being caught. We present a

proactive solution called dynamic camouflage events based malicious node detection archi-

tecture (D-CENDA) utilizing camouflage events to detect such malfunctioning holes in the

sensor network. In D-CENDA, the base station uses the spatial and temporal information of

the camouflage event to detect the malicious node. In addition to identifying the malfunc-

tioning nodes, we are also able to proactively identify the type of attack by the adversary

causing the malfunction.

For a CR-MANET to function optimally, it should be able to accurately detect spectrum

173

occupancy by the primary user. Incorrect detection can lead to either spectrum under-

utilization or interference with the primary user, which is strictly prohibited by the FCC.

Accurate spectrum detection is hindered by signal fading, low sensitivity of cognitive radios,

hidden terminal problems, byzantine failure of devices etc. To overcome these problems, a

distributed cooperative spectrum sensing is considered, but it faces the problems of node

mobility and malicious users. The malicious users launch an attack called spectrum sensing

data falsification (SSDF), in which they encourage neighboring devices into making incorrect

decisions about spectrum occupancy. Such incorrect decisions could prove fatal to a CR-

MANET if it results in the secondary user transmission interfering with the primary user

transmissions. To overcome this problem, we present three solutions namely multi-fusion

based distributed spectrum sensing (MFDSS), recursive neighbor validation (ReNVaS), and

tight medoid clustering (TMC). MFDSS includes three steps: sensing data fusion, reputation

propagation and fusion, and decision fusion. The reputation management in MFDSS is ro-

bust and uses the principles from eigen-trust and maturity based reputation models. MFDSS

has better than 83% spectrum detection accuracy even when there are 30% malicious devices.

ReNVaS maintains a virtual cluster of past neighbors which are used to validate the

sensing inputs provided by the current neighbors. In TMC, the inputs from the neighbors are

recursively clustered using partition around medoids algorithm to identify the tightest bound

set. The validated inputs from ReNVaS and TMC forms a decision cluster and these are

fused to form the decision. For this purpose two data fusion methods ‘non-unified fusion’ and

‘unified fusion’ are presented. Our solutions provide accurate spectrum occupancy detection,

even under heavy SSDF attack. In the results, performance with up to 50% of the devices

being malicious is analyzed and our solutions are seen to perform extremely well. The best

performance is seen when using unified fusion utilizing results from ReNVaS and TMC,

174

where the number of false-negatives is minimized. The unified and non-unified decision

making using ReNVaS and TMC function well in a slow mobility network, since it takes

ReNVaS multiple recursions to gather the inputs required to validate the network. In case

of a fast mobility network, unified and non-unified fusion (using ReNVaS and TMC) falls

back on TMC to provide the decision cluster inputs, which is not as robust as using MFDSS

which works better in a fast mobility network due to its quicker decision making time.

Additionally, as the number of malicious devices increases beyond 40%, the performance of

MFDSS degrades gracefully compared to the performance of unified and non-unified fusion.

In future, we would like to extend this to study the impact when the number of malicious

users in greater than half the number of devices. We would like to study CR-MANET under

very fast changing network topologies so as to apply it to vehicular networks. Finally, we

would like to study the conglomeration of sensor network and CR-MANET to see if cognitive

principles can be applied to create a hybrid cognitive radio sensor network.

175

BIBLIOGRAPHY

176

BIBLIOGRAPHY

[1] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, “Smart dust: Communicating
with a cubic-millimeter computer,” Computer, vol. 34, pp. 44–51, January 2001.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communi-
cations of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[3] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications
of ACM, vol. 43, no. 5, pp. 51–58, 2000.

[4] J.-P. Kaps and B. Sunar, “Energy comparison of aes and sha-1 for ubiquitous comput-
ing,” in IFIP International Conference on Embedded and Ubiquitous Computing (EUC
2006), LNCS, Springer, 2006.

[5] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk, “Enhancing source-location privacy
in sensor network routing,” in Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems, (Washington DC), 2005.

[6] K. Mehta, D. Liu, and M. Wright, “Location privacy in sensor networks against a
global eavesdropper,” in Proceedings of the IEEE International Conference on Network
Protocols (ICNP 2007), October 2007.

[7] Y. Ouyang, Z. Le, D. Liu, J. Ford, and F. Makedon, “Source location privacy against
laptop-class attacks in sensor networks,” in Proceedings of the 4th international confer-
ence on Security and privacy in communication netowrks, (New York, USA), pp. 1–10,
ACM, 2008.

[8] M. Shao, Y. Yang, S. Zhu, and G. Cao, “Towards statistically strong source anonymity
for sensor networks,” in INFOCOM 2008, The 27th Conference on Computer Commu-
nications, pp. 51–55, April 2008.

[9] Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, and G. Cao, “Towards event source unobserv-
ability with minimum network traffic in sensor networks,” in WiSec ’08: Proceedings of
the first ACM conference on Wireless network security, (New York, NY, USA), pp. 77–
88, 2008.

177

[10] H. Wang, B. Sheng, and Q. Li, “Privacy-aware routing in sensor networks,” Computer
Networks, vol. 53, no. 9, pp. 1512–1529, 2009.

[11] Y.-C. Hu, M. Jakobsson, and A. Perrig, “Efficient constructions for one-way hash
chains,” in Applied Cryptography and Network Security, pp. 423–441, 2005.

[12] B. Xiao, B. Yu, and C. Gao, “Chemas: Identify suspect nodes in selective forwarding
attacks,” Journal of Parallel and Distributed Computing, vol. 67, no. 11, pp. 1218–1230,
2007.

[13] A. A. Nezhad, A. Miri, and D. Makrakis, “Location privacy and anonymity preserving
routing for wireless sensor networks,” Computer Networks, vol. 52, no. 18, pp. 3433–
3452, 2008.

[14] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: a link layer security architecture for
wireless sensor networks,” in Proceedings of the 2nd international conference on Embed-
ded networked sensor systems, (New York, USA), pp. 162–175, ACM, 2004.

[15] R. Watro, D. Kong, S.-f. Cuti, C. Gardiner, C. Lynn, and P. Kruus, “Tinypk: securing
sensor networks with public key technology,” in SASN ’04: Proceedings of the 2nd ACM
workshop on Security of ad hoc and sensor networks, (New York, USA), pp. 59–64,
ACM, 2004.

[16] A.-S. K. Pathan and C. S. Hong, “Serp: secure energy-efficient routing protocol for
densely deployed wireless sensor networks,” Annales des Télécommunications, vol. 63,
no. 9-10, pp. 529–541, 2008.

[17] T. Roosta, S. Shieh, and S. Sastry, “Taxonomy of security attacks in sensor networks and
countermeasures,” in The First IEEE International Conference on System Integration
and Reliability Improvements, December 2006.

[18] J. Loughry and D. Umphress, “Information leakage from optical emanations,” in ACM
Transactions on Information and System Security (TISSEC), pp. 262–289, 2002.

[19] D. Asonov and R. Agrawal, “Keyboard acoustic emanations,” in IEEE Symposium on
Security and Privacy, (Oakland, California), pp. 3–11, 2004.

[20] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations revisited,” in
CCS ’05: Proceedings of the 12th ACM conference on Computer and communications
security, (New York, NY, USA), pp. 373–382, ACM Press, 2005.

178

[21] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard acoustic em-
anations,” in 13th ACM conference on Computer and Communications Security, (New
York, NY, USA), pp. 245–254, ACM Press, 2006.

[22] C. Gebotys, C. C. Tiu, and X. Chen, “A countermeasure for EM attack of a wireless
PDA,” in International Conference on Information Technology: Coding and Computing
(ITCC’05), (Washington, DC), pp. 544–549, IEEE Computer Society, April 2005.

[23] K. Tiri, D. Hwang, A. Hodjat, B. Lai, S. Yang, P. Schaumont, and I. Verbauwhede,
“A side-channel leakage free coprocessor IC in 0.18µm CMOS for embedded AES-based
cryptographic and biometric processing,” in DAC ’05: Proceedings of the 42nd annual
conference on Design automation, (New York, NY, USA), pp. 222–227, ACM Press,
2005.

[24] S. Moore, R. Anderson, and M. Kuhn, “Improving smartcard security using self-timed
circuit technology,” in Fourth ACiD-WG Workshop, Grenoble, pp. 211– 218, 2002.

[25] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister, “System
architecture directions for networked sensors,” in Architectural Support for Programming
Languages and Operating Systems, pp. 93–104, 2000.

[26] B. Atwood, B. Warneke, and K. Pister, “Preliminary circuits for smart dust,” in South-
west Symposium on Mixed-Signal Design, (San Diego, California), pp. 87–92, February
2000.

[27] S. Chari, J. Rao, and P. Rohatgi, “Template attacks,” in Revised Papers from the 4th
International Workshop on Cryptographic Hardware and Embedded Systems, (London,
UK), pp. 51–62, 2003.

[28] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transforma-
tions,” Tech. Rep. 148, University of Arizona, July 1997.

[29] D. Chaum, “Blind signatures for untraceable payments,” in CRYPTO 82: Advances in
Cryptology, pp. 199–203, Plenum Press, 1982.

[30] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems,” in CRYPTO ’96: Proceedings of the 16th Annual International Cryptol-
ogy Conference on Advances in Cryptology, (London, UK), pp. 104–113, Springer-Verlag,
1996.

[31] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis.,” in CRYPTO, pp. 388–
397, 1999.

179

[32] J. Daemen and V. Rijmen, “Resistance against implementation attacks: A comparative
study of the ales proposals,” in The Second AES Candidate Conference, (Gaithersburg,
MD), pp. 122–132, National Institute of Standards and Technology, 1999.

[33] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner, “Private circuits 2: Keeping secrets
in tamperable circuits,” in Proceedings of Eurocrypt, pp. 308–327, May 2006.

[34] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side-channel(s),”
in CHES ’02: 4th International Workshop on Cryptographic Hardware and Embedded
Systems, (London, UK), pp. 29–45, Springer-Verlag, 2003.

[35] L. Goubin and J. Patarin, “DES and sifferential power analysis (the duplication
method),” in Cryptographic Hardware and Embedded Systems, pp. 158–172, 1999.

[36] J.-S. Coron and L. Goubin, “On boolean and arithmetic masking against differential
power analysis,” in Second International Workshop on Cryptographic Hardware and
Embedded Systems, (London, UK), pp. 231–237, Springer-Verlag, 2000.

[37] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in 4th In-
ternational Workshop on Cryptographic Hardware and Embedded Systems, pp. 2–12,
2002.

[38] E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,”
Lecture Notes in Computer Science, vol. 1294, pp. 513–525, 1997.

[39] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking crypto-
graphic protocols for faults,” Lecture Notes in Computer Science, vol. 1233, pp. 37–51,
1997.

[40] A. Shamir and E. Tromer, “Acoustic cryptanalysis: on nosy people and noisy machines,”
in Proceedings of EUROCRYPT, 2004.

[41] R. E. Priestley, “The signal service in the european war of 1914-1918,” Institution of
Royal Engineers, 1921.

[42] K. Okeya and T. Iwata, “Side channel attacks on message authentication codes,”
vol. 3813, pp. 205–217, 2005.

[43] V. Gratzer and D. Naccache, “Blind attacks on engineering samples.” Cryptology ePrint
Archive, Report 2005/468, 2005.

180

[44] S. Micali and L. Reyzin, “Physically observable cryptography,” in Theory of Cryptog-
raphy, vol. 2951, pp. 278–296, Springer Berlin Heidelberg, 2004.

[45] B. Chevallier-Mames, M. Ciet, and M. Joye, “Low-cost solutions for preventing sim-
ple side-channel analysis: Side-channel atomicity,” IEEE Transactions on Computers,
vol. 53, pp. 760–768, June 2004.

[46] L. Batina, N. Mentens, and I. Verbauwhede, “Side-channel issues for designing secure
hardware implementations,” in 11th IEEE International On-Line Testing Symposium,
(Washington, DC, USA), pp. 118–121, IEEE Computer Society, 2005.

[47] P. C. Kocher, “Design and validation strategies for obtaining assurance in countermea-
sures to power analysis and related attacks,” in NIST Physical Security workshop, sept
2005.

[48] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins: security proto-
cols for sensor networks,” Wireless Networks, vol. 8, no. 5, pp. 521–534, 2002.

[49] A. Pirzada and C. Mcdonald, “Circumventing sinkholes and wormholes in ad-hoc wire-
less networks,” in International Workshop on Wireless Ad-hoc Networks (IWWAN
2005), (London, England), 2005.

[50] R. Roman, M. C. Fernandez-Gago, and J. Lopez, “Featuring trust and reputation man-
agement systems for constrained hardware devices,” in Proceedings of the 1st interna-
tional conference on Autonomic computing and communication systems, (ICST, Brus-
sels, Belgium), 2007.

[51] H. Chen, H. Wu, X. Zhou, and C. Gao, “Reputation-based trust in wireless sensor net-
works,” in MUE ’07: Proceedings of the 2007 International Conference on Multimedia
and Ubiquitous Engineering, (Washington, DC, USA), pp. 603–607, IEEE Computer
Society, 2007.

[52] S. Ganeriwal and M. B. Srivastava, “Reputation-based framework for high integrity
sensor networks,” in 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks,
(NY, USA), 2004.

[53] I. Krontiris, T. Dimitriou, T. Giannetsos, and M. Mpasoukos, “Intrusion detection of
sinkhole attacks in wireless sensor networks,” in Proceedings of the 3rd international
conference on Algorithmic aspects of wireless sensor networks, (Berlin, Heidelberg),
pp. 150–161, Springer-Verlag, 2008.

181

[54] E. C. H. Ngai, J. Liu, and M. R. Lyu, “An efficient intruder detection algorithm against
sinkhole attacks in wireless sensor networks,” Computer Communication, vol. 30, no. 11-
12, pp. 2353–2364, 2007.

[55] C.-C. Su, K.-M. Chang, Y.-H. Kuo, and M.-F. Horng, “The new intrusion preven-
tion and detection approaches for clustering-based sensor networks [wireless sensor net-
works],” in Wireless Communications and Networking Conference, 2005 IEEE, vol. 4,
pp. 1927–1932 Vol. 4, March 2005.

[56] Y. Xiao, Security in Sensor Networks. Boca Raton, Florida: Auerbach Publications,
2006.

[57] I. F. Akyildiz, W. yeol Lee, and K. R. Chowdhury, “Crahns: Cognitive radio ad hoc
networks,” Ad Hoc Networks, vol. 7, pp. 810–836, 2009.

[58] R. Chen, J. Park, Y. T. Hou, and J. H. Reed, “Toward secure distributed spectrum
sensing in cognitive radio networks,” IEEE Communications Magazine Special Issue on
Cognitive Radio Communications, Apr 2008.

[59] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic
spectrum access/cognitive radio wireless networks: A survey,” Computer Networks Jour-
nal (Elsevier), vol. 50, pp. 2127–2159, 2006.

[60] V. Barnett and T. Lewis, Outliers in Statistical Data. Wiley Publishers, 1994.

[61] R. B. D’Agostino and G. L. TIetjen, “Simulation probability points of b2 for small
samples,” Biometrika, vol. 58, pp. 669–672, 1971.

[62] B. Iglewicz and D. Hoaglin, “How to detect and handle outliers,” The ASQC Basic
References in Quality Control: Statistical Techniques, vol. 16, 1993.

[63] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigentrust algorithm for
reputation management in p2p networks,” in Proceedings of the 12th international con-
ference on World Wide Web, (New York, NY, USA), pp. 640–651, ACM, 2003.

[64] P. B. Velloso, R. P. Laufer, D. de O. Cunha, O. C. M. Duarte, and G. Pujolle, “Trust
management in mobile ad hoc networks using a scalable maturity based model,” IEEE
transactions on networks and Service Management, vol. 7, no. 3, pp. 172–185, 2010.

[65] C. Ghosh, S. Roy, M. B. Rao, and D. P. Agrawal, “Spectrum occupancy validation and
modeling using real-time measurements,” in Proceedings of the 2010 ACM workshop on
Cognitive radio networks, CoRoNet ’10, (New York, NY, USA), pp. 25–30, ACM, 2010.

182

[66] R. Chen, J. Park, and K. Bian, “Robust distributed spectrum sensing in cognitive radio
networks,” in 27th Conference on Computer Communication, INFOCOM, pp. 1876–
1884, 2008.

[67] R. Chen, J. Park, and K. Bian, “Robustness against byzantine failures in distributed
spectrum sensing,” Elsevier Computer Communications, vol. 35, pp. 2115–2124, 2012.

[68] K. S. Jayaweera and M. Bkassiny, “Learning to thrive in a leasing market: an auc-
tioning framework for distributed dynamic spectrum leasing (d-dsl),” in IEEE Wireless
Communications and Networking Conference (WCNC’2011), (Cancun, Mexico), 2011.

[69] M. Bkassiny, K. S. Jayaweera, Y. Li, and A. A. K., “Wideband spectrum sensing
and non-parametric signal classification for autonomous self- learning cognitive radios,”
IEEE Transactions Wireless Communications, vol. 11, pp. 2596–2605, 2012.

[70] G. El-Howayek and K. S. Jayaweera, “Distributed dynamic spectrum leasing (d-dsl)
for spectrum sharing over multiple primary channels,” IEEE Transactions Wireless
Communications, vol. 10, pp. 55–60, 2011.

[71] G. El-Howayek and K. S. Jayaweera, “Efficient spectrum sharing with autonomous
primary users: Distributed dynamic spectrum leasing (d-dsl),” in IEEE Globecom 2010
Workshop on Broadband Wireless Access (BWA 2010), (Miami, Florida), 2010.

[72] W. Wang, H. Li, Y. Sun, and Z. Han, “Attack-proof collaborative spectrum sensing in
cognitive radio networks,” in Proc. 43rd Annual Conference on Information Sciences
and Systems (CISS’09), pp. 130–134, Mar. 2009.

[73] K. Zeng, P. Pawetczak, and D. Cabric’, “Reputation-based cooperative spectrum sensing
with trusted node assistance,” IEEE Communications Letters, Dec 2009.

[74] P. Kaligineedi, M. Khabbazian, and V. K. Bhargava, “Secure cooperative sensing tech-
niques for cognitive radio systems,” in IEEE International Conference on Communica-
tion, pp. 3406–3410, May 2008.

[75] A. W. Min, K. G. Shin, and X. Hu, “Secure cooperative sensing in ieee 802.22 wrans
using shadow fading correlation,” IEEE Transactions on Mobile Computing, vol. 10,
pp. 1434–1447, Oct. 2011.

[76] C. S. Hyder, B. Grebur, and L. Xiao, “Defense against spectrum sensing data falsifi-
cation attacks in cognitive radio networks,” in 7th International ICST Conference on
Security and Privacy in Communication Networks (SecureComm), (London, UK), 2011.

183

