

EFFECTS OF A MUNICIPAL DISCHARGE ON A MICHIGAN STREAM

Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY RICHARD L. MIKULA 1975

THESIS

3 1293 10227 7710

G 91014

ABSTRACT

EFFECTS OF A MUNICIPAL DISCHARGE ON A MICHIGAN STREAM

By

Richard L. Mikula

A survey was conducted on a southern Michigan stream during the summer and fall of 1973 to determine the changes in water quality caused by sewage effluent.

Changes in water quality were detected by measuring changes in heavy metal concentrations in bottom sediments, primary productivity, phytoplankton communities, fish communities, and macroinvertebrate communities.

Macroinvertebrate and fish communities were drastically altered for over 2.5 miles below the wastewater treatment plant (WWTP). Fish were virtually eliminated and the macroinvertebrate community consisted of large numbers of individuals that were pollution tolerant. Along this portion of stream, turbid and septic smelling water covered a black anaerobic substrate of sludge.

Phytoplankton communities were relatively uniform throughout the stream and were dominated by diatoms tolerant to organic enrichment. Diatoms which are less favored by

se×

hig

was

pro for

ap;

mi

or

h.

Po

sewage than green and blue-green algae comprised slightly higher concentrations of the algal community above the wastewater treatment plant than below.

Mean primary production, based on chlorophyll <u>a</u> production, experienced a 4-fold increase below the WWTP for at least four miles. Primary production remained approximately 2.5 times larger than the control station for the remaining portion of the stream.

Concentrations of all heavy metals (arsenic, cadmium, chromium, copper, mercury, nickel, zinc) in the organic sediment increased below the WWTP and remained higher than the levels above the WWTP for the remaining portion of the creek.

ON A MICHIGAN STREAM

Ву

Richard L. Mikula

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Fisheries and Wildlife

ACKNOWLEDGMENTS

I would like to express my appreciation to Dr. Eugene W. Roelofs for his guidance and advice during this study and to Dr. C. D. McNabb and Dr. C. R. Humphreys for reviewing this manuscript.

I also wish to thank the Michigan Water Resources Commission for making it possible for me to conduct this study and for providing the staff to analyze the sediment and chlorophyll a samples. Special thanks go to Ronald Willson, Dr. E. Evans, George Jackson, and Richard Lundgren, biologists in the Stream Survey Section, for their help in algal and macroinvertebrate identifications and for reviewing this manuscript.

Lastly, I would like to express my sincere appreciation to my friend, Dr. Tracy S. Carter, who provided considerable help and encouragement throughout this study.

TABLE OF CONTENTS

												Page
LIST OF TABLES	•	•	•	•	•	•	•	•	•	•	•	v
LIST OF FIGURES	•	•	•	•	•	•	•	•	•	•		viii
INTRODUCTION	•	•	•	•	•	•	•	•	•	•	•	1
BACKGROUND	•	•	•	•	•	•	•	•	•	•	•	2
METHODS	•	•	•	•	•	•	•	•	•	•	•	4
Phytoplankton	•	•	•	•	•	•	•	•	•	•		4
Periphyton	•	•	•	•	•	•	•	•	•	•	•	8
Sediments	•	•	•	•	•	•	•	•	•	•	•	12
Fish Populations.			•							•	•	13
Periphyton Sediments Fish Populations. Macroinvertebrates	•	•	•	•	•	•	•	•	•	•	•	15
RESULTS	•	•	•	•	•	•	•	•	•	•	•	22
Habitat	•	•	•	•	•	•	•	•	•	•	•	22
Phytoplankton	•	•	•	•	•	•	•	•	•	•	•	22
Phytoplankton. Periphyton. Sediments.	•	•	•	•	•	•	•	•	•	•	•	26
Sediments	•	•	•	•	•		•	•	•	•	•	27
Fish Populations.	•	•	•	•	•		•	•	•	•	•	29
Fish Populations. Macroinvertebrates	•	•	•	•	•	•	•	•	•	•	•	29
DISCUSSION	•	•	•	•	•	•	•	•	•	•	•	39
LITERATURE CITED .			•						•			46

								Page
APPEN	DICES							
Appen	dix							
A.	PHYTOPLANKTON DATA	•	•	•		•	•	49
в.	PERIPHYTON DATA	•	•	•	•	•	•	52
c.	ORGANIC SEDIMENT CONCENTRATION	•	•	•	•	•	•	54
ח	FICH AND MACDOINGEDUREDATE DATE	۸						56

LIST OF TABLES

Table			Page
1.	Station location and habitat descriptions for sampling sites on Sycamore, Willow, and Mud Creeks and Vevay Drain in the vicinity of Mason and Lansing, Michigan, July 25 to November 8, 1973	•	23
Al.	Phytoplankton densities in Sycamore Creek and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, July 2, 1973. Data expressed in organisms/ml	•	49
A2.	Phytoplankton densities in Sycamore Creek, Willow Creek, Mud Creek, and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, September 5, 1973. Data expressed in organisms/ml	•	50
A3.	Phytoplankton densities in Sycamore Creek, Willow Creek, Mud Creek, and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, November 8, 1973. Data expressed in organisms/ml	•	51
B1.	Periphyton standing crop collected every two weeks in Sycamore Creek, Ingham County, Michigan, July 25-September 5, 1973. All values expressed as ug/cm ² of chlorophyll a	•	52
B2.	Two-way analysis of variance for adjusted periphyton primary production from Sycamore Creek, July 25-Sept. 5, 1973	•	53
вз.	Comparisons of differences between mean standing crop from Sycamore Creek, July 25-September 5, 1973. Data expressed in ug/cm ² of chlorophyll a	•	53

Table			Page
Cl.	Heavy metal concentrations found in bottom sediments of Sycamore Creek and Vevay Drain, Ingham County, Michigan, July 25, 1973. All values expressed in mg/kg, dry weight.	•	54
C2.	Concentrations of chlorinated hydrocarbon pesticides, polychlorinated biphenyls, phthalates, and oil found in the bottom sediments of Sycamore Creek and Vevay Drain, Ingham Co., Michigan, July 25, 1973. All values expressed in mg/kg. pH values expressed in standard units	•	55
Dl.	Summary of fish data collected by electro- fishing at selected stations from Sycamore Creek, Ingham Co., Michigan, Sept. 7, 1973.	•	5 6
D2.	Aquatic macroinvertebrates taken in qualitative collections from Sycamore Creek, Willow Creek, Mud Creek, and Vevay Drain, Ingham Co., Michigan, September 4-5, 1973.	•	57
D3.	Estimated macroinvertebrate numbers per square meter in Sycamore, Willow, and Mud Creeks, Ingham Co., Michigan, based upon colonization of Hester-Dendy artificial substrate samplers, July 25-September 5, 1973	•	59
D4.	Summary of macroinvertebrate data from Hester-Dendy artificial substrate samplers placed in Sycamore, Willow, and Mud Creeks, Ingham Co., Michigan, July 25-September 5, 1973	•	60
D5.	Number of species collected on circular Hester-Dendy artificial substrates in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973	•	61
D6.	Species diversity (\overline{d}) of macroinvertebrates collected on circular Hester-Dendy artificial substrates in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan,		
	July 25-September 5, 1973	_	61

Table		Page
D7.	Comparisons of differences between mean number of macroinvertebrate species collected on Hester-Dendy artificial substrates in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973	62
D8.	Comparisons of differences between species diversities of macroinvertebrates collected on Hester-Dendy artificial substrates in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973	62

LIST OF FIGURES

Figure	Page
 Selected station locations in Sycamore, Mud, and Willow Creeks and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, July 2-November 8, 1973. 	. 5
 Artificial substrate utilized to sample periphytic algae at selected locations in Sycamore Creek in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973 	. 10
3. Circular Hester-Dendy artificial substrate sampler colonized by macroinvertebrates in Sycamore, Mud, and Willow Creeks, vicinity of Mason and Lansing, Ingham County, Michigan. July 25-September 5, 1973	. 17
4. Total number of species, proportion of each tolerance group, and biotic index determined from qualitative samples collected in Sycamore Creek, Willow Creek, Mud Creek, and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, Sept. 4-5, 1973	. 30
5. Estimated number of organisms/m ² , proportion of each tolerant group, and the number of species collected on circular Hester-Dendy artificial substrate samplers placed in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan,	2.4
July 25-September 5, 1973	. 34

Figure	Page
6. Species diversity, equitability, and biotic index values determined from colonization of organisms on circular Hester-Dendy artificial substrate samplers placed in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5,	
1973	. 36

INTRODUCTION

A biological and sediment chemistry survey was conducted on Sycamore Creek and three of its tributaries (Willow Creek, Mud Creek, and Vevay Drain) in Ingham County, Michigan, between July 2 and November 8, 1973. This survey was conducted to assess the water quality and habitat of the stream from above Mason to Lansing, Michigan, a distance of approximately twelve miles. There are three known discharges within the study area: Wyeth Laboratory Company in north Mason which discharges cooling water into a storm drain, Mason Wastewater Treatment Plant (WWTP), and Dart Container Company which discharges into Vevay Drain.

BACKGROUND

Sycamore Creek originates approximately 4.5 miles south of Mason and empties into the Red Cedar River in Lansing, Michigan. Total length of Sycamore Creek is approximately 16.5 miles with a drainage basin of 111 square miles. The 7-day, 10-year low flow at the mouth of Sycamore Creek is 3.5 cfs (Knutilla, 1968). Flows are normally much larger than this, exceeding 6.4 cfs 95 percent of the time and 14 cfs 70 percent of the time.

The Michigan Water Resources Commission (MWRC) has conducted two previous surveys in this same area (Basch et al., 1971; Riley, 1972). In March and April, 1971, an in situ bioassay was conducted by Basch et al. (1971) to determine the effects on fish of the chlorination operation of the Mason WWTP. Results of this survey showed that chlorinated compounds discharged by the Mason WWTP were toxic to rainbow trout (Salmo gairdneri) for at least 0.8 miles downstream and to fathead minnows (Pimephales promelas) for at least 250 yards downstream from the WWTP.

Riley (1972) conducted a continuous-flow bioassay to determine the toxic effects of the Dart Container

Com

sho

not

eff

of ·

ran

Company's effluent to fathead minnows. Bioassay results showed fathead minnows subjected to Dart's effluent could not survive in concentrations greater than 50 percent effluent. The effluent contained oil, high concentrations of total solids (highest level was 3720 mg/l) and pH values ranging from 8.8 to 12.0.

Cree addi

Cree

effe

Orai

Cont

degr

Phyt

macr

qual.

of th

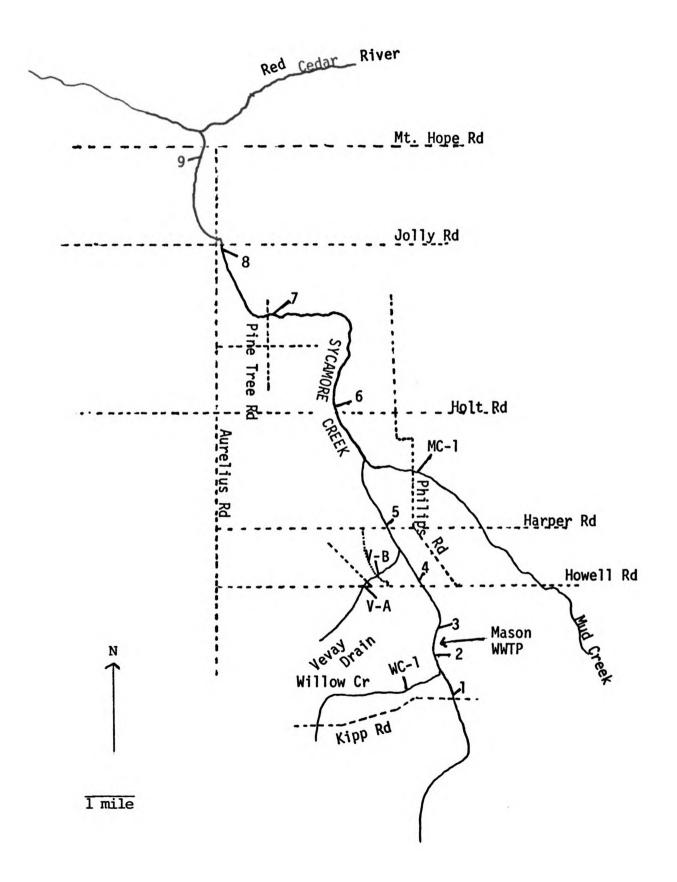
inhab algae

consi

devel

strea

and p


METHODS

To assess habitat and water quality in Sycamore Creek, nine sampling sites were selected (Figure 1). In addition, one site was selected on both Willow and Mud Creeks, and two sites on Vevay Drain to determine the effects of these tributaries on Sycamore Creek. On Vevay Drain sites were selected both above and below the Dart Container Company discharge to determine any water quality degradation in the drain and ultimately in Sycamore Creek. Phytoplankton, periphyton, sediment, fish populations, and macroinvertebrate communities were used to assess the water quality in this survey.

Phytoplankton

Plankton algae in standing water are a reflection of the toxic or nutrient status of the water which they inhabit. This is not true of river algae however, because algae present in river water samples may have come from a considerable distance upstream. Plankton in a stream develops only where the current is reduced, such as along stream margins or in pool areas (Patrick, 1948). Benthic and periphytic algae are often dislodged from their natural

Figure 1. Selected station locations in Sycamore, Mud, and Willow Creeks and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan. July 2-November 8, 1973.

habitats by river current scouring and appear as "plankton."

Therefore, planktonic algae collected at various stations

reflect upstream water quality. However, a change in water

quality will be reflected by a change in planktonic algae

between stations.

One-liter surface water grab samples were taken for plankton analysis at all stations (Figure 1) on July 2 (except stations MC-1 and WC-1); September 6, and November 8, 1973. Samples were preserved with 75 ml of 6:3:1 water-ethyl alcohol-formalin preservative and returned to the MWRC biological laboratory in Lansing, Michigan, for qualitative and quantitative algal analyses. Samples were allowed to settle for 48 hours and then they were drawn down so only the bottom 100 ml remained. This 100 ml concentrate was thoroughly mixed and subsampled. Samples were analyzed utilizing Sedgewick Rafter strip counts. Permanent slides were made for diatom determinations.

After the algae samples were identified and tabulated, a pollution index value (Palmer, 1969) was determined for each station utilizing algae that occurred with a frequency of 50 or more cells per ml.

$$P.I. = X_1 + X_2 + X_3 + \dots + X_{20}$$

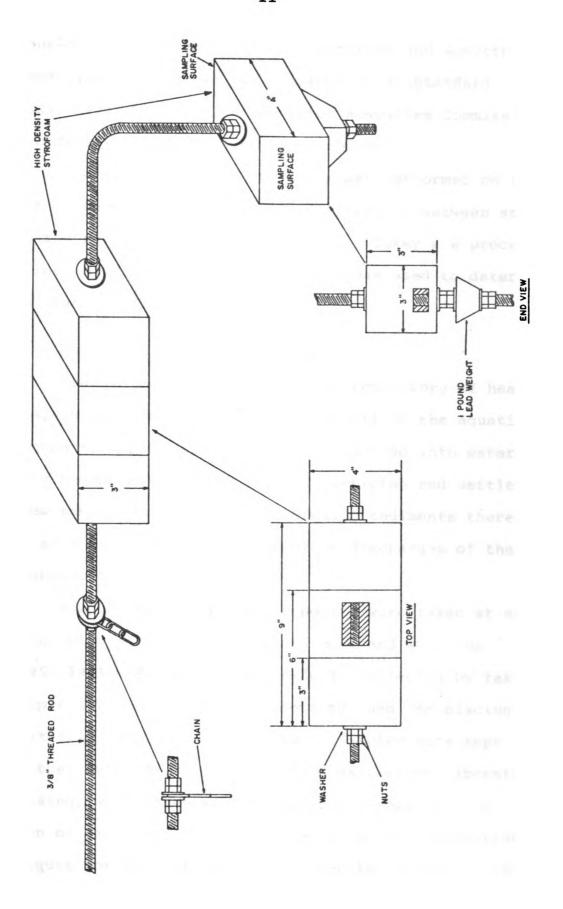
where P.I. = the pollution index value and X_1 through X_{20} equals the numerical values assigned to the twenty most pollution tolerant genera (Palmer, 1969). An index value

of 20 or more is evidence of high organic pollution, while a value of 15 to 19 is considered to be probable evidence of high organic pollution (Palmer, 1969). Lower figures indicate organic pollution is not high.

Periphyton

Periphyton is the total assemblage of plants growing on the surfaces of objects submerged in water (Young, 1945). Since periphyton, along with rooted aquatic plants, are considered the most important primary producers in a stream system, changes in periphyton production reflect changes in water quality.

Primary production can be calculated by determining the amount of chlorophyll <u>a</u> present in the periphyton growing on the substrate (Hynes, 1970). Chlorophyll <u>a</u> is the photosynthetic pigment in fresh water plants and is directly related to the amount of green plant material present. By comparing the amount of chlorophyll <u>a</u> produced in a given time period per unit area, the production rates in a stream can be determined.


Major factors influencing the amount of production are nutrients, light, turbidity, velocity, temperature, and toxicants. By selecting areas along the stream with similar physical conditions, major changes in productivity can be attributed to changes in nutrient levels within the water and/or presence or absence of toxic substances.

Artificial substrate samplers (Figure 2) used to measure primary production in this survey were constructed by bending a 22-inch length of 3/8-inch threaded rod at a right angle, making one arm about 15 inches long and the other about 7 inches long. Four blocks (3 x 3 x 4 inches) of high density styrofoam were connected to the rod, three on the long arm and one on the short arm. A one-pound lead weight was attached to the rod below the single block of styrofoam. The three blocks on the long side caused the sampler to float while the lead weight pulled the single block down below the water surface, thus providing substrate for periphyton.

After selecting appropriate locations, steel posts were driven into the stream bed for sampler attachment. Six-foot lengths of 1/4-inch chain were used for attachment allowing the samplers to move up and down with water level fluctuation.

Periphyton growing on the submerged block was collected three times at 14-day intervals as recommended by King and Ball (1966). Collections were made August 8, August 22, and September 5, 1973. Thin slices of the 3 x 3 inch ends of the submerged block were cut with a knife and placed into a 250-ml black bottle with 50 ml of 90 percent acetone. The black bottle was required to prevent the breakdown and decay of the chlorophyll a while enroute to the laboratory for analysis. Acetone dissolved the styrofoam and served as a chlorophyll extract. The

Artificial substrate utilized to sample periphytic algae at selected locations in Sycamore Creek in the vicinity of Mason and Lansing, Michigan, July 25-September 5, 1973. Figure 2.

.

acet

phot Meth

pest

data tion

desc

whic

meta envi

quic

in s

 $\mathsf{ser}_{\mathtt{V}}$

subs

stat

July

the in a

unti

in La

porti

techi

acetone-chlorophyll extracts were sonified and spectrophotometrically analyzed for chlorophyll <u>a</u> (Standard
Methods, 1971) by the Michigan Water Resources Commission
pesticide laboratory in Lansing, Michigan.

Two-way analysis of variance was performed on the data to determine if significant differences between stations and sampling dates had occurred. Tukey's w-procedure, described by Steel and Torrie (1960), was used to determine which stations differed.

Sediments

Organic sediments are a major repository of heavy metals, chlorinated hydrocarbons, and oil in the aquatic environment. These materials, if discharged into water quickly become attached to organic particles and settle out in slow moving or still water. Organic sediments therefore serve as a useful monitor of previous discharges of these substances.

Samples of the organic deposits were taken at each station (Figure 1) except stations MC-1 and WC-1, on July 25, 1973. Samples were carefully collected by taking the upper layer of organic sediment by hand and placing it in a sterile Whirl-Pak plastic bag. Samples were kept cool until they were returned to the MWRC wastewater laboratory in Lansing, where they were frozen until analyzed. A portion of each sample was analyzed by atomic absorption techniques for the following heavy metals: arsenic, cadmium,

chromium, copper, lead, mercury, nickel, and zinc. The remainder of each sample was analyzed for chlorinated hydrocarbon pesticides, phthalates, polychlorinated biphenyls (PCB's) and oil by using standard gas chromatography procedures. Sediment pH was also determined.

Fish Populations

On September 7, 1973, resident fish populations were examined at six selected locations (SC-1, SC-2, SC-5, SC-6, SC-7, and SC-8) on Sycamore Creek (Figure 1). Fish collections were made with a backpack electrofishing unit utilizing a 12-volt battery. Stunned fish were collected with nets and placed in a bucket until shocking was completed. Each area of stream, approximately 2000 square feet, was shocked for 45 minutes. Species identifications and tabulations were made on site with the exception of a few species which were labeled, preserved with 150 ml of a formalin solution (37% formaldehyde, 63% water and methanol), and returned to the MWRC biology laboratory in Lansing, Michigan, for identification.

The collected fish were categorized into the following trophic levels defined by Willson (1972):

Class 1

These fish are nondifferentiating bottom feeders. They live, grow, and multiply in clean water areas and will also thrive in waters of degraded quality. In low water quality areas the variety of macroinvertebrates is low but total numbers are very high. The straining of food organisms from sludge

deposits is easy and large quantities of food are available at little expense in energy.

Group 1: Fish in this group are moderate to large in size. They suck or rasp off bottom animals such as midges and aquatic worms from rocks, sand and bottom ooze, expelling substrate materials and consuming the animals. Examples of fish in this group are carp, suckers, sheepshead, and bullheads.

Class II These fish species are differentiating predators and are generally associated with clean water environments. They live, grow, and multiply best when a diverse macroinvertebrate food supply is available.

- Group 2: Fish in this group are small in size and as a result are restricted to feeding on smaller macroinvertebrates. They are generally classed as forage species. Examples of fish in this group are minnows, darters, shad, shiners, and chubs.
- Group 3: Fish in this group are moderate to large in size and are capable of utilizing the entire macroinvertebrate community in addition to fish in group 2 and fry of groups 3 and 4. Examples of fish in this group are crappies, bluegills, sunfish, perch, and catfish.
- Group 4: Fish in this group are large in size and utilize fish from groups 1, 2, 3, and 4 as their principal food source. They may also utilize larger macroinverte-brates from the benthic community, but fish comprise the major portion of food intake. Examples of fish in this group are pike, bass, bowfin, and burbot.

By categorizing fish into the above discrete trophic levels it is possible to utilize fish community structures in evaluating existing water quality conditions (Willson, 1972). A weighed trophic index (T.I.) is used in this

evaluation. T.I. = x(1) + x(2) + x(3) + x(4), where x = the number of fish species in a trophic group, and 1, 2, 3, and 4 = the trophic group numbers. Thus, species most dependent upon higher water quality conditions and a stable balanced community are given greater weight than those capable of withstanding degraded water quality and the resulting community imbalance. Higher trophic index values will therefore reflect more stable community structures and higher water quality conditions with lower trophic index values reflecting reduced water quality conditions.

Macroinvertebrates

Aquatic macroinvertebrates and their community structures are useful in evaluating water quality. Since these animals spend their entire life or parts of their life cycle (eggs, larvae, and/or pupae) in the water, they can reflect long term water quality conditions to which they have been exposed.

Generally, a natural unpolluted stream will support many different species but only a few individuals per species due to competition for food and living space (Gaufin and Tarzwell, 1956). In polluted streams many taxa are eliminated, but those that remain usually occur in high numbers due to lack of competition.

Qualitative macroinvertebrate samples were taken at all stations (Figure 1) on September 4-5, 1973. Samples were collected with triangular dip nets and by hand picking

from all habitats found at the station site. Time of collecting was approximately 30 minutes or until no new species were found with additional sampling. Samples were placed in quart jars, labeled, preserved with 100 ml of a formalin solution (37% formaldehyde, 63% water and methanol), and returned to the MWRC biology laboratory in Lansing, Michigan.

Quantitative samples were taken with modified

Hester-Dendy artificial substrate samplers at all stations

(Figure 1) except stations V-A and V-B. On July 25, 1973,

two samplers were suspended with wire in the water column,

approximately 6-8 inches from the bottom. These samplers

consisted of a five-inch eyebolt and 8 circular plates of

1/8 inch tempered hardboard with a diameter of 2 3/4 inches

(Figure 3). Small hardboard spacers (3/4" x 3/4" x 1/8")

were positioned so that 1/8, 1/4, and 3/8 inch spaces

existed between the plates. Plates and spacers were held

in place by a washer and hex nut. Each sampler had 0.061

square meters of surface area available for colonization by

macroinvertebrates.

On September 5, 1973, following six weeks of exposure, the substrates were carefully removed from the water by placing a #10 sized can with a U.S. Standard #30 mesh screened bottom below the sampler and slowly bringing it up around the sampler. The wire suspending the sampler was cut and the sampler and material in the bottom of the can were placed in a quart jar, labeled, and preserved by

Figure 3. Circular Hester-Dendy artificial substrate sampler colonized by macroinvertebrates in Sycamore, Mud, and Willow Creeks, vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973.

covering the sampler with 95 percent methyl alcohol. Samplers were returned to the MWRC biology laboratory in Lansing, disassembled, and the individual sampling components scraped with a putty knife into a container with a U.S. Standard #30 mesh screen bottom. After sieving and washing, the remaining material was placed in labeled vials containing 75 percent ethyl alcohol.

Macroinvertebrates from both the qualitative and quantitative samples were identified and tabulated. Each identified taxon was assigned a tolerance status suggested by the United States Environmental Protection Agency (Anon., 1973).

Tolerance status refers to the animal's relative ability to withstand and/or respond to adverse environmental conditions. Individual tolerances are generally derived from an animal's reaction to organic wastes and attendant oxygen depletion or modification of bottom deposits.

Tolerance status is generally defined by the Michigan Water Resources Commission as:

Intolerant--organisms whose growth and development are dependent upon a narrow range of environmental conditions. They are rarely found in areas of organic enrichment. They cannot adapt to adverse situations and are replaced by less sensitive organisms if the quality of their environment is degraded.

Facultative--organisms with the ability to survive over a wide range of environmental conditions. They possess "medium" tolerance and often respond positively to moderate organic enrichment but cannot tolerate severe environmental stresses.

Tolerant--organisms that can grow and develop within a wide range of environmental conditions. They are often found in water of poor quality. These species are generally insensitive to a variety of environmental stresses.

Benthic communities can be compared at the various stations by calculating a biotic index (Beck, 1955) which weights the number of species according to their tolerance. The biotic index (BI) is calculated by doubling the number of intolerant species and adding this to the number of facultative species (BI = 2I + F). Values for the biotic index normally range between zero and 40, with polluted streams usually having values less than 10 (Beck, 1955). Biotic indices were calculated for both the qualitative and quantitative samples.

In addition to the tolerance status, the diversity of the animals present in a given benthic community is significant. Species diversity was determined for the quantitative samples using Shannon's formula as described by Patten (1962):

$$\overline{d} = -\sum_{i=1}^{s} n_i / N \log_2 n_i / N$$

where "N" is the total number of organisms, " n_i " is the number of individuals per species, and "s" is the number of species. The value of \overline{d} ranges from zero to any positive number. Wilhm (1970) states that \overline{d} rarely exceeds nine and is generally between three and four in clean water and less than one in polluted stream areas.

When degradation is at slight to moderate levels, \overline{d} lacks the sensitivity to demonstrate differences. Differences can often be detected by calculating equitability at each station. The equitability formula (Lloyd and Ghelardi, 1964) used was:

$$e = \frac{s'}{s}$$

where s = number of taxa in the sample, and s' = the number of species expected from a community that conforms to the MacArthur's model in Lloyd and Ghelardi (1964). Streams unaffected by oxygen demanding wastes generally have "e" values ranging from 0.6 to 0.8 while streams with even slight levels of degradation have "e" values generally below 0.5 (Anon., 1973).

RESULTS

Habitat

Station habitat descriptions, locations, and observations are shown in Table 1. From these data the immediate deleterious effects of the Mason WWTP are apparent. Sand and gravel, the usual substrate occurring in Sycamore Creek, was covered with black anaerobic sludge for a distance of greater than 2.5 miles below the WWTP. Clear water above the WWTP became turbid and had a septic smell for a distance greater than 2.5 miles below the WWTP.

Phytoplankton

Data from the three sampling runs are presented in Appendix A, Tables 1, 2, and 3. July algal abundances ranged from 680 (SC-5) to 1419/ml (SC-6). Organisms per ml decreased from 1206 above the Mason WWTP to 904 immediately below the WWTP at station SC-3. Decreases in algal counts continued downstream to station SC-6, where the highest counts occurred (1419/ml). Diatoms comprised over 93 percent of the algal communities at each station except station SC-9 where diatoms made up 87 percent of the community. Green (Chlorophyta) and blue-green (Cyanophyta)

TABLE 1.	Station locat. in the vicini:	ion and h ty of Mas	abitat descr on and Lansi	iptions for .ng, Michigan	sampling sites on , July 25 to Nove	TABLE 1Station location and habitat descriptions for sampling sites on Sycamore, Willow, and Mud Creeks and Vevay Drain in the vicinity of Mason and Lansing, Michigan, July 25 to November 8, 1973.	Creeks and Vevay Drain
Station Number	Station Location	Flow ft/sec	Average Width (ft)	Average Depth (ft)	Substrate	Vegetation	Other Observations
sc-1	Kipp Road South of Mason	1.0	8.0	1.0	Gravel and sand	Sparse emergent grasses; shrubs and trees abun- dant on stream banks	Water was clear; numerous minnows (Cyprinidae) were observed
WC-1	Upstream from U.S. 27	0.6-1.0	7.0	1.0	Sand with small amounts of gravel	No aquatic macrophytes; tall grass and shrubs on stream banks	Water was clear
SC-2	E. cemetery entrance above Mason WWTP	1.0-2.0	10.0	1.5	Sand, gravel, and rock	No aquatic macrophytes; grass, shrubs, and trees on stream banks	Water was clear; minnows and suckers (Castostomidae) were observed
sc-3	100 feet below Mason WWTP	0.4-1.0	12.0	2.5	Sparse sand and gravel; huge deposits of sludge	Sparse emergent grasses; grass, shrubs, and trees on stream banks	Water was grayish-white in color; water and sludge had septic odor; minnows were observed
SC-4	Howell Road (0.7 miles below Mason WWTP)	0.5	18.0	3.0	Sand covered with huge deposits of sludge	Emergent grasses and Typha; grass and shrubs on stream banks	Water was grayish-white in color; water and sludge had septic odor
V-A	Hogsback Road above Dart Container Company	1.0	4.0	1.0	Sand, gravel, and sediment	No aquatic macrophytes; grass and shrubs on stream banks	Water was clear; oil released when sediment was disturbed; periphytic growth abundant
V-B	Dart Road below Dart Company	1.0	4.0	1.5	Sand, gravel, and sediment	No aquatic macrophytes; grass and shrubs on stream banks	Water was clear; oil on water and in sediment periphyton abundant

Water was clear; minnows were observed Water was clear; minnows were observed Water was slightly turbid; oil in the sedi-Water grayish-white in color; traces of oil in the sediment ment, periphytic growth abundant Water was clear; water and silt had a slight septic odor to them Observations Water was slightly turbid Emergent grasses; grass grew on the stream banks phytes; shrubs and grass grew on stream banks Sand, gravel, No aquatic macrophytes; and rocks; small shrubs and trees grew deposits of sed- on banks iment along Emergent grasses; grass and shrubs on stream bank (Nasturtium officinale) present in areas of the No aquatic macro-Vegetation Emergent grasses; grass on stream Watercress stream banks Sand and gravel covered with sludge and rocks; sediment along the Sand, gravel, silt, and a few rocks Sand and logs Sand, gravel, Substrate and sediment Sand, rock, eddes edges Average Depth (ft) 1.5 4.0 3.0 2.5 4.0 4.0 Average Width (ft) 25.0 25.0 20.0 10.0 30.0 20.0 0.6 - 1.00.6-1.0 1.0-2.0 Flow ft/sec 1.5 9.8 0.5 Mt. Hope Rd. (11.0 miles below Mason Harper Road (2.5 miles below Mason Holt Road (4.0 miles below Mason Jolly Road (9.5 miles below Mason Station Location miles below Mason WWTP) Pine Tree Road (7.5 Phillips WWTP) WWTP) WITP) WWIP Road Station Number 9-**2**S SC-5 MC-1 SC-7 SC-8 SC-9

TABLE 1.--Continued.

algae combined, comprised less than 5.0 percent of the algal communities at all stations except station SC-9, where these groups comprised 10 percent of the community. Flagellates comprised less than 3.0 percent of the algal communities. Palmer's pollution index ranged from 6 to 9 (Appendix A, Table 1).

September algal abundances ranged from 961 (SC-1) to 2792/ml (SC-6) in the main stream. Diatoms comprised over 90 percent of the algae except for stations SC-4 (70%) and MC-1 (84%). Green and blue-green algae combined, comprised less than 6.0 percent of all samples. Flagellates comprised less than 4.0 percent of the algal communities except at stations SC-4 (25%) and MC-1 (15%). Palmer's index values ranged from 6 (SC-5) to 11 (SC-4) in the mainstream. Vevay Drain had an index value of 3 below Dart Container Company.

November algal abundances ranged from 95 (SC-1) to 432/ml (SC-4). Diatoms comprised over 90 percent of the algal community at all stations, except stations SC-3 (33%), SC-4 (79%), and SC-8 (88%). Green and blue-green algae comprised less than 5.0 percent of the algal communities, except at stations SC-2 (9%) and SC-8 (8%). Flagellates comprised less than 6.0 percent of the algal communities except at stations SC-3 (62%) and SC-4 (16%). Palmer's pollution index ranged from 3 to 6.

Nitzchia and Navicula, ranked by Palmer (1969) as the sixth and seventh genera most tolerant to pollution,

were dominant at all stations on all sampling dates.

Navicula was generally more abundant than Nitzchia at most stations and sampling dates except in September when Nitzchia was more abundant than Navicula at stations SC-4 and SC-5.

Euglena, the most tolerant genus to organic pollution (Palmer, 1969) occurred in low numbers (0-36 per ml) at all stations and sampling dates except at station SC-4 where there were 260 per ml in September. In November, Euglena was virtually absent. It was observed at stations SC-4 and V-B in the qualitative scan, but was only found at station SC-8 in the quantitative count (1 per ml).

Periphyton

Periphyton data are presented in Appendix B,

Table 1. The over-all mean standing crops of periphyton

at stations 1, 5, 6, 7, and 8 were 1.70, 6.75, 6.72, 3.90,

and 4.61 ug/cm² of chlorophyll a, respectively. Periphyton

standing crop was approximately 4 times greater at stations

SC-5 and SC-6 below the Mason WWTP than above Mason at

station SC-1.

Two-way analysis of variance showed a significant (95%) difference of periphyton standing crop between the stations (Appendix B, Table 2). Data analysis using Tukey's w-procedure showed periphyton standing crops at stations SC-5 and SC-6, below the Mason WWTP, were

significantly (90%) greater than the periphyton standing crop at station SC-l above Mason (Appendix B, Table 3).

Sediments

Heavy metal concentrations found in organic sediments from Sycamore Creek and Vevay Drain are given in Appendix C, Table 1. Mean concentrations of all metals except cadmium were higher than Michigan background levels (Hesse and Evans, 1972). Cadmium was below the limits of detectability (0.2 mg/kg) at all stations except stations SC-3 and SC-9 which had respective wet weight values of 0.8 and 0.6 mg/kg.

Mean arsenic (3.3 mg/kg) and mercury (3.2 mg/kg) concentrations were 1.7 and 11.0 times greater than the respective mean background levels plus two standard derivations. Other metal concentrations exceeded background levels by factors ranging between the above extremes.

Chromium, copper, lead, mercury, nickel, and zinc concentrations increased between stations SC-1 and SC-2. Lead was the only metal which increased substantially between these stations (29.7 to 102.8 mg/kg). All metal concentrations increased between station SC-2 above the Mason WWTP and station SC-3 below the WWTP. The extremes were arsenic and nickel which increased 1.9 times (2.1 to 4.1 mg/kg and 19.3 to 36.0 mg/kg, respectively) and copper which increased 5.5 times (27.8 to 153.2 mg/kg). Concentrations of all metals, with the exception of copper,

which remained about the same, decreased between stations SC-3 and SC-4, but were still higher than levels found at stations SC-1 and SC-2 above the Mason WWTP. Metal concentrations generally declined in a downstream direction to Pine Tree Road (SC-7). Below this station all metal concentrations increased. Substantial increases in lead (50.4 to 360.4 mg/kg) and zinc (137.6 to 303.3 mg/kg) occurred between stations SC-8 and SC-9.

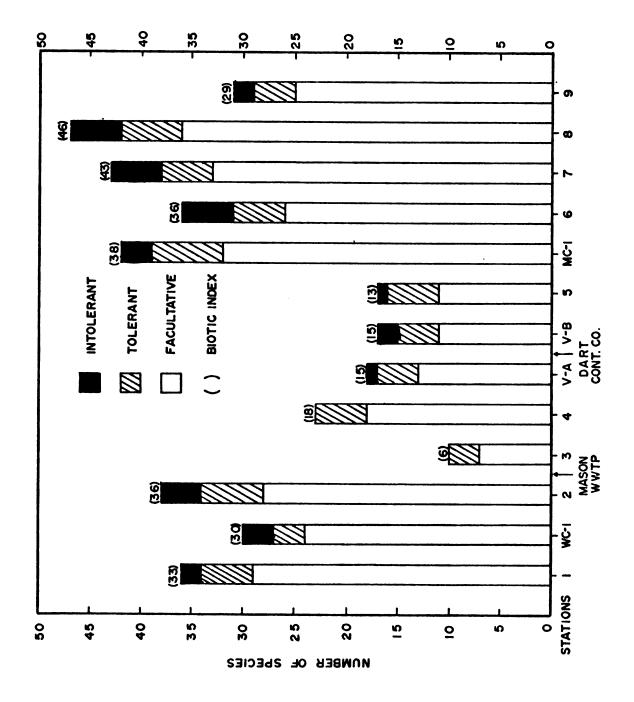
With the exception of cadmium which was below the limit of detectability, metal concentrations in Vevay Drain below Dart Container Company were approximately double those found above Dart Container Company. These levels were substantially lower than the levels found in Sycamore Creek (SC-4) above the confluence of the two streams.

No unusually high concentrations of chlorinated hydrocarbon pesticides, polychlorinated biphenyls (PCB's) and phthalates (DEHP) were found in any of the organic sediment samples (Appendix C, Table 2). Sixty-two percent of the concentrations of the above substances were below the limits of detectability. The phthalate concentration (5.2 ppm) below the Mason WWTP at station SC-3 was high for streams but was average for values detected below Michigan WWTPs (Hesse, 1973).

The highest oil concentration (841 ppm) was found below Mason at station SC-2 above the Mason WWTP. Oil concentrations increased from 412 to 648 ppm below Dart Container Company in Vevay Drain.

Sediment pH in Sycamore Creek and Vevay Drain ranged from 6.8 to 7.4 (Appendix C, Table 2).

Fish Populations


Data from electofishing are presented in Appendix D, Table 1. Fish populations were adversely effected below the Mason WWTP discharge. The number of species decreased from 10 at station SC-2 immediately above the WWTP to 1 at station SC-5, 2.5 miles below the WWTP. Fish numbers corresponding to the above stations also decreased from 78 to 6, respectively. Fish populations partially recovered at station SC-6 where 6 species and 18 individuals were collected. Station SC-7 had the highest quality population of fish with 58 individuals and 13 species, including 2 species in group 4. Station SC-7 had the highest trophic index value (28) while station SC-5, 2.5 miles below the Mason WWTP had the lowest trophic index value (2).

Macroinvertebrates

Qualitative sample data are presented in Appendix D, Table 2. As illustrated in Figure 4, macroinvertebrates decreased in number of species from 38, with 4 intolerant forms, above the Mason WWTP (SC-2) to 9 species, with no intolerant forms, immediately below the WWTP (SC-3).

Biotic indices for these stations decreased from 36 to 6, respectively. Species numbers increased at station SC-4 to 23, with 5 tolerants and no intolerants. Two tolerant taxa (Oligochaeta, Chironomus sp) made up over 85 percent of the

Total number of species, proportion of each tolerance group, and biotic index determined from qualitative samples collected in Sycamore Creek, Willow Creek, Mud Creek, and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, Sept. 4-5, 1973. Figure 4.

individuals collected at station SC-4. Seventeen species with one intolerant, were collected at station SC-5, 2.5 miles below the WWTP.

Number of species and biotic index increased substantially between stations SC-5 and SC-6 (Figure 4).

Thirty-six species were collected at station SC-6, resulting in a biotic index of 36. Forty-two species were collected in Mud Creek (MC-1) which enters Sycamore Creek between stations SC-5 and SC-6. Stations SC-7 and SC-8 continued to show improvement with station SC-8 being the highest quality water and habitat found (47 species, BI=46).

Species dropped substantially between stations SC-8 and SC-9. Thirty-one species were collected at station SC-9, giving a biotic index of 29.

Quantitative data from Hester-Dendy artificial substrates are given in Appendix D, Table 3 and summarized in Appendix D, Table 4. Total number of macroinvertebrate species decreased from 23 at station SC-2 above the WWTP to 5 species at stations SC-3 and SC-4 below the WWTP. Species numbers increased to 13 at station SC-5 and to 28 at SC-6. The highest number of species were collected in the tributaries at stations WC-1 (29 species) and MC-1 (30 species).

Mean numbers of macroinvertebrate species were significantly (95%) lower at stations SC-3 and SC-4 immediately below the Mason WWTP (Appendix D, Table 7). Mean number of macroinvertebrate species was 16.5 at

station SC-2 immediately above the WWTP and decreased to

4.5 and 4.0 at stations SC-3 and SC-4 respectively

(Appendix D, Table 5). Midges (Chironomidae) comprised

100 percent of the individuals at station SC-3 (Appendix D,

Table 4). One midge species (Chironomus sp) comprised over

95 percent of the individuals at station SC-4.

As illustrated in Figure 5, estimated number of macroinvertebrates per square meter increased substantially between stations SC-1 (983 individuals) and station SC-4 (4713 individuals). Estimated number of macroinvertebrates per square meter decreased substantially at station SC-5 (2058 individuals) but the number of species increased from 5 to 13 between stations SC-4 and SC-5, respectively. Number of macroinvertebrates increased in a downstream direction below station SC-5 and SC-8 where the highest numbers were collected. At station SC-8, estimated number per square meter was 7036. Of the total number of individuals at station SC-8, 40 percent were sensitive mayflies (Ephemeroptera) and 48 percent were caddisflies (Trichoptera). Estimated number of macroinvertebrates per square meter substantially decreased at station SC-9 to 1386 with all mayflies and nearly all caddisflies eliminated (Appendix D, Table 4). Midges comprised 96.5 percent of the organisms (Appendix D, Table 4).

Species diversity values were lowest at stations SC-3, SC-4, and SC-5 below the Mason WWTP (Figure 6). These stations had respective species diversity values of

Figure 5. Estimated number of organisms/m², proportion of each tolerant group, and the number of species collected on circular Hester-Dendy artificial substrate samplers placed in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973.

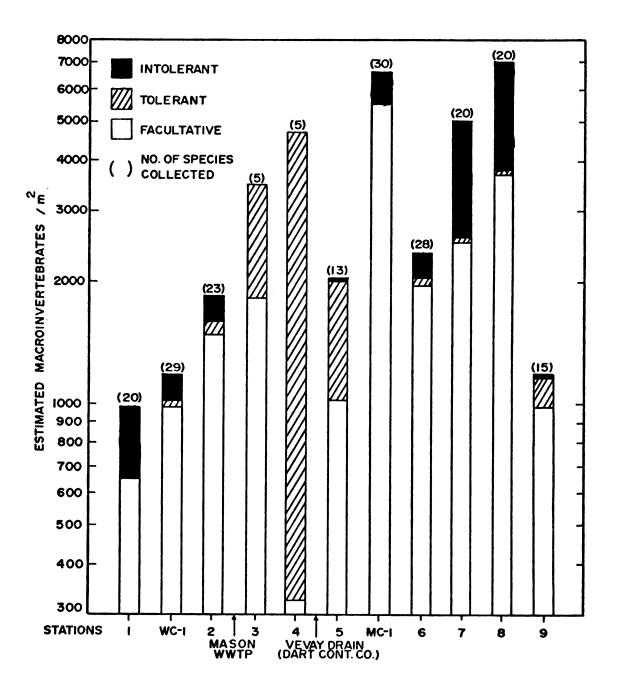
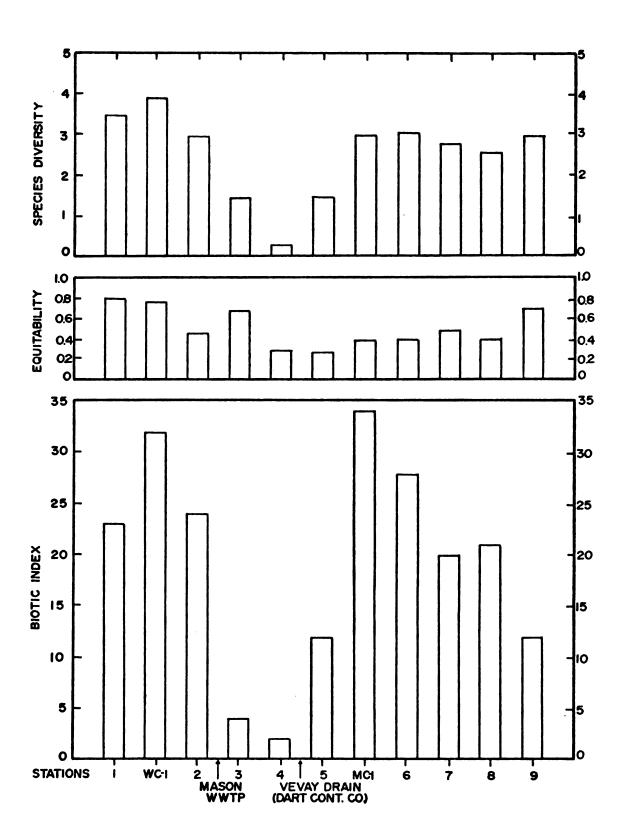



Figure 6. Species diversity, equitability, and biotic index values determined from colonization of organisms on circular Hester-Dendy artificial substrate samplers placed in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973.

1.4, 0.3, and 1.5 (Appendix D, Table 6) and were significantly (95%) lower than all other stations (Appendix D, Table 8). Station SC-4 was significantly (95%) lower than stations SC-3 and SC-5. All other species diversity values ranged from 2.6 to 3.9.

High equitability values (>0.75) were found above Mason at stations SC-1 and WC-1. Equitability values decreased to 0.45 at station SC-2 immediately above the Mason WWTP. Stations SC-4 and SC-5 below the Mason WWTP had equitability values of 0.28, the lowest values found. Stations MC-1, SC-6, SC-7, and SC-8 had equitability values ranging from 0.38 to 0.47. Station SC-9 had an equitability value of 0.69, which is a substantial increase from station SC-8 (0.41).

Biotic index values (Figure 6) were highest in the tributaries. Willow Creek had a value of 32 and Mud Creek a value of 34. Station SC-2 immediately above the Mason WWTP had a biotic index value of 24 while stations SC-3 and SC-4 below the WWTP had values of 4 and 2, respectively. Station SC-6 below the confluence of Mud Creek had a biotic index value of 28, due to insect drift from Mud Creek and an increase in water quality as a result of higher quality dilution water entering via Mud Creek. Biotic index values decreased from 21 at station SC-8 to 12 at station SC-9.

DISCUSSION

Phytoplankton data did not decisively show changes in water quality in relation to the Mason WWTP. Although algal densities fluctuated, community structure was generally uniform throughout and dominated by diatoms tolerant of organic enrichment. Diatoms, which are less favored by sewage than green and blue-green algae (Wager and Schumacher, 1970) comprised slightly higher concentrations of the algal community above the Mason WWTP than below the WWTP in July and September. In November, substantial decreases in diatoms at stations SC-3 and SC-4 below the WWTP occurred.

Increased primary production below the Mason WWTP indicated increased nutrients in the stream. For at least 4 miles below the WWTP production was 4 times greater than above. Below this 4-mile stretch, production was at least 2 times greater than above the WWTP. When there is an excessive amount of primary production, fish and macro-invertebrates mortality may occur because of severe oxygen depletion and excess carbon dioxide (Hite, 1973). As can be seen in Figure 5, this did not occur in Sycamore

Creek. The number of macroinvertebrates per unit area generally increased in a downstream direction to station SC-8, where the highest numbers occurred.

All metal concentrations increased between station SC-2 above the Mason WWTP and station SC-3 directly below the WWTP. Metal concentrations generally declined in a downstream direction below SC-3 to SC-7, a distance of 7.5 miles. Concentrations at this point were still higher than those found above Mason at station SC-1. Below station SC-7, all metal concentrations increased from unknown sources.

With the exception of cadmium, mean metal concentrations in the organic sediments were higher than Michigan background levels (Hesse and Evans, 1972). Sediment metal concentrations above the Mason WWTP were higher than those found in nonindustrial streams in Illinois and metal concentrations below the WWTP were substantially higher than those found in the Illinois River (Mathis and Cummings, 1973).

Lethal metal concentrations are extremely difficult to determine because of limited work in this area and because lethal concentrations vary with pH, temperature, water hardness, and other chemical parameters (Doudoroff and Katz, 1953). Synergistic effects with other metals also vary the lethal levels of metals (Doudoroff, 1952).

Mathis and Cummings (1973) found that metal concentrations in the sediment were three to four orders of magnitude greater than concentrations in the water. Assuming this same relationship for Sycamore Creek, the nickel concentration at station SC-3 and SC-4 would be approximately equal to the concentrations found by Garton (1968) to be detrimental to aquatic macroinvertebrates. Also, assuming this same relationship, concentrations of arsenic, cadmium, copper, and zinc at stations SC-3 and SC-4 range from one to two orders of magnitude lower than concentrations permitted in drinking water (McKee and Wolf, 1963). Chromium and mercury concentrations at stations SC-3 and SC-4 were equal to those concentrations permitted in drinking water, while lead was approximately one order of magnitude higher than permitted (McKee and Wolf, 1973). When lead concentrations decreased to permissible drinking water standards (SC-6, SC-7, and SC-8) the macroinvertebrate communities improved (Appendix D, Tables 2 and 3). When the lead concentrations again exceed the permissible drinking limits at station SC-9, the macroinvertebrate community declines again. Lead may not be the major factor causing the macroinvertebrate responses, but it is worth considering.

Fish data indicated reduced water quality below the Mason WWTP. Fish were virtually eliminated for 2.5 miles below the WWTP. Six fish of one species (<u>Umbra limi</u>) were collected at station SC-5. Fish habitat was ideal in the vicinity of station SC-5, characterized by fallen logs,

deep holes, and isolation from human populations, but high quality fish communities were absent.

Chlorine was probably the primary waste product of the Mason WWTP which eliminated the fish. Zillich (1972) indicates that free chlorine concentrations greater than 0.05 mg/l are lethal to many fish species. Basch and Truchan (1974) found that continuous exposure to chlorine concentrations greater than 0.02 mg/l could be detrimental to intolerant warmwater fish. Basch et al. (1971) found the average chlorine residual of the Mason WWTP's effluent to be 2.64 mg/l. They also found chlorine concentrations of 0.046 and 0.013 mg/l at stations SC-4 and SC-5 respectively. No chlorine concentrations were measured during this survey. However, there are four reasons why chlorine might have been the primary factor for the absence of fish: (1) The chlorine concentrations measured by Basch et al. (1971) were probably diluted by high stream flows while concentrations during this survey were probably less diluted because of low stream flows. (2) Fish in warmer water could be effected by lower chlorine concentrations than fish in cooler waters (Gordon, 1974) (Basch et al. conducted survey in the spring). (3) Prior to the time of fish sampling, mechanical failures occurred within the WWTP (Marquardt, 1974) so possibly more chlorine was added to the effluent due to the increased volume of raw sewage. (4) Possibly

¹James Marquardt, Operator of Mason WWTP, Personal Communication, Feb. 7, 1974.

the chlorine concentrations were not lethal to the fish, but stressed them so they avoided the four mile stretch of stream below the Mason WWTP.

Other possible factors effecting the fish population are: (1) Low oxygen concentrations. (2) Concentrations of heavy metals in the water and sediment. (3) Little food was available to fish that hunt by sight because the dominant macroinvertebrates were Oligochaetes and Chironomus which burrow into the sediment.

Macroinvertebrate data indicated reduced water quality below the Mason WWTP. The number of species and the number of intolerant individuals were greatly reduced or eliminated for a distance of at least 2.5 miles. Substantial improvements occurred in the macroinvertebrate community at station SC-6, a distance of 4 miles below the WWTP. At this point sludge was no longer present and Mud Creek's high quality water had diluted the poor quality water of Sycamore Creek.

Sludge was probably the dominant factor involved in altering the macroinvertebrate community. Ellis (1936) states that silt alters aquatic communities through screening out light, changing heat radiation, and retaining organic materials and other substances which create unfavorable conditions. Gaufin (1958) also found that the settling of fine solids form a blanket over the stream bottom, thus reducing the number of available habitats.

Factors discussed in eliminating the fish population could also have been involved in altering the macroinvertebrate community.

The immediate effects of the macroinvertebrate community caused by the Mason WWTP were similar to the effects of other wastewater treatment plants (Mackenthum, 1969; Olive and Dambach, 1973; Gaufin and Tarzwell, 1956). Mackenthum (1969) found that organic pollutants in the absence of toxic materials cause dramatic increases in the densities of oligochaetes and chironomids. Olive and Dambach (1973) found that these organisms (oligochaetes and chironomids) accounted for over 90 percent of the invertebrate community. These two groups made up over 90 percent of the invertebrates collected at stations SC-3 and SC-4 in both the qualitative and quantitative samples (Appendix D, Tables 2 and 3). Gaufin and Tarzwell (1956) found that there were usually one-third to one-sixth as many species below a sewage plant than above and that these organisms (Hemiptera, Diptera, Coleoptera) usually have special respiratory modifications that permit them to survive in poorly oxygenated waters. The organisms found below the Mason WWTP were chiefly in these insect orders (Appendix D, Tables 2 and 3). The dominant organism at stations SC-3, SC-4, SC-5 was Chironomus which possess hemoglobin that acts in both the transportation and storage of oxygen (Walshe, 1950).

This survey showed reduced water quality below the Mason WWTP which had substantial degrading effects on the stream biota and general stream aesthetics for at least 2.5 miles. Lesser effects occurred for an additional 1.5 miles.

LITERATURE CITED

LITERATURE CITED

- Anon. 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents. U.S. Environ. Protection Agency, Cincinnati, Ohio. 181 pp.
- Basch, R., and J. Truchan. 1974. Calculated residual chlorine concentrations safe for fish. Mich. Water Res. Comm., Dept. of Natural Res. Tech. Bull. 74-2. 29 pp.
- Basch, R.; M. Newton; J. Truchan; and C. Fetterolf. 1971. Chlorinated municipal waste toxicities to rainbow trout and fathead minnows. Environ. Protection Agency Water Poll. Contr. Res. Series 18050 GZZ. 49 pp.
- Beck, W. 1955. Suggested method for reporting biotic data. Sew. and Ind. Wastes 27:1193-96.
- Doudoroff, P. 1952. Some recent developments in the study of toxic industrial wastes. Proc. 4th Annual Pacific N.W. Ind. Waste Conf., State College (Pullman, Wash.). <u>In Garton</u>, R. 1968. Ph.D. Thesis, Mich. St. Univ., E. Lansing.
- Doudoroff, P., and M. Katz. 1953. Critical review of literature on the toxicity of industrial wastes and their components of fish. Sew. And Ind. Wastes 25:802-39.
- Ellis, M. 1936. Erosion silt as a factor in aquatic environments. Ecology 17:29-42.
- Gaufin, A. 1958. The effects of pollution on a midwestern stream. Ohio J. Sci. 58:197-208.
- Gaufin, A., and C. Tarzwell. 1956. Aquatic macroinvertebrate communities as indicators of organic pollution in Lytle Creek. Sew. and Ind. Wastes 28:906-24.

- Gordon, M. 1972. Animal physiology: principles and adaptations. Macmillan Publ. Co. Inc., New York. 592 pp.
- Hesse, J. 1973. Phthalate surveillance in Michigan waters. Mich. Water Res. Comm., Dept. of Natural Res. (Mimeographed) 9 pp.
- Hesse, J., and E. Evans. 1972. Heavy metals in surface waters, sediments and fish in Michigan. Mich. Water Res. Comm., Dept. of Natural Res. 58 pp.
- Hite, R. 1973. Michigan salmonid hatchery water quality evaluation 1972. Mich. Water Res. Comm., Dept. of Natural Res. 234 pp.
- Hynes, H. 1970. The ecology of running waters. Univ. of Toronto Press. 555 pp.
- King, D., and R. Ball. 1966. A quantitative and qualitative measure of awfuachs production. Trans.

 Amer. Micros. Soc. 85:232-40.
- Lloyd, M., and R. Ghelardi. 1964. A table for calculating the "equitability" component of species diversity.

 J. Anim. Ecol. 33:217-25.
- Mackenthum, K. 1969. The practice of water pollution biology. U.S. Dept. Int., Fed. Water Poll. Contr. Admin. 281 pp.
- Mathis, J., and T. Cummings. 1973. Selected metals in sediments, water and biota in the Illinois River. J. Water Poll. Contr. Fed. 45:1573-83.
- McKee, J., and H. Wolf. 1963. Water quality criteria. 2nd edition. Calif. State Water Quality Contr. Bd., Pub. No. 3-A. 548 pp.
- Olive, J., and C. Dambach. 1973. Benthic macroinvertebrates as indices of water quality in Whetstone Creek, Morrow County, Ohio. Ohio J. Sci. 73(3):124-49.
- Palmer, C. 1969. A composite rating of algae tolerating organic pollution. J. of Phycol. 5:78-82.
- Patrick, R. 1948. Factors effecting the distribution of diatoms. Bot. Rev. 14:473-524.

- Patten, B. 1962. Species diversity in net phytoplankton of Raritan Bay. J. Mar. Res. 20:57-75.
- Riley, C. 1972. A continuous-flow bioassy of Dart Container Company. Mich. Water Res. Comm., Dept. of Natural Res. (Mimeographed). 7 pp.
- Sokal, R., and F. Rohlf. 1969. Biometry. W. H. Freeman and Co., San Francisco. 776 pp.
- Standard methods for the examination of water and wastewater. 1971. 13th edition. Am. Public Health Assoc., Inc., New York. 874 pp.
- Steel, R., and J. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill Book Co., Inc., New York. 481 pp.
- Wager, D., and G. Schumacher. 1970. Phytoplankton of the Susquehanna River near Bringhamton, New York: seasonal variations: effects of sewage effluents. J. of Phycol. 6:110-17.
- Walshe, B. 1950. Hemoglobin function, Chironomus (Diptera). J. Exp. Biol. 27:73.
- Wilhm, J. 1970. Range of diversity index in benthic macroinvertebrate populations. J. Water Poll. Contr. Fed. 42:221-24.
- Willson, R. 1972. Biological investigations of Hughes and Lake Drains and Brent Run, Genesee County, Michigan. Mich. Water Res. Comm., Dept. of Natural Res. (Mimeographed). 14 pp.
- Young, O. 1945. A limnological investigation of periphyton in Douglas Lake, Michigan. Trans. Am. Micros. Soc. 64:1-20.
- Zillich, J. 1972. Toxicity of combined chlorine residuals to freshwater fish. J. Water Poll. Contr. Fed. 44(22):212-19.

APPENDIX A

PHYTOPLANKTON DATA

Table Al. Phytoplankton densities in Sycamore Creek and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, July 2, 1973. Data expressed in organisms/ml.

Stations:	-	Tomos and	100 5+		Vous Danie	Vousin Design					
Algal Station Taxa Location:	Kipp Rd Above Mason	Entrance above	Below Mason WWTP	Howell Road	Above Dart Company	Below Dart Company	Harper Road	Holt Road	Pine Tree Road	Jolly Road	Mt. Hope Road
Bacillariophyceae (Diatoms)											
Achnanthes sp.	45	62	833	83	151	169	38	55	26.6	40.	98°
phone sp.	× 0×	8 2	S -c	+	0 00	0	9	£ 80	3.5	2	•
occone is sp.	13	36	13	47	91	80	56	62	39	23	91
clotella sp.	53	56	4	44	44	45		23	23	20	32
Cymatopleura Sp.	•	~ œ		18	80			91	0.01		n &
Diatoma Sp.	6	•			00			80			
Fragilaria sp.		&	13	2	•	56	56	2	61	21	1
omphonema sp.	23	8	8.8	52	33	29	13	23	9	27	
ros igma sp.	•		6	2	•	12	81	3	75	2.5	13.0
ridion sp.	26.0	•		53	23.0	18	<u>.</u> w	78	*	22	8
Navicula sp.	295	549	400	255	226	204	234	546	326	525	343
idium sp.			۳,	۳;	:		۳;	:	•	2	
tzschia sp.	159	278	60.	4 %	/21	2 6	23	400	382	667	6/1
Knolcospnenia sp.	2	‡ «	25	<u>o</u> .		2	3	3	S		
Stephanodiscus sp.								23	12		13
rirella sp.	=	60	13	18	80		;		2		91
Symedra sp.	∞	36	20	18	83	. 107	56	22	0	0	&
Undetermined centrics		-	20	8	31	56	52	25.0	10	23	
determined permares		5	3								
Chlorophyta (Greens)					•		u	4	•	91	4
Closterium sp.		nm			•		,	,	•	2	. "
Coelastrum sp.						•	,			m	
ucigenia sp.					7	7 m	7				
cystis sp.											e
enedesmus sp.		e		12		ω ·	23	21	23	56	45
Undetermined coccold		v.				•					o vo
Cyanophyta (Blue-greens)											01
Undetermined coccoid											13
determined filamentous	e		m								
Flagellates					,				,		
Ulhobryon sp.	ď				•		6	10	າໝ	10	8
Peridinium sp.			6				. ,				
acus sp.					e	•	m		:	9	
Irachelomonas sp. Undetermined	n		٣			0	nm	<u>.</u> w	2	<u>o</u>	213
		1206	•00	030	1122	1220	689	9191	1113	1180	126
local number of organisms	216	9071	500	6	1	1	}				
Percent Diatoms	98.58	98.68	99.01	97.59	98.93	97.97	93.68	95.21	95.06	93.82	86.87
Percent Greens	33.0	5.	24 0	24.7	÷	60.1	20	30		9.0	3.04
Percent Flagellates	1.10	00	0.67	0	0.54	0.65	1.77	2.75	2.16	2.38	2.94
Species Diversity (d)	2.06	2.70	2.93	3.32	2.59	2.93	3.16	3.45	3.41	17.2	3.20
		,									
		•	•								

Table A2. Phytoplankton densities in Sycamore Creek, Willow Creek, Mud Creek, and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan September 5, 1973. Data expressed in organisms/ml.

30013830												
Algal Station Iaxa Location:	Kipp Rd. Above Mason	Upstream from US-127	E. Cemetery Entrance above Mason WMTP	Howell Road	Vevay Drain Above Dart Company	Vevay Drain Below Dart Company	Harper Road	Phillips Road	Holt Road	Pine Tree Road	Jolly Road	Mt. Hope Road
Bacillariophyceae (Diatoms) Achnanthes sp.	81,	64.	2.5	5,	94.	36		42	62	16	17.7	42
Asterionella sp.	n	15	6	n	2				8	22	2	;
Caloneis sp.	36	2	101		80	!		153	109	508 508	120	2
clotella sp.		39	62	•	41		_	ສຳ	47	75	112	211
Cymbella sp.		13	າຂ	5				•				
agilaria sp.	;	92	æ :	;	5	:	;	:	\$;	8	23
omphonema sp.	8	97	g ~	2	ŝ	3.	- Y	2	<u> </u>	c 4	82	100
Helosira sp.	51	ĸ	•		so;		<u>.</u> •	;	20	:	; ;	56
ridion sp.	æ 3			9	5 5	6	9	52	290	223	623	123
ivicula sp.	- °	3	<u> </u>	817	<u>.</u>	Ē	<u> </u>	000	5 e	92	766	5
Mitzchia sp.	25,	8	346	452	0.	90	202	250	1271	688	1214	288
corcosphenta sp.	n		2	2			<u>e</u>		8 8		S	, eo
Surirella sp.	un :	•	:	•	:		;		\$	ž	5	25
nedra sp.	'n	'n	2	n	ò	7	- 5		3 %	2	S	,
Undetermined centrics Undetermined pennates	%	98	53	01			*	13	3		88	12
Chlorophyta (Greens) Ankistrodesmus so.			m					æ		e	80	e
Closterium sp.										u	m	
Docystis sp. Pediastrum sp.						•		8	,	, m	;	;
enedesmus sp.			v o	ص		~	80 6 0	m m	x 0	æ m	3 6	g ~
Undetermined filamentous							. ~					e
Cyanophyta (Blue-greens)										en		
Oscillatoria sp.				\$6						•		
Undetermined coccoid Undetermined filamentous	m	m		~ æ	E		31		e		2	
Flagellates	•			950			×	9	a	5	-	ur.
Pandorina sp.	•			3	s	-	3	961	, t2	;	!	
		m			٠		,	ლ •	•	60 u	mu	m
Trachelomonas sp. Undetermined	٣	~		∞	- 2	ю	•	° %	o m	2	•	
Total Number of Organisms	196	850	1981	1064	826	305	983	1775	2792	2175	5689	1724
Descent Of the same	20 00	8	99 57	21 02	97 22	17.79	8	8	98.18	96.37	97.74	96.76
Percent Greens	0	0	0.43	0.57	0	0.99	3.	0.68	0.29	1.02	1.31	2.61
Percent Blue-Greens	0.32	0.36	00	4. 14 25. 10	0.37	° 2.	3.16	15 27		0.14	0.19	3.
rercent riagellates	6.0		•		;	!	;	<u>.</u>	:	:		
Species Diversity (d)	2.17	2.44	2.30	5.29	2.38	1.87	2.34	2.54	2.38	2.48	7.64	2.52
	1	•					,	,	•	•	•	•

*Alga observed in qualitative scan but not during actual counting procedure.

Table A3. Phytoplanktom densities in Sycamore Greek, Willow Greek, Aud Greek, and Vevay Drain in the vicinity of Mason and Lansing, Ingham County, Michigan, November 8, 1973. Data expressed in organisms/ml.

- CEO DE3C		-	7	r	•	4-B	2	- JH	,			
Algal Station Location	Kipp Rd.	Upstream from US-127	E. Cemetery Entrance above Mason MITP	100 ft. below Mason WMTP	Howell Road	Yevay Orain	Harper Road	Ph111ips Road	Holt Road	Pine Tree Road	Jolly Road	Mt. Hope Road
Bacillariophyceae (Diatoms) Achnanthes Sp.		5.4	v n	ნ4	+ ∞	so so	21 13	£1 01	01 E1	22		mun
Calone is sp. Coccone is sp. Cyclotella sp.		. 8 5	ഗന	~	s 96	vo oor	mm	3 6 10	4 4	33		w w 4
Cymatopleura sp. Cymbella sp.		m w					m	mu	10	~		
Ulatoma sp. Fragilaria sp. Gomphonema sp.	so.	ខត	m -	. -	ដដ	-	3 26 8	21 18 3	23	21		
Merical Sp. Merical Sp. Merical Sp. Merical Sp. Merical Sp. Merical Sp. Mitzschia Sp.	81	8,%	6 ₀	70	86. 2	4 2 88 5.4 4 2 88 5.4	125 49	146 91	9 101 40	91	86 51	69
RhoTcosphenia sp. Stephanodiscus sp. Surfrella sp. Synedra sp.				- N	w	01	ง งธ	m	^		1	mm
Undetermined centrics Undetermined pennates	2	≈ %	m	⇔ v∩		2	13	sc.	23	s	13	
Chlorophyta (Greens) Antistrodesmus sp. Cruciqenia sp. Vaenedesmus sp. Undetermined coccoid Undetermined filamentous		m	-		m un			m	m	- w	-6	4
Cyanophyta (Blue-greens) Anabaena sp. Undetermined filamantous	v	e	80	81	0.	~	m	m	m		m	s
Flage llates Euglena sp. Dinodryon sp. Trachel owonas sp. Undetermined			•	242	+ F &	•	m	•	111	-		-
Total Number of Organisms	8	372	8	390	432	180	302	786	579	222	111	182
Percent Diatoms Percent Greens Percent Blue-greens Percent Flagellates	94.74 0 5.27 0	8.00.0 8.830 0.830	90. 63 1. 05 8. 34 0	33.34 0 4.62 62.06	79.40 1.86 2.32 16.44	99.45 0 0.56	8.05 0.1.00 0.1.00	98.43 0.79 0.79	92.48 1.08 5.38	96.85 2.71 0.45	88.14 6.78 1.70 3.39	2.20 2.75 0.55
Species Diversity (d)	1.67	2.46	2.06	1.86	2.35	2.36	2.97	2.84	3.14	2.28	2.12	2.11
Pollution index	•	e	8	e	•	m	vo	ø		9	٠	ø

+ Alga observed in qualitative scan but not during actual counting procedure.

APPENDIX B

PERIPHYTON DATA

TABLE Bl.--Periphyton standing crop collected every two weeks in Sycamore Creek, Ingham County, Michigan, July 25-September 5, 1973. All values expressed as ug/cm² of chlorophyll a.

	Station:		1			z.			9			7			œ	
Collection Date	Samples:	Æ	ф	×	Æ	В	×	Æ	æ	l×	Æ	ф	l×	Æ	В	۱×
Aug. 8, 1973		1.87 2.		1.96	05 1.96 27.65* 6.03 6.03 6.22 7.81 7.02	6.03	6.03	6.22	7.81	7.02	6.83	7.30	6.83 7.30 7.07		4.65 5.64 5.15	5.15
Aug. 22, 1973		1.51	ä	1.37		2.54	6.97 2.54 4.76		8.96	6.22 8.96 7.59		2.39	2.42 2.39 2.41		5.86 2.32 4.09	4.09
Sept. 5, 1973		2.35	Ä	1.77	10.58 8.31 9.45 6.32 4.76 5.54 2.30 2.12 2.21	8.31	9.45	6.32	4.76	5.54	2.30	2.12	2.21	ı	•	4.59**
*Not fi	Grand *Not figured in mean	Grand mean	1	$\frac{1}{(X)} = 1.70$) IX	<u>-</u> X=6.75			<u>-</u> X=6.72			<u>x</u> =3.90		ı ix	<u>-</u> X=4.61

**Artificial value used for two-way analysis of variance. Values obtained by methods in Biometry (1969) by Sokal and Rohlf, pp. 337-340.

TABLE B2.--Two-way analysis of variance for adjusted* periphyton primary production in Sycamore Creek, Ingham County, Michigan, July 25-September 5, 1973.

Source	D.F.	Sum of Squares	Mean Squares	F
Station	4	53.6952	13.4237	4.303**
Dates	2	4.9169	2.4584	0.778
Error	7	24.9589	3.1198	
Total	13	83.5710	19.4477	

^{*}Table adjusted for missing value for station SC-8 according to methods in Biometry (1969) by Sokal and Rohlf, pp. 337-340.

TABLE B3.--Comparisons of differences between mean standing crop from Sycamore Creek, July 25-September 5, 1973. Data expressed in ug/cm² of chlorophyll <u>a</u>.

Station	1	7	8	6	5
Station Mean*	1.70	3.90	4.61	6.72	6.75

^{*}Means not connected by the same line are significantly different at 10% level.

^{**}Significant at 5% level

APPENDIX C

ORGANIC SEDIMENT CONCENTRATIONS

Heavy metal concentrations found in bottom sediments of Sycamore Creek and Vevay Drain, Ingham County, Michigan, July 25, 1973. All values expressed in mg/kg, dry weight*. Table Cl.

					Metals			10
Stations:	Arsenic	Cadmium*	Chromium	Copper	Mercury	Nickel	Lead	Zinc
,			,	ı	,			
Se - 1	2.1		დ ტ.	17.0	1.7	14.4	29.7	161.4
SC - 2	2.1		11.6	27.8	7.8	19.3	102.8	171.3
SC - 3	4.1		31.8	153.2	6.3	36.0	270.3	450.5
SC - 4	4.0		27.8	161.4	5.8	26.9	233.2	403.6
V - V	1.7		5.4	12.6	1.0	9.5	23.8	67.9
8 - 8	2.7		10.8	37.0	2.2	17.3	43.2	167.6
SC - 5	4.7		23.7	113.7	5.2	26.5	151.7	360.2
9 - 3S	4.9		18.6	42.2	3.6	26.5	58.8	225.5
SC - 7	2.5	<0.2	10.9	18.6	2.2	14.8	24.6	92.9
SC - 8	4.6		20.2	33.0	3.0	22.9	50.4	137.6
6 - 3S	3.0		24.6	57.1	2.2	27.6	360.4	303.3
Mean	3.3	•	17.7	61.2	3.2	22.0	122.6	231.1
Range	1.7-4.9	<0.2-0.8	5.4-31.8	12.6-161.4	1.0-6.3	9.2-36.0	24.6-270.3	67.9-450.5
Mean + 2 Std. Dev.	5.7	•	35.0	171.2	8.9	37.4	355.3	489.4
1971 Michigan Background Levels								
Mean	0.4	4.2	1.6	1	0.19	•	36.9	31.3
7 7 7	0.0-2.0	0.0-11.0	0.0-5.0	ı	0.12-15.0	•	1.0-96.0	4.0-210.0
Mean + 2 Std. Dev.	2.0	11.0	a.9	•	0.29	•	0.66	53.0

* Cadmium expressed in mg/kg wet weight.

TABLE C2.--Concentrations of chlorinated hydrocarbon pesticides, polychlorinated biphenyls, phthalates, and oil found in the bottom sediments of Sycamore Creek and Vevay Drain, Ingham Co., Michigan, July 25, 1973. All values expressed in

mg/kg.	mg/kg. pH values expressed		in standard units.	its.								
	Station:	1	2	3	4	V-A	V-B	5	9	7	80	6
Parameter	Location:	Above Mason at Kipp Rd.	E. Cemetery Entrance	100 ft. Below Mason WWTP	Holt Rd.	Hogsback Rd.	Dart Rd.	Harper Rd.	Holt Rd.	Pine Tree Rd.	Jolly Rd.	Mt. Hope Rd.
Chlorinated Hydro-												
Total DDT		<0.001	0.068	0.111	0.065	<0.001	<0.001	0.051	0.020	<0.001	<0.001	0.688
DDE		<0.001	0.019	0.025	0.012	<0.001	<0.001	0.012	0.005	<0.001	<0.001	0.510
TDE		<0.001	0.024	0.053	0.027	<0.001	<0.001	0.023	0.008	<0.001	<0.001	0.078
OP-DDT		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
PP-DDT		<0.001	0.025	0.033	0.026	<0.001	<0.001	0.016	0.007	<0.001	<0.001	0.100
Dieldrin		<0.001	<0.001	0.004	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	900.0
Chlorodane		<0.001	0.240	0.350	0.120	<0.001	<0.001	0.055	<0.001	<0.001	<0.001	0.310
Polychlorinated Biphenyls PCB as 12.54		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phthalates as: DEHP		<0.5	<0.5	5.2	3.3	<0.5	<0.5	1.7	9.0	<0.5	0.5	2.8
011		400	841	577	290	412	648	369	133	92	86	110
Нq		8.9	7.1	7.3	7.2	7.1	7.2	6.9	7.3	8.9	7.4	7.2

APPENDIX D

FISH AND MACROINVERTEBRATE DATA

TABLE D1.--Summary of fish data collected by electrofishing at selected stations from Sycamore Creek, Ingham Co., Michigan, September 7, 1973.

Stations:	ns: 1	2	S	9	7	80
Station Fish Species Location: (common and scientific names)	n Upstream on: from Kipp Rd.	Upstream from E. Cemetery Entrance	Upstream from Harper Rd.	Upstream from Holt Rd.	Upstream from Pine Tree Rd.	Upstream from Jolly Rd.
Group 1 Group 1 Redhorse sucker (Moxostoma sp.) Hognose sucker (Hypentelium nigricans) White sucker (Jatostomus Commersoni) Black bullhead (Ictalurus melas) Yellow bullhead (I. natalis)	18 1	18		7	ମ ଉପଟ	H 3 P P
Group 2 Blackside darter (Percina maculata) Johnny darter (Etheostoma nigrum) Rainbow darter (E. Ceruleum) Rainbow darter (E. Ceruleum) Creek Chub (Semotilus atromaculatus) Central mudminnow (Umbra limi) Blacknose dace (Rhinichthys atratulus) Shiners (Notropis Sp.) Common shiner (N. cornutus) Golden shiner (N. cornutus) Fathead minnow (Pimephales promelas)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 5 7	vo	7 7	m 4 − 1 − 10 − 10 − 10 − 10 − 10 − 10 − 10	11 1 3
Group 3 Green sunfish (Lepomis cyanellus) Pumpkinseed (L. gibbosus) Rockbass (Ambloplites rupestris)	7	11		11 7	2 4	17 5
Group 4 Largemouth bass (Micropterus salmoides) Northern pike (Essox lucius) Total number of species Total number of individuals Trophic index values	.) 8 54 15	10 78 21	7 6 1	6 18 14	2 1 13 58 28	11 49 20

Kypp 8d. Usstream E. Abnet 1. 195. 127 64 65 117166) 1		Stations	-	- J#	,,	;	•	4-Y	89: >	\$	÷	9	'n		6
Control of Processors Cont	rance		Kipp Rd. Above Mason	Upstream from US - 127		100 Ft. Delos		Above Dart Container Co.	Below Dart Container Co.	Harper Rd.	Phillips Rd.	Polt.	Pine Tree	Solly Pd	₹ ₹ Rope
		Turbellaria (flatworms).						•					^		2
		Oligochaeta (aquatic earthmorms)		e		2	96	· m	~	2	2	,		-	<u>•</u> ~
		Mirudinea (leeches) Batrachobdella picta		2					,	-				-	
		Erpobdellidae		-	,				~						
20		Glossiphonia complanta									-		~		
9		Gastropoda (snails, limpets)													•
2		Amicola integra											۰ ۷	-	- 2
15 15 15 17 16 17 17 17 17 17 17		Campelona decisum			•				=		~-			9	
13		Gontobasis livescens			<u></u>						-		~		
2		Lymnaea sp.			: =		•	-	4		-		-	•	
1 1 2 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2		Pleurocera acuta Vivipara maleatus			2		,	-	:		· vo				
		Pelecypoda (clams) Pleurobemm sp.		-	:				:		:				
2 11 34 3 1 5 4 1 1 6 6 6 1 1 6 6 6 1 1 6 6 6 1 1 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 1 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 6 1 6		Sphaerium sp.	-	~ ~	9			•	2		ξ.			-	-
20 100 94 1 2 1 3 1 5 1 6 10 10 10 10 10 10 10 10 10 10 10 10 10		Isopoda (sow bugs) Asellus sp.			~	=	×	-		~	-	s	-	-	=
9		Amphipoda (scuds) Gamarus sp.	8	8	z						8	-	.	•	
20 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Hyalella azteca Decapoda (grayfish)					-	~		Z,	82	8	S	.	8
		Cambarus sp. Orconectes propingus	•	•	8,		-		- :		-	•	,	~-	
25		Plecoptera (stonefiles)		-	•		•		2	•	-	•		, vc	
		Enhemeroptera (mayfilles)	ş		-							•	٠ ۽	۶ ,	
25		Caenis sp.	8	o –								•	à	8	
		Ephemera varia			-								-	-	
		Pseudoc locon punctiventrus	ř		-							-		-	
		Stenonema sp.	Ç	~ •	- m			2		2	=	37	÷~	2^	5° °
23 6 71 25 20 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Odonate (dragonflies, danselflies)						2		<u>.</u>		•	•	•	•
		Agrionidae	•	,		-		ε	80	۲	٤.	8	v.		92
		Calopterys maculatum	- %	ю.	- •			•	~		- 5	۲.		' =	~
1 1 1 1 6 1 18 5 1 16 61 18 1 1		Dromogemphus sp. Plathemis sp.		-				_				-			
1 1 9 3 2 51 116 61 18 1 1		Memipters (true bugs) Belostoma fluminea	-		-		-		-	-		-	5	•	-
		Cortaidae		-	- ~	-	•			~	3	9	5	2	2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Mesovelia mulsanti			•								-		-
		Metrobates sp. Motonesta unifasciata			s				~	~	-			-	
2 3 4 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Pley sp.	-		_							-			
2		Ranata fusca			. ~		_		•	-		2			2
Megaloptera (alderfiles, fishfiles) (hydrivdes pectringomis Niyomis remisjonis Salis meni		Rheumatobates sp.		-									2		:
Niprona serviconis		Megaloptera (alderfiles, fishfiles Chaultodes pectinicornis	_				~,								
		Nigronia serricornis												۰,	

•	₹ 7 80.		~ \$2 ~ \$2 ~
-	Jolly Rd.	8005×4 E + + E	. X ~ \$
4	7 7 3 8 6 8 8 6 8 8 9 6 8 8 8 9 8 9 8 9 8 9 8	27792	~ 25 ~ 2
4	Folt.	-21-101 - 220 - 1 - 1 - 20 - 20 - 20 - 2	~ % ~ X
į	9 11 158 20 .		~ 11 ~ B
4	Marper Rd.	- " • "	-=25
8-A	Belon Dart Container Co.		~ <u> </u>
V-A	Above Dart Container Co.	N	-545
-	E 2	* * - * - * 8 * 3 * 2	o ≅ ∿ ≅
-	100 Ft. below WATP	, * 8 ' · * E *,	0 w m w
~	E. Cemetery Entrance Above Mason WATP	-m	36 6 88 4
HC-1	Upstream from US - 127	2 % 6 - 7 6 2 %	. ¥8
-	K1pp Rd. Abcve Meson	21-22	~ 8~3
Station:	Location	Tricopters (cadistiles) Particles (cadistiles) Parti	iles ectes as determinations
	Scientific	Tricopters (caddist) Freely 19 19 19 19 19 19 19 19 19 19 19 19 19	Number of intolerant species Number of facultative species Number of tolerant species Bistic index (BI) • Not (included in species deta
	Tolerance Status		Number of int Number of fac Number of tol Bistic index

Table D2. (Continued)

	Stations:	-		-			٦		•		٠		-				.				
iolerance Status Scientific Name Local	Location: At	Above Mason at Kipp Rd		from US-127	_	E. Cematery Entrance	Neson MATP	- 1	l ave	2	Harper Rd.	i. Phillips	ips Rd.	2	Holt Rd.	Pine	Pine Tree Rd.	194	Jolly Rd.	¥.	Pa adon
		•		-		1	4			4		۷	-	-\	-	4	•	~	•	4	-
Turbellaria (flatmorma) Planariidee									,	;				. :			91				2
Oligochaeta (aquatic earthm Gastropode (snails, limpets)	Î,								•	×		;	:	\$:				:			
Physa sp.				*	2 %	2						2	2	4				=			*
Agellus sp.										=											
Garmanus sp.	Ē	Ī	16 242	2 %	=	ž							×	=			91	178	82		
Plecoptera (stone/11es)			Ĕ																=		
Ephemeroptera (myfiles)				:								3	ŝ	1	5	143	5	101			
Cam 15 sp.			;	=		=						ţ	Ř	,	•		ì	•	•		
Stanonama bipunctatum		59	228	2	22	2				-		3	# 2	345	9	1146	1243	106	1759		
Odonata (dragonfilles, deme	(Se) () ()			•	=	: :					: :	1	;	}	: 8	!	}				2
Boyeria sp.						: 1				•	•	•	9	2	3 2				2		
Memiptera (true bags)		;				×						3		*	2				:		
Megaloptera (alderfiles, fit	. fishfiles)	9																;			
Migronia serricornis Trichoptere (caddisfiles)																		=			
Cheumetogayche sp.	2 2		Ĭ	×	3	×						Ī	4111	ž	Š	195	340	3	2647		
Hydropsyche bifide group		_			2							23	82.	2	=	22	מ	ន្តន	25		
SUPPLIES H					:							1	3.1	×	×	92	1 5	5	918		
Platy centropys					=							<u>*</u>	Ę				}	į	;		
Palricetropus Psychomy 11d Genus A				5 3									91	P							
Coleoptera (beetles)																2					•
Ancyronya variegate		2	*									;	*	;	;	• ;	;	\$	•		
Opt. oservus sp.			=		3							à	•	\$	=	3	2	Ĉ	•		
Heleidae Ferididae		*				:				-	•		*		=						
Simuliidae (Nironmidae (eddoes)						\$							5	•		::	=				
Papar Ablabearth so.		-	28	•	3 %	3:	2	ş	*	•	55 56	_	3	22	×	*		*	=	32	2 2
Chironomas sp (gills)			*	322	2	: =	ź	1033	7 1917	3	22			. 3	\$	3		*		Ē	~
Cladeterrianus sp.	2	922	ž		*	=	•			}		*	200	2	3	S.	336	Ē	3		
Coeletarybys sp.			2								=	<u> </u>	210								
Crystopus so. C. Dichectus	2 2	22		=	3	=	2							22	23	×	*			*	
Discotendibes sp.					22	2	;	;		1				5						24	ž
Introduction to	•			2			ĕ	ŧ		×	8		2	4							
Labrandinia sp.		3	_									=	:								
MICTORING SO.	2	2	3 3										35								
Maratenda sp.			6	2						9			×								
Para Judgerian to.				:						•	<u>.</u>			91		91		5		3	92
Polypedile fallex	145	178	_	2,4	242		1824	1808			2	2 2	178	91.	9 E	26 YE	6 91	2 2	92	16 355	•
02 50 10 X 74					!	:5	9	9		٠	· S		468	35		65	5			3 ≥	å ⊼
Psectrociadius sp	≠ ;	<u>*</u>	_						\$9				6 8	× ;			:	=	3		
Janypodinae Thieremaniella sp			:		3						9	٥	5 5	<u>.</u> 2	<u> </u>	9	4	2 2	<u>.</u> 4		
Interesting 14 group	33	\$	~ ¥₹	5	210	6				-	91	×	2	32				ŧ	:	852	<u>z</u>
Total number of species/station		,													,		;		;	:	~
		3		8	2	_	•		•		=		2		88		೭		2	•	•

TABLE D4.--Summary of macroinvertebrate data from Hester-Dendy artificial substrate samplers placed in Sycamore, Willow, and Mud

Stations:	1	WC-1	7	m	4	s	MC-1	ø	7	c o	6
Station Locations:	Above Mason at Kipp Rd.	Upstream from U.S. 127	E. Cemetery Entrance	100 ft. below Mason WWTP	Howell Rd.	Harper Rd.	Phillips Rd.	Holt Rd.	Pine Tree Rd.	Jolly Rd.	Mt. Hope Rd.
Total number of species	20	29	23	'n	s.	13	30	28	20	20	15
Number of mayfly species Number of caddisfly species Number of midge species Number of other species	2 11 5	4 3 17 5	3 10 7	00110	00 m M	1 0 7 7	13 e 3	2 4 4 8	04 Q R	4477	33
Percent mayfly species Percent caddisfly species Percent midge species Percent other species	10.0 10.0 55.0 25.0	13.8 10.3 58.6 17.2	13.0 13.0 43.5	100.0	0 0 60.0 0.0	7.6 0 76.9 15.4	10.0 20.0 43.3 26.7	7.1 14.3 50.0 28.6	10.0 20.0 45.0 25.0	10.0 20.0 35.0	6.7 73.3 20.0
Estimated number of organisms/m2	983	1354	1709.5	3502.5	4712.5	2058	6649.5	2369.5	5011.5	7035.5	1385.5
Number of mayflies/m ² Number of caddisflies/m Number of midges/m ² Number of others/m	105 16 587.5 274.5	145.5 185.5 830 193	40 129 1282 258.5	0 0 3502.5 0	0 0 4632 80.5	8 0 2034 16	783 4172.5 1444.5 249.5	209.5 1266.5 781 112.5	2066 2267.5 500.5 177.5	2792 3373 289.5 581	0 8 1337.5
Percent number of mayflies Percent number of caddisflies Percent number of midges Percent number of other individuals	10.7 1.6 59.8 27.9	10.8 13.7 61.3 14.3	2.3 7.6 75.0 15.1	100.0	0 0 98.3 1.7	9.0 9.8 8.0 8.0	11.8 62.8 21.7 3.8	53.5 33.0	41.2 45.3 10.0 3.5	39.7 47.9 4.1 8.3	0 0.6 96.5
Species diversity $(\vec{d})/s$ tation Equitability (e)/station	3.5	3.9	2.9	1.4	0.3	1.5	3.0	3.1	2.8	2.6	2.9
Biotic index (BI)/station	23	32	24	4	7	12	34	28	20	21	12

TABLE D5.--Number of species collected on circular Hester-Dendy artificial substrates in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973.

Station:	1	WC	2	E	4	2	MC	9	7	80	6
Species in Sample A	16	19	17	2	٣	10	17	25	17	17	10
Species in Sample B	15	17	16	4	2	7	26	19	16	14	14
Mean	15.5	18.0	16.5	4.0	0.4	8.5	21.5	22.0	16.5	15.5	12.0

substrates in Sycamore, Willow, and Mud Creeks in the vicinity of Mason and Lansing, Ingham TABLE D6.--Species diversity (a) of macroinvertebrates collected on circular Hester-Dendy artificial County, Michigan, July 25-September 5, 1973.

Station:	1	WC	2	ж	4	5	MC	9	7	æ	6
(\overline{d}) of Sample A	3.15	3.51		1.44	2.92 1.44 0.15 1.63	1.63	2.79	2.79 3.27	2.56	2.66	2.60
(d) of Sample B	3,33	3.36	3.36 2.51		1.40 0.42 1.32	1.32	2.75	2.71	2.76	2.46	2.96
Average (d) of Samples*	3.24	3.43		1.42	2.71 1.42 0.29 1.48 2.77 2.99	1.48	2.77	2.99		2.66 2.56	2.78

*This is not the same as $(\overline{d})/s$ tation

TABLE D7.--Comparisons of differences between mean number of macroinvertebrate species collected vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973. on Hester-Dendy artificial substrates in Sycamore, Willow, and Mud Creeks in the

Station	4	ю	2	6	ı	8	2	7	WC	MC	9
Mean Number of Species	4.0	4.5	8.5	12.0	15.5	15.5	4.0 4.5 8.5 12.0 15.5 15.5 16.5 16.5 18.0 21.5 22.0	16.5	18.0	21.5	22.0

*Means not connected by the same line are significantly different at 5% level.

TABLE D8.--Comparisons of differences between species diversities of macroinvertebrates collected vicinity of Mason and Lansing, Ingham County, Michigan, July 25-September 5, 1973. on Hester-Dendy artificial substrates in Sycamore, Willow, and Mud Creeks in the

Station	4	3	2	8	7	2	W C	თ	9	ч	Z X
Average (d)	0.29	1.42	1.48	2.56	2.66	2.71	2.77	2.78	2.99	3.24	3.43

*Means not connected by the same line are significantly different at 5% level.

