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ABSTRACT

EFFICIENCY OPTIMIZATION OF PMSM BASED DRIVE SYSTEM

By

WALEED J. HASSAN

The high switching frequency associated with pulse width modulation (PWM) that is com-

monly utilized in controlling the motion of high performance motor drive systems leads to

motor iron losses. In addition to fundamental component, line voltages generated by voltage

source inverters or other types of converters include harmonic components. Minimization of

the harmonic losses leads to higher motor efficiency. Minimization of the harmonic losses

can be accomplished in two stages: first at the design time and the second at the test time.

In the first stage, the motor design can be optimized such that it can work in an efficient

way for a given range of switching frequencies. In the second stage, the operation of the

machine and inverter is optimized such that the total losses of the machine and inverter can

be minimized. By measuring the motor harmonics loss for a given switching frequency, it is

possible to find analytical model that is suitable for estimating the motor harmonics at all

operating points. It is also possible to find the optimum switching frequency, modulation

index, and power factor that minimize the motor-inverter total loss.

Since it is difficult or inaccurate to estimate the harmonic losses of machine through

analytical approach, most researchers resort to finite element analysis (FEA) instead of

analytical solution. The limitation of using finite element software is that it is both time-

consuming and difficult to be implemented in real-time control algorithms. For example, if

it is required to optimize a design that is constructed and analyzed in FEA software, hours

are typically needed to complete such a task.



The proposed work in this thesis is a combination of analytical and numerical meth-

ods that are able to calculate the PMSM harmonic losses at any operating point with less

execution time and adequate accuracy. Moreover, the motor fundamental losses and the

voltage source inverter losses are also modeled such that the inverter-motor efficiency can be

tested for different conditions. Numerical simulation of the field oriented control have been

conducted and results include current, modulation index, power factor, switching frequency

and all the variables in the drive system. Furthermore, Maximum efficiency control strategy

has been chosen such that the drive system can work at the most efficient condition at all

operation points. The proposed work is presented in the context of drive system that is

based permanent magnet synchronous machine (PMSM). However, the proposed method

can be extended to induction motor drive system or any motor use SPWM in controlling the

inverter output voltage.
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Chapter 1

Introduction

Loss modeling and control of high performance motor drive system has been one of attractive

research areas since reduced system losses can be translated to lowered energy cost. The

primary objective of this thesis is to calculate the motor inverter loss accurately such that

the motor drive system can operate at maximum efficiency in all operating conditions. A

literature survey has been conducted to include the most up-to-date research results that

are focused on modeling and evaluation of different types of losses of permanent magnet

synchronous machines (PMSMs).

1.1 Literature Review

The state of the art in the following areas is discussed in this section:

• Motor fundamental losses and efficiency

• Motor harmonic losses

1



1.1.1 Motor Fundamental Losses and Efficiency

The efficiency and power density of PMSM have been studied by several researchers [1–

3]. It has been shown that PMSM features significantly higher efficiency than induction

motors when used in adjustable speed drives. Reference [4] provides an analytical method

for estimating the fundamental losses of surface mounted PMSM. Several researchers have

utilized electrical model of PMSM that includes a parallel resistance that accounts for core

losses in high performance applications [5–10]. It can be concluded that both copper and

core losses need to be accounted for in the analysis and control of high performance motor

drives.

1.1.2 Motor harmonic losses

The iron losses of induction motors, permanent-magnet synchronous motors, and switched

reluctance motors have been studied by several researchers [11–17]. Lee and Nam present the

loss distribution of three-phase induction motor fed by a PWM inverter both experimentally

and by use of variable time-step finite element method (FEM) [11]. The results show that

PWM inverters increase the reactive power while decreasing torque. Authors of [12] inves-

tigate experimentally the different losses of three-phase induction machines fed by PWM

inverter. The test results indicate that increasing the converter switching frequency leads to

increased total motor losses, and the loss increase is more pronounced at low speed. Refer-

ence [14] estimates the core loss of flux reversal machines (FRM) under four different modes

PWM using a 2-D time-stepped voltage source FEM. The result of comparing the losses

at the different modes shows that The ON-PWM mode generates higher stator eddy cur-

rent losses. Toda and Ishida investigate the iron losses of a permanent magnet brushless dc
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motor under different stator core lamination sheets material using FEA and various experi-

ments [15]. Sagarduy et. al. introduce experimental results of iron losses in two non oriented

electrical steels magnetized by using three-phase voltage source inverter carrier based PWM

and three-phase matrix converter space-vector-modulation (SVM) [16]. Their results show

that the eddy current loss in the iron material excited by matrix converter is lower than

that under PWM excitation. In [17] the authors investigate both experimentally and by FE

calculations the iron loss of interior permanent magnet machines driven by PWM inverters.

The investigations show that the carrier of PWM generates the highest iron loss component

under low speed condition.

Experimental inquiry of the iron loss with different PWM parameters is presented in [18–

22]. Authors of [18] study the properties of non-oriented laminations when they are excited by

PWM voltage supply. The results show that the variation of PWM voltage supply parameters

lead to change the properties of laminations. The effect of PWM switching frequency on the

iron loss in soft magnetic material has been investigated in [19]. The experimental results

show that the change in the iron losses is not significant with switching frequency higher

than 4 kHz. Authors of [20] examine the effect of modulation index on the iron losses of

induction motor and wound cores realized with high quality grain oriented magnetic material.

The results show that driving the machine with a variable dc link voltage such that the

modulation index constant and near unity reduces the iron losses. The eddy-current loss

is the dominating loss mechanism according to theoretical research and experiments carried

out in the past [23–26].

The theoretical analysis which study the effect of PWM parameters on the iron losses is

provided in [27]. The authors have found direct analytical expression for a three-phase trans-
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former and dc motor iron loss with PWM parameters. The symmetrical regular sampling

rule is used to model PWM output voltage and Fourier series expansion has been employed

to extract the harmonics. Also, the authors have assumed that the flux is proportional to

the applied voltage. However, the analytical tool used in [27] cannot be applied in analysis

of sophisticated systems such as three-phase induction motor variable speed drive system or

PMSM variable speed drive system. The inapplicability is due to the following reasons:

• Fourier series provide accurate results only in integer frequency modulating ratios.

• The iron loss caused by carrier waveform fully depends on the phase current and is

controlled by the load, speed, depth of modulation and dc bus voltage. Working on

the voltage instead of current will give inaccurate results.

• It is not enough to calculate the individual effect of each parameter of PWM on the

iron losses. In other words, if it is required to calculate the harmonic losses of variable

speed drive system as a whole under different operating conditions.

1.2 Thesis Organization

Chapter 2 provides analytical model of PMSM harmonic losses based on the armature re-

action field produced by three-phase current of stator winding. Double Fourier series for

naturally sampled sinusoidal PWM (SPWM) has been utilized for evaluation and analysis.

Chapter 3 presents analytical-numerical method of loss calculation for three-phase inverter

controlled by SPWM. Chapter 4 provides complete dynamic model of PMSM that includes

the core loss resistance necessary to calculate the fundamental core loss in steady state. In

Chapter 5, a comprehensive field oriented control model for variable speed drive system is

4



built. The model contains all needed transformation to rotor reference frame and PI con-

troller that are utilized in detailed time-domain simulation. The optimal-efficiency control

strategy is implemented in Chapter 6. The results and conclusion are presented in Chapter

7.

1.3 Summary of Contributions

The main contributions of the thesis work are summarized in the following aspects:

• Modeling the harmonics loss of surface mounted PMSM caused by the non sinusoidal

stator winding currents.

• Calculating the PMSM harmonics loss using double Fourier analysis of SPWM based

on the developed model of the PMSM harmonics loss.

• Modeling the PMSM in dynamic and steady states including the all types of losses

(copper, core, mechanical) and characterizing the efficiency at any operating condition.

• Calculating the losses of the voltage source inverter by analytical model supplied by nu-

merically generated parameters (modulation index, current, displacement angle),such

that the dynamic behaviour of the losses can be tested in all conditions.

• Constructing a complete SIMULINK model that includes what have been mentioned

above in field oriented control system and designing all needed currents and speed

controllers.

• Implementation of the maximum efficiency control strategy, such that the system can

operate under optimal fundamental efficiency at all load, and speed conditions.

5



Chapter 2

PMSM Harmonics Loss Modeling and

Evaluation

The core losses in the machine consist of two components, i.e., hysteresis and eddy current

losses. Both types of core loss are due to time variation of the flux density in the core. The

hysteresis loss is the result of the inherent B−H material characteristics and is proportional

to the product of frequency and flux density with the flux density raised to a power β, which

is generally termed as Steinmetz constant. The value of β ranges from 1.5 to 2.5 and is

dependent on peak operating flux density and material characteristics [28]. In this thesis

work the value of Steinmetz constant is assumed to be 2.

As the flux linkage changes with time, an electromagnetic motive force (EMF) is induced

in core. The induced EMF generates a current in the core depending on the electric con-

ductivity of the core, which will in turn result in losses that are termed the eddy current

losses. The eddy current losses are proportional to the square of the induced EMF and hence

proportional to square of the product of frequency and flux density. The complete expression
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for core losses in
[

Wm−3
]

is:

Pcd = Ped + Phd = Ke

∞
∑

n=1

(nωr)
2B2

p,n +Kh

∞
∑

n=1

nωrB
β
p,n (2.1)

where Ke is the eddy loss proportionality constant that accounts for volume to weight con-

version and all other particular constants are associated with magnetic materials; Kh is the

hysteresis loss density; Bp,n is the peak flux density of the nth-order and fundamental angu-

lar frequency of applied voltage is ωr. In Equation (2.1) when n = 1, the core loss equation

evaluates the losses caused by the fundamental flux density. However, for n = 2 → ∞,

Equation (2.1) evaluates the harmonics loss associated with the harmonic component of the

flux. Evaluation of the fundamental loss of PMSM analytically and in FEA software have

been extensively covered in the literature over the last years. However, the harmonic loss

caused by PWM has not been studied in depth, which is particularly true for induction

and permanent magnet synchronous machines . In the next section an accurate analytical

harmonics loss model based on flux equation by Zhu in 1993 will be introduced [29].

2.1 Harmonics Iron Losses of Surface Mounted PMSM

In this section analytical model for motor harmonic loss is developed based on the work pub-

lished in [29] where the armature reaction field produced by the stator winding is predicted.

The armature reaction field produced by a single-phase stator winding is:

B (α, r, t) = µ◦
2W

π

i

δ

∑

v

1

v
KsovKdpvFv (r) cos (vα) (2.2)
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where α = 0 refers to the axis of the phase winding; W is the number of series turns per

phase; and Kdpv = KdvKpv, with Kdv being the winding distribution factor and Kpv being

the pitch factor. Fv (r) is a function dependant on the radius and harmonics order, and

given by:

fv (r) = δ
v

r

(

r

Rsi

)v 1 +
(

Rsi
r

)2v

1−
(

Rr
Rsi

)2v
(2.3)

where Rr is rotor radius; δ = g + hm is the effective airgap length with g being the air gap

and hm being radial magnet thickness. When the number of slots per pole per phase is an

integer, the distribution factor Kdv is given by:

Kdv =
sin
(

q vπQs

)

q sin
(

vπ
Qs

) (2.4)

where q is the number of stator slots per pole per phase, and given by:

q =
Qs

2Ppm
(2.5)

where Qs is the total number of slots; m is the number of phases; and Pp is the number of

pole pairs. The winding pitch factor Kpv is given by:

Kpv = sin
(vαy

2

)

(2.6)
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where αy is the winding pitch. The values of the summation index v is given by:

v = Pp (6c− {±u})

= Pp (6 {0, 1, 2, ..., } − {1, 5, 7, ..., }) + Pp (6 {0,−1,−2, ..., } − {−1,−5,−7, ..., })

u = 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 35, 37

c = 0± 1± 2± 3, ...

The slot opening factor Ksov is defined as:

Ksov =
sin
(

vb◦
2Rsi

)

v
(

b◦
2Rsi

) (2.7)

where b◦ is the slot-opening width; Rsi is the stator inner radius. Clearly if the slot-opening

b◦ is very small, i.e., b◦ → 0., then the slot-opening factor approaches unity, i.e, Ksov → 1.

The phase winding currents of PMSM controlled by SPWM contain significant harmonics

and can be expressed by Fourier series as:

ia =
∑

n

In sin
[

n
(

Ppωmt
)

+ θn
]

(2.8)

ib =
∑

n

In sin

[

n

(

Ppωmt− 2π

3

)

+ θn

]

(2.9)

ic =
∑

n

In sin

[

n

(

Ppωmt− 4π

3

)

+ θn

]

(2.10)

where θ = Ppωmt, ωm is the rotor mechanical angular frequency in [rad s−1]; and θn is the

harmonic phase angle. Hence the field produced by a three-phase winding can be deduced

9



from (2.2),(2.8),(2,9) and (2,10) as :

B3φ (α, r, t) = Ba (α, r, t) +Bb (α, r, t) +Bc (α, r, t) (2.11)

=















µ◦ 2Wπδ
∑

v

1

v
KsovKdpvFv (r) ...

{

ia cos (vα) + ib cos
(

v
(

α− 2π
3Pp

))

+ ic cos
(

v
(

α− 4π
3Pp

))}















(2.12)

= {µ◦
2W

πδ

∑

n

In
∑

v

1

v
KsovKdpvFv (r)} sin (nωrt + vα+ θn) (2.13)

where ωr = Ppωm is the electrical rotor angular speed in [rad s−1]; Bp is the maximum

amplitude of armature reaction flux density determined by:

Bp = µ◦
2W

πδ

∑

n

In
∑

v

1

v
KsovKdpvFv (r) (2.14)

2.1.1 Eddy Current Loss

Once the maximum amplitude of the flux density has been defined, which results from the

armature space vector current, the procedure of finding accurate model for core loss is shown

in the following approximate expression.

Ped ∝
∑

n

(

nfrBp,n

)2 ∝
∑

n

(

nωrBp,n

)2
(2.15)

The proportionality expressed in (2.15) represents the first principle in development of the

eddy current loss model, which can be translated to

Ped = Ke

∑

n

(nωr)
2B2

p,n (2.16)
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By plugging equation (2.14) in (2.16) and defining the volume in which the loss are evaluated,

the expression to evaluate eddy core loss as will be reached

(2.17)

Pe = (ρiV )Ped

= (ρiV )Ke

∑

n

(nωr)
2B2

p,n

= (ρiV )Ke

∑

n

(nωr)
2

(

µ◦
2W

πδ

∑

n

In
∑

v

1

v
KsovKdpvFv (r)

)2

=



(ρiV )Ke

(

µ◦
2W

πδ

)2
(

∑

v

1

v
KsovKdpvFv (r)

)2




∑

n

(nωr)
2 I2n

= Kem

∞
∑

n=1

(nωr)
2 I2n

where ρi is the mass density of the steel core material in [kg m−3]; V is the steel core volume

in [m3]; and their product gives the weight of the core material in [kg]. Kem is defined as:

Kem = (ρiV )Ke

(

µ◦
2W

πδ

)2
(

∑

v

1

v
KsovKdpvFv (r)

)2

(2.18)

2.1.2 Hysteresis Loss

Following the same procedure as the last section, an expression for hysteresis loss can be

reached as presented in equations (2.20) and (2.21):

Phd ∝
∑

n

nfrB
2
p,n ∝

∑

n

nωrB
2
p,n (2.19)

Phd = Kh

∑

n

nωrB
2
p,n (2.20)
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(2.21)

Ph = (ρiV )Phd

= (ρiV )Kh

∑

n

nωrB
2
p,n

= (ρiV )Kh

∑

n

nωr

(

µ◦
2W

πδ

∑

n

In
∑

v

1

v
KsovKdpvFv (r)

)2

=



(ρiV )Kh

(

µ◦
2W

πδ

)2
(

∑

v

1

v
KsovKdpvFv (r)

)2




∑

n

nωrI
2
n

= Khm

∞
∑

n=1

nωrI
2
n

The coefficient Khm is defined as:

Khm = (ρiV )Kh

(

µ◦
2W

πδ

)2
(

∑

v

1

v
KsovKdpvFv (r)

)2

(2.22)

The final expression for the core loss in [W] is given by:

(2.23)

Pc = Pe + Ph

= Kem

∞
∑

n=1

(nωr)
2 I2n +Khm

∞
∑

n=1

nωrI
2
n

Close examination of Kem and Keh shows that they are constant for a given machine design

since they solely depend on the machine dimensions. On the other hand, the core harmonic

loss can be expressed as:

(2.24)

Pc,h = Pe,h + Ph,h

= Kem

∞
∑

n=2

(nωr)
2 I2n +Khm

∞
∑

n=2

nωrI
2
n

It is clear that the motor harmonics loss can can be fully evaluated if the amplitudes of

current harmonics determined. In the next section the analytical relationship between the

current harmonics sum and the harmonics content of SPWM line voltage will be presented.
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2.2 SPWM Harmonics Analysis

For three-phase inverter with two-level phase legs, a balanced set of three-phase line-line

output voltages is obtained if the references are displaced by 120◦. Under these conditions,

the line to line voltages are given for naturally sampled PWM by [30]:

vl−l (ω◦,ωc) =































































[√
3
Vdc
2 M

]

cos(ω◦t+ π
6 ) + ...

[

4Vdc
π

∞
∑

m=1

∞
∑

n=−∞
1
mJn

(

mπ
2M

)

sin
(

[m+ n] π2
)

sin
(

nπ
3

)

]

...

cos
(

mωct + n
[

ω◦t− π
3

]

+ π
2

)































































(2.25)

Equation (2.25) clearly indicates that the triplen sideband harmonics of the carrier are

cancelled because the term sin
(

nπ
3

)

will be zero when n = 3, 6, 9, .... Hence the major

significant sideband harmonics that are left will be: fh = fs ± 2f◦, fs ± 4f◦, 2fs ± 5f◦. The

sideband cancellation is not caused by any specific carrier ratio requirement. Therefore,

there is no identifiable benefit with regard to harmonic performance by maintaining an odd

carried/fundamental ratio [30]. Figure 2.1 shows the harmonic components of the line-

line voltage generated by a three-phase inverter switched by double-edge naturally sampled

PWM. The predicted significant sideband harmonics in the first and second carrier group

can be clearly identified. The surface mounted PMSM can be analyzed as a single phase

circuit that consists of series impedance and back emf since the reactances on the d-axis

and the q-axis are identical. At harmonic frequencies 3,6,9 stator resistance and back emf

are neglected so that the motor modeled as synchronous inductance only. The motor phase

13
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Figure 2.1: Theoretical harmonic spectra for a three-phase inverter modulated by naturally
sampled PWM.

current can be determined by the phase voltage and the synchronous inductance of the stator

winding. With the assumption of star connection of PMSM, the phase current is given by:

(2.26)

I (ω)ω 6=ω◦ =
vph (ω)

ωLs

=
1√
3

(

1

Ls

)

vl−l (ω)

ω

= K
vl−l (ω)

ω

where vph is the phase-to-neutral voltage; ω is angular harmonic frequency; Ls is motor

synchronous inductance. K is defined as:

K =
1√
3

(

1

Ls

)

(2.27)
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Plugging equation (2.25) in equation(2.26) yields:

∣

∣Im,n(ω)
∣

∣

ω 6=ω◦ =

∣

∣

∣

∣

∣

K

[

4Vdc
π

∞
∑

m=1

∞
∑

n=−∞

1

ωm,n

1
mJn

(

mπ
2M

)

sin
(

[m+ n] π2
)

sin nπ
3

]∣

∣

∣

∣

∣

(2.28)

Alternatively, Equation (2.28) can be expressed as a function of harmonic frequency:

∣

∣Im,n(f)
∣

∣

f 6=f◦ =

∣

∣

∣

∣

∣

(

1

2π
√
3Ls

)

[

4Vdc
π

∞
∑

m=1

∞
∑

n=−∞

1

fm,n

1
mJn

(

mπ
2M

)

sin
(

[m+ n] π2
)

sinnπ
3

]∣

∣

∣

∣

∣

(2.29)

Let ωm,n be defined as:

(2.30)ωm,n = 2πfm,n

= 2π (mfsw + nf◦)

where fsw is the inverter switching frequency and f◦ is the motor fundamental frequency.

The motor harmonics loss discussed in the last section is incomplete since the current

harmonics sum was not defined yet. After the current harmonics amplitudes in determined

by (2.28) or (2.29), the motor harmonic core loss is readily determined as the following:

(2.31)

Pc,h = Pe,h + Ph,h

= Kem

∞
∑

m=1

∞
∑

n=−∞

(

ωm,n

∣

∣Im,n

∣

∣

f 6=f◦

)2
+Khm

∞
∑

m=1

∞
∑

n=−∞
ωm,n

(

∣

∣Im,n

∣

∣

f 6=f◦

)2
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Chapter 3

Loss Calculation and Analysis of

Voltage Source Inverter

The research effort in this thesis is to optimize not only the PMSM efficiency, but also

the drive system as a whole after the estimation of voltage source inverter loss has been

studied. The majority of harmonic losses of the motor, which is caused by PWM carrier

frequency, can be minimized by increasing the inverter switching frequency. Nonetheless,

the inverter switching loss will concurrently increase, as detailed in the subsequent section.

Therefore, for achieving global optimization of the system, one needs to define the value of

the optimal frequency that minimizes the motor harmonic loss and inverter losses together.

The aim of this chapter is to provide analytical model for the calculation of power losses in

IGBT-based voltage source inverter used in PMSM drive system. The inverter parameters

of the semiconductor switches in the inverter have been extracted from the data sheets of

FAIRCHILD, RURG5060 and HTGT30N60A4 modules.

A number of different methods have been proposed to estimate the losses of voltage source
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inverters. The first is based on the complete numerical simulation of the circuit by specific

simulation programs with integrated or parallel-running losses calculations. The second is

to calculate the electrical behaviour of the circuit based on analytical behaviour model [31].

For accurate estimation of the losses during the transient time and all operating conditions,

a hybrid model has been developed. In this model, the operating conditions that are resulted

from the numerical simulation of the motor drive system are utilized in the analytical model.

The losses in a power-switching device consist of conduction losses, switching losses and

off-state blocking loss. The off-state blocking loss is negligible compared to other two types of

loss, and is given by the product of the blocking voltage and the leakage current. Switching

losses and conduction losses will be analyzed in detail in the following sections.

3.1 Switching Losses of three phase Voltage Source

Inverter

For the subsequent calculations a linear loss model for power semiconductors devices is

assumed. Switching loss energy Es will be linearly scaled as the following:

Es = Esr ·
V

Vr
· I

Ir
(3.1)

where Esr is the rated switching loss energy that is typically given in the device data sheet

for reference commutation voltage Vr and reference current Ir while V and I represent the

actual commutation voltage and current respectively. The rated switching energy can be

defined as the summation of on, off states of each power semiconductor device. For one pair

17



of IGBT and freewheeling diode, Esr is given by

Esr = Eon,I + Eoff,I + Eoff,D (3.2)

where Eon,I and Eoff,I are the turn-on and turn-off energies of the IGBT, respectively;

Eoff,D is the turn-off energy of the power diode due to reverse recovery current. The result

of plugging (3.2) in (3.1) Es is:

Es =
(

Eon,I + Eoff,I + Eoff,D

)

· V
Vr

· I

Ir
(3.3)

The power loss Psr is related to the energy loss Esr as by

Esr = Psr · T (3.4)

where T is the switching period. The equation for the switching loss Pls of a VSI with

sinusoidal ac line current and with IGBT switching devices is given by:

Pls =
6

π
· fs · (Eon,I + Eoff,I + Eoff,D) · Vdc

Vr
· IL
Ir

(3.5)

where fs is the VSI switching frequency; Vdc is the dc link voltage and IL is the peak value

of the ac line current that is assumed sinusoidal.
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3.2 Conduction Losses of VSI

In contrast to the switching losses, the conduction losses are directly depending on the

modulation function [31]. In [32–35] formulas for reckoning the conduction losses depending

on the modulation function are presented. Reference [36] provides extensive information

on definition of a certain modulation function by the distribution of the duty cycles for

the two different zero vectors. With the knowledge of the relevant modulation function the

conduction losses Plc,I of a single semiconductor IGBT are expressed by equation:

Plc,I =
VCE,0

2π
·IL
∫ π

0
sin(ωt)· 1 +M(t)

2
·dωt+

rCE,0

2π
·I2L
∫ π

0
sin2(ωt)· 1 +M(t)

2
·dωt (3.6)

Likewise the conduction loss that is associated with each diode Plc,D can be written as:

Plc,D =
VF,0

2π
· IL

∫ π

0
sin(ωt) · 1−M(t)

2
·dωt+

rF,0

2π
· I2L

∫ π

0
sin2(ωt) · 1−M(t)

2
·dωt (3.7)

The sum of the total conduction losses Plc for all twelve semiconductor devices is determined

by

Plc = 6 ·
(

Plc,I + Plc,D
)

(3.8)

For the carrier based PWM method equations (3.6) and (3.7) turn into expressions (3.9) and

(3.10) [1].

Plc,I =
VCE,0

2π
· IL

(

1 +
M · π
4

· cos (φ)
)

+
rCE,0

2π
·
(

π

4
+M

(

2

3
· cos (φ)

))

(3.9)

Plc,D =
VF,0

2π
· IL

(

1− M · π
4

· cos (φ)
)

+
rCE,0

2π
·
(

π

4
−M

(

2

3
· cos (φ)

))

(3.10)
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where M is the modulation index and φ is the displacement angle between the fundamental

of modulation function and the load current. The total inverter losses at different operation

points will be analyzed in the next section.

3.3 Total Losses of VSI

The total losses of the VSI that is realized with practical semiconductor devices have been

evaluated based on he parameters used in the numerical simulation are listed in Table 3.1.

A plot of the switching loss for a range of switching frequencies is shown in Figure 3.1. It is

Table 3.1: Parameters of the semiconductor devices of the VSI.

Power Devices Parameters

IGBT
Iref (A) 50 Vref (V ) 600
Eon,I (mJ) 0.6 Eoff,I (mJ) 0.966
VCE,0 (V ) 1.6 rCE,0 (mω) 15

Diode
rF,0 (mω) 8 VF,0 (V ) 1.6
Eoff,D (mJ) 0.7

clear that the switching loss is proportional to switching frequency and maintains constant

for a given load current and switching frequency. With respect to conduction losses, the

loss depends on load displacement angle, modulation index and load current. Figure 3.2

illustrates the variations of the conduction losses with the load displacement angle under

different loading conditions. The plot of conduction loss equation shows that the loss is

maximized when the displacement angle is zero and decreases as the displacement angle

increases or decreases from zero. In field oriented control of variable speed drive system,

for a given speed command the controller will assign voltage proportional to that speed by

means of modulation action. However, increasing the motor speed requires higher line to

line voltage and causes the motor to draw higher current for constant load torque. In other
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words, increasing the motor speed will increase the inverter losses since the current and

modulation index will be higher.
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Figure 3.1: Switching losses of VSI at different load currents.
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Figure 3.2: Conduction losses of VSI at different modulation indices.
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Chapter 4

PMSM Modeling

The use of PMSM has rapidly increased in recent years, especially for high performance

applications such as traction, automobiles, robotics and aerospace technology. The PMSM

has a sinusoidal back emf and requires sinusoidal stator currents to produce smooth torque.

The PMSM is very similar to the standard wound rotor synchronous machine except that the

PMSM has no damper windings and its field excitation is provided by permanent magnets

instead of a field winding. Hence the dq-model of the PMSM can be derived from the

well-known model of the synchronous machine with the equations of the damper windings

and field current dynamics removed [37]. The transformation of the synchronous machine

equations from the abc phase variables to the dq variables forces all sinusoidally varying

inductances in the abc frame to become constant in the dq frame.

For the purpose of evaluation of the motor performance in steady state and transient,

the model in Figure 4.1 is used. The model in Figure 4.2 is used to calculate motor efficiency,

currents and other parameters during steady state operation. The cross saturation model,

which is used in controller design, is the most accurate model. In this model q-axis and d-axis
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Figure 4.1: Dynamic equivalent circuits of PMSM.

inductances are functions of id and iq as a result of saturation. A lookup table is typically

needed to store the measured Ld and Lq corresponding to different id and iq combinations.

This model is often used in normalsize size machines in which the iron material more tends

to saturate than big size machines.

To evaluate the motor efficiency as a part of a high performance vector controlled servo

drive numerically in transient, steady state and in all operating points, the selected model is

the dynamic model that includes the core loss resistance as shown in Figure 4.3. The PMSM

dynamic model can be divided into two subsystems: electrical system and mechanical system.

The details of the complete PMSM model are presented in the next sections.
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Figure 4.2: Steady state equivalent circuits of PMSM include core loss resistance.

4.1 Electrical System

The electrical system is represented by the electrical equations of the motor that are organized

in a way such that the input currents of the model are functions of the input voltages.

The selected model is shown in Figure 4.3, where vrqs and vrds are stator voltages on the

quadrature and direct axes, respectively. The superscript r refers to rotor reference frame .

Rs is the stator winding resistance. Rc is the core loss resistance. irqs and irds are motor

stator currents on the quadrature and direct axes, respectively. λaf is field flux linkages due

to rotor magnets. ωr is electrical rotor speed in [rad s−1]. The subscript o in the remaining

v and i in the circuits refers to output voltages and currents.

To build the dynamic model of the motor, the equations of the motor have to be prop-

erly organized such that they can be implemented in SIMULINK model. The first step of

developing the model is to rearrange equation (4.1) into the form of equations (4.2) and
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Figure 4.3: Dynamic equivalent circuit of PMSM that includes core resistance.

(4.3) :






vrds

vrqs






= Rs







iod

ioq






+

(

Rc +Rs

Rc

)







vod

voq






(4.1)

vod =

(

Rc

Rc +Rs

)

(

vrds −Rs iod
)

(4.2)

voq =

(

Rc

Rc +Rs

)

(

vrqs − Rs ioq
)

(4.3)

In equations (4.2) and (4.3), the output voltages are functions of the stator output currents

and voltages. The dynamic part of the circuit indicates that the output voltages are functions

of the output currents and the rotor speed, which is mathematically represented by:







vod

voq






=







Ld p −Lq ωr

Ldωr Lq p













iod

ioq






+







0

ωr λaf






(4.4)

where p denotes d
dt ( ) . Rearranging of equation (4.4) leads to equations (4.5) and (4.6):
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iod =
1

Ld

[
∫

(

vod + Lq ωr ioq
)

dt

]

(4.5)

ioq =
1

Lq

[
∫

(

voq − Ldωr iod −ωr λaf
)

dt

]

(4.6)

It is evident that the output currents are functions of the output voltages, the coupled

output current of the other axis, and rotor speed.

The next step is to calculate the currents of the core loss resistance icd and icq . They

are simply the ratio of output voltage to core loss resistance in each circuit. Since the core

loss resistance is used to calculate the core loss in steady state, the dynamic part of the

output voltage is neglected. In other words, the voltages due to rate of change in Ld and Lq

during the transient are neglected. Equations (4.7) and (4.8) give icd and icq as functions of

the output currents and rotor speed:

icd = −
(

Lq

Rc

)

ωr ioq (4.7)

icq =
1

Rc

(

λaf + Ld iod
)

ωr (4.8)

The last step is to calculate the total rotor currents as:

irds = iod + icd (4.9)

irqs = ioq + icq (4.10)
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It is worth mentioning that almost all of motor dynamic electrical equations need the motor

electrical speed as an input parameter. The motor electrical speed is proportional to its

mechanical speed that is derived from the mechanical system. The next section details

modeling of the motor speed.

4.2 Mechanical System

The modeling of the motor electrical speed begins at the equation of the electromagnetic

torque generated by the PMSM,

Te =
3

2

P

2

[

λaf ioq +
(

Ld − Lq

)

iod ioq
]

(4.11)

where P is the number of poles. Equation (4.11) generally represents the electromagnetic

torque generated in the two types of PMSM: interior PMSM and surface mounted PMSM.

Surface mounted PMSM can be considered as a special case in which Ld equals Lq. Hence,

the reluctance torque of the electromagnetic torque equals zero.

In order for the motor to operate at a given speed, the electromagnetic torque needs to

overcome all torque components in the opposite direction, which include load torque, friction

torque, and the torque that results from the combined rotor and load moment of inertia.

The torque equation is expressed by:

Te = J
dωm

dt
+ Tl +Bωm (4.12)

where J is moment of inertia of the load and machine rotor combined in [kg m2]. ωm is rotor

mechanical speed in [rad s−1]. Tl is load torque in [ N m ]. B is friction coefficient of the
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load and the machine in [N m rad−1s]. Rearranging of equation (4.12) gives the mechanical

speed:

ωm =
1

J

[
∫

(Te − Tl − Bωm) dt

]

(4.13)

Finally, the electrical rotor speed is related to mechanical rotor speed by the number of pole

pairs:

ωr =
P

2
ωm (4.14)

As another note, the model inputs and outputs quantities are in rotor reference frame. It is

necessary to perform the transformations between abc and dq such that the model supplied

by the input voltage in stationary reference frame and output the phase currents in stationary

reference frame too. The details of necessary transformations are given in the next section.

4.3 Transformations

The block diagram of PMSM in Figure 4.4 shows the necessary transformations. There are

two transformations. The first is called three to two transformation, which is mathematically

represented by equation (4.15):

fff 
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Figure 4.4: Simple schematic model of PMSM.
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Tabc =
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






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cosθr cos
(
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)
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(
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3
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1
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1
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1
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






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(4.15)

The second is called two to three transformation, which is given by:

Tabc
−1 =















cosθr sin θr 1

cos
(

θr − 2π
3

)

sin
(

θr − 2π
3

)

1

cos
(

θr +
2π
3

)

sin
(

θr +
2π
3

)

1















(4.16)

The application of these transformations is accomplished in the following manner. Given

phase voltages in stationary reference frame, the output voltages in rotor reference frame are

determined by:

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(4.17)

Given phase currents in rotor reference frame, the output currents in stationary reference

frame are determined by:

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(4.18)

In both transformations θr is the rotor flux position in [rad], which is obtained by:

θr =

∫

ωr dt (4.19)
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4.4 PMSM Model

The different components of PMSM SIULINK model are described in detail in this section.

This model is part of a complete variable speed motor drive system. The dynamic response

of the model will be introduced after the field oriented control and the maximum efficiency

control strategy are completed in the next chapters.

Figure 4.5 shows the main window of PMSM model in rotor frame reference. The model

inputs are vrds, v
r
qs and the load torque. If the speed and current controllers are designed

accurately, the electromagnetic torque has to be equal the load torque in steady state. The

outputs of the model are speed, torque, position, irds and irqs. The model is organized in four

subsystems system 1, system 2, system 3 and system 4. Figure 4.6 illustrates system 1 in

which the equations (4.2) and (4.3) are realized. Equations (4.5), (4.6) and the mechanical

system equations are realized in system 2 as illustrated in Figure 4.7. It is worth mentioning

that the position angle generated by the numerical integration of the mechanical system

serves as input parameter for (4.5) and (4.6). The core loss currents, model input currents

and mechanical system are illustrated in Figures 4.8, 4.9, and 4.10, respectively.
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Figure 4.5: Main SIMULINK window of PMSM model in rotor reference frame.
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Figure 4.8: System 3 in the Main SIMULINK window of PMSM model.

Figure 4.9: System 4 in the Main SIMULINK window of PMSM model.
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Chapter 5

Field Orientated Control of PMSM

5.1 Introduction

Vector control, also known as decoupling or field oriented control, came into the field of ac

drives research in the late 1960s. It was developed prominently in the 1980s to meet the

challenges of oscillating flux and torque responses in inverter fed induction and synchronous

motor drives [28]. Traditionally variable speed electric machines were based on the sepa-

rately excited dc machines. The main reason was due to the high performance dynamic

ability of separately excited dc machines drives that resulted from its ability of independent

control of the flux and torque. The flux is controlled by the field current alone. The field

current is kept constant and hence is the flux. The torque is independently controlled by

the armature current alone. Therefore, this armature current may be treated as the torque-

producing current. In the dc machine, this decoupling is obtained in by orienting the current

in quadrature to the stator flux by use of a mechanic commutator.

In the last three decades, significant advances in the areas of power semiconductor and
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control technology have led to adjustable speed-drives for ac machines. The mathematical

models for ac machines are inherently more complex than the dc counterparts. More complex

control schemes and more expensive power converters are needed to achieve acceptable speed

and torque control performance. By use of advanced control approaches like field-oriented

control, the dynamic performance at least equivalent to that of a commutator motor can be

achieved. The key to it then lies in finding an equivalent flux-producing current and torque-

producing current in ac machines leading to the control of the flux and torque channels in

them.

To achieve the necessary decoupling, first the machine has to be modeled in space vector

form, where a three-phase machine is transformed into a machine with one winding each on

stator and rotor. The transformed machine resembles an equivalent dc machine. Second, the

ability of the inverter to produce a current vector with controllable magnitude, frequency, and

phase is needed. Both of these features are exploited to make the PMSM drive system a high-

performance drive system with independent control of its mutual flux and electromagnetic

torque [28]. The details are explained in the following sections.

5.2 Field Orientated Control of PMSM

A field-oriented dq control technique is one in which the d- and q-axis components of the

current are controlled independently. Typically one of them is oriented to control the flux

while the other is oriented to control the torque. The next subsections describe in detail the

components that form field oriented controller.
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5.2.1 Space Vector Definition and Projection

The three-phase voltages, currents and fluxes of ac machines can be analyzed in terms of

complex space vectors [38]. The space vector of the motor input currents in stator reference

frame can be defined as follows. Given the instantaneous currents isa, i
s
b, i

s
c, then the complex

stator current vector i
s
s is defined as:

i
s
s = isa + α isb + α2 isc (5.1)

where α = e
j 23π. The diagram in Figure 5.1 illustrates the stator current complex space

vector.

i
s
s

αisb

α2isc

isa

Figure 5.1: Stator current space vector and its components.

The depicted space vector current represents three-phase sinusoidal system. It still needs

to be transformed into a rotating coordinate system. This transformation can be accom-

plished in two steps:

• (a, b, c) ⇒ (α, β) Clarke transformation that outputs a two coordinate time variant system.
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• (α, β) ⇒ (d, q) Park transformation that outputs a two coordinate time invariant system.

The complete description of these transformation will be detailed in the next subsections.

5.2.1.1 Clarke Transformation

The Clarke transform takes three-phase currents isa, i
s
b and isc to calculate currents in the

two-phase orthogonal stator axes isα and isβ . These two currents in the stator reference

frame and, mathematically represented as:



























isα

isβ

i◦



























=



























2
3 −1

3
1
3

0 2√
3

− 2√
3

2
3

2
3

2
3





















































isa

isb

isc



























(5.2)

In addition to the orthogonal components of the current space vector, the Clarke transfor-

mation matrix calculates i◦, which represents the zero-sequence component in the a, b, and c

phase currents. For three-phase balanced system, there are only two independent variables

in abc and the third is the dependent variable obtained as the negative sum of the other two

variables [28]. Figure 5.2 shows the transformed space vector with isα aligned with isa. If

isa+ isb + isc = 0, isa, i
s
b and isc can be transformed to isα and isβ with the following simplified

transformation:
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(5.3)
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Figure 5.2: Stator current space vector and its orthogonal components.

5.2.1.2 Park Transformation

The orthogonal components of the stator currents space vector in stationary reference frame

are transform to q- and d-axes stator currents in rotor reference frame through the Park

transformation:
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(5.4)

Herein, the d-axis is aligned with the rotor flux. Figure 5.3 shows the current vector in the

stationary and rotating frames of references.

5.2.1.3 Inverse Park Transformation

This transformation accepts the space vector components of the stator voltage in rotor ref-

erence frame, and transforms them to the α β components in the stator reference frame.

Equation (5.5) shows the mathematical representation of the inverse Park transformation.
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relationship from the two reference frame:

θ
α=a

β

iS

d

q

iSd

iSq

iSα

iSβ

ΨR

Figure 5.3: Stator current space vector and its component in the stationary and rotating
reference frames.

Generation of the stator space vector represents the last step in the field oriented control

scheme if the space vector modulation technique is employed. Since the sinusoidal PWM

technique is used in this study, the stator space vector has to be resolved to its abc com-

ponents vsa, v
s
b and vsc . Equation (5.6) represents the transformation of the space vector

to its abc components in the same reference frame. The phase voltages generated by this

transformation represent the commands needed to generate the gating signals, which control

the switches of the VSI. It is worth mentioning that resolving the stator space vector to

its components does not need the rotor position information since this transformation takes

place in the same reference frame.
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5.2.2 Overall PMSM Drive System

The implementation of the vector-controlled PMSM drive system is described in this section

based on the understanding gained in the previous sections on vector control. The overall

block diagram of the speed-controlled systems is illustrated in Figure 5.4. The first step is to

measure two stator phase currents. These measurements are fed to the Clarke transformation

module. The outputs of this module are isα and isβ . These two components of the space

vector current are the inputs of the Park transformation that gives the current in the d,q

rotating reference frame. The irqs and irds components are compared to the references ir∗ds

(the flux reference) and ir∗qs (the torque reference), respectively. The torque command ir∗qs is

the output of the speed regulator and ir∗ds is the output of the maximum efficiency control

algorithm, which will be further detailed in the next chapter. The outputs of the current

regulators are vr∗qs and vr∗ds , which are applied to the inverse Park transformation. The outputs

of this projection are v∗sα and v∗sβ , which are the components of the stator voltage vector

in the α, β stationary orthogonal reference frame. v∗sα and v∗sβ are also the inputs of the

space vector PWM modulator. However, in SPWM, the outputs of this block are resolved

into components of the voltage space vector, which are subsequently compared with carrier

signals to generate the signals that drive the inverter. It is worth noting that both Park and

inverse Park transformations need the rotor flux position, which means increased complexity

and the cost of ac drive system. The obtaining of the rotor flux position is discussed in the

following subsection.
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Figure 5.4: Field orientation control diagram.
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5.2.3 Field Orientation Input Parameters

To implement the field oriented controller, two input variables are needed: rotor position and

two of motor stator currents. As described in the last subsections, the transformation from

stator to rotor reference frames and vice versa requires rotor position. The rotor position can

be measured directly by position sensor or by integration of rotor speed since the rotor speed

is equal to the rotor flux speed in PMSM [38]. However, the currents considered as the core

variables of FOC. The currents are measured by current sensor and then sampled by A/D

before received by the controller. In recent years most control algorithms are implemented

in digital signal processor (DSP) because of its ability to generate the triggering signal of the

voltage source inverter at very high switching frequency and its capability of implementation

of even very sophisticated control algorithms.

5.3 Sinusoidal Pulse Width Modulation

In order to investigate the motor harmonics loss caused by static power conversion, the

inverter topology, and control method have to be determined first. Since the power rating

of the PMSM under study is about 3 kW, the three-phase inverter with IGBTs has been

chosen as controlled switches as shown in Figure 5.5. However, there are different control

methods that can be used to control motor speed (by the control of the frequency, amplitude

and phase of motor phase voltages) such as space vector PWM (SVPWM), six-step, and

sinusoidal PWM (SPWM). Despite SVPWM generate less harmonics than SPWM with

higher output fundamental voltage, the spectral analysis of output voltage of SPWM inverter

is a straightforward process by application of double Fourier series expansion. The next

sections highlight the important aspects of controlling the three-phase VSI by SPWM control
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method.

5.3.1 Sinusoidal Pulse Width Modulated Inverter Model

The VSI consist of three legs connected in parallel, and is supplied with a constant dc voltage

as shown in Figure 5.5. Each leg consists of two IGBT switches connected in series and is

controlled by pluses obtained by the comparison between the reference command and the

triangle carrier waveform. It is important to note that the two IGBTs in the same leg is never

conducting simultaneously since in such shoot-through case high short-circuit current passes

through the leg leads to damage of the inverter module. If ideal transistors in the inverter

module are assumed, then there is no short circuit as long as there is no overlap between the

upper and lower switches. However, practical inverters will need deadtime to avoid shoot-

through since finite time interval is needed for the commutation of these semiconductor

power switches.

The triangle waveform named carrier determines the converter switching frequency. The

frequency of the reference command establishes the desired fundamental frequency of the in-

verter output voltage. The frequency ratio of the carrier waveform to the reference command

is referred to as the frequency modulation ratio. The ratio between the amplitude of the

fundamental component and the amplitude of the carrier signal is called modulation index.

The diodes in the circuit diagram provide paths for currents when a transistor is gated on

but cannot conduct the polarity of the load current [39]. For example, if the load current is

negative when the upper transistor is gated on, the diode in parallel with the upper transis-

tor will conduct until the load current becomes positive at which time the upper transistor

will begin to conduct. The switches of the phase legs are controlled based on the following
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comparison:

vs∗a ≥ vtr T1 is on

vs∗a < vtr T2 is on

vs∗b ≥ vtr T3 is on

vs∗b < vtr T6 is on

vs∗c ≥ vtr T5 is on

vs∗c < vtr T4 is on

where vs∗a , vs∗b and vs∗c are the reference control commands generated by by control algorithm.

vtr is the triangle waveform. The mathematical derivation of the inverter output phase and

line voltages will be detailed in the next subsection.

5.3.2 Basic Operation of SPWM Inverter

The dc link voltage is assumed constant in the three-phase voltage source inverter shown in

Figure 5.5. The midpoints of the inverter phase-legs are a, b, and c. The inverter output

voltages with respect to negative rail of the dc bus have two output states each:

vag = Vdc for T1 on and T2 off

= 0 for T2 on and T1 off

vbg = Vdc for T3 on and T6 off

= 0 for T6 on and T3 off

vcg = Vdc for T5 on and T4 off

= 0 for T4 on and T5 off
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They are derived with the assumption that the devices are ideal. The line-to-line voltages

can be derived as:

vab = vag − vbg

vbc = vbg − vcg

vca = vcg − vag

For balanced system in which the sum of currents and voltages equals zero, the phase voltages

can be expressed as the following:

van = 1
3 (vab − vca)

vbn = 1
3 (vbc − vab)

vcn = 1
3 (vca − vbc)

Let the modulation index be defined as:

M =
V̂ref

V̂tri
(5.7)

If M ≤ 1, the modulation is linear, where the fundamental frequency component in the

output voltage varies linearly with the amplitude modulation index ratio M [40]. From

Figure 5.6, the peak value of the fundamental-frequency component in one of the inverter

legs is:
(

V̂ag

)

1
= M

Vdc
2

(5.8)
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Therefore the line-to-line rms voltage at the fundamental frequency, due to 120◦ phase

displacement between phase voltages, can be written as:

VLL =
√
3√
2

(

V̂ag

)

1

=
√
3

2
√
2
M Vdc

' 0.612M Vdc (5.9)

When M = 1 the maximum output line-to-line rms equals 0.612 of the dc link voltage.

 T1 T3 T5

T2 T4T6
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n
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+

−
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PMSM

Figure 5.5: Three phase voltage source inverter circuit diagram.

Figure (5.6) shows the normalized line to line and phase to neutral VSI output voltages.

The complete SIMULINK model of the VSI is shown in Figure (5.7).
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Chapter 6

Loss Minimization Control Strategy

This chapter is focused on the improvement of the efficiency of surface mounted PMSM. The

combined copper losses and iron fundamental losses are minimized through control strategy

developed in [41]. The controllable losses can be minimized by proper choice of the armature

current vector. It is a common practice to set the current id = 0. As a result, the armature

current vector that is in phase with the back EMF is applied. In addition, irreversible

demagnetization of permanent magnets can be avoided [41]. The recent development of the

permanent magnets has brought materials with high coercivity and high residual magnetism.

Therefore, several control methods have been proposed to improve the performance of the

PM motor drives. In such control methods, the d-axis component of armature current is

actively controlled according to the operating speed and load conditions. In the next section,

the basic equations of motor model needed to develop the control algorithm are presented.
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6.1 Modeling Fundamental Losses of PMSM

Figure 6.1 shows the steady state d, q model of PMSM. The fundamental iron loss consists

of hysteresis loss and eddy current loss. Herein, these two loss components are lumped into

a single quantity, which is represented by the core loss resistance Rc. As shown in Figure

6.1, the voltage equations of PMSM in steady-state are expressed as:
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iod

ioq
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Figure 6.1: Steady state equivalent circuits of PMSM include core loss resistance.
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where

iod = irds − icd (6.3)
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ioq = irqs − icq (6.4)

icd = −
(
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R c
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ωr ioq (6.5)
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ωr (6.6)

The armature current ia, the terminal voltage va and the torque Te are expressed as:
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The copper loss PCu, the iron loss PFe and the mechanical loss PM , are determined by:
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=
3

2

{

ω2
r

(

Lqioq
)2

Rc
+

ω2
r

(

λaf + Ldiod
)2

Rc

}

(6.11)
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PM = Tmωm

= (Bωm)ωm

= Bω2
m

= B

(

2

P
ωr

)2

(6.12)

The electrical loss PE , the total loss PL, the output power P◦ and the efficiency η are

expressed as:

PE = PCu + PFe (6.13)

PL = PE + PM (6.14)

P◦ = Teωm (6.15)

η =
P◦

P◦ + PL
× 100 (6.16)

6.2 Condition for Minimized Losses

Substituting (6.10) and (6.11) into (6.13) yields an expression for controllable electrical loss

as a function of ωr, iod and ioq. The variable ioq in these equations can be cancelled by

substituting (6.9) into (6.10) and (6.11). As a result PE can be expressed as a function of

iod, Te and ωr. In the steady state the electrical loss PE is function of iod. Nevertheless,

for surface mounted PMSM Ld = Lq. Hence, simple expression for PE can yield. By

differentiation of PE with respect to iod, the condition for iod that minimizes the controllable
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losses results as:

∂PE
∂iod

= λ3af

(

3
2
P
2

)2
iod
(

RsR
2
c +ω2

rL
2
dRs +ω2

rL
2
dRc

)

+ λ4af

(

3
2
P
2

)2
Ld(Rs +Rc)ω

2
r

∂PE
∂iod

= 0

iod = −
λaf (Rs +Rc)ω

2
rLd

RsR2
c +ω2

rL
2
d
(Rs +Rc)

(6.17)

The complete implementation of the loss minimization algorithm in SIMULINK software

ioq=isq-icq ioq

wr

isq*

icq

icq=wr(Yaf+Ld*iod)/Rc

1/Rc

Loss minimization function

wr iod*

iod=f(wr)

iod

icd=-wr*ioq*(Lq/Rc)

icd

isd=iod+icd

isd*

Yaf

Ld

-(Lq/Rc)

G

Figure 6.2: Loss minimization algorithm.

is shown in Figure 6.2. Its role in field oriented control system is shown in Figure 6.3. The

simulation results will be presented in next chapter.
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Figure 6.3: Field orientation control diagram incldues loss minimization algorithm.
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Chapter 7

Simulation Results and Discussion

The machine parameters of surface mounted PMSM that have been used in the simulation

are listed in Table 7.1. The field oriented control system includes the loss minimization

algorithm implemented in MATLAB/SIMULINK. The Motor harmonic losses of the machine

are calculated by MATLAB block using the variables that is obtained from SIMULINK

for various operation conditions. The converter losses are calculated directly by use of

Table 7.1: Machine parameters.

Parameter Value Units
Number of pole pairs 4
Stator resistance 0.52 ω

Core loss resistance 450 ω

Rated speed 4500 rpm
Rated torque 6 Nm
Rotor flux linkages 0.08627 Wb
Rated peak voltage per phase 150 V

Rotor inertia Jm 0.00036179 kgm2

Viscous friction coefficient B˙m 9.444× 10−5 Nms
Ld 0.0013 H
Lq 0.0013 H

SIMULINK system with parameters that are generated by FOC subsystem. The results and
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discussion are presented in three sections; FOC under loss minimization control strategy

(LMCS), VSI-motor fundamental losses, and VSI-motor harmonic losses.

7.1 FOC with Loss Minimization Control

The dynamic responses of currents, speed and torque at rated conditions are shown in Figures

7.1 and 7.2, respectively. The system reaches the steady state with smooth dynamic response

in approximate 0.14 second for the system parameters listed in Table 7.1. The current and

speed controllers are designed by a symmetric optimum approach which is addressed in [28].

For calculation of the core loss resistance, it is required that the motor runs at rated speed

and torque of sinusoidal power supply such that the harmonic losses are not generated. The

fundamental iron loss PFe is calculated by subtracting the mechanical and copper losses from

the total output power. The iron loss resistance, Rc, can be obtained from fundamental core

losses as in equation (6.11), where the measured Rc represents the iron loss resistance at the

rated output power. Practically Rc depends on operating conditions. However, it is assumed

constant in this work.

Figure 7.3 shows the efficiency of surface mounted PMSM versus speed for the two control

strategies: zero id control strategy and (LMC) strategy. It is clear that the motor efficiency

under maximum efficiency control strategy is higher than the efficiency under zero id control

strategy. However, the difference in efficiency is not as remarkable for surface mounted

PMSM as for interior PMSM due to the following reasons. In interior PMSM The negative

d-axis current produces a positive reluctance torque due to the saliency (Ld < Lq), and

accordingly the stator current and the copper loss PCu is smaller compared with the id = 0

control. Moreover, in both types of PMSMs the negative d-axis current reduces the flux
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linkage. Consequently, the voltage V , and the iron loss PFe, are smaller as compared with
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Figure 7.1: Dynamic response of phase currents, id and iq of surface mounted PMSM.
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the id = 0 control strategy [41]. Since the surface mounted PMSM has no saliency (Ld = Lq),

there is no reluctance torque. However, the influence of the decreased flux linkage and applied

voltage is still effective.
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Figure 7.2: Torque and speed dynamic response of surface mounted PMSM.

7.2 VSI and PMSM Fundamental Losses

As presented in Chapter 3, the losses of VSI are divided into two types; conduction losses

and switching losses. Equation (3.5) shows that the switching loss is proportional to switch-
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ing frequency and motor phase current. Hence, if the motor is controlled under constant

switching frequency, the switching losses are proportional to motor phase current. However,

motor current increases/decreases for any increase/decrease in load torque or/and reference

speed. As a result, the switching loss increases/decreases for any increases/decreases in load

torque or/and reference speed. Alternatively, the conduction loss given in Equations (3.9)

and (3.10) is proportional to motor phase current, modulation index and the displacement
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Figure 7.3: PMSM efficiency versus speed.

angle. The modulation index is controlled by load and speed since any increase in load or

speed requires higher current which is supplied via higher voltage. Therefore the modulation

index increases as well to supply the required voltage. Regarding the displacement angle, its

effect on conduction loss is discussed in Chapter 3. Figure 7.4 (a) illustrates the relationship
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between motor fundamental loss and ird under loss minimization control strategy. The curve

is convex with global minimum loss point at ird = −2.6A for the given parameter in Table

7.1. Figure 7.4 (b) shows the relationship between the inverter losses and ird. The result

shows that the minimum loss point occurs at ird = 0 . This result can be explained as

following: the rms value of the phase current is
√

i2
d
+ i2q . When id = 0, it is clear that

the phase current has the minimum value. However, it was explained that most inverter

loss is controlled by the current. When the phase current is minimum the inverter loss will

be minimum as well. Figure 7.4 (c) shows the relationship between the combined losses of

motor and inverter versus ird. The relationship shows that the combined minimum loss value

of inverter and motor occurs at a point of ird that lies between the zero ird and the optimal

ird that is generated by loss minimization algorithm.

For all conditions of loads and speeds, it can be observed that the inverter minimum

loss value occurs at zero ird, and the ird generated by loss minimization algorithm is always

negative for the same conditions. Moreover, the combined minimum loss value will strictly

lie in the region between zero ird and ird generated by minimum loss algorithm.

7.3 VSI and PMSM harmonic losses

The motor harmonic losses at any operating point can be calculated as the following. First

The machine operates at rated speed and torque off sinusoidal power supply. The input

power is then measured and the copper losses and output power are calculated, which gives

motor efficiency and fundamental core losses. The same procedure is repeated except that

the motor is supplied with SPWM-variable speed drive controller under the same torque and

speed conditions. The core losses that are calculated with SPWM represent the summation

62



of fundamental and harmonic losses at rated output power. Subtracting the sinusoidal-core

losses from SPWM-core losses yields the motor harmonics loss at rated torque and speed.

At Te = 6 N · m and N = 4500 rpm the calculated harmonics loss is 90.8445 W. However,

the motor efficiency is reduced from 92.68 to 90 % when switching the sinusoidal supply

with SPWM-variable speed drive controller. In PMSM the hysterics losses are very small

and can be neglected. In this work the hysterics losses value is assumed to be 5% of the

total harmonic losses.

Pe,h = 0.95Pc,h (7.1)

Ph,h = 0.05Pc,h (7.2)

The next step is to calculate the loss coefficients Kem and Khm :

Kem =
Pe,h

∞
∑

m=1

∞
∑

n=−∞

(

ωm,n

∣

∣Im,n

∣

∣

f 6=f◦

)2
(7.3)

Khm =
Ph,h

∞
∑

m=1

∞
∑

n=−∞

(

ωm,n

∣

∣Im,n

∣

∣

f 6=f◦

)2
(7.4)

The calculated values are Kem = 3.8729 × 10−8 and Khm = 0.0013. The harmonic losses

equation in W for any operating condition is:

(7.5)

Pc,h = 3.8729× 10−8
∞
∑

m=1

∞
∑

n=−∞

(

ωm,n

∣

∣Im,n

∣

∣

f 6=f◦

)2

+ 0.0013

∞
∑

m=1

∞
∑

n=−∞
ωm,n

(

∣

∣Im,n

∣

∣

f 6=f◦

)2

The motor harmonics loss, VSI loss and the total loss versus switching frequency are shown
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Figure 7.5: Harmonic losses of PMSM, VSI losses and the combined harmonic losses of

PMSM and VSI versus switching frequency at rated speed.
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in Figure 7.5. The results show that the PMSM harmonics loss decreases as the switching

frequency increases. This result is expected since the harmonics content of the stator current
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Figure 7.6: Total losses of PMSM harmonics loss and VSI losses versus switching frequency

at different speeds.

decreases as the switching frequency increases. Nevertheless, the VSI losses increase as the

switching frequency increase. The summation of the above two losses show that the curve is
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convex and has global minimum loss value at the switching frequency of 19 kHz. However

the specific optimal switching frequency will depend on particular set of design parameters

of the VSI. In other words, when the parameters of the VSI such that the loss of VSI higher

than the motor harmonics loss at the same range of switching frequency, the curve will be

no more convex and almost will be linear.
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Figure 7.7: PMSM harmonics loss versus modulation index.

Figure 7.6 shows the combined loss of motor harmonics loss and VSI loss versus switching

frequency at different speeds and rated torque. The result shows that the total losses increase

as the motor speed increases. Also, at low speeds up to 50 % of the rated speed the VSI

loss is dominant. When the speed increases, the motor harmonic losses become dominant

such that the loss curve becomes convex. Figure 7.7 shows the relationship between PMSM

harmonic loss and modulation index. It can be seen that up to M = 0.73 the harmonics loss

increases as the modulation index increases. As the modulation index passes M = 0.73, the
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harmonics loss begins to decrease to locally minimum loss value at unity modulation index.

Because the loss is minimum near unity modulation index, it is suitable to use variable dc

link such that the modulation index is kept near the unity at all loads and speeds.

7.4 Conclusions

The main results of the thesis work can be summarized in the following aspects:

• The motor loss that is caused by the fundamental component of phase currents can

be minimized by using the maximum efficiency control strategy with the assumption

that the core loss resistance and copper loss resistance are constant under all operating

conditions.

• The combined motor-inverter fundamental losses are minimized under maximum effi-

ciency control strategy in the region in which ir∗d < id < 0.

• PMSM harmonics loss can be minimized by increasing the converter switching fre-

quency with the assumption that SPWM inverter is used without any harmonics in-

jection technique.

• For a given range of switching frequencies in which the motor can work with acceptable

performance, the choice of minimal switching frequency would minimize the converter

loss.

• For a given range of switching frequencies in which the motor can deliver acceptable

performance, the choice of the optimum switching frequency that will minimize motor-

inverter losses follows the parametric optimization. The optimal loss point is affected
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by the system parameters. Hence, changing of the values of VSI parameters would

vary the optimal point of motor-inverter losses.

7.5 Recommendations for Future work

In the thesis work it has been assumed that Rc, Khm, and Khm are constants. Practically,

the core losses of the machine are not constant due to the variations in the properties of

magnetic material. Modeling the core losses at rated condition may yield inaccurate results

in variable speed drive machine. The expected future work is taking into account the change

in laminations properties due to operating condions while modeling core losses. However, it

is planned to verify the harmonic loss model by using real time controller.
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