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ABSTRACT

IMPULSIVE CONTROL OF UNDERACTUATED MECHANICAL
SYSTEMS

By

Sayyed Rouhollah Jafari Tafti

Although there has been a significant amount of research in designing and analyzing

impulsive control systems, there are very few applications of impulsive control in mechani-

cal systems. In the first part of this dissertation, we investigate new control strategies for

underactuated mechanical systems based on impulsive inputs. The control problem of un-

deractuated systems is more challenging since such systems have fewer actuators than the

number of their degrees of freedom. We first address the important concern related to appli-

cation of impulsive control in mechanical systems, namely, implementation of impulse-like

control inputs using standard hardware. This is done through experimental verification of an

impulsive control algorithm for swing-up control of the Pendubot; the control algorithm was

developed earlier in our research group. Showing the effectiveness of the impulsive control

algorithm in experiments, we develop impulsive control algorithms for swing-up control of

the Acrobot; the impulsive control algorithms have distinct advantages over existing algo-

rithms in terms of the time required for swing-up and maximum control torque used by the

continuous controller. Impulsive inputs cause jumps in velocity states of mechanical systems,

and consequently, produce jumps in Lyapunov function candidates used in control design.

This attribute is used to enlarge the region of attraction of equilibria using impulsive inputs

at discrete instants of time. Several case studies of underactuated mechanical systems have

been presented to demonstrate this benefit of using impulsive control. Another advantage of

using impulsive inputs is that such inputs can significantly alter the dynamics of the system



in a very short period of time. This property is used to design a safe fall algorithm for

humanoid robots undergoing a fall, i.e., after the continuous controller has failed to keep

the system trajectories confined to a fixed region around the equilibrium. The algorithm

uses impulsive inputs to change the fall direction of the robot to minimize the damage to

people and objects in the vicinity, as well as to its own self. In many instances, external

disturbances or impact from interaction with the environment can have an adverse effect on

system performance. In the second part of this dissertation, we develop control algorithms

to mitigate these effects in underactuated biped robots. We first develop a disturbance

rejection algorithm for the synthetic-wheel biped to mitigate the effects of external distur-

bances. A continuous controller is then designed for the synthetic-wheel biped to generate

an impact-free walking gait. This gait consumes zero energy in the ideal case and the nec-

essary conditions to achieve this gait are shown to be general and applicable to a range of

bipedal robotic systems. An underactuated mechanical system can be non-minimum-phase

if its zero dynamics is unstable. We finally investigate the output-tracking problem for linear

non-minimum-phase systems. Intermittent output tracking is achieved under the condition

of finite preview of the reference trajectory; the control algorithm uses switched inputs, which

can be approximated by impulsive inputs in the limit.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Impulsive systems are dynamical systems which can have discontinuous jumps in their state

variables. These jumps are caused by either impulsive inputs which are intentionally applied

to control the system or external disturbances and impacts which are generally undesirable.

The impulsive inputs are theoretically modeled as Dirac-delta functions with unbounded

magnitude and infinitesimal time support. Since the state variables are not always continuous

for impulsive systems, control theories developed for continuous systems need to be revised

for application to impulsive systems. There has been a fair amount of theoretical research

on impulsive control of dynamical systems and credit for some of the early works goes to

Pavlidis [4], Gilbert and Harasty [5], Menaldi [6] and Lakshmikantham [7]. Researchers have

studied the problems of stability, controllability and observability, optimality (see [8, 9, 10],

for example).

Impulsive control has been designed for dynamical systems with different control objec-

tives [11, 12, 13]. However, impulsive control can only be applied to systems for which the

state variables can be changed instantaneously without violating any physical laws. Pop-

ulation growth control systems, financial models or chaotic dynamical systems are some

examples of such systems. In mechanical systems, the discontinuous jumps occur in the

velocity states which are directly changed through the inputs of the system such as motor
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torques. Therefore, it has to be clarified how to implement ideal delta-function inputs us-

ing standard actuators before applying impulsive control algorithms to mechanical systems.

The implementability concern can be the main reason why there are few works in the lit-

erature designing impulsive control for mechanical systems [14, 15, 2, 16, 17]. Weibel et al

[14] studied the implementation of impulsive inputs in controlling single-degree-of-freedom

Hamiltonian mechanical systems. They derive the delta-function impulsive inputs to make

desired jumps in the energy levels of the system. The impulsive inputs are approximated by

a series of rectangular pulses and were experimentally verified on a pendulum-cart system.

In this research, we first confirm that impulsive inputs can be implemented in mechan-

ical systems with an experimental validation of swing-up control of the Pendubot [2] using

impulsive inputs. Unlike the approach presented in [14], the impulsive inputs are obtained

from Lagrangian dynamics and are approximated by large-gain continuous inputs applied

during short intervals of time.

After demonstrating the effectiveness of an impulsive control algorithm in experiments,

we develop impulsive control algorithms for underactuated mechanical systems. The con-

trol problem of underactuated systems is more challenging since such systems have fewer

actuators than the number of their degrees of freedom. An impulsive algorithm is developed

for swing-up control of the Acrobot, a benchmark problem in underactuated systems, where

impulsive inputs are used to make instantaneous changes in energy level of the acrobot. The

impulsive control algorithm has distinct advantages over existing algorithms in terms of the

time required for swing-up and maximum control torque used by the continuous controller.

Impulsive inputs cause jumps in velocity states of mechanical systems, and consequently, pro-

duce jumps in Lyapunov function candidates used in control design. This attribute is used

to enlarge the region of attraction of equilibria using impulsive inputs at discrete instants
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of time. Several case studies of underactuated mechanical systems have been presented to

demonstrate this benefit of using impulsive control. Another advantage of using impulsive

inputs is that such inputs can significantly alter the dynamics of the system in a very short

period of time. This property is used to design a safe fall algorithm for humanoid robots un-

dergoing a fall, i.e., after the continuous controller has failed to keep the system trajectories

confined to a fixed region around the equilibrium. The algorithm uses impulsive inputs to

change the fall direction of the robot to minimize the damage to people and objects in the

vicinity, as well as to its own self.

In many instances, external disturbances or impact from interaction with the environment

can have an adverse effect on system performance. In the second part of this dissertation, we

develop control algorithms to mitigate these effects in underactuated biped robots. We first

develop a disturbance rejection algorithm for the synthetic-wheel biped [1] to mitigate the

effects of external disturbances. The control algorithm uses impulsive inputs to reject the

effects of the external disturbances as well as cancel the undesirable effects of ground impacts

during leg interchange. Continuous controller is then designed for the synthetic-wheel biped

to generate an impact-free walking gait. This gait consumes zero energy in the ideal case

and the necessary conditions to achieve this gait are shown to be general and applicable to

a range of bipedal robotic systems.

An underactuated mechanical system can be non-minimum-phase if its zero dynamics is

unstable. We finally investigate the output-tracking problem for linear single-input-single-

output non-minimum-phase systems. Intermittent output tracking is achieved under the

condition of finite preview of the reference trajectory, i.e., the system output tracks a desired

trajectory intermittently in some regular intervals of time rather than continuous tracking

of the trajectory. The control algorithm uses switched inputs, which can be approximated
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by impulsive inputs in the limit.

In the remainder of this chapter, we give a brief description and review the literature for

each control problem which will be studied in this dissertation.

1.2 Swing-up Control of Acrobot

The Acrobot is a two-link robot in the vertical plane with an actuator at the elbow joint

and a passive shoulder joint. The dynamic model of the Acrobot has four equilibria, all of

which are stabilizable, and the standard control problem refers to swing-up from an arbitrary

initial configuration to the equilibrium configuration with the highest potential energy. The

Acrobot has identical kinematic structure as that of the Pendubot [2], but swing-up of the

Acrobot is more challenging due to the adverse location of its actuated joint. Most of the

results in the literature provide solutions that apply either to the Pendubot or the Acrobot.

The paper by Boone [18], for example, provides a near-optimal solution to the Acrobot

swing-up problem using bang-bang control. More interesting are the papers that can be

applied to the Pendubot and the Acrobot alike. Included in this category are the papers by

Spong [19, 20] based on feedback linearization, and Kolesnichenko and Shiriaev [21] based

on partial stabilization using Lyapunov-like functions.

The feedback linearization method proposed by Spong [19] designs reference trajectories

for the actuated joint that render the zero dynamics unstable and thereby increases the

energy of the system. For the Acrobot dynamic model, this method is highly sensitive

to the control gains. Furthermore, the control design is approximated for implementation

without a rigorous proof. The partial stabilization method proposed by Kolesnichenko and

Shiriaev [21] has been implemented in the Acrobot dynamic model by Xin and Kaneda [3]
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and Mahindrakar and Banavar [22, 23]. The method uses a Lyapunov-like function and

results in an invariant set that contains points other than the trivial solution. For swing-up

to the desired configuration, constraints have to be imposed on the control gains and certain

initial conditions have to be avoided [3, 22].

1.3 Stabilizing Control for Underactuated Systems

Stabilization of underactuated dynamical systems has been widely studied and several con-

trol methods have been proposed. Linear regulation methods such as pole placement and

LQR can be designed based on the linearized system but the Region of Attraction (RA) of

the desired equilibrium for such controllers is typically small. The main nonlinear control

methods in the literature modify the structure of the original system to yield a closed-loop

system for which the desired equilibrium is asymptotically stable. The Controlled Lagrangian

method, Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC), and

the λ-Method are the three main approaches that have been developed.

The Controlled Lagrangian method, proposed by Bloch et al. [24, 25], is an energy-based

approach that can be applied to underactuated mechanical systems in Euler-Lagrange form.

The kinetic and potential energies of the system are modified to find a desired Lagrangian,

called Controlled Lagrangian. The control gains and the system input are then chosen such

that the closed-loop equations derived from the Controlled Lagrangian match those of the

controlled system. Full phase space stabilization is obtained through kinetic and potential

energy shaping. The control procedure can be complicated for systems with several degrees

of freedom (dof’s).

Passivity-based control can be effectively used to stabilize some underactuated mechanical
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systems through shaping of the potential energy [26]. However, for most underactuated

systems, the total energy needs to be shaped. For such systems, Ortega et al. [27, 28]

proposed IDA-PBC which considers the Hamiltonian form of the system. The desired energy

function is found by assigning interconnection and damping matrices of the system. Similar

to the Controlled Lagrangian method, where the closed-loop system is maintained in Euler-

Lagrange form, the Hamiltonian form of the closed-loop system is preserved in IDA-PBC.

The key advantage of IDA-PBC is that it provides freedom to change the interconnection

matrix as well as the energy function; the Controlled Lagrangian method can therefore be

viewed as a special case of IDA-PBC. The class of underactuated systems which can be

stabilized by IDA-PBC is limited to those for which two partial differential equations can be

solved. Acosta et al. [29] showed that these equations can be explicitly solved for mechanical

systems with underactuation degree one.

The λ-Method, proposed by Auckly et al. [30, 31], uses differential geometry to assign

a special form for the closed-loop system. This method produces an infinite-dimensional

family of control laws to stabilize the underactuated system. Using a transformation, the

control laws are derived using matching conditions that are recast as linear first-order partial

differential equations. The control laws have been used to stabilize linear systems and the

nonlinear ball and beam system [32].

Among other stabilizing controllers, White et al. [33, 34, 35] proposed a direct Lyapunov

function approach which results in three matching conditions comprised of ordinary and

partial differential equations. The matching conditions can be numerically solved in real

time; this makes it better suited for systems with several dof’s compared to the Lagrangian

and Hamiltonian approaches. Olfati-Saber proposed a method to transform underactuated

mechanical systems into a cascade normal form comprised of linear and nonlinear subsystems
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[36, 37, 38, 39]. The transformation is chosen such that the control problem is reduced to

control of the reduced-order nonlinear subsystem. The backstepping method is then used to

design a stabilizing controller for the resulting cascade normal form. Sliding mode controllers

have also been proposed to stabilize a class of underactuated systems under uncertainty

conditions [40, 41, 42].

1.4 Safe Fall Control for Humanoid Robots

Safety is one of the main concerns behind the independent autonomous existence of hu-

manoid robots in physically interactive human environments. Although the loss of balance

and fall are rare in isolated or controlled environments, the situation would be different

when the physical separation between robots and humans gradually disappear. A fall of a

humanoid robot is a particularly worrisome event; a fall from an upright posture can cause

damage to the robot, to delicate and expensive objects in the surrounding or can inflict

injury to a nearby human being. Regardless of the substantial progress in humanoid robot

balance control strategies, the possibility of fall remains real, even unavoidable. Yet, few

comprehensive studies of humanoid fall encompassing fall avoidance, prediction, control and

recovery exists in the literature.

A humanoid fall may be caused due to external factors such as unexpected or excessive

forces, unusual or unknown floor slipperiness, slope or profile of the ground, causing the

robot to slip, trip or topple. In these cases the disturbances that threaten balance are larger

than what the balance controller can handle. Fall can also result from internal factors such

as a malfunction or a failure of actuator, power or communication system where the balance

controller is partially or fully incapacitated.
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A controller dealing with an accidental humanoid fall may have two primary, and dis-

tinctly different goals: a) self-damage reduction and b) reduction of damage to others. When

a fall occurs in an open space, the self-damage reduction strategy can aim to mitigate the

damaging effects of the ground impact. If, however, a robot falls in close proximity to others,

its primary objective should be to prevent damage to these objects or minimize injury to

persons. Recently, Wilken et al. have reported a third possible goal of a fall controller, that

of a deliberate fall of a humanoid soccer goalie [43]. This is an example of a strategic fall.

A falling humanoid can be easily appreciated as a formidable system to study and control.

During fall, a humanoid behaves as a nonlinear underactuated multi-body system with high-

DOF, changing morphology and unpredictable contact configurations. Additionally, the

robot is subjected to the relentless gravitational pull, which it cannot fully resist, and which

tries to bring it down to a crash. Consequently, the time interval between the detection of

a fall and the actual event of ground impact becomes a critical parameter for fall control.

Time is at a premium during the occurrence of a fall; a single rigid body model of a full

sized humanoid indicates that a fall from the vertical upright stationary configuration due

to a mild push takes about 800-900 ms [44]. In many situations the time to fall can be

significantly shorter, and there is no opportunity for elaborate planning or time-consuming

control. Yet, through simulation and experiments we are able to demonstrate that meaningful

modification to the default fall behavior can be achieved and damage to the environment

can be avoided.

Some earlier work on humanoid fall direction change has been reported in [45, 46, 47].

A number of recent papers reported on the damage minimization and prediction aspects of

humanoid fall. In their exhaustive work, Fujiwara et al. [48, 49, 50, 51] proposed martial arts

type motion for damage reduction, computed optimal falling motions using minimum impact
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and angular momentum, and fabricated special hardware for fall damage study. Ogata et

al. proposed two fall prediction methods based on abnormality detection and predicted Zero

Moment Point (ZMP) [52, 53]. The robot improves fall prediction through experimental

learning. Renner and Behnke [54] use model-based approach to detect external forces on

the robot and Karssen and Wisse [55] use principal component analysis to predict fall.

Following human movement based search procedure, Ruiz-del-Solar et al. implemented a

low damage fall sequence for soccer robots [56]. In [57] and [58], fall prediction and control

are treated together using Gaussian mixture models and Hidden Markov model. Ishida et al.

employed servo loop gain shift to reduce shock due to fall [59]. Kanoi et al. worked on fall

detection from walk patterns [60]. Fall damage minimization is obviously of natural interest

in biomechanics [61].

1.5 Disturbance Rejection for Bipeds

A humanoid robot is eventually aimed to operate in real environments with all interactions

and disturbances from humans and surrounding obstacles. Therefore, the control design for

humanoids must be able to reject the external disturbances which can be applied during

stance or walking phases of the robot. The complicated, nonlinear, unstable and hybrid

dynamics of the bipeds make it a challenging problem to find effective balancing strategies

for humanoid robots.

Based on biomechanical studies [62, 63], Hofmann [64] suggested three basic push recovery

strategies for bipeds: Ankle strategy(or CoP balancing) , hip strategy (or CMP balancing)

and stepping. If the external disturbances are small, the ankle joint is used to adjust the

Center of Pressure (CoP) of the robot within the foot support area to maintain the balance.
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For greater disturbances, other joints such as hip joint and arms are used to create angular

momentum about the Center of Mass (CoM) to counteract the external push. This strategy

leads to an effective CoP outside the support polygon which is called Centroidal Moment

Point (CMP). For large disturbances, the biped has to take steps to maintain balance.

Based on these strategies, different controllers have been proposed to solve push recovery

problem in humanoids. ZMP-based approaches have been widely used to design balance

controllers for humanoid bipeds [65, 66, 67, 68, 69, 70]. Stephens [71] derived decision

surfaces as functions of reference points of a humanoid to determine when each balancing

strategy is needed and to predict whether or not the biped can recover from the push.

He used simplified models for humanoids which result in inaccurate decision surfaces for

actual robots. Yi et al. [72] proposed reinforcement learning to train a high-level controller

which chooses the proper strategy for disturbance rejection. Their method is more accurate

but it requires off-line procedures to train the controller. Linear Inverted Pendulum Model

(LIPM)[73, 74] is used for most of balance controllers using ankle and hip strategies (e.g.

in [75]). Since LIPM assumes zero angular momentum about CoM, other models such

as Linear Inverted Pendulum model plus Flywheel (LIPF) [76] and Angular Momentum

inducing inverted Pendulum Model (AMPM) [77] are proposed to incorporate the significant

role of angular momentum generated by internal joints of the humanoid. Pratt, et al. [76]

introduced the concept of “Capture point”, a point on the ground where the robot can

step to in order to stop and found the analytical expressions for LIPF. Rebula, et al. [78]

presented a learning method to compute the capture points for a general humanoid. The

proposed method uses the estimated capture points predicted by LIPM as the starting points

and finds the desired foot placement to recover from the push. Their method was validated

on a three-dimensional humanoid robot with twelve actuated dof’s. Stephens and Atkeson
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extended the humanoid balance strategies for compliant robots with force-controlled joints

[79], [80]. Their standing balance controller uses a model-based approach called Dynamic

Balance Force Control (DBFC) to calculate the joint torques based on desired COM motion

[79]. Their stepping controller for larger disturbances was based on feedforward torque

inputs obtained from DBFC to follow desired CoM trajectories generated by a linear model

predictive control [80]. They validated their push recovery strategies through experiments

on Sarcos, a force-controlled humanoid. Komura et al. [81] and Adiwanhono et al. [82]

proposed balance controllers for walking bipeds which uses AMPM and LIPM, respectively.

In [81], the amount of angular momentum needed to counteract the external disturbance in

both sagital and frontal planes is calculated based on a new criteria called the “difference of

inertia”. The push recovery algorithm in [82] employs a different walking gait after the push

which is based on a ZMP-shifting method.

1.6 Optimizing the Energy Consumption for Bipeds

With biped walking machines becoming quite common, robotics engineers are increasingly

using the metric of Cost of Transport (COT) to compare their energy efficiencies. The COT

is a dimensionless measure and is defined as [83]

COT =
energy used

body weight× distance traveled

It has been used to quantify the energetics of locomotion in animals and is now being used

to compare energy efficiencies of walking machines and other mobile robots. For a biped

robot, the COT can be computed based on the total energy used by the robot, or the energy
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used by the actuators driving the locomotion mechanism. To distinguish the efficiency of the

mechanical design from the efficiency of the complete system, researchers ([84], for example)

have defined the mechanical cost of transport as

Cmt =
energy used by actuators

body weight × distance traveled

Although there is no ambiguity in the definition of Cmt, the “energy used by the actuators”

has been calculated in different ways by different researchers. Hobbelen and Wisse [84]

made the assumption that actuators expend energy irrespective of whether the mechanical

energy is positive or negative. On the other hand, Srinivasan and Ruina [85] assumed that

the energy used by the actuators is positive when the mechanical energy is positive but is

equal to zero when the mechanical energy is negative. Both Hobbelen and Wisse [84] and

Srinivasan and Ruina [85] have attempted to take into account the limitations of technology

in regenerating energy from motion and storing it back in the energy storage unit. Their

assumptions are certainly not consistent with one another and are likely to change further

if actuators other than electric motors are used. To avoid an actuator-specific definition of

Cmt, and in light of the fact that technological advancements (in hybrid cars, for example)

are indeed making it possible to regenerate and store energy, the original definition of Cmt

can be reworded as follows:

Cmt =
mechanical energy required by gait

body weight × distance traveled
(1.1)

where

mechanical energy required by gait =
∑

i

∫ T

0
τi θ̇i dt
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and where τi and θ̇i are the generalized force and generalized velocity of the i-th actuated

joint, and T is the time period of each step.

Many successful biped designs have been reported in the literature. The Cmt of some

of these designs are compiled in Table 1.1 and compared with that of human walking. All

of these values were derived from experimental data and are therefore based on the energy

used by the actuators. Although different methods may have been used for calculation of

the energy used by the actuators, the Cmt values of these designs span a wide range. At

one end of the spectrum is Dynamite [83], a passive dynamic walker that can only walk

down inclines for certain initial conditions; at the other end of the spectrum is Honda Asimo

[92, 93, 94], an active biped that can walk, run, and climb stairs, and has many other

functionalities apart from locomotion. Dynamite and Asimo are very different platforms

and no meaningful comparisons can be made, but it should be emphasized that Dynamite

relies on natural limb dynamics whereas Asimo uses significant amount of energy to overcome

natural limb dynamics and track prescribed trajectories. The Cornell Ranger [90] has the

Table 1.1: Mechanical Cost of Transport of Bipeds

Bipeds Cmt Ref.

Honda Asimo 1.600 [86]
Rabbit 0.380 [87]
Huang et al. - Optimal Trajectory 0.360 [88]
Twente Dribbel 0.220 [89]
MSU Synthetic Wheel 0.140 [1]

Robots Mabel 0.100 [87]
TU Delft Denise 0.080 [86]
MIT Spring Flamingo 0.070 [86]
Cornell Collins 3D 0.055 [86]
Cornell Ranger 0.040 [90]
Dynamite 0.040 [83]

Humans Walking 0.050 [91]
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same Cmt as that of Dynamite but it is an active biped. It has a stable gait on relatively flat

ground and is highly efficient by design; it was recently recorded to walk 65 km on a single

charge. The Cornell Collins 3D [86] is a three-dimensional biped which achieves yaw control

through mechanical coupling between its legs and opposite arms. Like the Ranger, it stores

energy in a spring during the stance phase and releases it during push-off. It is fairly efficient

in terms of energy consumption but it lacks gait stability. The MIT Spring Flamingo is a

seven link planar biped with six actuated degrees-of-freedom. The feet and legs are slender

compared to the upper body and are driven by series elastic actuators. A virtual model

control [95] algorithm was used to make the robot walk over flat terrain and inclines. Denise

[96], developed at TU Delft, has five degrees-of-freedom: one at the hip, two at the knees,

and two at the ankles. Only the hip joint is actuated, it is driven by two antagonistic pairs

of McKibben muscle-like actuators. Denise has arms but they do not add degrees of freedom

since they are mechanically linked to the opposing thighs with belts. Similar to Denise,

Dribble [89] is underactuated and has four degrees-of-freedom with a single active hip joint.

The knee joints are passive but they have active locking mechanisms.

It is important to note that both the gait and the controller used to control the gait have

significant effect on the energy consumption of biped robots. Rabbit [97] and Mabel [87]

are controlled using the Hybrid Zero Dynamics method [98] but they differ widely in their

construction and implementation. Rabbit is a conventional stiff robot with highly-geared

servomotors whereas Mabel is a compliant robot. A significantly lower Cmt for Mabel can

be attributed to its ability to store energy during the gait cycle due to its compliance, and

the ability of the controller to exploit this compliance. Huang et al. [88] presented the

behaviors of a planar three-link biped for two different controllers. The first controller, im-

plemented experimentally, uses an optimization method to determine optimal trajectories
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for the boundary conditions of a step. The second controller, described as the self-excited

controller, imposes constraints on the degrees-of-freedom of the robot and generates an oscil-

latory behavior of the system for walking. The self-excited controller results in a lower cost

of transport but its Cmt value is not listed in Table 1.1 since it was not implemented experi-

mentally. The MSU Synthetic-Wheel biped [1] has a moderate Cmt with its symmetric gait.

An optimal gait [99], that eliminates impulsive forces at the time of swing-leg touchdown,

offers to provide a significantly lower Cmt but it has not been implemented in experiments.

Among other methods to improve energy efficiency, Lohmeier [100] proposed to increase limb

stiffness, move the center of mass of the biped higher, and minimize limb inertia; Asano and

Luo [101] and Wisse et al. [102] designed efficient mechanisms such as the bisecting hip

mechanism; and Gomes and Ruina [103] proposed to eliminate energy losses due to impact

through velocity matching.

1.7 Output Tracking Control for Non-Minimum-Phase

Systems

The output tracking problem for linear systems has been studied for more than four decades.

It deals with finding a control input such that the internal dynamics is stable and the system

output asymptotically tracks a desired trajectory. For linear Minimum-Phase (MP) systems,

the tracking problem can be easily solved, however, it is difficult to achieve both asymptotic

tracking and good transient performance in the case that the system is Non-Minimum-Phase

(NMP).

If the reference signals to be tracked are generated by an unstable external autonomous

linear system, i.e., an exosystem, it is referred to as the output regulation problem or the
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servomechanism problem [104, 105, 106]. The solution to the output regulation problem for

linear systems relies on solving a set of two linear matrix equations which are not solvable

if an eigenvalue of the exosystem is identical to a zero of the linear plant [107, 108, 109].

This makes the class of exosystem-generated reference signals even more limited for NMP

systems with Right-Half-Plane (RHP) zeros.

Inversion-based control techniques have been proposed for output tracking with specified

desired trajectory. For a given desired output, the inversion problem is solved to find the

desired state variables and the desired control input. The tracking control input is com-

prised of the desired input as a feedforward component and a stabilizing input as a feedback

component. For NMP systems, the inversion techniques in [110] results in causal but un-

bounded solutions. This problem was resolved using stable inversion [111] for which the

control input is non-causal and requires preactuation. Later, Weng and Chen [112] proposed

a method based on causal stable inversion by requiring the desired trajectory to have a com-

pact support. Stable inversion techniques cannot be applied to systems with non-hyperbolic

internal dynamics, which correspond to imaginary-axis zeros for a linear system. For such

cases, approximate stable inversion [113, 114] was proposed to achieve approximate output

tracking.

For nonlinear systems, Grizzle et al. [115] proved that asymptotically stable zero-

dynamics is a necessary condition for asymptotic tracking of desired output trajectories.

For NMP systems, only approximate output tracking methods have been developed; in these

methods the output is redefined or the unstable internal dynamics is approximated by stable

dynamics [116, 117, 118]. The unstable zero dynamics of NMP systems also limits the best

achievable transient performance for the output tracking problem. The ideal performance

for the cheap control problem is zero for MP systems; it is limited to the energy needed to
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stabilize the internal dynamics for NMP systems [119, 120, 121].

Discrete-time systems with unstable zeros have the same control limitations as those of

NMP continuous-time systems [122] and therefore, control methods based on zeroth-order

hold can only achieve approximate output tracking for such systems [123, 124, 125]. By

replacing the traditional zeroth-order hold, multirate control [126, 127] was proposed to

overcome the problem of unstable zeros. Using a multirate feedforward control, Fujimoto et

al. [128] developed a control method for perfect tracking in discrete-time systems.

1.8 Scope of Dissertation

The work in this dissertation is organized as follows: In Chapter 2, we provide the experimen-

tal results for the swing-up control of the Pendubot to verify an impulsive control algorithm

developed earlier in [2]. We develop an energy-based algorithm using impulsive inputs for

swing-up control of the Acrobot in Chapter 3. An extension to current swing-up algorithms

to include impulsive inputs is also discussed. In Chapter 4, impulsive inputs are used to

enlarge the region of attraction of a desired equilibrium for underactuated systems. Several

case studies of underactuated mechanical systems are studied to show the effectiveness of

the algorithm. In Chapter 5, we use impulsive inputs to propose a safe fall algorithm for

Humanoid robots. In particular, we design an impulsive control algorithm to change the

fall direction of a six-dof robot to minimize damage to the surrounding objects. In Chapter

6, a disturbance rejection algorithm is developed for the Synthetic-Wheel biped [1]. Im-

pulsive inputs are used to cancel the adverse effects of external impulsive disturbances and

ground impact during the leg interchange. In Chapter 7, Energy-conserving gaits with ideal

zero-energy consumption are generated for a class of underactuated bipeds by avoiding the
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ground impact at the leg interchange. In Chapter 8, we propose an intermittent output

tracking control method for linear non-minimum-phase systems. The switched inputs used

in the control method can be approximated by impulsive inputs in the limit. Finally, we

provide some concluding remarks and the directions for the future work in Chapter 9.
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Chapter 2

Swing-up Control of Pendubot:

Experimental Validation

2.1 Introduction

Although impulsive inputs which are ideally modeled as Dirac-delta functions, can not be

implemented, they can be estimated such that the same impulsive effects are resulted in the

state variables. Using numerical simulations, Albahkali et al [2] demonstrated that impulsive

inputs can be estimated by large-gain continuous inputs in their swing-up control algorithm

for the Pendubot. The large-gain inputs are derived from dynamics which result in a fast

convergence of the system velocities to their new values. It is shown that as the gains are

chosen larger, the effects on the system dynamics get closer to the ideal impulsive case. In this

chapter, the impulsive control algorithm in [2] is experimentally verified using a Pendubot

set-up. The experimental results confirms that the impulsive inputs cab be closely estimated

by continuous inputs and therefore, implemented using standard hardware. This chapter is

organized as follows: In Section 2.2, we briefly review the swing-up control algorithm of

the Pendubot in [2]. The experimental set-up and results are presented in Section 2.3 and

concluding remarks are provided in Section 2.4.
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2.2 Background: Swing-up Algorithm for Pendubot

We briefly summarize the algorithm proposed by Albahkali, et al. [2] for swing-up control

of the pendubot, shown in Figure 2.1:

1. Initialization: Linearize the dynamic equations of the pendubot about the desired

equilibrium (θ1, θ̇1, θ2, θ̇2) = (π/2, 0, 0, 0) and design a linear controller to render the

equilibrium locally asymptotically stable.

2. First link swing-up: Drive the first link from its initial configuration to any configu-

ration where θ1 satisfies (π/2 − α) ≤ θ1 ≤ (π/2 + α), θ̇1 = 0 for some small positive

angle α.

3. Swing-up control of the second link: Conduct rest-to-rest maneuvers of the first link

about the vertically upright configuration satisfying (π/2−α) ≤ θ1 ≤ (π/2+α). Use a

continuous torque to drive the first link from rest and stop it with an impulsive torque

when it reaches the boundary of the interval [(π/2 − α), (π/2 + α)]. It was shown [2]

Y
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c.m
.
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m

.

θ1
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Figure 2.1: The pendubot is shown in an arbitrary configuration.

20



that this maneuver can increase the energy of the second link. Continue rest-to-rest

maneuvers till the energy of the second link is approximately equal to Edes.

4. Stabilization: When the second link reaches its highest potential energy configuration,

the pendubot configuration will be within the region of attraction of the desired equi-

librium. Invoke the linear controller, designed in the first step, to stabilize the desired

equilibrium.

2.3 Experimental Setup and Results

Experiments were done with the P-2 pendubot system, produced by Mechatronic Systems,

Inc. The kinematic and dynamic parameters of the pendubot are as follows:

m1 = 1.0367 kg

l1 = 0.1508 m

d1 = 0.1206 m

I1 = 0.0031 kgm2

m2 = 0.5549 kg

l2 = 0.2667 m

d2 = 0.1135 m

I2 = 0.0035 kgm2

(2.1)

The shoulder joint was driven by a DC motor, powered by an amplifier operating in the

current mode. Both joints have encoders for joint angle sensing. The pendubot was interfaced

with a dSpace DS1104 board and the controller was implemented in the Matlab/Simulink

environment for real-time control. The impulsive torque in the third step of the algorithm

was realized by applying a high-gain braking torque, discussed in [2].

The experiments were performed with α = 0.175 rad ≈ 10◦; the results are shown in

Figure 2.2. It can be seen from Figure 2.2 that the second step of the algorithm commences

at around t = 1.1 sec and the first link reaches its upright configuration at around t = 3.0
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sec. The swing-up of the second link (third step) is initiated at approximately t = 3.2

sec. The pendubot configuration reaches the region of attraction of the desired equilibrium

immediately after t = 7.0 sec; the linear controller is then invoked for stabilization.

The rest-to-rest maneuvers of the first link in the third step of the algorithm can be

seen from the subplot of θ1 in Figure 2.2. The two horizontal dotted lines in this plot

roughly mark the boundary of oscillation of the first joint. The amplitude of this oscillation

is approximately 13.5◦. This is larger than the value of α ≈ 10◦ and this indicates that

the braking torque was insufficient to stop the joint immediately at the boundary of the

interval [(π/2 − α), (π/2 + α)]. In fact, it can be seen from the plot that θ1 overshot the

boundary significantly during one maneuver. A larger gain for the braking torque could
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Figure 2.2: Experimental validation of the impulsive control algorithm [2] for pendubot
swing-up.
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not be generated because of the limitation of the power amplifier but this did not pose any

significant problem in swing-up of the second link. Although it is possible to design electrical

circuits that enable the motor to apply torques that closely approximate an impulsive torque,

the experimental results clearly indicate that regular power amplifiers are sufficient for simple

implementations of impulsive control.

The large peaks in the subplot of τ1 (in Figure 2.2) in the third step of the algorithm

correspond to the impulsive braking torques. Each peak is followed by an oscillation in the

torque profile - this is due to amplification of measurement noise. The impulsive braking

torque is computed based on θ̇1, which is obtained through differentiation of the measurement

of θ1. The process of differentiation amplifies the noise, which is visible in the plot of θ̇1,

and results in the torque ripple.

The subplots of θ̇1 and θ̇2 indicate that the joint velocities undergo large changes (rela-

tively speaking) at the time of application of the impulsive torques - this is consistent with

the theory of impulsive control. It can be seen from the figure that the energy of the system

also undergoes large changes at the time of application of the impulsive torques. Overall,

the experimental results are consistent with those obtained through numerical simulations

by Albahkali, et al. [2].

2.4 Conclusion

The swing-up algorithm of the Pendubot using impulsive inputs was experimentally vali-

dated. Impulsive inputs were approximated by large-gain continuous inputs and are derived

from a fast dynamics which result in desired jumps in velocities. Although the impulsive

inputs were assumed to provide instantaneous braking of the first link, the experimental
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results indicate that the impulsive torques need not to be Dirac delta functions and the

swing-up algorithm is effective even when the magnitude of the impulsive input is bounded

and its time support is not infinitesimal. The magnitude of the impulsive inputs are however

larger than the continuous torque required by the algorithm. This should not be seen as

a problem since actuators such as motors can apply substantially larger torques than the

maximum continuous torque over small time intervals. This is referred to as the peak torque

[129] and it can be twice to ten times larger than the maximum continuous torque for dif-

ferent motors. The experiment results match the simulation results and this confirms that

impulsive inputs are indeed implementable in mechanical systems using regular actuators

and amplifier circuits.
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Chapter 3

Swing-up Control of Acrobot

3.1 Introduction

In this chapter, we present an energy-based method for swing-up control of the Acrobot. The

method relies on the use of impulsive inputs together with continuous inputs and was used

earlier to develop an algorithm for swing-up of the Pendubot [2]. The algorithm developed

for the Pendubot can be directly used for swing-up of the Acrobot but it suffers from slow

convergence. A modified algorithm, based on an additional set of impulsive inputs, provides

fast convergence; also, it is not sensitive to the choice of control gains and does not impose

restrictions on the initial conditions. This algorithm is presented in Section 3.3.

The algorithm presented in Section 3.3 is based on the energy of the system and can

therefore be viewed as a modification of Spong’s algorithm [19, 20] through inclusion of

impulsive inputs in the set of admissible controls. This approach to enlarging the set of

admissible controls is general and can be used to modify other algorithms in the literature.

This is demonstrated in Section 3.4 through modification of the algorithms proposed by

Xin and Kaneda [3] and Mahindrakar and Banavar [22], which are based on the work by

Kolesnichenko and Shiriaev [21]. It is shown that impulsive inputs allow us to enlarge the

set of continuous inputs for swing-up, and thereby additionally enlarge the set of admissible

controls. This provides greater flexibility in control design.

This chapter is organized as follows. In Section 3.2 we review the dynamic model of the
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Acrobot and derive expressions for jump in velocities and change in energy for impulsive

elbow torque. In Section 3.3 we present an algorithm for swing-up that does not suffer

from limitations. In Section 3.4 we demonstrate the flexibility in control design for Acrobot

swing-up by including impulsive inputs in the set of admissible controls. Section 3.5 provides

the concluding remarks.

3.2 Acrobot Dynamics and Impulsive Effects

3.2.1 Equations of Motion

Consider the Acrobot in Figure 3.1. Assuming no friction in the joints, the equation of

motion can be written as [19]

M(θ)θ̈ +N(θ, θ̇)θ̇ +G(θ) = T (3.1)

where

θ = [θ1 θ2]
T , T = [0 τ2]

T (3.2)

and M(θ), N(θ, θ̇), and G(θ), given by the expressions

M(θ) =



q1 + q2 + 2q3C2 q2 + q3C2

q2 + q3C2 q2




N(θ, θ̇) = q3S2




−θ̇2 −(θ̇1 + θ̇2)

θ̇1 0


 , G(θ) = g



q4C1 + q5C12

q5C12


 (3.3)

are the inertia matrix, matrix containing the Coriolis and centrifugal forces, and vector of
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Figure 3.1: The Acrobot in an arbitrary configuration.

gravity forces, respectively. In Eq.(3.3), Sk = sin θk, Ck = cos θk, for k = 1, 2, C12 =

cos(θ1 + θ2), g is the acceleration due to gravity and qj , j = 1, 2, · · · , 5 are some constants

with the following expressions

q1 =m1d
2
1 +m2l

2
1 + I1 , q2 = m2d

2
2 + I2

q3 =m2l1d2 , q4 = m1d1 +m2l1 , q5 = m2d2 (3.4)

where mk is the mass of the k-th link, dk is the distance between the k-th joint and its

center-of mass, lk is the length of the k-th link and Ik is the mass moment of inertia of the

k-th link, for k = 1, 2.

3.2.2 Holding Torque

We compute the torque required to hold the second link fixed, i.e., maintain θ̇2 = 0. By

substituting θ̇2 = θ̈2 = 0 in Eq.(3.1), we get
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

q1+q2+2q3C2

q2+q3C2


 θ̈1+




0

q3S2 θ̇
2
1


+g



q4C1+q5C12

q5C12


 =




0

τ2h


 (3.5)

Eliminating θ̈1 from the two equations in Eq.(3.5), the holding torque at the second joint

can be expressed as follows

τ2h=q3S2 θ̇
2
1 +

g

q1+q2+2q3C2
[(q1+q3C2)q5C12−(q2+q3C2)q4C1] (3.6)

3.2.3 Impulsive Torque for Sudden Change in Velocity

Consider the action that results in exponential convergence of the second link velocity, θ̇2,

to a desired value, θ̇2des, i.e.,

θ̈2 = −k1(θ̇2 − θ̇2des), k1 > 0 (3.7)

where k1 is a constant that determines the rate of convergence of θ̇2. To compute the torque

required for this action, we multiply Eq.(3.1) with the inverse of the inertia matrix to get




θ̈1

θ̈2


=

1

q1q2−q23C2
2




−(q2+q3C2)τ2+h1

(q1+q2+2q3C2)τ2+h2


 (3.8)

where h1 and h2 are given by the expressions

h1 = q2q3(θ̇1 + θ̇2)
2S2 + q23 θ̇

2
1S2C2 + g(q3q5C2C12 − q2q4C1) (3.9)
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h2 =−(θ̇1+θ̇2)
2(q2q3+q

2
3C2)S2−(q1+q3C2)q3θ̇

2
1S2

−g {q3q5C2C12−(q2+q3C2)q4C1+q1q5C12} (3.10)

Substitution of Eq.(3.7) into the second equation of (3.8) gives

τ2=
−1

q1+q2+2q3C2

[
k1(θ̇2−θ̇2des)(q1q2−q23C2

2)+h2

]
(3.11)

For a large value of gain k1, the torque in Eq.(3.11) will be impulsive and converge the

second link velocity to the desired velocity in a short period of time.

As a special case, consider the impulsive torque that results in instantaneous stopping of

the second link. The impulsive braking torque for the second link is obtained by substituting

θ̇2des = 0 in Eq.(3.11), namely,

τ2b =
−1

q1 + q2 + 2q3C2

[
k1θ̇2(q1q2 − q23C

2
2) + h2

]
(3.12)

When the second joint comes to rest, the braking torque is equal to the holding torque. This

can be verified from Eq.(3.6) and Eq.(3.12).

3.2.4 Change in Velocity due to Impulsive Torque

The application of an impulsive torque in the active coordinate θ2 results in velocity jumps

in both active and passive coordinates. The relationship between the jumps in velocities

can be derived from Lagrange’s equations using the approach presented in [1]. Consider

the integral of the equations of motion in Eq.(3.1) over the short interval of time ∆t during
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which the impulsive torque acts, i.e.

∫ ∆t

0

[
M(θ)θ̈ +N(θ, θ̇)θ̇ +G(θ)

]
dt =

∫ ∆t

0
T dt (3.13)

The above equation can be rewritten as:

M(θ)∆θ̇+N(θ, θ̇)∆θ +

∫ ∆t

0
G(θ) dt =

∫ ∆t

0
T dt,

∆θ̇ ,

∫ ∆t

0
θ̈ dt, ∆θ ,

∫ ∆t

0
θ̇ dt (3.14)

Since ∆t ≈ 0 and the configuration of the Acrobot does not change during this time, i.e.

∆θ = 0, Eq.(3.14) will be simplified to

M(θ)∆θ̇ = Timp (3.15)

where Timp = [0 τ2i]
T is the vector of applied impulses. From Eq.(3.3), the above equation

can be decomposed into the following equations:

[q1 + q2 + 2q3C2](θ̇
+
1 −θ̇−1 )+[q2 + q3C2](θ̇

+
2 −θ̇−2 )=0 (3.16)

[q2 + q3C2](θ̇
+
1 −θ̇−1 )+q2(θ̇+2 −θ̇−2 )=τ2i (3.17)

where θ̇−k and θ̇−k denote the amgular velocities of the k-link, immidiately before and after

the application of impulse, respectively. Eq.(3.16) can be written as

[q1 + q2 + 2q3C2](θ̇
+
1 − θ̇−1 ) = −[q2 + q3C2](θ̇

+
2 − θ̇−2 ) (3.18)
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If the velocity of the second link after the impulse is equal to some desired velocity, i.e.,

θ̇+2 = θ̇2des, Eq.(3.18) can be used to obtain the velocity of the first link after the impulse:

θ̇+1 = θ̇−1 −
[

q2 + q3C2

q1 + q2 + 2q3C2

]
(θ̇2des − θ̇−2 ) (3.19)

3.2.5 Change in Energy due to Impulsive Torque

The configuration, and hence the potential energy, of the Acrobot will not change over the

small period of time that the impulse is applied. Therefore, the change in total energy of

the system is due to the change in the kinetic energy, which can be expressed as

∆E = ∆K1 +∆K2 (3.20)

where ∆K1 and ∆K2 denote the change in kinetic energy of the first and second link, and

are given by the relations

∆K1 =
1

2
(I1 +m1d

2
1)[(θ̇

+
1 )

2 − (θ̇−1 )
2)] (3.21)

∆K2 =
1

2
I2(θ̇

+
1 + θ̇+2 )

2 − 1

2
I2(θ̇

−
1 + θ̇−2 )

2

+
1

2
m2

[
l21(θ̇

+
1 )

2 + d22(θ̇
+
1 + θ̇+2 )

2 + 2l1d2θ̇
+
1 (θ̇

+
1 + θ̇+2 )C2

]

− 1

2
m2

[
l21(θ̇

−
1 )

2 + d22(θ̇
−
1 + θ̇−2 )

2 + 2l1d2θ̇
−
1 (θ̇

−
1 + θ̇−2 )C2

]
(3.22)

If we assume the velocity of the second link after the impulse to be equal to the desired

velocity, i.e., θ̇+2 = θ̇2des, the change in total energy can be obtained by substituting Eq.(3.19)
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into Eqs.(3.21) and (3.22) as follows:

∆E =
q1q2 − q23C

2
2

2(q1 + q2 + 2q3C2)

[
(θ̇2des)

2 − (θ̇−2 )
2
]

(3.23)

Equation Eq.(3.23) implies that the change in total energy of the system depends on the

magnitude of θ̇2des, i.e.,

∆E > 0 if |θ̇2des| > |θ̇−2 |

∆E = 0 if |θ̇2des| = |θ̇−2 |

∆E < 0 if |θ̇2des| < |θ̇−2 |

(3.24)

If an impulsive braking torque is used, i.e., θ̇2des = 0, the change in energy is negative

and is given by the relation

∆E = − q1q2 − q23C
2
2

2(q1 + q2 + 2q3C2)
(θ̇−2 )

2 (3.25)

3.3 Swing-Up Control of the Acrobot

3.3.1 Rest-to-Rest Maneuvers of the Second Link

Consider a maneuver in which the second joint starts from rest under the application of

a continuous torque and is brought back to rest through the application of the impulsive

braking torque in Eq.(3.12), where gain k1 has a large value. Taking into account the loss

of energy due to impulsive braking given by Eq.(3.25), the change in energy during each
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rest-to-rest maneuver can be computed as follows

∆E =

∫
τ2c θ̇2 dt−

q1q2 − q23C
2
2

2(q1 + q2 + 2q3C2)
(θ̇−2 )

2 (3.26)

If the torque in Eq.(3.26) is assumed to have the form

τ2c = k2 θ̈2, k2 > 0 (3.27)

the work done by the torque to increase the second link velocity from zero to θ̇−2 , which is

the velocity prior to application of the impulsive brake, is expressed as follows

∫
τ2c θ̇2 dt=

∫
k2 θ̇2 θ̈2 dt=

∫ θ̇−2
0

k2 θ̇2 dθ̇2=
1

2
k2 (θ̇

−
2 )

2 (3.28)

The total change in energy due to the rest-to-rest maneuver can now be obtained by substi-

tuting Eq.(3.28) into Eq.(3.26)

∆E =
1

2

[
k2 −

q1q2 − q23C
2
2

(q1 + q2 + 2q3C2)

]
(θ̇−2 )

2 (3.29)

From Eq.(3.29), it can be seen that the gain k2 can be chosen to add or remove energy,

namely

k2 >
q1q2 − q23C

2
2

(q1 + q2 + 2q3C2)
⇒ ∆E > 0

k2 <
q1q2 − q23C

2
2

(q1 + q2 + 2q3C2)
⇒ ∆E < 0 (3.30)
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Using Eq.(3.8), the torque expression in Eq.(3.27) can be written as:

τ2c =
k2 h2

q1q2 − q23C
2
2 − k2(q1 + q2 + 2q3C2)

(3.31)

The above expression for the torque will not be singular if k2 is chosen based on Eq.(3.30).

3.3.2 Acrobot Swing-up Using Rest-to-Rest Maneuvers

3.3.2.1 Swing-up Algorithm

A swing-up algorithm for the Acrobot is proposed using rest-to-rest maneuvers of the second

link. This algorithm is similar to the one proposed for the Pendubot [2] in the sense that

energy of the system is increased through rest-to-rest maneuvers, and impulsive control

inputs are used as braking torques. The algorithm is comprised of the following three steps:

1. Initialization:

• Linearize the dynamic equations of the Acrobot in Eq.(3.1) about the equilibrium

configuration (θ1, θ̇1, θ2, θ̇2) = (π/2, 0, 0, 0).

• Design a linear controller to render the equilibrium locally asymptotically stable.

Let RA define the region of attraction of the equilibrium.

• Choose a small positive constant δ, such that the system configuration lies inside

RA when θ̇1 ≈ θ̇2 ≈ 0 and |P − Edes| < δ, where P is the potential energy and

Edes is the total energy of the Acrobot at its upright equilibrium.

2. Increasing the energy of the system:
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• Conduct rest-to-rest maneuvers to increase E to its desired value, Edes. The rest-

to-rest maneuvers will be implemented with θ2 satisfying −α ≤ θ2 ≤ α, where α is

a small positive angle. Using Eq.(3.30), the control gain for the torque expression

in Eq.(3.31) is chosen such that ∆E > 0, i.e., the energy is increased through the

rest-to-rest maneuvers. In particular, the following procedure will be adopted.

The holding torque in Eq.(3.6) will be applied to hold the second link fixed. To

initiate motion of the second link in the positive (counter-clockwise) direction, the

torque expression in Eq.(3.31) will be used when it is greater than τ2h. To initiate

motion in the negative (clockwise) direction, the torque expression in Eq.(3.31)

will be used when it is less than τ2h. As the second link approaches the boundary

of the interval [−α, α], the braking torque τ2b in Eq.(3.12) will be used with a

large value of gain k1 to quickly stop the motion of the second link.

• Terminate the rest-to-rest maneuvers when the condition |E−Edes| < δ is satisfied

and apply the holding torque in Eq.(3.6) to keep the second link fixed.

3. Stabilization:

With −α ≤ θ2 ≤ α, θ̇2 = 0, and |E − Edes| < δ, the first link will behave like a

pendulum and reach its configuration with maximum potential energy in finite time.

When the Acrobot has maximum potential energy, i.e. |P−Edes| < δ and θ̇1 = θ̇2 = 0,

its configuration will be inside RA. Invoke the linear controller, designed in the first

step of the algorithm, to stabilize the equilibrium.

Remark 3.3.1. For the rest-to-rest maneuvers of the second link in step 2, τ2c in Eq.(3.31)

has to be greater (or less) than τ2h to initiate the motion of the second link in the counter-
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clockwise (or clockwise) direction when θ2 = −α (or θ2 = +α) and θ̇2 = 0. We show that

this condition can be satisfied by choosing proper values for α. For θ̇1 = θ̇2 = 0, Figure 3.2

shows the regions in θ1-θ2 space where Π = (τ2c−τ2h) is positive and negative. If the second

link is held fixed at θ2 = +α or θ2 = −α, the Acrobot will oscillate like a pendulum and θ1

will oscillate between its maximum and minimum values where θ̇1 = 0. The amplitude of

oscillation of θ1 will depend on the energy of the Acrobot and the maximum and minimum

values of θ1 will correspond to Acrobot configurations that lie at the end points of the dashed

lines in Figure 3.2. If the end point of the dashed lines are on opposite sides of the curve

Π = 0, as shown in Figure 3.2, it will be possible to initiate the rest-to-rest maneuvers in the

desired direction. To ensure that the end points are on opposite sides of the curve Π = 0,

we will have to properly choose the value of α, i.e., choose a small value when the Acrobot

has low energy.

Remark 3.3.2. It may be desirable to choose a fixed value of α, say ᾱ, for all the rest-to-rest

maneuvers during swing-up. It follows from Remark 3.3.1 that it will be possible to conduct
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Figure 3.2: Plot showing θ1-θ2 space where Π is positive and negative for θ̇1 = θ̇2 = 0.
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the rest-to-rest maneuvers successfully if the initial energy of the Acrobot is greater than P̄ ,

where P̄ is the potential energy of the Acrobot at the configuration (θ1, θ2) = (ᾱ, η̄) and ᾱ

and η̄ are shown in Figure 3.2.

3.3.2.2 Numerical Simulation

We present numerical simulation results using kinematic and dynamic parameters of the

Acrobot from Xin and Kaneda [3]:

m1=1 kg, l1=1m, d1=0.5m, I1=0.083N.m2

m2=1 kg, l2=2m, d2=1m, I2=0.33N.m2 (3.32)

The initial conditions were chosen as (θ1, θ2, θ̇1, θ̇2) = (−π/4, 0, 0, 0) and the algorithm

parameters were set to be δ = 0.1 J and α = 0.17 rad. For the parameters in Eq.(3.32), Edes

was computed to be 49.05 J. The simulation results are shown in Figure 3.3. By choosing

the gain k2 in Eq.(3.31) appropriately, the total energy of the Acrobot is increased in each

rest-to-rest maneuver. The peaks in the torque plot represent impulsive braking torques

used in the rest-to-rest maneuvers.

The main drawback of the algorithm in Section 3.3.2.1 is that it takes a long time for

swing-up. For the simulation in Figure 3.3, the algorithm is switched to the linear controller

at about t = 115 sec, which is shown by vertical dotted line. This time is much longer than

swing-up times reported in the literature. For example, for the same kinematic and dynamic

parameters and lower initial energy level, the algorithm in [3] achieved swing-up in about 8

sec. The swing-up time required by our algorithm will be longer if the initial energy of the

Acrobot is lower due to the constraint on the choice of α - see Remark 3.3.1. In the next
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Figure 3.3: Simulation results for swing-up of the Acrobot using rest-to-rest maneuvers of
the second link.

section, we modify the algorithm to provide faster swing-up.

3.3.3 Increasing Energy of the Acrobot Using Impulsive Inputs

3.3.3.1 Swing-up Algorithm

The algorithm in Section 3.3.2 used impulsive inputs for braking, which reduces the energy

of the system. For faster swing-up, we propose to use impulsive inputs to increase the energy

of the Acrobot. Specifically, we apply the impulsive torque in Eq.(3.11) with large gain k1

and θ̇2des chosen such that the energy of the system increases based on the condition in
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Eq.(3.24). If the velocity of the second link after the impulse is chosen as,

θ̇2des = −λ θ̇−2 , θ̇−2 6= 0, λ > 1 (3.33)

the second link will have a velocity greater in magnitude and opposite in direction to that

prior to the impulse, and the energy of the system will be higher. The change in sign of

the velocity is needed to keep the second link angle bounded within some predefined range

while the energy is raised to the desired level. Most of the energy gained from application

of impulsive torques will be in the form of kinetic energy and needs to be converted into

potential energy for swing-up. To convert kinetic energy into potential energy, the torque

is set to zero and the second joint is made free. This keeps the total energy of the system

constant and allows kinetic energy to be converted into potential energy. The rest-to-rest

maneuvers are used subsequently to regulate the energy of the Acrobot to the desired level

Edes. The modified algorithm is stated next:

1. Initialization: Same as step 1 in Section 3.3.2.1.

2. Increasing the energy of the system:

• At the initial time, if θ2 = θ̇2 = 0, apply the impulsive torque in Eq.(3.11), where

θ̇2des is chosen to be nonzero. From Eq.(3.24), we know that this will increase the

energy of the Acrobot.

• Using Eq.(3.33), apply the impulsive torque in Eq.(3.11) when the second link

approaches a bound of the interval [−γ, γ] from inside, where γ is some positive

angle - see Figure 3.4. Note that γ can always be chosen such that the second link

approaches the bound of the interval [−γ, γ] for any initial conditions or initial
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velocity of the second link, θ̇2des. Applying these impulsive torques will increase

the energy of the system, mainly in the form of kinetic energy. Continue this

process till E ≥ Edes.

• Release the system by setting τ2 = 0. This will cause the links to swing freely

resulting in exchange between kinetic and potential energies while the total energy

remains constant.

• Stop the second link using the impulsive braking torque in Eq.(3.12) when the

potential energy of the Acrobot reaches its local maxima, i.e, Ṗ = 0, P̈ < 0. The

braking action will reduce the total energy of the system according to Eq.(3.25)

but the potential energy will remain at its local maxima.

3. Regulation of energy to the desired level:

• Same as step 2 in Section 3.3.2.1: Conduct rest-to-rest maneuvers with θ2 ∈

[−α, α]. If the second link is initially out of this bound, it will be brought inside

by the first rest-to-rest maneuver. Depending on the current level of energy, the

gain k2 is chosen from Eq.(3.30) to regulate (increase or decrease) E to Edes.

• Terminate the rest-to-rest maneuvers when the condition |E−Edes| < δ is satisfied

and apply the holding torque in Eq.(3.6) to keep the second link fixed.

4. Stabilization: Same as step 3 in Section 3.3.2.1.

Remark 3.3.3. The above algorithm is not sensitive to the choice of control gains and does

not impose restrictions on the initial conditions. It also provides fast swing-up of the Acrobot

- this is demonstrated next through simulations.
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Figure 3.4: Configuration of the Acrobot at the time when the impulsive torque is applied
to increase the energy of the system.

3.3.3.2 Numerical Simulation

We present numerical simulation results using kinematic and dynamic parameters of the

Acrobot from Xin and Kaneda [3], given in Eq.(3.32). The parameters of our algorithm were

chosen as:

λ = 2.5, δ = 0.10 J, γ = 60◦, α = 5◦ (3.34)

The initial conditions were chosen at (θ1, θ2, θ̇1, θ̇2) = (−π/2, 0, 0, 0)1 and the initial im-

pulsive torque was chosen to result in θ̇2des = 3.0 rad/s. For the parameters in Eq.(3.32),

Edes was computed as 49.05 J. The simulation results are shown in Figure 3.5. The total

energy (solid line) is discretely increased through the application of impulsive torques. Af-

ter five discrete applications of impulsive torque, the condition E ≥ Edes is satisfied and

the second joint is released. The potential energy (dashed line) subsequently increases, and

1This initial configuration corresponds to zero kinetic energy and lowest potential energy and
cannot be handled by the algorithms in Xin and Kaneda [3] and Mahindrakar and Banavar [22].
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Figure 3.5: Simulation results for swing-up of the Acrobot using impulsive inputs to increase
the energy.

when it reaches its local maxima, the second link is stopped using an impulsive brake. This

event, which occurs at approximately t = 2.42 sec, results in a drop in the total energy of

the system. After application of the impulsive brake, the condition |E − Edes| < δ is not

satisfied and therefore one rest-to-rest maneuver is used to regulate the energy to Edes. The

rest-to-rest maneuver is completed at approximately t = 3.86 sec and the linear controller

is invoked at t = 5.35 sec. In comparison to the algorithm proposed in [3], our algorithm

requires shorter time for swing-up: 5.35 sec compared to 7.33 sec, and lower maximum con-

tinuous torque: 12.5 N.m compared to 20.0 N.m, despite starting from a lower initial energy

configuration.
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Numerical simulations results of the algorithm using Acrobots parameters in Mahindrakar

and Banavar [22] can be found in [130].

3.4 Modification of an Existing Method

3.4.1 Existing Control Method

Kolesnichenko and Shiriaev [21] developed a general methodology for control of underac-

tuated systems; this method was used for Acrobot swing-up by Xin and Kaneda [3] and

Mahindrakar and Banavar [22]. We first review this method and then modify it to include

impulsive control inputs.

Consider the dynamics of the Acrobot in the following form:

ẋ = f(x, τ2c) (3.35)

where x = (θ1, θ2, θ̇1, θ̇2)
T and f(x, τ2c) can be determined using Eq.(3.8). A continuous

controller is designed to achieve the following objectives:

lim
t→∞

θ2 = 0, lim
t→∞

θ̇2 = 0, lim
t→∞

E = Edes (3.36)

With θ2 = 0, θ̇2 = 0, and E = Edes, the Acrobot behaves like a pendulum and its trajectory

converges to a heteroclinic orbit that passes through the desired upright equilibrium. To

achieve the control objective, the following “positive storage function” is used:

V (θ, θ̇) =
1

2

[
kpθ

2
2 + kd(θ̇2)

2 + ke(E − Edes)
2
]

(3.37)
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where kp, kd, ke > 0. The following control input is chosen:

τ2c = −kpθ2 + kda(θ, θ̇) + φ(θ̇2)

kdb(θ2) + ke(E −Edes)
(3.38)

where a(θ, θ̇) and b(θ2) are given by the expressions

a(θ, θ̇) =
1

q1q2 − q23C
2
2

h2

b(θ2) =
1

q1q1 − q23C
2
2

(q1 + q2 + 2q3C2) (3.39)

and the condition

kdmin
θ2

{b(θ2)} > keEdes (3.40)

is satisfied to avoid singularity in the control torque in Eq.(3.38). Using Eq.(3.38), the

derivative of the storage function is shown to be:

V̇ (θ, θ̇) = −θ̇2 φ(θ̇2) (3.41)

where φ(θ̇2) is chosen such that V̇ ≤ 0, and therefore the system is stable. In [3] and [22],

the function φ(θ̇2) is chosen as:

φ(θ̇2) = kcθ̇2, kc > 0 (3.42)

The invariant set for the closed-loop system is given by

M = V0 ∪ Ω (3.43)
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where V0 corresponds to the desired equilibrium and Ω is the finite set of undesirable equi-

libria:

V0 = {x ∈ R4 | V (x) = 0}

Ω = {x ∈ R4 | V (x) > 0 , V̇ ≡ 0} (3.44)

In [3] and [22], the gains kp, kd, and ke are chosen such that the equilibria in Ω are hyperbolic

and V0 is attractive. This choice of gains ensures that the the control objective is achieved

for all initial conditions except a set from which system trajectories do not converge to the

desired equilibrium.

3.4.2 Modified Method Using Impulsive Inputs

3.4.2.1 Impulsive System

We modify the control method in [3] and [22] to include impulsive inputs. Consider the

following impulsive dynamical system:

ẋ(t) = f(x, τ2c), t /∈ η(x)

∆x(t) = H(x, τ2i), t ∈ η(x) (3.45)

where x, f(x, τ2c) and τ2c are given in Eqs.(3.35) and (3.38), and correspond to the closed-

loop system dynamics of the Acrobot designed by Xin and Kaneda [3] and Mahindrakar and

Banavar [22]. H(x, τ2i) represents a jump in the states of the Acrobot due to the application
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of the impulse τ2i. Using Eqs.(3.16) and (3.17), it can be shown

H(x, τ2i) = (x+ − x−) =

[
0 0 − q2+q3C2

q1q2−q23C2
2

q1+q2+2q3C2

q1q2−q23C2
2

]T
τ2i (3.46)

In (3.46), x+ and x− represent the right and left limits of x at the instant of the impulse,

respectively. By choosing the impulse τ2i to be

τ2i = − q1q2 − q23C
2
2

q1 + q2 + 2q3C2
θ̇−2 (3.47)

we get impulsive braking which results in θ̇+2 = 0. This can be verified from H(x, τ2i), which

can be rewritten as:

H(x, τ2i) =

[
0 0

q2 + q3C2

q1 + q2 + 2q3C2
θ̇−2 − θ̇−2

]T
(3.48)

We choose the set η(x) in Eq.(3.45) to be:

η(x) = {t ∈ [t0,∞) | x ∈ ρ(x)} (3.49)

where

ρ(x) = {x ∈ R4 | θ̇2θ̈2 < 0} (3.50)

We define the set ρ⊥(x) as

ρ⊥(x) = {x ∈ R4 | θ̇2θ̈2 ≥ 0} (3.51)
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such that

ρ(x) ∩ ρ⊥(x) = ∅ (3.52)

Since θ̇+2 = 0 from our choice of τ2i in Eq.(3.47), x+ lies on the boundary of ρ⊥(x). By

taking the derivative of θ̇2θ̈2 with respect to time immediately following the impulse, we get

D(θ̇2θ̈2) = (θ̈+2 )
2 + θ̇+2 θ

+
2
(3)

= (θ̈+2 )
2 ≥ 0 (3.53)

which means that θ̇2θ̈2 is nondecreasing after the impulse. It follows from continuity that

x will be in the interior of ρ⊥(x) after an impulse and there exists a nonzero time interval

ǫ > 0 before x can enter the set ρ(x). Therefore there is no instant with multiple impulses.

3.4.2.2 Stability of Impulsive System

The jump in the positive storage function in Eq.(3.37) due to the impulse in Eq.(3.47) can

be computed as follows

∆V = V (x+)− V (x−)

=−1

2
kd(θ̇

−
2 )

2+
1

2
ke

[
(E+−Edes)2−(E−−Edes)2

]

=−1

2
kd(θ̇

−
2 )

2+
1

2
ke(E

++E−−2Edes) ∆E

=− (θ̇−2 )
2

2b(θ2)

[
kd b(θ2)+

ke(θ̇
−
2 )

2

4b(θ2)
+ke(E

+−Edes)
]

=−1

2

[
kd b(θ2)+ke(E

+−Edes)

b(θ2)
(θ̇−2 )

2+
ke(θ̇

−
2 )

4

4b2(θ2)

]
(3.54)
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where Eqs.(3.25) and (3.39) were used. From the condition in Eq.(3.40) we have

kd b(θ2) + ke(E
+ − Edes)

b(θ2)
> 0 ⇒ ∆V ≤ 0 (3.55)

The continuous control input given by Eqs.(3.38) and (3.42) and the impulsive input in

Eq.(3.47) results in

D+V ≤ 0 ∀t /∈ η(x)

∆V ≤ 0 ∀t ∈ η(x) (3.56)

where D+V denotes the upper right Dini derivative of V with respect to time. Using the

stability theorems in [9] and [131], we can claim stability of the impulsive dynamical system

in (3.45).

To prove the asymptotic convergence to the desired equilibrium, we use the Invariance

Principle for impulsive dynamical systems in [132] and [133]. To find the largest invariant

set, we define the set

Z ={x ∈ R4 | V̇ = 0, x ∈ ρ⊥(x)} ∪ {x ∈ R4 | ∆V = 0, x ∈ ρ(x)} (3.57)

Using Eqs.(3.41), (3.50) and (3.54), it can be shown

Z = {x ∈ R4 | θ̇2 = 0, x ∈ ρ⊥(x)} ∪ ∅ (3.58)
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Therefore, the largest invariant set M is given by

M = {x ∈ R4 | θ̇2 ≡ 0, x ∈ ρ⊥(x)} (3.59)

which is the same set as in Eq.(3.43) obtained in [3] and [22]. The invariant set is not simply

V0; it includes Ω which contains a finite set of equilibrium points. In [3] and [22], a set

of conditions were imposed such that all continuous trajectories that do not start in Ω are

attracted to V0. For an impulsive dynamical system we have both continuous and discrete

trajectories, and therefore, we must extend the results in [3] and [22] to include discrete

trajectories.

We need to find conditions such that discrete trajectories do not end in Ω. To this end,

we define the set

S(x) = {x ∈ R4 | θ̇2θ̈2 = 0} (3.60)

which is the boundary between ρ(x) and ρ⊥(x). Let S1(x) be the subset of S(x) from where

trajectories enter ρ(x) from ρ⊥(x), i.e.,

S1(x) = {x ∈ S(x) | d
dt
(θ̇2θ̈2) < 0} (3.61)

Each element of S1 is arbitrarily close to a point in ρ(x) from where a discrete trajectory

originates and satisfies

d

dt
(θ̇2θ̈2) = θ̇2θ

(3)
2 + (θ̈2)

2 < 0 ⇒ θ̇2θ
(3)
2 < 0 (3.62)
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In addition, define the set S2 as

S2(x) = {x ∈ S(x) | x+H(x, τ2i) ∈ Ω} (3.63)

Each element of S2 is arbitrarily close to a point in ρ(x) from where a discrete trajectory ends

in Ω. The set S1 ∩ S2 contains all points from where trajectories of the closed-loop system

end in Ω. We are now ready to state the additional condition that needs to be satisfied for

asymptotic convergence of trajectories to the desired equilibrium.

Theorem 3.4.1. Consider the impulsive dynamical system in Eq.(3.45) with continuous

control given by Eqs.(3.38) and (3.42); and impulsive control given by Eq.(3.47) and applied

at t ∈ η(x), defined in Eq.(3.49). If the positive gains kp, kd, ke, and kc are chosen such

that

θ̇2θ
(3)
2 ≥ 0 ∀ x ∈ S2 (3.64)

then no discrete trajectories will end in the set Ω of the invariant set M .

Proof. From the definition of S1 in (3.61) it can be shown that the condition in (3.64) implies

S1 ∩ S2 = ∅.

Remark 3.4.1. The algorithms in [3] and [22] impose constraints on kp, kd and ke values

to guarantee convergence of Acrobot trajectories to the upright equilibrium provided that

certain initial conditions are avoided. The constraint in (3.64) has to be additionally satisfied

for implementation of the modified approach that includes impulsive inputs, presented above.

Although the modified approach imposes an additional constraint on the gains, the use of

impulsive inputs provides us with greater flexibility in choosing the continuous control inputs.

This will be illustrated in Section 3.4.3.
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3.4.2.3 Numerical Simulation

We provide simulation results for the modified impulsive controller presented above and

compare them with the results of the continuous controller in [3]. The kinematic and dynamic

parameters of the Acrobot are taken from [3] and are given here in Eq.(3.32). The initial

conditions and gains were chosen as follows:

(θ1, θ2, θ̇1, θ̇2) = (−1.4, 0, 0, 0)

kp=61.2, kd=35.8, ke=1, kc=
100

1+0.14 V (x)
(3.65)

The initial conditions and the gains kp, kd and ke in Eq.(3.65) are the same as those in [3]

and they guarantee convergence of the Acrobot trajectory to the upright equilibrium under

continuous control. To establish convergence using the impulsive control approach, we used

the procedure in the Appendix A to determine the elements of S2, defined in (3.63). For

the initial conditions and gain values in Eq.(3.65), the positive storage function V (x) for

all x ∈ S2, was found to be larger than the value of V at the initial time. This implies

that S2 = ∅ for positive-time solution trajectories and therefore the condition in Eq.(3.64)

is trivially satisfied.

The simulation results are shown in Figure 3.6. For the parameters in Eq.(3.32), Edes

was computed to be 49.05 J. The solid and dashed lines in the plots for energy E, positive

storage function V , and control input τ2 correspond to the modified impulsive controller

and the controller in [3], respectively. Note that the torque plot for the modified controller

includes both continuous and impulsive torques, i.e., τ2 = τ2c+ τ2i. Both controllers achieve

swing-up in approximately 8 sec, after which a linear controller is invoked for stabilization.
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Figure 3.6: Simulation results for swing-up of the Acrobot: Comparison of the modified
impulsive controller (solid line) and the continuous controller (dashed line) proposed by Xin
and Kaneda [3].

Although the time required for swing-up is similar, the impulsive controller requires larger

continuous torques and multiple impulses within a short interval of time.

3.4.3 Alternate Continuous Control Design

3.4.3.1 Control Design

Consider the impulsive dynamical system in Eq.(3.45) with positive storage function given

by Eq.(3.37). We choose to apply the same impulsive control input in Eq.(3.47) at time
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instants given by Eq.(3.49) but modify the continuous control input in Eq.(3.38) as follows:

τ2c = − kpθ2 + kda(θ, θ̇) + kcθ̈2
kdb(θ2) + ke(E −Edes)

, kc > 0 (3.66)

This results in

D+V = −kcθ̇2θ̈2 (3.67)

From the definitions for η(x) and ρ(x) in Eq.(3.49) and Eq.(3.50), we have

D+V = −kcθ̇2θ̈2 ≤ 0 ∀t /∈ η(x) (3.68)

Using Eqs.(3.8) and (3.39), the expression for θ̈2 can be found and substituted into Eq.(3.66)

to get

τ2c = − kpθ2 + (kd + kc) a(θ̇, θ)

(kd + kc) b(θ2) + ke(E − Edes)
(3.69)

Since b(θ2) > 0 and kc, kd, ke > 0, the singularity in the torque expression in Eq.(3.69) can

be avoided by simply choosing the gains as follows

kdmin
θ

{b(θ)} > keEdes (3.70)

The jump in V due to the impulse is the same as in Eq.(3.54) and therefore the stability of

the system is guaranteed - this follows from our discussion in Section 3.4.2.2.

The invariant set M is found to be the same as the set in Eq.(3.59), which is identical

that derived in [3] and [22]. To prove the convergence to the desired upright configuration,

we follow the same procedure as in Section 3.4.2.2. The gain values kp, kd, ke and kc need to

be chosen such that the condition in Theorem 3.4.1 is satisfied in addition to the conditions
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in [3] and [22].

3.4.3.2 Numerical Simulation

We compare the performance of the controller presented above with that of the continuous

controller in [3]. The kinematic and dynamic parameters of the Acrobot are taken from [3]

and are given in Eq.(3.32). The initial conditions and gains were chosen as:

(θ1, θ2, θ̇1, θ̇2) = (−1.4, 0, 0, 0)

kp = 61.2, kd = 35.8, ke = 1, kc = 75.6 (3.71)

The initial conditions and the gains kp, kd and ke are the same as those in [3] and they

guarantee convergence of the Acrobot trajectory to the upright equilibrium under contin-

uous control. To establish convergence using the impulsive control approach, we used the

procedure in Appendix A to determine the elements of S2, defined in Eq.(3.63). For the ini-

tial conditions and gain values in Eq.(3.71), the set S2 was found to be empty and therefore

the condition in Eq.(3.64) is trivially satisfied.

The simulation results are shown in Figure 3.7. As in the last simulation, the solid and

dashed lines in the plots for energy E, positive storage function V , and control input τ

correspond to our controller and the controller in [3], respectively. Our controller achieves

swing up in approximately 7.33 sec. This is slightly faster than the controller in [3], which

requires 8 sec. For both controllers, a linear controller was invoked for stabilization after

swing-up. It can be noted that the number of impulses used by our controller are fewer

and farther apart than those in Figure 3.6. Furthermore, the maximum continuous torque

is approximately 15 N.m, which is lower than 20 N.m required by the controller in [3].
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Figure 3.7: Simulation results for swing-up of the Acrobot: Comparison of the controller in
Section 3.4.3 (solid line) with the continuous controller (dashed line) proposed by Xin and
Kaneda [3].

The impulsive control approach allows us to replace the continuous controller in Eq.(3.38)

with the controller in Eq.(3.69) and comparison of simulation results in Figures 3.6 and 3.7

indicate improvement in performance.

Numerical simulations results of the algorithm using Acrobots parameters in Mahindrakar

and Banavar [22] can be found in [134].

3.5 Conclusion

We proposed two swing-up algorithms for the Acrobot based on continuous and impulsive

control inputs. The first algorithm is energy-based and is a modification of the algorithm
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developed earlier for the Pendubot [2]. The algorithm for the Pendubot can be directly used

for swing-up of the Acrobot but provides slow convergence; a modification of the algorithm,

based on a set of impulsive inputs that increase the energy of the system, provides rapid

swing-up. As compared to other general algorithms in the literature, our algorithm is not

sensitive to control gains and does not impose constraints on the control gains or initial

conditions. Numerical simulations were presented to show swing-up from an initial condition

that corresponds to the equilibrium configuration with the lowest potential energy. This

initial condition cannot be handled by existing algorithms in the literature.

The idea of enlarging the set of admissible controls to include impulsive input is quite

general and can be used to modify existing algorithms in the literature. This is demonstrated

by the second swing-up algorithm presented in this chapter, which is a modification of

the algorithms in [3] and [22]. The modification based on impulsive inputs imposes an

additional constraint on the control gains but provides greater flexibility in choosing the

continuous control inputs. This results in improved performance, which is demonstrated

through numerical simulations. The numerical simulations also indicate that the additional

constraint is trivially satisfied.
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Chapter 4

Enlarging Region of Attraction for

Underactuated Systems

4.1 Introduction

The main algorithms for stabilization of underactuated systems were discussed in Section

1.3. Regardless of the algorithm, the system trajectories will not approach the desired

equilibrium if the configuration of the system lies outside the region of attraction, RA. In this

chapter, we propose a control algorithm which can enlarge the RA of a desired equilibrium

for underactuated systems. This implies that it may be possible to stabilize an equilibrium

from a configuration which lies outside the RA for an existing controller. Our algorithm uses

impulsive inputs in conjunction with the continuous control inputs and its success depends

on two sufficient conditions that need to be satisfied by the impulsive inputs.

This chapter is organized as follows: In Section 4.2, we model the effect of impulsive

inputs on the dynamics of underactuated systems. An algorithm to enlarge the RA of an

equilibrium of the system is proposed in section 4.3. In Section 4.4, the algorithm is applied to

three underactuated systems, namely, the Pendubot, the Acrobot, and the Rolling Acrobot,

for all of which linear stabilizing controllers were designed. In Section 4.5, the algorithm is

applied to the inverted pendulum on slope and the ball-beam system for which nonlinear

stabilizing controllers were designed. Concluding remarks are provided in section 4.6.
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4.2 Background

4.2.1 Dynamic Model

For an underactuated dynamical system, Lagrange’s equations have the form:

M(q)q̈ +N(q, q̇)q̇ +G(q) = u (4.1)

where q ∈ Rn represents the vector of generalized coordinates, and M(q) ∈ Rn×n, N(q, q̇) ∈

Rn×n and G(q) ∈ Rn denote the positive definite inertia matrix, the matrix of centrifugal

and Coriolis forces, and the vector of gravitational forces, respectively. u ∈ Rn is the vector

of generalized forces and has the following form:

u = [0, · · · , 0, u1, · · · , um]T , m < n (4.2)

The degree of underactuation of the system is equal to n−m.

4.2.2 Impulsive Inputs

Since ideal impulses can not be implemented in practice, we approximate impulsive inputs

by continuous control inputs with very large gains. A set of impulsive inputs corresponding

to the actuated coordinates can be obtained from the dynamics:

q̈i = −ki(q̇i − q̇desi ) , i = 1, · · · , m (4.3)

where ki is a large positive gain and q̇desi is the desired velocity for q̇i immediately after the
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application of the impulse. Using Eq.(4.1), Eq.(4.3) can be written as:

Ji M
−1(q) [u−N(q, q̇)q̇ −G(q)] = −ki(q̇i − q̇desi ) , i = 1, · · · , m (4.4)

where Ji ∈ R1×n is a row vector with all zero elements except (n−m+ i)-th element which

is unity. Equation (4.4) can be rewritten as follows:

Ji M
−1(q)[N(q, q̇)q̇ +G(q)]− ki(q̇i − q̇desi ) = Ji M

−1(q)u , i = 1, · · · , m (4.5)

The set of m equations in Eq.(4.5) can be solved to obtain the impulsive inputs uimp =

[u
imp
1 , · · · , uimpm ]T . It was shown in [2] that the dynamics in Eq.(4.3) closely approximates

an impulsive input for large gains ki.

4.2.3 Effect of Impulsive Inputs on Velocity

Impulsive inputs cause velocity jumps in both active and passive coordinates of the system.

The relationship for the velocity jumps can be derived from Lagrange’s equations. The

integral of the equations of motion in Eq.(4.1) over the short interval of time ∆t, during

which the impulsive inputs act, gives:

∫ ∆t

0
[M(q)q̈ +N(q, q̇)q̇ +G(q)] dt =

∫ ∆t

0
u dt (4.6)

The above equation can be rewritten as:

M(q)∆q̇ +N(q, q̇)∆q +

∫ ∆t

0
G(q) dt =

∫ ∆t

0
u dt,
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∆q̇ ,

∫ ∆t

0
q̈ dt, ∆q ,

∫ ∆t

0
q̇ dt (4.7)

Since the configuration of the system does not change over ∆t ≈ 0, i.e. ∆q = 0, Eq.(4.7) is

simplified to the form:

M(q)∆q̇ = I (4.8)

where I = [0, · · · , 0, I1, · · · , Im]T is the vector of applied impulses. The above equation can

be decomposed into the following equations:

M̂1(q̇
+ − q̇−) = 0 (4.9)

M̂2(q̇
+ − q̇−) = Î (4.10)

where M̂1 ∈ Rn−m×n, M̂2 ∈ Rm×n and Î ∈ Rm are defined as:

M =



M̂1

M̂2


 , Î = [I1, · · · , Im]T (4.11)

and q̇− and q̇+ denote the vector of velocities immediately before and after the application

of impulse, respectively. Knowing the impulses applied on the system, Eq.(4.8) can be solved

to determine the velocity jumps in the active and passive coordinates.

Since ideal impulses I can not be implemented in practice, we use the inputs uimp ob-

tained in section 4.2.2 for our algorithm, discussed next.
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4.3 Stabilization Algorithm

Consider the underactuated system in Eq.(4.1) and assume that a controller has been de-

signed to stabilize an equilibrium of the system. Also assume that a Lyapunov function

V (q, q̇) can be found to establish asymptotic stability of the equilibrium, and let RA be the

region of attraction of this equilibrium. We propose a control algorithm which uses impulsive

inputs that are applied in conjunction with the stabilizing controller. The algorithm may be

able to stabilize the equilibrium from a set of configurations which lie outside the RA. The

algorithm is presented below:

1. Initialization: Find the Lyapunov function V (q, q̇) for the underactuated system in

Eq.(4.1) with stabilizing control inputs û = [u1, · · · , um]T .

2. Impulsive Inputs: If V̇ ≥ 0, apply impulsive inputs uimp = [u
imp
1 , · · · , uimpm ]T such

that:

V (q, q̇+) < V (q, q̇−) , V̇ (q, q̇+) < 0 (4.12)

Note that the continuous inputs û provided by the stabilizing controller is applied at all

times, i.e., the impulsive inputs are applied on top of the continuous inputs when V̇ ≤ 0.

To prove stability of the impulsive system, we need to show that V̇ < 0 during the

continuous phase, and V has negative jumps due to application of the impulsive inputs

[131, 9]. These conditions are satisfied by the proposed algorithm since impulsive inputs

which satisfy the conditions in Eq.(4.12) will force the system to be inside the region where

V̇ < 0 and ensure a negative jump in the value of V .

We illustrate the algorithm with the help of a two-dof system with underactuation degree

one. Let q1 and q2 be the generalized coordinates of the system. Since the configuration of
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the system does not change at the time of application of the impulsive inputs, the effect of

impulsive inputs can be shown in the q̇1-q̇2 plane - see Figure 4.1. In this figure, the curves

V = V̂ and V̇ = 0 correspond to fixed values of q = q̂ , (q̂1, q̂2). The point A : (q̂, q̇−)

denotes a configuration which lies outside the region where V̇ < 0 prior to the application of

the impulse. Since the impulsive input must satisfy the conditions in Eq.(4.12), the system

configuration jumps from A : (q̂, q̇−) to B : (q̄, ˙̄q+); B is a point inside the dashed region in

Figure 4.1 where V̇ < 0 and V < V̂ . This jump has to be along the impulse line, which can

be obtained from Eq.(4.9):

(q̇2 − q̇−2 ) = −M11

M12
(q̇1 − q̇−1 ) (4.13)

In Eq.(4.13), M11 and M12 are the elements of the matrix M̂1(q̄) = [M11,M12] in Eq.(4.11).

From Eq.(4.13), the slope of the impulse line depends on the elements of the mass matrix

evaluated at q = q̂, and this slope determines if the conditions in Eq.(4.12) can be satisfied.

An impulse line which does not enter the dashed region in Figure 4.1 corresponds to a

configuration of the system for which the required impulsive inputs can not be found. For

the case of V̇ = 0, i.e., A : (q̂, q̇−) lies on the curve V̇ = 0, the conditions in Eq.(4.12) can

not be satisfied if the impulse line is tangent to either V = V̂ or V̇ = 0 curves.

The magnitude of the impulsive input is determined based on its impulsive effects on the

system velocities, i.e., we first find q̇+ which corresponds to a configuration in the dashed

region and then find the impulsive input as discussed in Section 4.2.2.

Remark 4.3.1. There is no guarantee that impulsive inputs can be found that satisfy the

conditions in Eq.(4.12) at a configuration of the system where V̇ ≥ 0. In such a situation,

the closed-loop system is allowed to evolve in time and the search for impulsive inputs that

satisfy Eq.(4.12) should be continued. With change in configuration of the system, the
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Figure 4.1: Plots of the curves V = V̂ and V̇ = 0 and the impulse line correspond to fixed
values of q = (q̂1, q̂2) for a two-dof system. The prior-impulse configuration at A : (q̂, q̇−) is
jumped to a configuration at B : (q̂, q̇+) for which V̇ < 0 and V < V̂ .

conditions in Eq.(4.12) may be satisfied at a later point in time.

Remark 4.3.2. Although V̇ ≥ 0 does not imply that the system configuration is outside

RA, a configuration outside RA will result in a trajectory which does not approach the

equilibrium. For the latter case, the impulsive inputs provide the possibility of bringing the

system trajectories back into the RA.

Remark 4.3.3. For systems with bounded states, impulsive inputs can be additionally applied

to ensure that the states of the system do not exceed their limits. In such cases, the step 2

in the stabilization algorithm is modified as below:

Step 2. If V̇ ≥ 0 or hi(q) > 0 for i = 1, 2, · · · , w, apply impulsive inputs uimp = [u
imp
1 , · · ·

, u
imp
m ]T such that:

V (q, q̇+) < V (q, q̇−) , V̇ (q, q̇+) < 0 (4.14)

where hi(q) denotes the i-th constraint function imposed on the states of the system.
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The effectiveness of the stabilization algorithm presented above will be illustrated through

several numerical simulations in the following sections.

4.4 Case Studies: Linear Stabilizing Controllers

4.4.1 The Pendubot

4.4.1.1 Dynamics

The Pendubot is shown in Figure 4.2. Assuming no friction in the joints, the equations of

motion of the Pendubot are in the form of Eq.(4.1), where

q = [θ2 θ1]
T , u = [0 τ1]

T (4.15)

and M(q), N(q, q̇) and G(q), given by the expressions

M(q) =




α2 α2 + α3C2

α2 + α3C2 α1 + α2 + 2 α3C2


 ,

N(q, q̇) = α3S2




0 θ̇1

−(θ̇1 + θ̇2) −θ̇2


 , G(q) = g




α5C12

α4C1 + α5C12


 (4.16)

In Eq.(4.16), Cj = cos θj , Sj = sin θj for j = 1, 2, C12 = cos(θ1 + θ2), and the positive

constants αj , j = 1, 2, · · · , 5, have the following expressions

α1 = m1d
2
1 +m2l

2
1 + I1, α2 = m2d

2
2 + I2

α3 = m2l1d2, α4 = m1d1 +m2l1, α5 = m2d2 (4.17)
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Figure 4.2: The Pendubot/Acrobot is shown in an arbitrary configuration. For the Pendubot
we have τ2 = 0 and for the Acrobot we have τ1 = 0.

where, for k = 1, 2, mk and Ik are the mass and moment of inertia for the k-th link, and lk

and dk are link lengths that are shown in Figure 4.2.

The jump in the velocity of the passive coordinate θ2 due to the application of impulse in

the θ1 coordinate can be obtained from Eqs.(4.9) and (4.16) as follows:

(θ̇+2 − θ̇−2 ) = −
[
α2 + α3C2

α2

]
(θ̇+1 − θ̇−1 ) (4.18)

4.4.1.2 Continuous Controller

To stabilize the system about its upright equilibrium (θ1, θ̇1, θ2, θ̇2) = (π/2, 0, 0, 0), we use

the pole-placement method for the linearized system. This controller renders the equilibrium

locally asymptotically stable, and this can be established using the Lyapunov function:

V = XTPX (4.19)
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In Eq.(4.19), X = (θ1, θ̇1, θ2, θ̇2)
T and P is the solution of the Lyapunov equation:

(A−BK)TP + P (A− BK) +Q = 0 (4.20)

where A and B describe the linearized system in state-space form, K is the vector of control

gains, and Q is the identity matrix.

In the next section, we use the numerical simulations to show that our algorithm can enlarge

the RA of the upright equilibrium.

4.4.1.3 Numerical Simulations

Consider the Pendubot with the following parameters:

m1 = 1, l1 = 2, d1 = 1, I1 = 0.333

m2 = 1, l2 = 2, d2 = 1, I2 = 0.333 (4.21)

The poles of the linearized system were placed at λdes = (−0.5,−1,−1.2,−1.5).

For the first simulation, the initial condition was assumed to be (θ10, θ̇10, θ20, θ̇20) =

(1.484,−0.45, 0.087, 0.15), where the units are in rad and rad/s. This configuration, which

corresponds to V0 = 15.037 and V̇0 = 2.7746, lies outside RA of the upright equilibrium.

This can be verified through numerical simulations over a short interval of time for which the

trajectories go unbounded. Figure 4.3 shows simulation results obtained using our algorithm.

Impulsive inputs are applied at seven different time instants: at t = 0, and six more times

in the interval t ∈ [0.1, 2.25]. It can be observed that the impulsive inputs result in jumps

in the joint velocities, and jumps in V̇ to maintain V̇ < 0. Since the initial impulse is
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Figure 4.3: Simulation results showing joint angles and joint velocities of the Pendubot and
the Lyapunov function, its time derivative, and the control input for an initial configuration
outside RA - First simulation

large in magnitude compared to other impulsive inputs, the negative jump in V can be

observed for the first impulse only. The stabilization of the upright equilibrium establishes

the effectiveness of our algorithm.

The effect of the impulsive input applied at t = 0 is illustrated with the help of Figure

4.4. This figure plots the curves V = V0, V̇ = 0, and the impulse line in θ̇1-θ̇2 plane at the

initial configuration. The impulsive input satisfies the conditions in Eq.(4.12) and causes

the configuration to jump from A : (q0, q̇
−
0 ) to B : (q0, q̇

+
0 ) along the impulse line. At B,

V̇ (q0, q̇
+
0 ) < 0 and V (q0, q̇

+
0 ) < V0. A numerical search was used to find the impulsive input

which results in a maximum decrease in V while ensuring V̇ < 0.

For the second simulation, the initial condition was assumed to be (θ10, θ̇10, θ20, θ̇20)
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θ20 = 0.087. The impulsive input at t = 0 in Figure 4.3 results in a jump in the configuration
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−
0 ) to B : (q0, q̇

+
0 ), where V̇ (q0, q̇

+
0 ) < 0 and V (q0, q̇

+
0 ) < V0.

= (1.745, 0, 0.174, 0), where the units are in rad and rad/s. This configuration, which cor-

responds to V0 = 32.489 and V̇0 = 4.433, lies outside RA of the upright equilibrium. This

can be verified through numerical simulations over a short interval of time for which the tra-

jectories go unbounded. Figure 4.5 shows simulation results obtained using our algorithm.

Impulsive inputs are applied at four different time instants: at t = 0, and three more times

in the interval t ∈ [1.6, 2.25]. It can be observed that the impulsive inputs result in jumps

in the joint velocities, and jumps in V̇ to maintain V̇ < 0.
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Figure 4.5: Simulation results showing joint angles and joint velocities of the Pendubot and
the Lyapunov function, its time derivative, and the control input for an initial configuration
outside RA - Second simulation

4.4.2 The Acrobot

4.4.2.1 Dynamics and Control

The Acrobot is shown in Figure 4.2. Assuming no friction in the joints, the equations of

motion has the form of Eq.(4.1), where

q = [θ1 θ2]
T , u = [0 τ2]

T (4.22)

and M(q), N(q, q̇), and G(q), given by the expressions
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M(q) =



α1 + α2 + 2 α3C2 α2 + α3C2

α2 + α3C2 α2


 ,

N(q, q̇) = α3S2




−θ̇2 −(θ̇1 + θ̇2)

θ̇1 0


 , G(q) = g



α4C1 + α5C12

α5C12


 (4.23)

The parameters αj , j = 1, 2, · · · , 5 in Eq.(4.23), were defined in Eq.(4.17).

The jump in the velocity of the passive coordinate θ1 due to the application of impulse

in the θ2 coordinate can be obtained from Eq.(4.9) and Eq.(4.23) as follows:

(θ̇+1 − θ̇−1 ) = −
[

α2 + α3C2

α1 + α2 + 2 α3C2

]
(θ̇+2 − θ̇−2 ) (4.24)

Using the pole-placement method, a stabilizing controller was designed to render the

upright equilibrium locally asymptotically stable. The procedure followed is similar to that

used for the Pendubot in Section 4.4.1.2.

4.4.2.2 Numerical Simulations

Consider the following parameters for the Acrobot:

m1 = 1, l1 = 1, d1 = 0.5, I1 = 0.083

m2 = 1, l2 = 2, d2 = 1, I2 = 0.333 (4.25)

The poles of the linearized system were placed at λdes = (−2,−3,−4,−5).

For the first simulation, the initial conditions are assumed to be (θ10, θ̇10, θ20, θ̇20) =
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Figure 4.6: Simulation results showing joint angles and joint velocities of the Acrobot and
the Lyapunov function, its time derivative, and the control input for an initial configuration
outside RA - First Simulation

(1.658, 0, 0.087, 0). This configuration corresponds to V0 = 24.56 and V̇0 = 1.04. Using

numerical simulations, it was ascertained to be outside the RA of the upright equilibrium.

The simulation results obtained using our algorithm is shown in Figure 4.6. Four impulsive

inputs were applied which includes one impulse at t = 0 and three other impulses in the

interval t ∈ [0.4, 0.9]. The jumps in the joint velocities, and jumps in V̇ to maintain V̇ < 0

can be observed in the figure. Also, the first two negative jumps in V which are large in

magnitude can be seen from the plot. The stabilization of the equilibrium from outside the

RA establishes the efficacy of our algorithm.

For the second simulation, the initial conditions were assumed to be at (θ10, θ̇10, θ20, θ̇20) =

(1.658, 0.08,−0.087, 0.1). This configuration corresponds to V0 = 17.7 and V̇0 = 0.82 which

is outside the RA of the upright equilibrium as well. The simulation results are shown in
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Figure 4.7: Simulation results showing joint angles and joint velocities of the Acrobot and
the Lyapunov function, its time derivative, and the control input for an initial configuration
outside RA - Second Simulation

Figure 4.7. Four impulsive inputs including the initial impulse were required for this case

and the system is ultimately stabilized using the control algorithm.

4.4.3 Rolling Acrobot

4.4.3.1 Dynamics and Control

A rolling acrobot, a modified version of the Acrobot, is a two-link planar robot with a passive

rolling shoulder joint and an active elbow joint. Figure 4.8 shows a schematic of the robot.

Assuming no friction in the joints, the equations of motion take the form of Eq.(4.1) where

q = [θ1 θ2]
T , u = [0 τ2]

T (4.26)
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Figure 4.8: A schematic of the rolling acrobot. The link angles θ1 and θ2 are measured
counter-clockwise.

and M(q), N(q, q̇), and G(q), given by the expressions

M(q) =



γ1 + γ2 − 2γ3C1 − 2γ4C12 γ2 − γ4C12

γ2 − γ4C12 γ2


 ,

N(q, q̇) =




(γ3S1 + γ4S12)θ̇1 + 2γ4S12θ̇2 γ4S12θ̇2

0 0


 ,

G(θ) = g



γ5S1 + γ6S12

γ6S12


 (4.27)

In Eq.(4.27), the positive constants γi, i = 1, 2, · · · , 6 have the following expressions

γ1 =I1 +m1d
2
1 − 2m1l1d1 + (2m1 +m2)l

2
1, γ2 = I2 +m2(l2 − d2)

2

γ3 =m1l1(l1 − d1), γ4 = m2l1(l2 − d2), γ5 = m1(l1 − d1), γ6 = m2(l2 − d2) (4.28)
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The velocity jump in θ1 coordinate due to the application of impulse in θ2 coordinate

can be obtained from Eq.(4.9) and Eq.(4.27), namely,

(θ̇+1 − θ̇−1 ) = −
[

γ2 − γ4C12

γ1 + γ2 − 2γ3C1 − 2γ4C12

]
(θ̇+2 − θ̇−2 ) (4.29)

The same pole placement controller as in Section 4.4.1.2 is designed for the rolling acrobot

to render the upright equilibrium (θ1, θ̇1, θ2, θ̇2) = (0, 0, π, 0) locally asymptotically stable.

4.4.3.2 Numerical Simulations

The kinematic and dynamic parameters of the rolling acrobot is chosen as:

m1 = 1, l1 = 1, d1 = 0.5, I1 = 0.083

m2 = 2, l2 = 1, d2 = .05, I2 = 0.167 (4.30)

For simulation results, we consider two cases of the rolling acrobot; In the first case, we

assume there is no limit for θ1 and the system can roll on its arc foot without any constraint.

In the second case, the arc foot is limited and the angle θ1 is constrained to be inside a

prescribed range during the stabilization process.

First Case - Unbounded Foot Arc Angle

The poles of the linearized system are placed at λdes = (−0.5,−1,−1.5,−2) using pole

placement control. For the first simulation, the initial conditions are set to (θ10, θ̇10, θ20, θ̇20) =

(0.436, 0, 3.491, 0). This configuration corresponds to V0 = 12.5 and V̇0 = 5.33 and is outside

the RA of the upright equilibrium which can be verified through a numerical simulation. The

simulation results are shown in Figure 4.9. The applied impulsive inputs can be recognized
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Figure 4.9: Simulation results including the angular positions, angular velocities, Lyapunov
function and its time derivative and the control input for a configuration of rolling acrobot
with unbounded leg angle originally outside RA - First simulation

by the picks in the control input subplot. All impulsive inputs result in a negative V̇ and a

drop in V as can be seen in the figure. Using these impulsive inputs, the upright equilibrium

is stabilized and the configuration which was originally outside the RA, is now attracted to

the desired equilibrium.

For the second simulation, we choose the initial conditions with initial velocities to be at

(θ10, θ̇10, θ20, θ̇20) = (0.087, 0.5, 3.229, 1). This configuration corresponds to V0 = 23.36 and

V̇0 = −1.195 which is outside the RA of the upright equilibrium as well. The simulation

results are shown in Figure 4.10. Three impulsive inputs including the initial impulse were

required for this case and the system is ultimately stabilized using the control algorithm.
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Figure 4.10: Simulation results including the angular positions, angular velocities, Lyapunov
function and its time derivative and the control input for a configuration of rolling acrobot
with unbounded leg angle originally outside RA - Second simulation

Second Case - Bounded Foot Arc Angle

The leg angle θ1 is constrained as follows:

h1(q) = |θ1| − η1 ≤ 0 (4.31)

where η1 = 15◦. The poles of the closed-loop linearized system are placed at λdes =

(−1,−1.5,−2,−2.5). The modified algorithm mentioned in Remark 4.3.3 is followed to

stabilize the upright equilibrium while ensuring the constraint in Eq.(4.31) is satisfied.

For the first simulation, the initial conditions are assumed to be at (θ10, θ̇10, θ20, θ̇20) =

(0.087, 0, 3.229, 0). This configuration corresponds to V0 = 1.218 and V̇0 = 0.366. Using
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Figure 4.11: Simulation results including the angular positions, angular velocities, Lyapunov
function and its time derivative and the control input for a configuration of rolling acrobot
with bounded leg angle originally outside RA - First simulation

the pole placement controller, it can be verified through a numerical simulation that the

constraint in Eq.(4.31) is not satisfied. Figure 4.11 shows the simulation results for our

algorithm where impulsive inputs were used to stabilize the upright equilibrium while satis-

fying the state constraints. Two impulsive inputs were applied for this simulation; the first

impulse, applied at the initial time, is due to V̇0 > 0 while the second impulsive input is

applied when θ1 = η1 to keep θ1 inside its bound. Both impulsive inputs result in negative

V̇ as well as a negative jump in V . Using these impulsive inputs, the upright equilibrium is

stabilized without exceeding the bound on θ1.

For the second simulation, we choose the initial conditions with initial velocities to be

at (θ10, θ̇10, θ20, θ̇20) = (0,−0.1, 2.967,−0.25). This configuration corresponds to V0 = 1.298
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Figure 4.12: Simulation results including the angular positions, angular velocities, Lyapunov
function and its time derivative and the control input for a configuration of rolling acrobot
with bounded leg angle originally outside RA - Second simulation

and V̇0 = 0.094 and it is verified that the bound on θ1 will be exceeded using the pole

placement controller. The simulation results for our algorithm are shown in Figure 4.12.

As the first simulation, the initial impulsive input is applied since V̇0 > 0 and the second

impulsive input is intended to keep θ1 inside its limit.

4.5 Extension for Nonlinear Controllers

The case studies studied in Section 4.4 consider the systems with linear stabilizing controllers

which is only valid in a small neighborhood of the desired equilibrium. For such systems,

the derivative of the corresponding Lyapunov function V̇ is more likely to get positive when

the system configuration lies outside the RA since the controller is designed based on the
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linearized system. For system with nonlinear stabilizing controllers, however, the V̇ is de-

signed to be less than or equal to zero1 for the nonlinear system and therefore, the condition

to apply the impulsive inputs which is V̇ ≥ 0 as discussed in Section 4.3, might never be

satisfied. In order to use the benefits of impulsive inputs in enlarging the RA for systems

with nonlinear controllers, we modify the stabilization algorithm proposed in Section 4.3 as

follows:

1. Initialization: Find the Lyapunov function V (q, q̇) for the underactuated system in

Eq.(4.1) with stabilizing nonlinear controller û = [u1, · · · , um]T .

2. Impulsive Inputs: If V̇ ≥ 0 or the system configuration lies outside the set Ω, apply

impulsive inputs uimp = [u
imp
1 , · · · , uimpm ]T such that:

V (q, q̇+) < V (q, q̇−) , V̇ (q, q̇+) < 0 (4.32)

where Ω is an estimate of the RA calculated based on the Lyapunov function of the

closed-loop system.

Remark 4.5.1. Compared to the algorithm in Section 4.3, we need an off-line calculation of

the set Ω for the algorithm above. Although it might be hard to find a set which estimates the

RA of the desired equilibrium closely, any conservative estimate of the RA will be adequate

for the proposed algorithm to be applied.

Remark 4.5.2. When there exist constraints on the states of the system, following the discus-

sion in Remark 4.3.3, the additional impulsive inputs are applied to ensure the constraints

1Note that ensuring V̇ ≤ 0 does not necessarily mean that the desired equilibrium is stable.
This is because the states of the system might get unbounded using the designed controller or the
system approaches another equilibrium of the system.
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are satisfied.

In the rest of this section, we consider two well-known underactuated systems in the lit-

erature with nonlinear stabilizing controllers and apply the stabilization algorithm proposed

above to enlarge the RA of the desired equilibrium.

4.5.1 Inverted Pendulum on an Inclined Plane

4.5.1.1 Dynamics

Consider the inverted pendulum system on an inclined plane shown in Figure 4.13. Assuming

no friction in the joints, the equations of motion has the form of Eq.(4.1) where

q = [φ s]T , u = [0 F ]T (4.33)

and M(q), N(q, q̇), and G(q), given by the expressions [25]

M(q) =




α β cos(φ− ψ)

β cos(φ− ψ) γ


 ,

N(q, q̇) =




0 0

−β sin(φ− ψ)φ̇ 0


 , G(q) = g




−β sinφ

−γ sinψ


 (4.34)

where

γ =M +m , α = ml2 , β = ml (4.35)

and φ and s are the generalized coordinates as shown in Figure 4.13, m and l are the point

mass and the length of the pendulum, M is the mass of the cart and ψ is the slope angle.
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Figure 4.13: Cart-pendulum on a slope

The jump in the velocity of the passive coordinate φ due to the application of impulsive

force in active coordinate s, can be obtained from Eqs.(4.9) and (4.34), namely,

(φ̇+ − φ̇−) = −
[
β cos(φ− ψ)

α

]
(ṡ+ − ṡ−) (4.36)

4.5.1.2 Stabilizing Control Design

The nonlinear controller to stabilize the zero equilibrium at (φ, φ̇, s, ṡ) = (0, 0, 0, 0) is ob-

tained from [25] using the Lagrangian Controlled method:

F = −γg sinψ +
κβ[α sin(φ− ψ)φ̇2 +D cos(φ− ψ) sinφ]−B ∂H

∂s +B c γ ẏ

α− β2

γ (κ+ 1) cos2(φ− ψ)
(4.37)

where

κ = 1/σ, B =
αγ − β2 cos2(φ− ψ)

ργ
, D = −mgl

H = mgl cos(φ) +
ǫDγ2

2β2
y2, y = s+

β

γ
(κ+

ρ− 1

ρ
)[sin(φ− ψ) + sinψ] (4.38)

and σ, ρ < 0, ǫ > 0, and c > 0 are some scalar constants. The asymptotic stability of the
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equilibrium is established using the following Lyapunov function which is obtained from the

controlled energy of the system [25]:

V =mgl − 1

2
αφ2 − β cos(φ− ψ)[ṡ+

κ

γ
β cos(φ− ψ)φ̇]φ̇

− 1

2
γ[ṡ +

κ

γ
β cos(φ− ψ)φ̇]2 +

κ

2γ
β2 cos2(φ− ψ)φ̇2

− 1

2
(ρ− 1)γ[ṡ+ (κ + 1)

β

γ
cos(φ− ψ)φ̇]2 −H (4.39)

An estimate of the RA is obtained as:

Ωc̄ =
{
z = (φ, φ̇, s, ṡ) ∈ TQ | V (z) ≤ c̄

}
(4.40)

where TQ is a bounded set, and c̄ is a constant scalar.

4.5.1.3 Numerical Simulations

The parameters for the inverted pendulum system shown in Figure 4.13 are chosen as:

m = 0.14 Kg, M = 0.44 Kg, L = 0.215 m, ψ = π/9 rad (4.41)

and the control parameters are chosen as:

κ = 20, ρ = −0.02, ǫ = 0.00001, c = 0.015 (4.42)

For the parameters in Eqs.(4.41) and (4.42), the estimate of the RA in Eq.(4.40) is determined

by c̄ = 0.26. We also assume that the pendulum angle is constrained to be inside a pre-
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Figure 4.14: Simulation results including the positions and velocities of the system coordi-
nates, Lyapunov function and its time derivative and the control input for a configuration
of the inverted pendulum on a slope originally outside the RA - First simulation

defined range, i.e., h1(q) = |φ| − φmax ≤ 0 where φmax = 1.222 rad = 70 deg.

For the first simulation, we choose the initial conditions of the system as (φ0, φ̇0, s0, ṡ0) =

(π/6, 4, 3, 3). This configuration corresponds to V0 = 0.564 and V̇0 = −2.669 and lies outside

the set Ωc̄ in Eq.(4.40). From numerical simulations for a short period of time, it can be

confirmed that the sates of the system get unbounded using the stabilizing controller in

Eq.(4.37) and therefore, this configuration is outside the RA of the desired equilibrium.

Figure 4.14 shows the simulation results for the proposed stabilization algorithm in Section

4.5. The peak in the control input subplot shows the initial impulsive input applied at t = 0

sec due to the fact that the initial configuration is outside the set Ωc̄. This impulsive input

causes a large negative jump in V with V̇ < 0 as required in Eq.(4.32). Using the proposed

algorithm, the desired equilibrium at the origin is stabilized from a configuration which was
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Figure 4.15: Simulation results including the positions and velocities of the system coordi-
nates, Lyapunov function and its time derivative and the control input for a configuration
of the inverted pendulum on a slope originally outside the RA - Second simulation

originally outside the RA.

For the second simulation, the pendulum is assumed to be farther from upright equilib-

rium position compared to the first simulation by choosing (φ0, φ̇0, s0, ṡ0) = (π/3, 4,−2,−3.5).

The corresponding values of the Lyapunov function and its time derivative are calculated

as V0 = 0.251 and V̇0 = −0.528. Although this configuration lies inside Ωc̄, the numerical

simulation using the stabilizing controller in Eq.(4.37) shows that the angular position of the

pendulum exceeds its limit. Simulation results for our algorithm is shown in Figure 4.15.

The only impulsive input is applied a little bit after the starting time when the pendulum

angle reaches its limit, φ = 70 deg. The impulsive input kicks back the pendulum inside

the allowed region and cause a small drop in V which is enough to stabilize the desired

equilibrium without exceeding the limit for φ.
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4.5.2 The Ball and Beam System

4.5.2.1 Dynamics

The ball and beam system is shown in Figure 4.16. The equations of motion is in the form

of Eq.(4.1) where

q = [r θ]T , u = [0 τ ]T (4.43)

and M(q), N(q, q̇), and G(q), given by the expressions

M(q) =




Jb
R2

+M 0

0 Mr2 + J + Jb


 ,

N(q, q̇) =




0 −Mrθ̇

2Mrθ̇ 0


 , G(q) = g




M sin θ

Mr cos θ


 (4.44)

In Eq.(4.44), r and θ are the generalized coordinates as shown in Figure 4.16, M , Jb, and R

are the mass, mass moment of inertial and radius of the ball, respectively, and J is the mass

moment of inertia of the beam. The length of the beam is assumed to be equal to 2L.

Using Eqs.(4.9) and (4.44), it can be shown that application of an impulsive input in

r

θ

τ

Figure 4.16: Ball and beam system
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active coordinate θ does not cause any velocity jump in the passive coordinate r, i.e.,

ṙ+ = ṙ− (4.45)

4.5.2.2 Stabilizing Control Design

A nonlinear stabilizing controller for the ball and beam system is given using the IDA-PBC

method in [28] as follows:

τ =
r√

2(L2 + r2)

[
−p21

√
L2 + r2 +

√
2p1p2 +

1√
L2 + r2

p22

]

+ gr cos θ − kp

√
L2 + r2

2

[
θ − 1√

2
arcsinh(

r

L
)

]

− g
√
2(L2 + r2) sin θ +

kv
L2 + r2

[
p1 − p2

√
2

L2 + r2

]
(4.46)

where

p1 = ṙ , p2 = (L2 + r2)θ̇ (4.47)

and kp and kv are the constant control gains. The control input in Eq.(4.46) was obtained

assuming that

M = 1 , J = L2 , Jb = 0 (4.48)

Asymptotic stability of the desired equilibrium at (r, ṙ, θ, θ̇) = (0, 0, 0, 0) is established

using the following Lyapunov function which is the Hamiltonian of the desired closed-loop
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system [28]:

V =
1

2
PTM−1

d P + Vd (4.49)

where

P =



p1

p2


 , Md =




√
2√

L2+r2
1

1
√

2(L2 + r2)




Vd = g(1− cosθ) +
kp
2

[
θ − 1√

2
arcsinh(

r

L
)

]2
(4.50)

The RA of the equilibrium such that the ball remains on the beam for all the time, i.e.,

h1(q) = |r(t)| − L ≤ 0 for all t ≥ 0, is estimated as [28]:

Ω̄ =

{
(q, p) | 1

2
PTM−1

d P + g(1− cosθ) +
kp
2

[
θ − 1√

2
arcsinh(

r

L
)

]
<

1

8

kpg

2kp + g

}
(4.51)

which gives a conservative estimate based on the desired Hamiltonian of the system.

Remark 4.5.3. Although the coordinate r is constrained for the ball and beam system,

application of an impulsive input is not helpful in kicking back the constrained state inside

the allowed region when it gets to its limit as proposed in Remark 4.3.3. This is because the

impulsive input does not cause any velocity jump in ṙ as derived in Eq.(4.45). The only way

to ensure a configuration of the system approaches the origin without exceeding the limit on

r is to check whether the configuration lies inside the set Ω̄ in Eq.(4.51).
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4.5.2.3 Numerical Simulations

For simulations, the following parameters for the system and the controller are chosen:

L = 1, kp = 1, kv = 2 (4.52)

For the first simulation, we choose the initial conditions as (r0, ṙ0, θ0, θ̇0) = (0.8, 0, 0.175,−1).

This configuration corresponds to V0 = 1.113 and V̇0 = −2.439 and lies outside the set Ω̄ in

Eq.(4.51). Using the stabilizing controller in Eq.(4.46), the ball will exceed its limit and gets

off the beam and therefore, this configuration is outside the RA of the desired equilibrium.

Figure 4.17 shows the simulation results for the proposed stabilization algorithm. The initial

impulsive input shown by the peak in the control input subplot, is due to the fact that the
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Figure 4.17: Simulation results including the positions and velocities of the system coordi-
nates, Lyapunov function and its time derivative and the control input for a configuration
of the ball and beam system originally outside the RA - First simulation
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initial configuration is outside the set Ω̄. This impulsive input causes a large negative jump

in V with V̇ < 0 as required in Eq.(4.32). Using the proposed algorithm, the desired

equilibrium at the origin is stabilized without exceeding the limit for r.

For the second simulation, the initial conditions were chosen as (r0, ṙ0, θ0, θ̇0) = (−0.6,

−0.5, 0, 0.5). The corresponding values of the Lyapunov function and its time derivative are

calculated as V0 = 0.689 and V̇0 = −1.98. This configuration is also outside the set Ω̄ and

it can be shown with the help of numerical simulations that the ball exceeds its limit using

the controller in Eq.(4.46). Simulation results for our algorithm is shown in Figure 4.18.

The only impulsive input is applied at the initial time causing a negative jump in V . The

continuous controller is applied thereafter. The initial impulse in enough to enlarge the RA

of the desired equilibrium to include the initial configuration of the system.
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Figure 4.18: Simulation results including the positions and velocities of the system coordi-
nates, Lyapunov function and its time derivative and the control input for a configuration
of the ball and beam system originally outside the RA - Second simulation
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4.6 Conclusion

An impulsive control algorithm is proposed to enlarge the region of attraction of stabilized

equilibria for underactuated systems. The algorithm requires impulsive inputs to be applied

in conjunction with the stabilizing controller. The impulsive inputs are applied when the

derivative of the Lyapunov function is non-negative and two conditions are satisfied. These

conditions require that the impulsive inputs result in a negative jump in the Lyapunov

function and a jump to a configuration where the derivative of the Lyapunov function is

strictly negative. Although there is no guarantee that these conditions can be satisfied at any

given configuration, numerical simulations show that it is possible to stabilize an equilibrium

point from certain configurations that lie outside its region of attraction. The effectiveness of

the algorithm is demonstrated using several examples of underactuated mechanical systems

with linear and nonlinear continuous controllers.
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Chapter 5

Safe Fall Control for Humanoid

Robots

5.1 Introduction

Impulsive control inputs are a natural candidate for emergency control when the available

time to influence the dynamic system is limited. Furthermore, due to a very short “time

of application” of the control, the system configuration does not evolve much during the

application of the control. A direct outcome of this property is that the control can be

applied even when the system is close to the boundary of its configuration space. For

example, a robot can accept control command even when it is close to its joint limits. In this

chapter, we propose a control strategy for changing the default fall direction of the robot so

that it avoids contact with surrounding objects or people as a mean of reducing damage to

others. A six-dof robot with three actuated joints is considered here to better understand the

impulsive algorithm before applying to higher dof humanoids. Note that we consider only

those situations in which a fall is caused by an external factor; in particular the sensors and

the motor power must remain intact such that the robot can execute a prescribed control

strategy.

We should clarify that a fall controller is not a balance controller. A fall controller

complements, and does not replace, a balance controller. Further, a fall controller is not a
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push-recovery controller. A push-recovery controller is essentially a balance controller, which

specifically deals with external disturbances of larger magnitude when the robot must take a

step in order to regain balance [135, 136, 137]. The fall controller is activated only when the

default balance controller or the push recovery controller has failed to stabilize the robot.

The rest of this chapter is organized as follows: In Section 5.2, dynamic model of the

six-dof robot is described. we derive the impulsive effects on the system velocities in Section

5.3. The safe fall algorithm is presented in Section 5.4 which is followed by the numerical

simulations in Section 5.5. Concluding remarks are provided in Section 5.6.

5.2 Dynamic Model

5.2.1 Equations of Motion

We considered a three-dimensional seven-dof robot as shown in Figure 5.1. The degrees of

freedom of the robot are listed in Table 5.1. Assuming that the knee joint is locked, i.e.,

θ1 ≡ 0, we have a six-dof robot with three active joints. Using Lagrange’s formulas, the

equations of motion can be derived as follows:

M(q)q̈ +N(q̇, q)q̇ +G(q) = T (5.1)

where

q = [α, β, γ, θ2, θ3, θ4]
T , T =[0, 0, 0, τ2, τ3, τ4]

T (5.2)
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Figure 5.1: Seven-dof three-dimensional humanoid robot

and M(q) ∈ R6×6, N(q̇, q) ∈ R6×6 and G(q) ∈ R6 represent the mass matrix, the matrix

of centrifugal and Coriolis forces and the vector of forces due to gravity, respectively. Full

expressions of the matrices M(q), N(q̇, q) and G(q) are lengthy and are not provided for the

sake simplicity.

Table 5.1: Degrees of freedom for the humanoid robot in Figure 5.1

Link No. of dof’s Coordinates Actuation
1 3 α, β, γ: z-x-z Euler angles passive
2 1 θ1: Rotation about x2 active

3 2
θ2: Rotation about x2 active
θ3: Rotation about z3

4 1 θ4: Rotation about y4 active
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5.2.2 Lean Line

To better understand the orientation of the robot during fall, we consider the orientation of

the line connecting the foot contact point with the ground to the center of mass of the whole

system which we call the Lean Line. The vector representing the lean line can be calculated

from:

~rcm =

∑4
n=1mn ~rn∑4
n=1mn

(5.3)

where mn is the mass of the nth link and ~rn is the position vector of the center of mass of

the nth link in the inertial frame. The orientation of the lean line in the inertial frame can

be determined through the angles φ and ψ shown in Figure 5.2 where:

~rcm = |~rcm| [sin(φ) cos(ψ) ~i+ sin(φ) sin(ψ) ~j + cos(φ) ~k] (5.4)

Y

Z

X

ψ

φ

~rcm

Figure 5.2: Orientation of the lean line in the inertial frame
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5.3 Impulsive Effects

Consider a set of impulsive inputs inputs applied in active coordinates θ2, θ3 and θ4 at time

t = ti. We integrate the equations of motion in Eq.(5.1) over the short period of time, ∆t

when the impulses are applied:

∫ ti+∆t

ti

M(q)q̈ dt+

∫ ti+∆t

ti

N(q̇, q) q̇ dt+

∫ ti+∆t

ti

G(q) dt =

∫ ti+∆t

ti

T dt (5.5)

Since ∆t is very small and the configuration of the robot does not change over this short

interval of time, Eq.(5.5) can be simplified as:

M(q)(q̇+ − q̇−) = I (5.6)

where q̇− and q̇+ are the vectors of angular velocities immediately before and after the

application of impulses, respectively, and I represents the vector of impulses, i.e.:

I = [0, 0, 0, I2, I3, I4]
T (5.7)

The first three equations in Eq.(5.6) which correspond to the passive coordinates of the first

link are written as:

M̂(q)(q̇+ − q̇−) = 0 (5.8)

where M̂(q) ∈ R3×6 is obtained from partitioning the mass matrix M(q). Eq.(5.8) can be
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rewritten as:

M̂1(q)




α̇+ − α̇−

β̇+ − β̇−

γ̇+ − γ̇−



+ M̂2(q)




θ̇+2 − θ̇−2

θ̇+3 − θ̇−3

θ̇+4 − θ̇−4



= 0 (5.9)

where M̂1(q) ∈ R3×3 and M̂2(q) ∈ R3×3 are obtained from:

M̂(q) =
[
M̂1(q) M̂2(q)

]
(5.10)

Equation (5.9) can be used to find the relationships between the system velocities imme-

diately before and after the application of impulse. If values of three velocities after the

application of impulsive inputs are known, we can solve for the other three velocities after

the application of impulsive inputs from Eq.(5.9).

As the first case, assume that the desired values for the active coordinate velocities after the

application of impulsive inputs are specified as θ̇+2 = θ̇2des, θ̇
+
3 = θ̇3des and θ̇

+
4 = θ̇4des, then

from Eq.(5.9) we have:




α̇+

β̇+

γ̇+



=




α̇−

β̇−

γ̇−



− M̂ −1

1 (q) M̂2(q)




θ̇2des − θ̇−2

θ̇3des − θ̇−3

θ̇4des − θ̇−4




(5.11)

where M̂1 is invertible since it is a diagonal block of the positive definite matrix M(q).

As the second case, assume that the desired values of the passive coordinate velocities after

the application of impulsive inputs are specified as α̇+ = α̇des, β̇
+ = β̇des and γ̇+ = γ̇des.
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Then from Eq.(5.9) we can write:




θ̇+2

θ̇+3

θ̇+4



=




θ̇−2

θ̇−3

θ̇−4



− M̂

#
2 (q) M̂1(q)




α̇des − α̇−

β̇des − β̇−

γ̇des − γ̇−




(5.12)

where M̂
#
2 (q) denotes the Pseudo-inverse of M̂2 and it is used since the matrix M̂2 might

be singular.

Remark 5.3.1. If the matrix M̂2 is singular, the velocities [θ̇
+
2 , θ̇

+
3 , θ̇

+
4 ] obtained from Eq.(5.12)

do not exactly correspond to the desired values for the passive coordinates [α̇des, β̇des, γ̇des].

The resulted velocities, however, will give the closest solution in terms of the least Euclidean

norm to the active coordinate velocities which correspond to [α̇des, β̇des, γ̇des]. The veloci-

ties for the active coordinate obtained from Eq.(5.12) can be substituted into Eq.(5.11) to

yield the corresponding velocities of the passive coordinates.

To find the applied impulses which result in some desired velocity jumps, we consider the

last three equations in Eq.(5.6), namely,

M̄(q)(q̇+ − q̇−) = Ī (5.13)

where M̄(q) ∈ R3×6 and Ī = [I2, I3, I4]
T . Having the velocities after the application of

the impulsive inputs from Eqs.(5.11) and (5.12), the vector of the applied impulses can be

calculated using Eq.(5.13).

Remark 5.3.2. The ideal impulses obtained from Eq.(5.13) can not be implemented in the

standard actuators. However, we can use the high-gain continuous control inputs to estimate
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these impulses as discussed earlier in Chapter 2.

5.4 Safe Fall Algorithm

We propose a safe fall algorithm for the system in Eq.(5.1) using two sets of impulsive inputs.

The first set of impulsive inputs is applied in order to reach some desired velocities for the

passive coordinates and the second set is intended to brake the active coordinates which

are held fixed thereafter. The robot undergoes a free fall for the time period between the

impulsive sets. A schematic of the proposed algorithm is shown in Figure 5.3 and can be

described as follows:

The fall is realized at A where the lean line angle in Figure 5.2 reaches φ = φ̄A. The first set

of impulsive inputs are then applied to reach some desired velocities for passive coordinates

which takes the robot configuration to B. After the application of the first set of impulsive

inputs, the joint torques are set to zero such that the robot undergoes a free fall till it reaches

 

Second Impulse 

to brake active 

coordinates

 Start point:

(Robot at upright configuration)

First Impulse to make 

desired velocity jumps 

in passive coordinates

Fall is recognized at A Free fall with all active

joints locked

Desired Configuration

on floor

Free fall with no torque inputs 

A : (qA, q̇A)

B : (qB , q̇B)
C : (qC , q̇C)

D : (qD, q̇D)

E : (qE , q̇E)

Figure 5.3: A schematic of the safe fall algorithm using two sets of impulsive inputs. For
interpretation of the references to color in this and all other figures, the reader is referred to
the electronic version of this dissertation.
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the configuration at C which is determined by φ = φ̄C . The second set of impulsive torques

are applied then to brake the active coordinates. This corresponds to a jump in the robot

configuration form C to D. The active coordinates are held locked thereafter till the robot

hits the floor at φ = φ̄E. In particular, the following steps are adopted to design the safe

fall algorithm:

A. Off-line calculations to find a set of solutions at B:

1. Knowing the desired configuration on the floor and having all active coordinates

locked, integrate the equations of motion backward in time to find the configu-

ration at D : (qD, q̇D). This configuration is realized when the lean line angle φ,

shown in Figure 5.2, reaches φ = φ̄C . Since the control objective is to change

the fall direction which is mainly described by the angle ψ - see Figure 5.2, we

have some freedom in choosing the angular positions of the active coordinates and

angular velocities of the passive coordinates at the desired configuration on the

floor. Each of these configurations will result in a different solution for D.

2. For each of the solutions at D obtained in step A.1, use the impulsive relations

to find the robot configurations at C : (qC , q̇C). In particular, from Eq.(5.11) we

have: 


α̇C

β̇C

γ̇C



=




α̇D

β̇D

γ̇D



− M̂−1

1 (qD) M̂2(qD)




θ̇2C

θ̇3C

θ̇4C




(5.14)

where θ̇2D = θ̇3D = θ̇4D = 0. Many solutions can be found for C by choosing a

range of velocities for the active joint coordinats, θ̇2C , θ̇3C , and θ̇4C . Also, having

different solutions for D obtained in step A.1 results in additional solutions for C.
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Note that the the angular positions of the active and passive coordinates remain

constant during the jump from D to C.

3. For each of the solutions at C, integrate the equations of motion backward in time

to reach the configuration at B : (qB , q̇B) which is realized when φ = φ̄A. This is

done assuming a free fall for the robot, i.e., control inputs are zero.

Remark 5.4.1. After this step, we have a set of solutions for B which are resulted from

different choices of desired configuration at E and different choices of velocities at C.

Each of these solutions will indeed result in the desired change in fall direction of the

robot, i.e., desired ψ angle when the robot hits the floor.

B. On-line calculations to change the fall direction:

1. Once the fall is realized at φ = φ̄A, among the set of solutions for B obtained

in step A, find the closest solution Q̂B = [q̂B,
˙̂qB] to the current configuration

QA = [qA, q̇A] where the distance si from each solution QBi = [qBi, q̇Bi] is defined

as:

si = ||QA −QBi||2 (5.15)

2. Apply the impulsive inputs to reach the desired velocities for the passive coordi-

nates, ( ˙̂αB,
˙̂
βB, ˙̂γB) corresponding to Q̂B . The impulsive relations in Eq.(5.12)

can be used to find the velocity jumps in the active coordinates as follows:




θ̇2B

θ̇3B

θ̇4B



=




θ̇2A

θ̇3A

θ̇4A



− M̂

#
2 (qA) M̂1(qA)




˙̂αB − α̇A

˙̂
βB − β̇A

˙̂γB − γ̇A




(5.16)
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3. Let the robot have a free fall with applying no torque in the active joints till it

gets to C.

4. When φ = φ̄C , apply the impulsive torques to brake the active coordinates and

hold them fixed till the humanoid hit the floor at φ = φ̄E .

Remark 5.4.2. The application of the first set of impulsive inputs in step B.2 will not

exactly result in the desired solution Q̂B . This is because: first, the application of

impulsive inputs does not change the angular positions and this yields a deviation

from Q̂B if qA 6= q̂B and second, the angular velocities resulted from the application

of impulsive inputs will not match the angular velocities ˙̂qB if qA 6= q̂B or the matrix

M̂2(qA) is singular.

Remark 5.4.3. Following the algorithm in step B, there is no guarantee that we reach the

exact desired configuration on the ground. This is mainly because we can not exactly reach

a desired solution for the configuration at B through applying the first set of impulsive

inputs as discussed in Remark 5.4.2. However, we can get close to the desired change in the

fall direction of the robot as we get closer to a desired solution at B, obtained in off-line

calculations in step A. Our chance of reaching the desired change in the fall direction will

be higher for a larger set of of-line solutions for B as is discussed in Remark 5.4.1.

5.5 Numerical Simulations

The parameters for the robot in Figure 5.1 are listed in Table 5.2. The control parameters

used in the safe fall algorithm are chosen as:

φ̄A = 30 deg, φ̄C = 70 deg, φ̄E = 90 deg (5.17)
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A wide range of velocities are chosen for passive coordinates in Step A.1 and the active

coordinates in step A.2 which result in a large set of solutions forB. The desired configuration

of the robot on the floor which is used in off-line calculations in Step A, is chosen such that

the desired change in the fall direction is 20 deg. The initial configuration of the robot are

assumed to be:

q0 =[α0, β0, γ0, θ20, θ30, θ40]
T = [90, 10, 0,−10, 0, 0]T

q̇0 =[α̇0, β̇0, γ̇0, θ̇20, θ̇30, θ̇40]
T = [0, 5, 0, 0, 0, 0]T (5.18)

where the units are in deg and deg/s. The simulation results are shown in Figures 5.4, 5.5

and 5.6. The joint positions and velocities of all the coordinates are shown in Figure 5.4

where the impulse moments can be seen from the jumps in the velocity subplots. The lean

line angles φ and ψ are shown in Figure 5.5 and Figure 5.6 shows the impulsive inputs for

the active coordinates. Starting from the initial configuration, the robot goes under a free

fall with zero torques till the fall is realized by the algorithm at φ = 30 deg. The first

impulsive inputs are then applied in accordance with Step B.2. The joint torques are set

to zero thereafter till the robot reaches the second impulsive instant at φ = 70 deg when

the active joints are brought to full stop. The active coordinates will remain locked using a

locking mechanism till the robot hit the floor at φ = 90 deg.

Table 5.2: Kinematic and dynamic parameters for the six-dof robot with cylindrical links.

Mass (Kg) Length (m) Radius (m) Distance from C.M. (m)
First link 1 0.5 0.1 0.25
Second link 1 0.5 0.1 0.25
Third link 4 0.8 0.25 0.4
Fourth link 2 0.3 0.05 0
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The change in the fall direction can be seen from the ψ plot in Figure 5.5 where it is shown

the change in the fall direction angle is close to the desired change angle, ψdes = 20 deg.

Note that the dashed lines in Figures 5.4 and 5.5 show the simulation results when a single

set of impulsive inputs are used to brake the active joints at φ = 30 deg.

Remark 5.5.1. Although the fall direction has been changed using the proposed algorithm,

the impulsive inputs result in very large velocity jumps in active coordinates which may

cause the robot joints to exceed their limits. This is mainly because it is physically hard to

change the fall direction of the robot with current active coordinates and very large impulsive

inputs for active coordinates are needed to reach desired changes in the passive coordinates.

5.6 Conclusion

A safe fall algorithm was proposed to change the default fall direction of a six-dof robot

with three active joints. This is done to avoid hitting the surrounding objects to minimize

damage to them. The algorithm take over when the regular control has failed to keep the

robot balanced and a fall is unavoidable. Since there is a short period of time before the

robot hit the floor, only two sets of impulsive inputs are applied at specific configurations of

the robot. The first set of impulsive inputs is applied to give desired velocity jumps to the

passive coordinates while the second impulsive set is intended to stop the active coordinates.

Simulation results show the effectiveness of the algorithm in changing the fall direction of the

robot. For the robot considered here, large impulsive inputs are needed to have a significant

change in the fall direction which may cause large velocity jumps and exceeding joint limits

for the active coordinates. This issue can be addressed for higher-dof robots with more active

joints which make it physically easier to change the fall direction.
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Figure 5.4: Simulation results showing all the joint angles and angular velocities for changing
the fall direction of the robot
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Chapter 6

Disturbance Rejection for the

Synthetic-Wheel Biped

6.1 Introduction

In this chapter, we propose a push recovery strategy for the Synthetic-Wheel Biped (SWB)

[1]. Stepping strategy is used to maintain balance when the biped is pushed due to some

external disturbances. The external disturbances are impulsive in nature, i.e., cause some

sudden jumps in the system velocities. To reject these disturbances, our control algorithm

uses impulsive inputs. The push recovery algorithm is pretty robust and capable of rejecting

any pushes during stance and walking phases. Impulsive inputs are also used to impose some

virtual constraints on the motion of the legs and the torso. This work is mainly different

from the approaches in the literature because first, the SWB is an underactuated biped with

curved feet and no ankle joints and second, the set of admissible controls are enlarged to

include impulsive inputs. This chapter is organized as follows: The dynamics and control of

the Synthetic-Wheel biped is reviewed in Section 6.2. We derive the expressions for impulsive

inputs and their effects on system velocities in Section 6.3. Disturbance rejection algorithm

is discussed in Section 6.4 and two numerical examples are presented in Section 6.5. We

provide the concluding remarks in Section 6.6.
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6.2 Background

6.2.1 Equations of Motion

The SWB [1] is shown in Figure 6.1. It has a torso and two legs with arc-shaped feet. The

arc-shaped feet have the same radius as the leg length and therefore the functionality of a

wheel is maintained by proper placement of the swing leg. The biped has a mechanism that

enables the swing leg to be slightly shorter in length than the stance leg and thereby avoid

scuffing with the ground. The dynamics of this mechanism is insignificant compared to the

overall dynamics of the system. The SWB is characterized by three generalized coordinates:

θ, φ, and ψ. The coordinates φ and ψ are active and are controlled by two actuators; the

coordinate θ is passive. The equations of motion are obtained as follows,

M(q)q̈ +B(q, q̇)q̇ +G(q) = T (6.1)

swing foot

stance foot

torso

x

y

lt

R

R

θ

ψ

φ

R

dsw

dst

dt

g

β

Figure 6.1: A schematic of the Synthetic-Wheel biped, reproduced from [1].
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where

q = [θ φ ψ]T , T = [0 τ2 τ3]
T (6.2)

The matrices M(q), N(q, q̇) and G(q) are represented as:

M(q)=
[
Mij

]
3×3 , N(q, q̇)=

[
Nij

]
3×3 , G(q)=[Gi]3×1 (6.3)

and are defined in Appendix B.

6.2.2 Torso Effect on Biped Dynamics

The specific design of the SWB provides the ability to effectively change the direction of the

walking through changing the torso angle. To demonstrate this, consider a “symmetric gait”

of the biped which is generated by imposing the following constraints on the motion of the

torso and the swing leg [1]:

C1 : α = αdes

C2 : ψ = −2θ

(6.4)

where α, depicted in Figure 6.2, is the angle of torso with respect to the vertical axis and is

defined as

α = θ + φ− π (6.5)

The constraint C1 ensures that the torso maintains a desired angle αdes with respect to the

vertical axis while constraint C2 ensures that the swing leg is symmetric with respect to the

stance leg about the vertical axis at all times. The constrained system has one passive dof
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with the following dynamics, which is derived by substituting Eq.(6.4) into Eq.(6.1):

Mc(θ) θ̈ +Nc(θ, θ̇) θ̇ +Gc = 0 (6.6)

where the expressions forMc(θ), Nc(θ, θ̇) andGc can be found in [1]. For any set of reasonable

parameter values, it can be verified that θ̈ will be positive for positive angle αdes and vice

versa. This implies that we can slow down the biped velocity θ̇ by applying the constraints

in Eq.(6.4) and choosing αdes to have the opposite sign of θ̇.

6.2.3 Interchange of Stance and Swing Legs

Assuming that the biped has a positive velocity, it will roll on its stance leg and the point

of contact with the ground will move from the heel to the toe. The stance and swing legs

can be interchanged at any time; but to have the maximum step size, the swing leg should

X

Y

torso

stance
leg toe

swing
leg heel

stance
leg heel

swing
leg toe

α

β

θ
−ψ=2θ

φ=−θ+π+α

Figure 6.2: Biped configuration at the time of interchange of stance and swing legs.
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touch down when the heel of the swing leg is right in front of the toe of the stance leg, as

seen in Figure 6.2.

Without assuming maximum step size, an interchange of stance and swing legs will result

in a transformation of the generalized coordinates and their velocities given by the following

relations [1]:

qnew = P qold

q̇new = P q̇old

(6.7)

where qold and qnew denote the values of the vector q before and after the interchange of

stance and swing legs, respectively, and the entries of the transformation matrix P are

P =




1 0 1

0 1 −1

0 0 −1




(6.8)

which can be obtained from Figure 6.2. The dynamic model in Eq.(6.1) involves kinematic

and dynamic parameters of the stance and swing legs and their values need to be interchanged

during interchange of stance and swing legs as well.

6.2.4 Control Design

We develop the controller for imposing the constraints described in section 6.2.2. For the

symmetric gait with constraints in Eq.(6.4), the new set of generalized coordinates is defined

as

q̄ =

[
θ v1 v2

]T
(6.9)
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where

v1 = α− αdes

v2 = ψ + 2 θ (6.10)

The original generalized coordinates φ and ψ are related to the new coordinates v1 and v2

according to the following relations, which can be derived from Eqs.(6.5) and (6.10):

φ =v1 − θ + π + αd

ψ =v2 − 2 θ (6.11)

Substituting Eq.(6.11) into Eq.(6.1), we obtain the dynamics of the system in terms of the

new generalized coordinates as follows:

M̄(q̄) ¨̄q + N̄(q̄, ˙̄q) ˙̄q + Ḡ(q̄) = T (6.12)

where M̄ , N̄ , and Ḡ have the same dimensions asM , N , and G respectively. The generalized

force corresponding to θ in Eq.(6.12) is zero and this allows us to eliminate θ̈ from the

two equations corresponding to the generalized coordinates v1 and v2. The reduced-order

equations have the form

M̂(q̄) ¨̂q + N̂(q̄, ˙̄q) ˙̂q + Ĝ(q̄) = T̂ (6.13)

where M̂ ∈ R2×2, N̂ ∈ R2×2 and Ĝ ∈ R2×1, and

q̂ = [v1 v2]
T , T̂ = [τ2 τ3]

T (6.14)
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Equation (6.13) represents a completely actuated system and we use feedback linearization

to design our controller as follows:

T̂ = N̂(q̄, ˙̄q) ˙̂q + Ĝ(q̄)− M̂(q̄)(Kd
˙̂q +Kp q̂) (6.15)

where Kd and Kp are diagonal, positive-definite matrices of dimension two. Indeed, substi-

tution of Eq.(6.15) into Eq.(6.13) yields

¨̂q +Kd ˙̂q +Kp q̂ = 0 (6.16)

which implies q̂ → 0 as t → ∞. This simply follows that v1, v2 → 0 as t → ∞, i.e., the

constraints in Eq.(6.4) are satisfied.

The controller in Eq.(6.15) has been implemented and experimentally verified in our

laboratory biped [1]. The experimental results show that v1 and v2 do not converge to

zero but oscillate around zero due to impulsive disturbances from the ground at the time of

swing-leg touchdown. The algorithm presented in this chapter provides a way to avoid these

impulsive disturbances from the ground while taking steps due to an external disturbance.
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6.3 Impulsive Torques and Effects

6.3.1 Braking Torque for the Swing Leg

Consider the action that results in exponential convergence of the swing leg velocity ψ̇ to

zero while keeping θ̇ unchanged. To this end, the following dynamics are assumed,

θ̈ =0

ψ̈ =− k1 ψ̇ (6.17)

where k1 is a positive constant determining the rate of convergence of ψ̇ to zero. To compute

the torque required for this action, we multiply Eq.(6.1) with the inverse of the inertia matrix

to obtain




θ̈1

θ̈2

θ̈3



=

1

A33(A11A22 − A2
12)− A22A

2
13




h1 − A12A33τ2 −A13A22τ3

h2+(A11A33−A2
13)τ2+A12A13τ3

h3+A12A13τ2+(A11A22−A2
12)τ3




(6.18)

where h1, h2 and h3 are given by the following expressions,

h1 =−A22A33(B11θ̇ +B12φ̇+B13ψ̇)− A22A33G1 + A12A33G2 + A22A13G3

h2 =A12A13(B11θ̇+B12φ̇+B13ψ̇) +A12A33G1+(A2
13−A11A33)G2−A12A13G3

h3 =A22A13(B11θ̇ +B12φ̇+B13ψ̇) +A13A22G1−A12A13G2+(A2
12−A11A22)G3 (6.19)

Substituting Eq.(6.17) into the first and third equations in Eq.(6.18) results in
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τ2=
1

A12

[
A2
12h1−A22(A11h1+A13h3)

A2
13A22+(A2

12−A11A22)A33
+k1A13A22ψ̇

]

τ3 =
A13h1 + A33h3

A2
13A22 + (A2

12 −A11A22)A33
− k1A33ψ̇ (6.20)

If the constant k1 has a very large value, the torque expressions in Eq.(6.20) will be impulsive

in nature and will stop the swing leg relative velocity, ψ̇, in a very short period of time without

changing the stance leg velocity.

6.3.2 Braking Torque for the Torso

Consider an action which results in exponential convergence of the torso absolute velocity,

α̇, to zero while maintaining equal and opposite velocities for the stance and swing legs, i.e.

ψ̇ = −2 θ̇, in conformity with the symmetric gait. Using Eq.(6.5), we consider the following

dynamics to achieve the goal,

θ̈ + φ̈ =− k2(θ̇ + φ̇)

θ̈ + 2ψ̈ =− k3(θ̇ + 2ψ̇) (6.21)

where k2 and k3 are some positive constants determining the rate of convergence of the

velocities to their desired values. The control inputs that result in the dynamics in Eq.(6.21)

can be obtained by substituting Eq.(6.18) into Eq.(6.21) and solving for τ2 and τ3. The

massive torque expressions are not explicitly mentioned here for the sake of simplicity. If we

choose very large values for k2 and k3 in Eq.(6.21), the resulted torque expressions will be

impulsive in nature and stop the motion of the torso in a very short period of time without
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affecting the symmetric velocity condition associated with the symmetric gait.

6.3.3 Impulsive Effect on Velocity

The application of impulsive torques for φ and ψ generalized coordinates results in velocity

jumps in all three coordinates θ, φ and ψ. The relationship between the jumps in velocities

can be derived from Lagrange’s equations. Consider the integral of the equations of motion

in Eq.(6.1) over the short interval of time ∆t during which the impulsive forces and moments

act, i.e.
∫ ∆t

0
[M(q)q̈ +N(q, q̇)q̇ +G(q)] dt =

∫ ∆t

0
T dt (6.22)

The above equation can be rewritten as:

M(q)∆q̇ +N(q, q̇)∆q +

∫ ∆t

0
G(q) dt =

∫ ∆t

0
T dt (6.23)

Since ∆t is very short time interval and the configuration of the biped does not change during

this time, i.e. ∆q = 0, Eq.(6.23) will be simplified to

M(q)∆q̇ = Tim (6.24)

where Tim = [0 I2 I3]
T represents the vector of impulses applied to the biped. The above

equation can be decomposed into the following three equations:

M11(θ̇
+−θ̇−)+M12(φ̇

+−φ̇−)+M13(ψ̇
+−ψ̇−)=0 (6.25)

M21(θ̇
+−θ̇−)+M22(φ̇

+−φ̇−)+M23(ψ̇
+−ψ̇−)=I2 (6.26)

115



M31(θ̇
+−θ̇−)+M32(φ̇

+−φ̇−)+M33(ψ̇
+−ψ̇−)=I3 (6.27)

where the superscripts “−” and “+” denote the values immediately before and after the

application of the impulsive inputs, respectively.

As the first special case, consider the impulsive action described in Section 6.3.1 in which

ψ̇+ = 0 and θ̇+ = θ̇−. Using Eq.(6.25), the relative velocity of torso after the impulsive

action can be obtained as

φ̇+ = φ̇− +
M13

M12
ψ̇− (6.28)

As the second case, consider the impulsive action in section 6.3.2 which results in α̇+ = 0

and ψ̇+ = −2 θ̇+. Then the velocity of the swing leg after the impulse can be obtained from

Eq.(6.25) as follows:

θ̇+ =
M11θ̇

− +M12φ̇
− +M13ψ̇

−

M11 −M12 − 2M13
(6.29)

It should be noted that the impulses I2 and I3 can be computed from Eqs.(6.26) and (6.27).

These impulses can also be approximated by the time integral of the torque expressions

obtained in sections 6.3.1 for large gain k1 and the torque expressions in section 6.3.2 for

large gains k2 and k3.

6.4 Disturbance Rejection Algorithm

In this section, we develop an algorithm to reject the external disturbances applied to the

Synthetic-Wheel Biped. The external disturbances are assumed to be of the form of impulsive

forces and their effects are modeled by jumps in the generalized velocities. The disturbances

are assumed to be large enough that precludes the possibility of stabilizing the upright
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posture without taking a step. The problem at hand is therefore to reject the disturbances

and stabilize the upright posture by taking a few steps in the forward or backward direction.

The disturbance rejection algorithm is based on slowing down the biped using the symmetric

gait while imposing constraints on the legs and torso. These constraints are described as

follows:

C3 :− β/2 ≤ θ1 ≤ β/2 (6.30)

C4 :− γ ≤ α ≤ γ (6.31)

where β is the foot arc angle (see Figure 6.2) and γ is a small positive angle. We propose

the following three-step algorithm to reject external impulsive disturbances and stabilize the

upright posture of the Synthetic-Wheel Biped:

1. Initialization:

(a) Linearize the dynamic equations in Eq.(6.1) about the desired equilibrium point

(θ, θ̇, φ, φ̇, ψ, ψ̇) = (0, 0, π, 0, 0, 0).

(b) Design a LQR controller for the linearized system to render the desired equilibrium

locally asymptotically stable 1. Let RA be the region of attraction of the desired

equilibrium.

(c) Define a quadratic Lyapunov function for the linearized system as V = XTSX

where X = [θ, θ̇, φ − π, φ̇, ψ, ψ̇]T and S is the solution of the Riccati equation

associated to the LQR design.

(d) Define a set point for the Lyapunov function as V0 = XT
0 SX0 where X0 =

1This is always possible because the linearized system is controllable
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[η, 0, αdes − η, 0,−2η, 0]T and η < β/2 is a positive angle. η and αdes values are

chosen sufficiently small such that if V ≤ V0, the biped configuration will lie inside

RA and will approach the upright equilibrium without exceeding the bound on θ

in Eq.(6.30).

2. Disturbance Rejection:

(a) Following the external disturbance, apply the torque expression in Eq.(6.15) to

implement the symmetric gait. The torque expression in Eq.(6.15) depends on

the value of the torso desired angle, αdes, which is chosen to have the opposite

sign of the stance leg velocity, θ̇, so the biped slows down. This follows from our

discussion in Section 6.2.2.

(b) If the stance leg angle θ reaches the boundary of the interval [−β/2, β/2], ap-

ply the torque expressions in Eq.(6.20) to quickly enforce ψ̇ = 0 while keeping

the stance leg velocity unchanged. The stance leg and swing leg are immediately

interchanged using Eq.(6.7) and the control torques in step 2(a) are applied there-

after. By enforcing ψ̇ = 0, we avoid impulsive disturbance from the ground to the

biped (swing leg) at the time of leg interchange. It can be seen from Eq.(6.7) that

this also eliminates jumps in θ̇ at the time of leg interchange, which is necessary

for smooth walking.

(c) If the torso angle α reaches the boundary of the interval [−γ, γ], apply the torque

expressions obtained in section 6.3.2 to quickly stop the torso while keeping the

velocity of the legs symmetric. Then continue to apply the control torques in step

2(a).

(d) If V ≤ V0, terminate this step and go to step 3. The stance leg velocity, θ̇, will
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go to zero since αdes was chosen to have a sign opposite to that of θ̇. Imposing

the symmetric gait constraints in Eq.(6.4), φ̇ and ψ̇ will approach zero as well.

Therefore, By choosing small enough value for αdes, the inequality V ≤ V0 is

eventually satisfied.

3. Stabilization:

With V ≤ V0 and the biped satisfying the constraints in Eq.(6.30) and Eq.(6.31),

the biped configuration will be inside the region of attraction RA. Invoke the linear

controller designed in step 1 to stabilize the desired equilibrium.

6.5 Numerical Simulations

We present two simulations to demonstrate the effectiveness of the proposed algorithm in

rejecting the impulsive disturbances on the Synthetic-Wheel biped. For both simulations,

the kinematic and dynamic parameters in Table 6.1 are used.

For the first simulation, we assume two impulsive disturbances are applied on the biped

Table 6.1: Parameters of the Synthetic-Wheel Biped [1]

Kinematic parameters
Length (m) Foot radius, R (m) Foot arc, β (deg)

Inner leg 0.635 0.635 22.5
Outer leg 0.635 0.635 22.5
Torso 0.457 - -

Dynamic parameters

Mass (kg) Inertia (kgm2) d in Fig.2 (m)
Inner leg 1.64 0.094 0.285
Outer leg 3.64 0.128 0.355
Torso 11.87 0.198 0.307
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at two instants of time which can be modeled by the following values of the angular velocities:

(θ̇+1 , θ̇
+
2 , θ̇

+
3 ) = (0,−5,−1) , at t = 0 sec

(θ̇+1 , θ̇
+
2 , θ̇

+
3 ) = (−0.1, 3,−1) , at t = 2 sec (6.32)

The initial angular positions and the parameters needed in the algorithm are chosen as:

(θ10, θ20, θ30) = (5◦, 180◦,−8◦)

η = β/3, αdes = −sgn(θ̇) 5◦, γ = 10◦ (6.33)

Figure 6.3 shows the simulation results including the plots of the joint angles and angular

velocities and the control inputs. The angular position ψ and the angular velocity ψ̇ of the

swing leg are shown by dashed lines. The horizontal lines in the angular position subplots

represent the bounds on the stance leg and the torso. Due to the initial impulsive disturbance,

the torso gets to its lower bound and the impulsive inputs are applied to keep them inside

the allowed region. The biped starts walking in the negative direction with θ̇ < 0 and

the continuous controller will slow down the biped motion by imposing the symmetric gait

constraints. when the stance leg gets to its bound, the impulsive inputs are applied to make

ψ̇ = 0 right before the interchange of the legs. When the second impulsive disturbance is

applied at t = 2 sec., the biped changes its walking direction to positive and consequently,

the continuous controller switches the desired angle of torso to negative to slow down the

biped using the symmetric gait constraints. Torso reaches its upper bound after the second

disturbance as well and is kicked back inside the region using impulsive inputs. The peaks

in the torque plots correspond to impulsive torques which are applied when the stance leg
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and the torso reach their bounds. As can be seen from Figure 6.3, the biped is able to reject

the impulsive disturbance after taking few steps in the negative and positive directions. The

linear controller is invoked at t = 6.04 sec. (shown by vertical dashed line) to stabilize the

upright configuration of the biped.

For the second simulation, we applied five identical impulsive disturbances to the biped

at time instants t = 0, 2, 4, 6, 8 sec. which are modeled by the following changes in the

velocities:

(θ̇+1 , θ̇
+
2 , θ̇

+
3 ) = (−0.5, 6,−2) (6.34)

-0.4

0

0.4

-0.17
0

0.17

-2
0
2

-4

0
2

-40

0

45

0 1 2 3 4 5 6 7 8
-200

0
120

θ
,ψ

(r
a
d
)

α
(r
a
d
)

θ̇,
ψ̇
(r
a
d
/s
)

α̇
(r
a
d
/s
)

τ 2
(N
.m

)
τ 3
(N
.m

)

time (sec)

a

b

c

d

e

f

Figure 6.3: Simulation results showing angular positions (rad), angular velocities (rad/s),
and control inputs (N.m) of the SWB in rejecting the impulsive disturbances applied at two
instants of time. The dashed lines correspond to the plots of ψ and ψ̇.
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the initial conditions for joint angles and the other algorithm parameters were chosen as:

(θ10, θ20, θ30) = (0, π, 0)

η = β/3, αdes = −sgn(θ̇) 5◦, γ = 20◦ (6.35)

The simulation results are shown in Figure 6.4. As in the first simulation, dashed lines rep-

resent the swing-leg angle and angular velocity and the horizontal lines in angular positions

subplots show the bounds on the stance leg and torso motion. The disturbances make the

biped to walk in the positive direction with symmetric gait to recover its upright config-

uration. In this case, the limit on the torso motion is not reached and all the impulsive

inputs shown by peaks in the torque plots, are applied when the stance leg gets to its bound
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Figure 6.4: Simulation results showing angular positions (rad), angular velocities (rad/s),
and control inputs (N.m) of the SWB in rejecting the impulsive disturbances applied at five
instants of time. The dashed lines correspond to the plots of ψ and ψ̇.
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at θ = β/2. Using the proposed algorithm, the biped is able to reject the disturbances.

The vertical dashed line in Figure (6.4) represents the time t = 12.3 sec. when the linear

controller is invoked to stabilize the upright equilibrium of the biped.

6.6 Conclusion

We proposed an algorithm to reject the effects of impulsive disturbances applied to the

Synthetic-Wheel Biped in its stance and walking configurations. The impulsive disturbance

is modeled by jumps in system velocities. The algorithm uses a combination of continuous

and impulsive control inputs to generate a symmetric gait for the SWB while imposing

some constraints on the system states. Using the symmetric gait, the biped takes a few

steps in order to reject the effects of the external disturbances and recover its balance. The

constraints on the system are imposed to avoid additional impulsive disturbances from the

ground at the interchange of legs. Simulation results show the effectiveness of the algorithm

in rejecting the impulsive disturbances applied at different instants of time in both stance

and walking phases of the biped.
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Chapter 7

Energy-Conserving Gaits for

Point-Foot Passive-Ankle Bipeds

7.1 Introduction

In the previous chapter, we studied a case study where impulsive inputs in the form of ex-

ternal disturbance are undesirable and the control objective is to cancel their effects on the

system. In this chapter, we consider another undesirable form of impulsive inputs which

exists in walking bipeds: the interaction impact from ground applied during the legs in-

terchange. In addition to the velocity jumps for the biped links, energy is lost during the

impact. To make a bipedal walking gait more energy efficient, controllers need to be designed

to avoid these impacts.

In this chapter, we present a general method for designing energy-conserving gaits for

point-foot passive-ankle planar bipeds. Assuming no energy dissipation due to friction, an

energy-conserving gait is one that has a zero Cmt based on the definition in Eq.(1.1). The

sufficient conditions for such a gait are equal potential and kinetic energies at the beginning

and end of each step and no energy loss due to impact at the time of swing-leg touchdown.

These conditions are presented in Section 7.2. The conditions are applied to two three-dof

bipeds in Section 7.3; the results indicate that energy-conserving gaits can be designed for

the Synthetic-Wheel biped [1] but not for the biped with point feet. Energy-conserving gaits
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are designed for five-dof bipeds in Sections 7.4 and 7.5. One-step periodic gaits are designed

in Section 7.4 for a biped with similar leg links and more general two-step periodic gaits are

designed for bipeds with similar and dissimilar leg links in Section 7.5. Concluding remarks

are provided in Section 7.6.

7.2 Energy-Conserving Gaits

7.2.1 Assumptions and Definitions

Consider the general n-link planar biped comprised of a torso and two legs, shown in Figure

7.1. The equations of motion of the biped are assumed to be of the form

M(q) q̈ +N(q, q̇) q̇ +G(q) = T (7.1)

where q = (θ1, θ2, · · · , θn)T and T = (u1, u2, · · · , un)T are the vectors of generalized coordi-

nates and generalized forces1, M(q) ∈ Rn×n is the symmetric mass matrix, N(q, q̇) ∈ Rn×n

is the matrix of centrifugal and Coriolis terms, and G(q) ∈ Rn is the vector of gravitational

forces. We assume that

A1. Only one leg of the biped is in contact with the ground at any given time, i.e., there

is no double-support phase.

The leg in contact with the ground is commonly referred to as the stance leg; the other leg

is referred to as the swing leg. All joints are measured counter-clockwise with respect to

the vertical. They are numbered arbitrarily except that θ1 denotes the angle of the stance

1Since the generalized coordinates are absolute joint angles, the generalized forces are the net
external moments acting on each link.
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Figure 7.1: A schematic of an n-link point-foot planar biped.

leg link in contact with the ground, and θn denotes the angle of the swing leg link that will

come in contact with the ground. For any biped gait, we define the term “step” as follows:

Definition 7.2.1. A step is the complete motion of the biped on the stance leg which is

followed by interchange of the stance and swing legs.

We make the following additional assumptions:

A2. The stance and swing legs of the biped have point feet and the stance foot does not

slide or leave the ground during a step.

A3. All joints of the biped are actuated except the ankle joint of the stance leg, which is

passive.

A4. The biped walks on level ground and there is no energy dissipation due to friction.
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At the beginning of each step, the joint angles and their velocities are denoted by

qi = (θi1, θ
i
2, · · · , θin)T , q̇i = (θ̇i1, θ̇

i
2, · · · , θ̇in)T

Similarly, the joint angles and their velocities at the end of each step are denoted by

qf = (θ
f
1 , θ

f
2 , · · · , θ

f
n)
T , q̇f = (θ̇

f
1 , θ̇

f
2 , · · · , θ̇

f
n)
T

We also assume that:

A5. The joint angles of the stance leg ankle at the beginning and end of each step are

symmetric with respect to the vertical, i.e., θ
f
1 = −θi1.

The velocity of the swing foot at the time of contact with the ground (at the end of each

step) is denoted by

~V
f
n = V

f
n,x î+ V

f
n,y ĵ

where î and ĵ are unit vectors along the inertial x and y axes, and V
f
n,x and V

f
n,y are the

corresponding velocity components.

7.2.2 Sufficient Conditions for Energy-Conserving Gait

For a biped, the mechanical energy required by its gait will be zero over each step if the

following conditions are satisfied:

1. The potential energies at the beginning and end of each step are identical. This is

achieved if

θ
f
j = −θij , j = 1, 2, · · · , n (7.2)

127



2. The kinetic energies at the beginning and end of each step are identical. This is

achieved if

θ̇
f
j = θ̇ij , j = 1, 2, · · · , n (7.3)

Additionally, during interchange of the stance and swing legs, the energy of the biped will

remain conserved if:

3. Swing foot touchdown does not cause loss of energy. This is achieved if there is no

impact due to foot-ground interaction, i.e.

V
f
n,x = V

f
n,y = 0 (7.4)

The conditions in Eqs.(7.2) and (7.3) can be easily satisfied for θj , j = 2, 3, · · · , n, since

all joints of the biped except the stance leg ankle are actuated. The condition in Eq.(7.2) is

satisfied for θ1 as well - this is a direct consequence of assumption A5. Since the stance leg

ankle is passive, the main challenge is to satisfy the condition in Eq.(7.3) for θ̇1.

7.2.3 Characterization of Trajectories of the Actuated Joints

The condition in Eq.(7.3) can be satisfied by the ankle joint velocity θ̇1 if it is an even

function2 of θ1, i.e.,

θ̇1 = ge1(θ1) (7.5)

This follows from assumption A5. We now state necessary conditions for the actuated joint

trajectories with the help of the following Theorem.

2We use superscripts “e” and “o” to denote even and odd functions, respectively.
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Theorem 7.2.1. The conditions in Eqs.(7.2), (7.3) and (7.5) will be satisfied only if the

velocities of the actuated joints are even functions of θ1, i.e.

θ̇j = gej (θ1), j = 2, 3, · · · , n (7.6)

Proof. To guarantee θ̇1 in Eq.(7.5) is a function of θ1 alone, all actuated joints must be

functions of θ1, i.e.

θj = fj(θ1), j = 2, 3, · · · , n (7.7)

Taking the derivative of Eq.(7.7), we get

θ̇j = hj(θ1) θ̇1, hj ,
∂fj
∂θ1

, j = 2, 3, · · · , n (7.8)

The hj ’s can be written as a sum of even and odd functions as follows

θ̇j =
[
hej(θ1) + hoj(θ1)

]
θ̇1, j = 2, 3, · · · , n (7.9)

From Eq.(7.3), we have for j = 2, 3, · · · , n

[
hej(θ

i
1) + hoj(θ

i
1)
]
θ̇i1 =

[
hej(θ

f
1 ) + hoj(θ

f
1 )
]
θ̇
f
1

⇒ hej(θ
i
1) + hoj(θ

i
1) = hej(θ

f
1 ) + hoj(θ

f
1 ) (7.10)
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Rearranging terms and using Eq.(7.2) and the property of even and odd functions, we get

hoj(θ
f
1 )− hoj(θ

i
1) = hej(θ

i
1)− hej(θ

f
1 )

⇒ hoj(−θi1)− hoj(θ
i
1) = hej(θ

i
1)− hej(−θi1)

⇒ hoj(−θi1) = hoj(θ
i
1)

⇒ hoj(θ1) = 0 (7.11)

It simply follows that hj(θ1) = hej(θ1), j = 2, 3, · · · , N . Using Eqs.(7.5) and (7.8) we can

now write

θ̇j = hej(θ1) θ̇1 = hej(θ1) g
e
1(θ1) , gej (θ1) (7.12)

which implies that θ̇j , j = 2, 3, · · · , n is even function of θ1. This completes the proof.

Since the derivative of an odd function is always an even function, the theorem above

implies that the trajectories of the actuated joints consist of an odd function and a constant.

We choose the following general form for the trajectories

θj(θ1) = foj (θ1) + aj θ1 + bj , j = 2, 3, · · · , n (7.13)

where aj and bj are constants, and the term aj θ1 is the linear part of the odd function.

The constants bj and the coefficients of the odd functions in Eq.(7.13) will be chosen such

that the boundary conditions in Eqs.(7.2), (7.3) and (7.4) are satisfied. Of these boundary

conditions, the condition on θ̇1 in Eq.(7.3) is satisfied indirectly by choosing the constants and

the coefficients such that θ̈1 is an odd function. This requires the substitution of Eq.(7.13) in

the expression for θ̈1, which is obtained from the equation of motion for θ1. Although there
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is no guarantee that trajectories of the form given by Eq.(7.13) can be found for energy-

conserving gaits for arbitrary bipeds, we show that such trajectories do exist for several

planar bipeds.

7.3 Three-DOF Bipeds: Two Case Studies

In this section, we design energy-conserving gaits for two 3-dof biped platforms: the Synthetic-

Wheel biped3 [1] and a point-foot three-link biped with two legs and a torso.

7.3.1 Synthetic-Wheel Biped (SWB)

7.3.1.1 System Description

The SWB [1], which was described in Section 6.2.1, is shown in Figure 7.2. The equations

of motion of the SWB have the same form as Eq.(7.1), with q and T defined as follows:

q = [θ φ ψ]T , T = [0 τ2 τ3]
T (7.14)

where τ2 and τ3 are motor torques corresponding to the relative coordinates φ and ψ. The

equations of motion of the SWB are provided in Appendix B.

Remark 7.3.1. The generalized coordinates in Eq.(7.14) are different from those chosen for

the general case in the previous section. This is because the dynamics of the SWB, already

presented in [1], is based on relative generalized coordinates shown in Figure 7.2. This

difference does not change the sufficient conditions for an energy-conserving gait, namely,

3The Synthetic-Wheel biped has arc-shaped feet but is investigated here along with point-foot
bipeds because of its point contact with the ground.
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Figure 7.2: A schematic of the Synthetic-Wheel biped, reproduced from [1].

the kinetic and potential energies at the beginning and end of each step are the same, and

there is no loss of energy at the time of swing-leg touch down.

7.3.1.2 Sufficient Conditions for Energy-Conserving Gait

The boundary conditions for the gait are determined as follows:

1. The potential energies at the beginning and end of each step are identical. This is

achieved by

θf = −θi, φf = −φi, ψf = −ψi (7.15)

2. The kinetic energies at the beginning and end of each step are identical. This is

achieved by

θ̇f = θ̇i, φ̇f = φ̇i, ψ̇f = ψ̇i (7.16)

3. The synthetic-wheel design ensures that there are no vertical impulsive forces, i.e.,
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V
f
n,y = 0. At the time of swing foot touchdown, there will be no horizontal impulsive

forces if

ψ̇f = 0 (7.17)

7.3.1.3 Determination of Actuated Joint Trajectories

Using Eq.(7.13), we consider the following functional dependence for φ and ψ

φ(θ) = (a1 θ + b1) + fo1 (θ) (7.18)

ψ(θ) = (a2 θ + b2) + fo2 (θ) (7.19)

The condition θ̇i = θ̇f in Eq.(7.16) can be satisfied if θ̈ is an odd function of θ. To this end,

we derive the expression for θ̈ as follows

θ̈ =
N

D
(7.20)

where N = N(q, q̇, q̈) and D = D(q) are defined as follows

N(q, q̇, q̈)=− φ̈ {It+mt(dt−lt)(dt−lt+R cos [θ + φ])}

−ψ̈ {Isw+msw(dsw−R)(dsw−R+R cos [θ+ψ])}

+mst(dst −R)(g +Rθ̇2) sin θ +mt(dt − lt)
[
g +R(θ̇ + φ̇)2

]
sin [θ + φ]

+msw(dsw−R)
[
g+R(θ̇+ψ̇)2

]
sin [θ+ψ]

133



D(q) = It + Ist + Isw +mst

[
(dst − R)2 +R2 − 2R(−dst +R) cos θ

]

+mt

[
d2t+l

2
t +R

2+2R(dt−lt) cos(θ + φ)−2dtlt

]

+msw

[
(dsw−R)2+R2−2R(−dsw+R) cos [θ + ψ]

]

Using Eqs.(7.18) and (7.19), a term-by-term analysis of N and D shows that θ̈ is an odd

function of θ for any values of a1 and a2 provided that b1 and b2 are chosen as [138]

b1 = mπ, b2 = nπ, m, n = 0,±1,±2, · · · (7.21)

For the torso to be upright, the choice of m for b1 = mπ should be limited to m =

±1,±3,±5, · · · . Similarly, for the swing-leg to point downwards, the choice of n for b2 = nπ

should be limited to n = 0,±2,±4, · · · . By simply setting b1 = π and b2 = 0 and assuming

fo1 and fo2 in Eqs.(7.18) and (7.19) to be sinusoidal functions, we have

φ(θ) = (a1θ + π) +A sin (Bθ) (7.22)

ψ(θ) = a2θ + C sin (Dθ) (7.23)

If the SWB moves in the positive x direction with maximum step length, we have

θf = −θi = β

2
(7.24)

ψf = −ψi = −β (7.25)

where β is the arc angle of the feet - see Figure 7.2. Using Eq.(7.24) and the boundary

conditions corresponding to θ and φ in Eqs.(7.15) and (7.16), the coefficients a1 and B can
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be determined. Using Eqs.(7.24) and (7.25) and the boundary conditions corresponding to

θ and ψ in Eqs.(7.15), (7.16) and (7.17), the coefficients a2, C, and D can be determined.

The energy-conserving trajectories of the actuated joints finally take the form

φ(θ) = π − θ +A sin(2πθ/β) (7.26)

ψ(θ) = −β sin(πθ/β) (7.27)

The choice of the constant A is discussed in the next section.

7.3.1.4 Numerical Simulations

The kinematic and dynamic parameters of the SWB are listed in Table 7.1. The constant

A corresponds to the amplitude of oscillation of the torso and determines if the biped will

succeed or fail to take a step. To illustrate this point, we plot phase portraits of the motion of

the SWB in Figure 7.3 for different values of A with initial conditions θi = −β/2 = −11.25

deg and θ̇i = 45 deg/s. For A equal to 0.10 and 0.08, the SWB fails to take a step because θ̇

changes sign before the step is completed. As A is reduced, for A equal to 0.06 and smaller,

Table 7.1: Kinematic and dynamic parameters of Synthetic Wheel Biped

Kinematic parameters
lst, lsw, lt R β

Leg 1 0.635 m 0.635 m 22.5 deg
Leg 2 0.635 m 0.635 m 22.5 deg
Torso 0.457 m - -

Dynamic parameters
mst, msw, mt Ist, Isw, It dst, dsw, dt

Leg 1 2.640 kg 0.111 kg m2 0.320 m

Leg 2 2.640 kg 0.111 kg m2 0.320 m

Torso 11.87 kg 0.198 kg m2 0.307 m
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Figure 7.3: Phase portraits of the Synthetic-Wheel Biped for different amplitudes of torso
oscillation A

the biped rolls on its stance foot from heel to toe and is able to take a step. The values of

A for which the SWB is able to take a step depends on its inertial properties and its initial

velocity.

For the particular case of A = 0.0, we plot the torques τ2 and τ3 over one step in Figure

7.4; these torques are responsible for generating the trajectories of φ and ψ in Eqs.(7.26)

and (7.27). The mechanical work done at these joints over one step can be expressed as an
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Figure 7.4: Torque plots for an energy-conserving gait for the Synthetic-Wheel Biped (SWB).
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Figure 7.5: Generalized torque plots for an energy-conserving gait for the Synthetic-Wheel
Biped (SWB).

integral over θ, as follows

W2 =

∫

t
τ2φ̇ dt =

∫

θ
τ2(

dφ

dθ
) dθ ,

∫

θ
τθ2 dθ (7.28)

W3 =

∫

t
τ3ψ̇ dt =

∫

θ
τ3(

dψ

dθ
) dθ ,

∫

θ
τθ3 dθ (7.29)

The plots of τθ2 and τθ3 are shown in Figure 7.5. The area under these curves are equal to

zero and this confirms that the gait described by Eqs.(7.26) and (7.27) conserves mechanical

energy.

7.3.2 Point-Foot Three-Link Biped

The point-foot three-link biped is obtained by replacing the arc-shaped feet on the SWB

with point feet. A schematic of this biped is shown in Figure 7.6. Using the same set of

generalized coordinates and generalized forces as the SWB, we first look at the sufficient

condition for energy-conserving gait that corresponds to foot-ground interaction without
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Figure 7.6: A schematic of the Point-Foot Three-Link.

impact. This condition, given by Eq.(7.4), can be written as

lst cos θ
f θ̇f−lsw cos (θf+ψf )θ̇f−lsw cos (θf+ψf )ψ̇f = 0

lst sin θ
f θ̇f−lsw sin (θf+ψf ) θ̇f−lsw sin (θf+ψf ) ψ̇f = 0 (7.30)

The above equation was obtained by taking the derivative of the swing foot position coor-

dinates relative to the stance foot - see Figure 7.6. Applying condition Eq.(7.2) next and

assuming that the stance leg angle and swing leg angle satisfy (similar to Eqs.(7.24) and

(7.25) for the SWB)

θf = β/2, θ + ψ = −β/2
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for some angle β, we get from Eq.(7.30)

cos(β/2)
[
lst θ̇

f−lsw θ̇f−lsw ψ̇f
]
= 0

sin(β/2)
[
lst θ̇

f+lsw θ̇
f+lsw ψ̇

f
]
= 0 (7.31)

Since β 6= 0, Eq.(7.31) implies θ̇f = 0, which implies θ̇i = 0 from Eq.(7.3). At the beginning

and end of each step, the stance and swing legs will be symmetric with respect to the vertical

and have zero velocity; and therefore, the biped will roll on its stance foot only if the torso

is inclined with respect to the vertical. The sufficient condition in Eq.(7.2) dictates that the

torso angle with respect to the vertical at the end of the step be equal and opposite to that

at the beginning of the step. This implies that the biped will only roll back and forth on its

stance leg. Clearly, it is not possible to design an energy-conserving gait for the point-foot

three-link biped using the sufficient conditions in Eqs.(7.2), (7.3) and (7.4).

7.4 Five-DOF Point-Foot Biped

7.4.1 System Description

Consider the general five-dof point-foot biped shown in Figure 7.7. The generalized coordi-

nates and generalized forces of the biped are as follows

q =

[
θ1 θ2 θ3 θ4 θ5

]T

T =

[
u1 u2 u3 u4 u5

]T
(7.32)

Assuming that the j-th link is driven by a motor mounted on the (j−1)-th link, j = 2, 3, 4, 5,
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Figure 7.7: A schematic of the five-dof point-foot biped.

the generalized force vector can be rewritten in the form

T =

[
−τ2 (τ3 − τ2) (τ4 − τ3) (τ5 − τ4) τ5

]T
(7.33)

where τj , j = 2, 3, 4, 5, are the corresponding motor torques. Note that τ1 = 0 since the

ankle joint of the biped is passive. The equations of motion of the biped and description of

its parameters are provided in Appendix C.

7.4.2 Sufficient Conditions for Energy-Conserving Gait

The boundary conditions for the gait are determined as follows:

1. The potential energies at the beginning and end of each step are identical. This is

achieved by

θ
f
j = −θij , j = 1, · · · , 5 (7.34)
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2. The kinetic energies at the beginning and end of each step are identical. This is

achieved by

θ̇
f
j = θ̇ij , j = 1, · · · , 5 (7.35)

3. At the time of swing foot touchdown, there will be no impact due to impulsive forces

if V
f
n,x = V

f
n,y = 0, i.e.

l1 cos θ
f
1 θ̇
f
1+l2 cos θ

f
2 θ̇
f
2+l4 cos θ

f
4 θ̇
f
4+l5 cos θ

f
5 θ̇
f
5 = 0

l1 sin θ
f
1 θ̇
f
1+l2 sin θ

f
2 θ̇
f
2 + l4 sin θ

f
4 θ̇
f
4+l5 sin θ

f
5 θ̇
f
5 = 0 (7.36)

The above equation was obtained by taking the derivative of the swing foot position coordi-

nates relative to the stance foot - see Figure 7.7.

7.4.3 Determination of Actuated Joint Trajectories

Using Eq.(7.13), we consider the following functional dependence for θj

θj(θ1) = (aj θ1 + bj) + foj (θ1), j = 2, 3, 4, 5 (7.37)

The condition θ̇i1 = θ̇
f
1 in Eq.(7.35) can be satisfied if θ̈1 is an odd function of θ1. To this

end, we derive the expression for θ̈1 as follows

θ̈1 =
N

D
(7.38)
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where N = N(q, q̇, q̈) and D = D(q) are defined as follows (see Appendix C):

N(q, q̇, q̈) =−
5∑

j=2

5∑

i=1

M(j, i)θ̈j −
5∑

j=1

5∑

i=1

N(i, j)θ̇j −
5∑

j=1

G(j)

D(q) =
5∑

j=1

M(j, 1)

Using Eq.(7.37), a term-by-term analysis of N and D shows that θ̈1 is an odd function of θ1

for any values of aj ’s provided that bj ’s are chosen as follows:

bj = kjπ, kj = 0,±1,±2, · · · (7.39)

For a realistic walking configuration, we set b2 = b3 = 0 and b4 = b5 = π. Assuming foj in

Eq.(7.37) to be sinusoidal functions, we have

θ2(θ1) = a2θ1 +A sin (Bθ1)

θ3(θ1) = a3θ1 + C sin (Dθ1)

θ4(θ1) = a4θ1 + π + E sin (Fθ1)

θ5(θ1) = a5θ1 + π + G sin (Hθ1) (7.40)

We assume θi1 = −θf1 = β/2 for some angle β and choose B = D = F = 2π/β; this choice

ensures that actuated joint trajectories of θ2, θ3 and θ4 include one period of sinusoidal

oscillation in each step. For a reasonable clearance between the swing foot and the ground,

we choose H differently, equal to 2.5π/β.

To have identical configuration of the legs at the beginning and end of each step, links

1 and 5 and links 2 and 4 should have the same length and be symmetrical with respect to
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the vertical at the beginning of each step. From the definition of the joint angles in Figure

7.7, this implies that

θi5 = −θi1 + π (7.41)

θi4 = −θi2 + π (7.42)

Furthermore, the biped should have the same speed before and after interchange of the stance

and swing legs. This implies

θ̇
f
5 = θ̇i1 (7.43)

We use Eq.(7.42) to obtain a4 = −a2 and use Eqs.(7.41) and (7.43) to solve for a5 and G in

terms of β. The actuated joint trajectories in Eq.(7.40) can now be described with the help

of five parameters, namely, a2, a3, A, C and E , as shown below:

θ2(θ1) = a2θ1 +A sin(2πθ1/β)

θ3(θ1) = a3θ1 + C sin(2πθ1/β)

θ4(θ1) = −a2θ1 + π + E sin(2πθ1/β)

θ5(θ1) = a5θ1 + π + G sin(2.5πθ1/β) (7.44)

Of the five parameters, a2, A and E are chosen such that the two boundary conditions in

Eq.(7.36) are satisfied. This provides some flexibility in choice of these parameters. The

remaining two parameters, a3 and C, are related to the motion of the torso and therefore

do not show up in the no-impact boundary conditions in Eq.(7.36); they can be chosen

arbitrarily and provide additional flexibility in design of energy-conserving gaits.
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Table 7.2: Kinematic and dynamic parameters of Five-DOF Point-Foot biped with similar
leg links

Kinematic and dynamic parameters

j lj (m) dj (m) mj (kg) Ij (kg.m2)

1, 5 0.600 0.300 2.000 0.060
2, 4 0.400 0.200 2.000 0.027
3 0.600 0.300 4.000 0.120

7.4.4 Numerical Simulations

The kinematic and dynamic parameters of the biped with similar leg links (l1 = l5, l2 =

l4) are listed in Table 7.2. Although there is significant flexibility in choosing the gait

parameters, many choices will result in gaits that are not feasible. For example, certain

choices of parameters will result in the swing leg passing through the ground. A set of

parameters that result in a feasible gait can be obtained by trial and error; one such set of
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Figure 7.8: Torque plots for an energy-conserving gait for the Five-DOF Point-Foot Biped
with similar leg links.
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parameters for a step angle of β = 45.0 deg is given below:

a5 = −1.683 G = −0.739

a2 = 1.200, a3 = 0.000

A = 0.308, C = −0.550, E = 0.008

(7.45)

For an initial velocity of θ̇i1 = −100 deg/s, the torques τj , j = 2, 3, 4, 5, are shown in Figure

7.8. The total mechanical work done by the actuators over one step can be expressed as an

integral over θ1, as follows

W =
5∑

j=2

∫

t
τj θ̇j dt =

∫ θ
f
1

θi1




5∑

j=2

τj(
dθj
dθ1

)


 dθ1 ,

∫ θ
f
1

θi1

τθ dθ1 (7.46)

The plot of τθ is shown in Figure 7.9. The area under this curve is equal to zero and this

confirms that the gait described by Eqs.(7.44) and (7.45) conserves mechanical energy. The

configurations of the biped at different instants of time over a single step, moving from left to
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Figure 7.9: Generalized torque plot for an energy-conserving gait for the Five-DOF Point-
Foot Biped with similar leg links.
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Figure 7.10: Configurations of the five-dof point-foot biped with similar leg links at different
instants of time over one step.

right, are shown in Figure 7.10. It was verified that the swing leg does not scuff the ground.

Since actuated joint trajectories of the biped, θj(t), j = 2, 3, 4, 5, are odd functions of the

passive coordinate θ1, a right-to-left step of the biped will have the same set of configurations

as in Figure 7.10.

7.5 Two-Step Periodic Gaits: Five-DOF Bipeds

7.5.1 Generalization to Two-Step Periodic Gait

The energy-conserving gait designed in the last section is one-step periodic. This is because

of Eqs.(7.41), (7.42) and (7.43), which impose additional conditions that make the configu-

rations4 of the five-dof point-foot biped identical at the beginning and end of each step. It

is not necessary to have identical configurations at the beginning and end of each step to

have an energy-conserving gait, and therefore, energy-conserving gaits need not be one-step

periodic. Energy-conserving gaits designed using the sufficient conditions in section 7.2.2

will however be two-step periodic, i.e., result in identical configurations of the biped after

two steps. This is because two times application of the boundary conditions in Eqs.(7.2) and

(7.3) will revert each link back to its original configuration.

4A biped configuration is described by the position and velocity of its links.
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7.5.2 Characterization of Trajectories

For a two-step periodic gait, the configurations of the biped will be different at the beginning

and the end of the first step. Consequently, we will have a different initial configuration for

the second step after the interchange of the stance and swing legs. This will result in a new

set of parameters for the actuated joint trajectories for the second step. In this section, we

modify some conditions in Section 7.4.3 to obtain the trajectories of the actuated joints for

each step. In spite of different walking gaits for the first and second steps, we still ensure

that the energy is conserved for each step by satisfying the sufficient conditions in Eqs.(7.34),

(7.35) and (7.36).

7.5.2.1 Trajectories for the First Step

Consider the trajectories in Eq.(7.40) with the parameters B, D, F and H chosen the same

as those in Section 7.4.3, i.e.,

θ2(θ1) = a2θ1 +A sin(2πθ1/β)

θ3(θ1) = a3θ1 + C sin(2πθ1/β)

θ4(θ1) = a4θ1 + π + E sin(2πθ1/β)

θ5(θ1) = a5θ1 + π + G sin(2.5πθ1/β) (7.47)

Since the condition in Eq.(7.42) is not necessary for a two-step periodic gait, the parameters

a2 and a4 are now chosen independently. The condition in Eq.(7.41) is replaced with the

following condition which ensures that the swing foot is on the ground at the beginning of

the step:

l1 cos θ
i
1 + l2 cos θ

i
2 + l4 cos θ

i
4 + l5 cos θ

i
5 = 0 (7.48)
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In addition, for a two-step periodic gait, we can have different initial velocities of the stance

leg in the first and second steps. Therefore, the condition in Eq.(7.43) is modified to:

θ̇
f
5 = cv θ̇

i
1 , cv > 0 (7.49)

Knowing that θi1 = −θf1 = β/2, Eqs.(7.48) and (7.49) can be solved for a5 and G in terms of

β. The parameters A and E are chosen such that the two boundary conditions in Eq.(7.36)

are satisfied. The remaining two parameters, a3 and C, which are related to the motion of the

torso, can be chosen arbitrarily and provide some flexibility in design of energy-conserving

gaits.

7.5.2.2 Trajectories for the Second Step

The actuated joint trajectories for the second step should be chosen such that the sufficient

boundary conditions for energy conservation are satisfied, and the configuration of the biped

at the beginning of the second step (after interchange of the legs) matches the configuration

at the end of the first step (before interchange of the legs). This is a direct consequence of

having no impact at the instant of swing-foot touchdown at the end of the first step. To this

end, the actuated joint trajectories in Eq.(7.47) are modified as follows:

θ2(θ1) = â2θ1 + Â sin(2πθ1/β̂)

θ3(θ1) = â3θ1 + Ĉ sin(2πθ1/β̂)

θ4(θ1) = â4θ1 + π + Ê sin(2πθ1/β̂)

θ5(θ1) = â5θ1 + π + Ĝ sin(2.5πθ1/β̂) (7.50)
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where âj ’s, Â, Ĉ, Ê , Ĝ and β̂ are new parameters to be determined. The parameter β̂

represents the total angle traveled by the new stance leg and is obtained as:

β̂ = 2θ
i(2)
1 = 2θ

f(1)
5 = −2[a5(β/2) + G sin(2.5π/2)] (7.51)

where the superscripts (1) and (2) denote the corresponding variables for the first and second

step, respectively. To ensure that the position and velocity of the torso is the same before

and after the interchange of the legs, we have:

θ
i(2)
3 = θ

f(1)
3 ⇒ â3 = −(β/β̂) a3

θ̇
i(2)
3 = θ̇

f(1)
3 ⇒ Ĉ =

β̂

2π
[â3 −

1

cv
(a3 −

2π

β
C)] (7.52)

where we used the relation θ̇
i(2)
1 = cv θ̇

i(1)
1 from Eq.(7.49) in deriving Ĉ. To ensure that the

positions of the upper links of the stance and swing legs are the same before and after the

interchange, we have:

θ
i(2)
2 = θ

f(1)
4 ⇒ â2 = −(β/β̂) a4

θ
i(2)
4 = θ

f(1)
2 ⇒ â4 = −(β/β̂) a2 (7.53)

To ensure continuity in the position and velocity of the lower link of the swing leg, we impose

the conditions:

θ
i(2)
5 = θ

f(1)
1

θ̇
i(2)
5 = θ̇

f(1)
1 (7.54)
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The above equations can be solved for the parameters â5 and Ĝ. The remaining two param-

eters Â and Ê in Eq.(7.50) can be obtained by solving the no-impact boundary conditions

in Eq.(7.36) for the second step. Note that these choices of Â and Ê will guarantee identical

velocities for the links 2 and 4 before and after the interchange.

Remark 7.5.1. For the two-step periodic gait, the actuated joint trajectories for the first step

in Eq.(7.47) and the second step in Eq.(7.50) will be sequentially repeated.

7.5.3 Five-DOF Point-Foot Biped: Similar Leg Links

Consider the five-dof point-foot biped with similar leg links, presented in section 7.4 with the

same kinematic and dynamic parameters listed in Table 7.2. To design an energy-conserving

gait with two-step periodicity, we remove the conditions in Eq.(7.41) and Eq.(7.42) to make

the initial configuration of the legs asymmetric with respect to the vertical. The procedure

in Section 7.5.2 is followed to determine gait parameters for the first and second steps. A

feasible gait is obtained by using the following parameters for the first step, described by

Eq.(7.47):

β = π/4 a3 = −0.300 C = −0.500

a2 = 1.200, a4 = −1.500 a5 = −1.267

G = −0.321, A = 0.261, E = −0.059

(7.55)
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Figure 7.11: Torque plots for an energy-conserving gait with two-step periodicity for the
Five-DOF Point-Foot Biped with similar leg links.

and the following parameters for the second step, described by Eq.(7.50):

β̂ = 0.172π â3 = 0.435 Ĉ = −0.293

â2 = 2.176, â4 = −1.741 â5 = −2.288

Ĝ = −0.321, Â = 0.276, Ê = −0.073

(7.56)
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Figure 7.12: Generalized torque plot for an energy-conserving gait with two-step periodicity
for the Five-DOF Point-Foot Biped with similar leg links.
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first step second step

Figure 7.13: Configurations of the five-dof point-foot biped with similar leg links at different
instants of time for a two-step periodic gait. The joint configurations at the beginning of
the first step and end of the second step are the same but they are different from the joint
configuration at the end of the first step.

The value of cv in Eq.(7.49) was set to unity. Note that β̂ < β, which implies that the second

step is shorter than the first step. For initial velocities of θ̇
i(1)
1 = θ̇

i(2)
1 = −100 deg/s, the

torques τj , j = 2, 3, 4, 5, are shown for the first and second steps in Figure 7.11. The total

mechanical work done by the actuators over each step can be expressed by Eq.(7.46). The

plot of τθ for both steps is shown in Figure 7.12. The area under this curve for each step is

equal to zero and this confirms that the gait conserves mechanical energy in each step. The

configurations of the biped at different instants of time over two steps, moving from left to

right, is shown in Figure 7.13. It was verified that the swing leg does not scuff the ground.

7.5.4 Five-DOF Point-Foot Biped: Dissimilar Leg Links

Consider the biped in Figure 7.7 and assume the upper link of each leg to have the same

length as the lower link of the other leg, i.e. l1 = l4 and l2 = l5. The kinematic and dynamic

Table 7.3: Kinematic and dynamic parameters of Five-DOF Point-Foot biped with dissimilar
leg links

Kinematic and dynamic parameters

j (1st step) j (2nd step) lj (m) dj (m) mj (kg) Ij (kg.m2)
1, 4 2, 5 0.600 0.300 2.000 0.060
2, 5 1, 4 0.400 0.200 2.000 0.027
3 3 0.600 0.300 4.000 0.120
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Figure 7.14: Torque plots for an energy-conserving gait with two-step periodicity for the
Five-DOF Point-Foot Biped with dissimilar leg links.

parameters of the biped are listed in Table 7.3. Since the leg links are not similar, the

kinematic and dynamic parameters of the links are interchanged for the first and second steps

- see Table 7.3. To generate a two-step periodic gait, we choose an asymmetric configuration

of the legs at the beginning of the first step. Following the procedure in Section 7.5.2, a

feasible gait is obtained by using the following parameters for the first step, described by
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Figure 7.15: Generalized torque plot for an energy-conserving gait with two-step periodicity
for the Five-DOF Point-Foot Biped with dissimilar leg links.
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first step second step

Figure 7.16: Configurations of the five-dof point-foot biped with dissimilar leg links at dif-
ferent instants of time for a two-step periodic gait. The joint configurations at the beginning
of the first step and end of the second step are the same but they are different from the joint
configuration at the end of the first step.

Eq.(7.47):

β = π/4 a3 = −0.300 C = −0.550

a2 = 1.200, a4 = −0.800 a5 = −2.236

G = −0.458, A = 0.364, E = −0.013

(7.57)

and the following parameters for the second step, described by Eq.(7.50):

β̂ = 0.353π â3 = 0.213 Ĉ = −0.671

â2 = 0.567, â4 = −0.850 â5 = −1.292

Ĝ = −0.458, Â = 0.223, Ê = 0.152

(7.58)

The value of cv in Eq.(7.49) was set to unity. Note that β̂ > β, which implies that the second

step is longer than the first step. For an initial velocity of θ̇
i(1)
1 = θ̇

i(2)
1 = −130 deg/s, the

torques τj , j = 2, 3, 4, 5, are shown for the first and second steps in Figure 7.14. The total

mechanical work done by the actuators over one step can be expressed by Eq.(7.46). The

plot of τθ for both steps is shown in Figure 7.15. The area under this curve for each step is

equal to zero and this confirms that the gait conserves mechanical energy in each step. The

configurations of the biped at different instants of time over two steps, moving from left to

right, are shown in Figure 7.16. It was verified that the swing leg does not scuff the ground.
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7.6 Conclusion

We proposed a general method for designing gaits for point-foot passive-ankle planar bipeds

that require zero mechanical energy over each individual step. The proposed method provides

trajectories for all actuated dof of the biped which can be tracked using classical control

techniques. These trajectories ensure that the biped has identical potential energy and

kinetic energy at the beginning and end of each step and there is no loss of energy due to

impact at the time of swing-foot touchdown. To show its effectiveness, the proposed method

has been applied to several three-dof and five-dof bipeds; the designed gaits are one-step

periodic in some cases and two-step periodic in others. The method can be easily applied to

bipeds with greater number of dof’s.

The proposed method provides significant flexibility in choosing joint trajectories for the

actuated dof of the biped. This flexibility can be used to design a wide range of gaits that

have different step lengths, walking speeds, and range of joint torques, for example, and can

therefore be used for optimizing the energy-conserving gaits. For implementation, controllers

will have to be designed to track the desired trajectories accurately. Any deviation from the

desired trajectories will result in a gait that is not energy-conserving but continuous depen-

dence of the mechanical energy on solution trajectories dictates that small deviations in the

trajectories will only require a small amount of mechanical energy. A small deviation in the

desired trajectories can be due to inaccurate tracking or may be introduced purposely to

provide uniformly larger ground clearance while walking on rough terrain, for example. An

energy-conserving gait requires zero mechanical energy but will have zero energy consump-

tion if the negative work done by the actuators can be recaptured and stored. This will

require particular robot capabilities, such as backdriveable actuators and electrical circuits
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capable of energy regeneration and storage.

The boundary conditions presented here provide a simple framework for designing energy-

conserving gaits but since these conditions are sufficient there may exist other gaits that

require zero mechanical energy. Of the three conditions presented, the no-impact boundary

condition is necessary to avoid energy dissipation but the other two conditions relating to

kinetic and potential energies of the links can be relaxed. In particular, it may be possible

to find energy-conserving gaits by requiring the total kinetic energy and potential energy of

the biped to be the same at the beginning and end of each step or even multiple steps.
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Chapter 8

Intermittent Output Tracking For

Linear Non-Minimum-Phase Systems

8.1 Introduction

Underactuated systems with unstable zero dynamics are Non-Minimum-Phase (NMP) sys-

tems. The limitations in output tracking for NMP continuous-time systems motivated us

to look for a controller that ensures output matching with the reference trajectory at reg-

ular intervals of time. The control objective is similar to the output tracking controllers

for discrete-time systems. Although perfect output tracking can be achieved for discrete-

time systems, we propose a continuous-time controller to intermittently match the system

output with the reference trajectory for two reasons: First, in the continuous-time control

design, we do not need to incorporate the dynamics of holders and samplers associated with

discrete-time sampled systems. Second, the discretized systems require strong conditions to

be satisfied to preserve the stability of the sampling zeros [139, 140, 141]. For SISO linear

systems with relative degree greater than two, Astrom et al. [142] showed that at least one

of the the limiting zeros (the sampling zeros for the limiting case of zero sampling period)

is outside the unit circle, irrespective of their location for the original continuous system.

This implies that even for a MP continuous-time system, we might face control limitations

induced by unstable zeros for the discretized system.
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In this chapter, we propose an output tracking controller for linear Single-Input Single-

Output (SISO) NMP systems. A continuous-time controller is designed to take the output

tracking error to zero at regular intervals of time. The controller for the NMP plant is based

on switched inputs, which are derived from the continuous control inputs of a “Discrete

Equivalent” (DE) [143] MP system. The control design ensures zero output tracking error

at regular intervals of time and guarantees the stability of the internal dynamics. A finite

preview of the desired trajectory is required for this method.

8.2 Discrete Equivalent Systems

Consider a linear SISO system represented in the following state-space form:

ẋ(t) = Ax(t) +Bu(t) , x(t0) = x0

y(t) = Cx(t) (8.1)

Let the system input u, shown in Figure 8.1, be defined as:

u(t) =




M if (j−1)δ < t− t0 < (j−1+p)δ

0 if (j−1+p)δ < t− t0 < jδ

j=1, 2, ... (8.2)

The switching parameter δ > 0 represents the period of the switched input and p ∈ (0, 1)

defines the fraction of the time interval when the input has a nonzero constant value M .

Definition 8.2.1. [143] Consider the SISO linear time-invariant (LTI) system with constant

input ū =M :
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Figure 8.1: The periodic switched input for the system in Eq.(8.1) (in solid line) and the
constant input for DE system in Eq.(8.3) (in dashed line)

˙̄x(t) = Āx̄(t) + B̄ū , x̄(t0) = x0

ȳ(t) = C̄x̄(t) (8.3)

This system is a Discrete Equivalent (DE) of the system in Eq.(8.1) with switched input in

Eq.(8.2) if the state variables and the output of two systems match exactly at t = tj , where

tj = t0 + jδ and j = 1, 2, · · · , after starting from the same initial conditions at t = t0.

To obtain the relations between switched-input system and its DE, we first find the state

variables of the two systems at times t = t0+ jδ, j = 1, 2, · · · . For the switched-input system

in Eq.(8.1), we can write:

x(t1) = eA(t1−t0)x0 +
∫ t1

t0

eA(t1−τ)Bu(τ) dτ = eApδx0 + A−1(eApδ − I)BM

x(t2) = eA(t2−t1)x(t1) = eAδx0 + A−1(eAδ − eA(1−p)δ)BM (8.4)
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where I represents the identity matrix. For the DE system in Eq.(8.3), we have:

x̄(t2) = eĀ(t2−t0)x0 +
∫ t2

t0

eĀ(t2−τ)B̄M dτ = eĀδx0 + Ā−1(eĀδ − I)B̄M (8.5)

From Definition 8.2.1:

x(t2) = x̄(t2), y(t2) = ȳ(t2) (8.6)

Using Eqs.(8.4) and (8.5), we get:

Ā =A

B̄ =(eAδ − I)−1(eAδ − eA(1−p)δ)B

C̄ =C (8.7)

We demonstrate the concept of DE systems with the example below.

Example 8.2.1. Consider a linear system with the following transfer function:

G(s) =
(s+ 1)(s− 2)

(s+ 1)(s+ 2)(s+ 3)
(8.8)

It has the following state-space representation:

A =




−1 0 0

1 −5 −2.45

0 2.45 0



, B =




1

0

0



, C = [1 − 6 − 3.27] (8.9)
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If we assume:

M = 2 , δ = 0.8 , p = 0.2 (8.10)

the DE system will have the following state-space representation:

Ā =




−1 0 0

1 −5 −2.45

0 2.45 0



, B̄ =




0.14

0.028

0.015



, C̄ = [1 − 6 − 3.27] (8.11)

The transfer function of the DE system can be shown to be:

Ḡ(s) = C̄(sI − Ā)−1B̄ =
(s+ 1)(s+ 7.137)

(s+ 1)(s+ 2)(s+ 3)
(8.12)
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,ū

time (sec)

a

b

c

d

Figure 8.2: Simulation results for example 8.2.1 showing state variables and inputs for
switched-input system (solid line) and discrete equivalent system (dashed line).
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A simulation of the response of the switched-input system and its DE is shown in Figure 8.2.

It can be seen that all state variables of the two systems match exactly at regular intervals

of time, δ = 0.8 for u = 2.

8.3 Zero Shift for Linear NMP Systems

The poles of the DE system are identical to the poles of the switched-input system since

Ā = A in Eq.(8.7). The location of the zeros of the systems can however be different as

shown in Example 8.2.1. In this example, the original system has a RHP zero at s = 2. This

zero is moved to the LHP at s = −7.137 for the DE system. This indicates that a NMP

system can have a DE system which is MP.

8.3.1 Stable NMP Systems with Distinct Poles - General Case

Consider the stable linear system with distinct poles λi, i = 1, · · · , n:

Y (s)

U(s)
=
b1s

n−1 + b2s
n−2 + · · ·+ bn−1s+ bn

(s− λ1)(s− λ2) · · · (s− λn)

=
c1

s− λ1
+

c2
s− λ2

+ · · ·+ cn
s− λn

(8.13)

where bi’s are the constant coefficients of the zero polynomial and ci’s are constant residues

of partial fraction expansion of the system transfer function. Assume that the system has at

least one zero in RHP, and therefore it is NMP. The transfer function in Eq.(8.13) can be
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represented in Diagonal Canonical form [144] as:

ẋ =Adx+Bdu

y =Cdx (8.14)

where:

Ad =diag

[
λ1 λ2 · · · λn

]
, Bd =

[
1 1 · · · 1

]T

Cd =

[
c1 c2 · · · cn

]
(8.15)

For the corresponding DE system, we have from Eq.(8.7):

Ād =Ad , C̄d = Cd

B̄d =(eAdδ − I)−1(eAdδ − eAd(1−p)δ)Bd =
[
h1 h2 · · · hn

]T
(8.16)

where hi’s are some positive constants obtained using the properties of diagonal matrix Ad:

hi =
eλiδ − eλi(1−p)δ

eλiδ − 1
, i = 1, . . . , n (8.17)

The transfer function of the DE system can be evaluated as:

Ḡ(s) =C̄d(sI − Ād)
−1B̄d =

c1h1
s− λ1

+
c2h2
s− λ2

+ · · ·+ cnhn
s− λn

(8.18)
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The zero polynomial of the DE system (with distinct poles) is obtained as:

Z̄(s) = c1h1(s− λ2)(s− λ3) · · · (s− λn)

+ c2h2(s− λ1)(s− λ3) · · · (s− λn)

+ · · ·

+ cnhn(s− λ1)(s− λ2) · · · (s− λn−1) (8.19)

which can be expanded into the following form:

Z̄(s) = b̄1s
n−1 + b̄2s

n−2 + b̄3s
n−3 + · · ·+ b̄n−1s+ b̄n (8.20)

where

b̄1 =

n∑

i=1

cihi

b̄m =(−1)m−1
n∑

i=1

(
n∑

j1, j2, · · · , jm−1 6= i

j1 < j2 < · · · < jm−1

λj1λj2 · · ·λjm−1
)cihi , m = 2, · · · , n (8.21)

Remark 8.3.1. For the NMP system in Eq.(8.13) and switching parameters δ and p, the DE

system will be MP if the zero polynomial in Eq.(8.20) does not have any root in the closed

RHP. This can be verified by applying Routh’s stability criterion [144] without actually

solving for the zero locations.

Remark 8.3.2. The order of the zero polynomial of the original NMP system and its DE may

be different. This implies that the number of zeros for the DE system may be different from
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that of the original system. The number of zeros for both systems is however less than n.

8.3.2 Stable NMP Systems with Distinct Poles - Special Case

In this section, we investigate a special case of the system in Eq.(8.13) with n = 2 and stable

real modes, i.e.,

Y (s)

U(s)
=

b1s+ b2
(s− λ1)(s− λ2)

=
c1

(s− λ1)
+

c2
(s− λ2)

(8.22)

Using Eqs.(8.20) and (8.21), the zero polynomial for the DE system is obtained as follows:

Z̄ = b̄1s+ b̄2 (8.23)

where

b̄1 = c1h1 + c2h2 , b̄2 = −(c1h1λ2 + c2h2λ1) (8.24)

and h1 and h2 can be obtained from Eq.(8.17)

Lemma 8.3.1. If λ2 < λ1 < 0, then h2 < h1.

Proof. We prove by showing that h(λ) = eλδ−eλ(1−p)δ
eλδ−1

is strictly increasing, i.e., dh
dλ > 0 in

λ ∈ (−∞, 0). To this end, we define a new variable q:

q = eλδ − 1

From λδ < 0, we know that −1 < q < 0. The function h can be rewritten in terms of the
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new variable q as:

h(q) =
q + 1− (q + 1)(1−n)

q

Therefore,

dh

dλ
= (

∂h

∂q
) (
∂q

∂λ
) = (

1 + pq − (q + 1)p

q2(q + 1)p
) (δeλδ)

Since δeλδ > 0 and q2(q + 1)p > 0, the sign of (dh/dλ) is identical to the sign of (1 + pq −

(q+1)p). Since |q| < 1, (q+1)p can be expanded using the binomial series [145]. Therefore,

1+pq−(1+q)p =1 + pq −
∞∑

j=0




p

j


 qj =−(p(p−1)

2
q2 +

p(p−1)(p−2)

3!
q3 + · · · )

which is always positive for 0 < p < 1 and q < 0. This completes the proof.

The following theorem states the sufficient conditions for the DE system of Eq.(8.22) to

be MP.

Theorem 8.3.1. Consider the second-order linear system in Eq.(8.22), which has two neg-

ative real and distinct poles λ1 and λ2 and a RHP zero. Without loss of generality, let

λ1 > λ2. The DE system will be MP if any of the following conditions is satisfied:

(a) c1c2 > 0

(b) c1c2 < 0 and |c1| ≥ |c2|

(c) c1c2 < 0, |c1| ≤ |c2| and c1b̄1 > 0

Proof. Since h1, h2 > 0 and λ1, λ2 < 0, condition (a) implies that b̄1 and b̄2 in Eq.(8.24) will

have the same sign, which implies that the DE system is MP.
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For condition (b), first consider the case that c1 > 0 and c1 ≥ −c2. Since λ1 > λ2, Lemma

8.3.1 implies:

h1 > h2 ⇒ c1h1 > −c2h2 ⇒ b̄1 > 0 ,

c1h1>−c2h2 ⇒ c1h1λ2<−c2h2λ2<−c2h2λ1 ⇒ b̄2>0

If c1 < 0 and c1 ≤ −c2, it can be shown that b̄1, b̄2 < 0. This proves that (b) is a sufficient

condition for the DE system to be MP.

For condition (c), first consider the case that c1 < 0, c2 > −c1 and b̄1 < 0. Since λ1 > λ2,

Lemma 8.3.1 gives:

h1 > h2 ⇒ λ1h2 > λ1h1 > λ2h1 ⇒ λ1h2c2 > λ2h1c2 > −λ1h1c1 ⇒ b̄2 < 0

For the case that c1 > 0, c1 < −c2 and b̄1 > 0, we can show that b̄2 > 0. Therefore,

condition (c) will ensure that the DE system is MP.

8.3.3 Stable NMP Systems with Repeated Poles

For a linear system with repeated poles, the state-space matrices can be written in the

Jordan Canonical Form [144]. Deriving a general expression for the zero polynomial of the

DE system is not as simple as the case of distinct poles. This is because of the complexity

in calculating B̄ in Eq.(8.7) due to non-diagonal matrix A. The DE system can nevertheless

be designed to be MP even when the original system has RHP zeros - this is illustrated with

the help of numerical examples in Table 8.1. Using a numerical search for proper switching

parameters δ and p, it is shown that the DE system can be MP when the original NMP
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Table 8.1: Linear NMP systems with repeated poles and their corresponding MP DE systems

Original Zeros Poles δ p DE zeros
5 [-2,-2,-5,-5] 0.95 0.15 [-33.61,-6.72±1.84i]

[-1,5] [-2,-2,-2] 0.85 0.3 [-5.86,-1]
[3,4] [-4,-4,-5,10] 1 0.1 [-13.49,-9.46±1.45i ]

[-1,3±i] [-3,-3,-5±i] 0.5 0.75 [-0.22,-0.59,-29.39]

system has repeated poles. It should be noted that Table 8.1 includes an example of a

system with relative degree three. For such a system, sampling will necessarily result in a

NMP discrete-time system [142].

Remark 8.3.3. In this section, we only considered stable systems. If the system is unstable,

it can be first stabilized using a state-feedback controller provided that the system is stabi-

lizable. The switching parameters can then be found for the stabilized system. This will be

discussed further in the next section.

8.4 Intermittent Output Tracking Control

It is not possible to design controllers for asymptotic output tracking of arbitrary reference

trajectories for NMP systems. However, it may be possible to find a Discrete Equivalent

Minimum-Phase (DEMP) system for a NMP system through proper choice of switching

parameters δ and p. From Definition 8.2.1, the state variables and the output of the NMP

system will match with those of DEMP system at regular intervals of time. Therefore, if the

output tracking control problem is solved for the DEMP system, the output of the NMP

system will also match with the reference trajectory at regular intervals of time δ. We define

Intermittent Output Tracking next:

Definition 8.4.1. For a linear SISO NMP system, Intermittent Output Tracking (IOT)
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problem refers to the task of finding a control input u(t) such that for any desired reference

trajectory r(t) and any initial condition x0:

a) The system is internally stable, i.e, all state variables are bounded for any bounded

r(t).

b) The output y(t) matches with r(t) at regular intervals of time δ, i.e., y(t0 + jδ) →

r(t0 + jδ) as j → ∞ for j = 1, 2, · · · .

To solve the IOT problem, we first review the tracking control design for MP systems.

8.4.1 Tracking Control for MP Systems

Consider a MP system which is represented by the following transfer function:

Ḡ =
N(s)

D(s)
=
β1s

m + β2s
m−1 + · · ·+ βm−1s+ βm

sn + a1sn−1 + · · ·+ an−1s+ an
(8.25)

where m < n and β1 6= 0. To obtain a state-space representation of the system in the

normal, we follow the procedure outlined in [146]. First, the denominator polynomial D(s)

is written as:

D(s) = Q(s)N(s) +R(s) (8.26)

where

Q(s) =
1

β1
sρ + q1s

ρ−1 + · · ·+ qρ−1s+ qρ (8.27)

is the quotient polynomial of order ρ = (n−m), where ρ is the relative degree of the system,

and R(s) is the remainder polynomial. In normal form, the state-space representation is
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found to be:

˙̄η =A0η̄ +B0Ccζ̄

˙̄ζ =Acζ̄ +Bc(γ
T ζ̄ − β1C0η̄ + β1ū)

ȳ =Ccζ̄ (8.28)

where [η̄, ζ̄]T is the vector of state variables with η̄ ∈ Rn−ρ, and ζ̄ = [ȳ, ˙̄y, · · · , ȳ(ρ−1)]T ∈ Rρ

and

Ac =




0 1 0 · · · 0

0 0 1 · · · 0

...
. . .

...

0 · · · 0 1

0 · · · 0 0




, Bc =




0

0

...

0

1




, Cc =

[
1 0 · · · 0 0

]

γT =− β1

[
qρ qρ−1 · · · q2 q1

]
(8.29)

and (A0, B0, C0) is a minimal realization of transfer function R(s)/N(s). Note that the

eigenvalues of A0 are identical to the zeros of the MP system in Eq.(8.25) and therefore A0

is Hurwitz.

We assume that the reference trajectory r(t) and its derivatives up to r(ρ)(t) are available

on-line, and r(ρ)(t) is piecewise continuous. The tracking error is defined as:

ē = ζ̄ − Rd =

[
ȳ − r ˙̄y − ṙ · · · ȳ(ρ−1) − r(ρ−1)

]T
(8.30)

Using the change of variables ē = ζ̄ − Rd, the state equations in Eq.(8.28) can be rewritten
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as:

˙̄η =A0η̄ +B0Cc(ē+Rd)

˙̄e =Acē+Bc[γ
T (ē+Rd)− β1C0η̄ + β1ū− r(ρ)] (8.31)

The following state-feedback controller,

ū =
1

β1
[−γT (ē +Rd) + β1C0η̄ + r(ρ) − K̄ē] (8.32)

with control gain K̄ chosen to make (Ac − BcK̄) Hurwitz, yields the closed-loop system:

˙̄η =A0η̄ +B0Cc(ē +Rd)

˙̄e =(Ac − BcK̄)ē (8.33)

Since (Ac − BcK̄) is Hurwitz, ē → 0 as t → ∞. The internal stability of the closed-loop

system is also ensured since A0 is Hurwitz.

8.4.2 Intermittent Output Tracking for NMP Systems

Consider the normal form of a MP system in Eq.(8.28) which can be rewritten as:

˙̄x(t) = Āx̄(t) + B̄ū(t) , x̄(t0) = x0

ȳ(t) = C̄x̄(t) (8.34)
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where x̄ = [η̄, ζ̄]T and

Ā =




A0 B0Cc

−β1BcC0 Ac +Bcγ
T


 , B̄ =




0

β1Bc


 , C̄ =

[
0 Cc

]
(8.35)

Now, assume that there are switching parameters δ and p such that (Ā, B̄, C̄) in Eq.(8.35)

represents a DE system for the following NMP system:

ẋ(t) =Ax(t) +Bu(t) , x(t0) = x0

y(t) =Cx(t) (8.36)

where the state-space matrices are obtained using Eq.(8.7) as:

A =Ā , C = C̄

B =(eAδ − eA(1−p)δ)−1(eAδ − I)B̄ (8.37)

From Definition 8.2.1, state variables and outputs of the systems in Eqs.(8.34) and (8.36)

will be discretely identical provided that over each interval δ, ū(t) is constant and u(t) is

switched based on Eq.(8.2). The tracking controller in Eq.(8.32) will however not result in an

input that is constant over every time interval δ. To overcome this problem, we will replace

ū in Eq.(8.32) by its averaged value over every time interval δ. The error due to averaging

is given by the following lemma:
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Lemma 8.4.1. Consider the system in Eq.(8.34) with the input ū replaced by ūa:

˙̄xa(t) = Āx̄a(t) + B̄ūa , x̄a(t0) = x0

ȳa(t) = C̄x̄a(t) (8.38)

where ūa is the average of the Lipschitz control input ū(t) over the time interval [t0, t0 + δ].

Define ēxa(t) = x̄(t)− x̄a(t) and ēya(t) = ȳ(t)− ȳa(t), then:

‖ēxa(t0+δ)‖ ≤ sup
τ∈[t0,t0+δ]

∥∥∥eĀ(t0+δ−τ)B̄
∥∥∥L δ2

|ēya(t0+δ)| ≤ sup
τ∈[t0,t0+δ]

|C̄eĀ(t0+δ−τ)B̄|L δ2 (8.39)

where L is the Lipschitz constant for ū(t) in time interval [t0, t0 + δ].

Proof. For the linear systems in Eqs.(8.34) and (8.38), we can write:

ēxa(t0 + δ) =

∫ t0+δ

t0

eĀ(t0+δ−τ)B̄[ū(τ)− ūa] dτ (8.40)

Form real analysis [147], for a bounded linear operator T (x̂) such as the above integral, we

have:

‖T (x̂)‖ ≤ ‖T‖ ‖x̂‖ (8.41)

where x̂ ∈ Â and

‖T‖ = sup{‖T (x̂)‖ : x̂ ∈ Â, ‖x̂‖ ≤ 1} (8.42)
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Applying Eq.(8.41) to Eq.(8.40), we have:

‖exa(t0 + δ)‖ ≤
∥∥∥∥∥

∫ t0+δ

t0

dτ

∥∥∥∥∥ sup
τ∈[t0,t0+δ]

∥∥∥eĀ(t0+δ−τ)B̄[ū(τ)− ūa]
∥∥∥

≤ sup
τ∈[t0,t0+δ]

{
∥∥∥eĀ(t0+δ−τ)B̄

∥∥∥ ‖ū(τ)− ūa‖} δ

≤ sup
τ∈[t0,t0+δ]

∥∥∥eĀ(t0+δ−τ)B̄
∥∥∥L δ2 (8.43)

where we used ‖ū(τ)− ūa‖ ≤ Lδ for the Lipschitz function ū(t) in Eq.(8.32). The second

inequality in Eq.(8.39) is similarly proved from ēya = C̄ ēxa.

Let eo(t) = y(t)− r(t) and ēo(t) = ȳ(t)− r(t) be output tracking errors for the NMP and

MP systems in Eqs.(8.36) and (8.34), respectively. The following theorem states a relation

between these errors:

Theorem 8.4.1. Consider the NMP system in Eq.(8.36) and MP system in Eq.(8.34) for

t ∈ [t0, t0+ δ] with the same initial conditions x(t0) = x̄(t0) = x0. Assume that both systems

are stable. For any desired reference trajectory r(t):

(a) State variables x(t) are bounded for any bounded r(t)

(b) eo(t0 + δ) = ēo(t0 + δ) + ēya(t0 + δ)

if the system input is chosen as

u(t) =




ūa if t0 ≤ t ≤ t0 + pδ

0 if t0 + pδ < t < t0 + δ

(8.44)

where

ūa =
1

δ

∫ t0+δ

t0

ū(t) dt (8.45)
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and ū(t) defined in Eq.(8.32) is the tracking control input designed for the MP system over

the time interval [t0, t0 + δ].

Proof. Eq.(8.38) is a DEMP system of the NMP system in Eq.(8.36) with the control input

in Eq.(8.44). Therefore, their state variables will match at t = t0 + δ. Furthermore, the

states of the NMP system will be bounded during the entire interval since linear systems

do not have finite escape time. From Lemma 8.4.1, the difference between state variables of

DEMP system in Eq.(8.38) and MP system in Eq.(8.34) at t = t0 + δ is a bounded value.

Since the tracking control ū(t) ensures the internal stability for the MP system in Eq.(8.34),

we conclude that all state variables of the NMP system will be bounded for any bounded

r(t). This completes the proof of part (a). The proof of part (b) is very similar and is not

provided here.

Corollary 8.4.1. For any time domain [ti, tf ], the results in Theorem 8.4.1 is valid for

each time interval [ti + (j − 1)δ, ti + jδ] where j = 1, 2, · · · , if the initial time t0 and initial

conditions x0 in Theorem 8.4.1 are redefined as below for each interval:

t0 = ti + (j − 1)δ

x0 = x(ti + (j − 1)δ) (8.46)

This implies that the tracking control input ū(t) for the MP system is designed with new

initial conditions x̄(t0) = x0 for each time interval.

Remark 8.4.1. The conditions for the IOT problem in Definition 8.4.1 can be satisfied for the

NMP system in Eq.(8.36) using the results in Theorem 8.4.1 and Corollary 8.4.1 provided

that:
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(a) ēya(t0+ δ) ≈ 0, which is achieved by choosing a sufficiently small switching interval δ.

(b) ēo(t0 + δ) → 0 as t → δ, which is achieved by choosing a sufficiently large gain K̄ in

Eq.(8.32).

8.4.3 Main Result

We can summarize the proposed controller for intermittent output tracking in the following

theorem:

Theorem 8.4.2. Consider the linear SISO NMP system in Eq.(8.36). Assume that it is

stable, without loss of generality. Let δ and p be the switching parameters, as shown in

Figure 8.1, such that Eq.(8.34) is a DEMP system for Eq.(8.36). For sufficiently small δ

and sufficiently large control gain, intermittent output tracking in the interval [ti,∞], as

defined in Definition 8.4.1, is achieved if the control input is chosen as:

u(t) =




ūaj if (j − 1)δ ≤ t− ti ≤ (j − 1 + p)δ

0 if (j − 1 + p)δ < t− ti < jδ

(8.47)

for j = 1, 2, · · · where

ūaj =
1

δ

∫ ti+jδ

ti+(j−1)δ
ūj(t) dt (8.48)

and ūj(t) in Eq.(8.32) is the tracking control input designed for the MP system for each time

interval [ti + (j − 1)δ, ti + jδ] with initial conditions given in Eq.(8.46).

Proof. The proof is followed from earlier discussions in sections 8.4.1 and 8.4.2.

Remark 8.4.2. If the NMP system is not stable, a state-feedback controller can be used first

to stabilize the system provided (A,B) are stabilizable. Then, the discussion to design the
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IOT controller holds for the stabilized system. In this case, the control input in Eq.(8.44) is

changed to:

u(t) = −Kx(t) +




ūa if t0 ≤ t ≤ t0 + pδ

0 if t0 + pδ < t < t0 + δ

(8.49)

where K is the state-feedback gain chosen such that A−BK is Hurwitz. It should be noted

that the switching parameters δ and p are found for the stabilized system (A− BK,B,C).

For the case that the NMP system is stable and (A,B) is controllable, the state-feedback

control in Eq.(8.49) can be used to move the poles of the system. A relocation of the poles

can be helpful in finding appropriate switching parameters for the NMP system.

Remark 8.4.3. The first necessary step in solving the IOT problem for a NMP system is

to find a DEMP system. This can be done following the discussion in Section 8.3 through

proper choice of parameters δ and p. Although there is no guarantee that a DEMP system

exists for the general case, a numerical search for a range of δ values can be carried out. If

there are multiple choices for the pair (δ, p) for DEMP systems, a trade off between IOT

error, eo(t0 + δ), and the input switching frequency can be used to choose the appropriate

DEMP system. A smaller value of δ implies less IOT error but higher switching frequency.

8.5 Numerical Simulations

In this section, we present two numerical simulations for solving the IOT problem for NMP

systems. The system parameters and reference trajectories are chosen in a way that standard

continuous-time output regulation methods are inapplicable. We summarize the steps to

design the IOT controller as follows:

1. If the NMP system is unstable and stabilizable, design a state-feedback controller to
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stabilize the system.

2. Find switching parameters δ and p such that all RHP zeros of the stable NMP system

are moved to open LHP. This can be done following the discussion in Section 8.3.

3. For the resulting MP system in step 2, design the tracking control in Eq.(8.32) for each

time interval [ti + (j − 1)δ, ti + jδ] where j = 1, 2, · · · , with initial conditions given in

Eq.(8.46).

4. Apply the control input in Eq.(8.44) for each time interval. In the case of unstable

NMP system, the control input is given by Eq.(8.49).

For the first simulation, consider the following stable NMP system:

G(s) = 10
s(s− 1)

(s+ 1)2(s+ 10)
(8.50)

and let the reference trajectory be defined by:

r(t) =





exp(t)− 1 , t ≤ 3

exp(3)− 1 , t > 3

(8.51)

This reference trajectory can be generated by the following exosystem:

ẇ = Sw , S =



1 0

0 0


 (8.52)

Since the unstable eigenvalue of the exosystem is identical to the RHP zero of the system,

this tracking problem can not be solved by output regulation techniques [108]. The choice
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Figure 8.3: Simulation results for the first case showing the system output (solid line) and
reference trajectory (dashed line) in the first plot, internal states in the second plot and
control input (Solid line) and tracking control for MP system (dashed line) in the third plot

of switching parameters δ = 0.75 and p = 0.75 yields the following DEMP system:

Ḡ(s) = −0.17
(s+ 110.22)(s+ 0.28)

(s + 1)2(s+ 10)
(8.53)

Figure 8.3 shows the simulation results for the system in Eq.(8.50). The system output

(solid line) and the reference trajectory (dashed line) are presented in the first plot in Figure

8.3. The second plot shows the system internal states, η1(t) and η2(t), which represent the

internal dynamics of the system in the normal form. The third plot shows the control input

for NMP system (solid line) and the tracking control for MP system which are related by

Eq.(8.45) for each time interval δ. These time intervals are illustrated by vertical dashed

lines in Figure 8.3. Simulation results ensure that the system output meets the reference

trajectory with a sufficiently small error while the internal states of the NMP are bounded.
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For the second simulation, consider the following unstable NMP system:

G(s) =
(s2 + 1)(s− 15)

(s− 1)(s− 2)(s2 + 2s+ 5)
(8.54)

with complex zeros and poles. The reference trajectory is defined by:

r(t) = 5 arctan(t) (8.55)

This trajectory can not be generated by an exosystem so the output regulation methods

can not be applied to this example. Since the NMP system is controllable, a state-feedback

control is first designed to stabilize the system by moving the unstable poles s = 1 and s = 2

to s = −1 and s = −2, respectively. Through a numerical search, the switching parameters

are chosen as δ = 0.5 and p = 0.7 for the stabilized system and result in the following DEMP

system:

Ḡ(s) = −0.45
(s+ 25.02)(s2 + 0.08s+ 1)

(s+ 1)(s+ 2)(s2 + 2s+ 5)
(8.56)

The simulation results are shown in Figure 8.4. It includes the system output (solid line)

and reference trajectory (dashed line) in the first plot, the internal states in the normal

form of the system in the second plot and the control input in the third plot. The control

input is comprised of a continuous state-feedback control input and a switched control input

using (8.49). As can be seen from the figure, the system output is approximately matched

with the reference trajectory at regular intervals of time δ shown by vertical dashed lines.

Furthermore, the internal states remain bounded for the NMP system.

Remark 8.5.1. The deviation of the system output from the desired trajectory during the
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Figure 8.4: Simulation results for the second case showing the system output (solid line)
and reference trajectory (dashed line) in the first plot, internal states in the second plot and
control input (Solid line) and tracking control for MP system (dashed line) in the third plot

time interval t ∈ (t0, t0 + δ) depends on the system parameters as well as the switching

parameters δ and p. In the case that there exist multiple choices for switching parameters,

another criterion can be developed to minimize this deviation. This can be investigated more

as a future work.

8.6 Conclusion

A continuous-time control method for intermittent output tracking in linear SISO NMP

systems was proposed. The concept of discrete equivalent system have been used to move

the unstable zeros to the LHP. The switched control input is obtained from a tracking control

input for the discrete equivalent minimum-phase system. The proposed method ensures that

the system output matches with the reference trajectory at regular intervals of time while

181



keeping the internal dynamics stable. Although the controller does not guarantee exact

output matching with the reference trajectory, the matching error can be made sufficiently

small by adjusting the control gains and switching parameters of the input. The reference

trajectories to be tracked are not constrained to any specific set, however, a finite preview

of the trajectory is required. The switched inputs used in the control can be estimated by

impulsive inputs as their magnitudes get larger and their time supports get smaller.
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Chapter 9

Conclusion and Future Work

In this research, we investigated different aspects of impulsive control in underactuated

mechanical systems. As the first step, we ensured that impulsive inputs are indeed im-

plementable in mechanical systems using standard hardware. This was proven through an

experimental verification of a swing-up algorithm for the Pendubot. Having addressed the

implementability concern, we used the properties of impulsive inputs to develop several al-

gorithms for underactuated mechanical systems with different control objectives. Impulsive

inputs are capable of causing instantaneous jumps in the energy of a mechanical system. This

can be used to develop new energy-based control algorithms or improve current algorithms in

the literature. To illustrate this, we considered the swing-up control of the Acrobot, which

is a benchmark problem in underactuated mechanical systems and compared our results

with those in the literature. To show another aspect of impulsive inputs, we looked at the

stabilization problem for underactuated systems. Impulsive inputs can also be useful in this

category of controllers as they can result in instantaneous jumps in the Lyapunov function

corresponding to a stabilizing controller. We used this property to develop a stabilization

algorithm which results in enlarging the region of attraction of equilibria for underactu-

ated systems. Several examples with linear and nonlinear controllers were studied and it

was shown that adding impulsive inputs at some specific instants of time to the continuous

control inputs can enlarge the region of attraction for a desired equilibrium. As another

property of impulsive inputs, they can affect the dynamics of a system significantly and in a
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very short period of time. This is beneficial especially when there is not much time available

for continuous inputs to control the system behavior. We show this advantage with a control

problem of changing the fall direction for humanoid robots in order to avoid damaging the

surrounding objects. A six-dof robot was considered and two sets of impulsive inputs were

applied to change the direction of the fall to a desired angle. Impulsive inputs were also

shown to be useful in rejecting external disturbances with the help of balance maintenance

control for the Synthetic-Wheel biped. The last two pieces of work are not using impulsive

inputs but still related to the concept of impulsive control for underactuated systems. The

first one dealt with designing zero-energy walking gaits for underactuated bipeds by avoiding

undesirable impacts from the ground at the leg interchange. The second work proposed an

intermittent output tracking control for non-minimum-phase systems. The switched inputs

can be approximated by impulsive inputs in the limit.

We suggest the following to continue this field of research further in the future. Although

the experiments on the Pendubot showed satisfactory results, a new amplifier circuit may

be designed to get closer to the ideal impulses in experiments. The new circuit will have

a large capacitor which enables the amplifier to provide enough current for the motor at

the impulsive times. The experimental verification of all the algorithms developed in this

dissertation would add a lot to prove that impulsive control is a reliable method for under-

actuated mechanical systems. For the work presented in Chapter 4, more analysis is needed

to predict if the impulsive algorithm is capable of stabilizing the desired equilibrium from

the given configuration. The safe fall algorithm in Chapter 5 is a preliminary work to prove

the concept of using impulsive inputs for such platforms. A more realistic configuration of a

humanoid with higher dof’s and two legs should be studied. There is some flexibility in the

algorithm which may be used to optimize the safe fall algorithm for a specific humanoid. For
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example, the impulsive times which are based on specific configurations of the robot may

be changed to get better results. Energy-conserving gaits which are presented in Chapter 7

are not practical yet and the limitations of the generating such gaits in actual bipeds need

to be considered. For example, generated gaits for five-dof bipeds require the knee bent

backward or the swing-leg touches the floor in the middle of its swing phase which are not

practical assumptions. In addition, finding proper electrical circuits which are capable of

regenerating and storing energy from negative work during each step is essential. For the al-

gorithm in Chapter 8, future work may focus on extending the current results to multi-input

multi-output linear systems. Also, the effect of switching parameters on output deviations

from desired trajectory can be investigated to find the best control performance in between

intermittent tracking times.
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Appendix A

Procedure for Verifying the Condition

in Theorem 3.4.1

Assume that the gains kp, kd, and ke, and the initial condition x0 are chosen based on the

conditions stated in [3], [22]. This guarantees asymptotic convergence of the acrobot to

its upright configuration using the continuous controller designed in those works. We now

outline the procedure to check the condition in Eq.(3.64) in Theorem 3.4.1:

1. Find all points x̄ = (θ̄1, θ̄2, 0, 0) in the set Ω defined in Eq.(3.44) using the relations in

[3]. To this end, we first solve the following equation to find θ̄2:

kp

g2q4q5
θ̄2 =

sin(θ̄2)

g
√
q24+q

2
5+2q4q5 cos(θ̄2)

[g
√
q24+q

2
5+2q4q5 cos(θ̄2)+0.5Edes] (A.1)

Then find θ̄1 from the following equation:

kpθ2 + (E − Edes)τh = 0 (A.2)

2. Find the points (θ̄1, θ̄2, θ̇
−
1 , θ̇

−
2 ) in the set S2(x) defined in Eq.(3.63). Using Eq.(3.18)

with θ̇+1 = θ̇+2 = 0, we have:

θ̇−1 = − q2 + q3C2

q1 + q2 + 2q3C2
θ̇−2 (A.3)
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and from the definition of S2(x) we know:

θ̈2 = a(θ, θ̇−) + b(θ2)τc = 0 (A.4)

Using the expression for τ2c in Eqs.(3.38) or (3.69), as appropriate, Eqs.(A.3) and (A.4)

can be solved to find the values of θ̇−1 and θ̇−2 .

3. For the points in S2(x) which satisfy V (x) ≤ V (x0), check the condition in Eq.(3.64)

by computing θ̇2θ
(3)
2 . θ

(3)
2 is computed by taking the derivative of θ̈2 given in Eq.(3.8).
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Appendix B

Equations of Motion:

Synthetic-Wheel Biped

The symmetric matrix M , matrix N , and vector G in Eq.(7.1) have the following entries:

M(1, 1) = It + Ist + Isw +mt

[
d2t+l

2
t +R

2+2R(dt−lt) cos(θ + φ)−2dtlt

]

+mst

[
d2st + 2R(R + (dst − R) cos(θ)− dst)

]

+msw

[
d2sw+2R(R+(dsw−R) cos(θ+ψ)−dsw)

]

M(1, 2) = It +mt(dt − lt)(dt − lt +R cos(θ + φ))

M(1, 3) = Isw +msw(dsw − R)(dsw − R +R cos(θ + ψ))

M(2, 2) = It +mt(dt − lt)
2

M(2, 3) = 0

M(3, 3) = Isw +msw(dsw − R)2

N(1, 1) = mtR(lt − dt) sin(θ + φ)(θ̇ + φ̇) +mstR(R − dst) sin(θ)θ̇

+mswR(R− dsw) sin(θ + ψ)(θ̇ + ψ̇)

N(1, 2) = mtR(lt − dt) sin(θ + φ)(θ̇ + φ̇)

N(1, 3) = mswR(R− dsw) sin(θ + ψ)(θ̇ + ψ̇)
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N(2, 1) = N(2, 2) = N(2, 3) = 0

N(3, 1) = N(3, 2) = N(3, 3) = 0

G(1) = [mt(lt − dt) sin(θ + φ) +mst(R− dst) sin(θ) +msw(R− dsw) sin(θ + ψ)] g

G(2) = mt(lt − dt) sin(θ + φ) g

G(3) = msw(R− dsw) sin(θ + ψ) g

where mt, mst and msw are the masses of the torso, stance leg and swing leg; It, Ist and Isw

are the mass moments of inertia of the torso, stance leg and swing leg about their respective

center of mass; R is the radius of curvature of the feet; lt is the length of the torso; dt, dst

and dsw are the distances shown in Figure 7.2, and g is the acceleration due to gravity.
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Appendix C

Equations of Motion: Five-DOF

Biped

The symmetric matrix M , matrix N , and vector G in Eq.(7.1) have the following entries:

M(1, 1) = I1 + d21m1 + l21(m2 +m3 +m4 +m5)

M(1, 2) = l1[d2m2 + l2(m3 +m4 +m5)] cos(θ1 − θ2)

M(1, 3) = d3l1m3 cos(θ1 − θ3)

M(1, 4) = l1(d4m4 + l4m5) cos(θ1 − θ4)

M(1, 5) = d5l1m5 cos (θ1 − θ5)

M(2, 2) = I2 + d22m2 + l22(m3 +m4 +m5)

M(2, 3) = d3l2m3 cos(θ2 − θ3)

M(2, 4) = l2(d4m4 + l4m5) cos(θ2 − θ4)

M(2, 5) = d5l2m5 cos(θ2 − θ5)

M(3, 3) = I3d
2
3m3

M(3, 4) = M(3, 5) = 0

M(4, 4) = I4 + d24m4l
2
4m5

M(4, 5) = d5l4m5 cos(θ4 − θ5)
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M(5, 5) = I5 + d25m5

N(1, 1) = N(2, 2) = N(3.3) = N(4, 4) = N(5, 5) = 0

N(1, 2) = l1[d2m2 + l2(m3 +m4 +m5)] sin(θ1 − θ2)θ̇2

N(1, 3) = d3l1m3 sin(θ1 − θ3)θ̇3

N(1, 4) = l1(d4m4 + l4m5) sin(θ1 − θ4)θ̇4

N(1, 5) = d5l1m5 sin(θ1 − θ5)θ̇5

N(2, 1) = − l1[d2m2+l2(m3+m4+m5)] sin(θ1−θ2)θ̇1

N(2, 3) = d3l2m3 sin(θ2 − θ3)θ̇3

N(2, 4) = l2(d4m4 + l4m5) sin(θ2 − θ4)θ̇4

N(2, 5) = d5l1m5 sin(θ1 − θ5)θ̇5

N(3, 1) = − d3l1m3 sin(θ1 − θ3)θ̇1

N(3, 2) = − d3l2m3 sin(θ2 − θ3)θ̇2

N(3, 4) = N(3, 5) = N(4, 3) = N(5, 3) = 0

N(4, 1) = − l1(d4m4 + l4m5) sin(θ1 − θ4)θ̇1

N(4, 2) = − l2(d4m4 + l4m5) sin(θ2 − θ4)θ̇2

N(4, 5) = d5l4m5 sin(θ4 − θ5)θ̇5

N(5, 1) = − d5l1m5 sin(θ1 − θ5)θ̇1

N(5, 2) = − d5l2m5 sin(θ2 − θ5)θ̇2

N(5, 4) = − d5l4m5 sin (θ4 − θ5)θ̇4

G(1) = − g[d1m1 + l1(m2 +m3 +m4 +m5)] sin θ1

G(2) = − g[d2m2 + l2(m3 +m4 +m5)] sin θ2

192



G(3) = − gd3m3 sin θ3

G(4) = − g(d4m4 + l4m5) sin θ4

G(5) = − gd5m5 sin θ5

where mi, Ii, and li, i = 1, · · · , 5, are the mass, mass moment of inertia, and length of the

i-th link; di is the distance of the center of the mass of the i-th link from the i-th joint; and

g is the acceleration due to gravity.
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