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ABSTRACT 

IMPACT OF AND CORRECTION FOR ITEM RESPONSE THEORY (IRT) SCORE 

ESTIMATION ERROR ON A MULTILEVEL VALUE-ADDED MODEL 

By 

Changhui Zhang 

In common educational research settings, a latent achievement construct for the student is 

measured at both the beginning and the end of a learning program so that the added value of the 

instructional program can be quantified. Explanatory variables at both student level and school 

level are used to help explain the change in levels of performance on the construct. Test scores, 

which serve as a proxy for students’ true achievement, contain estimation error. Some of the 

explanatory variables may also be latent variables and they are subject to error as well. 

Traditionally, the item response theory (IRT) estimates of the latent variables are obtained before 

they are entered into linear regression models. The problem with this two-step approach is that 

the relationship between dependent and independent variables could be distorted due to error in 

IRT score estimates. To address this problem, this dissertation proposes a combined IRT and 

multilevel model which estimates achievement and the added value simultaneously. A Bayesian 

MCMC (Monte Carlo Markov Chain) method is used to fit the combined model. The 

performance of the combined model and the one-step Bayesian approach are compared with the 

traditional two-step approach on simulated data. The simulations are carried out on a simple 

linear model and a multilevel model as well. The results indicate that this one-step approach 

recovers the true relationships among latent variables with less bias and more accuracy. 

Following the simulation, the study applied the new approach to an empirical dataset obtained 



 

 

from the Mathematical Education for Elementary Teachers (ME.ET) project. Special attention is 

given to the missing data issue in the application. The final chapter of the dissertation discusses 

the sources of IRT score error and their implications.  
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CHAPTER 1 INTRODUCTION 

Background 

One important goal of educational research is to gauge the effectiveness of teaching 

programs. To achieve this, researchers measure students’ achievement as a latent construct 

before and after a learning program to quantify its quality. Often the pretest and posttest consist 

of items with discrete scores that can be described with item response theory (IRT) models. Gain 

score, defined as the difference between student initial achievement and posterior achievement, 

is an indicator of added value from the educational program. 

In addition to the magnitude of the added value a teaching program can bring, researchers 

are often interested in the factors that cause it. During the intricate process of learning, numerous 

factors at both student level and school level could have contributed to the student’s achievement. 

At the student level, commonly used explanatory variables include gender, social-economical 

status (SES), attitudes and beliefs etc. At the school level the variables include the textbook or 

materials used (as a proxy for content) and teaching methods. Some of these variables, such as 

gender and textbook, can be observed and recorded accurately.  But other variables such as the 

student’s attitude and the teacher’s teaching methodology are latent variables that have to be 

measured indirectly by questionnaires and estimated within an IRT framework.   

Once the values of these latent variables are obtained, they are entered into linear models 

so that the relationship between variables can be explored. This two-step approach, estimating 

latent variables first and fitting the linear models afterward, is straightforward but with a 

potential problem. The problem lies in the error contained in IRT scores that may lead to biased 

estimation of regression coefficients. Measurement error, especially homogeneous measurement 
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error, is a known issue in regression models, but the consequences of tolerating the error in IRT 

scores are yet to be fully investigated. 

This measurement error issue may become even more complicated when the multilevel 

linear regression models (or hierarchical linear models, HLM) are involved. Since the 1990s, 

researchers have paid close attention to the data structure of students nested in schools. In order 

to better estimate the influence of student and school factors, researchers have developed  the 

multilevel models to account for the correlation within schools (2002). In HLM, the regression 

coefficients are often called effects of those covariates. They are further divided into fixed effects 

and random effects depending on whether they vary in the model. Both HLM and IRT models 

are commonly used in educational research, but it is not clear what the impact of the IRT score 

error is on the estimation of regression coefficients in multilevel models.  

Literature review 

Homogeneous measurement error is a known problem 

In the field of statistics, measurement error has long been a popular topic. Researchers 

have realized that the regression coefficient tends to be underestimated due to measurement error 

and have developed various remedies to correct such attenuation. Since Cochran (1968; 1970) 

called attention to the measurement error impact on statistical models, a rich and elegant 

literature on measurement error has been developed, and it was well summarized in the books by 

Fuller (1987) and Buonaccorsi et al (2010).  

In educational research, minimizing measurement error impact is as important a task as in 

any other fields. Sutcliffe (1958) elaborated on the implications of measurement error on tests of 

significance and demonstrated how measurement error decreases the power of the F test for 
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differences among means. Lord and Novick (1968) proposed a test theory that describes the 

effects of measurement error on scores. Dunivant (1981) discussed the problems caused by 

measurement error in linear models for assessing change and expressed the bias in ordinary least 

squares estimators as a function of covariance among true scores, among the measurement errors, 

and sample size. Rogers et al. (1988) explored the complex nature of the relationship between 

power and covariance, which often increases power, and measurement error, which reduces 

power.  

To address the impact of measurement error, researchers have developed various 

remedies to correct such attenuation. Stroud (1973) demonstrated a correction method for 

problems of measurement error in independent variables when measurement error variances are 

known. Daniel (1996) advocated likelihood analysis for regression models with measurement 

errors in explanatory variables and presented an EM algorithm as a straightforward approach for 

likelihood analysis of normal linear regression with normal explanatory variables, and normal 

replicate measurements. Bartlett et al. (2009) compared two correction for measurement error 

methods: regression calibration (RC) and maximum likelihood (ML) and found ML is better than 

RC in dealing with covariate measurement error. Zimmerman (2007) pointed out the important 

conceptual difference between population and sample with regard to correlation and investigated 

different research settings under which the correction for attenuation can be useful in data 

analysis and those under which it is inaccurate. His simulation experiments proved the 

advantages and general superiority of estimators proposed by Fuller (1987).  

However, some of the correction methods have practical problems. Findings of Schmidt 

et al. (1996) revealed the importance of eliminating bias caused by measurement error since 

research in psychology is becoming more sophisticated and more oriented toward the 
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development and testing of theory. Their paper illustrated appropriate and inappropriate 

instances of correction for measurement error in commonly seen research situations.  Fan (2003) 

highlighted the importance of reporting measurement reliability information in substantive 

research and suggested that correction for attenuation should be considered when information 

about score reliability is available. However, the coefficient alpha is a not a perfect measure of 

reliability. Osburn (2000) found alpha, when used in corrections for attenuation, can result in 

nontrivial overestimation of the corrected correlation. Woodhouse et al. (1996) found that in 

multilevel models, level 1 residual variance decreases when correction for measurement error in 

an independent variable at level 1. This effort increases the interschool correlation, which is 

further increased when correction for measurement error is made in the dependent variable. 

While measurement error research has been expanded into nonlinear models (Carroll, 2006),  the 

error correction effort becomes more challenging. 

It should be noticed that the majority of research adopts the homogeneous assumption of 

error due to its better compatibility with the Classical Test Theory (CTT) framework and easier 

computation in practice. When IRT became popular in educational and psychological research, 

not much special attention was given to its special heterogeneous error structure. 

IRT score error is more complicated  

In contrast with the rich literature of homogeneous measurement error, heterogeneous 

estimation error in IRT scores has had much less attention. The main difficulty is the 

heterogeneous nature of IRT estimation error that is quite different from the assumption of 

constant error variance in CTT framework. In CTT framework, the error structure of an observed 

score can be described as  
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           (1.1) 

where c is a constant denoting the variance of the observed score,  , given a known true score,  . 

Larger c means less precision with the measurement instrument.   

In IRT, however, the variance of estimated score    given the true   is not a constant, but 

a function of   .  The function used to describe the precision of estimated IRT score is called test 

information function I( ): 

              
  

  

    

 

   

          

where       is the probability of student with proficiency   to answer item k (k = 1, … , K) 

correctly and              . Lord (1980) pointed out that the asymptotic variance of the 

maximum likelihood estimator of proficiency is the reciprocal of the information function: 

          
 

       
 

 

 
  

  

    

 
   

   
      

The information function is the upper bound to the information that can be obtained from 

the test (Lord, 1980). That is to say, any estimated IRT score cannot have a smaller error than the 

standard error of measurement (SEM) given by 
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That limit represents the precision of the measurement instrument and the ambiguousness of the 

estimated IRT scores. 

Purposes of this study 

The research literature contains a lot of information on IRT modeling methods. However, 

the nature and characteristics of IRT score estimation error and its impact on structural 

explanations has not been thoroughly discussed. It is not clear whether an HLM and IRT 

combination can correct for estimation error. Many studies have demonstrated how their 

estimation approaches work, but few discussed the consistency and efficiency of the estimators 

in these one-step estimation methods. This dissertation study intends to answer these questions.  

This dissertation aims to investigate the consequences of ignoring IRT score errors in a 

simple linear model as well as in a multilevel linear model, and to evaluate a potential solution: a 

combined HLM and IRT model solved by a Bayesian MCMC approach. To be specific, the 

research questions of this study include: 

1) To what extent could the IRT score estimation error lead to biased estimation of the 

regression coefficients in simple linear models and multilevel models? 

2) To what extent could the Bayesian MCMC approach, which estimates latent variables 

and regression coefficients simultaneously, correct for the impact of IRT score estimation error? 

The impact of IRT score error 

The error of an estimator is the difference between the estimated value and the true value 

of the same parameter. If the expected value of an error is zero, the estimator is called unbiased. 
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The bias of an estimator is the difference between the expected value and the true value of the 

parameter being estimated. There is not a known method to calculate the bias of linear regression 

coefficient estimator when IRT scores are used as dependent or independent variables. So this 

study will use simulation to illustrate the magnitude of IRT score error impact, or whether there 

is any impact on the regression models. 

Multiple replications (N = 100 for each condition) will be run to control for the influence 

of sampling fluctuation. The mean of the N estimates in the replications will be used as an 

approximation of the expected value of the estimator. The bias value (      ) and empirical 

sampling standard deviation (    ) across N replications are computed as  

       
 

 
                   

 

   

 

      

 

     
            

 
 

   

              

where β denotes the generating values of linear regression coefficients,     denotes the estimator 

of β in replication d (d = 1, … ,N), and      denotes the mean estimates across N (N = 100) 

replications. 
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It is known that the OLS estimator is unbiased when no measurement error is in the 

dependent and independent variables. So the observed bias of β estimation, if there is any, will 

be attributed to the IRT score error. 

Homogeneous measurement error literature suggests that the impact of error depends on 

whether the variable is a dependent variable or an independent variable. There is no bias in 

estimating β if the dependent variable contains homogeneous measurement error. The regression 

coefficient β will be underestimated if the independent variable contains homogeneous 

measurement error. To fully understand the impact of error in IRT scores, this study will explore 

three different scenarios: 1) error in dependent variables, i.e., the dependent variable is a latent 

variable and it uses estimated IRT scores in the regression model; 2) error in independent 

variables, i.e., the independent variable is a latent variable and it uses estimated IRT scores in the 

regression model; 3) error in both dependent and independent variables, i.e. estimated IRT scores 

of both independent and dependent variables will be used in regression models; and 4) they  will 

be compared with a reference scenario in which no variable has error in it. 

IRT scores can be estimated in different ways. This study also compare the adoption of 

both Maximum Likelihood (ML) estimator and Bayesian Model (BM) estimator to determine if 

different IRT scores have different influences on regression coefficient estimation.  

Evaluation of one-step Bayesian approach 

The second purpose is to evaluate a combination model of IRT, HLM and Value Added 

Models (VAM). There has been efforts (Kolen, Zeng, & Hanson, 1996; Lee, Brennan, & Kolen, 

2000) to study scale score measurement using IRT. However research that directly addresses IRT 

estimation error is less known until the combination of multilevel models, IRT models and 
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Bayesian approach. Adams et al. (1997) proposed model where an IRT model and single level 

linear model are combined. An explanatory item response modeling (EIRM) approach elaborated 

by de Boeck and Wilson (2004) is presented within the statistical framework of generalized 

linear mixed models. This approach provides a powerful framework for both a psychometric and 

statistical analysis of value-added models. Briggs (2008) found that the EIRM approach results 

in estimated racial/ethnic achievement gaps that are larger than those found in the two-step 

approach. Later research (Boyd, Grossman, Lankford, Loeb, & Wyckoff, 2008; Hsieh, von Eye, 

& Maier, 2010; Kamata, 2001; Maier, 2001, 2002) merged an IRT model with a multilevel linear 

models. The connection between hierarchical modeling and the structural measurement models 

has been discussed and the combination model of IRT and HLM have been investigated (Fox, 

2003, 2005; Fox & Glas, 2001). In Hsieh (2010), an item response theory (IRT) model was 

incorporated into a latent variable model (LVM) by using a commonly used link function and 

Bayesian estimation. The generalized linear latent and mixed models (GLLAMM), combining 

features of generalized linear mixed models (GLMM) and structural equation models (SEM), 

was introduced by Rabe-Hesketh (2004). The idea was further explored in Rabe-Hesketh and 

Skrondal’s later paper  (Rabe-Hesketh & Skrondal, 2007).   

The model in this study is an expansion of the IRT and HLM models (HMM) and a 

multilevel value-added model. This model tries to account for all the elements in one model. It 

has latent variables as a dependent variable and an independent variable as well. For 

measurement IRT models, not only the two-parameter logistic (2PL) model but also the graded 

response model (Samejima, 1969; 1997) are included. The response matrix instead of the IRT 

scores will be analyzed. This is contrasted with the typical two-step approach, in which 

psychometric analysis (i.e., measurement) and statistical analysis (i.e., explanation) occur 
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separately. This study also includes a special but frequently encountered case of a value-added 

model, in which only two test occasions (pretest and posttest) are presented. The complicity of 

the combination models cannot be estimated easily and a powerful tool, Bayesian MCMC 

approach, will be used to solve it. 

It is expected that such a combination model and Bayesian MCMC solution will work. 

However it is not known how well the combination will work. This study intends to evaluate the 

performance of the proposed combination model with Bayesian approach, compared with the 

traditional two-step approach. For every scenario and condition listed above, the one-step 

Bayesian approach and two-step approach will be compared based on N replications. Two 

criteria will be used to evaluate the two approaches. The first one is bias. Bias of an estimator of 

a parameter is defined as the difference between the estimator’s expected value and the true 

value of the parameter. It is used to describe how systematically an estimator is different from 

the true parameter. In this simulation study, the mean of N one-step Bayesian estimates and the 

mean of N estimates using the two-step approach will be calculated to see how far they are from 

the true value. The second criterion is efficiency. Efficiency is defined as the standard deviation 

of an estimator, and it is an indicator of the accuracy of an estimator. It is approximated by the 

standard deviation of the N estimates in the simulation recovered by those two different 

approaches.  

General organization of this dissertation 

To achieve the above goals, this study starts with the simple regression model in chapter 

2, where only one dependent variable and one independent variable are presented in a single 

level linear regression: 
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        . (1.7) 

Different scenarios, such as 1) error in the dependent variable, 2) error in the independent 

variable, and 3) error in both dependent and independent variables, will be explored because 

error in the dependent or independent variables can have a different influence on coefficient 

estimation. For each scenario, simulated data will be generated and parameters will be recovered 

by the two approaches: one-step Bayesian approach and two-step approach. The two approaches 

are compared based on N replicated simulations. 

Then the research moves to a more complex multilevel value-added model in chapter 3, 

where a combination model including HLM, VAM and IRT elements are presented. The error 

impact and correction are considered for different scenarios in the same way as they are in 

chapter 2.  

Following the simulation, the Bayesian approach is applied on an empirical study, the 

Mathematical Education of Elementary Teachers (ME.ET) Project, in chapter 4. Special attention 

is given to the commonly encountered missing value problem in real data. Further discussions on 

IRT measurement error and improvement of the Bayesian approach will be included in chapter 5.   
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CHAPER 2 IRT SCORE ERROR IMPACT IN A SIMPLE LINEAR REGRESSION 

MODEL 

Model and presence of IRT score error 

Model: simple regression model with latent variables 

To better understand the IRT score error issue, exploratory simulations will start with a 

basic simple linear regression model 

         ( 2.1) 

where there are only one dependent latent variable   , one independent latent variable    and a 

random error term  . Assuming that both latent variables are latent IRT constructs that are 

centered on 0, there is no intercept term in the equation. 

Let      denote the student (0, 1) response matrix where 1 indicates a correct answer and 

0 a wrong one when measuring    of I students with a K-item test, assuming that each response 

    (i = 1, … , I; k = 1, … , K) fits a two-parameter logistic (2PL) IRT model : 

         
             

               
       

where     is the item difficulty parameter and     is the discrimination parameter of item k 

that measures latent construct   .  
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Similarly,      is the student (0, 1) response matrix when measuring    and each     

(i = 1,…, I; k = 1,…, K) fits a two-parameter logistic (2PL) IRT model : 

         
             

               
       

where     is the item difficulty parameter and     is the discrimination parameter of item k 

that measures latent construct   .  

The tests measuring    and    don’t have to be the same length K, but they are fixed as 

so to simplify the notation. 

Presence of IRT score error  

Different scenarios of error presence are considered in the simple linear regression 

models: 

1) IRT score estimation error in dependent variable     only:  

                                                                                  ( 2.4) 

where estimated     and true    will be entered into the regression model to estimate  . 

2) IRT score estimation error in independent variable      only: 

                                                                                ( 2.5) 
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where true     and estimated     will be entered into the regression model. 

3) IRT score estimation error in both independent     and dependent variables and    :  

                                                                                   ( 2.6) 

where both estimated     and     will be entered into the regression. 

For the reference scenario 4) in which there is no error in either variable, it is well known 

and will not be included for this simple linear regression model. However, it will be considered 

later in the multilevel regression simulation in chapter 3. 

Data generation 

Both    and    are latent variables, e.g. student reading achievement and attitudes 

towards learning. A number I students with latent construct    and    are generated first. They 

are assumed to be obtained from a multivariate normal distribution 

  
  

  
     

 
 
   

  
  

  , where   is the correlation of the two latent variables.  

In each dataset, the a item parameters are generated from a lognormal distribution 

    (0, 0.25), and the b item parameters are generated from a normal distribution  (0, 0.5). The 

item parameter distributions are adopted from an earlier research by Fox (2005).  

Several factors are expected to have an impact on the parameter recovery and they are 

explored in the simulation. The first factor is the correlation between the two latent variables. 

Three levels of correlation (  = 0.2, 0.5, 0.8) will be considered for data generation. The second 
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factor is test length K, i.e. the number of items in a test. Generally speaking, a longer test is a 

more accurate measurement instrument than a shorter one. Shorter tests yield more error in IRT 

score estimation and thus have a more prominent impact on the regression coefficient recovery. 

So a longer test (K = 25) and a shorter test (K = 15) are considered and compared.  The third 

influencing factor is the number of students, which will affect the accuracy of item parameter 

estimation and in turn affect the IRT score estimation. Both a larger student sample (I = 1000) 

and a smaller sample (I = 500) are considered in the simulation. 

A number N (N = 100) replications for each case were carried out. In total there are 3 

levels of correlation   2 levels of test length   2 levels of student sample size   100 replications 

= 1200 datasets for analysis. Each dataset was analyzed under the three scenarios.  

Software R (R Development Core Team, 2008) was used for data generation.  The data 

generation of student responses to test items and the recovery of latent construct    and    

were made easier by using irtoys package (Partchev, 2006) in R. 

Parameter recovery 

Parameter β recovery: 1) two-step approach 

The two-step approach is the traditional straightforward approach. At step one, the 

student latent constructs    and    are estimated under IRT models based on their responses to 

test items. At step two, the estimated IRT score      and     are used to fit the simple linear 

regression model           . And β is estimated with the ordinary least square (OLS) 

method.  
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There are different options when choosing IRT score estimates, among which includes 

maximum likelihood (ML) IRT and Bayesian Model (BM) IRT estimation. Obviously different 

IRT estimates are not identical and they will probably lead to different estimates of the 

regression parameter β. To explore the influence of different IRT estimates, both maximum 

likelihood (ML) estimates         ,        and Bayesian Model (BM) estimates         , 

       are entered into the linear regression model to show how the estimates affect the results.  

At step one, the student achievement recovery process was carried out in software R 

using irtoys package (Partchev, 2006). At step two, the regression coefficient is estimated in 

software R with lm function using OLS method.   

Parameter β recovery: 2) one-step Bayesian MCMC approach 

With the one-step approach, the student response matrix      and      will be used to 

estimate the student latent achievement    and     and the regression coefficient β 

simultaneously by using Bayesian MCMC approach. The one-step Bayesian approach is 

implemented in WinBUGS (D. J. Lunn, Thomas, A., Best, N., and Spiegelhalter, D., 2000) 

/OpenBUGS (D. Lunn, Spiegelhalter, D., Thomas, A., Best, N., 2009)
1
, which allows 

researchers to use the Markov Chain Monte Carlo (MCMC) sampling method to fit the 

combination model without complex analytic or numerical integrations. The BUGS code for 

each scenario is included in Appendix B. 

Bayesian approach details: setting priors  

                                                 
1
 WinBUGS runs on Windows platform whereas OpeBUGS runs on Linux platform. The 

model codes are identical.  
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For the one-step Bayesian approach, the priors of    and     were all set to the standard 

normal distribution  (0, 1). It is equivalent to the distribution assumption of the latent variables 

within IRT framework. The prior of β is set to a uniform distribution U [-1, 1]. This prior is a 

noninformative one and its boundary settings of -1 and 1 are based on the knowledge that the 

regression coefficient   in the simple regression between two standardized variables is equal to 

their correlation coefficient, which falls between -1 and 1. 

The setting of the error variance prior takes advantage of the known relationship between 

the variance of error and regression coefficient: Var(ε) = 1-   . There is only one degree of 

freedom for the two variables β and Var(ε). The prior settings of the above parameters are pretty 

much standard and non-informative.  

There is more flexibility when specifying the priors of item parameters. Two sets of 

priors are used and compared in this study. One set of priors is a ~ logN(0,0.25) and b ~ N(0,0.5) , 

which was used by Fox (2005). In fact, it is the same as the data generation scheme. The other 

set of priors is a ~ logN(0,0.25) and b ~ N(0,4) , which was used by Patz and Junker (1999).  

These two settings are common in similar studies. The comparison of the recovery of regression 

coefficient β will show whether Bayesian estimates are sensitive to the item parameter prior 

setting.  Generally speaking, the influence of priors gets smaller as the number of students 

increases. And with a student sample size of 500 or 1000, it is not expected to see much 

difference in the estimates of β when different item parameter priors are used. 

Bayesian approach details: convergence diagnosis 

The convergence of Markov chains will be evaluated by Heidelberger and Welch 

Diagnostic Test (Heidelberger & Welch, 1983). Three Markov chains were run at the same time 



18 

 

for each model. The starting point of each Markov chain was randomly generated according to 

the prior. The initial 2000 iterations were discarded as the burn-in, and the following 2000 

iterations were used to generate the estimates of the parameters. If a MCMC chain does not pass 

the Heidelberger and Welch Diagnostic test, a longer chain will be run and the length of the 

burn-in period will be increased by 4000. The above step will be repeated until the chain passes 

the convergence test or the length of the chain reaches the upper limit of 20,000, where the 

computing resources with the default configuration are nearly exhausted.  Trial runs indicate that 

if a chain does not converge at the length of 20,000, running even longer chains can be of little 

help. On the other hand, the estimates are close to the true parameter at the length of 20,000, 

even though occasionally the chain does not pass the convergence test during the trial.  

Result  

The simulation results are presented by three scenarios: 1) IRT score error in dependent 

variable; 2) IRT score error in independent variable; and 3) IRT score error in both dependent 

and independent variable.   

In general, the simulation outcome shows that error in IRT score estimation leads to 

biased regression coefficient β estimates, while the one-step Bayesian MCMC approach handled 

the problem well. With the two-step approach, IRT score from different procedure (ML or BM) 

can bias the estimate in different directions. As the correlation of    and   , i.e. the regression 

coefficient β, gets stronger, the two-step approach works worse while the one-step Bayesian 

MCMC approach takes advantage of the correlation and yields even better results. Overall, the 

impact of error gets smaller when a longer test and/or a larger number of students are involved. 

The results are summarized below by scenario. 
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1) IRT score error in the dependent variable 

In the literature on homogeneous measurement error, the presence of measurement error 

in dependent variables causes no bias in the regression coefficient estimation. However, it is not 

the case when IRT scores are used as the dependent variable.  The regression coefficient tends to 

be biased downward, as found in the study of Adams, et al. (1997). This dissertation study found 

that the conclusion cannot be generalized because it depends on what kind IRT score estimate is 

used. If a IRT score from Bayesian model (BM) procedure is chosen for analysis, as is the case 

with Adams, et al. (1997), the regression coefficient tends to be attenuated. On the other hand, if 

a IRT score from maximum likelihood (ML) procedure is used, the regression coefficient tends 

to biased upward (see Table 2.1).  The bias is more prominent as the correlation between the two 

variables becomes stronger. 
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Table 2.1  β estimation using the two-step approach when IRT score error is present in the dependent variable 

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

      : Two-step approach with IRT 

score from Maximum Likelihood (ML) 

estimate  

(N = 100) 

        Two-step approach with 

IRT score from Bayesian Model 

(BM) estimate 

(N = 100) 

Bias SD RMSE Bias SD RMSE 

0.2 15 500 0.029 0.054 0.061 -0.053 0.034 0.063 

  
1000 0.026 0.041 0.049 -0.053 0.026 0.059 

 
25 500 0.021 0.053 0.057 -0.034 0.038 0.051 

  
1000 0.018 0.037 0.041 -0.035 0.027 0.044 

0.5 15 500 0.057 0.042 0.071 -0.141 0.026 0.143 

  
1000 0.066 0.036 0.075 -0.136 0.023 0.138 

 
25 500 0.042 0.044 0.061 -0.093 0.035 0.099 

  
1000 0.042 0.030 0.052 -0.093 0.023 0.096 

0.8 15 500 0.105 0.038 0.112 -0.220 0.028 0.222 

  
1000 0.108 0.030 0.112 -0.215 0.025 0.216 

 
25 500 0.065 0.034 0.073 -0.149 0.025 0.151 

    1000 0.065 0.022 0.069 -0.148 0.017 0.149 
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While the two-step approach can be biased both ways, the one-step Bayesian approach, 

which combines IRT and regression, yields satisfactory results regardless of the prior that is 

specified (see Table 2.2).
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Table 2.2  β estimation using the one-step approach when IRT score error is present in the dependent variable 

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

           : one-step 

Bayesian MCMC approach 

prior 1  

(N = 100) 

          : one-step 

Bayesian MCMC approach 

prior 2  

(N = 100) 

Bias SD RMSE Bias SD RMSE 

0.2 15 500 0.000 0.047 0.047 -0.001 0.047 0.047 

  
1000 0.001 0.035 0.035 0.000 0.035 0.035 

 
25 500 0.002 0.046 0.046 -0.001 0.046 0.046 

  
1000 0.002 0.033 0.033 0.000 0.033 0.033 

0.5 15 500 -0.011 0.032 0.034 -0.013 0.032 0.035 

  
1000 0.000 0.030 0.030 -0.002 0.030 0.030 

 
25 500 -0.002 0.040 0.040 -0.006 0.040 0.040 

  
1000 0.000 0.026 0.026 -0.002 0.026 0.026 

0.8 15 500 -0.003 0.020 0.020 -0.004 0.021 0.021 

  
1000 0.001 0.016 0.016 0.001 0.016 0.016 

 
25 500 -0.003 0.021 0.021 -0.004 0.021 0.021 

    1000 -0.001 0.013 0.013 -0.002 0.014 0.014 
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The illustrated comparison of simple linear regression coefficient β recovery is shown by 

the boxplot from Figure 2.1 to Figure 2.3. When IRT score estimation error is present in a 

dependent variable, the one-step approach is a much better choice than two-step approach.  

 

 

Figure 2.1 Comparison of β estimation methods when IRT score error is present in the 

dependent variable and   = 0.2. 
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Figure 2.2 Comparison of β estimation methods when IRT score error is present in the 

dependent variable and   = 0.5. 
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Figure 2.3 Comparison of β estimation methods when IRT score error is present in the 

dependent variable and   = 0.8. 
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2) IRT score error in the independent variable 

In the homogeneous measurement error literature, errors in the independent variables lead 

to attenuated regression coefficient estimation. This study shows that using a maximum 

likelihood (ML) estimate does attenuate the β estimation. But it is not the case when a Bayesian 

model (BM) estimate is used. On the contrary, using Bayesian model (BM) estimate 

overestimates the coefficient β (see Table 2.3) and biases the estimation of β in the opposite 

direction. 
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Table 2.3 β estimation using the two-step approach when IRT score error is present in the independent variable  

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

      : two-step approach 

with IRT score from 

Maximum Likelihood (ML) 

estimate  

(N = 100) 

        two-step approach 

with IRT score from 

Bayesian Model (BM) 

estimate 

(N = 100) 

Bias SD RMSE Bias SD RMSE 

0.2 15 500 -0.068 0.036 0.077 0.014 0.055 0.057 

  1000 -0.068 0.027 0.073 0.012 0.040 0.042 

 25 500 -0.042 0.037 0.056 0.013 0.050 0.052 

  1000 -0.041 0.024 0.048 0.015 0.033 0.036 

0.5 15 500 -0.177 0.029 0.179 0.019 0.046 0.050 

  1000 -0.173 0.028 0.175 0.026 0.039 0.047 

 25 500 -0.115 0.039 0.121 0.021 0.049 0.053 

  1000 -0.118 0.024 0.120 0.019 0.030 0.036 

0.8 15 500 -0.282 0.032 0.284 0.041 0.042 0.059 

  1000 -0.273 0.029 0.275 0.046 0.034 0.057 

 25 500 -0.195 0.033 0.198 0.026 0.044 0.051 

  1000 -0.188 0.026 0.190 0.032 0.032 0.045 
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While the two-step approach can be biased in both directions, the one-step Bayesian 

approach, which combines IRT and regression, yields satisfactory results regardless of the prior 

(see Table 2.4Table 2.4).



29 

 

Table 2.4  β estimation using the one-step approach when IRT score error is present in the independent variable 

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

          : One-step Bayesian 

MCMC approach with  

prior 1  

(N = 100) 

          : One-step Bayesian 

MCMC approach with  

prior 2  

(N = 100) 

Bias SD RMSE Bias SD RMSE 

0.2 15 500 0.001 0.051 0.051 0.000 0.052 0.052 

  
1000 0.001 0.038 0.038 0.000 0.038 0.038 

 
25 500 0.003 0.047 0.047 0.000 0.047 0.047 

  
1000 0.006 0.030 0.031 0.004 0.030 0.030 

0.5 15 500 -0.011 0.035 0.037 -0.014 0.035 0.038 

  
1000 0.000 0.031 0.031 -0.002 0.031 0.031 

 
25 500 -0.003 0.038 0.038 -0.007 0.038 0.039 

  
1000 -0.002 0.024 0.024 -0.005 0.024 0.025 

0.8 15 500 -0.003 0.023 0.023 -0.004 0.023 0.023 

  
1000 0.001 0.016 0.016 0.001 0.016 0.016 

 
25 500 -0.002 0.017 0.017 -0.004 0.018 0.018 

  
1000 -0.002 0.012 0.012 -0.002 0.012 0.012 
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Comparisons of simple linear regression coefficient β recovery when error is present in 

the independent variable are shown in the boxplot from Figure 2.4 to Figure 2.6. When 

estimation error is present in the IRT score, the one-step approach is a much better choice than 

the two-step approach.  

 

 

Figure 2.4  Comparison of β estimation methods when IRT score error is present in the 

independent variable and   = 0.2. 

 



31 

 

 

 

Figure 2.5  Comparison of β estimation methods when IRT score error is present in the 

independent variable and   = 0.5. 
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Figure 2.6  Comparison of β estimation methods when IRT score error is present in the 

independent variable and   = 0.8. 
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3) IRT score error in both dependent and independent variables 

From scenarios 1) and 2) we have learned that the maximum likelihood (ML) IRT score 

estimate in the dependent variable leads to overestimation of β while in the independent variable 

it leads to underestimation. When IRT score error is presented in both dependent and 

independent variables, the direction of bias is unpredictable with the combination of the two 

opposite effects. The same thing happens when IRT BM estimate is used. Whether the β 

estimation is overestimated or underestimated depends on which effect is dominant, but some 

bias is expected in most of the cases. Although β estimates are biased downward given the 

settings in this particular simulation (see Table 2.5), the direction of bias should be regarded as a 

coincidence rather than a conclusion.  

On the other hand, the one-step Bayesian approach, which combines IRT and regression, 

yields satisfactory results regardless of the prior (see Table 2.6). 
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Table 2.5  β estimation using the two-step approach when IRT score error is present in both dependent and independent 

variables 

    

  

 

  

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

      : two-step approach with IRT 

score from Maximum Likelihood (ML) 

estimate  

(N = 100) 

        two-step approach with 

IRT score from Bayesian Model 

(BM) estimate 

(N = 100) 

Bias SD RMSE Bias SD RMSE 

0.2 15 500 -0.051 0.047 0.069 -0.044 0.045 0.063 

  
1000 -0.052 0.034 0.062 -0.046 0.034 0.057 

 
25 500 -0.027 0.043 0.051 -0.025 0.043 0.050 

  
1000 -0.030 0.030 0.042 -0.026 0.030 0.040 

0.5 15 500 -0.137 0.035 0.141 -0.124 0.033 0.128 

  
1000 -0.130 0.032 0.134 -0.116 0.030 0.120 

 
25 500 -0.086 0.043 0.096 -0.077 0.043 0.088 

  
1000 -0.084 0.028 0.089 -0.074 0.026 0.078 

0.8 15 500 -0.213 0.035 0.216 -0.185 0.036 0.188 

  
1000 -0.203 0.032 0.206 -0.178 0.032 0.181 

 
25 500 -0.142 0.034 0.146 -0.122 0.030 0.126 

    1000 -0.138 0.025 0.140 -0.119 0.021 0.121 
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Table 2.6  β estimation using the one-step Bayesian approach when IRT score error is present in both dependent and 

independent variables 

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

           : one-step 

Bayesian MCMC approach 

with prior 1  

(N = 100) 

          : one-step 

Bayesian MCMC approach 

with prior 2  

(N = 100) 

Bias SD RMSE Bias SD RMSE 

0.2 15 500 0.002 0.058 0.058 -0.002 0.057 0.057 

  
1000 0.001 0.044 0.044 -0.001 0.044 0.044 

 
25 500 0.005 0.051 0.051 -0.001 0.049 0.049 

  
1000 0.005 0.036 0.036 0.001 0.035 0.035 

0.5 15 500 -0.014 0.041 0.043 -0.020 0.041 0.046 

  
1000 -0.001 0.040 0.040 -0.005 0.040 0.040 

 
25 500 -0.004 0.046 0.046 -0.016 0.046 0.049 

  
1000 0.002 0.030 0.030 -0.005 0.030 0.030 

0.8 15 500 -0.004 0.030 0.030 -0.008 0.032 0.033 

  
1000 0.002 0.023 0.023 -0.001 0.024 0.024 

 
25 500 -0.005 0.027 0.027 -0.014 0.028 0.031 

    1000 -0.001 0.017 0.017 -0.006 0.017 0.018 
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Comparisons of simple linear regression coefficient β recovery when errors are present in 

both independent and dependent variables can be found from Figure 2.7 to Figure 2.9. When 

estimation error is presented in the IRT score, the one-step approach is a much better choice than 

the two-step approach. The one-step approach yields an estimator very close to the true 

parameter, which means the error impact has been reduced in this approach.  Also one-step 

approach is more efficient than the two-step approach because the standard deviations of the 

simulated estimates are smaller.  The larger the correlation, the less spread for the estimates from 

Bayesian approach. So the one-step Bayesian estimator is more efficient than the two-step 

estimators. 

Also it should be mentioned that the scale for a correlation is restricted and the spread of 

β estimates for all approaches will get smaller when   is getting closer to 1 or -1 (Fisher, 

1915).   The smaller spread is an artifact of the scale for both two-step approach and one-step 

Bayesian approach. But for each fixed level of   in this study, β estimates from one-step 

Bayesian approach have a smaller spread than those from two-step approach.     
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Figure 2.7  Comparison of β estimation methods when IRT score error is present in both 

variables and   = 0.2 
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Figure 2.8  Comparison of β estimation methods when IRT score error is present in both 

variables and   = 0.5 
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Figure 2.9 Comparison of β estimation methods when IRT score error is present in both 

variables and   = 0.8 

More about Bayesian: comparison of priors 

One thing that should be considered when using a Bayesian method is selecting priors for 

the parameters.  This study used two sets of priors to see if the results are heavily influenced by 

the priors. One set of priors is a ~ logN(0, 0.25) and b ~ N(0, 0.5), and the other is a ~ logN(0, 

0.25) and b ~N(0, 4). The details of the priors setting can be found in previous section. The 

results are quite similar which means the results are rather stable and not very sensitive to these 

two commonly used priors. But it should be cautioned that the misspecified priors could badly 
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influence the results.  Researchers should carefully select those reasonable priors and compare 

the results during their own study.  

More about Bayesian: convergence test results  

The majority of the MCMC chains passed the convergence test when the first 2,000 were 

discarded as burn-in and the total length was 4,000. Each of the 7200 (100 replications   3 levels 

of β   2 levels of student size   2 levels of test length   3 scenarios   2 sets of priors) 

simulations achieved stationarity before reaching the 20,000 arbitrary maximum limits (see 

Table 2.7).  

 

Table 2.7 The burn-in length for the Markov chains when passing the convergence test 

Burn-in length Frequency Percent   

2,000 7149 99.3 

6,000 50 0.7 

10,000 1 0.0 

Total 7,200 100.0 
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CHAPTER 3 IRT SCORE ERROR IMPACT IN A MULTILEVEL VALUE-ADDED 

MODEL 

Model and presence of IRT score error 

Model: value-added models (gain score models) 

Value-added models (McCaffrey et al. 2004) have been a focus of educational research. 

The issue of measurement error in gain scores is well known. Linn (1977) reviewed some of the 

major issues that arise in the measurement of change. Lee et al. (2000) found 84 percent of the 

variance in gain scores is attributable to measurement error. They concluded that measurement 

error will only affect precision of estimates and it can be compensated for with sufficiently large 

numbers of observations. Fischer (2003) investigated the precision of gain scores and simple 

difference scores, and compared the asymptotic and exact conditional inference about change. 

He proposed an IRT framework for the measurement of change.  Wang et al. (2004) proposed a 

procedure to obtain the IRT-based effect size measure. That procedure they used to correct for 

measurement error is based on IRT-based test reliability. Also there have been significant 

advances into longitudinal study designs (Hsieh, et al., 2010; Lockwood, McCaffrey, Mariano, & 

Setodji, 2007; Natesan, Limbers, & Varni, 2010; Rijmen, Tuerlinckx, De Boeck, & Kuppens, 

2003; Seltzer, Choi, & Thum, 2003).  

It is beyond the scope of this study to explore the IRT measurement error impact on 

general value-added models. The focus will be put on a special yet typical case in which only 

two test occasions, pretest and posttest, are presented. General value-added models that have 

more than two tests will be left for future studies. The model of interest here was inspired by a 

research question in ME.ET project (McCrory, Zhang, Francis, & Young, 2009). It is a 
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combination of multilevel model, value-added model and item response model. There are two 

components to the combination model: a multilevel linear regression model to describe the 

relationship among variables, and a measurement part which includes several IRT models to 

describe the relationship between latent variables and their indicators.  

It should be clarified that in most schools in this study there is only one class in each 

school and one teacher in each class.  The class level is actually the second level used for HLM 

analysis.  But to simply the notation, the terms school, class and teacher are used interchangeably 

when referring to the second level variables.  

1) Structural component: multilevel linear model 

The structural model is a multilevel linear latent growth model with only two occasions: 

pretest and posttest. It can be written in different formats. Readers from different trainings may 

prefer one over another.  Two different formats are all listed here to ease the burden of switching 

from one to the other. 

Format 1: structural model written in compact form 

The structural model can be written in the format used in McCaffrey et.al. (2004) as the 

following: 

                                           
 

                                             

 (3.1) 

Or it can be written separately as at pretest (t = 0) and posttest (t = 1) 
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where      is the latent achievement of student i in school j at time t;       is the grand mean of 

all schools at pretest and     is the variation of school means. The residual term       is the 

student initial achievement (pretest) variation within school.  They are independently and 

identically distributed (i.i.d.) errors that follow a Normal distribution N(0,    
 

).        is the 

mean school added value and     is the variation of school value added.      is the residual error 

term with a distribution N(0,   
 

) that represents the variation of student gain within school. 

There are two explanatory variables, Attitude and Gender, for the student’s initial status,     .  

There are another two explanatory variables, Method and Textbook, for the added value (gain 

score). The coefficients of the independent variables, Attitude, Gender, Method and Textbook, 

are denoted as     ,     ,     , and      respectively. 

Format 2: structural model in multilevel form 

The above structural model can also be written in the following format that is popular 

among HLM software users. 

a. Repeated test level / Value-added Model / Growth model 
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where      is the achievement of student i in school j at pretest (t = 0) or posttest (t = 1).      is 

the initial status of student i in school j and     is the gain of that student. This is a special case 

of a latent growth model. There is no error term or residual term in the model because the 

measurements are carried out only twice, one at pretest and the other at posttest, thus the line (3.4) 

is defined by those two points.  In case the students are measured at more than two occasions, an 

error term should be added to the equation.  More discussions on latent growth models can be 

found in Raykov and Marcoulides (2006). 

b. Student level 

                                             

                    

At student level, there are two explanatory variables, Attitude and Gender, for the 

student’s initial status    . The coefficient of those two variables are denoted as      and 

     . The conditional mean initial status of a student in school j is denoted as     . The 

student’s initial status     is a random variable varies around the predicted value with variation 

of     . And these is no independent variable at student level to predict student gain    . The 

student’s gain     is a random variable varies around     , the mean added value of  school j, 

with variation of     .  

c. School level 
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At school level, there are two explanatory variables, Method and Textbook, to predict the 

average school gain     . In this particular case, it is assumed that no school level variable can 

explain the school initial status. The Attitude and Gender effects      and      are assumed to 

be fixed across schools as      and       The school initial status      is a random variable 

varies around mean initial status      of  all schools with variation    . The conditional 

school gain is denoted as     . The added value of school j      is a random variable that 

varies around the predicted value with variation    .  

2) Measurement components: IRT models 

The above structural model in section 1) is a typical multilevel linear model or 

hierarchical linear model (HLM). What makes the model in educational settings unique is that it 

has latent variables and those variables can be further described with two IRT models. 

Particularly in the above example, three latent variables are of interest: student achievement, 

student attitude and teacher’s teaching method.  

a. Student achievement measurement model  
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Student achievement is a latent variable. It cannot be observed directly but it can be 

estimated from students’ responses to test items. The probability function for a student’s 

response to a test item can be written as 

            
                 

                   
   

       

where       is the score of student   in school   answering item   at time  . θ is the student 

initial achievement and δ  is the added value, i.e. the increased achievement between posttest and 

pretest. Item characteristics are represented by    and   , as they are in a standard 2PL IRT 

model. To be specific,    is the discrimination parameter and    is the difficulty parameter of 

item k. 

In fact, the model above is a standard two-parameter logistic (2PL) IRT model (Lord, 

1980) with two additional parameters t and  . Parameter t is the time indicator with which t = 0 

represents pretest and t = 1 posttest. Parameter  is the increased student achievement between 

posttest and pretest. It is the added value from the teaching program point of view. 

b. Student attitude measurement model (Graded Response Model) 

Student’s attitude   is another latent variable. It is measured by a questionnaire 

consisting of nine five-point Likert-type items. A student’s respond to each attitude question fall 

into one of the five categories from strongly disagree to strongly agree. The responses are coded  

1 – 5 respectively. An IRT Graded Response Model (GRM, Samejima 1969) was used to 

describe the relationship between the latent variable     and the response     .   
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              (3.12) 

 

where    is the probability of student i in school j scoring x (x = 1, …, 5) or above on question m 

(m = 1, …, M) in the student questionnaire.  

c. Teaching method measurement model (Graded Response Model) 

Teacher’s teaching method   is another latent variable. It is measured by a questionnaire 

consisting of 11 four-point Likert-type questions. A teacher’s respond to each method question 

falls into one of four categories from strongly disagree to strongly agree. The responses are 

coded 1 – 4 respectively. An IRT Graded Response Model (GRM) was used to describe the 

relationship between the latent variable,    , and the response,    .   

         
           

             
             

(3.13) 

where  P is the probability of teacher j scoring x (x = 1, …, 4) or above on question n (n = 1, …, 

N) in the teaching method questionnaire.  

Presence of IRT score error  

The impact of measurement error is pertinent to whether the variable is a dependent 

variable or independent variable. To take this into consideration, different scenarios will be 

explored: 1) IRT score error in dependent variables only, i.e. the student pretest and posttest 

abilities are unknown and their scores are estimated based on their answers to the test questions. 
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At the same time, the true values of values, of student attitude and teacher teaching method are 

entered into the model assuming they are known; 2) IRT score error in independent variables 

only, i.e. estimated student attitude score and teacher teaching method score are used while true 

student achievement are treated as known; 3) IRT score error in both independent and dependent 

variables. All the true values of those latent variables are unknown and their estimated values are 

used, and 4) no IRT score error in neither variable.  All true values of those latent variables are 

used to estimate the coefficients. 

Data generation 

Data are generated following the multilevel value-added measurement model above.  It is 

assumed that there are 40 schools and 30 students in each of them so that the whole dataset has a 

magnitude similar to the empirical data.  

First, the values of latent teacher variable method ζ are randomly drawn from standard 

normal distribution N(0, 1).  For each school, the values of variable textbook, which is an 

indicator of whether use a certain type of textbook, were independently generated from a 

Bernoulli distribution Β(0.65). The parameter was set to 0.65 to mimic the fact that 65% of the 

schools use the same type of textbook in the empirical study. Since there is no indication of 

textbook dependence on teaching method (  = 0.09), values for the indicator variable textbook 

were generated independently. 

Second, the values of student latent variable attitude ω are randomly drawn from standard 

normal distribution N(0,1). For each student, the gender variable female is drawn from a 

Bernoulli distribution Β(0.9) since 90% of the students are female in ME.ET project. As there is 
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no indication of dependence between female and attitude, the two variables are generated 

independently. 

Third, the generating values of fixed effects of attitude (=      =     ), female (= 

     =     ), method (=     ) and textbook (=     ) are set to their estimated values 0.14, 0, 

0.3 and 0.48, which were obtained from traditional two-step approach.   

The values of conditional school initial status 00u  and gain 10u  are generated from a 

multivariate normal distribution    
    
   

   
         

         
  . The values of the generating 

parameters are obtained from the empirical study too. The study showed that higher school 

pretest score is negatively associated with the school gain. The covariance of the two variables is 

       which is equivalent to a correlation of -0.38. 

 The values of conditional student initial status      and gain      are generated from a 

multivariate normal distribution    
 
 
   

     
     

  . The variances of      are estimated 

values from ME.ET study, but the covariance of      and      were NOT. The reason for 

ignoring the estimated covariance is that the number is equivalent to a correlation as extreme as  

-0.98. It is a known inaccurate estimator in pre-post studies (Raudenbush, 2002). The Werts et al. 

(1977) study found that the correlations of initial status and gain vary within a moderate range 

from -0.45 to 0.45 in practice. To explore whether this correlation can be successfully recovered 

by the Bayesian approach, three levels of correlation, 0.4, 0, and -0.4, have been used to generate 

the simulation data. 
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Finally, pretest and posttest response patterns were generated according to the 

measurement model (3.11), for a pretest of 26 items and a posttest of 25 items. Student attitude 

response and teaching method response patterns were generated according to the GRM model 

(3.12) and (3.13). The generating values of the item parameters are shown in the Table 6.1 to 

Table 6.3 in the Appendix A. 

A number N (N = 100) of replications for each case were carried out. In total there were 

three levels of correlation   100 replications = 300 datasets for later analysis. 

Software R (R Development Core Team, 2008) was used for data generation.  The data 

generation of student responses to test items and the recovery of latent construct    and    have 

been made easier by using irtoys package (Partchev, 2006) in R. 

Parameter Recovery 

Parameters recovery: 1) two-step approach 

At step one, student pretest score and posttest score      , are estimated using two 

parameter logistic (2PL) model, and only maximum likelihood (ML) IRT estimates are obtained 

for student achievement. Again, the student achievement estimates were obtained using  irtoys 

package (Partchev, 2006) in software R.  

The item parameters of pretest and posttest were treated as known, as is the case in 

ME.ET project. Another reason to use known item parameters is to avoid the equating issue 

which is not a focus of this study.   

Also at step one, student attitude ω and teacher teaching method ζ are estimated using 

Graded Response Model (GRM).  The values of these latent variables  are estimated using the 
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ltm package (Rizopoulos,2006) in software R. Parameters of student attitude and teaching 

method items will still be treated as unknown, as is the case in ME.ET project. 

At step two, the estimated IRT score   ,   ,    and    are entered into the structural 

model. The regression coefficients are calculated with HLM6 software (S. Raudenbush, Bryk, 

Cheong, & Congdon, 2004) . 

Parameters recovery: 2) one-step Bayesian MCMC approach 

For the one-step Bayesian approach MCMC, the response matrix of pretest, posttest, 

attitude and teaching method are used to estimate the student latent variable and regression 

coefficient γ simultaneously.  The model codes were written ad hoc. Even though the model 

seems as simple as shown above, the code can be tricky (see Appendix C). They are 

implemented with software WinBUGS/OpenBUGS (D. Lunn, Spiegelhalter, D., Thomas, A., 

Best, N., 2009). 

The Bayesian MCMC iteration is time consuming, especially when the 2PL and GRM 

model are involved simultaneously.  It usually takes hours, sometimes even nearly 10 hours 

depending on the length of Markov chain, to finish a single run. The 300 simulations in design 

couldn’t have been completed within a reasonable period of time if the enormous computing 

power had not been employed with the support from the experts in MSU High Performance 

Computing Center (HPCC).  

Bayesian approach details: setting priors 

The prior settings of the combination model are listed below. 
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All the latent covariate (student attitude and teacher teaching method) are set to be from a 

standard Normal distribution N(0, 1), which is the common basic assumption of IRT models.  

The fixed effects of the four independent variables (student attitude, student gender, 

teacher teaching method and textbook usage) were assumed to follow independent Normal 

distributions with zero mean and precision = 10 which is equivalent to a variance of 1/10. The 

priors are centered to 0 since there is no assumption on whether an independent variable has 

positive or negative impact on the dependent variable. The precision at first glance seems 

informative for a regression model, but it is rather vague, or moderate at most when the scale of 

the latent variables are taken into consideration.  The variances of the priors are big enough for 

the Markov chain to explore the plausible area between -1 and 1.  

The study assumes a priori that the initial student achievement and the gain of student 

achievement are correlated both at school and student level. At school level, the initial status and 

gain were assumed to arise from a multivariate normal population distribution with unknown 

mean and covariance matrix   . The same noninformative independent Normal distributions with 

zero mean and precision = 10 was then specified for the population means, whilst the inverse 

covariance matrix      
  was assumed to follow a Wishart distribution. To represent vague 

prior knowledge, the scale matrix R was specified as    
     
     

 , where      and      

are estimated values from the output of HLM6 software. It is so chosen because there is no other 

clue on the magnitude of the variances in the real dataset and it is the best approximation one can 

get so far. Positive correlation would imply that students/schools with higher pretest scores tend 
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to gain more rapidly than those with lower pretest scores. However, the direction and magnitude 

of the correlation is not known so they are centered on 0 in the priori setting.  

At the student level, the initial status and gain were assumed to come from a multivariate 

normal population distribution with known mean and covariance matrix   . The means are 

known and determined by the structural model, while the inverse covariance matrix    

  
  

 was assumed to follow a Wishart distribution. Again, the scale matrix    was specified as 

    
       

       
 , where        and        were estimated values from the output of 

HLM6 software. 

The BUGS code is listed in the Appendix C. 

Bayesian approach details: convergence diagnosis 

The convergence of Markov chains was evaluated using the Heidelberger and Welch 

Diagnostic Test (Heidelberger & Welch, 1983).  

The starting point of each Markov chain was randomly generated according to the prior. 

The initial 3000 iterations are discarded as the burn-in, and the following 1000 iterations were 

used to generate the estimates of the parameters.  

The length of the Markov chain is arbitrary. The decision was based on the observation of 

the trial runs. The outcomes became stable after 3,000 iterations. For certain parameters, their 

Markov chains reach a stationary distribution quickly and a longer chain makes little difference. 

Because of constraints on computing resources, the length of 4,000 was deemed to be adequate 
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for the purpose of evaluating the performance of the Bayesian method. The results are based on 

the last 1,000 iterations while the first 3000 were discarded as burn-in.  

Results  

The simulation outcomes show that error in IRT scores lead to biased regression 

coefficient estimates for the two-step approach, while the one-step Bayesian MCMC approach 

handles the problem better, albeit not as perfectly as was the case for simple regression.  

Generally speaking, the Bayesian approach yields less biased estimates (see Table 3.1 to Table 

3.4) and more efficient (less variance) estimates for recovery of the true value of the coefficients 

(see Figure 3.1 to Figure 3.4). In other words, the Bayesian approach is more powerful for 

detecting the true relationship between those variables. 

One thing the Bayesian approach does not handle perfectly is the recovery of the 

coefficient of the school level latent variable method (teaching method, see Figure 3.3). When 

this latent variable needs to be estimated, the coefficient is underestimated a little by the 

Bayesian approach.  Most likely it is due to the small sample size of 40 at the school level.  
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Table 3.1 Coefficients recovery when no error present in latent variables 

Correlation 

of student 

initial and 

gain 

 

β_attitude 

(= 0.14) 

β_female 

(= 0.00) 

β_method 

(= 0.30) 

β_textbook 

 (= 0.48) 

Bias SD RMSE     Bias    SD   RMSE    Bias     SD     RMSE       Bias     SD RMSE 

-0.40 Bayesian 0.000 0.015 0.015 0.001 0.045 0.045 0.005 0.040 0.040 0.002 0.093 0.093 

 two-step -0.010 0.073 0.074 0.000 0.231 0.231 0.005 0.054 0.054 0.009 0.118 0.118 

0.00 Bayesian 0.000 0.015 0.015 0.000 0.046 0.046 0.000 0.042 0.042 0.000 0.087 0.087 

 two-step 0.006 0.061 0.061 0.042 0.198 0.202 0.002 0.049 0.049 -0.010 0.105 0.105 

0.40 Bayesian 0.000 0.015 0.015 0.000 0.046 0.046 0.000 0.037 0.037 0.002 0.085 0.085 

 two-step 0.008 0.068 0.068 -0.020 0.245 0.246 0.000 0.049 0.049 -0.010 0.117 0.117 
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Table 3.2 Coefficients recovery when errors in dependent variables (student scores) 

Correlation 

of student 

initial and 

gain 

 

β_attitude 

(= 0.14) 

β_female 

(= 0.00) 

β_method 

(= 0.30) 

β_textbook 

 (= 0.48) 

Bias SD RMSE     Bias    SD   RMSE    Bias     SD     RMSE       Bias     SD RMSE 

-0.40 Bayesian 0.002 0.021 0.021 0.000 0.060 0.060 0.008 0.048 0.049 -0.010 0.112 0.112 

 two-step 0.000 0.095 0.095 -0.030 0.348 0.349 0.025 0.172 0.174 0.020 0.329 0.330 

0.00 Bayesian 0.000 0.019 0.019 -0.010 0.057 0.058 -0.020 0.052 0.056 -0.030 0.110 0.114 

 two-step 0.014 0.085 0.086 0.024 0.284 0.285 -0.010 0.163 0.163 0.019 0.330 0.331 

0.40 Bayesian 0.000 0.018 0.018 0.000 0.068 0.068 -0.010 0.047 0.048 -0.030 0.100 0.104 

 two-step 0.020 0.095 0.097 -0.060 0.345 0.350 0.035 0.163 0.167 -0.010 0.298 0.298 
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Table 3.3 Coefficients recovery when errors in independent variables (attitude and method) 

Correlation 

of student 

initial and 

gain 

 

β_attitude 

(= 0.14) 

β_female 

(= 0.00) 

β_method 

(= 0.30) 

β_textbook 

 (= 0.48) 

Bias SD RMSE     Bias    SD   RMSE    Bias     SD     RMSE       Bias     SD RMSE 

-0.40 Bayesian 0.000 0.016 0.016 0.003 0.046 0.046 -0.040 0.039 0.056 -0.010 0.099 0.100 

 two-step 0.000 0.081 0.081 -0.010 0.235 0.235 0.011 0.076 0.077 0.007 0.125 0.125 

0.00 Bayesian 0.000 0.016 0.016 0.000 0.047 0.047 -0.050 0.040 0.064 -0.010 0.092 0.093 

 two-step 0.008 0.069 0.069 0.040 0.202 0.206 0.008 0.071 0.071 -0.010 0.111 0.111 

0.40 Bayesian 0.000 0.018 0.018 0.002 0.047 0.047 -0.050 0.040 0.064 -0.010 0.091 0.092 

 two-step 0.012 0.071 0.072 -0.010 0.245 0.245 0.006 0.072 0.072 -0.020 0.121 0.123 

 

  



58 

 

Table 3.4 Coefficients recovery when errors in both dependent and independent variables  

Correlation 

of student 

initial and 

gain 

 

β_attitude 

(= 0.14) 

β_female 

(= 0.00) 

β_method 

(= 0.30) 

β_textbook 

 (= 0.48) 

Bias SD RMSE     Bias    SD   RMSE    Bias     SD     RMSE       Bias     SD RMSE 

-0.40 Bayesian 0.001 0.021 0.021 0.000 0.062 0.062 -0.050 0.045 0.067 -0.010 0.106 0.106 

 two-step 0.003 0.106 0.106 -0.030 0.345 0.346 0.028 0.175 0.177 0.015 0.344 0.344 

0.00 Bayesian 0.000 0.021 0.021 -0.010 0.060 0.061 -0.060 0.044 0.074 0.006 0.116 0.116 

 two-step 0.009 0.099 0.099 0.024 0.289 0.290 0.000 0.191 0.191 0.022 0.334 0.335 

0.40 Bayesian 0.000 0.021 0.021 0.000 0.068 0.068 -0.050 0.045 0.067 0.000 0.102 0.102 

 two-step 0.018 0.107 0.109 -0.060 0.349 0.354 0.043 0.182 0.187 -0.010 0.308 0.308 
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Figure 3.1  Coefficient of attitude (= 0.14) recovery 
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Figure 3.2  Coefficient of female (= 0.00) recovery 
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Figure 3.3  Coefficient of method (= 0.30) recovery 
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Figure 3.4  Coefficient of textbook (= 0.48) recovery
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Although the focus of this study is on the recovery of regression coefficients, it will be 

interesting to take a look at the recovery of other parameters.  

As mentioned earlier, the estimation of the correlation between student initial status 

(pretest) and gain is a known problem.  To explore how the Bayesian approach can recover the 

correlation, three different levels of correlation (r = -0.4, 0, 0.4) between student initial status and 

gain were built into the simulation data. The result shows that neither Bayesian nor two-step 

approach can recover this correlation well, with Bayesian tending to generate a zero value while 

two-step a negative value (See Figure 3.5 to Figure 3.7). From the simulation we can conclude 

that those numbers should not be used in practice if they are obtained from the above two 

approaches.  
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Figure 3.5 Recovery of correlation between student pretest and gain (= -0.4) 
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Figure 3.6 Recovery of correlation between student pretest and gain (= 0.0) 
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Figure 3.7  Recovery of correlation between student pretest and gain (= 0.4) 
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However, the Bayesian approach is much better than the two-step approach when 

estimating school level correlation between initial status and gain (see Figure 3.8). The Bayesian 

approach consistently gives the right answer while the two-step approach does not. Even when 

there is no error present in the variables, the two-step approach tends to yield zero correlation 

between pretest and gain at school level. Although the two-step approach did get close to the true 

correlation in some other scenarios, it is not clear whether it is a coincidence, given its 

performance in the no error present scenario. 

In value-added models, one important interest is the performance of schools. In this 

model, it is captured by the school gain parameter    . From Figure 3.9 we can tell that the 

Bayesian approach can generally recover this parameter well in all scenarios. At the same time, 

the estimate from the two-step approach is not a reliable representation of the true school gain 

variance, thus any interpretation based on it will be called into question. 
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Figure 3.8  Recovery of correlation between school mean pretest and gain (= -0.38) 
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Figure 3.9 Recovery of variance of school gain (= 0.08)  
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More about Bayesian: setting priors 

One concern in Bayesian applications is the setting of priors. Poor selection of priors 

could heavily distort the results. In this study, seven different priors were used to demonstrate the 

influence of priors. The priors for the four coefficients are all normal distributions with different 

standard deviations (See Table 3.5 and Figure 3.10) ranging from 0.1 to 10. From the results one 

can conclude that if the priors (e.g. prior 1 to prior 3) are too narrow to cover the true parameter, 

the results could be under the heavy influence of the prior. On the other hand, if the priors are 

uninformative (e.g. prior 4 to prior 7), the results are quite stable. Prior 4 was selected for the 

simulations in this chapter. 
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Table 3.5 Estimated   coefficients with seven different priors 

 
Priors for all four  coefficients 

 Prior 1 

N(0, 0.01) 

Prior 2 

N(0, 0.04) 

Prior 3 

N(0, 0.25) 

Prior 4 

N(0, 1) 

Prior 5 

N(0, 4) 

Prior 6 

N(0, 25) 

Prior 7 

N(0, 100) 

           0.117 0.121 0.121 0.123 0.120 0.121 0.120 

         0.022 0.018 0.053 0.047 0.039 0.032 0.043 

         0.124 0.158 0.179 0.190 0.182 0.192 0.190 

           0.240 0.393 0.573 0.629 0.581 0.642 0.623 
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Figure 3.10 Estimated coefficients with seven different priors  
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More about Bayesian: convergence test results 

While all the Markov chains passed convergence tests for simple regression in the 

previous chapter, convergence of Markov chains is a more serious concern when the model gets 

more complicated.  It usually takes longer to reach convergence. Some chains at the fixed length 

(4,000) in multilevel models did not pass the convergence test. Running the chains longer might 

eventually solve the problem but it is beyond the time constraints of this project. On the other 

hand, the means of the Markov chains showed little difference (see Table 3.6 to Table 3.9) 

regardless of the convergence test results. So the conclusions based on the result should be 

maintained. 

The results showed that the about 20% of the chains for the coefficient of gender did not 

pass the convergence test at the fixed length of 4,000 iteration. The possible reason is that the 

variable gender is extremely skewed. On average 90% of the students are female. In some of the 

generated data, the percentage of females could be much higher than 90%. If that is the case, the 

gender difference is hard to estimate and the lack of convergence reflects the situation.
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Table 3.6 Convergence of Markov chains: coefficient of attitude (=0.14) 

 β_attitude 

 Test failed Not converged Converged Total 

Presence of Error N Mean N Mean N Mean N Mean 

No Error 0 . 0 . 300 0.139 300 0.139 

Error in Dependent Variables 
0 . 3 0.125 297 0.140 300 0.139 

Error in Independent Variables 
0 . 3 0.159 297 0.138 300 0.138 

Error in Both Variables 
0 . 10 0.142 290 0.137 300 0.138 

             Total 
0 . 16 0.142 1184 0.139 1200 0.139 

 

Table 3.7 Convergence of Markov chains: coefficient of female (=0.00) 

 β_female 

 Test failed Not converged Converged Total 

Presence of Error N Mean N Mean N Mean N Mean 

No Error 0 . 0 . 300 -0.002 300 -0.002 

Error in Dependent Variables 
7 -0.024 104 -0.002 189 -0.005 300 -0.004 

Error in Independent Variables 
0 . 18 0.020 282 -0.001 300 0.001 

Error in Both  Variables 
7 0.021 119 -0.010 174 -0.020 300 -0.015 

             Total 
14 -0.001 241 -0.004 945 -0.006 1200 -0.005 
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Table 3.8 Convergence of Markov chains: coefficient of method (= 0.30) 

 β_method 

 Test failed Not converged Converged Total 

Presence of Error N Mean N Mean N Mean N Mean 

No Error 0 . 0 . 300 0.301 300 0.301 

Error in Dependent Variables 5 0.264 193 0.290 102 0.296 300 0.291 

Error in Independent Variables 0 . 6 0.261 294 0.242 300 0.243 

Error in Both Variables 0 . 96 0.231 204 0.228 300 0.229 

             Total 5 0.264 295 0.270 900 0.265 1200 0.266 

 

Table 3.9 Convergence of Markov chains: coefficient of textbook (= 0.48) 

 β_textbook 

 Test failed Not Converged Converged Total 

Presence of Error N Mean N Mean N Mean N Mean 

No Error 0 . 0 . 300 0.479 300 0.479 

Error in Dependent Variables 0 . 127 0.472 173 0.450 300 0.460 

Error in Independent Variables 0 . 3 0.523 297 0.470 300 0.471 

Error in Both Variables 0 . 64 0.460 236 0.431 300 0.437 

             Total 0 . 194 0.469 1006 0.460 1200 0.461 
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CHAPTER 4 ONE-STEP BAYESIAN APPLICATION ON ME.ET PROJECT DATA 

The previous chapter evaluates the performance of the one-step Bayesian approach to the 

combination model. In many ways it is better than the two-step approach as the coefficient 

estimation is less biased and more efficient. So it is worth trying the one-step Bayesian approach 

on the ME.ET project data.  

The Mathematical Education of Elementary Teachers (ME.ET) Project  

The Mathematical Education of Elementary Teachers (ME.ET) project is a study on the 

preparation of prospective math teachers. It aims at depicting a picture of what is going on in 

math teacher training classes and identifying factors that can improve their effectiveness. It is a 

comprehensive project with many facets and only the information relevant to the statistical 

model and data will be briefly presented here. Totally there are 1706 students from 41 classes 

(schools) who took at least one of the pretest or posttest that measures math related achievement. 

The items of pretest and posttest are drawn from a pool of 51 items adopted from a previous 

study. The students who took the tests were also surveyed on their gender and attitude toward 

math. At the meantime 78 instructors, including the 41instructors whose students took part in the 

math pretest and posttest, were surveyed on the textbook used and their teaching method.  

Model 

Among many research questions that ME.ET project intended to investigate, there is one 

particularly suitable to be solved by the one-step Bayesian method. That is the relationship 

between student gain and other variables: student gender, student attitude toward math, textbook 

used and instructor teaching method. Obviously there are latent variables involved in both 

dependent and independent variables and they are ready to be described with IRT models.  Gain 
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score is the learning outcome. The data structure includes students nested in classes. A 

combination model described in Chapter 3 would be appropriate to answer this research question. 

Data 

When the students took the pretest and posttest, they took one of the four test forms 

which consists of 20 to 26 items selected from a 51-item pool. In the Bayesian approach, every 

test form is treated as a test with full length of 51 and the student responses to those not 

presented items are listed as missing.  This transformation has greatly eased the difficulty caused 

by the complexity of the student data structure.   

Missing data is a common occurrence in practice and ME.ET project cannot be exempted.  

Not every student in the study took both the pretest and posttest. Instead, many of them took only 

one test for various reasons. The gain score, which is defined as the score difference between 

posttest and pretest, cannot be estimated if only one test is taken by a student.  Meanwhile, not 

all of the students and teachers provided complete answer to the survey questions. The non-

responses are represented as missing values in the dataset.  

Naturally, a Bayesian approach can accommodate missing values conveniently by 

treating them as unknown parameters. This feature is usually regarded as an advantage of the 

Bayesian approach. But in this particular model, the drawback of using the full dataset with 

imputed values is that it loses the power to detect the effect of school level covariates, which is 

the primary concern here. In order to better understand the relationship between gain score and 

school level covariates, the data loaded into the Bayesian model is not the full dataset, but the 

one that has been listwise deleted if a missing value is found in any of the variables: any student 

who has omitted a pretest or posttest, or skipped a response to the gender or attitude survey 
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question is excluded from the analysis.  Any instructor who has a no response to textbook used 

or teaching methods question is also removed from the dataset as well.   This gives a total of 928 

students from 33 schools for analysis. 

For comparison purpose, results from the full dataset with imputations will be briefly 

presented afterward the full analysis of cases with complete data, and the pros and cons of 

dataset choice will be discussed in next chapter. 

The data were cleaned and prepared in SAS and exported to text files. After that software 

R read the data from text files and transformed it into the format that can be loaded into 

WinBUGS program.   

Estimation 

In the simulation in the previous chapter the data is complete and balanced, that is to say 

each class has the same number of students. It is seldom the case in practice so the WinBUGS 

code had to be modified to accommodate this situation. An index variable for each student to 

identify his or her instructor was created. The details of the WinBUGS code for the combination 

model can be found in Appendix D.  

The priors of the four coefficients are all set to a noninformative normal distribution N(0, 

1), which means the possible values are centered on 0 with a deviation of 1. That pretty much 

reflects out prior knowledge of these coefficients: they could be positive or negative and they are 

not far away from 0 considering the scale of IRT scores for dependent variables.  

The priors for the residual variance at both student level and school level adopt Wishart 

distributions with 2 degree of freedom: 
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Those parameters in Wishart distribution are obtained from the traditional two-step 

method. It reflects the best guess we have on the distribution and turned out to be uninformative. 

The priors for these parameters are less important since neither the one-step Bayesian nor the 

two-step approach can recover these numbers well, as shown in the simulation results in the 

previous chapter.  

Results  

After the first 2000 iterations were discarded as burn-in, the rest of the 8000 iterations 

were used to calculate the posterior distribution of the parameters. The trace plot and the density 

plot are shown in Figure 4.1.   
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Figure 4.1 Trace plot and density plot of ME.ET parameters. Missing data were deleted 

listwise. 
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The chains passed the Heidelberger and Welch convergence diagnostic (see Table 4.1 ) 

and the results are listed in Table 4.2. 

Table 4.1 Heidelberger and Welch Diagnosis of ME.ET project model 

 

Heidelberger and Welch Diagnosis 

Stationary 

test 

Start 

iteration 
p-value 

Halfwidth 

test 
Mean Halfwidth 

β_attitude passed 1 0.326 passed 0.194 0.002 

β_female passed 1 0.169 passed -0.202 0.017 

β_method passed 1 0.360 passed 0.237 0.007 

β_textbook passed 801 0.136 passed 0.779 0.018 

Table 4.2 Covariates Effects estimated from Bayesian approach. 

 

MCMC posterior 

Mean SE 2.5% CI 97.5% CI 

β_attitude 0.194 0.029 0.139 0.250 

β_female -0.202 0.090 -0.368 -0.027 

β_method 0.237 0.069 0.106 0.381 

β_textbook 0.788 0.159 0.479 1.098 

       Note: 928 students from 33 schools in the dataset. 
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From the results we can see that teaching method and textbook used have a positive 

correlation with the class gain. On average, a class using a primary textbook has a gain that is 

0.79 point more than a class not doing so. The 95% credible interval (or Bayesian confidence 

interval) of textbook effect ranges from 0.48 to 1.10. An instructor who has one unit more on the 

teaching method scale is corresponding to 0.24 point more gain in his or her class. The 95% 

credible interval of teaching method effect is from 0.11 to 0.38. 

Also the results reveal the gender difference in the student scores. On average, a female 

student scores 0.20 lower than a male student according to the data.  That difference is bound 

line significant because the 95% credible interval (-0.37, -0.03) almost covers the 0.  As expected, 

a positive attitude towards math is correlated with a higher student score with a correlation point 

estimate of 0.2 and a 95% credible interval of (0.14, 0.25).  

Results if using full data with imputation 

As mentioned earlier, the Bayesian approach can accommodate missing values in the 

outcome variables naturally. Missing values in pretest, posttest, attitude survey or teaching 

method survey can be loaded into Bayesian model directly. So no special imputation was needed 

beforehand except for the independent variable female.  The missing values are imputed by a 

randomly generated number from Bernoulli distribution Β(0.9), where 0.9 is the proportion of 

females in the observed data. 

The same Bayesian model and MCMC computation applying on this full dataset 

generated somewhat different results (see Figure 4.2, Table 4.3 and Table 4.4). The major 

difference is that those textbook effect and teaching method effect are close to 0 and not 

significant any more. While the power of detecting school level effects dwindled, the accuracy of 
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student level effects had improved since there are more pretest data available for their estimation. 

From the numbers we can say that the full dataset reveals a bigger gender difference than the one 

with missing values list-wise deleted. 
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Figure 4.2 Trace plot and density plot of ME.ET project model parameters. Full dataset 

with imputation was used. 
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Table 4.3 Heidelberger and Welch diagnosis of ME.ET project model, full dataset used 

 

Heidelberger and Welch diagnosis  

Stationary 

test 

Start 

iteration 
p-value 

Halfwidth 

test 
Mean Halfwidth 

β_attitude passed 1 0.158 passed 0.172 0.001 

β_female passed 1 0.666 passed -0.320 0.013 

β_method passed 1 0.140 failed -0.030 0.005 

β_textbook passed 1 0.761 failed 0.088 0.016 

  

Table 4.4 Covariates Effects estimated from Bayesian approach, full dataset used 

 

MCMC posterior 

Mean SE 2.5% CI 97.5% CI 

β_attitude 0.172 0.025 0.123 0.222 

β_female -0.320 0.073 -0.467 -0.182 

β_method -0.030 0.045 -0.122 0.056 

β_textbook 0.088 0.106 -0.111 0.308 

                Note: 1706 students and 78 schools in the dataset. 
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Comparison of the listwise deleted sample and full sample 

There is not a huge difference in the statistics of the variables between the listwise 

deleted sample and full sample (see Table 5.5). For the two school level variables, method and 

textbook, of which the coefficient estimates are quite different in the two samples, their statistics 

are quite similar. So the sample bias at school level is not a major contributor to the different in 

the estimation of method effect and textbook effect. Imputation of the missing gain score seems 

to be the reason that reduces the power of detecting those two effects. 

But there is a noticeable difference in the pretest scores. The pretest score is lower in the 

full sample. The explanation is that the students are more likely to drop out if they did not do 

well in pretest. There is a potential selection bias in the listwise deleted sample. The correlation 

between pretest score and gain score is negative (-0.56), so the overall added value of the 

training programs could be underestimated because the participants who only have lower pretest 

scores are expected to have higher gain scores. However, it is not clear yet if the selection bias 

affects the estimation of school level effects such as method and textbook. Future investigations 

should pay attention to this issue.  



87 

 

Table 4.5 Statistics of the listwise deleted dataset and full dataset 

 

       Listwise deleted dataset      Full dataset 

 

N Mean SD N Mean SD 

Method 33 2.80 0.58 78 2.69 0.64 

Textbook 33 0.45 0.51 51 0.46 0.50 

Female 928 0.91 0.28 1560 0.90 2.28 

Attitude 928 3.70 0.54 1486 3.63 0.61 

Pretest 928 -0.58 1.00 1476 -0.65 1.01 

Posttest 928 0.34 1.16 1293 0.35 1.18 
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CHAPTER 5 CONCLUSIONS AND DISCUSSION 

Conclusions 

By investigating IRT score estimation error impact on multilevel value-added models, 

this study highlights one important but often overlooked issue. This study explored the IRT score 

error impact on regression models and evaluated how well the one-step Bayesian approach can 

solve this problem. The major findings indicate that IRT error impact is not ignorable and the 

one-step Bayesian approach is recommended to get a better estimation of parameters. 

It can be concluded from the simulation result that IRT score estimation error can cause 

biased coefficient estimates with the two-step approach. Not only does it attenuate the coefficient 

estimation when error is present in independent variables, but it also distorts the estimation when 

error is in dependent variables. Different IRT score estimates, i.e. Maximum Likelihood estimate 

vs. Bayesian Model estimate, leads to bias in different directions.  It can also be concluded that 

the larger the IRT score error, the more prominent the problem is. So when the test is less 

accurate, or there are only a small number of students to estimate the item parameters if they are 

unknown, the researchers should be cautious about the interpretation of relationships involving 

latent variables. On the other hand, the one-step Bayesian approach provides less biased and 

more efficient estimates of the regression coefficients. Overall one-step Bayesian has a better 

chance to reveal the true relationship between dependent and independent variables. 

The outcomes also confirmed that the correlation of student pretest and gain is hard to 

estimate for both the two-step and one-step approaches. Interpretations based on the estimations 

should not be taken seriously because they can easily be wrong. At the school level, the 

correlation between school mean pretest and gain was well recovered by the one-step Bayesian 
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approach.  Also the recovery of school gain variance is satisfactory under the one-step Bayesian, 

while it is not as acceptable with the two-step approach. The findings here suggest the two-step 

approach cannot do the job of estimating school added value well. It is possible that the one-step 

Bayesian approach, after further study and refinement, has potential for the task.  

Discussion 

The recovery of latent variable correlation coefficient 

In the simple regression simulation in chapter 2, IRT score from ML estimate and BM 

estimate have different influences on the regression coefficient recovery. Although the 

assumption is that the latent variable has a standard normal distribution, the obtained IRT scores 

might not follow it. The standard deviation of the ML estimate is larger than the standard 

deviation of the true θ, while that of the BM estimate is smaller (see Table 5.1).  

In chapter 2, the IRT scores are entered directly into regression model to estimate the 

regression coefficient. As shown in Table 5.1, the standard deviation of the obtained IRT scores 

is not 1, which means the regression coefficient is not a good estimator of the correlation 

coefficient. If it is to recover of correlation coefficient, the variables should be standardized. It 

turned out that the estimates of correlation coefficient are all negatively biased (see Table 5.2).  

The correlation of the IRT score with true θ is an indicator of the quality of θ recovery. 

BM estimate has a higher correlation with true θ than ML estimate does. The IRT score obtained 

from one-step Bayesian approach is the most accurate among the three estimates (see Table 5.1). 

The difference between θ variance and    variance could be one of reasons that cause the biased β 

estimation. Future studies on correction for IRT score error impact with two-step approach 

should take this into consideration.  
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Table 5.1 The standard deviation of IRT score estimates and their correlation with true θ 

   
 

 
   

 
 

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

True θ 
Maximum Likelihood 

(ML) estimate 

Bayesian Model 

(BM) estimate 

IRT score in one-step 

Bayesian approach 

SD SD 

Correlation 

with θ SD 

Correlation 

with θ SD 

Correlation 

with θ 

0.2 15 500 0.993 1.304 0.853 0.826 0.866 0.862 0.867 

  
1000 0.972 1.263 0.863 0.848 0.873 0.879 0.874 

 
25 500 1.006 1.198 0.915 0.875 0.918 0.905 0.919 

  
1000 0.940 1.169 0.910 0.894 0.915 0.926 0.915 

0.5 15 500 1.048 1.231 0.878 0.866 0.889 0.914 0.896 

  
1000 1.024 1.309 0.879 0.856 0.903 0.917 0.905 

 
25 500 0.989 1.150 0.924 0.893 0.929 0.935 0.931 

  
1000 1.025 1.184 0.909 0.891 0.925 0.948 0.928 

0.8 15 500 0.986 1.313 0.854 0.834 0.867 0.911 0.888 

  
1000 1.004 1.298 0.867 0.831 0.884 0.912 0.909 

 
25 500 1.000 1.198 0.905 0.880 0.916 0.944 0.927 

    1000 0.995 1.185 0.925 0.891 0.934 0.946 0.941 
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Table 5.2 The bias of correlation coefficient recovery (N = 100) 

   
 

 
   

 
 

Generating 

value of 

parameter 

  

Number 

of items 

Number 

of 

students 

Error in one variable  

(dependent variable or independent variable) 
Error in both variables  

ML estimate  BM estimate  ML estimate  BM estimate  

 
  

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

0.2 15 500 -0.030 0.053 -0.027 0.052 -0.052 0.068 -0.047 0.063 

  
1000 -0.026 0.039 -0.023 0.036 -0.051 0.059 -0.046 0.055 

 
25 500 -0.021 0.061 -0.019 0.061 -0.038 0.067 -0.035 0.067 

  
1000 -0.011 0.034 -0.010 0.033 -0.029 0.044 -0.026 0.041 

0.5 15 500 -0.082 0.089 -0.073 0.081 -0.142 0.147 -0.125 0.132 

  
1000 -0.071 0.076 -0.063 0.068 -0.133 0.136 -0.117 0.121 

 
25 500 -0.049 0.059 -0.043 0.054 -0.090 0.097 -0.081 0.088 

  
1000 -0.047 0.054 -0.042 0.050 -0.089 0.093 -0.079 0.084 

0.8 15 500 -0.112 0.115 -0.098 0.101 -0.213 0.216 -0.184 0.187 

  
1000 -0.115 0.117 -0.101 0.104 -0.210 0.212 -0.182 0.184 

 
25 500 -0.076 0.079 -0.068 0.072 -0.143 0.146 -0.125 0.128 

    1000 -0.072 0.073 -0.064 0.066 -0.136 0.138 -0.120 0.121 
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Sources of IRT score error 

Latent variables such as student achievement are subject to error. Several sources of 

measurement error can be identified from the simulation study. The first one is the IRT score 

estimation procedure. Different procedures, such as Maximum Likelihood (ML) and Bayesian 

Model (BM) produce different IRT scores. 

The second source of error is the sampling error with regard to subjects. When item 

parameters are unknown, the responses of the subjects, i.e. students etc, are used to estimate the 

item parameters. Whether these item parameters can be accurately estimated depends on whether 

the subjects sample is large enough. Generally speaking, larger samples produce better 

estimation of the item parameters which leads to more accurate latent trait estimation.   

The third source of error is the instrument error. Assuming that the items are valid in 

measuring the latent traits they are intended to measure, items still differ in their capacity to 

reveal the individual student difference. Students with different levels of latent trait have the 

chance to generate identical responses to a test. It is more likely to happen when the test is 

shorter and the items have less discriminating values. A longer test consisting of items with 

larger discriminating values is more likely to tell the students apart. This characteristic of a test 

can be described with the test information function. In general, a longer test has more 

information and less error in its estimated IRT score than a shorter one. 

Possibly there is a fourth source of error emerging from the latent trait instability. One 

subject answering one item correctly this time might give a wrong answer next time when the 

item discrimination parameters is not perfect. The test-retest inconsistency is the result of trait 

instability as well as item inaccuracy.  It is necessary to have test-retest data to estimate the 
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stability of the latent trait. The data structure of this study does not support the investigation of 

this source of error and thus it was not included in the investigation. The error associated with 

the trait instability should not be confused with the measurement error which is thought to be 

associated with items. 

Bayesian approach  

As demonstrated in this study, the Bayesian approach is truly remarkable in its flexibility 

to solve complex models and its performance on the recovery of regression coefficients.  The 

Bayesian approach is recommended for empirical study, but a few considerations should be 

mentioned in its application. 

The first concern is the recovery of the correlation between student pretest and gain.  The 

current Bayesian MCMC model code in this study still cannot recovery this parameter well.  

Further improvement should be made to better recover this parameter if it is important to answer 

a research question. 

The second concern is the treatment of missing values. Bayesian models can handle the 

missing values by default, but it is not always in the best interest of the research question. As 

shown in chapter 5, different strategies of treating missing values generate different conclusions. 

One should be careful about this when working with missing data.  

The third concern is model evaluation. In this study, it is assumed that the data fit the 

theory well. The conclusion from the study is valid on condition that the model describes the 

data perfectly. But in practice, whether the model fits the data is an open question. One should 

consider evaluating the model fit during the model building process. Model evaluation and 
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comparison should be carefully studied before any practical conclusion is drawn from the 

research. Further discussions on model evaluation can be found in Gill (2012). 
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Appendix A 

Item parameters in multilevel simulation 
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Table 6.1 Teaching method questionnaire item parameters 

Question                 a 

1 -2.378 -1.113 0.036 2.227 

2 -1.818 0.006 1.475 1.928 

3 -1.165 -0.081 1.936 1.473 

4 -2.423 -0.855 1.703 1.079 

5 -1.951 -0.665 1.163 2.742 

6 -2.567 -0.728 0.515 2.546 

7 -1.432 -0.028 0.955 4.251 

8 -1.930 -0.658 0.758 4.348 

9 -1.750 -0.246 0.661 2.123 

10 -1.483 0.226 1.843 1.410 

11 -1.697 0.500 2.638 1.584 

Note: The parameters are estimated from ME.ET project data. 
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Table 6.2 Student attitude questionnaire item parameters 

Question                    a 

A1 -3.463 -1.109 -0.110 3.033 0.905 

A3 -3.310 -1.242 -0.248 2.709 1.089 

A9 -3.121 -1.799 -1.313 0.803 2.386 

A13 -3.036 -1.760 -1.245 1.012 2.151 

A14 -4.391 -2.382 -1.000 2.027 1.452 

A17 -4.489 -2.569 -1.140 1.636 1.728 

A18 -4.014 -2.722 -1.078 1.348 1.761 

A20 -3.136 -1.670 -1.096 1.124 2.073 

A27 -1.824 -0.571 0.182 2.338 1.140 

Note: The item parameters are estimated based on ME.ET project data and used for the 

generation of simulation data. 

  



99 

 

Table 6.3  Student pretest and posttest item parameters 

Item ID a b Item ID a b 

1 1.05 -1.82 27 0.91 -1.05 

2 0.96 -1.70 28 0.65 0.23 

3 1.00 -1.65 29 0.70 0.34 

4 1.03 -2.19 30 1.12 -1.13 

5 0.72 -0.31 31 0.55 0.54 

6 0.98 -0.31 32 0.89 -2.54 

7 1.54 -1.17 33 0.68 1.73 

8 1.09 -1.15 34 0.92 -0.58 

9 0.63 -1.03 35 0.88 -0.86 

10 0.35 -1.03 36 0.87 -0.34 

11 0.56 0.33 37 0.60 0.92 

12 0.99 -1.09 38 1.50 0.28 

13 1.05 0.03 39 0.84 -0.30 

14 1.47 -0.63 40 0.77 -1.01 

15 0.70 -0.41 41 0.25 0.23 

16 0.92 -1.50 42 0.49 2.67 

17 0.75 -3.08 43 0.62 -0.59 

18 0.36 0.59 44 0.69 0.97 

19 0.44 -0.89 45 0.34 -1.54 

20 0.95 -0.16 46 0.68 -1.34 

21 0.72 -0.20 47 0.62 -0.92 

22 0.65 1.35 48 0.64 -0.93 

23 0.60 -0.63 49 0.67 0.61 

24 0.50 -1.63 50 0.60 1.80 

25 0.60 -0.77 51 0.53 0.12 

26 0.63 -1.16    

Note: Parameters are not estimated from ME.ET project data but from previous studies 

when the instrument was developed. 
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Appendix B 

BUGS code for the simple linear model in chapter 2 
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1.  When error present in dependent variables (dep.odc) 

Model  

{ 

 for  (j in 1 : n_stu) { 

for (k in 1 : n_item) { 

rs[j,k]~dbern(prob[j,k]) 

} 

} 

 for (n in 1:n_stu){ 

for (t in 1 : n_item) { 

logit(prob[n,t])<-ip[t,1]*(y[n]-ip[t,2]) 

} 

       } 

      for (n in 1:n_stu){ 

y[n]~dnorm(y.hat[n],r.tau)I(-5,5) 

             y.hat[n]<-x[n]*b 

} 

 r.tau<-1/(1-b*b) 

 b~dunif(-1,1) 

 for (t in 1 : n_item) { 

  ip[t,1]~dlnorm(0,0.5)I(0,3) 

  ip[t,2]~dnorm(0,1)I(-3,3) 

      } 

} # End of model  
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2. When error present in independent variables (pre.odc) 

Model  

{ 

for  (j in 1 : n_stu) { 

for (k in 1 : n_item) { 

   rs2[j,k]~dbern(prob[j,k]) 

  } 

} 

for (n in 1:n_stu){ 

  for (t in 1 : n_item) { 

   logit(prob[n,t])<-ip[t,1]*(x[n]-ip[t,2]) 

  } 

} 

for (nn in 1:n_stu){ 

 y[nn]~dnorm(y.hat[nn],r.tau)I(-5,5) 

  y.hat[nn]<-x[nn]*b 

  x[nn]~dnorm(0,1)I(-5,5) 

} 

 r.tau<-1/(1-b*b) 

b~dunif(-1,1) 

 for (tt in 1 : n_item) { 

  ip[tt,1]~dlnorm(0,0.5)I(0,3) 

  ip[tt,2]~dnorm(0,1)I(-3,3) 

       } 

}# End of model 

  



103 

 

3. When error present in both variables (both.odc) 

Model  

{ 

for  (j in 1 : n_stu) { 

  for (k in 1 : n_item) { 

   rs[j,k]~dbern(prob[j,k]) 

  } 

} 

 for  (j in 1 : n_stu2) { 

  for (k in 1 : n_item2) { 

   rs2[j,k]~dbern(prob2[j,k]) 

  } 

 } 

       for (n in 1:n_stu){ 

  for (t in 1 : n_item) { 

   logit(prob[n,t])<-ip[t,1]*(y[n]-ip[t,2]) 

  } 

 } 

 for (n in 1:n_stu2){ 

  for (t in 1 : n_item2) { 

   logit(prob2[n,t])<-ip2[t,1]*(x[n]-ip2[t,2]) 

  } 

 } 

for (nn in 1:n_stu){ 

 y[nn]~dnorm(y.hat[nn],r.tau)I(-5,5) 

 y.hat[nn]<-x[nn]*b 

 x[nn]~dnorm(0,1)I(-5,5) 
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} 

r.tau<-1/(1-b*b) 

 b~dunif(-1,1) 

 for (tt in 1 : n_item) { 

ip[tt,1]~dlnorm(0,0.5)I(0,3) 

  ip[tt,2]~dnorm(0,1)I(-3,3) 

 } 

 for (tt in 1 : n_item2) { 

  ip2[tt,1]~dlnorm(0,0.5)I(0,3) 

  ip2[tt,2]~dnorm(0,1)I(-3,3) 

 } 

}# End of model  
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Appendix C 

BUGS code for the multilevel value-added model in chapter 3 
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1. When error not present (hlmnome.odc) 

Model 

{   

for (m in 1:n.tch) { 

for (n in 1:n.stu){ 

# student level variance  

theta[m,n,1:2]~dmnorm(mu.x[m,n,1:2],Omega.x[,]) 

mu.x[m,n,2]<-tch[m,2] 

     mu.x[m,n,1]<-tch[m,1]+female2[m,n]*b.f+att2[m,n]*b.a      

      }  

 # bivariate Normal of teacher ini and gain     

  tch[m,1:2]~dmnorm(mu.tch.m[m,],Omega.tch[,]) 

    mu.tch.m[m,1]<-mu.tch[1] 

  mu.tch.m[m,2]<-mu.tch[2]+method[m]*b.m+text[m]*b.t    

 } 

 # class level variance  

 r.tch <- Sigma2.tch[1,2] / (sqrt(Sigma2.tch[1,1]) 

                         *sqrt(Sigma2.tch[2,2])) 

 sigma.tch[1]<-sqrt(Sigma2.tch[1,1]) 

 sigma.tch[2]<-sqrt(Sigma2.tch[2,2]) 

 Sigma2.tch[1:2,1:2] <-inverse(Omega.tch[,]) 

 Omega.tch[1:2,1:2]~ dwish(R[,],2) 

# student level variance 

 r.x <- Sigma2.x[1,2] / (sqrt(Sigma2.x[1,1]) 

                       *sqrt(Sigma2.x[2,2]))  

 sigma.x[1]<-sqrt(Sigma2.x[1,1]) 

 sigma.x[2]<-sqrt(Sigma2.x[2,2]) 
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 Sigma2.x[1:2,1:2] <-inverse(Omega.x[,])    

  Omega.x[1:2,1:2]~ dwish(Rx[,],2) 

 b.a~dnorm(0,1)                 # coefficient of attitude prior 

 b.f~dnorm(0,1)           # coefficient of female  prior 

 b.t~dnorm(0,1)                   # coefficient of textbook prior 

 b.m~dnorm(0,1)                 # coefficient of method  prior 

 mu.tch[1]~dnorm(0,1)         # class mean initial prior   

 mu.tch[2]~dnorm(0,1)          # class mean gain prior 

}# End of model   
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2. When error present in dependent variables (hlmdep.odc) 

Model 

{ 

for (i in 1 : n.tch) { 

  for  (j in 1 : n.stu) { 

   for (kpre in 1 : n.item.pre) { 

    rs.pre2[i,j,kpre]~dbern(prob.pre[i,j,kpre]) 

   } 

   for (kpost in 1 : n.item.post) { 

    rs.post2[i,j,kpost]~dbern(prob.post[i,j,kpost]) 

   } 

  }  

 } 

 for (m in 1:n.tch) { 

  for (n in 1:n.stu){ 

   for (tpre in 1 : n.item.pre) { 

    logit(prob.pre[m,n,tpre])<-ip[tpre,1]*(theta[m,n,1]-ip[tpre,2]) 

   } 

   for (tpost in 1 : n.item.post) { 

logit(prob.post[m,n,tpost])<-    

 

        ip2[tpost,1]*(theta[m,n,1]+theta[m,n,2]-ip2[tpost,2]) 

   } 

# student level variance  

   theta[m,n,1:2]~dmnorm(mu.x[m,n,1:2],Omega.x[,]) 

   mu.x[m,n,2]<-tch[m,2] 

     mu.x[m,n,1]<-tch[m,1]+female2[m,n]*b.f+att2[m,n]*b.a      

  } 
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# bivariate Normal of teacher ini and gain     

   tch[m,1:2]~dmnorm(mu.tch.m[m,],Omega.tch[,]) 

  mu.tch.m[m,1]<-mu.tch[1] 

  mu.tch.m[m,2]<-mu.tch[2]+method[m]*b.m+text[m]*b.t    

 } 

# class level variance  

    r.tch <- Sigma2.tch[1,2] / (sqrt(Sigma2.tch[1,1]) 

                                      *sqrt(Sigma2.tch[2,2])) 

    sigma.tch[1]<-sqrt(Sigma2.tch[1,1]) 

    sigma.tch[2]<-sqrt(Sigma2.tch[2,2]) 

    Sigma2.tch[1:2,1:2] <-inverse(Omega.tch[,]) 

    Omega.tch[1:2,1:2]~ dwish(R[,],2) 

# student level variance 

    r.x <- Sigma2.x[1,2] / (sqrt(Sigma2.x[1,1]) 

                                  *sqrt(Sigma2.x[2,2]))  

    sigma.x[1]<-sqrt(Sigma2.x[1,1]) 

    sigma.x[2]<-sqrt(Sigma2.x[2,2]) 

   Sigma2.x[1:2,1:2] <-inverse(Omega.x[,]) 

  Omega.x[1:2,1:2]~ dwish(Rx[,],2) 

  b.a~dnorm(0,1) 

  b.t~dnorm(0,1) 

  b.f~dnorm(0,1) 

  b.m~dnorm(0,1) 

  mu.tch[1]~dnorm(0,1)   # class mean initial  prior   

  mu.tch[2]~dnorm(0,1)   # class mean gain   prior 

 

}# End of Model 
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3. When errors present in independent variables (hlmpre.odc) 

Model 

{ 

 for (m in 1:n.tch) {     

  for (n in 1:n.stu){ 

# student level variance  

   theta[m,n,1:2]~dmnorm(mu.x[m,n,1:2],Omega.x[,]) 

   mu.x[m,n,2]<-tch[m,2] 

      mu.x[m,n,1]<-tch[m,1]+female2[m,n]*b.f+att[m,n]*b.a      

  }  

# bivariate Normal of teacher ini and gain     

  tch[m,1:2]~dmnorm(mu.tch.m[m,],Omega.tch[,]) 

  mu.tch.m[m,1]<-mu.tch[1] 

  mu.tch.m[m,2]<-mu.tch[2]+method[m]*b.m+text[m]*b.t    

 } 

# class level variance  

r.tch <- Sigma2.tch[1,2] / (sqrt(Sigma2.tch[1,1]) 

                         *sqrt(Sigma2.tch[2,2])) 

sigma.tch[1]<-sqrt(Sigma2.tch[1,1]) 

sigma.tch[2]<-sqrt(Sigma2.tch[2,2]) 

Sigma2.tch[1:2,1:2] <-inverse(Omega.tch[,]) 

Omega.tch[1:2,1:2]~ dwish(R[,],2) 

# student level variance 

r.x <- Sigma2.x[1,2] / (sqrt(Sigma2.x[1,1]) 

                       *sqrt(Sigma2.x[2,2]))  

sigma.x[1]<-sqrt(Sigma2.x[1,1]) 

sigma.x[2]<-sqrt(Sigma2.x[2,2]) 
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Sigma2.x[1:2,1:2] <-inverse(Omega.x[,])    

Omega.x[1:2,1:2]~ dwish(Rx[,],2) 

 b.a~dnorm(0,1)                   # coefficient of attitude prior 

 b.f~dnorm(0,1)         # coefficient of female  prior 

 b.t~dnorm(0,1)                    # coefficient of textbook prior 

 b.m~dnorm(0,1)                  # coefficient of method  prior 

 mu.tch[1]~dnorm(0,1)         # class mean initial prior   

 mu.tch[2]~dnorm(0,1)         # class mean gain prior 

# GRM attitude 

 for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {  

   for (j in 1:n.item.att) {  

    for (k in 1: (n.cat.att[j]-1)) {  

     p.att[i,i2,j,k] <- 1 / (1+exp(-ip.att[j,5]*(att[i,i2]-ip.att[j,k])))  

    }  

   }  

  }  

 } 

 for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {   

   for (j in 1:n.item.att) {  

    pcat.att[i,i2,j,1] <- 1-p.att[i,i2,j,1]  

    for (k in 2: (n.cat.att[j]-1)){  

     pcat.att[i,i2,j,k] <- p.att[i,i2,j,k-1]-p.att[i,i2,j,k]  

    }  

   pcat.att[i,i2,j,n.cat.att[j]] <- p.att[i,i2,j,(n.cat.att[j]-1)]  

   }  



112 

 

  }  

 } 

 for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {   

   for (j in 1:n.item.att) {  

    for (k in 1:n.cat.att[j]) {  

     pc.att[i,i2,j,k] <- pcat.att[i,i2,j,k] / sum( pcat.att[i,i2,j, 

1:n.cat.att[j]] )  

    }  

    rs.att2[i,i2,j]~dcat(pc.att[i,i2,j,1:n.cat.att[j]])  

   }  

  }  

 } 

# item attitude prior 

 for (j in 1:n.item.att) {  

  ip.att[j,5]~dlnorm(0,0.5)I(0,5)  

  ip.att[j,1]~dunif(-5,5)    

  for (k in 2: (n.cat.att[j]-1)) {  

   ip.att[j,k]~dunif(ip.att[j,k-1],5) 

  }  

 } 

# student attitude prior 

 for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {   

   att[i,i2]~dnorm(0,1)I(-4,4)  

  } 

 } 

# GRM method 
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 for (i in 1:n.tch) {  

  for (j in 1:n.item.method) {  

   for (k in 1: (n.cat[j]-1)) {  

    p[i,j,k] <- 1 / (1+exp(-ip.tch[j,4]*(method[i]-ip.tch[j,k])))  

   }  

  }  

 }  

 for (i in 1:n.tch) {  

  for (j in 1:n.item.method) {  

   pcat[i,j,1] <- 1-p[i,j,1]  

   for (k in 2: (n.cat[j]-1)){  

    pcat[i,j,k] <- p[i,j,k-1]-p[i,j,k]  

   }  

   pcat[i,j,n.cat[j]] <- p[i,j,(n.cat[j]-1)]  

  }  

 }  

 for (i in 1:n.tch) {  

  for (j in 1:n.item.method) {  

   for (k in 1:n.cat[j]) {  

    pc[i,j,k] <- pcat[i,j,k] / sum( pcat[i,j, 1:n.cat[j]] )  

   }  

   rs.tch[i,j]~dcat(pc[i,j,1:n.cat[j]])  

  }  

 } 

# method items prior 

 for (j in 1:n.item.method) {  

  ip.tch[j,4]~dlnorm(0,0.5)I(0,5)  
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  ip.tch[j,1]~dunif(-5,5)    

  for (k in 2: (n.cat[j]-1)) {  

   ip.tch[j,k]~dunif(ip.tch[j,k-1],5) 

  }  

 } 

# teacher method prior 

 for (i in 1:n.tch) {  

method[i]~dnorm(0,1)I(-4,4)    

 } 

}# End of Model 
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4. When errors present in both dependent and independent variables (hlmboth.odc) 

Model 

{ 

# Student Responses 

for (i in 1 : n.tch) { 

for  (j in 1 : n.stu) { 

  # Pretest 

   for (kpre in 1 : n.item.pre) { 

    rs.pre2[i,j,kpre]~dbern(prob.pre[i,j,kpre]) 

   } 

  #Posttest 

   for (kpost in 1 : n.item.post) { 

    rs.post2[i,j,kpost]~dbern(prob.post[i,j,kpost]) 

   } 

  }  

 } 

   

# GRM student attitude 

for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {  

   for (j in 1:n.item.att) {  

    for (k in 1: (n.cat.att[j]-1)) {  

     p.att[i,i2,j,k] <- 1 / (1+exp(-ip.att[j,5]*(att[i,i2]-ip.att[j,k])))  

    }  

   }  

   }  

 } 
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 for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {   

   for (j in 1:n.item.att) {  

    pcat.att[i,i2,j,1] <- 1-p.att[i,i2,j,1]  

    for (k in 2: (n.cat.att[j]-1)){  

     pcat.att[i,i2,j,k] <- p.att[i,i2,j,k-1]-p.att[i,i2,j,k]  

    }  

    pcat.att[i,i2,j,n.cat.att[j]] <- p.att[i,i2,j,(n.cat.att[j]-1)]  

   }  

   }  

 } 

 for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {   

   for (j in 1:n.item.att) {  

    for (k in 1:n.cat.att[j]) {  

pc.att[i,i2,j,k] <- pcat.att[i,i2,j,k] / sum( pcat.att[i,i2,j,  

    1:n.cat.att[j]] )  

    }  

    rs.att2[i,i2,j]~dcat(pc.att[i,i2,j,1:n.cat.att[j]])  

   }  

  }  

 } 

# item attitude prior 

for (j in 1:n.item.att) {  

  ip.att[j,5]~dlnorm(0,0.5)I(0,5)  

  ip.att[j,1]~dunif(-5,5)    

  for (k in 2: (n.cat.att[j]-1)) {  
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   ip.att[j,k]~dunif(ip.att[j,k-1],5) 

  }  

} 

# student attitude prior 

 for (i in 1:n.tch) {  

  for (i2 in 1:n.stu) {   

   att[i,i2]~dnorm(0,1)I(-4,4)  

  } 

 }  

# GRM teacher method 

 for (i in 1:n.tch) {  

  for (j in 1:n.item.method) {  

   for (k in 1: (n.cat[j]-1)) {  

    p[i,j,k] <- 1 / (1+exp(-ip.tch[j,4]*(method[i]-ip.tch[j,k])))  

   }  

  }  

 }  

 for (i in 1:n.tch) {  

  for (j in 1:n.item.method) {  

   pcat[i,j,1] <- 1-p[i,j,1]  

   for (k in 2: (n.cat[j]-1)){  

    pcat[i,j,k] <- p[i,j,k-1]-p[i,j,k]  

   }  

    pcat[i,j,n.cat[j]] <- p[i,j,(n.cat[j]-1)]  

  }  

 }  

 for (i in 1:n.tch) {  
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  for (j in 1:n.item.method) {  

   for (k in 1:n.cat[j]) {  

    pc[i,j,k] <- pcat[i,j,k] / sum( pcat[i,j, 1:n.cat[j]] )  

   }  

   rs.tch[i,j]~dcat(pc[i,j,1:n.cat[j]])  

  }  

 } 

# method items prior 

 for (j in 1:n.item.method) {  

  ip.tch[j,4]~dlnorm(0,0.5)I(0,5)  

  ip.tch[j,1]~dunif(-5,5)    

  for (k in 2: (n.cat[j]-1)) {  

   ip.tch[j,k]~dunif(ip.tch[j,k-1],5) 

    }  

 } 

# teacher method prior 

 for (i in 1:n.tch) {  

        method[i]~dnorm(0,1)I(-4,4)    

 }   

# Student latent achievement theta 

for (m in 1:n.tch) { 

     for (n in 1:n.stu){ 

   for (tpre in 1 : n.item.pre) { 

    logit(prob.pre[m,n,tpre])<-ip[tpre,1]*(theta[m,n,1]-ip[tpre,2]) 

   } 

   for (tpost in 1 : n.item.post) { 

    logit(prob.post[m,n,tpost])<- 
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ip2[tpost,1]*(theta[m,n,1]+theta[m,n,2]-ip2[tpost,2]) 

   } 

# student level variance 

theta[m,n,1:2]~dmnorm(mu.x[m,n,1:2],Omega.x[,]) 

mu.x[m,n,1]<-stu[m,n]    # Student expected initial status  

mu.x[m,n,2]<-tch[m,2]    # Student expected gain 

stu[m,n]<-tch[m,1]+female2[m,n]*b.f+att[m,n]*b.a 

}  

# bivariate Normal of teacher ini and gain     

  tch[m,1:2]~dmnorm(mu.tch.m[m,],Omega.tch[,]) 

     mu.tch.m[m,1]<-mu.tch[1] 

     mu.tch.m[m,2]<-mu.tch[2]+method[m]*b.m+text[m]*b.t    

   } 

   

# class level prior and   

       r.tch <- Sigma2.tch[1,2] / (sqrt(Sigma2.tch[1,1]) 

                          *sqrt(Sigma2.tch[2,2])) 

   sigma.tch[1]<-sqrt(Sigma2.tch[1,1]) 

   sigma.tch[2]<-sqrt(Sigma2.tch[2,2]) 

   Sigma2.tch[1:2,1:2] <-inverse(Omega.tch[,]) 

 Omega.tch[1:2,1:2]~ dwish(R[,],2) 

# student level variance 

   r.x <- Sigma2.x[1,2] / (sqrt(Sigma2.x[1,1]) 

                          *sqrt(Sigma2.x[2,2]))  

   sigma.x[1]<-sqrt(Sigma2.x[1,1]) 

   sigma.x[2]<-sqrt(Sigma2.x[2,2]) 

   Sigma2.x[1:2,1:2] <-inverse(Omega.x[,])    
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  Omega.x[1:2,1:2]~ dwish(Rx[,],2) 

# coefficients priors  #debug priors from normal to uniform 

b.a~dnorm(0,1)                    # coefficient of attitude prior 

 b.f~dnorm(0,1)           # coefficient of female  prior 

 b.t~dnorm(0,1)                     # coefficient of textbook prior 

 b.m~dnorm(0,1)                   # coefficient of method  prior 

 mu.tch[1]~dnorm(0,1)          # class mean initial prior      

 mu.tch[2]~dnorm(0,1)          # class mean gain prior 

} # End of model 
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Appendix D    

BUGS code for ME.ET project model in chapter 5  
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Model 

{# Class/instructor level variance   

for (m in 1:n.ins){  

  # bivariate Normal of teacher ini and gain     

tch[m,1:2]~dmnorm(mu.tch.m[m,1:2],Omega.tch[,]) 

mu.tch.m[m,1]<-mu.tch[1]                                       

#mu.tch.m is a temperary variable 

mu.tch.m[m,2]<-mu.tch[2] +text[m,1]*b.t+method[m]*b.m 

}    

#Class teaching method GRM  

 for (i in 1:n.tch) {  

for (j in 1:n.item.method) {  

for (k in 1: (n.cat[j]-1)) {  

    p[i,j,k] <- 1 / (1+exp(-ip.tch[j,4]*(method[i]-ip.tch[j,k])))  

   }  

  }  

 }  

for (i in 1:n.tch) {  

  for (j in 1:n.item.method) {  

   pcat[i,j,1] <- 1-p[i,j,1]  

   for (k in 2: (n.cat[j]-1)){  

    pcat[i,j,k] <- p[i,j,k-1]-p[i,j,k]  

   }  

   pcat[i,j,n.cat[j]] <- p[i,j,(n.cat[j]-1)]  

  }  

 }  
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 for (i in 1:n.tch) {  

  for (j in 1:n.item.method) {  

   for (k in 1:n.cat[j]) {  

    pc[i,j,k] <- pcat[i,j,k] / sum( pcat[i,j, 1:n.cat[j]] )  

   }  

  rs.tch[i,j]~dcat(pc[i,j,1:n.cat[j]])  

  }  

 

 } 

# method items prior 

 for (j in 1:n.item.method) {  

  ip.tch[j,4]~dlnorm(0,0.5)I(0,5)  

  ip.tch[j,1]~dunif(-5,5)    

  for (k in 2: (n.cat[j]-1)) {  

   ip.tch[j,k]~dunif(ip.tch[j,k-1],5) 

    }  

 } 

# teacher method prior 

 for (i in 1:n.tch) {  

        method[i]~dnorm(0,1)I(-4,4)    

 }   

# class level variance  

 r.tch <- Sigma2.tch[1,2] / (sqrt(Sigma2.tch[1,1]) 

                        *sqrt(Sigma2.tch[2,2])) 

 sigma.tch[1]<-sqrt(Sigma2.tch[1,1]) 

 sigma.tch[2]<-sqrt(Sigma2.tch[2,2]) 

 Sigma2.tch[1:2,1:2] <-inverse(Omega.tch[,]) 
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 Omega.tch[1:2,1:2]~ dwish(R[,],2) 

# student/level pretest and posttest  

 for  (j in 1 : n.stu) { 

  for (k in 1 : n.item) { 

   rs.pre[j,k]~dbern(prob.pre[j,k]) 

   rs.post[j,k]~dbern(prob.post[j,k])      

  } 

 }  

  

 for (n in 1:n.stu){ 

  for (t in 1 : n.item) { 

   logit(prob.pre[n,t])<-ip[t,1]*(theta[n,1]-ip[t,2]) 

   logit(prob.post[n,t])<-ip[t,1]*(theta[n,1]+theta[n,2]-ip[t,2]) 

  } 

  theta[n,1:2]~dmnorm(mu.x[n,1:2],Omega.x[,]) 

  mu.x[n,1]<-tch[ins[n,1],1] + female[n,1]*b.f + att[n]*b.a 

  mu.x[n,2]<-tch[ins[n,1],2]  

 }  

# GRM student attitude 

  for (i2 in 1:n.stu) {  

  for (j in 1:n.item.att) {  

   for (k in 1: (n.cat.att[j]-1)) {  

    p.att[i2,j,k] <- 1 / (1+exp(-ip.att[j,5]*(att[i2]-ip.att[j,k])))  

   }  

  }  

  }  

  for (i2 in 1:n.stu) {   
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  for (j in 1:n.item.att) {  

   pcat.att[i2,j,1] <- 1-p.att[i2,j,1]  

   for (k in 2: (n.cat.att[j]-1)){  

    pcat.att[i2,j,k] <- p.att[i2,j,k-1]-p.att[i2,j,k]  

   }  

   pcat.att[i2,j,n.cat.att[j]] <- p.att[i2,j,(n.cat.att[j]-1)]  

  }  

  }  

  for (i2 in 1:n.stu) {   

  for (j in 1:n.item.att) {  

   for (k in 1:n.cat.att[j]) {  

    pc.att[i2,j,k] <- pcat.att[i2,j,k] / sum( pcat.att[i2,j, 1:n.cat.att[j]] )  

   }  

  rs.att[i2,j]~dcat(pc.att[i2,j,1:n.cat.att[j]])  

  }  

  }  

# item attitude prior 

 for (j in 1:n.item.att) {  

  ip.att[j,5]~dlnorm(0,0.5)I(0,5)  

  ip.att[j,1]~dunif(-5,5)    

  for (k in 2: (n.cat.att[j]-1)) {  

   ip.att[j,k]~dunif(ip.att[j,k-1],5) 

  }  

 } 

# student attitude prior 

 for (i2 in 1:n.stu) {   

  att[i2]~dnorm(0,1)I(-4,4)  
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 } 

# student level variance 

 r.stu <- Sigma2.x[1,2] / (sqrt(Sigma2.x[1,1]) 

                        *sqrt(Sigma2.x[2,2]))  

 sigma.x[1]<-sqrt(Sigma2.x[1,1]) 

 sigma.x[2]<-sqrt(Sigma2.x[2,2]) 

 Sigma2.x[1:2,1:2] <-inverse(Omega.x[,]) 

 Omega.x[1:2,1:2]~ dwish(Rx[,],2)     

# coefficients 

 b.f~dnorm(0,1) 

 b.t~dnorm(0,1) 

 b.m~dnorm(0,1) 

 b.a~dnorm(0,1)  

 mu.tch[1]~dnorm(0,1)             # class mean initial  prior   

 mu.tch[2]~dnorm(0,1)             # class mean gain    prior 

}# End of ME.ET project model 
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