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ABSTRACT

AN ATTEMPT TO APPLY ELEMENTARY VIBRATION

THEORY TO A STACK OF PACKAGES

BY

Thomas Joseph Kusza

This thesis is a determination of the degree of

applicability of elementary vibration theory to a stack of

packages. If such an application could be used to explain

the behavior of a stack of packages, a simple and very

powerful tool would be available to better design a

functional package.

From the research it can be concluded that there

is little correlation of elementary vibration theory to

the laboratory data. The difference between the laboratory

value and a corresponding theoretical value, increases as

the number of containers in the stack increases.
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INTRODUCTION

In transit packages are stacked in various multi-

ples to efficiently use space. Vibrations are transmitted

through the floor of the truck or rail car and are experi-

enced by the units because they are conveyed through the

stack. Each container's response to vibration input will

differ due to the influence of the other stack members.

Since the stacked configuration has a marked influence,

it is important to study its effects and determine if they

are predictable.

Little effort has been spent in trying to apply

elementary vibration theory to stacked packages. The

application, if successfully made, would provide the

designer an invaluable tool.

The purpose of this paper is to determine if a

simple linear undamped model could be used to describe

stacked packages. A more complicated model with damping

and nonlinear springs would be expected to be more

accurate, but the object is to see how useful a simple

model could be.



There are two reasons why simple vibration theory

might not work. First, the package stack might be too

complicated to treat as a discrete mass system with only a

few elements and second, the typical packaging material

may not behave as a linear undamped spring. This investi-

gation will attempt to isolate the second premise and avoid

the first by using a simple model made up of steel plates

to simulate package mass.

Dow Ethafoam* 220 and 275 (mullen test in lbs)

c-flute corrugated fiberboard were the materials proposed

for the simple model. They were tested individually, while

bonded together, and under various loadings, to simulate

real conditions. The high and low loadings for the

polyethylene cushion were taken from a static-stress-peak—

deceleration curve1 and a resonant frequency curve2

respectively. The high loading gives optimal cushion

performance and the low gives a measure of predictability

to the natural frequency.

The bulk of the research involves the determi-

nation of the error introduced by treating the materials

as linear undamped systems. Linearity allows ready

prediction of performance and this allows for great

savings in time and money.

 

*Registered Trademark, the Dow Chemical Company.



The body of the thesis is broken up into six parts.

The first discusses single mass vibration theory. The

second is composed of three sections: the first section

deals with measuring static-spring constants; the second

contains an investigation of single mass resonant frequency

as a function of static loading; the third section has a

study of resonant frequency as a function of input

-acceleration. The third part is a discussion of the

results of the second. The fourth part is an analysis of

a stack of two packages. The fifth is an analysis of a

stack of four packages. The last contains the conclusions.



ELEMENTARY SINGLE MASS VIBRATION THEORY

The subject of vibration deals with the oscillatory

motion of dynamic systems. A dynamic system is a

combination of matter which possess mass and whose

parts are capable of relative motion. All bodies

possessing mass and elasticity are capable of vibration.

The mass is inherent in the body, and the elasticity

is due to the relative motion of the parts of the

body.

The objective of the designer is to control or

minimize the vibration when it is objectionable and to

utilize and enhance the vibration when it is desirable.3

The elements that constitute a vibratory system

are illustrated in Figure 1. The mass is assumed to be a

rigid body. The spring element is elastic and is assumed

to be of negligible mass. A linear spring is one that

obeys Hooke's law, that is, the spring force is proportional

to the spring deformation. The constant of proportionality,

measured in force per unit deformation, is called the

spring constant (K). The damping element has neither mass

nor elasticity. Damping force is proportional to the

relative velocity between the two ends of the damper.

The work energy or input into a damper is non-

conservative. Energy enters a system through the appli-

cation of an excitation force to the system.



 

MASS

  
 

SPRING CONSTANT (K)

 
  

It::JI DAMPER

 

C

EXCITATION FORCE

F(t)

 

\\\\\\\\\\\

Figure 1. Single degree of freedom system.



The focal values are the mass and the spring

constant. The excitation force is discussed later and the

damping factor is neglected completely. Damping does exist

in all physical systems to some extent, but the purpose is

to compare linear undamped systems with actual stacks of

packages.

Natural frequency is a property of a dynamic

system. The natural frequency is determined by the mass

and spring constant. This value is calculated from the

f=_l_vé;:
n 2n mass

The natural frequency will be in cycles per second (Hz).

following equation:

The mass is determined by dividing the weight in pounds by

386, the acceleration of gravity in inches/second. The

spring constant is determined by taking the slope of the

static load deflection curve for that material. If the

graph is curvilinear, then the spring constant is not a

constant and varies as a function of the load on the

cushion. The system is no longer simple and prediction

from the simple theory is impossible.

"When the frequency of the exciting force coincides

with one of the natural frequencies of the system, a

condition of resonance is encountered, and dangerously

large amplitudes may result."4



If the natural frequency of the system is known,

the resonance condition maybe avoided through design.

This is why natural frequency is so important. Tremendous

savings could be realized if the simple equation, previ-

ously mentioned, could be used in place of tedious

laboratory testing.



EXPERIMENTAL INVESTIGATION OF

CUSHIONING MATERIALS

Static Spring Constants

In the preceding chapter the formula for natural

frequency is presented. The spring constant (one of the

independent variables, the other being the mass) is

important since each product's mass is virtually fixed.

By treating the mass as a constant, the natural frequency

varies as a function of the spring constant. This section

is an experimental determination of the spring constant,

with an application of the formula to demonstrate its

effects on natural frequency.

The specimens were cut to proper dimensions,

1.5" x 1.5" x l" and 3" x 3" x l", to yield 2.0 and 0.5 psi

loading respectively for an 18 pound mass. The corrugated

fiberboard was only tested at the 0.5 psi loading.

An Instron laboratory testing maching, model TT—B,

was used to test the samples. The test procedure used is

similar to ASTM D 1225-66 (flat crush of corrugated board).

The corrugated fiberboard was tested two sheets at a time

with the flutes running perpendicular to simulate their

arrangement in the flaps of a box.



The testing procedure produces load deflection

plots such as the one in Figure 2. Since the masses weighed

18 pounds and 4 cushions would be used for each mass, each

cushion would bear 4.5 pounds. From a tangent drawn at

this point, the spring constant can be calculated by

taking the slope of the tangent.

With the natural frequency equation, a theoretical

value may be determined by substituting for the mass and

spring constant. The results of the tests and calculations

are presented in Table 1.

Single Mass Natural Frequency_as a

Function of’Static Loading

This part deals with the laboratory determination

of the natural frequency of a system. The product, while

mounted on the cushions, is subjected to a vibration input

through a range of 0-50 Hz. The acceleration of the mass

is monitored to locate the resonance point, which is

defined to be the point at which the frequency of the

vibrating table is equal to natural frequency of the

package.

The cushions were tested at four loadings. Along

with the polyethylene cushion and corrugated fiberboard,

a combination of the two was tested to simulate actual

package conditions.



10

L
o
a
d

(
l
b
s
)

I Spring Constant =

Load

Deflection = lb/in

 

__._._. 4.5

Tangent

Point

I

|

I

I

lLoad

--.-u-—---A

Deflection  
Deflection (inches)

Figure 2. Sample of a Static Load Deflection Curve.

Material: Ethafoama 220; Size: 1.5" x 1.5" x

l".

aRegistered Trademark, The Dow Company.
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TABLE 1.--Laboratory spring constants and theoretical natural

frequencies.

 

Ethafoama 0.5 psi Ethafoama 2.0 psi

  

 

 

 

 

 

Crosshead

Test No. Speed Spring Natural Spring Natural

(in/min) Constant Frequency Constant Frequency

(lb/in) (Hz) (lb/in) (Hz)

1 0.5 240.1 22.9 133.3 17

2 0.5 201.6 20.9 123.1 16.4

3 0.5 246.5 23.2 123.3 16.4

1 0.05 237.5 22.7 114.6 15.8

2 0.05 194.4 20.6 . .b . .

3 0.05 250 23.3 . .b . .

1 0.5 271 24.3 126.5 16.6

2 0.5 255 23.6 98 14.6

3 0.5 225 22.1 131.8 16.9

1 5 233 22.5 130.8 16.9

2 5 305 25.8 137 17.3

3 5 277 24.5 145 17.8

Crosshead Corrugated Fiberboard 0.5 psi

Test Speed . .

(in/min) Spring Natural

Constant Frequency Load Range

(lb/in) (Hz) (lbs)

1 0.1 176.5 19.6 200

1 0.1 205 21.1 100

1 0.1 152.5 18.2 50

l 0.1 196 20.6 50

 

bTest was not repeated due to length.

aRegistered Trademark, The Dow Company.
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A hydraulic shaker was used to vibrate the model

through the frequency range. The cushions were placed

under the corners of the mass as seen in Figure 3. A small

amount of adhesive was used to prevent slippage and

possible damage. The equipment was then calibrated and

set up (see Appendix A-l).

Figure 4 is a plot which was used to calculate

natural frequency (see Appendix A-l). The sample calcu-

lations show how the natural frequency was determined.

Each loading for each material (polyethylene foam,

corrugated fiberboard, combination of first two) was

tested at least twice and the results are presented in

Table 2.

Single Mass Natural Frequency as a

Function of Input Acceleration

In trying to design a test that was repeatable,

the possibility of keeping displacement constant was

investigated. It was found that natural frequency varied

from run to run. By keeping the input excitation force

constant the results became very consistent.

To investigate what might actually happen if the

input changed, the input was varied and its effects on

natural frequency were observed. All three materials were

tested but at only one loading, 0.5 psi. The results are

presented in Table 3.





l3

  
 

Figure 3. Plate illustrating the one mass model mounted

on the table.
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TABLE 2.--Natura1 frequency of a single mass.

 

 

 

 

Material

Loading Ethafoama Ethafoama

Corrugated Corrugated

Fiberboard Fiberboard

0.5 psi 39.4 H 42.2 H 19.4 H
z z z

0.5 psi 39.0 H 38.5 H 26.6 H
z z z

1.0 psi 32.3 29.8 25.6 Hz

1.0 psi 32.1 32.4 23.0 Hz

1.5 psi 30.1 29.9 24.9 Hz

1.5 psi 30.6 26.4 22.1 Hz

2.0 psi 25.1 20.8 20.4 Hz

2.0 psi 25.2 18.5 20.1 Hz

aRegistered Trademark, The Dow Company.
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TABLE 3.--Input acceleration vs. natural frequency.

Corrugated

Ethafoama Fiberboard Combination

Input (9.5) Natural Natural Natural

Frequency Frequency Frequency

(Hz) (Hz) (Hz)

0.071 38.5 17.5 47.5

0.143 37.5 17.5 47.5

0.214 36.5 17.5 45

0.286 34 17.5 43.5

0.357 32.5 17.5 42.5

0.428 31 17.5 40

0.50 30 17.5 36

0.571 31 16 36

 

aRegistered Trademark, The Dow Company.



DISCUSSION OF RESULTS FROM CHAPTER III

In comparing the results of the theoretical natural

frequency calculated from the spring constants and the

laboratory results for the polyethylene cushion loaded at

0.5 psi, there is no agreement. The lab value is almost

twice that of the calculated natural frequency. When the

cushion is loaded to 2.0 psi the natural frequency values

are much closer. The difference is approximately 28 per-

cent. This does not allow for a reasonable amount of

predictability, but it does lean closer to the theory.

It can be concluded that as you go to the higher loading,

towards the flat part of the resonant frequency curves and

away from the optimal range on the deceleration curves,

the laboratory values agree more with the theoretical

natural frequency.

On the other hand, the corrugated fiberboard

material appeared to be very predictable at all loadings

tested. Laboratory values when compared to the theoretical

results, appeared to show little difference. The greatest

difference was when the cushion was loaded to 0.5 psi.

The corrugated fiberboard, for the loadings tested,

17
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appears to be a linear spring, which should allow for a

great deal of predictability.

In analyzing the spring constants alone, the

polyethylene foam loaded to 0.5 psi had the largest

values. The corrugated pads followed next with the

polyethelene cushions loaded at 2.0 psi being last. In

looking at the effects of changing the crosshead speed,

the differences were negligible.

The corrugated board acts like a linear spring

making the natural frequency very predictable. For the

loadings which were tested, the amount of loading on the

corrugated pads has no effect on the natural frequency.

For the foam alone, there is a shift of 15 Hz from the low

loading with a high natural frequency of 39.0 Hz to the

higher loading with the low natural frequency of 25.0 Hz.

In the combination the polyethylene foam dominates at the

lower loading, 0.5 and 1.0 psi, while the corrugated

dominates at the 1.5 and 2.0 psi loadings. By "dominating"

it is meant that the natural frequency of the combination

is similar to the natural frequency of the material which

dominates it.

The final area of discussion is that of input

acceleration. Tests run on the corrugated material show

the natural frequency was not affected by input acceler-

ation. The polyethylene foam loaded to 0.5 psi (as was

the corrugated fiberboard), showed that by changing input
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acceleration the natural frequency could be moved. By

moving from a low of 0.071 g. to a high of 0.571 g. the

natural frequency could be lowered by 7.5 Hz' Thus, the

input acceleration is very critical in determining natural

frequency for non-linear materials.

While this simple model is not adequate, obviously

a model could be developed, but this work indicates that

it would have to include damping, non-linear effects or

other considerations that would make it very complicated,

and it is this complexity which has caused restricted use.



TWO MASS SYSTEM

Elementary_Theo£y
 

The degrees of freedom of a system are equal to

the number of independent coordinates necessary to

describe the motion of the system. A system with n

degrees of freedom will have n natural frequencies

which characterize the behavior of the system.5

Any system which requires two independent co-

ordinates to describe its motion is a two-degrees-of—

freedom system, as illustrated in Figure 5 The spring

constant (K) is the value determined in Chapter III,

multiplied times 4 (4 cushions). The spring constant (K)

will be half the value of spring constant (K1) because each

cushion is 2" thick. The double thickness results in a

softer cushion. This configuration was used to simulate

the arrangement of one package on top of another.

This system will have two natural frequencies and

when it oscillates at one of them it is said to be

vibrating at a principal mode.

The system does not really appear to be much more

involved but its complexity can be viewed in the equations.

The following equation is used to find the angular natural

frequencies (K2 for this system is zero).

20
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MASS

   

SPRING CONSTANT (K)

 

MASS

   

SPRING CONSTANT (Kl)

 

\\\\\\\\\\\\
Table

Figure 5. Two degree of freedom system.
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Experimental Procedure
 

Another accelerometer was used so that both masses

could be monitored. Previous procedures were followed

with the additional equipment (see Appendix A—l).‘

Results

The phasing and amplitude ratios were determined

from pictures (see Appendix A-2). The theoretical phasing

and amplitude ratios were determined from a computer

program (see Appendix B). The data along with its

theoretical counterpart is presented in Table 4.

Discussion
 

There is very little agreement between laboratory

data and the theoretical values. In comparing the natural

frequencies, the lower frequencies agree with their

theoretical counterparts while only the second frequency

of the polyethylene cushion loaded to 0.5 psi agrees with

its theoretical value. The first natural frequency could

be predicted for all three cases and the generalization

that all first natural frequencies may be calculated for

all loadings of the foam and corrugated fiberboard could

be made.

The amplitude ratios show no agreement.
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In checking the phasing for the first natural

frequency, there is total agreement. For the second

natural frequency, only the polyethylene foam loaded to

0.5 psi agrees.



FOUR MASS SYSTEM

Elementary Theory
 

There is no real way to sufficiently present

vibration theory for multiple-degree of freedom systems

in a few lines. The step from one mass to two masses is

complicated, but the step from two masses to four masses

is infinitely more so.

Figure 6 is a four mass system. Two masses and

springs have been added on the same manner as in Chapter V.

The values of K2 - K4 are the same as the spring constant

in Chapter V. The solution for this system involves a

series of matrices, which are solved though a computer

program. This program is on file at Michigan State Uni-

versity (see Appendix B).

Like the two mass system, there are three areas of

comparison: natural frequency, amplitude ratio, and

phasing.

Experimental Procedure

The equipment used was the same as in Chapter V.

Since only two accelerometers were used, their positions

were shifted to get the reaction of all four masses.

25
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MASS

  
 

 

   

 

   

 

4

:E%: SPRING CONSTANT (K4)

MASS 3

$ SPRING CONSTANT (K3)

MASS 2

::%:: SPRING CONSTANT (K2)

MASS 1

   

$ SPRING CONSTANT (Kl)

\\\\\\\K\\\\

Table

Figure 6. Four degree of freedom system.
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Results

The data is collected in the same manner as was

previously stated. The results of the tests along with

its theoretical counterpart is presented in Table 5.

Discussion
 

There were four natural frequencies found, which

shows some agreement with theory, but the agreement ends

there. The frequencies do increase as do the theoretical

ones, but actual values show no agreement.

The amplitude ratios show no agreement.

The phasing shows occasional agreement but there

is not enough consistency to allow for any predictions.
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TABLE 5.--Data from the four mass system.

 

3"x3"xl" Ethafoama 0.5 psi

 

   
 

Natural Natural Natural Natural

Frequency 1 Frequency 2 Frequency 3 Frequency 4

b c

L.R. T.R. L.R. T.R. L.R. T.R. L.R. T.R.

 

5.6 H 16.6 H 14.4 H 19.6 H 24 H 29.4 H 48 H 83.6 H

2 Z Z Z Z Z Z Z

 

 

Amplitude Ratios

 

    

 

 

 

 

    

 

Mass 1 Mass 2 Mass 3 Mass 4

L.R. T.R. L.R. T.R. L.R. T.R. L.R. T.R.

Mass 1 . . . . 3.86 1.766 .274 1.18 1.50 .199

Mass 2 .599 .351 . . . . .336 5.029 2.58 .234

Mass 3 .599 .234 1.39 5.029 . . . . 1.28 .351

Mass 4 .399 .199 .819 1.180 .150 1.766 . . . .

Phasing

Mass 1 Mass 2 Mass 3 Mass 4

L.R. T.R. L.R. T.R. L.R. T.R. L.R. T.R.

Mass 1 . . . . IN IN OUT OUT OUT OUT

Mass 2 OUT IN . . . . IN OUT IN IN

Mass 3 OUT IN OUT IN . . . . IN OUT

Mass 4 OUT IN OUT OUT OUT OUT . . . .

a .

Registered Trademark, The Dow Company.

b

L.R. Laboratory results.

c .

T.R. Theoretical results.



CONCLUSIONS

The data in general does not allow for any predi-

cability from the theoretical calculations. The differences

are wide and too frequent to put complete faith in the

theory. Yet, the few instances of agreement are not

chance occurrences. They are real and give a certain

amount of credibility to the analysis. It was found that

as the investigation became more complex, the disparity

between values increased till they possessed no similarity.

Although there is little proof, the theoretical

approach is still a valid plan of attack. What has been

shown is that both materials defy analysis through ele-

mentary theory. If the effective spring constant is

treated as a non-linear function and damping is also

introduced, there could be an aligning of the laboratory

and theoretical values.
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APPENDIX A-l--A-2



APPENDIX A-l

An Endevco accelerometer no. 2265-20 was mounted

to the steel plate to measure the acceleration of the

mass. The accelerometer output was fed into an Endevco

signal conditioner, no. 4470 and calibrated to 625 mv/g.

A Krohn-Hite filter no. 3750 was used to filter the output

of the signal conditioner on a low pass of 60 Hz' The

output of the filter was fed onto a Gould 280 brush

recorder which was set at a speed of 2 mm/sec and a

sensitivity of 50 mv/line. These charts are then used to

calculate natural frequency (see Figure 4).

To keep the input constant, a Kistler accelero-

meter no. 818, calibrated for 10.4 mv/g., was mounted on

the table. The accelerometer was monitored on a Bruel and

Kjaer RMS meter, no. 2417 and kept at a constant input of

0.0015 v RMS (0.21 g.). The input was kept constant to

allow the easy comparison of results.

To aid in the accurate location of the natural

frequency a Quan-Tech Wave Analyzer no. 304T was used to

sweep through the frequency range of 0-50 Hz in either 50

or 500 seconds (both time intervals produced comparable
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results). By starting the analyzer and simultaneously

marking the start on the brush recorder, the point of

resonance was very easily determined.

APPENDIX A-2

Along with the additional equipment for the two

mass tests, a Tektronix no. 502 oscilloscope and camera

were used to determine phasing and amplitude ratios.

Pictures were used to provide permanent records for

future use.



APPENDIX B



APPENDIX B

The mass and stiffness matrices were computed for

the two and four mass models, through a computer program.

The program name is EIGEN, NROOT and is on file at

Michigan State University. This program calculated the

theoretical values for the natural frequencies, mode

shapes (phasing), and amplitude ratios.
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