DIFFERENTIAL RESPONSE AMONG BEAN VARIETIES (Phaseolus vulgaris L.) TO NITROGEN AND PHOSPHORUS

> Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY WAYNE LEROY HAAG 1970







### ABSTRACT

## DIFFERENTIAL RESPONSE AMONG BEAN VARIETIES (<u>Phaseolus</u> <u>vulgaris</u> L.) TO NITROGEN AND PHOSPHORUS

Ву

Wayne Leroy Haag

The response of several varieties of <u>Phaseolus</u> <u>vulgaris</u> L. to nitrogen and phosphorus was investigated under field and greenhouse conditions.

Much variability in response was found for yield and the yield components. Response to fertilizer could not be predicted from values obtained prior to application.

Different patterns of yield component response occurred among the varieties. Varieties responded differentially to P, but not to N. The simple effect of N was much greater than the simple effect of P.

Phosphorus levels were varied in a hydroponics experiment. The P, K, Ca, and Mg concentrations in the plant tissue were determined. The P treatments affected the P and K concentrations. Varietal and plant part differences existed for all of the elements observed.

## DIFFERENTIAL RESPONSE AMONG BEAN VARIETIES

# (<u>Phaseolus vulgaris</u> L.) TO NITROGEN

## AND PHOSPHORUS

Ву

Wayne Leroy Haag

#### A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

۰.

Department of Crop and Soil Sciences

#### ACKNOWLEDGMENTS

To the following individuals, without whose assistance this thesis could not have been completed, I extend my sincerest appreciation and gratitude:

To Drs. M. W. Adams and Antonio Pinchinat, who served as thesis advisors at Michigan State University and The Inter-American Institute of Agricultural Sciences (IICA), respectively; to Dr. Kirk Lawton and Miss Patricia Riley of the Institute of International Agriculture, Michigan State University, for making excellent the Institute's support of the work while the author resided in Costa Rica; to Alfredo Picado and Roberto Diaz, who assisted the author with labratory techniques for plant and soil analysis at IICA; to Miquel Valverde for his unlimited effort in all phases of work at IICA, especially for preparing the plant material after the author's departure from Costa Rica; to Victor Matarrita, for his help in all phases of the field and greenhouse work at IICA; to John Barnard, Michigan State University, for his continued assistance with computer processing of the data; and to Drs. John Shickluna, Freeman Snyder, and Carter Harrison for their critical appraisal of this manuscript.

ii

# TABLE OF CONTENTS

|         |                                       |    |     |      |        |   | Page |
|---------|---------------------------------------|----|-----|------|--------|---|------|
| LIST OF | TABLES                                | •  | •   | •    | •      | • |      |
| LIST OF | FIGURES                               | •  | •   | •    | •      | • |      |
| INTRODU | CTION                                 | •  | •   | •    | •      | • | 1    |
| LITERAT | URE REVIEW                            | •  | •   | •    | •      | • | 4    |
| MATERIA | LS AND METHODS                        | •  | •   | •    | •      | • | 10   |
| Gre     | enhouse Experiment                    |    |     |      |        |   | 10   |
|         | Factorial Components and Experimental |    |     |      |        |   | 10   |
|         | Location of the Experiment            |    |     |      |        |   | 10   |
|         | Preparation of Soil                   |    |     |      |        |   | 10   |
|         | Soil Analysis                         | •  | •   | •    | •      | • | 11   |
|         | Fertilizer                            | •  | •   | •    | •      | • | 11   |
|         | Selection of Varieties                | •  | •   | •    | •      | • | 12   |
|         | Planting and Harvesting               |    |     |      |        |   | 12   |
|         | Presentation of Data                  |    |     |      |        |   | 12   |
| Fie     | ld Experiment                         |    |     |      |        | • | 16   |
|         | Location of the Experiment            |    | -   |      |        | - | 16   |
|         | Factorial Components and Experimental |    | • • | i ar | •<br>• | • | 17   |
|         | Soil Analysis                         |    |     |      | 1      | • | 17   |
|         | Varieties Used                        |    |     |      | •      | • | 17   |
|         | Valletles Used                        | •  | •   | •    | •      | • | 17   |
|         | Fertilizer Treatments                 | •  | •   | •    | •      | • |      |
|         | Planting and Harvesting               |    |     |      |        |   | 17   |
| 7       | Statistical Analysis                  |    |     |      |        |   | 18   |
| Нуа     | roponics                              | •  | •   | •    | •      | • | 18   |
|         | Factorial Components and Experimental | De | es  | ıgr  | ו      | • | 18   |
|         | Varieties Used                        | •  | •   | •    | •      | ٠ | 18   |
|         | Nutrient Solution                     | •  | •   | •    | •      | • | 18   |
|         | Phosphorus Treatments                 | •  | •   | •    | •      | • | 19   |
|         | Set-Up and Planting                   | •  | •   | •    | •      | • | 19   |
|         | Harvest and Preparation for Analysis  | •  | •   | •    | •      | • | 20   |
|         | Mineral Analysis                      |    |     |      |        |   | 20   |
|         | Analysis of Data                      | •  | •   | •    | •      | • | 20   |
| RESULTS | AND DISCUSSION                        | •  | •   | •    | •      | • | 21   |
|         | Greenhouse Experiment                 | •  | •   | •    | •      | • | 21   |

•

|                        | Page     |
|------------------------|----------|
| Field Experiment       | 42<br>55 |
| SUMMARY AND CONCLUSION | 66       |
| BIBLIOGRAPHY           | 69       |
| APPENDIX               | 73       |

•

# LIST OF TABLES

| Table |                                                                                                                 | Page |
|-------|-----------------------------------------------------------------------------------------------------------------|------|
| 1.    | Summary table of analyses of variance for<br>the Greenhouse Experiment at Turrialba<br>(1968)                   | 22   |
| 2.    | Varieties showing a marked response in "W"                                                                      | 36   |
| 3.    | Varieties showing a marked response in "X"                                                                      | 37   |
| 4.    | Varieties showing a marked response in "Y"                                                                      | 38   |
| 5.    | Varieties showing a marked response in "Z"                                                                      | 39   |
| 6.    | Summary table for the analyses of variance<br>for the Field Experiment at two locations<br>in Costa Rica (1968) | 43   |
| 7.    | Summary table for the analyses of variance<br>for the Hydroponics Experiment at Turrialba,<br>Costa Rica (1968) | 56   |
| 8.    | List of varieties used in the Greenhouse<br>Experiment                                                          | 73   |
| 9.    | Soil test results                                                                                               | 77   |
| 10.   | Varieties used in the Field Experiment                                                                          | 78   |
| 11.   | Statistics for yield and the yield components at low and high fertility                                         | 79   |
| 12.   | Summary table of response values for X, Y, Z, and W                                                             | 80   |
| 13.   | Nitrogen and phosphorus effects on yield and the yield components                                               | 83   |
| 14.   | Concentrations of phosphorus in the plant<br>tissue (ppm of P)                                                  | 84   |

# Table

| 15. | Concentrations of potassium in the plant<br>tissue (ppm of K)   | 85 |
|-----|-----------------------------------------------------------------|----|
| 16. | Concentrations of calcium in the plant<br>tissue (ppm of Ca)    | 86 |
| 17. | Concentrations of magnesium in the plant<br>tissue (ppm of Mg)  | 87 |
| 18. | Total quantities of phosphorus in the plant<br>tissue (mg of P) | 88 |
| 19. | Total quantities of potassium in the plant<br>tissue (mg of K)  | 89 |
| 20. | Total quantities of calcium in the plant<br>tissue (mg of Ca)   | 90 |
| 21. | Total quantities of magnesium in the plant<br>tissue (mg of Mg) | 91 |

Page

# LIST OF FIGURES

| Figure |                                                                               | Page |
|--------|-------------------------------------------------------------------------------|------|
| 1.     | Model for deriving response values                                            | 14   |
| 2.     | Comparison of the response values for varieties 74 and 112                    | 14   |
| 3.     | Histogram of yield/plant at low fertility<br>level (T <sub>0</sub> )          | 23   |
| 4.     | Histogram of number of pods/plant at low<br>fertility level (T <sub>0</sub> ) | 23   |
| 5.     | Histogram of number of seeds/pod at low<br>fertility level (T <sub>0</sub> )  | 23   |
| 6.     | Histogram of weight/100 seeds at low<br>fertility level (T <sub>0</sub> )     | 23   |
| 7.     | Histogram of yield/plant at high fertility<br>level (T <sub>1</sub> )         | 24   |
| 8.     | Histogram of number of pods/plant at high fertility level $(T_1)$             | 24   |
| 9.     | Histogram of number of seeds/pod at high<br>fertility level (T <sub>1</sub> ) | 24   |
| 10.    | Histogram of weight/100 seeds at high fertility level $(T_1)$                 | 24   |
| 11.    | <pre>Path coefficients at low (T<sub>0</sub>) fertility level</pre>           | 27   |
| 12.    | Path coefficients at high (T <sub>1</sub> ) fertility<br>level                | 27   |
| 13.    | Histogram of response values for yield/plant                                  | 30   |
| 14.    | Histogram of response values for number of pods/plant                         | 30   |

.

# Figure

| 15. | Histogram of response values for number of seeds/pod                                             | 30 |
|-----|--------------------------------------------------------------------------------------------------|----|
| 16. | Histogram of response values for weight/100<br>seeds                                             | 30 |
| 17. | Scattergraph of response values and deviations from T <sub>0</sub> mean for yield/plant          | 32 |
| 18. | Scattergraph of response values and deviations from T <sub>0</sub> mean for number of pods/plant | 32 |
| 19. | Scattergraph of response values and deviations from $T_0$ mean for number of seeds/pod           | 33 |
| 20. | Scattergraph of response values and deviations from $T_0$ mean for weight/100 seeds              | 33 |
| 21. | Scattergraph of response values and deviations from $T_1$ mean for yield/plant                   | 34 |
| 22. | Scattergraph of response values and deviations from $T_1$ mean for number of pods/plant          | 34 |
| 23. | Scattergraph of response values and deviations from $T_1$ mean for number of seeds/pod           | 35 |
| 24. | Scattergraph of response values and deviations from $T_1$ mean for weight/100 seeds              | 35 |
| 25. | Location effect on yield/plant                                                                   | 44 |
| 26. | Location effect on number of pods/plant                                                          | 44 |
| 27. | Location effect on number of seeds/pod                                                           | 44 |
| 28. | Location effect on weight/100 seeds                                                              | 44 |
| 29. | Varietal differences for yield/plant                                                             | 49 |
|     | Varietal differences for number of pods/<br>plant                                                | 49 |
|     | Varietal differences for number of seeds/<br>pod                                                 | 49 |
| 32. | Varietal differences for weight/100 seeds                                                        | 49 |

# Figure

| 33. | Varieties 3 and 13 demonstrating variety x phosphorus interaction                   | 50 |
|-----|-------------------------------------------------------------------------------------|----|
| 34. | Varieties 2 and 15 demonstrating variety $x$ phosphorus interaction $\ldots$        | 50 |
| 35. | Varieties 5 and 11 demonstrating variety x phosphorus interaction                   | 50 |
| 36. | Varieties 2 and 15 demonstrating variety x phosphorus interaction                   | 50 |
| 37. | Varieties 3 and 13 demonstrating variety x phosphorus interaction                   | 50 |
| 38. | Varieties 6 and 9 demonstrating variety x phosphorus interaction                    | 50 |
| 39. | Shapes of yield curves of varieties 4, 12,<br>10, and 13 with phosphorus treatments | 52 |
| 40. | Shapes of yield curves of varieties 9, 14,<br>and 15 with phosphorus treatments     | 52 |
| 41. | Shapes of yield curves of varieties 2, 6, 8, and 11 with phosphorus treatments      | 52 |
| 42. | Shape of yield curve of variety 16 with phosphorus treatments                       | 52 |
| 43. | Shapes of yield curves of varieties 1 and<br>5 with phosphorus treatments           | 52 |
| 44. | Shape of yield curve of variety 7 with phosphorus treatments                        | 52 |
| 45. | Shape of yield curve of variety 3 with phosphorus treatments                        | 52 |
| 46. | Phosphorus concentrations in the plant at various phosphorus levels                 | 57 |
| 47. | Potassium concentrations in the plant at various phosphorus levels                  | 57 |
| 48. | Varietal differences in the concentration of phosphorus in the whole plant          | 58 |

# Figure

| 49. | Varietal differences in the concentration of potassium in the whole plant | 58 |
|-----|---------------------------------------------------------------------------|----|
| 50. | Varietal differences in the concentration of calcium in the whole plant   | 58 |
| 51. | Varietal differences in the concentration of magnesium in the whole plant | 58 |
| 52. | Phosphorus x variety interactions for potassium concentrations            | 60 |
| 53. | Phosphorus x variety interactions for calcium concentrations              | 60 |
| 54. | Concentrations of phosphorus in the roots, stems, and leaves              | 61 |
| 55. | Concentrations of potassium in the roots, stems, and leaves               | 61 |
| 56. | Concentrations of calcium in the roots, stems, and leaves                 | 61 |
| 57. | Concentrations of magnesium in the roots, stems, and leaves               | 61 |
| 58. | Phosphorus x plant parts interaction for phosphorus concentrations        | 63 |
| 59. | Phosphorus x plant parts interaction for potassium concentrations         | 63 |
| 60. | Phosphorus x plant parts interaction for calcium concentrations           | 63 |
| 61. | Phosphorus x plant parts interaction for magnesium concentrations         | 63 |
| 62. | Variety x plant part interaction for phosphorus                           | 64 |
| 63. | Variety x plant part interaction for potassium                            | 64 |
| 64. | Variety $x$ plant part interaction for calcium .                          | 64 |
| 65. | Variety x plant part interaction for magnesium                            | 64 |

#### INTRODUCTION

Application of mineral nutrients to the soil has long been an accepted means of increasing crop yield. Agronomists accept, not always with confirmatory evidence, that beans (<u>Phaseolus vulgaris</u> L.) respond inefficiently to mineral fertilization.

Symbiosis with <u>Rhizobium</u> may have rendered this legume independent of mineral nitrate levels in the soil. Hence, there has been no strong selection, natural or intentional, for genes that render the species more efficient in nitrate uptake and utilization. It has been suggested that these legumes evolved under conditions of an ancient agriculture both in Central America and the Orient on soils relatively low in available nutrients. As a consequence, the species may never have developed the ability to respond to high fertility conditions. The genetic reasoning would be that genes leading to greater response did not have an opportunity of being preferentially selected, because they may have required a high fertility environment in which to express themselves. This environment may not have existed under primitive agricultural conditions.

Another argument states that under conditions of exhausted fertility, the plants most likely to be chosen for

domestication, would be those most efficient in utilizing nutrients at low concentrations. Thus, those chosen for domestication might utilize nutrients inefficiently under conditions of nutrient abundance.

In the future it may become desirable to select types of <u>Phaseolus vulgaris</u> L. for their response capacity, therefore, the variability present in the species must be known. Varietal responses to applied nutrients have been investigated more in some species than in others. Yield responses in a large number of representative varieties of <u>Phaseolus vulgaris</u> have not been investigated, hence, total range of response for the species is not known. When the range and variability are known, a better idea of the potential of the species may be obtained. The allegation that the species responds inefficiently to mineral fertilization can then be more critically evaluated.

If varieties respond differentially to fertilization, there must be certain physiological and/or morphological characters, under genetic control, which differentiate the varieties. Differences with respect to mineral nutrition may exist for absorption, translocation, and/or utilization, thus providing a physiological basis for differentiating the genotypes.

Differential response may occur for some elements, but not for others. In understanding differential response, it must be known to which elements or combinations of elements the varieties are responding differentially.

From a management viewpoint, agriculturalists must be aware of varietal differences for optimal levels of nutrients, as well as possible differences in tolerance when nutrient levels are either above or below the optimum for a given variety.

The objective of this research was to answer the following questions concerning the mineral nutrition of beans:

- 1. How do increments of nitrogen (N) and phosphorus (P) affect yield (W) and the yield components, i.e., number of pods per plant (X), number of seeds per pod (Y), and seed weight (Z)?
- 2. Are there varietal differences in response to applied N and P for W, X, Y, and Z?
- 3. Can response to an increment of N and P be predicted from the values obtained under conditions of low N and P?
- 4. Does N, P, or the NxP interaction promote differential response?
- 5. Do varieties differ in tolerance of sub, or supraoptimal levels of N and P?
- 6. Do improved and unimproved varieties show distinctly different responses to W, X, Y, and Z?
- 7. Do varieties differ in concentrating P and other elements in their tissue at different levels of P in the nutrient medium?

#### LITERATURE REVIEW

Before considering differential response, it is of interest to consider the general nutritional requirements of <u>Phaseolus vulgaris</u> L. The requirements are based on the elemental composition of the plant tissue. Work by several authors has been reviewed and condensed by Fassbender (1967). He found N,  $P_2O_5$ ,  $K_2O$ , S, Ca, and Mg to be present in the following approximate proportions: 1:0.22:0.70:0.027:0.30: 0.053.

Brief mention will also be made concerning fertilization practices with emphasis on the major elements N, P, and K. In a literature review by Martini and Pinchinat (1967), the data indicated that nitrogen response was highly variable, phosphorus response generally significant, and potassium response generally non-significant.

Although beans have a very high nitrogen content, their requirement for applied nitrogen would be expected to be quite low due to the nitrogen made available through the symbiotic relationship with <u>Rhizobium</u>. In spite of this, the bean and other legumes may respond to nitrogen. Nodule bacteria do not fix adequate nitrogen for the short season legumes, according to Sprague (1964). Allos and Bartholomew (1959), found that soybeans, alfalfa, sweet clover, Ladino

clover, and birdsfoot trefoil, responded to the addition of inorganic nitrogen both in increased growth and nitrogen uptake. They found that each species supplied by fixation only one-half to three-fourths the total nitrogen used by the plant.

Generally, beans responded well to phosphorus fertilization. This appears to be a consequence of the low level of available phosphorus found in many soils, according to Martini and Pinchinat (1967).

Fassbender (1967) pointed out that in some isolated instances response to applied potassium had been observed in Latin America. In the United States responses to applied potassium are more frequent.

In a fertilizer program it may be necessary to consider differential responses of varieties. The information available regarding differential response of <u>Phaseolus</u> <u>vulgaris</u> L. to nitrogen and phosphorus is meager. Literature dealing with varietal differences in response to these elements in other agronomic crops may be useful in understanding <u>Phaseolus</u> vulgaris L. responses.

Working with wheat, Lamb and Salter (1936), showed a differential yield response between two varieties. Woodward (1966) demonstrated that dwarf wheat varieties were capable of much greater yield increases with applied nitrogen than were the tall varieties.

Early work by Smith (1934) in maize, showed that although many inbred lines behaved very much alike, a few showed distinct differences in dry weight when grown with a limited phosphorus supply. These same inbreds did not show a differential response to low nitrogen.

Mitchell <u>et al</u>. (1953) found a differential response among oat varieties to phosphorus. Mitchell (1957), working with barley, again found differential response among varieties.

Finn and Mack (1964) found differential response to phosphorus in orchardgrass. Crossley and Bradshaw (1968) found varietal differences in response to phosphorus in ryegrass and orchardgrass.

Differential response has also been found among legumes. Levesque and Ketcheson (1963), working with alfalfa, found that Dupuits yielded better than Ladak at low phosphorus levels.

Foy <u>et</u> <u>al</u>. (1967) observed differential tolerance to aluminum in <u>Phaseolus</u> <u>vulgaris</u> L. and <u>Phaseolus</u> <u>lunatus</u> L.

Varietal differences have been studied more intensively in soybeans than in other legumes. Howell (1954) showed differences between the varieties Lincoln and Chief. Later work by Howell and Bernard (1961) demonstrated that soybean varieties differed in tolerance to high levels of phosphorus. The more tolerant varieties also proved to be the most responsive. Dunphy et al. (1966) took a much more

comprehensive approach to differential response in soybeans, observing great variability in many varieties.

Once established that nutritionally different types exist within a species the question arises as to how these differences came about. Snaydon and Bradshaw (1962), working with <u>Trifolium repens</u> L., noted that nutritional races can arise in nature as a result of mutations and natural selection. Available nutrient levels in the soil might be an important factor in natural selection of nutritional types. If a soil becomes depleted in a given element, those types which extracted and utilized that element more efficiently would probably set more viable seeds. Over time, the population would become adapted to its edaphic environment. Reitz and Meyers (1944), working with wheat, found that varieties adapted to similar soils responded in a similar manner to fertilizers. Conversely, varieties adapted to different soils demonstrated differential response.

It has been shown that varieties respond differentially; and that nutritionally distinct populations can arise through genotypic differences in ability to produce viable progeny. The genetic bases for nutritional differences have been shown by several authors including Pope and Munger (1953), Bernard and Howell (1964), Epstein and Jeffries (1964), and Crossley and Bradshaw (1968).

The genetic differences must produce physiological and/or morphological differences. The physiology of nutritional differences has been investigated by several workers.

Brown <u>et al</u>. (1961) and Brown and Weber (1967) considered differences among soybean genotypes and found that varieties differed in their capacity to reduce iron at the root surface. The varieties with the greatest reducing capacity showed greater uptake. Weiss (1943) studied internal pH differences of many genotypes. A low pH was conducive to iron solubility, hence availability in the plant. Ambler and Brown (1969) concerned with zinc deficiencies, noted that varieties with greater Fe and P uptake demonstrated severe zinc deficiencies.

Morphological differences involving root:top ratios have been considered in corn by Lyness (1936), in alfalfa by Levesque and Ketcheson (1963), and in soybeans by Fletcher and Kurtz (1964). DeTurk (1933), working with corn, found that larger root systems were capable of exploring a larger soil volume, facilitating greater nutrient uptake. Smith (1934) considered the ratio of secondary to primary roots in corn in relation to nutrient absorption.

The possibility of utilizing varietal differences dates back some years. Gregory and Crowther (1928) noted the possibility of selecting varieties adapted to nutrient deficient soils. Stringfield and Salter (1935) believed it was necessary to consider varietal curves for yield, with special reference to the yield of a standard variety, at different levels of soil fertility. They indicated that if certain varieties are particularly well suited to either the

better or the poorer soils, they should be identified and recommended accordingly. Vose (1963) noted that the breeder of any field crop must take so many factors into account, that there is little inducement to consider an additional factor such as nutritional efficiency, unless forced to do so by extreme requirements. If advances in crop yields are to be maintained, then deliberate selection for nutritional efficiency seems desirable.

Some attention should be directed toward identifying and expressing varietal differences in response. The work by Holmes and MacLusky (1955) indicated the need to work with large numbers of varieties to have an idea of the variability within a species. Reitz and Myers (1944), and Finn and Mack (1964) pointed out that a constant problem in evaluating nutrient response is that varieties can respond differentially to climatic factors. Since many of these factors are difficult to control in the field, it is easy to mistake differential response to a climatic factor, for differential response to the elements under study. It is also important to consider whether the effects of the element are direct or indirect.

Response can be expressed in different manners. Dunphy <u>et al</u>. (1966) expressed yield response simply as the difference between the fertilized and non-fertilized treatments, while Schillinger (1970) expressed yield response as a percentage of the check.

#### MATERIALS AND METHODS

Greenhouse, field, and hydroponics experiments, although independent of one another, are related in that they provide information needed to obtain insight into the problem of differential response.

#### Greenhouse Experiment

## Factorial Components and Experimental Design

A randomized complete block design was employed with factorial components of 124 varieties, two fertility levels, and three replications.

#### Location of the Experiment

The greenhouse experiment was conducted at the Inter-American Institute of Agricultural Sciences (IICA), Turrialba, Costa Rica.

#### Preparation of Soil

The potting soil was taken from the top-soil of a hillside in Pacuare, Costa Rica. In Pacuare, beans are grown under primitive agricultural conditions described later. The soil was fumigated with methylbromide to reduce

the incidence of disease organisms, then approximately 6.5 kg of air dry soil was placed in each pot.

#### Soil Analysis

Nitrogen was determined using the Semimicro-Kjeldahl method described by Black (1965). The Bray 1 method (1945) was used for phosphorus determination. K, Ca, and Mg were determined by atomic absorption. Cation exchange capacity (CEC) was determined according to the method described by Bower (1952). The organic matter was determined using a method described by Saiz Del Rio and Bornemisza (1961). The pH was determined in a 1:1 soil-water mixture. The soil test results are tabulated under "Pacuare" in Table 9 of the Appendix.

#### Fertilizer

Two fertilizer treatments were used to create high and low fertility conditions. The low fertility treatment  $(T_0)$  was the control. The high fertility treatment  $(T_1)$ consisted of a 15 gram application of a 10-30-0 fertilizer to each pot. The fertilizer was formulated by mixing 22.2 grams of urea (45% N), 64.4 grams of triple-superphosphate (46%  $P_2O_5$ ), and 13.5 grams of quartz sand to act as inert material. The fertilizer was deposited in a small area in the center of the pot about 6-8 cm below the soil surface.

## Selection of Varieties

One-hundred and twenty-four varieties of <u>Phaseolus</u> <u>vulgaris</u> L. were selected from the germplasm collection at Turrialba. The varieties were selected to include representatives from distinct geographical and ecological regions. These 124 varieties probably are a representative sample of the population of varieties in <u>Phaseolus vulgaris</u> L. A list of these varieties is found in Table 8 in the Appendix.

#### Planting and Harvesting

Five seeds were planted in each pot, and after 7 days the plants were thinned to three per pot.

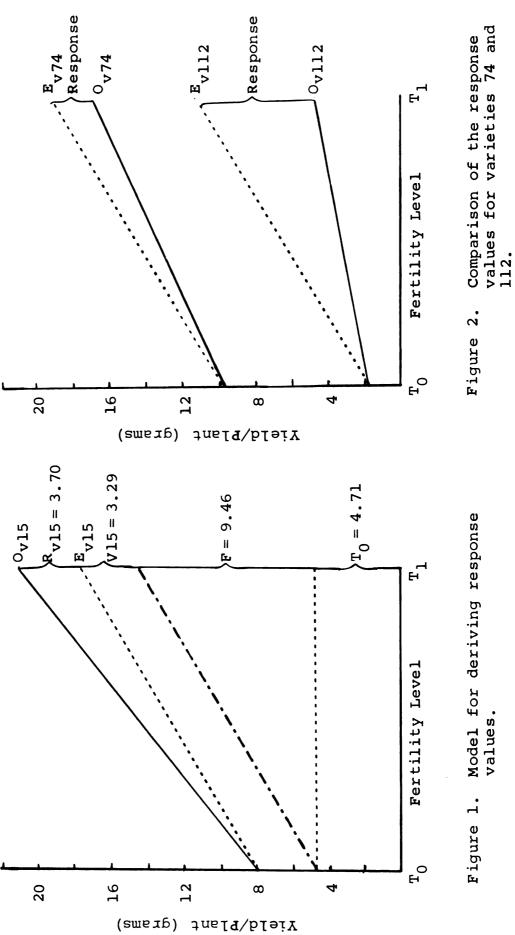
The mature plants were harvested and measurements were taken of yield and the yield components. Yield, pods/ plant, seeds/pod, and weight/seed will be referred to as W, X, Y, and Z respectively.

## Presentation of Data

Analyses of variance, as well as all other procedures to be described, were conducted for W, X, Y, and Z.

Histograms were used to show the range and distribution of data at high and low fertility levels and the distribution of response values.

Scattergraphs and line-graphs were used to indicate the feasibility of predicting response.


In considering the problem of expressing differential response, three methods were utilized. In method 1, each individual variety was compared to the population mean. The role of the population mean was similar to that of a standard variety, although the population mean contained many more observations than did the individual varieties. The differences  $(\overline{d} - \overline{d})$  was calculated as shown for each variety and the population mean:

$$(\overline{x}_{pt_0} - \overline{x}_{vt_0}) - (\overline{x}_{pt_1} - \overline{x}_{vt_1}) = \overline{d} - \overline{d}$$

In method 2, response values were determined as shown in Figure 1. It might also be mentioned that the values obtained in this manner are equivalent to the  $(\overline{d} - \overline{d})$ values obtained in method 1. In Figure 1 the mean value for the population of all varieties at  $T_0$  and  $T_1$  are represented by the dot-dash line. The difference between the  $T_1$  and  $T_0$ population values is considered to be the average effect of fertility on the population of varieties. The fertility effect is calculated as follows:

$$\overline{\mathbf{x}}_{\text{pt}_1} - \overline{\mathbf{x}}_{\text{pt}_0} = \mathbf{F}$$
 (fertility effect)  
14.17 - 4.71 = 9.46

At low fertility, varieties will fall on, above, or below the population mean at  $T_0$ . Variety 15 will be used again for illustrative purposes. The  $T_0$  value for variety 15 is 8.00 ( $\overline{X}_{v15t_0} = 8.00$ ). This represents a deviation of 3.29 from the population mean at  $T_0$ , and is termed the "variety effect." The calculation is as follows:



$$\overline{x}_{v15t_0} - \overline{x}_{pt_0} = V_{15}$$
 (variety effect)  
8.00 - 4.17 = 3.29

An expected point can be calculated for variety 15 at  $T_1$  ( $E_{v15}$ ). It is assumed that variety 15 will be affected by the  $T_1$  treatment in a similar manner as the population of varieties was. Therefore the expected point for variety 15 at  $T_1$  would be the following:

$$E_{v15} = \overline{x}_{pt_0} + V_{15} + F$$
  
= 4.71 + 3.29 + 9.46  
= 17.46

The response value, expressed as the difference between the observed value  $(O_{v15})$  i.e.,  $\overline{x}_{v15t_1}$  and the expected value  $(E_{v15})$  is calculated as follows:

$$R_{v15} = O_{v15} - E_{v15}$$
$$= 21.16 - 17.46$$
$$= 3.70$$

The varietal response demonstrated here  $(R_{v15} = 3.70)$  is equal to the  $(\overline{d} - \overline{d})$  value calculated for variety 15 using the first method.

In method 3, response was calculated as a percentage of the check as follows:

$$\frac{\overline{x}_{v15t_1} - \overline{x}_{v15t_0}}{\overline{x}_{v15t_0}} \times 100 = \% \text{ response}$$

This method is not definitive since the percentage expression can be easily misinterpreted. In Figure 2 the varieties 112 and 74 illustrate this point. By the percentage method variety 112 is shown to be a better responder than variety 74. The values are 157% and 80%, respectively, as shown in Table 8 in the Appendix. The small  $T_0$  value for variety 112 permits this large percentage expression, whereas the larger  $T_0$  value for variety 74 makes its percentage response small. This makes low  $T_{\Omega}$  producers appear as higher responders and high  $T_0$  producers as lower responders. Using the first two methods, varieties 112 and 74 have values of -6.61 and -1.96, respectively. Although both values are negative, the important point is that by these methods variety 112 shows a lesser ability to respond than does variety 74; whereas by the percentage method variety 112 is superior in response to 74. In Figure 2, this point is supported by the fact that variety 74 more nearly approaches its expected value than does variety 112.

Path Coefficients were determined under both  $T_0$  and  $T_1$  conditions. The procedure is described by Duarte (1966).

## Field Experiment

## Location of the Experiment

The experiment was conducted at two locations in Costa Rica. The location at Alajuela  $(L_1)$  is in an intensive bean growing area, while the location at Turrialba  $(L_2)$ is not in a zone of commercial bean production.

## Factorial Components and Experimental Design

The factorial components consisted of 16 varieties, 3 levels of N, 4 levels of P, 2 locations, and 3 replications. A split-plot design was employed. Fertility treatments represented the top-split, and varieties the sub-split.

#### Soil Analysis

The methods of soil analysis were the same as those used in the greenhouse experiment. The results are tabulated under "Alajuala" and "Turrialba" in Table 9 in the Appendix.

### Varieties Used

The 16 varieties used in the experiment are listed in Table 10 in the Appendix. They are representative from various different geographical and ecological regions.

### Fertilizer Treatments

The three nitrogen levels were 0, 100, and 200 kg per hectare. Phosphorus levels were 0, 200, 400, and 800 kg per hectare.

## Planting and Harvesting

At planting the fertilizer was banded in a trench 6-8 cm deep. The fertilizer was covered with 2-4 cm of soil to prevent direct seed-fertilizer contact.

Each plot consisted of a row 1.5 meters long with seeds planted at 10 cm intervals. One meter row spacing was used.

Five mature plants from the center of each row were harvested. Data for yield and the yield components were obtained from these plants.

#### Statistical Analysis

Analyses of variance were conducted. The data were presented graphically and in tables to aid in the interpretation of results.

Interaction LSD's were calculated to determine over which nutrient levels varieties interacted differentially.

#### Hydroponics

## Factorial Components and Experimental Design

The factorial components included 7 levels of P, 4 varieties, 3 plant parts, and 3 replications. A splitplot design with two sub-splits was used. P levels represented the top split, varieties the sub plots, and plant parts the sub-sub plots.

#### Varieties Used

The four varieties selected were Ahumado de Chirripo Linea 24 (variety 1), Jin-11-B (variety 2), P1-163-372 (variety 3), and 4-N (variety 4).

#### Nutrient Solution

A modified Hoagland solution "#1" and the "a" micronutrient supplement described by Hoagland and Arnon (1939) were used. KCl and  $H_2PO_4$  replaced  $KH_2PO_4$  as K and P sources. To each liter of nutrient solution 0.55 cc of 1 molar NaCl, 1.0 cc of 0.5 molar  $Na_2SiO_3 \cdot 9 H_2O$ , and 1.0 cc of a 0.5% Fe-EDTA were added.

The micronutrient supplement was applied every 10 days and the Fe-EDTA every 5 days.

To prevent micro-organism growth, Dicristicina (streptomycin-penicillin mixture) was applied at the rate of 1,000 units of penicillin per liter at the onset of the experiment.

#### Phosphorus Treatments

The phosphorus treatments were 2, 5, 8, 11, 14, 17, and 20 ppm. The P source was  $H_3PO_4$ .

## Set-Up and Planting

The 16 liter nutrient solution containers were coated with an inert asphalt base paint, and wooden lids with five holes were placed over them.

Aeration was supplied constantly and the pH was maintained at approximately 6.0 using NaOH. The solution was changed every 15 days.

The seeds were germinated in vermiculite and one of each of the four varieties was transplanted 10 days after germination. The plants were held in place with sponge rubber wrapped about a portion of the stem.

## Harvest and Preparation for Analysis

The varieties possessed different maturity dates and were harvested at the onset of flowering. It is believed that they were at a similar stage of physiological development.

The plants were divided into root, stem, and leaf portions to be analyzed separately. The material was oven dried at 105<sup>°</sup> C, weighed, and ground in a Wiley mill.

#### Mineral Analysis

The plant material was ashed for 12 hours at  $550^{\circ}$  C. The ash was dissolved in HCl and H<sub>2</sub>O as described by Singh (1968). The extracts were analyzed for P, K, Ca, and Mg. P was determined according to a method described by Taussky and Shorr (1953). Potassium was determined flame-photometrically, and Ca and Mg by atomic absorption.

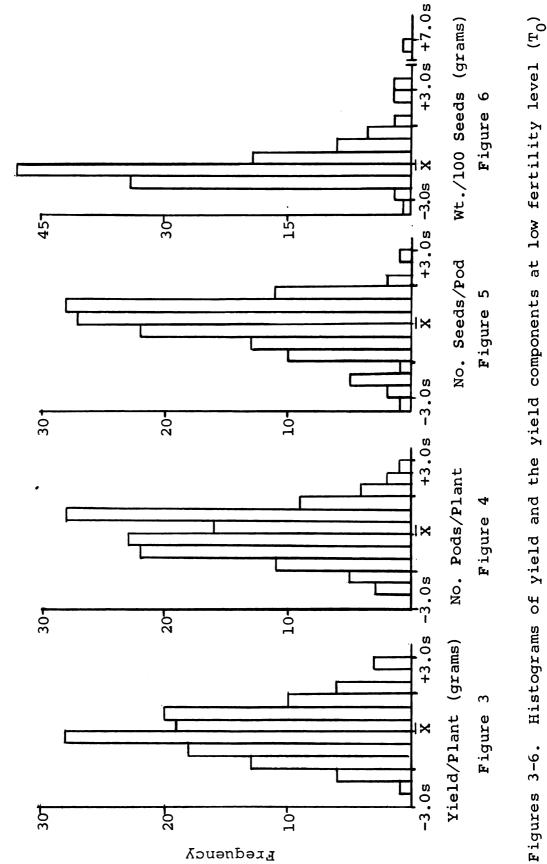
## Analysis of Data

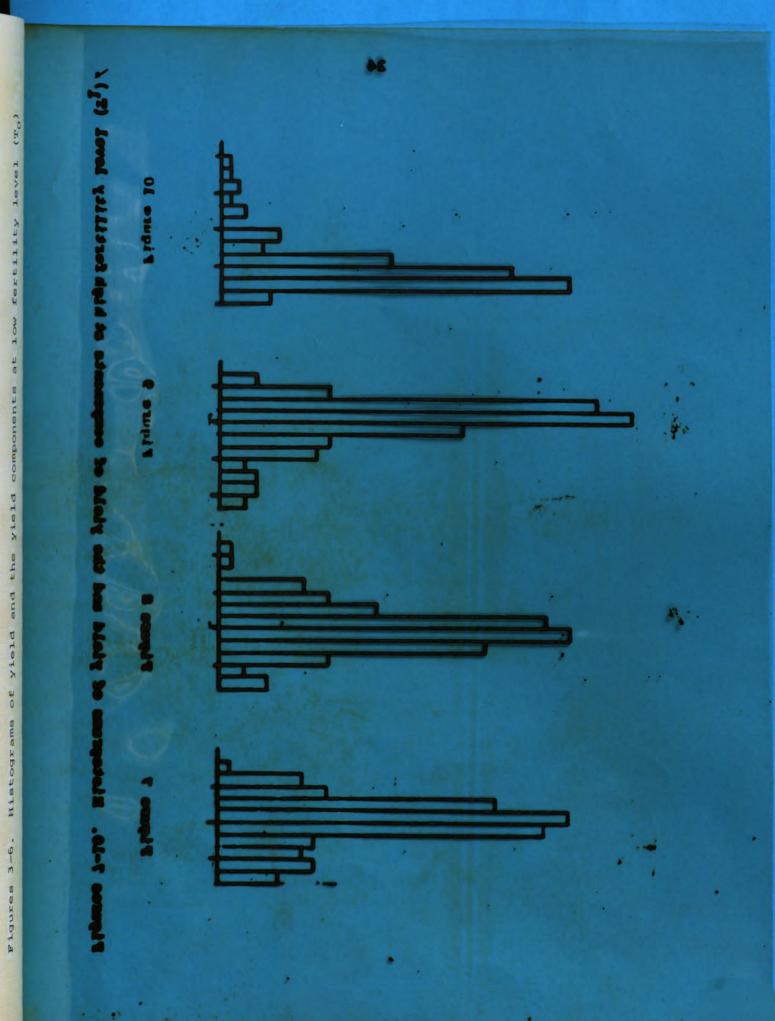
Analyses of variance were made for P, K, Ca, and Mg concentrations in the tissue. The data are presented graphically and in tables to aid interpretation. Duncan's Multiple Range Test for mean separation, and interaction LSD's were calculated where appropriate.

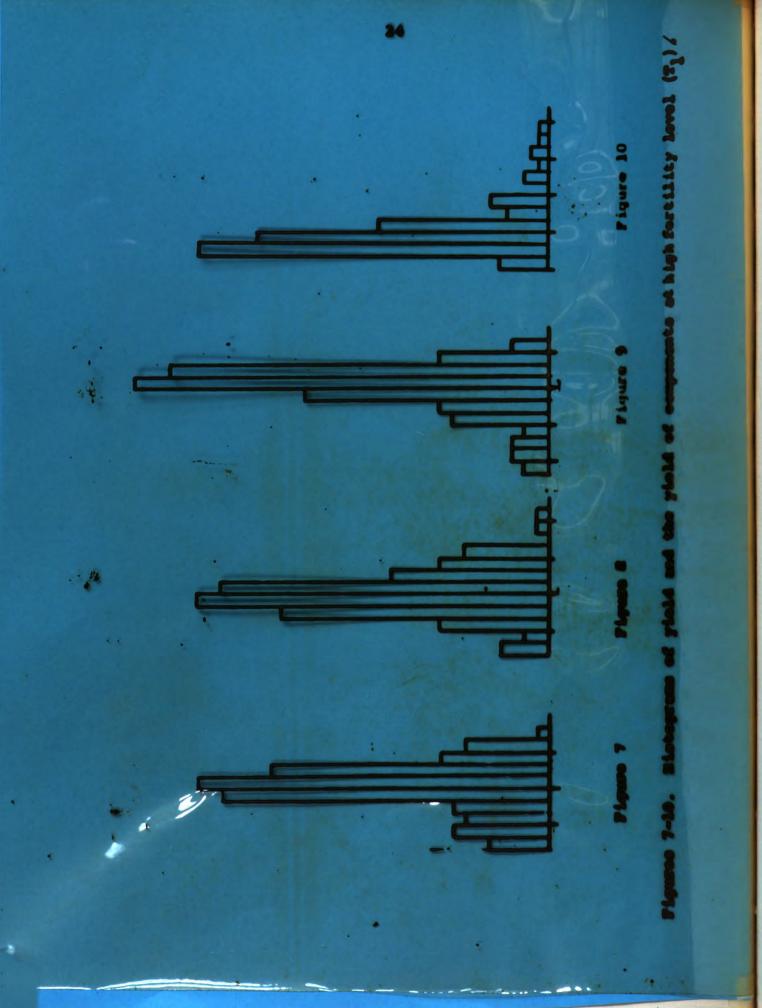
### RESULTS AND DISCUSSION

#### Greenhouse Experiment

The analyses of variance for greenhouse results are shown in Table 1 for W, X, Y, and Z. The variety (V), fertility (F), and variety x fertility interaction effects (VxF) were all significant for yield and the yield components.


As Figures 3-5 demonstrate, W, X, and Y are approximately normally distributed at  $T_0$ , while the Z distribution appears skewed to the right (Figure 6). A logarithmic transformation of the data would make the Z distribution approach normality. The  $T_0$  mean values are given in Table 11 in the Appendix for W, X, Y, and Z.


In Figures 7-10 the distributions for W, X, Y, and Z are shown at  $T_1$ . The  $T_1$  mean values are given in Table 11 in the Appendix. The W distribution is different at  $T_0$  than at  $T_1$ . This can be seen comparing Figures 3 and 7. At  $T_1$ there has been an increase in frequency immediately above the mean ( $\overline{X}$  to +0.5s), a decrease in the interval -0.5s to -1.5s, and an increase in the number of varieties having values below the -1.5s value. A plausible explanation is that the mean rises for all varieties, but does so disproportionately, more for some than for others. At the  $T_0$ 

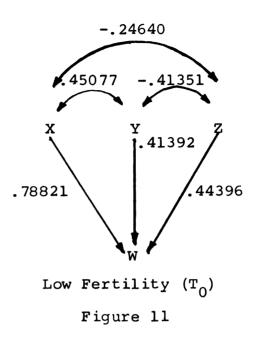

| ıt at Turrialba   |
|-------------------|
| Experimen         |
| the Greenhouse    |
| for the           |
| s of variance for |
| of                |
| analyse           |
| of                |
| y table of        |
| Summary<br>(1968) |
| Table l.          |

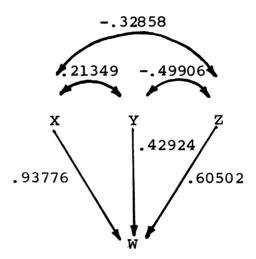
|              |      |                 | Mean Squares   | juares        |                 |
|--------------|------|-----------------|----------------|---------------|-----------------|
| Source       | d.f. | Yield/Plant (W) | Pods/Plant (X) | Seeds/Pod (Y) | Weight/Seed (Z) |
| Total        | 743  |                 |                |               |                 |
| Reps.        | 7    | 12.81 N.S.      | 3.07 N.S.      | 0.39 N.S.     | 0.0036 N.S.     |
| Fert.        | Ч    | 16,542.29**     | 7,064.95**     | 89.57**       | 0.1181**        |
| Variety      | 123  | 38.92**         | 25.30**        | 3.45**        | 0.0535**        |
| Var. x Fert. | 123  | 14.77**         | 9.34**         | 0.48**        | 0.0030*         |
| Error        | 494  | 9.29            | 5.05           | 0.35          | 0.0023          |
|              |      |                 |                |               |                 |

\*Significant at .05 level; \*\*Significant at .01 level.









level, in the interval -0.5s to -1.5s, varieties may be found which demonstrate low yield potential, but are approaching this potential at the low fertility level. Varieties possessing a higher potential, but not nearly approaching their potential may also be found in this inter-At the high fertility level, the varieties possessing val. the greater potential increase more than do those possessing the lower potential, separating distinctly varieties which showed little difference at the  $T_0$  level. The X distribution for  $T_0$  (Figure 4) and  $T_1$  (Figure 8) also show differences. At high fertility, higher frequencies are found in the -0.5s to +0.5s interval, and lower frequencies in the +0.5s to +1.0s interval. This represents a tendency to move from the +0.5s to +1.0s interval toward the mean. This change could indicate that some varieties are not increasing proportionately, causing a relatively lower ranking.

The Y distribution shows some skewing to the left at  $T_1$  not present at  $T_0$  (compare Figures 5 and 9). The skewing to the left for Y may be occurring because at high fertility, the upper limit of the biological potential of Y for this sample of varieties is being approached.

The Z distributions (Figures 6 and 10) show skewing to the right at both  $T_0$  and  $T_1$ , but the effect is accentuated at  $T_1$ . The increased skewedness may also indicate that there are lower biological limits in seed size, below which survival is greatly impaired.

The fertility effect was significant for W, X, Y, and Z. Although all increases are significant at  $T_1$ , much larger increases occurred in W and X than in Y and Z (Table 11, Appendix). The effect of the increased level of fertility on X, Y, and Z with respect to their contributions to W was further investigated by calculating path-coefficients for X, Y, and Z at both  $T_0$  and  $T_1$ . Logarithmic transformation of all the data was necessary, since the effects of X, Y, and Z on W are not additive. The results are shown in Figures 11-12. In comparing  $T_1$  with  $T_0$ , it is clear that **X exerts** a predominant influence on W at both  $T_0$  and  $T_1$ . The effect of  $T_1$  is mainly to enhance the role of X and Z in influencing yield. T1 affects the Y value or path, but not significantly. At  $T_0$  the correlation  $r_{xy}$  is positive. As X increases due to  $T_1$  the  $r_{xy}$  decreases, but remains positive.  $T_1$  increases the path from Z to W, but some of this comes at the expense of the  $r_{xz}$  and  $r_{yz}$  values, which become even more negative than at  $T_0$ . As the fertility level is raised from  $T_0$  to  $T_1$  the negative correlations between X and Z, as well as between Y and Z, become more negative. The positive XY correlation at  $T_0$  also becomes smaller at  $T_1$ . These trends make possible the increases occurring in the X, Y, and Z paths at  $T_1$ . The increasing negative correlations of XZ and YZ, as well as the decreased positive correlation of XY may indicate that a greater internal stress or competition is occurring at  $T_1$  than at  $T_0$  among the yield components. This competition could be for certain growth inputs

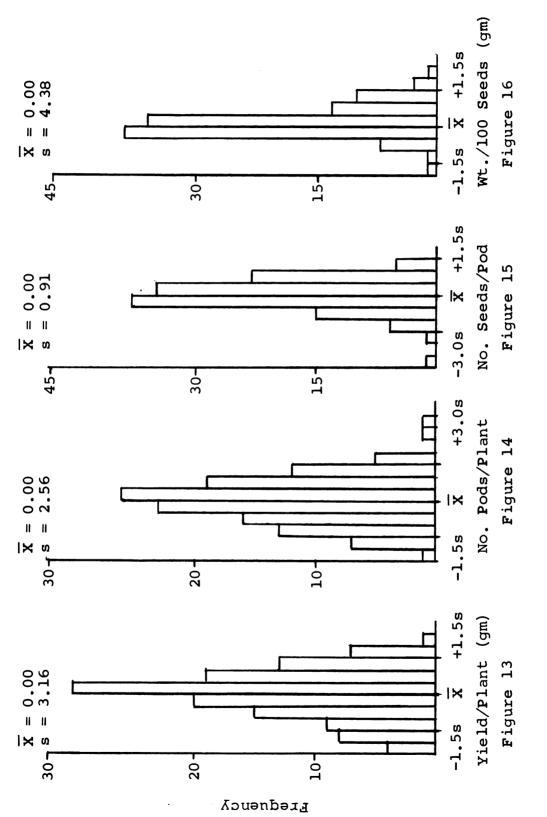




High Fertility  $(T_1)$ 

Figure 12

Figures 11-12. Path coefficients at low  $(T_0)$  and high  $(T_1)$  fertility levels.


such as mineral nutrients, photosynthate, etc. At first, it might be expected that less competition would occur among the components at T1, at least for the mineral elements, since additional nutrients were applied. However, since X, Y, and Z appear to develop in a sequential manner, the increment of fertilizer may increase X more than Y and Z. Once X has been increased at the T<sub>1</sub> level, sufficient growth inputs may not be available to increase Y and Z proportionately. The degree to which X could develop under  $T_0$  conditions was so low that it offered little competition for resources needed by Y and Z. Although X offered little competition, the total amount of growth inputs available were so low that Y and Z showed lower values than at  $T_1$ . At  $T_1$ , conditions were such that X was able to develop extensively. It thus competed strongly with Y and Z for the available resources. Though competition was more severe, more resources remained for Y and Z than at  $T_0$ , permitting them to increase slightly. The competition at  $T_0$  and  $T_1$  are at different levels of environmental resources.

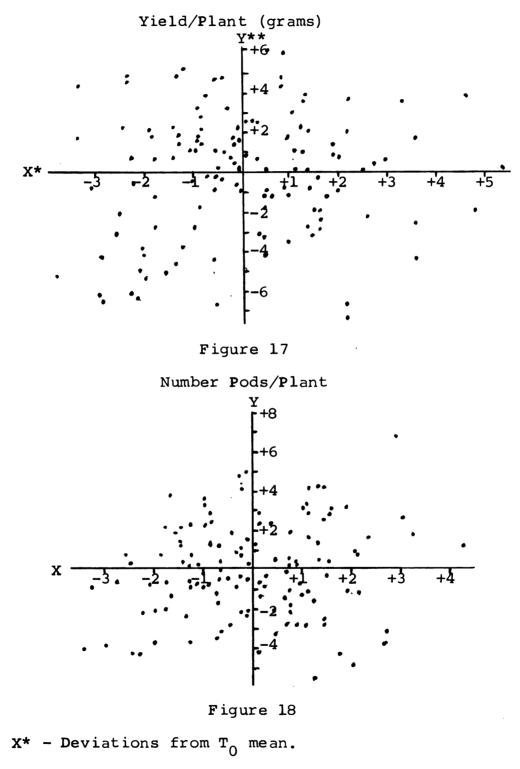
From the  $T_0$  and  $T_1$  distributions it is seen that much variability exists in yield at both low and high fertility. High yielders at  $T_0$  probably have greater internal nutrient requirements than do low  $T_0$  yielders. That is, they have larger quantities of inorganic nutrients incorporated into the yield product. A simple analogy might be that it takes more bricks to build a larger building. The higher yielders are thus able to make more efficient use of

the substrate. This efficiency could be accomplished by more efficient absorption, translocation, and/or utilization of the nutrients. At  $T_0$  varieties 31 and 82 illustrate differences in efficiency, having values of 1.33 and 9.93 grams, respectively. At  $T_1$  varieties 15 and 67 had the values of 21.16 and 5.20 grams, respectively, demonstrating differences in efficiency at high fertility similar to those found at low fertility.

Efficiency must be considered in terms of relative yields at a given fertility level. At  $T_0$  the higher yielder is making more efficient use of that substrate. As the fertility level changes, the relative ranking of varieties can greatly change. The significantly high varieties of  $T_0$  are 9, 15, 29, 66, 74, 82, 94, and 100. At  $T_1$  they are 4, 6, 15, 34, and 94. It is seen that some varieties do appear in both groups, but others do not. The fact that different varieties appear in the two groups indicates different efficiency rankings at the different fertility levels.

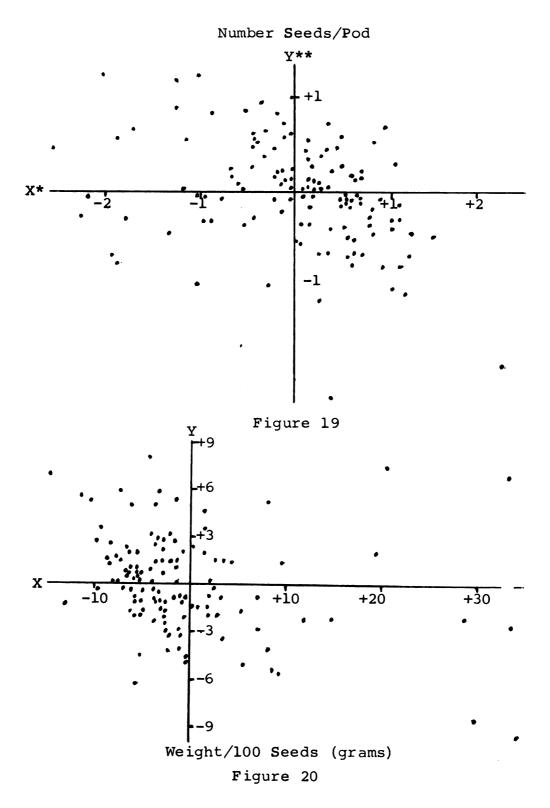
The W, X, Y, and Z distribution for response values are shown in Figures 13-16. A summary of the response values is given in Table 12 in the Appendix. The response distributions are quite normal, but there are much stronger tendencies for varieties to group about the Y and Z means than about the W and X means. This indicates that fewer varieties are demonstrating appreciable response. In general, for W, X, Y, and Z, there is a wide range of

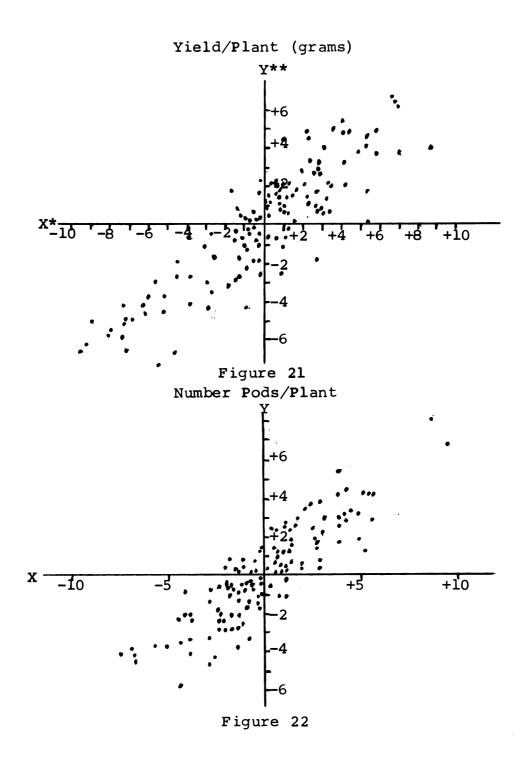





response being demonstrated by the population of varieties in this experiment.

The inability to predict response to a given fertility increment from knowledge of its performance prior to the increment is shown in Figures 17-20. In these figures  $\cdot$ response values and deviations from the T<sub>0</sub> means are plotted. No trends or patterns develop, indicating that the direction and magnitude of response demonstrated by the varieties are not related to the T<sub>0</sub> values. Response therefore can not be predicted from knowledge of the T<sub>0</sub> values.


Response is probably determined by two factors. The first would be the nutritional level a variety requires in the medium to approach its optimal yield level; the second, the actual level available in the medium. The difference between these two should represent the response capacity of a variety.


Figures 21-24 show response values plotted against deviations from the  $T_1$  mean. In Figures 21 and 22 a high correlation exists for W and for X (r values are .86 and .88 for W and X, respectively). This indicates that the response already realized can be predicted reasonably well from the  $T_1$ values. The higher  $T_1$  yielders generally demonstrated greater response, and the lower  $T_1$  yielders less response. This was also true for X, but not for Y and Z. The higher  $T_1$ yielders must have higher requirements for nutrients which were not being met at  $T_0$ , permitting a corresponding large response to the increment. Conversely, the lower yielders



Y\*\*-Response values.

Figures 17-20. Scattergraphs of response values and deviations from  ${\rm T}_0$  mean for yield and the yield components.






X\* - Deviations from T<sub>1</sub> mean.

Y\*\* - Response values.

Figures 21-24. Scattergraphs of response values and deviations from  $T_1$  mean for yield and the yield components.



at  $T_1$  must have had lower nutrient requirements which were being more nearly met at the  $T_0$  level, thus producing lesser responses, or by our criteria, negative responses.

Table 2 lists the varieties demonstrating significant response for W. All the positive W responders showed positive response values for X, and all the negative responders showed negative values for X. Y and Z also are both quite variable for these varieties and followed no specific pattern. The significant W responses were therefore achieved differently by different varieties. In all cases, however, the X component appeared to be most predominant in determining the W response. Although most significant positive responders are found for Y and Z, their

|         |        |        | Components |        |
|---------|--------|--------|------------|--------|
| Variety | W      | X      | Y          | Z      |
| 4       | +6.02* | +4.16* | -0.07      | +1.47  |
| 6       | +6.28* | +3.05  | +0.20      | +2.77  |
| 30      | +5.33* | +2.72  | +0.03      | -1.96  |
| 34      | +6.50* | +2.27  | +0.15      | -0.24  |
| 22      | -6.54* | -3.51  | -0.11      | -1.87  |
| 28      | -5.04* | -2.39  | +0.31      | -3.91  |
| 32      | -5.13* | -4.28* | +0.38      | +7.91* |
| 67      | -5.15* | -4.06* | +0.53      | +8.67* |
| 73      | -5.32* | -4.06* | +1.18*     | -0.09  |
| 86      | -7.40* | -5.62* | +0.21      | -2.86  |
| 89      | -5.95* | -4.39* | -0.09      | -2.64  |
| 90      | -6.28* | -3.84  | -0.26      | -2.13  |
| 103     | -5.59* | -3.72  | +0.01      | +9.93* |
| 107     | -6.72* | -4.84* | +0.09      | -3.48  |
| 112     | -6.61* | -2.06  | -0.97*     | -1.22  |
| 64      | +4.91* | +0.94  | +0.92*     | -5.04  |
| 106     | +4.90* | +4.06* | +0.25      | +2.15  |

Table 2. Varieties showing a marked response in "W"

effects are not enough to overcome the predominant influence of X. Also, a significant X value is not necessarily required to produce a significant W response, but intermediate X responders coupled with favorable Y and Z responses can produce a significant W response.

Table 3 shows the varieties demonstrating significant responses for X. In all cases, except variety 1, the signs of X and W values are the same. W, however, often is not significant even though X is. The effect of the significant responses in X are modified by opposite effects for Y and Z as illustrated by variety 73.

|         |        |        | Components |        |
|---------|--------|--------|------------|--------|
| Variety | W      | x      | Y          | Z      |
| 1       | -1.79  | +8.05* | -2.44*     | -0.31  |
| 4       | +6.02* | +4.16* | -0.07      | +1.47  |
| 8       | +1.43  | +4.39* | -0.78      | +0.03  |
| 18      | +4.71  | +3.83* | +0.57      | -0.73  |
| 29      | -2.60  | -4.39* | -0.01      | +4.16  |
| 32      | -5.13* | -4.28* | +0.38      | +7.91* |
| 37      | +1.47  | +3.60* | +0.49      | -4.08  |
| 67      | -5.15* | -4.06* | +0.53      | +8.67* |
| 73      | -5.32* | -4.06* | +1.18*     | -0.09  |
| 80      | +2.24  | +4.05* | -0.35      | -1.41  |
| 81      | -2.81  | -3.95* | +1.22*     | +2.75  |
| 86      | -7.40* | -5.62* | +0.21      | -2.86  |
| 89      | -5.95* | -4.39* | -0.09      | -2.64  |
| 90      | -6.28* | -3.84* | -0.26      | -2.13  |
| 96      | +1.43  | +6.61* | -0.78      | +0.80  |
| 98      | +3.94  | +4.05* | +0.52      | +1.36  |
| 103     | -5.59* | -3.72* | +0.01      | +9.93  |
| 106     | +4.90  | +4.06* | +0.25      | +2.15  |
| 107     | -6.72* | -4.84* | +0.09      | -3.48  |

Table 3. Varieties showing a marked response in "X"

Table 4 lists the varieties demonstrating significant response for Y. For variety 1, the negative response in Y offsets the positive response in X, producing a negative W response. Variety 70 shows Y and Z offsetting the effect of X. The W values of the varieties in Table 4 are very strongly affected by Y, and in many cases overcomes or modifies the effect of X on W.

|            |        |        | Components |       |
|------------|--------|--------|------------|-------|
| Variety    | W      | X      | Y          | Z     |
| 1          | -1.79  | +8.05* | -2.44*     | -0.31 |
| <b>4</b> 6 | +1.33  | +2.38  | -1.16*     | +0.26 |
| 55         | +1.65  | +1.27  | +0.99*     | +1.76 |
| 57         | +0.80  | +0.72  | +0.87*     | -1.38 |
| 62         | -4.37  | -2.94  | -1.81*     | +0.68 |
| 64         | +4.91* | +0.94  | +0.92*     | -5.04 |
| 70         | +4.76  | -1.17  | +1.24*     | +5.12 |
| 73         | -5.32* | -4.06* | +1.18*     | -0.09 |
| 79         | -0.27  | -0.50  | -1.03*     | +1.56 |
| 81         | -2.81  | -3.95* | +1.22*     | +2.75 |
| 85         | -3.13  | -0.73  | -1.10*     | -4.57 |
| 112        | -6.61* | -2.06  | -0.97*     | -1.22 |
| 120        | -1.25  | -0.72  | -0.94*     | -2.23 |

Table 4. Varieties showing a marked response in "Y"

In Table 5, the varieties demonstrating significant Z responses are shown. Except for variety 113, the significant Z values do not greatly affect the outcome of W. For variety 82, the positive W response value is due to error in equating the actual W values determined by direct weighing, to the W values obtained as products of  $X \cdot Y \cdot Z$ .

|         |        |        | Components |         |
|---------|--------|--------|------------|---------|
| Variety | W      | x      | Y          | Z       |
| 32      | -5.13* | -4.28* | +0.38      | +07.91* |
| 67      | -5.15* | -4.06* | +0.53      | +08.67* |
| 82      | +0.11  | -2.17  | -0.07      | -08.62* |
| 103     | -5.59* | -3.72* | +0.01      | +09.93* |
| 113     | -3.62  | -0.62  | -0.67      | -34.44* |

Table 5. Varieties showing a marked response in "Z"

An effort to determine whether the degree of improvement was in some way related to the response potential was studied only in a cursory manner. The level of improvement for the varieties can be seen in Table 8 in the Appendix. "Improved," means the variety has been included in a plant breeding program, while "unimproved" ones have not. The status of many varieties is not known, precluding any definite conclusions. Nevertheless, from the limited information there appears to be no specific pattern of response for either the improved or the unimproved varieties. The belief prior to this experiment was that the improved lines may show a greater response to applied nutrients than do the unimproved. The rationale was that the improved varieties have been grown under conditions of high soil fertility, and those types capable of utilizing a large quantity of nutrients may be more vigorous yielders. These plants would then be preferentially selected by the breeder because of their high yielding capacity. In other words, indirect

selection for high response might occur through direct selection for high yield. It can be recalled that our data showed high correlation between  $T_1$  yield and response.

The unimproved would not have been grown under conditions of high soil fertility under primitive agricultural conditions. The history of the soils would probably be one of steadily declining fertility. This decline would result from years of intensive cropping without the application of nutrients. Those types responding to, or using large quantities of nutrients would have no selective advantage. If those types capable of high response also have high requirements, they would be lost from the population under conditions of low fertility. In time a loss of the high responding types could occur. The information so far indicates that positive or negative response isn't specific to either the improved or the unimproved for either W, X, Y, or Z. These results are not unexpected if several points are considered. First of all, a high responder does not necessarily have a selective disadvantage under low fertility conditions. The high responder may be relatively well adapted to low fertility conditions as well as to high. Varieties 15 and 94 illustrate this point. The low fertility environment would simply not permit the high response character to be expressed. The type could thus be maintained in the population under low fertility conditions.

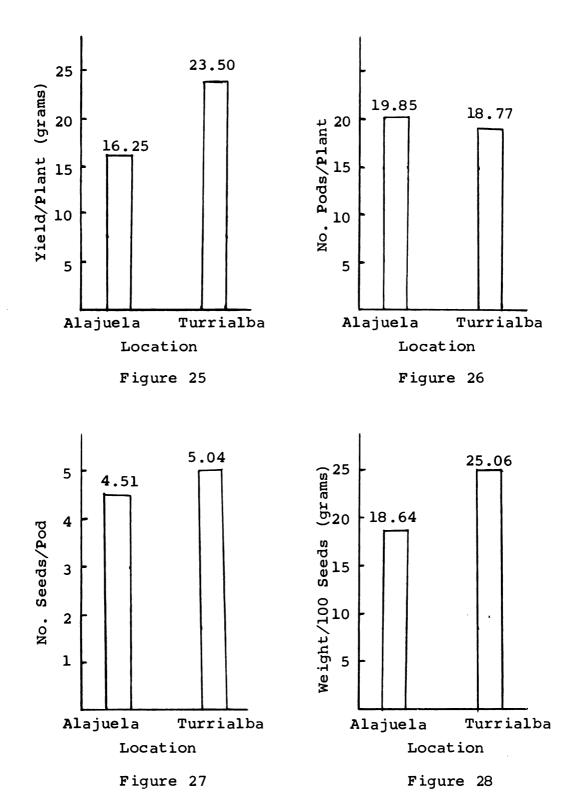
Another point is that primitive varieties are not necessarily grown under low fertility conditions, nor can

it be assumed that soil fertility has declined in all bean growing areas over time.

The author witnessed distinct differences in bean cultivating practices in Costa Rica and earlier in Guatemala. In Pacuare, Costa Rica, some of the farmers practice a "slash and plant" type of agriculture. Most of the areas where these methods are employed are on mountain slopes covered with wild vegetation. The farmer prior to planting simply cuts down a portion of the vegetation leaving a dense mat of organic matter. He then broadcasts the bean seed on top of the decaying vegetation. The ground cover as well as the natural regrowth of vegetation prevents soil erosion. It also provides a nutrient source for the beans. The beans sown were of a viny indeterminant growth habit, capable of competing successfully with the other forms of native vegetation. This cropping system is extensive, and a single site is cropped only once every 3 years. Soil was analyzed from some Pacuare bean plots. The nutrient status, as shown in Table 9 in the Appendix under "Pacuare Beans," was very high. In Alajuela, Costa Rica, an intensive bean growing area where cultivation is clean (row-cropping), the soil fertility level is relatively low. Based on the above discussion it is seen that unimproved varieties are not necessarily grown under conditions of declining soil fertility. A more realistic approach might be that soil fertility with relation to time has done one of three things. Soil

fertility could either remain constant, increase, or decrease. If this is true, and varieties are in equilibrium with their edaphic environment, then it follows that the unimproved group will be highly variable. This variability would then elicit great response variability to a given level of applied nutrients, if the medium prior to application is a constant for all varieties. Indeed, high, intermediate, and low response was observed in the unimproved group.

It may also be erroneous to expect modern varieties to demonstrate uniformly high response. Man often sacrifices high total yield in an effort to improve yield quality, or to have other desirable agronomic characters such as disease resistance.


## Field Experiment

The analysis of variance for the field experiment is shown in Table 6. Location (L), nitrogen x location (NxL), location x nitrogen x phosphorus (LxNxP), variety x location (VxL), location x nitrogen x variety (LxNxV), and location x variety x phosphorus (LxVxP) are only of limited interest to this study. Some discussion of the simple location effect will be made, and the other effects of limited interest can be thought of as a result of interactions with it.

The location effect was significant for W, Y, and Z, but not for X. Figures 25-28 illustrate this. Since yield is a product of the yield components, the higher yield at

|                         | locations i | in Costa Rica (1968)  |                       |                   |                    |
|-------------------------|-------------|-----------------------|-----------------------|-------------------|--------------------|
|                         |             |                       | Mean So               | quares            |                    |
| Source                  | d.f.        | Yield/Plant (W)       | Pods/Plant (X)        | Seeds/Pod (Y)     | Weight/Seed (Z)    |
| Loc. (L)<br>L x Reps. ( | 1<br>(R) 4  | 15,141.00**<br>832.17 | 340.57 N.S.<br>321.02 | 80.569**<br>1.090 | 11,852.0**<br>28.0 |
| Nit. (N)<br>Tin N       | 2           | 35<br>7               | 47<br>08              | 141**<br>041 N    |                    |
| Quad. N                 | <b>ب</b> ب  | ,688.10*              | ,187.16*              | .240**            | • •                |
| N×L                     | 7           | ,311.37*              | 227.2                 | .335 N.           | 9 N.               |
| Phos. (P)               | m           | 81.3                  | 70.48*                | .05               | δ                  |
| Lin. P                  | Ч           | 92.7                  | 12.7                  | •                 | •                  |
| Quad. P                 | Г           | 22.5                  | 95.8                  | •                 |                    |
| Cub. P                  | г           | 1.08 N.               | .50 N.                | •                 | •                  |
| ΡΧΓ                     | m           | 88.73                 | 4.2                   | .165 N.           | .0 N.              |
| P X N                   | 9           | 7.35 N.               | 41.00 N.              | 294 N             | 8.2 N.S.           |
|                         | 9           | 38.4                  | 2.1                   | .352 N.           | .8 N.              |
| Error b                 | 44          | 21.9                  | 1.0                   | .35               | •                  |
| Var. (V)                | 15          | 07.0                  | 56.82*                | .377*             | 4.9*               |
| Ч                       | 15          | 0.91*                 | 125.83                | 1.11              | 80.5               |
| V X N                   | 30          | 3.39 N.               | 6.68 N.               | . 24              | *6.                |
|                         | 30          | 9.2                   | 2.8                   | .382**            | Ч.                 |
|                         | 45          | 9.11*                 | 9.82**                | .281 N.           | •                  |
|                         | 45          | 2.58 N.               | 7.68 N.               | .22               | • 2 *              |
| ×                       | 06          | 54.21 N.S.            | 43.15 N.S.            | 179 N.            | 3.8 N.S.           |
| ч                       | 10          | 3.0                   | 8.3                   | .22               | •                  |
|                         |             |                       |                       |                   |                    |

Summary table for the analyses of variance for the Field Experiment at two Table 6.



Figures 25-28. Location effects on yield and the yield components.

Turrialba  $(L_2)$  results from higher Y and Z values exhibited there. Since no difference exists for X, it is reasonable to assume that environmental factors at Alajuela  $(L_1)$ , which may have limited yield, did not limit X, but did significantly inhibit Y and Z. These unfavorable environmental factors may not have been present during the period of pod set, or at least they may not have been as severe during that period. The unfavorable factors could have occurred later in the growing season, affecting the number of seeds which developed in each pod, and the degree to which they could develop. Another explanation might be that the limiting factors were present in environmental mileu throughout the entire period of plant development, and the differential tolerances of the components to those limiting factors were being exhibited. The tolerant component would be X, the less tolerant ones, Y and Z. Excessive rainfall, especially during the latter part of the life cycle occurred at Alajuela. The excessive rainfall combined with the heavy (high clay content), poorly drained soils, could have maintained excessive moisture and reduced the oxygen supply in the soil.

The NxL interaction was significant only for W. For both N increments, greater increases were realized at Turrialba.

The LxNxP interaction was significant for W and X. This indicates that the LxN interaction varies with the levels of P.

The VxL interaction is significant for W, X, Y, and Z. Differences in maturity dates could be a factor causing the varieties to show differences between locations, especially if some stages of development are more susceptible to adverse environmental factors than others. Differential tolerance to adverse environmental factors may also be present among the varieties.

The LxNxV interaction was significant for Y and Z only. For those components the LxV interaction differs with each level of N.

The VxPxL interaction was significant for Z only. This implies that the LxV interaction differs with each level of P.

The effects of major interest in this study are those of nitrogen (N), phosphorus (P), varieties (V), variety x nitrogen (VxN), and variety x phosphorus (VxP).

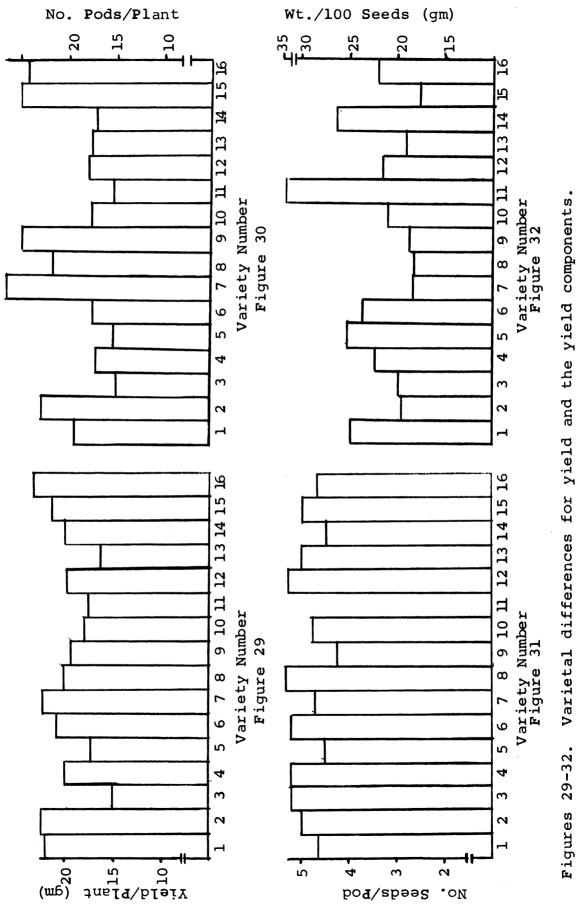
The nitrogen effect was significant for W, X, and Y, but not for Z (see Table 13, Appendix). When significant data were found, the trend relationships were calculated. For both W and X the linear and quadratic components were highly significant, indicating there was a tendency for W and X to increase with each nitrogen increment, but the increases were much greater for the first increment than for the second. For Y only the quadratic effect was significant. For X the first increment was the most critical and provided sufficient N for optimum growth, i.e., almost removes N as a limiting factor. Little response would be expected with the second increment.

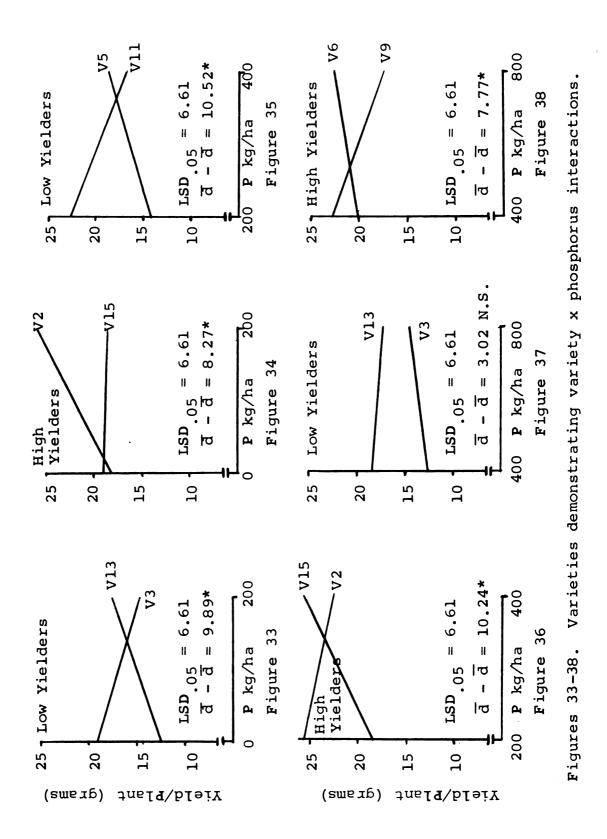
For Y the first increment is beneficial, the second detrimental. The optimum level of N for Y has already been passed at the 200 kg level. Since no significant differences were found for Z, apparently the N level did not limit Z at the zero N level. It can be seen here that different optimum N levels exist for the different components. The increase in W with the first increment is contributed to largely by X and Y. The increase in W with the second increment appears to be largely due to the increase in X, since Y decreases and Z remains constant.

Of the two elements included in this experiment, the N effect was much greater than the P effect. This may be somewhat surprising since <u>Phaseolus vulgaris</u> is a legume, and the soils are low in P.

Although the bean is a legume, it has a very short life-cycle (10-16 weeks), and time may be required to establish the symbiotic relationship. In the early stages of growth sufficient N may not be available from N fixation to promote optimum growth.

The P effect is significant for W and X, but not for Y and Z (see Table 13, Appendix). Apparently the 200 kg/ha increment was sufficient to provide adequate P to approach optimum W and X values. Y and Z were not significantly affected by increasing P, indicating that P was not limiting Y and Z at the zero P level. The trend relationships for W

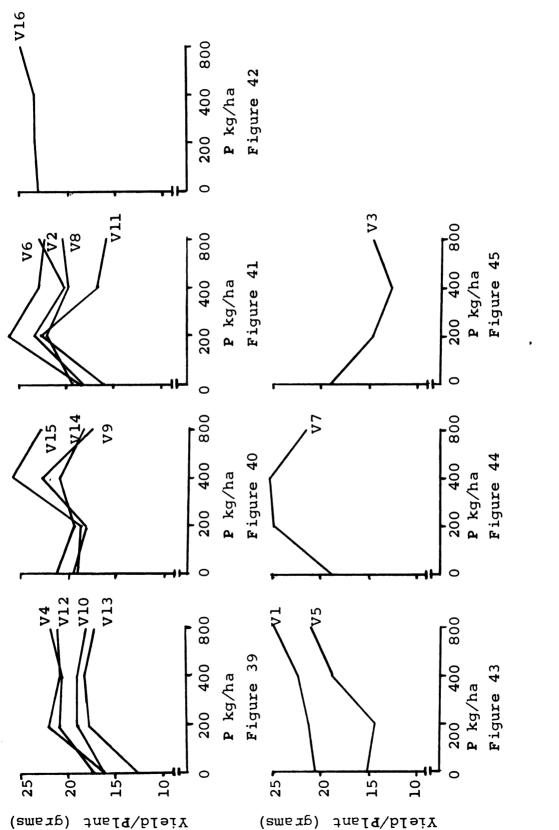

show a significant quadratic component. There is a leveling off and no change after the first P increment. Both the linear and quadratic effect were highly significant for X. This means there was a tendency for X to increase with each P increment, but the lesser magnitude of increase due to the second increment, and the leveling off with the third, tended to produce a significant quadratic effect.


Varietal differences for W, X, Y, and Z were all significant. Bar graphs show varietal differences (Figures 29-32). Varieties can produce similar yield in different ways, using different X, Y, and Z values. Varieties 10 and 11 illustrate this point.

The VxN interaction was significant for Z only. Interactions occurred over both the 0-100 kg/ha and the 100-200 kg/ha intervals.

The lack of differential response to N in the other components indicate that these varieties responded similarly to N.

The VxP interaction was significant for W and X. To illustrate the significant VxP interactions, observe the yield changes which occurred with each P increment. For illustrative purposes two low and two high yielding varieties have been selected and plotted. Figures 33 and 34 represent the 0-200 kg/ha interval; Figures 35-36, 200-400 kg/ha; and Figures 37-38, 400-800 kg/ha. The two varieties plotted in each figure were shown by Duncan's Multiple Range Test to be not significantly different. The object of






choosing two varieties for comparison, which are of seemingly similar yield characteristics, is to demonstrate that it is difficult to predict the direction or magnitude of yield change as we move from one given P level to another. Figures 33-38 show the significant VxP interactions over all intervals used in this experiment.

In Figures 39-45 an attempt is made to group the varieties according to the shape of curve demonstrated across the P levels. The first group (Figure 39) shows an increase with the first P increment. With further P increases there is little change. These varieties may not have been at their optimum P levels at zero P. The first increment supplied sufficient P, permitting these varieties to more nearly approach their yield potential. Subsequent P increments had little effect on their yield. Such a response could result from the following: (1) These varieties may be tolerant to P levels which exceed their required optima. (2)On the other hand, it may not demonstrate tolerance. (3) They may not be able to demonstrate a yield increase to additional increments of P because some other factor becomes limiting as additional P is added.

The second group (Figure 40) also demonstrates a great yield increase with the first increment, but with the second increment all varieties show a yield decrease. The first increment may again permit these varieties to more nearly approach their optimum yield. The yield decrease may result from an application of P above their optimum.



Shapes of yield curves with phosphorus treatments. Figures 39-45. Internal or external nutrient balances may be upset, promoting a yield decrease. Work by Shellenberger (1970) supports this. This group is not tolerant to supra-optimal P levels.

The third group (Figure 41) shows little yield change with the first P increment, but with the second a large yield increase is realized. The third increment produced a sharp decrease. These varieties may be far from their optimum P level at P zero. The first increment isn't enough to evoke a yield change. The second increment brings it nearer its optimum. The great decrease with the third increment may again indicate supra-optimal P levels.

The fourth group (Figure 42) shows relatively little change across the P levels. The optimum P level may be present prior to the P increments. This variety also appears to be tolerant of high P levels. Another possibility is that sufficiently high P levels were not employed so as to evoke a yield change. This is doubtful, since large increments of P were utilized.

The fifth group (Figure 43) shows little change with the first increment, but then increases with the subsequent two increments. Their highest yield was at the highest P level. These varieties apparently needed a higher level of P in the substrate to approach their yield optima than do the other varieties observed thus far.

The sixth group (Figure 49) shows a large increase with the first P increment, little change with the second, and a large decrease with the third. The first increment

may permit it to approach its yield optimum at the same time it demonstrates some tolerance to supra-optimal P levels. Plants possess ranges of intricate nutrient balances, rather than specific points, for their optimum performance. The second increment may still be within the optimum balance range, however, the third increment exceeds this range, causing a yield decrease.

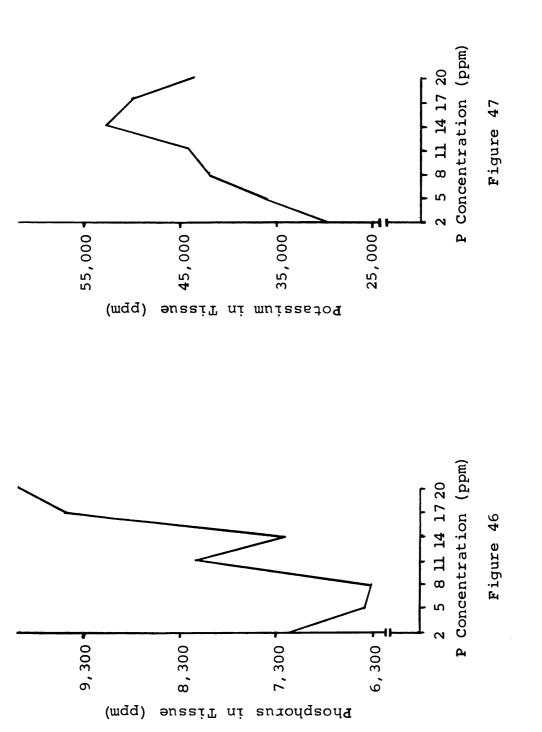
The seventh group (Figure 45) shows a decrease with the first two increments of P, and a slight increase with the third. At P zero, it is probably nearer its optimum range, and additional increments upset the internal balance, causing a yield decrease.

Varieties respond differentially to the P increments. This makes it very difficult to predict response. The lack of predictability complicates the determination of the optimum P level for a given variety, and recommending the proper variety, to optimize yield at a given P level. Yield curves should be known for all of the recommended varieties so that varieties and fertility regimes can be matched to maximize yield.

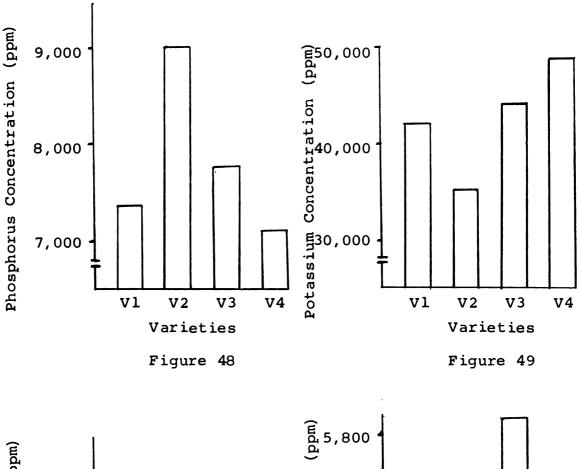
A wide range of adaptability may be of special importance where a variety is expected to be used over a wide range of fertility levels. The variability in fertility available to the plant could be a result of different levels of native soil fertility and/or differences among the farmers' fertilizer practices.

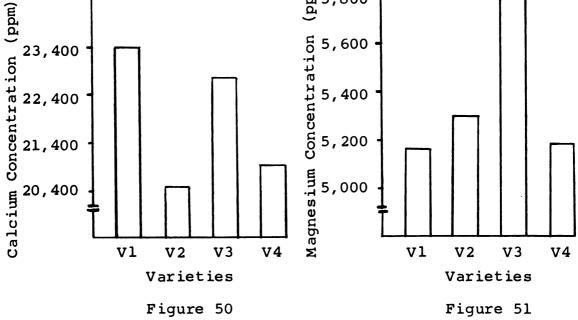
## Hydroponics Experiment

The P levels in the hydroponics experiment affected significantly the P and K concentration in the tissue, but not the Ca and Mg concentration (Table 7).


As P levels in the nutrient solution increased, the P concentrations in the plant at first decreased and then increased markedly (Figure 46). At the lowest level of P, growth was greatly inhibited. The P absorbed at the lowest level was probably not being utilized in growth, permitting a moderate accumulation of P. With the next two increments growth was stimulated, but the P concentration in the tissue decreased. The decrease may be due to growth dilution. The last P increments produce a general increase in P concentrations in the tissue.

K concentrations in the tissue increase as P levels in the nutrient solution were raised to 14 ppm (Figure 47). Above that P level, K concentrations in the tissue decrease. The initial increase in K concentration may be due to more favorable growing conditions provided by increased levels of P. Again, the decrease in K may be a result of growth dilution at high P levels.


The ability of different varieties to concentrate P, K, Ca and Mg, were observed (Figures 48-51). Variety 2 which was the highest in P concentration, was relatively low in K, Ca, and Mg. Variety 1 was high in K and Ca, but low in P and Mg. Variety 3 was moderately high in all of the cations studied, but low in P. Variety 4 was very high in K,


| e analyses of variance for the Hydroponics Experiment at |                              |
|----------------------------------------------------------|------------------------------|
| of variance for                                          |                              |
| Summary table for the analyses                           | Turrialba, Costa Rica (1968) |
| Table 7.                                                 |                              |

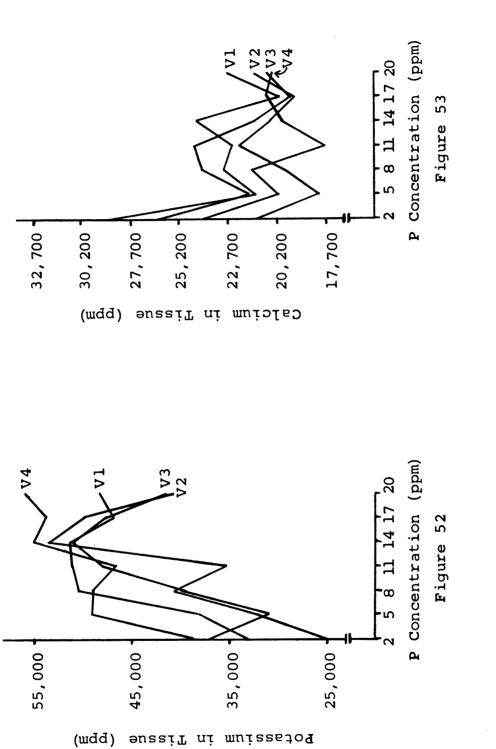
|                                                                  |                         |                                                                                        | Mean Squares                                                       | juares                                                                            |                                                                            |
|------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Source                                                           | d.f.                    | Phosphorus                                                                             | Potassium                                                          | Calcium                                                                           | Magnesium                                                                  |
| Reps. (R)<br>Phos. (P)<br>Error a                                | 2<br>12<br>12           | 16,805,735 N.S.<br>75,901,543**<br>6,448,762                                           | 199,368,670 N.S.<br>2,122,783,489**<br>169,447,232                 | 139,310,186 N.S.<br>100,415,309 N.S.<br>36,021,585                                | 6,851,413 N.S.<br>8,547,384 N.S.<br>4,176,227                              |
| Var. (V)<br>P x V<br>Error b                                     | 3<br>18<br>42           | 45,435,385**<br>4,437,307 N.S.<br>3,781,434                                            | 2,015,700,883**<br>313,046,884**<br>133,450,753                    | 129,948,011**<br>30,151,905**<br>12,844,111                                       | 6,956,947**<br>1,570,123 N.S.<br>983,649                                   |
| Plant Parts<br>(PP)<br>P x PP<br>V x PP<br>P x V x PP<br>Error c | 122<br>123<br>36<br>112 | 348, 787, 764**<br>18, 455, 524**<br>18, 874, 812**<br>2, 447, 983 N.S.<br>2, 245, 216 | 17,049,042,422**<br>1,020,690,823**<br>123,547,611**<br>68,629,587 | 7,984,882,656**<br>26,926,522**<br>214,520,641**<br>19,747,582 N.S.<br>13,643,112 | 278,882,417**<br>3,726,608**<br>4,419,439**<br>1,458,791 N.S.<br>1,380,258 |

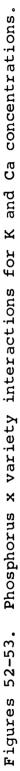


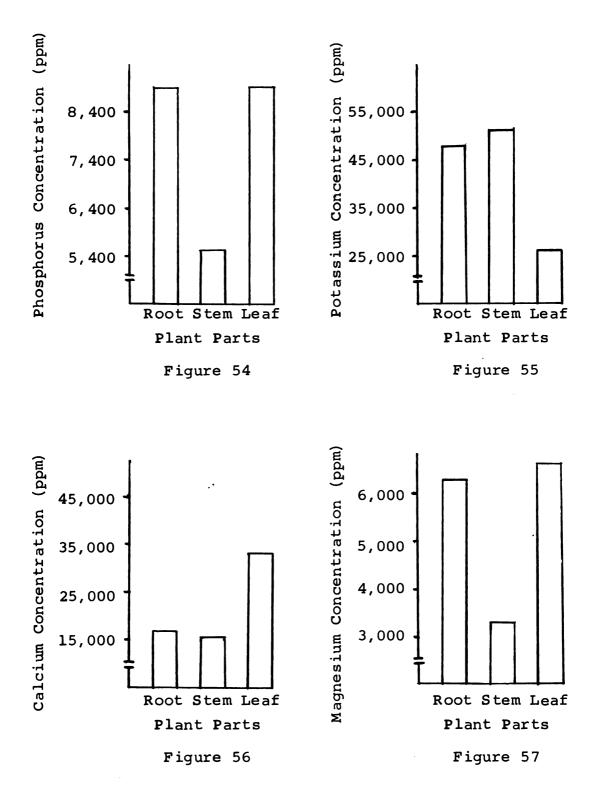







Figures 48-51. Varietal differences in the concentration of P, K, Ca, and Mg in the whole plant.


but low for P, Ca, and Mg. These results are probably reflections of genotypic differences in ability to concentrate the elements studied. Each of the 4 varieties studied demonstrated a different pattern of accumulation.


Phosphorus x variety (PxV) interactions were present for K and Ca concentrations, but not for P and Mg. Figures 52 and 53 show the interactions graphically. In the varieties under study, the P levels in the nutrient solution affected the Ca and K concentrations differently, but the P and Mg concentrations were affected quite uniformly in all varieties. It is interesting to note from Figures 52 and 53 that significant varietal interaction occurs only over certain P intervals. In looking for differential ability to concentrate an element, it is necessary to know at which concentrations the varieties can be differentiated. The interval over which differentiation occurs may be specific to a given combination of varieties.

The differential influence of substrate concentration of one element on the accumulation of another element is demonstrated by the differential effect P levels have on K and Ca concentrations. This could be partially due to differential growth response of varieties to P.

Figures 54-57 illustrate the significant differences among plant parts for all of the elements studied. The leaves and roots are relatively high in P, Ca, and Mg, when compared to the stems. This might be expected since they are sites of much metabolic activity. The highest K levels







Figures 54-57. Concentrations of P, K, Ca, and Mg in the roots, stems, and leaves.

are found in the stem. A possible explanation is that proportionately more growth occurred in the leaves promoting a dilution effect.

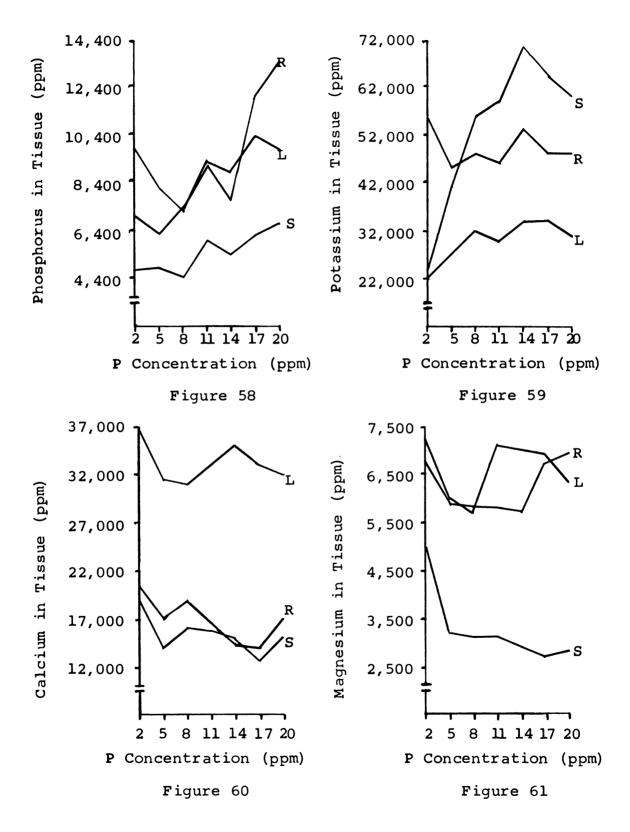
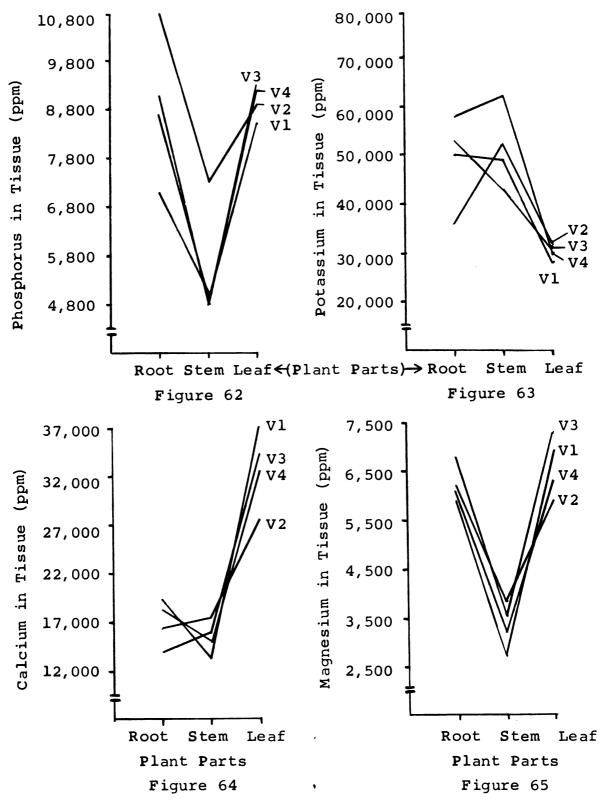

The phosphorus x plant part (PxPP) interaction was significant for all of the elements (Figures 58-61). In Figure 58 increased P at the higher levels produced a much greater P concentration in the root than in any other part.

Figure 59 shows that most of the increase in K with P increments occurred in the stem as compared to the roots and leaves, which were more or less constant across P levels. Proportionately less growth may have occurred in the stem as the P levels were increased, causing an apparent increase in K accumulation.


Figure 60 shows Ca levels remaining quite constant for the plant parts over P levels, with exception to the leaf x root interaction over the 8-ll ppm interval.

In Figure 61 the plant parts show somewhat similar curves for Mg concentration with the exception of the leaf x root interaction over the 8-11 and 14-17 ppm interval.

Figures 62-65 show the variety x plant part interactions. In Figure 62 it can be seen that varieties 1 and 3 show less relative concentrations of P in the stems as compared to the roots, while 2 and 4 show larger relative concentrations in the stem as compared to the roots. Variety 2 shows relatively less P in the leaves, as compared to the stems, than do the other varieties.



Figures 58-61. Phosphorus x plant parts interaction for P, K, Ca, and Mg concentrations.



Figures 62-65. Variety x plant part interaction for P, K, Ca, and Mg.

In Figure 63 varieties 2 and 4 show relatively greater concentrations of K in the stems, as compared to the roots, than do varieties 1 and 3. Variety 4 shows a relatively lower concentration in the leaves, as compared to the stem, than do the other varieties.

Figure 64 shows varieties 1 and 3 with a relatively lower concentration of Ca in the stems, as compared to the root, than do varieties 2 and 4. Variety 2 shows relatively less Ca in the leaves, as compared to the stems, than do varieties 1, 3, and 4.

In Figure 65 all of the varieties show relatively the same Mg concentration in the stems, as compared to the roots. Variety 2 shows relatively less concentration of Mg in the leaves, as compared to the stem, than do varieties 1, 3, and 4.

The variety x plant part interaction may be a result of differential growth in the plant parts. It might also indicate differential ability to translocate nutrients from the root to the stem, and from the stem to the leaves. To differentiate between these two possibilities, the total quality of the elements in the various plant parts (concentration x weight), would have to be known. The concentrations as well as the total quantities of the elements are included in Tables 14-21 in the Appendix. No attempts were made to interpret the data obtained from total quantities, since this was not within the scope of this experiment.

## SUMMARY AND CONCLUSION

As a result of the Greenhouse, Field, and Hydroponics Experiments certain answers to the questions formulated in the Introduction were found.

- The fertilizer increment increased yield and all of the yield components when measured over all varieties (greenhouse results).
- Number of pods/plant (X) was increased more than Y and Z with added fertilizer increment (greenhouse results).
- 3. Varieties differed in their yield capacity at a low and high fertility level ( $T_0$  or  $T_1$ ) indicating differences in efficient use of the substrate (greenhouse results).
- 4. Varieties responded differentially to added fertilizer for W, X, Y, and Z (greenhouse results).
- 5. The response values were normally distributed with W and X showing more diversity in response than Y and Z.
- Response to added fertilizer could not be predicted from knowledge of the values prior to the addition (greenhouse results).

- High yielders and producers of X under high fertility conditions were generally also high responders for the same characters (greenhouse results).
- Yield response was accomplished through different combinations of response in X, Y, and Z (greenhouse results).
- Response, or lack of it, was not specific to either the improved or unimproved varieties (greenhouse results).
- 10. The nitrogen effect over all varieties was greater than the phosphorus effect (field results).
- 11. Differential response was more prevalent for phosphorus than for nitrogen (field results).
- 12. Varieties demonstrated differences in optimum phosphorus levels (field results).
- Varieties differed in tolerance to sub and supraoptimal levels of phosphorus (field results).
- 14. Varieties differed in accumulating P, K, Ca, and Mg (hydroponics results).
- 15. Plant parts differed in accumulating P, K, Ca, and Mg (hydroponics results).
- 16. Varying the P level in the substrate affected the concentrations of P and also of K in the tissue (hydroponics results).
- 17. Varieties responded differentially to P levels with respect to K and Ca concentration (hydroponics results).

18. Plant parts responded differentially to P levels with respect to P, K, Ca, and Mg concentrations (hydroponics results).

It is inferred from the results obtained that varieties of beans have unique genetic properties that regulate the pattern of responses to mineral nutrients. The diversity of the response pattern to levels of phosphorus, if these patterns are indeed genetically characteristic of the varieties and not some artifact, suggests a degree of genetically regulated fitness to mineral balances.

Since each of the bean varieties is a component of the ecological system in which it evolved, diversity with respect to patterns of response, must reflect a natural diversity of the soils with respect to levels and balance of minerals. This variability, with respect to the nutrient status of the soil, might be expected since highly variable topographical and climatic conditions along with other factors affecting soil formation exist. BIBLIOGRAPHY

-

## BIBLIOGRAPHY

- Allos, H. F., and Bartholomew H. 1959. Replacement of symbiotic fixation by available nitrogen. Soil Science 87: 61-66.
- Ambler, J. E., and Brown, J. C. 1969. Cause of differential susceptibility to zinc deficiency in two varieties of navy beans (<u>Phaseolus vulgaris</u> L.). Agronomy J. 61: 41-43.
- Bernard, R. L., and Howell, R. W. 1964. Inheritance of phosphorus sensitivity in soybeans. Crop Science 4: 298-299.
- Black, C. A. et al., eds. 1965. Methods of soil analysis. American Society of Agronomy, Madison, Wisc. (Agronomy #9, pt. 2, pp. 1171-1176).
- Bower, C. A. <u>et al</u>. 1952. Exchangeable cation analysis of saline and alkaline soils. Soil Science 73:251-261.
- Bray, R. H., and Kurtz, L. T. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Science 59: 39-45.
- Brown, J. C., Holmes, R. S., and Tiffen, L. O. 1961. Iron chlorosis susceptibility and reductive capacity at the root. Soil Science 91: 127-132.
- Brown, J. C., Weber, C. R., and Caldwell, B. E. 1967. Efficient and inefficient use of iron by two soybean genotypes and their isolines. Agronomy J. 59:459-462.
- Crossley, G. K., and Bradshaw, A. D. 1968. Differences in response to mineral nutrients of populations of ryegrass (Lolium perenne L.) and orchardgrass (Dactylis glomerata L.). Crop Science 8: 383-387.
- Deturk, E. E. 1933. Chemical transformation of phosphorus in the growing corn plant, with results on two first generation crosses. J. Agric. Res. 46: 121-141.

- Duarte, R. A. 1966. Responses in yield and yield components from recurrent selection practiced in a bean hybrid population at three locations in North and South America. Ph.D. thesis, Michigan State University.
- Dunphy, E. J., Kurtz, L. T., and Howell, R. W. 1966. Proc. Soil Science Soc. of America 30: 233-236.
- Epstein, E., and Jeffries, R. L. 1964. The genetic basis of selective ion transport in plants. An. Rev. Plant Physiology 15: 169-184.
- Fassbender, H. W. 1967. La fertilización del frijol. Turrialba, vol. 17, #1, pp. 46-52.
- Finn, B. J., and Mack, A. R. 1964. Differential response of orchardgrass (<u>Dactylis</u> <u>glomerata</u> L.) to nitrogen and phosphorus under controlled soil temperature and moisture conditions. Proc. Soil Science Society of America 28: 782-785.
- Fletcher, H. F., and Kurtz, L. T. 1964. Differential effects of phosphorus fertility on soybean varieties. Proc. Soil Science Soc. of America 28: 225-228.
- Foy, C. D., <u>et al</u>. 1967. Differential tolerance of dry bean, snapbean, and lima bean varieties to an acid soil high in exchangeable aluminum. Agronomy J. 59: 561-563.
- Gregory, F. G., and Crowther, F. Ann. Botany 42: 757-770.
- Hoagland and Arnon. 1939. The water-culture method for growing plants without soil. University of California circular 347.
- Holmes, W., and Maclusky. 1955. The intensive production of herbage for crop-drying. J. Agric. Science 46: 267-286.
- Howell, R. W. 1954. Phosphorus nutrition of soybeans. Plant Physiology 29: 477-483.
- Howell, R. W., and Bernard, R. L. 1961. Phosphorus response of soybean varieties. Crop Science 1: 311-313.
- Lamb, C. A., and Salter, R. M. 1936. Response of wheat varieties to different fertility levels. J. Agric. Res. 53: 129-143.
- Levesque, M., and Ketcheson, J. W. 1963. The influence of variety, soil temperature and phosphorus fertilizer on yield and phosphorus uptake by alfalfa. Can. J. Plant Science 43: 355-360.

- Lyness, A. S. 1936. Varietal differences in the phosphorus feeding capacity of plants. Plant Physiology 11: 665-688.
- Martini, J. A., and Pinchinat, A. M. 1967. Ensayos de abonamiento del frijol (<u>Phaseolus vulgaris</u> L.) en el invernadero con tres suelos de áreas frijoleras en Costa Rica. Turrialba, vol. 17, #4, pp. 411-418.
- Mitchell, J. 1957. A review of tracer studies in Saskatchewan on the utilization of phosphates by grain crops. J. Soil Sciences 8: 73-85.
- Mitchell, J., <u>et al.</u> 1953. Crop and variety response to applied phosphate and uptake of phosphorus from soil and fertilizer. Agronomy J. 45: 6-11.
- Pope, D. T., and Munger, H. M. 1953. Heredity and nutrition in relation to magnesium deficiency chlorosis in celery. American Society of Horticultural Science Proc. 61: 481-486.
- Pope, D. T., and Munger, H. M. 1953. The inheritance of susceptibility to boron deficiency in celery. American Society of Horticultural Science Proc. 61: 481-486.
- Reitz, L. P., and Myers, H. E. 1944. Response of wheat varieties to applications of superphosphate fertilizer. J. Amer. Soc. Agronomy 36: 928-936.
- Saiz del Rio y Bornemisza, S. E. 1961. Analisis quimico de suelos. IICA, Departamento de Energia Nuclear, Turrialba, Costa Rica, pp. 94-96.
- Schillinger, J. A. 1970. Search for soybeans that respond to fertilizer. Agway Cooperator, Jan-Feb, pp. 16-17.
- Shellenberger, R. G. 1970. A physiological study of the differential response of navy beans (<u>Phaseolus vulgaris</u> L.) to zinc. M.S. thesis, Michigan State University.
- Singh, K. K. 1968. Genetic-physiology of iron-induced manganese chlorosis in beans (<u>Phaseolus</u> <u>vulgaris</u> L.). Ph.D. thesis, Michigan State University.
- Smith, S. N. 1934. Response of inbred lines and crosses in maize to variations of nitrogen and phosphorus supplied as nutrients. J. Amer. Soc. Agronomy 26: 785-804.

- Snaydon, R. W., and Bradshaw, A. D. 1962. Differences
   between natural populations of <u>Trifolium repens</u> L. in
   response to mineral nutrition. Exp. Botany 13(39):
   422-433.
- Sprague, H. B. 1964. Hunger signs in crops. 3d edit. McKay Company Inc.
- Stringfield, G. H., and Salter, R. M. 1935. Differential response of corn varieties to fertility levels and to seasons. J. Agric. Res. 49:991-1000.
- Taussky and Shorr. 1953. Inorganic phosphate determination modified for measurement of mitochondrial phosphorylation. J. Biol. Chem. 202: 675-685.
- Vose, P. B. 1963. Varietal differences in plant nutrition. Herbage Abs. 33: 1-13.
- Weiss, M. G. 1943. Inheritance and physiology of efficiency in iron utilization in soybeans. Genetics 28: 253-267.
- Woodward, R. W. 1966. Response of some semi-dwarf spring wheats to nitrogen and phosphorus fertilizer. Agronomy J. 58: 65-66.

APPENDIX

## Improvement Collection Var. Percent Site Level No. Variety Name Response 1 Costa Rica 1 - N150 Unknown 2 Mexico 450-N 353 Unknown Mexico 3 Mex-74-N 170 Unknown Mexico 4 Mex-73-N 277 Unknown Mexico 5 Mex-21-N 229 Unknown Mexico 6 111-N 349 Unknown Costa Rica 7 61-N 217 Unknown Costa Rica 8 4-N 392 Unknown Costa Rica 9 Mex - 38 - P118 Unknown Mexico 10 596 Unimproved Ecuador Tostada Manteca 11 S-89A-N 355 Costa Rica Unknown Sal-219-N 12 166 Unknown Salvador 13 Sal-208-N 218 Unknown Salvador 14 Mex-140-N169 Mexico Unknown 15 Mex-74-N Brillante 170 Mexico Unknown 16 Sal-66-N 249 Unknown Salvador 17 Frijolnegro Indio 215 Costa Rica Unimproved 18 Matambre Negro "A" 470 Unknown Unknown 19 Negro #2 Merc. 134 Puntarenas Unimproved Costa Rica 20 Negro Costa Rica 219 Unimproved Costa Rica 21 Negro #1 Chirripo-800m. 238 Unimproved Costa Rica 22 Ahumado De Chirripo Linea 24 71 Unimproved Costa Rica 23 5-A Vaina Blanca 112 Costa Rica Unknown 24 232 Costa Rica Santa Clara Unknown 25 Antigua Negro 268 Unknown Costa Rica 26 Quebradilla Platanillo Chirr. 1200m. 104 Unimproved Costa Rica 27 Carriente Canero 143 Unknown Unknown 28 33-P 204 Costa Rica Unknown 29 Mecentral 391 Improved Mexico 30 Porotos Pacuare 423 Costa Rica Unimproved

## APPENDIX

Table 8. List of varieties used in the Greenhouse Experiment

| Var.<br>No. | Variety Name                      | Percent<br>Response | Improvement<br>Level | Collection<br>Site      |
|-------------|-----------------------------------|---------------------|----------------------|-------------------------|
|             |                                   |                     | 1                    | ** 1                    |
| 31          | S-237-P                           | 235                 | Unknown              | Unknown                 |
| 32          | Col-92-P                          | 141                 | Unknown              | Unknown                 |
| 33          | Venezuela-22                      | 271                 | Unknown              | Venezuela               |
| 34          | Col-122-N                         | 324                 | Unknown              | Unknown                 |
| 35          | Col-105-N                         | 220                 | Unknown              | Unknown                 |
| 36          | Col - 102 - N                     | 250                 | Unknown              | Unknown                 |
| 37          | C-36-N                            | 318                 | Unknown              | Unknown                 |
| 38          | C-163-N                           | 242                 | Unknown              | Unknown                 |
| 39          | <b>Cr</b> iollo <b>P</b> acuare 2 | 164                 | Unimproved           | Costa Rica              |
| 40          | U.S.A. 56-P                       | 195                 | Improved             | U.S.A.                  |
| 41          | Negro l Rio Naranjo               |                     |                      |                         |
|             | Bagaces                           | 250                 | Unimproved           | Costa Rica              |
| 42          | Negro Los Angeles                 |                     | -                    |                         |
|             | Canas                             | 103                 | Unimproved           | Costa Rica              |
| 43          | Negro Corriente                   |                     | -                    |                         |
|             | Brillante-Pac                     | 191                 | Unimproved           | Costa Rica              |
| 44          | Negro Stg. Maria de               |                     | -                    |                         |
|             | Jesus                             | 373                 | Unknown              | Unknown                 |
| 45          | Flor De Mayo Negro                | ••••                | ••••••               | •••••                   |
| -15         | 716-2-5                           | 136                 | Unknown              | Unknown                 |
| 46          | Flor De Mayo Negro                | 130                 | OIMIOWI              | OnAnown                 |
| 40          | Brillante                         | 187                 | Unknown              | Unknown                 |
| 47          | Chimbolo Negro Pej-               | 107                 | OIIKIIOWII           | UIIKIIOWII              |
| 4/          | Perez Zelendos                    | 252                 | Unimproved           | Costa Rica              |
| 40          | S-64-P                            | 252                 | Unimproved           | Unknown                 |
| 48          |                                   | 254                 | Improved             | UNKNOWN                 |
| 49          | Negro Nicoyano                    | 204                 | TTu i muu ana a      |                         |
|             | Platanillo                        | 204                 | Unimproved           | Unknown                 |
| 50          | San Vicente El                    |                     |                      | <u> </u>                |
|             | Salvador                          | 315                 | Unknown              | Salvador                |
| 51          | Guate-2805-4M-OM                  | 202                 | Unknown              | Guatemala               |
| 52          | Jamapa                            | 331                 | Improved             | Mexico                  |
| 53          | Rico                              | 192                 | Improved             | Costa Rica              |
| 54          | Porillo No. l                     | 148                 | Improved             | El Salvador             |
| 55          | S-182-N                           | 387                 | Improved             | Costa Rica              |
| 56          | Black Turtle Soup                 | 293                 | Improved             | U.S.A.                  |
| 57          | H-182-N                           | 422                 | Improved             | Unknown                 |
| 58          | S-19-N                            | 113                 | Improved             | Costa Rica              |
| 59          | Negro De Venezuela                | 153                 | Unknown              | Venezuela               |
| 60          | Col-123-N (Turrialba-             |                     |                      |                         |
|             | 2)                                | 411                 | Improved             | Unknown                 |
| 61          | Rinon Oscuro Antigua              | 833                 | Unimproved           | Guatemala               |
| 62          | Rojo Antigua                      | 99                  | Unimproved           | Guatemala               |
| 63          | Seleccion Alto de La              |                     |                      | 3 3 <b>u</b> = <b>u</b> |
|             | Paloma S.I.G.                     | 286                 | Unimproved           | Costa Rica              |
| 64          | Rojo Chirripo 1200m.              | 382                 | Unimproved           | Costa Rica              |
| 65          | Mercado Puntarenas                | 364                 | Unimproved           | Costa Rica              |
| 00          | Mercauo Fundarenas                | 204                 | ourmproved           | CUSCA RICA              |
|             |                                   |                     |                      |                         |

.

Table 8--Continued

| 66Chileno De Chirripo114UnimprovedCosta Rica67Col-112-R524UnknownUnknown6837-R358UnknownUnknown69Mex-78-R328UnknownMexico7064-P341ImprovedCosta Rica71U.S. Pinto-14331ImprovedU.S.A.72Mexicano (C.N.P.)Pej. Perez Zel.217UnimprovedCosta Rica73Carnita 1 Rio Naranjo153UnimprovedCosta Rica74Panamito-B80UnimprovedCosta Rica75Rojo QuebradilloPlatanillo1200m.251UnimprovedCosta Rica76Yainica Yaina Morada5.I.G.238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S-98-R108UnknownUnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo SanRoque De NicoyaCosta Rica82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-81309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Pi-163-372555UnknownPeru89Dark Red Kidney212ImprovedCosta Rica91Ahumados-Alto De LasYaras228Unimproved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Var.<br>No. | Variety Name            | Percent<br>Response | Improvement<br>Level | Collection<br>Site |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|---------------------|----------------------|--------------------|
| 67Col-112-R524UnknownUnknown6837-R358UnknownUnknown69Mex-78-R328UnknownMexico7064-P341ImprovedCosta Rica71U.S. Pinto-14331ImprovedU.S.A.72Mexicano (C.N.P.)Pej. Perez Zel.217UnimprovedCosta Rica73Carnita 1 Rio Naranjo153UnimprovedCosta Rica74Panamito-B80UnimprovedUnknown75Rojo QuebradilloPlatanillo 1200m.251UnimprovedCosta Rica76Yainica Yaina MoradaS.I.G.238UnknownUnknown77Carnita Vere Pacuare247UnknownUnknown78S-98-R108UnknownUnknown79S-5-R147UnknownUnknown80Rojita-1200UnknownUnknown81Chimbolo Rojo San<br>Roque De NicoyaCosta Rica82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedCosta Rica88PI-163-372555UnknownPeru89Dark Red Kidney212Improved <td>66</td> <td>Chileno De Chirripo</td> <td>114</td> <td>Unimproved</td> <td>Costa Rica</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66          | Chileno De Chirripo     | 114                 | Unimproved           | Costa Rica         |
| 6837-R358UnknownUnknown69Mex-78-R328UnknownMexico7064-P341ImprovedCosta Rica71U.S. Pinto-14331ImprovedU.S.A.72Mexicano (C.N.P.)Pej. Perez Zel.217UnimprovedCosta Rica73Carnita 1 Rio Naranjo153UnimprovedCosta Rica74Panamito-B80UnimprovedCosta Rica75Rojo QuebradilloPlatanillo 1200m.251UnimprovedCosta Rica76Yainica Yaina MoradaS.I.G.238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S -98-R108UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo SanRogue De NicoyaCuenca Del Rio Oro28482Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedCosta Rica91Ahumados-Alto De LasYaras241UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | -                       |                     | -                    | Unknown            |
| 69Mex-78-R328UnknownMexico7064-P341ImprovedCosta Rica71U.S. Pinto-14331ImprovedU.S.A.72Mexicano (C.N.P.)Pej. Perez Zel.217UnimprovedCosta Rica73Carnita 1 Rio Naranjo153UnimprovedCosta Rica74Panamito-B80UnimprovedCosta Rica75Rojo Quebradillo251UnimprovedCosta Rica76Yainica Yaina MoradaS.I.G.238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S-98-R108UnknownUnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo San<br>Roque De NicoyaCuenca Del Rio Oro284UnimprovedCosta Rica83S-204-B1309UnknownUnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedU.S.A.98Dark Red Kidney212ImprovedU.S.A.99Dark Red Kidney212ImprovedCosta Rica87Col-1-63A217ImprovedCosta Rica89Dark Red Kidney212ImprovedCosta Rica91Ahumados-Alto De Las<br>Yar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                         |                     | Unknown              | Unknown            |
| 7064-P341ImprovedCosta Rica71U.S. Pinto-14331ImprovedU.S.A.72Mexicano (C.N.P.)Pej. Perez Zel.217UnimprovedCosta Rica73Carnita 1 Rio Naranjo153UnimprovedCosta Rica74Panamito-B80UnimprovedUnknown75Rojo Quebradillo251UnimprovedCosta Rica76Yainica Yaina Morada238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S-96-R108UnknownUnknown79S-5-R104UnimprovedCosta Rica70Gorita-1200UnknownUnknown81Chimbolo Rojo SanRoque De NicoyaCuenca Del Rio Oro28470Carne-5161UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.91Ahumados-Alto De LasYaras241UnimprovedCosta Rica93Tres En Uno Legitimo100m.229UnimprovedCosta Rica94Chichicastenango120UnimprovedCosta Rica95Ahu. Chirripo 800m.509UnimprovedC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | Mex-78-R                | 328                 | Unknown              | Mexico             |
| 72Mexicano (C.N.P.)<br>Pej. Perez Zel.217Unimproved<br>Unimproved<br>Costa Rica<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Costa Rica<br>Costa Rica73Carnita I Rio Naranjo<br>Patamilto 1200m.251Unimproved<br>Unimproved<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Nanknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Sca Rica<br>Costa Rica<br>Sca Rica<br>Costa Rica<br>Costa Rica<br>Sca Rica<br>Costa Rica<br>Sca Rica<br>Costa Rica<br>Sca Rica<br>Costa Rica<br>Sca Rica<br>Costa Rica<br>Sca Rica<br>Sca Rica Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Sca Rica<br>Sca Rica Costa Rica<br>Sca Rica Rica Costa Rica<br>Sca Rica Costa Rica <b< td=""><td></td><td>64-P</td><td></td><td>Improved</td><td>Costa Rica</td></b<> |             | 64-P                    |                     | Improved             | Costa Rica         |
| 72Mexicano (C.N.P.)<br>Pej. Perez Zel.217Unimproved<br>Unimproved<br>Costa Rica<br>Unimproved<br>Unimproved<br>UnknownCosta Rica<br>Rica<br>Costa Rica73Carnita I Rio Naranjo153Unimproved<br>Unimproved<br>Unimproved<br>UnknownCosta Rica<br>Rica74Panamito-B80Unimproved<br>UnknownCosta Rica<br>Costa Rica75Rojo Quebradillo<br>Platanillo 1200m.251Unimproved<br>UnimprovedCosta Rica<br>Costa Rica76Yainica Yaina Morada<br>S.I.G.238Unimproved<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>UnknownCosta Rica<br>Unimproved<br>Costa Rica77Carnita Vere Pacuare<br>S.5-R147Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Unimproved<br>U.S.A.80Pi-163A<br>217217Improved<br>Unimproved<br>Costa Rica<br>Unimproved<br>U.S.A.91Ahumados-Alto De Las<br>Yaras<br>Unimproved<br>US.A2-R241<br>Unimproved<br>Unimproved<br>Costa Rica<br>Unimproved<br>Costa Rica93Tres En Uno Legitimo<br>1100m,<br>1800-2200m,144<br>191<br>158<br>Unimproved<br>Unknown<br>1                                                                                                                                                                                                                                                                                                                                                                                                                              | 71          | U.S. Pinto-14           | 331                 | Improved             | U.S.A.             |
| Pej. Perez Zel.217Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Unimproved<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Rogue De Nicoya<br>Cuenca Del Rio Oro<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Rojo Dunknown<br>Costa Rica<br>Rojo San Isidro Gen.<br>Costa Rica<br>Costa Rica<br>Cos                                            | 72          | Mexicano (C.N.P.)       |                     | -                    |                    |
| 73Carnita 1 Rio Naranjo153UnimprovedCosta Rica74Panamito-B80UnimprovedUnknown75Rojo Quebradillo251UnimprovedCosta Rica76Yainica Yaina Morada238UnimprovedCosta Rica76S.I.G.238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S-98-R108UnknownUnknown79S-5-R147UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo SanRoque De NicoyaCuenca Del Rio Oro284Unimproved83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedHonduras87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru90U.S.A2-R185ImprovedCosta Rica91Ahumados-Alto De Las228UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedCosta Rica95Ahu., Chirripo 800m.509UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | · · ·                   | 217                 | Unimproved           | Costa Rica         |
| 74Panamito-B80UnimprovedUnknown75Rojo QuebradilloPlatanillo 1200m.251UnimprovedCosta Rica76Yainica Yaina Morada238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S-98-R108UnknownUnknown79S-5-R147UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo SanRoque De NicoyaCuenca Del Rio Oro284UnimprovedCosta Rica83S-204-Bl309UnknownUnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.91Ahumados-Alto De LasYaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1800-2200m.144UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.1044UnimprovedCosta Rica95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntareas331UnimprovedCosta Rica <td>73</td> <td>-</td> <td></td> <td></td> <td>Costa Rica</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73          | -                       |                     |                      | Costa Rica         |
| Platanillo 1200m.251UnimprovedCosta Rica76Yainica Yaina Morada238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S-98-R108UnknownUnknown79S-5-R147UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo San200UnknownUnknown82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknownNanown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedU.S.A.88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedCosta Rica91Ahumados-Alto De LasYaras241UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedCosta Rica95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown <td>74</td> <td></td> <td>80</td> <td></td> <td>Unknown</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74          |                         | 80                  |                      | Unknown            |
| 76Yainica Yaina Morada<br>S.I.G.238Unimproved<br>Unimproved<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Unimproved<br>Usta Rica<br>S Rojo San Isidro Gen.<br>127<br>Unimproved<br>Usta Rica<br>Usta Rica<br>Usta Rica<br>S Anusch Red Kidney<br>Usta A2-R<br>Usta Rica<br>Unimproved<br>Usta Rica<br>Unimproved<br>Usta Rica<br>Unimproved<br>Usta Rica<br>Unimproved<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>Unimproved<br>Costa Rica<br>Costa Rica<br>D<br>Costa Rica<br>D<br>Costa Rica<br>D<br>Costa Rica<br>D<br>Costa Rica<br>D<br>Costa Rica<br>D<br>Costa Rica<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                     | 75          | Rojo Quebradillo        |                     | -                    |                    |
| S.I.G.238UnimprovedCosta Rica77Carnita Vere Pacuare247UnimprovedCosta Rica78S-98-R108UnknownUnknown79S-5-R147UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo San200UnknownUnknown82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedCosta Rica88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.91Ahumados-Alto De LasYaras241UnimprovedCosta Rica93Tres En Uno Legitimo1100m.229UnimprovedCosta Rica94Chichicastenango124UnimprovedCosta Rica95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San IsidroGeneral91UnimprovedCosta Rica <td></td> <td>Platanillo 1200m.</td> <td>251</td> <td>Unimproved</td> <td>Costa Rica</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Platanillo 1200m.       | 251                 | Unimproved           | Costa Rica         |
| 77Carnita Vere Pacuare247UnimprovedCosta Rica78S-98-R108UnknownUnknown79S-5-R147UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo San200UnknownUnknown82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedCosta Rica88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedCosta Rica91Ahumados-Alto De LasYaras241UnimprovedCosta Rica93Tres En Uno Legitimo1100m.229UnimprovedCosta Rica94Chirciastenango1244UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San Isidro341UnimprovedCosta Rica<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76          | Yainica Yaina Morada    |                     |                      |                    |
| 78S-98-R108UnknownUnknown79S-5-R147UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo San200UnknownUnknown82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedCosta Rica91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedCosta Rica95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | <b>S.I.</b> G.          | 238                 | Unimproved           | Costa Rica         |
| 79S-5-R147UnknownUnknown80Rosita-1200UnknownUnknown81Chimbolo Rojo San<br>Roque De Nicoya<br>Cuenca Del Rio Oro284UnimprovedCosta Rica82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.91Ahumados-Alto De Las<br>YarasYaras241UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77          | Carnita Vere Pacuare    | 247                 | Unimproved           | Costa Rica         |
| 80Rosita-1200UnknownUnknown81Chimbolo Rojo San<br>Roque De Nicoya<br>Cuenca Del Rio Oro284UnimprovedCosta Rica82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>YarasYaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedCosta Rica95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78          | S-98-R                  | 108                 | Unknown              | Unknown            |
| <ul> <li>81 Chimbolo Rojo San<br/>Roque De Nicoya<br/>Cuenca Del Rio Oro 284 Unimproved Costa Rica</li> <li>82 Rojo Grande Cartago 96 Unimproved Costa Rica</li> <li>83 S-204-B1 309 Unknown Unknown</li> <li>84 Carne-5 161 Unimproved Costa Rica</li> <li>85 Rojo San Isidro Gen. 127 Unimproved Costa Rica</li> <li>86 Mexico-80-R 30 Improved Costa Rica</li> <li>87 Col-1-63A 217 Improved Honduras</li> <li>88 PI-163-372 555 Unknown Peru</li> <li>89 Dark Red Kidney 212 Improved U.S.A.</li> <li>90 U.S.A2-R 185 Improved U.S.A.</li> <li>91 Ahumados-Alto De Las<br/>Yaras 241 Unimproved Costa Rica</li> <li>93 Tres En Uno Legitimo<br/>1100m. 229 Unimproved Costa Rica</li> <li>94 Chichicastenango<br/>1800-2200m. 144 Unimproved Costa Rica</li> <li>95 Ahu. Chirripo 800m. 509 Unimproved Costa Rica</li> <li>96 Mercado De Puntarenas 331 Unimproved Costa Rica</li> <li>97 Matambre Amarillo "A" 158 Unknown Unknown</li> <li>98 Frijol Leche Pej. Per.<br/>Zeledon 341 Unimproved Costa Rica</li> <li>99 Bayo San Isidro<br/>General 91 Unimproved Costa Rica</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79          | <b>S –</b> 5 – <b>R</b> | 147                 | Unknown              | Unknown            |
| Roque De Nicoya<br>Cuenca Del Rio Oro284UnimprovedCosta Rica82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-Bl309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80          | Rosita-l                | 200                 | Unknown              | Unknown            |
| Cuenca Del Rio Oro284UnimprovedCosta Rica82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De LasYaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo1100m.229UnimprovedCosta Rica94Chichicastenango1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San Isidro91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 81          | Chimbolo Rojo San       |                     |                      |                    |
| 82Rojo Grande Cartago96UnimprovedCosta Rica83S-204-B1309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>YarasYaras241UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Lech Pej. Per.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | Roque De Nicoya         |                     |                      |                    |
| 83S-204-Bl309UnknownUnknown84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Cuenca Del Rio Oro      | 284                 | Unimproved           | Costa Rica         |
| 84Carne-5161UnimprovedCosta Rica85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82          | Rojo Grande Cartago     | 96                  | Unimproved           | Costa Rica         |
| 85Rojo San Isidro Gen.127UnimprovedCosta Rica86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De LasYaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo1100m.229UnimprovedCosta Rica94Chichicastenango144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San Isidro91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83          | S-204-B1                | 309                 | Unknown              | Unknown            |
| 86Mexico-80-R30ImprovedCosta Rica87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De LasYaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo1100m.229UnimprovedCosta Rica94Chichicastenango1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San Isidro91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84          | Carne-5                 | 161                 | Unimproved           | Costa Rica         |
| 87Col-1-63A217ImprovedHonduras88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85          | Rojo San Isidro Gen.    | 127                 | Unimproved           | Costa Rica         |
| 88PI-163-372555UnknownPeru89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86          | Mexico-80-R             |                     | Improved             | Costa Rica         |
| 89Dark Red Kidney212ImprovedU.S.A.90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87          | Col-l-63A               |                     | Improved             | Honduras           |
| 90U.S.A2-R185ImprovedU.S.A.91Ahumados-Alto De Las<br>Yaras241UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | <b>PI-163-372</b>       |                     | Unknown              | Peru               |
| 91Ahumados-Alto De Las<br>Yaras241Unimproved<br>UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | Dark Red Kidney         |                     | Improved             | U.S.A.             |
| Yaras241Unimproved<br>UnimprovedCosta Rica92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | U.S.A2-R                | 185                 | Improved             | U.S.A.             |
| 92Amarillo De Pacuare228UnimprovedCosta Rica93Tres En Uno Legitimo1100m.229UnimprovedCosta Rica94Chichicastenango1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91          | Ahumados-Alto De Las    |                     |                      |                    |
| 93Tres En Uno Legitimo<br>1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                         |                     |                      |                    |
| 1100m.229UnimprovedCosta Rica94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                         | 228                 | Unimproved           | Costa Rica         |
| 94Chichicastenango<br>1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93          |                         |                     |                      |                    |
| 1800-2200m.144UnimprovedGuatemala95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                         | 229                 | Unimproved           | Costa Rica         |
| 95Ahu. Chirripo 800m.509UnimprovedCosta Rica96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94          | Chichicastenango        |                     |                      |                    |
| 96Mercado De Puntarenas331UnimprovedCosta Rica97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 1800-2200m.             |                     | -                    |                    |
| 97Matambre Amarillo "A"158UnknownUnknown98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Ahu. Chirripo 800m.     |                     |                      |                    |
| 98Frijol Leche Pej. Per.<br>Zeledon341UnimprovedCosta Rica99Bayo San Isidro<br>General91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                         |                     | -                    | Costa Rica         |
| Zeledon341UnimprovedCosta Rica99Bayo San Isidro91UnimprovedCosta Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                         |                     | Unknown              | Unknown            |
| 99 Bayo San Isidro<br>General 91 Unimproved Costa Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98          |                         |                     | _                    |                    |
| General 91 Unimproved Costa Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                         | 341                 | Unimproved           | Costa Rica         |
| ▲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99          |                         |                     |                      |                    |
| 100 Matambre 138 Unimproved Ecuador                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                         |                     | -                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100         | Matambre                | 138                 | Unimproved           | Ecuador            |

Table 8--Continued

| Var.<br>No. | Variety Name              | Percent<br>Response | Improvement<br>Level | Collection<br>Site |
|-------------|---------------------------|---------------------|----------------------|--------------------|
| 101         |                           | 240                 | IInimproved          | Guatemala          |
| 101         | Blanco Parramos           | 248                 | Unimproved           |                    |
| 102         | Mat-2-B                   | 118                 | Unimproved           | Nicaragua          |
| 103         | Col-119-B1                | 117                 | Improved             | Unknown            |
| 104         | S-124-B                   | 199                 | Unknown              | Unknown            |
| 105         | <b>S –</b> 560 <b>–</b> R | 286                 | Unknown              | Unknown            |
| 106         | U.S.A. 12-B1              | 432                 | Improved             | U.S.A.             |
| 107         | Jin-11-B                  | 39                  | Unimproved           | Nicaragua          |
| 108         | <b>S-324-</b> B           | 521                 | Unknown              | Unknown            |
| 109         | Seaway                    | 303                 | Improved             | U.S.A.             |
| 110         | Bayo Mercado Cartago      | 158                 | Unimproved           | Costa Rica         |
| 111         | 18 – B                    | 168                 | Unknown              | Unknown            |
| 112         | Saginaw                   | 155                 | Improved             | U.S.A.             |
| 113         | Perry Marrow              | 300                 | Improved             | U.S.A.             |
| 114         | Poroto Eterno             | 152                 | Unknown              | Ecuador            |
| 115         | 19 <b>-</b> B             | 394                 | Unknown              | Unknown            |
| 116         | 45-B                      | 227                 | Unknown              | Unknown            |
| 117         | 30 <b>-</b> A             | 129                 | Unknown              | Unknown            |
| 118         | S-719-B1                  | 141                 | Unknown              | Unknown            |
| 119         | S-856-B-10                | 331                 | Improved             | Unknown            |
| 120         | Bayomex                   | 239                 | Improved             | Mexico             |
| 121         | Valiente "B"              | 182                 | Unimproved           | Costa Rica         |
| 121         | Canario-101               | 329                 | Improved             | Mexico             |
| 122         |                           | 88                  | Unknown              | Costa Rica         |
|             | 46-P                      | -                   |                      |                    |
| 124         | S-64-P                    | 299                 | Unknown              | Unknown            |

Table 8--Continued

|                   |     |       |           |        |       | meq/ | meq/100 g soil | 0i1          | % Base |
|-------------------|-----|-------|-----------|--------|-------|------|----------------|--------------|--------|
| Soil              | *Hq | N%    | P (kg/ha) | % O.M. | CEC   | м    | Ca             | Мg           | Sat.   |
| Pacuare           | 6.5 | 0.291 | 12.04     | 4.85   | 29.93 | 1.39 | 21.61          | 2.63         | 85.6   |
| <b>P</b> acuare-B | 6.4 | 0.754 | 45.50     | 13.10  | 39.69 | 1.20 | 30.50          | 6.33         | 95.8   |
| Alajuela          | 5.2 | 0.222 | 3.26      | 4.80   | 24.60 | 1.02 | 4.59           | 1.50         | 28.9   |
| Turrialba         | 5.7 | 0.329 | 2.24      | 6.10   | 26.68 | 0.92 | 7.39           | <b>1.4</b> 3 | 36.5   |
|                   |     |       |           |        |       |      |                |              |        |

| results  |
|----------|
| test     |
| Soil     |
| <b>.</b> |
| Table    |

\*1:1 soil to  $H_2^0$  ratio.

. .

| Field<br>No. | Greenhouse<br>Number | Variety Name                                |
|--------------|----------------------|---------------------------------------------|
| 1            | 66                   | Chileno De Chirripo                         |
| 2            | 2                    | Mexico-450-N                                |
| 3            | 94                   | Chichicastenango 1800-2200 mts.             |
| 4            | 107                  | Jin-11-B                                    |
| 5            | 9                    | Mex-38-P                                    |
| 6            | 123                  | 46-P                                        |
| 7            | 74                   | Panamito-B                                  |
| 8            | 42                   | Negro-Los Angeles Cañas                     |
| 9            | 100                  | Matambre                                    |
| 10           | 102                  | Mat-2-B                                     |
| 11           | 30                   | Porotos Pacuare                             |
| 12           | 62                   | Rojo Antigua                                |
| 13           | 73                   | Carnita l Rio Naranjo Bagac <mark>es</mark> |
| 14           | 16                   | Sal-66-N                                    |
| 15           | 25                   | Antigua Negro                               |
| 16           | 106                  | U.S.ABl                                     |

Table 10. Varieties used in the Field Experiment

=

| Table II. | Statistics      | тог уледа       | and the y       | уледа соп       | aponents a                     | t Low and | tor yield and the yield components at low and high fertility | ility                |
|-----------|-----------------|-----------------|-----------------|-----------------|--------------------------------|-----------|--------------------------------------------------------------|----------------------|
|           |                 |                 | Yield ar        | nd the Yi       | Yield and the Yield Components | nents     |                                                              |                      |
| Statistic | wт <sub>0</sub> | wт <sub>1</sub> | хт <sub>0</sub> | хт <sub>1</sub> | ът <sub>0</sub>                | ۳1        | $^{\mathrm{ZT}}_{\mathrm{O}}$                                | $^{\mathrm{zr}_{1}}$ |
| Mean      | 4.71            | 14.17           | 4.55            | 10.72           | 4.14                           | 4.83      | 26.22                                                        | 28.74                |
| Std. dev. | 1.83            | 3.83            | 1.47            | 3.06            | 0.83                           | 0.80      | 10.40                                                        | 00.6                 |
| lsd.05    | 2.93            | 6.12            | 2.35            | 4.90            | 1.32                           | 1.28      | 16.66                                                        | 14.40                |
|           |                 |                 |                 |                 |                                |           |                                                              |                      |

| Ъ          |
|------------|
| fertility  |
| <b>1</b>   |
| ч          |
|            |
| high       |
| P          |
| and        |
| low        |
| at         |
| S          |
| component  |
| <u>p</u> o |
| щo         |
| 0          |
| ield       |
| Yie        |
| the        |
|            |
| and        |
| Ъд         |
| yield      |
| Я          |
|            |
| ics        |
| ä          |
| -          |
| ű,         |
| S          |
| г.         |
| Ч          |
| le         |
| Tab]       |
|            |

| M                                        |  |
|------------------------------------------|--|
| and 1                                    |  |
| 8                                        |  |
| Ч,                                       |  |
| X,                                       |  |
| for                                      |  |
| values                                   |  |
| ry table of response values for X, Y, Z, |  |
| of                                       |  |
| table                                    |  |
| Summary                                  |  |
| Table 12.                                |  |

| 1<br>2<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.44*<br>+0.10<br>-0.37<br>-0.37<br>+0.20<br>+0.23<br>-0.78<br>-0.15 | -00.31<br>+00.79<br>-00.70<br>-01.13<br>+01.47<br>+02.77<br>+00.63<br>+00.03<br>+01.95 | -1.79<br>+0.67<br>+2.05<br>+4.05<br>+4.54<br>+1.43<br>+1.43<br>+4.63      | 33333<br>3333<br>3333<br>3333<br>3333<br>3333<br>3333<br>3333      | +2.72<br>-0.73<br>-4.28<br>+0.28<br>+2.27<br>+0.16<br>-0.39 | +0.03      |             | ° (        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|------------|-------------|------------|
| 2 +1. 39<br>6 +4. 16<br>7 +4. 16<br>7 +4. 16<br>7 +4. 16<br>7 +4. 16<br>7 -1. 06<br>1 +2. 39<br>7 -1. 06<br>84<br>1 -2. 28<br>84<br>6 -1. 06<br>84<br>1 - 0. 39<br>84<br>1 - 0. 39<br>1 - 0. 3 |                                                                       | 001100010<br>001000000                                                                 | .05<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                              | ч н й й й ч                                                 | •          | L.9         | <b>^</b>   |
| 4       4         6       7         6       7         7       1.4         8       1.4         1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.1.0       1.4         1.5       1.4         1.5       1.4         1.5       1.4         1.5       1.4         1.5       1.4         1.5       1.4         1.5       1.4         1.5       1.4         1.5       1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | 10000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>10                            | .05<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02<br>.02 | 9 9 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                            | w h v v v v                                                 | -          | +02.04      | +4.38      |
| 4 +4.16<br>6 -3.28<br>-3.28<br>-3.28<br>-3.28<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39<br>-4.39                                                                                                                                                 |                                                                       |                                                                                        | .02<br>.54<br>.64<br>.64<br>.64<br>.64<br>.64                             | 333<br>333<br>337<br>337<br>337<br>337<br>337<br>337<br>337<br>337 | ы н и и                                                     | m.         | 7.9         | ч.         |
| 5 -3.28<br>9 + 4.305<br>9 + 4.305<br>9 + 4.305<br>1 - 2.95<br>- 1 - 06<br>- 4.1.06<br>- 4.1.06<br>- 4.1.05<br>- 0.39<br>- 0.95<br>- 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       | 12002H                                                                                 | 54<br>64<br>64<br>63<br>64<br>63                                          | 334<br>3334<br>8374                                                | . H                                                         | 4          | 1.8         | ۰          |
| 6 +3.05<br>8 +4.305<br>9 +4.39<br>1 -2.95<br>2.28<br>2.28<br>2.28<br>- 0.95<br>- 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 10000<br>10000                                                                         | . 28<br>. 64<br>. 64<br>. 63                                              | 35<br>36<br>38<br>38                                               | <u>ч.</u>                                                   | ч.         | 0.2         | <b>.</b> 5 |
| 7 +2.60<br>9 +4.39<br>1 -1.06<br>2 -1.06<br>-1.06<br>-1.05<br>-1.05<br>-0.95<br>-0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 00700                                                                                  | 0400,                                                                     | 36<br>37<br>38                                                     | ۳.                                                          | 4.         | 3.2         | <b>ی</b>   |
| 8 +4.39<br>9 -1.06<br>-1.06<br>-2.95<br>-1.06<br>-1.06<br>-1.05<br>-0.95<br>-0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | 0.00                                                                                   | 4.0.0.                                                                    | 37<br>38                                                           | •                                                           | •          | 2.0         | ۳.         |
| 9 -1.06<br>1 -2.95<br>2 -1.06<br>4 -2.28<br>4 -2.28<br>5 -1.05<br>6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •                                                                   | 0.0<br>0<br>0<br>0                                                                     | 9.0-                                                                      | 38                                                                 | 9.                                                          | 4.         | 4.0         | 4.         |
| 0 +0.39<br>2 -1.05<br>3 -1.06<br>4 -2.28<br>5 +1.05<br>6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                     | 1.9                                                                                    | 9.                                                                        |                                                                    | ۳.                                                          | ۳.         | 2.4         | പ          |
| 1 -2.95<br>2 -1.06<br>3 -0.84<br>5 +1.05<br>6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       | (<br>(                                                                                 | •                                                                         | 39                                                                 | ς.                                                          | 5          | 5.0         | •          |
| 2 -1.06<br>3 -0.84<br>5 +1.05<br>6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٠                                                                     | ñ.<br>O                                                                                | -                                                                         | 40                                                                 | ۲.                                                          | 2          | 7.2         | .2         |
| 3 -0.84<br>4 -2.28<br>5 +1.05<br>6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                     | <b>4</b> .0                                                                            | 8.                                                                        | 41                                                                 | •                                                           | Ë,         | 4.0         | 2          |
| 4 -2.28<br>5 +1.05<br>6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                     | 2.1                                                                                    | .6                                                                        | 42                                                                 | •                                                           | 4.         | 2.4         | ٥.         |
| 5 +1.05<br>6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                     | 6.0                                                                                    | . 7                                                                       | 43                                                                 | •                                                           | ۳.         | 1.0         |            |
| 6 -0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٠                                                                     | 3.0                                                                                    | ۲.                                                                        | 44                                                                 | •                                                           | •          | 1.8         | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                     | 1.6                                                                                    | æ.                                                                        | 45                                                                 | <b>ی</b>                                                    | •          | ъ.<br>С     | ъ.         |
| 7 -1.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                     | 0.6                                                                                    | æ.                                                                        | 46                                                                 | ě,                                                          | ٦.         | 0.2         | <i>с</i> . |
| 8 +3.83*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                     | 0.7                                                                                    | . 7                                                                       | 47                                                                 | ě.                                                          | 4.         | 2.9         | •          |
| 9 -1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                     | 3.0                                                                                    | ч.                                                                        | 48                                                                 | ς.                                                          | 4.         | 1.5         | .5         |
| 0 +0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                     | 1.0                                                                                    | <b>.</b>                                                                  | 49                                                                 | 5                                                           | <b>.</b> 5 | 1.5         | ۰          |
| 1 +0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                     | 0.0                                                                                    | <b>ی</b>                                                                  | 50                                                                 | ٥.                                                          | •          | 2.6         |            |
| 2 -3.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٠                                                                     | 1.8                                                                                    | <b>ی</b>                                                                  | 51                                                                 | æ.                                                          | Ч.         | 3.2         | 9.         |
| 3 -2.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | 1.1                                                                                    | ۲.                                                                        | 52                                                                 | 4.                                                          | 9.         | 4.8         | σ.         |
| 4 +1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                     | 1.0                                                                                    | æ.                                                                        | 53                                                                 | <b>ی</b>                                                    | 4.         | 0.4         | -          |
| 5 +0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                     | 1.1                                                                                    | •                                                                         | 54                                                                 | ч.                                                          | <b>.</b> 5 | 0.7         | ч.         |
| 6 -3.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | 0.1                                                                                    | 9.                                                                        | 55                                                                 | 2                                                           | 6.         | <b>L.</b> 7 |            |
| 7 -2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                     | 1.9                                                                                    | <b>ں</b>                                                                  | 56                                                                 | e.                                                          | •          | 5.3         | •          |
| 8 -2.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | 3.9                                                                                    | •                                                                         | 57                                                                 | 5                                                           | æ.         | 1.3         | æ.         |
| 9 -4.39*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                     | 4.1                                                                                    | • •                                                                       | 58                                                                 | •                                                           | <b>.</b> 5 | 1.0         |            |

| <b>~1</b>  |
|------------|
| ĕ          |
| 김          |
| . <b>H</b> |
| 비          |
| S          |
| ပု၊        |
| i          |
| 12         |
|            |
| e          |
| q          |
| [ຍ]        |
| H          |

| Entry | ×            | Х        | N           | м            | Entry | x         | Х          | 2        | M      |
|-------|--------------|----------|-------------|--------------|-------|-----------|------------|----------|--------|
| 59    | <u></u>      | س        | 2.1         |              |       | L .       | 0.         | 5.5<br>2 | 7      |
| 60    | +2.05        | +0.47    | -00.26      | +2.03        | 89    | -4.39*    | -0.09      | -02.64   | -5.95* |
| 61    | 6.           | 4.       | 6.4         | 9.           |       | ω         | 2          | 2.1      | 6.2    |
| 62    | <del>،</del> | æ.       | 0.<br>0     | ۳.           |       | ົ         | .6         | 2.2      | 0.9    |
| 63    | 2            |          | 4.7         | 5            |       | 2         | <b>ں</b>   | с.<br>о  | 2.7    |
| 64    | 6.           | <u>б</u> | 5.0         | <del>م</del> |       | Ч.        | 2          | 4.0      | Ч      |
| 65    | •            | æ.       | 1.8         | 4.           |       | ω         | 4.         | 1.0      | 3.9    |
| 66    | 5.           | 2.       | <b>1.</b> 6 | 9.           |       | ω         | 4.         | 3.5      | 2.3    |
| 67    | •            | <b>ی</b> | 8.6         | Ч.           |       | 9         |            | 0.8      | 1.4    |
| 68    | <b>ں</b>     | Ч.       | 4.3         | •            |       | 4         | •          | 0.7      | 0.9    |
| 69    | ω.           | Ч.       | 0.9         | æ.           |       | 0         | <b>.</b>   | 1.3      | 3.9    |
| 70    | Ч.           | 2.       | 5.1         | 5            |       | -         | -          | 1.8      | 2.3    |
| 71    | 2            | 4.       | 3.2         | •            | 0     | 5         | •          | 2.4      | 1.8    |
| 72    | •            | 0        | 1.8         |              | 0     | ø         | •          | 0.5      | 2.6    |
| 73    | •            | -        | 0.0         | <i>с</i> .   | 0     | 2         | •          | 2.0      | 1.9    |
| 74    | •            |          | <b>L</b> .3 | <del>م</del> | 0     | ~         | •          | 9.9      | 5.5    |
| 75    | 2            | •        | 6.0         | 4.           | 0     | ø         | •          | 1.1      | 1.7    |
| 76    | ω.           | Ч.       | 5.8         | •            | Ο     | L.        | •          | 5.8      | 3.2    |
| 77    | ω.           | 9.       | 1.5         | 4.           | 0     | 0         | .2         | 2.1      | 4.9    |
| 78    |              | 4.       | 1.9         | ω.           |       | ω         | •          | 3.4      | 6.72   |
| 79    | ъ.           | •        | 1.5         | 2            | Õ     | <u> </u>  | •          | ч<br>Ч   | С      |
| 80    | •            | ۳.       | 1.4         | 2            | 0     | <u></u> . | <b>.</b> 5 | 6.1      | 0      |
| 81    | <u>ە</u>     | 2        | 2.7         | æ.           | Ч     | 2         | .2         | 3.2      | 7      |
| 82    | -            | •        | 8.6         | -            | Ч     | n.        | 4          | 2.7      | S      |
| 83    | •            | 2        | 1.9         |              | Ч     | 0         | 6.         | 1.2      | 9      |
| 84    | .6           | •        | 1.1         |              | Ч     | ۰<br>و    |            | 4.4      | Ч      |
| 85    |              | ч.       | 4.5         | -            | Ч     | പ         | .2         | 1.5      | 0      |
| 86    | 9.           | 2        | 2.8         | 4.           | Ч     | 0         | ч.         | 2.5      | S      |
| 87    | •            | .6       | 4.9         | . 2          | -     | പ         |            | 0.0      | Ч      |

| Entry                    | ×                                | А                                 | N                                    | M                                | Entry                    | ×                                | Т                                | N                                    | X                                |
|--------------------------|----------------------------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|
| 117<br>118<br>119<br>120 | -1.62<br>-3.39<br>+0.72<br>-0.72 | +0.13<br>+0.81<br>-0.12<br>-0.94* | -00.76<br>-00.40<br>+04.95<br>-02.23 | -1.26<br>-4.78<br>+3.24<br>-1.25 | 121<br>122<br>123<br>124 | +0.17<br>-2.28<br>-2.95<br>-1.95 | +0.09<br>-0.02<br>-0.30<br>+0.84 | -00.98<br>-00.64<br>+01.49<br>+05.35 | -0.96<br>-3.91<br>-3.26<br>+1.05 |
|                          | M                                |                                   | ×                                    |                                  | K                        |                                  |                                  | 21                                   |                                  |
|                          | =<br> X                          | 0                                 | =<br> X                              | 0                                | =<br> X                  | 0 ::                             |                                  | <b>x</b> = 0                         |                                  |
|                          | ll<br>ໝ                          | 3.16                              | ນ<br>ເ                               | 2.55                             | ທ<br>ເນ                  | • 0.57                           |                                  | s = 4.37                             |                                  |
| н                        | $LSD_{05} = 1$                   | 4.90                              | LSD.05 =                             | 3.61                             | LSD.05 =                 | : 0.96                           | LSD.05                           | 5 = 7.70                             |                                  |

Table 12--Continued

Table 13. Nitrogen and phosphorus effects on yield and the yield components

| Yield and           | Nitro | gen (kg | /ha)  | Ph    | osphoru | s (kg/h | .a)   |
|---------------------|-------|---------|-------|-------|---------|---------|-------|
| Yield<br>Components | 0     | 100     | 200   | 0     | 200     | 400     | 800   |
| W                   | 15.50 | 21.60   | 22.50 | 18.10 | 20.50   | 21.25   | 19.80 |
| x                   | 15.50 | 20.75   | 21.75 | 17.30 | 19.60   | 20.25   | 19.80 |
| Y                   | 4.72  | 4.86    | 4.74  | 4.78  | 4.75    | 4.77    | 4.80  |
| Ζ                   | 21.70 | 21.75   | 21.85 | 22.25 | 21.85   | 21.60   | 21.40 |

| +<br>                 |                  |            | Phosphorus | tus Level | in the | Substrate | (mqq) |       | Plant<br>Post |
|-----------------------|------------------|------------|------------|-----------|--------|-----------|-------|-------|---------------|
| <b>F</b> lanc<br>Part | Variety          | Y 2        | 2          | 8         | 11     | 14        | 17    | 20    | Means         |
| Leaf                  | Ч                | _ <u>_</u> | 34         | 75        | 68     | 9026      | 68    | 94    | 52            |
| Stem                  | -1               | σ          | 37         | 30        | 53     | 4896      | 65    | 44    | 8             |
| Root                  | -1               | 5958       | 6199       | 8432      | 9071   | 7611      | 7666  | 13165 | 7             |
| Total                 | Ч                | S.         | e          | 49        | 60     | 7178      | 44    | 918   | 7356          |
| Leaf                  | 7                | 23         | Г<br>П     | 51        | 32     | 02        |       | 67    | 91            |
| Stem                  | 7                | 08         | 02         | 04        | 28     | 8         | 83    | 046   | 32            |
| Root                  | 7                | 8321       | 6992       | 9171      | 10545  | 8776      | 15251 | 16540 | 10799         |
| Total                 | 7                | 21         | 71         | 14        | 38     | 93        | 4     | 222   | 01            |
| Leaf                  | m                | റ          | ၂ ဗ္ဂ      | 1         | 66     | 29        |       | 7     | 40            |
| Stem                  | m                | ω          | 20         | 34        | 61     | 42        | ~     | 08    | 77            |
| Root                  | m                | Э          | 41         | 5769      | 9464   | 7326      | S     | 14476 | 13            |
| Total                 | Υ                | 8536       | 6475       | 4         | 35     | ω         | 8     | 975   | 7739          |
| Leaf                  | 4                | -          | 70         | 74        | 6      | 70        | 49    | 48    | 9174          |
| S tem                 | 4                | 4639       | 3266       | 4002      | 4798   | 5174      | 6295  | 5904  | 4868          |
| Root                  | 4                | Q          | 47         | 78        | ε      | 08        | 97    | 46    | 7138          |
| Total                 | 4                | 4          | 48         | 84        | 9      | 98        | 25    | 61    | 7095          |
| Leaf                  | All<br>Varietie  | es 9715    | 8123       | 7206      | 9242   | 8763      | 10264 | 9703  | 9005          |
| Stem                  | All<br>Varietie: | es 4701    | 4843       | 4424      | 6058   | 5123      | 6261  | 6723  | 5447          |
| Root                  | All<br>Varietie  | es 6995    | 6170       | 7 28 9    | 9100   | 7699      | 11971 | 13412 | 8948          |
|                       |                  |            |            |           |        |           |       |       |               |

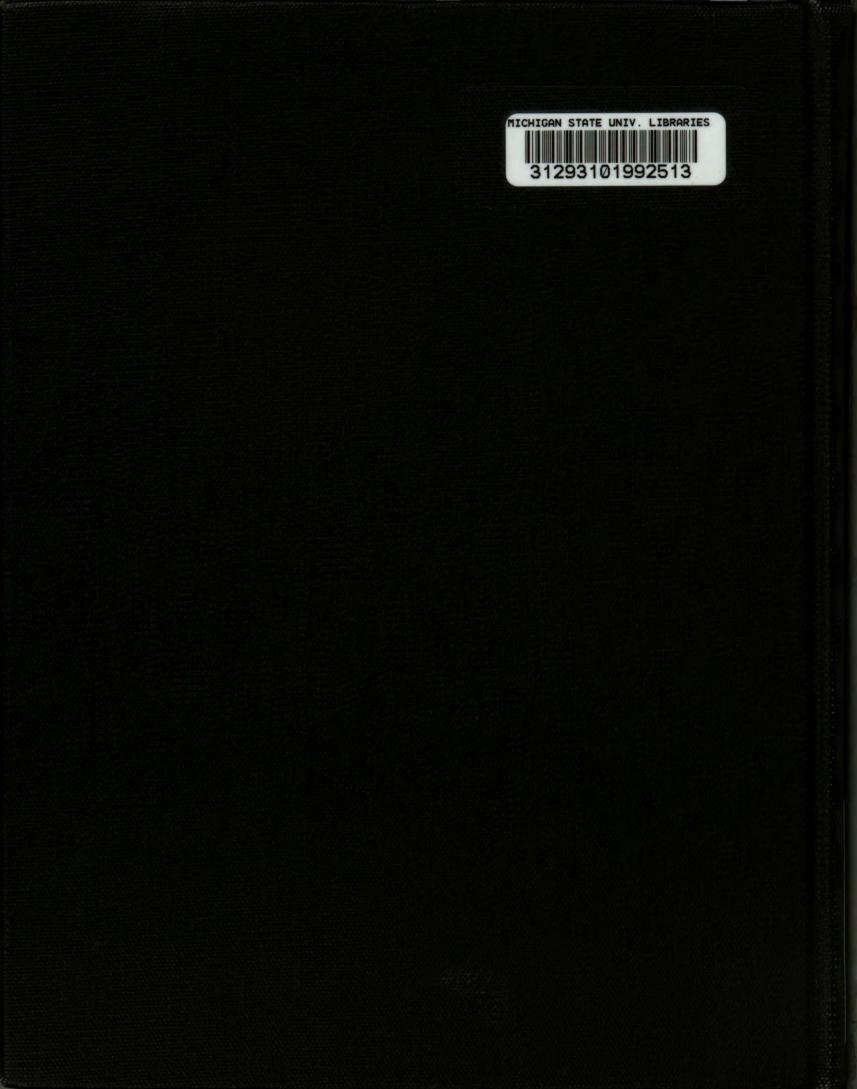
Concentrations of phosphorus in the plant tissue (ppm of P) Table 14.

|          | Table 15.        | Concentrations | of         | potassium | l in the | plant    | tissue (ppm | om of K) |                       |
|----------|------------------|----------------|------------|-----------|----------|----------|-------------|----------|-----------------------|
|          |                  |                | Phosphorus | rus Level | . in the | Substrat | te (ppm)    |          | Plant                 |
| Part<br> | Variety          | 5              | 2          | ω         | 11       | 14       | 17          | 20       | <b>F</b> art<br>Means |
| Jrof     | -                | 096            | ്          | 929       | 496      | 364      | 01          | 26R      | 965                   |
| Stem     |                  | 183            | $) \circ$  | 586       | 606      | 986      | 972         | 800      | 921                   |
| Root     |                  | 58199          | 38078      | 45007     | 50159    | 60188    | 46539       | 51439    | 49944                 |
| Total    | T                | 700            |            | 005       | 807      | 123      | 576         | 737      | 197                   |
| Leaf     | 7                | 26             | 834        | 700       | 751      | 40330    | 294         | 33269    | 083                   |
| Stem     | 2                | 50             | 918        | 373       | 261      | 70594    | 892         | 80       | 259                   |
| Root     | 2                | 38020          | 29430      | 31172     | 26440    | 49451    | 47656       | 31278    | 36207                 |
| Total    | 7                | 52             | 231        | 063       | 552      | 53458    | 984         | 08       | 513                   |
| Leaf     | m                | 262            | 81         | 031       | 708      | 29387    | 888         | 631      | 006                   |
| Stem     | m                | 18215          | 38465      | 49781     | 70912    | 68416    | 58187       | 52839    | 43425                 |
| Root     | e                | 891            | 95         | 137       | 585      | 54738    | 231         | 545      | 265                   |
| Total    | m                | 325            | 07         | 049       | 128      | Ω I      | 646         | 153      | 404                   |
| Leaf     | 4                | 22637          | 923        | 27829     | 00       | 34689    | 2           | 172      | 968                   |
| Stem     | 4                | 27065          | 56901      | 64323     | 61710    | 8 288 2  | 71747       | 70399    | 62147                 |
| Root     | 4                | 67680          | 168        | 54601     | σ        | 48069    | 5           | 516      | 786                   |
| Total    | 4                | 39127          | 927        | 48918     | v        | 55213    | Ċ,          | 609      | 875                   |
| Leaf     | All<br>Varieties | 22214          | 27103      | 32478     | 29614    | 34513    | 33900       | 31001    | 26348                 |
| Stem     | All<br>Varieties | 23042          | 41165      | 55927     | 61084    | 70440    | 64645       | 5 98 24  | 53343                 |
| Root     | All<br>Varieties | 55703          | 44788      | 48039     | 45541    | 53112    | 48406       | 48585    | 47740                 |

|                  | Taple 10.        | Concentrations | clons of   | calcium   | IN The F      | plant tis | ssue (ppm | n ot Ca) |       |
|------------------|------------------|----------------|------------|-----------|---------------|-----------|-----------|----------|-------|
| ++<br>           |                  |                | Phosphorus | rus Level | in the        | Substrate | te (ppm)  |          | Plant |
| F tall c<br>Part | Variety          | 2              | ß          | 8         | 11            | 14        | 17        | 20       | Means |
| Leaf             | Г                | 66             | 107        | 237       | 879           | 945       | 524       | 729      | 703   |
| S tem            | 1                | 18143          | 10470      | 14635     | 13526         | 15953     | 10481     | 12919    | 13733 |
| Root             | г                | 24             | 239        | 154       | 524           | 760       | 468       | 807      | 939   |
| Total            | 1                | 79             | 131        | 285       | 252           | 433       | 013       | 276      | 33    |
| Leaf             | 2                | 64             | 300        | 005       | 761           | 254       | 0.75      | 679      | 746   |
| Stem             | 2                | 98             | 518        | 884       | 066           | 599       | 421       | 767      | 749   |
| Root             | 2                | 17910          | 10957      | 20629     | 1839 <b>4</b> | 13156     | 13174     | 20516    | 16391 |
| Total            | 7                | 14             | 304        | 984       | 222           | 056       | 938       | 166      | 045   |
| Leaf             | ε                | 82             | 063        | 690       | 01            | 339       | 093       | 251      | 431   |
| Stem             | m                | 70             | 480        | 594       | 51            | 526       | 173       | 318      | 516   |
| Root             | ო                | 21829          | 20506      | 19589     | 20397         | 15531     | 15914     | 16390    | 18594 |
| Total            | ſ                | 11             | 198        | 414       | 67            | 139       | 952       | 069      | 269   |
| Leaf             | 4                | 605            | 650        | 421       | 84            | 375       | 514       | 109      | 359   |
| S tem            | 4                | 19655          | 15841      | 16043     | 13568         | 14516     | 14312     | 17394    | 15905 |
| Root             | 4                | 620            | 423        | 418       | Ц             | 130       | 276       | 260      | 320   |
| Total            | 4                | 396            | 219        | 148       | 76            | 985       | 074       | 036      | 060   |
| Leaf             | All<br>Varieties | 36337          | 31554      | 30887     | 33212         | 34788     | 33021     | 31926    | 33084 |
| Stem             | All<br>Varieties | 19100          | 14075      | 16368     | 16069         | 15431     | 12688     | 15292    | 15577 |
| Root             | All<br>Varieties | 20546          | 17024      | 18988     | 16285         | 14398     | 14135     | 16896    | 16896 |

Concentrations of calcium in the plant tissue (ppm of Ca) Table 16.

|                                                                                                    | Taple 1/.        | Concentrat | ations of m | magnesıum | IN The | plant tiss | sue (ppm | m of Mg) |       |
|----------------------------------------------------------------------------------------------------|------------------|------------|-------------|-----------|--------|------------|----------|----------|-------|
| + 4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                  |            | Phosphorus  | tus Level | in the | Substrate  | (wdd)    |          | Plant |
| Part                                                                                               | Variety          | 2          | ъ           | 8         | 11     | 14         | 17       | 20       | Means |
| Leaf                                                                                               | Ţ                | 63         | 12          | 72        | 08     | 37         | 49       | 83       | 68    |
| Stem                                                                                               |                  | 80         | 36          | 43        | 48     | 88         | 01       | 020      | 7     |
| Root                                                                                               | Ч                | 6398       | 5718        | 6047      | 5506   | 5294       | 4729     | 7295     | 5855  |
| Total                                                                                              | 1                | 61         | 40          | 73        | 35     | 18         | 41       | 38       | 15    |
| Leaf                                                                                               | 7                | 75         | ന           | 57        | 6      | 53         | 34       | 33       | 63    |
| S tem                                                                                              | 2                | 67         | 4           | 25        | 14     | 20         | 13       | 62       | 78    |
| Root                                                                                               | 2                | 6949       | 5829        | 6590      | 5210   | 6039       | 6775     | 6178     | 6224  |
| Total                                                                                              | 7                | 12         | 0           | 47        | 14     | 59         | 75       | 04       | 31    |
| Leaf                                                                                               | ĸ                | ŝ          | 74          | 26        | L      | 73         | 30       | 15       | 31    |
| Stem                                                                                               | m                | 5064       | 3885        | 3482      | 3316   | 2692       | 3037     | 2786     | 3466  |
| Root                                                                                               | m                | ഹ          | 98          | 77        | 37     | 85         | 21       | 94       | 81    |
| Total                                                                                              | 3                | N          | 53          | 17        | 26     | 60         | 18       | 5963     | 9     |
| Leaf                                                                                               | 4                | 75         | 30          | 24        | 04     | 2          | 25       | 84       | 26    |
| Stem                                                                                               | 4                | 4991       | 3197        | 3133      | 2650   | 2756       | 2763     | 2827     | 3188  |
| Root                                                                                               | 4                | 23         | 31          | 85        | 11     | 9          | 95       | 39       | 10    |
| Total                                                                                              | 4                | 66         | 27          | 07        | 60     | н.         | 32       | 02       | 17    |
| Leaf                                                                                               | All<br>Varieties | 7251       | 6016        | 5701      | 7078   | 7018       | 6850     | 6290     | 6603  |
| S tem                                                                                              | All<br>Varieties | 5133       | 3218        | 3077      | 3150   | 2884       | 2737     | 2817     | 3283  |
| Root                                                                                               | All<br>Varieties | 6784       | 5961        | 5817      | 5801   | 5763       | 6668     | 6955     | 6245  |
|                                                                                                    |                  |            |             |           |        |            |          |          |       |


Concentrations of magnesium in the plant tissue (nom of Mg) Table 17.

|                     | Table 18. T         | Total quantities | ities of   | phosphorus | in       | the plant  | tissue   | (mg of P) |       |
|---------------------|---------------------|------------------|------------|------------|----------|------------|----------|-----------|-------|
|                     |                     |                  | Phosphorus | Leve       | l in the | Substra    | te (ppm) |           | Plant |
| Part                | Variety             | 2                | ß          | 8          | 11       | 14         | 17       | 20        | Means |
| Leaf                | Ţ                   |                  | 0          | . 2        | 2.4      | 9,4        | 5.0      | 6,3       | 1.9   |
| Stem                |                     | 3.20             | 6.98       | 8.92       | 17.21    | 18.42      | 28.10    | 32.99     | 16.55 |
| Root                | Г                   | <b>.</b> .0      | 0.9        | 8          | 2.8      | 5.0        | 9.1      | 1.2       | 5.7   |
| Total               | 1                   | .1               | .6         | е.         | 4.1      | 7.6        | 7.4      | 6.8       | 4.7   |
| Leaf                | 2                   | ق<br>•           | .5         | 7          | .2       | .1         | ۳.       | ω         | 4     |
| Stem                | 2                   | 1.63             | 3.60       | 4.34       | 4.54     | 9          | 9        | 5.63      | 4.68  |
| Root                | 2                   | .2               | 9.         | 6.         | •        |            | æ.       | 4.        | 4.    |
| Total               | 2                   | • 5              | • 2        | 4.         | 6.       | <b>е</b> . | ۳.       | 6.        | ч.    |
| Leaf                | ε                   | 6.               | •          | 8          | 6.       | Ŀ.         | 9.8      | 6.0       | 9.    |
| Stem                | ო                   | ω.               | °.         | 9.         | 9.6      | <i>с</i> . | 3.8      | 8.5       | 6.    |
| Root                | m                   | 6.88             | 7.95       | 9.45       | 17.51    | 12.35      | 34.31    | 34.29     | 17.53 |
| Total               | 3                   | .8               | .4         | 6.         | 0.3      | 8.0        | 6.0      | 7.9       | 8.3   |
| Leaf                | 4                   | 6.               | ч.         | 5          | 8.3      |            | .4       | 3.7       | · ·   |
| S tem               | 4                   | 6.               | 9.         | 5          | 3.1      | 8.1        | .2       | 4.6       | 8.2   |
| Root                | 4                   | 6.99             | 4.55       | 9.31       | 14.50    | 6.64       | 12.09    | 14.58     | 9.81  |
| Total               | 4                   | ف                | -          | <u>ه</u>   | 1.9      | <u>б</u>   | 7.5      | 4.3       | 6.    |
| Leaf                | All<br>Varieties    | 10.72            | 14.77      | 19.52      | 31.49    | 31.57      | 37.42    | 48.45     | 27.71 |
| Stem                | All<br>Varieties    | 2.39             | 4.34       | 6.41       | 11.15    | 10.50      | 14.53    | 17.97     | 9.61  |
| Root                | All<br>Varieties    | 7.23             | 7.01       | 8.37       | 12.47    | 10.46      | 18.86    | 22.15     | 12.36 |
| Phosphorus<br>Means | orus Treatment<br>s | 6.78             | 8.71       | 11.44      | 18.37    | 17.51      | 23.60    | 29.52     |       |
|                     |                     |                  |            |            |          |            |          |           |       |

|                     | Table 19.        | Total quan | quantities o | of potassium | in        | the plant    | tissue    | (mg of K) |               |
|---------------------|------------------|------------|--------------|--------------|-----------|--------------|-----------|-----------|---------------|
| +<br>               |                  |            | Phosphorus   | rus Leve     | ls in the | le Substrate | ate (ppm) | (         | La            |
| Fart<br>Part        | Variety          | 2          | 2            | ω            | 11        | 14           | 17        | 20        | rart<br>Means |
| Leaf                | -1               | 7.6        | ч.<br>С      | 5.8          | 53.2      | 96.1         | 0.1       | 89.       | 55.4          |
| Stem                |                  | 28.33      | 55,34        | 108.79       | 183.45    | 233.13       | 304.65    | 359.25    | 181.85        |
| Root                | Ч                | 5. 3       | 3            | 3.5          | 68,9      | 34.9         | 5.1       | 29.       | 94.3          |
| Total               | 1                | 57.1       | 7.           | 9.4          | 5.2       | 88.0         | 9.9       | 59.       | 3.8           |
| Leaf                | 7                | .2         | 7.0          | 5.0          | 7.3       | 5.5          | 0.7       | 5.9       | 7.7           |
| Stem                | 2                | 4.8        | 0.6          | 5.7          | 6.2       | 4.8          | 7.5       | 3.7       | 9.0           |
| Root                | 2                | 21.49      | 18.35        | 17.28        | 11.87     | 49.03        | 31.78     | 15.93     | 23.68         |
| Total               | 7                | 2.8        | 5.3          | 6.0          | 8.5       | 9.8          | 3.3       | 1.8       | 6.8           |
| Leaf                | m                |            | 1.9          | 5.3          | 0.5       | 15.5         | 27.9      | 61.6      | 4.2           |
| Stem                | ſ                | 5.95       |              | 86.52        | 127.02    | ഹ            | 168.88    | 192.14    | 108.68        |
| Root                | ε                | 8.8        | 2.4          | 2.5          | 3.1       | 89.4         | 09.9      | 06.9      | 9.0           |
| Total               | ſ                | ő.         | 6.4          | 98.1         | 06.8      | œ            | 35.5      | 53.5      | 7.3           |
| Leaf                | 4                | 1.7        | 7.2          | 3.2          | 59.7      | 9            | 8.6       | 38.8      | 2.2           |
| Stem                | 4                | 18.34      | 47.23        | 109.46       | 188.93    | 131.40       | 105.20    | 179.55    | 111.44        |
| Root                | 4                | 4.5        | 4.4          | 6.5          | 30.6      | ч<br>С       | 9.9       | 04.9      | 3.7           |
| Total               | 4                | 4.8        | 2.9          | 3.0          | 59.7      | <b>.</b>     | 7.9       | 41.1      | 5.8           |
| Leaf                | All<br>Varieties | 24.68      | 50.39        | 84.86        | 110.19    | 123.33       | 129.34    | 159.05    | 97.40         |
| Stem                | All<br>Varieties | 14.36      | 39.51        | 87.62        | 133.92    | 146.19       | 159.08    | 191.17    | 110.26        |
| Root                | All<br>Varieties | 65.06      | 54.41        | 64.98        | 78.63     | 79.69        | 76.68     | 89.46     | 72.70         |
| Phosphorus<br>Means | us Treatment     | t 34.70    | 48.10        | 79.15        | 107.58    | 116.40       | 121.70    | 146.56    |               |

|                     | Table 20.        | Total qua | quantities   | of calcium | um in the | plant    | tissue (  | (mg of Ca)    |                      |
|---------------------|------------------|-----------|--------------|------------|-----------|----------|-----------|---------------|----------------------|
|                     |                  |           | Phosphorus   | Leve       | ls in th  | e Substr | ate (ppm) |               | Plant                |
| Fart<br>Part        | Variety          | 2         | 2            | ω          | 11        | 14       | 17        | 20            | <b>Fart</b><br>Means |
| Leaf                | Ч                | 8.7       | 0            | 8.0        | 9.4       | 2.5      | 3.0       | 9.6           | 8.<br>8              |
| Stem                | Ч                | 16.15     | 18.53        | 31.46      | 41.65     | 64.25    | 56.84     | 79.04         | 43.99                |
| Root                | ٦                | 7.5       | 1.0          | 5.5        | 0.5       | 9.5      | 1.8       | 2.2           | 5.4                  |
| Total               | 1                | 7.4       | 3.4          | 1.6        | 7.1       | 5.4      | 0.5       | 6.9           | 6.1                  |
| Leaf                | 2                |           | . 6          | 2.9        | 7.2       | 0.2      | 7.3       | <sup>00</sup> | 2.7                  |
| Stem                | 2                | е.        | Ч.           | 3.6        | 4.        | 7.6      | 9.        | 9.9           | Ň                    |
| Root                | 2                | 9.39      | 7.79         | 11.40      | ω         | 13.06    | 8.54      | 10.47         | 9.8                  |
| Total               | 7                | с.        | <u>،</u>     | 9.3        | õ         | 3.6      | г.        | •             | ٠                    |
| Leaf                | m                | 5.        | 9 <b>.</b> 8 | 5.2        | 4.3       | 5.2      | 2.        | 4.5           | 5.7                  |
| Stem                | ς                | 6.10      | 13.13        | 27.99      | 31.04     | 31.71    | 34.26     | 46.21         | 27.21                |
| Root                | ς                | <b>ی</b>  | 6.2          | 2.3        | 7.5       | 6.5      | 6.        | 9.1           | 1.4                  |
| Total               | m                | 7.7       | 9.7          | 1.8        | 7.6       | 4.4      | ω.        | з. э          | 4.7                  |
| Leaf                | 4                | .2        | 0.6          | 3.0        | 2.3       | 3.5      | 4.2       | 7.4           | 5.8                  |
| Stem                | 4                | 12.87     | 13.09        | 27.77      | 43.71     | 22.68    | 20.97     | 40.68         | 25.97                |
| Root                | 4                | 4.        | 4.5          | 4.0        | 8.6       | 0.7      | 5.4       | 9.0           | 9.1                  |
| Total               | 4                | • 2       | 80°.         | 1.6        | 1.5       | 2.3      | 3.5       | 2.4           | 6.9                  |
| Leaf                | All<br>Varieties | 43.46     | 61.60        | 89.81      | 120.83    | 127.87   | 126.81    | 170.38        | 105.82               |
| Stem                | All<br>Varieties | 10.37     | 13.23        | 25.22      | 31.99     | 34.08    | 30.92     | 43.96         | 27.11                |
| Root                | All<br>Varieties | 24.23     | 22.38        | 23.34      | 23.82     | 22.46    | 23.83     | 27.72         | 23.97                |
| Phosphorus<br>Means | us Treatment     | 26.02     | 32.40        | 46.12      | 58.87     | 61.47    | 60.52     | 80.69         |                      |

|                     | Table 21.        | Total quan | quantities of | f magnesium | in        | the plant | tissue     | (mg of Mg) |               |
|---------------------|------------------|------------|---------------|-------------|-----------|-----------|------------|------------|---------------|
|                     |                  |            | Phosphorus    | Leve        | ls in the | Substr    | ate (ppm)  |            | Plant         |
| <b>P</b> art        | Variety          | 2          | S             | ω           | 11        | 14        | 17         | 20         | rart<br>Means |
| Leaf                | Ч                | •          | . 0           | س           | ۳         | 0.1       | . 2        | 0.8        | .2            |
| Stem                | Ч                | •          | 4.0           | 5.3         | 7.6       | 1.8       | 9.9        | 2.1        | 7.9           |
| Root                | Ч                | 11.58      | 9.35          | 7.03        | 7.63      | 11.17     | 8.53       | 17.10      | 10.34         |
| Total               | 1                |            | •             | <b>.</b> 5  | õ         | 1.0       | 2          | 0.0        | ч.            |
| Leaf                | 2                | ά.         | .6            | ω.          | 6.        | <u>،</u>  | 8          | 0          | ۳.            |
| Stem                | 2                |            | 1.83          | 2.24        | 2.14      | 3.56      | 2.46       | 2.00       | 2.29          |
| Root                | 2                | 9.         | Ω.            | <b>ں</b>    | 4.        | <b>ں</b>  | <b>۳</b>   | .2         | æ.            |
| Total               | 0                | 6.         | 4             | œ           | -         | ۍ<br>۲    | <b>.</b> 5 | 4          | .1            |
| Leaf                | m                | 6.         | ုဂ            | 9           | õ         | 8         | <b>·</b>   | 3.9        |               |
| Stem                | ო                | 1.65       | 3.45          | 6.16        | 6.04      | 5.99      | 8.92       | 10.05      | 6.04          |
| Root                | m                | 4.         | 9.            | ω.          | 3.6       | 6.        | 3.8        | 8.9        | 2.5           |
| Total               | m                | .0         | <b>.</b> ۳    | Ω.          | ω.        | •         | .6         | 4.3        | ۲.            |
| Leaf                | 4                |            | •             | 9.          | 6.        |           | 6.         | . 6        | .2            |
| Stem                | 4                | 3.23       | 2.68          | 5.22        | ω         | 4.32      | 4.21       | 7.03       | 4.96          |
| Root                | 4                | <b>ی</b>   | •             | •           | ۳.        | <b>ں</b>  | <b>ی</b>   | <u>б</u>   | 8.4           |
| Total               | 4                | æ.         | •             | <u>م</u>    | 6.7       | -         | æ.         | œ          | <u>،</u>      |
| Leaf                | All              | 8.56       | 11.40         | 16.39       | 25.28     | 25.55     | 24.70      | 34.35      | 20.89         |
| Stem                | Varieties        | 2.74       | 3.00          | 4.74        | 5.98      | 6.43      | 6.38       | 7.81       | 5.30          |
| Root                | All<br>Varieties | 7.31       | 6.76          | 6.87        | 9.02      | 8.06      | 11.14      | 12.30      | 8.78          |
| Phosphorus<br>Means | cus Treatment    | t 6.20     | 7.05          | 9.33        | 13.43     | 13.35     | 14.07      | 18.15      |               |

