A STUDY OF MULTIPLE BOAT OWNERSHIP IN MICHIGAN

Thesis for the Degree of M. S.
MICHIGAN STATE UNIVERSITY
RONALD KAISER
1970

111.831**3**

3 1293 10252 7649

APR 1 0 1996

ABSTRACT

A STUDY OF MULTIPLE BOAT OWNERSHIP IN MICHIGAN

Ву

Ronald Kaiser

This study is a portion of a much wider investigation of recreational boating demand being conducted for the Michigan Department of Natural Resources. The objectives of the study are to estimate and determine first; the number of unregistered boats owned by multiple boat owners; and second the number of multiple boat owners in Michigan; and third the factors which are connected with multiple boat ownership. The study was further designed to explore the usefulness of these factors in predicting future multiple boat ownership patterns.

A sample of 21,764 registered boat owners was drawn from a list of registered boat owners supplied by the Michigan Secretary of State's Office. The sample was stratified by county and also by length of registered boats and was selected on a random basis.

A detailed questionnaire was distributed to the boat owners in the sample. The questionnaire design requested information regarding (1) type and size of boats and motors used by boaters in the state; (2) boat storage, transportation methods and launching sites; (3) boating use during the 1968 season for different water bodies; (1) frequency

e de la companya de la co

and type of use on the various water bodies; (5) origin and destination patterns; (6) numbers of boats owned; and (7) socio-economic characteristics of the boaters.

The data was expanded from survey sample information to statewide estimates by expressing the sample parameter as a percentage of population parameter data. The factors hypothesized as being connected with multiple boat ownership were tested by linear regression analysis.

Analysis of the data indicates that nearly 60 percent of the respondents owned only one boat and 10 percent of the respondents were multiple boat owners. The incidence of multiple boat ownership among registered boat owners appears to be greater in the northern counties of Michigan, while the greatest numbers of multiple boat owners are located in the southern, urban, counties of Michigan. A similar trend can be noted for the incidence and number of unregistered boats and owners.

The characteristics of multiple boat ownership identified as being significant, within specified levels, were age, income, education, and occupation of boat owners.

Although significant, these parameters did not account for a great deal of variation around the mean of the dependent variable.

A STUDY OF MULTIPLE BOAT OWNERSHIP IN MICHIGAN

Ву

Ronald Kaiser

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Park and Recreation Resources

G 6515

ACKNOWL EDGMENTS

I wish to express my sincere appreciation to all who have assisted me with the preparation of this thesis.

I particularly wish to thank Dr. Michael Chubb, my academic advisor and thesis chairman, for his patience, encouragement, and guidance during this study. Special thanks also go to Mr. Paul Fiske, Project Leader of the 1968 Boating Needs Survey, from which this thesis was derived, for his many helpful suggestions and criticisms during this investigation.

Also, I wish to thank Professor Louis Twardzik,
Chairman of the Department of Park and Recreation Resources, for his guidance and suggestions throughout my
Masters Program.

I wish to thank the staff of the Recreation Research and Planning Unit for their major contribution on the coding and data preparation of the survey information.

Lastly, I wish to acknowledge the assistance of my wife, Derlene. If it were not for her patience and understanding, this thesis would have not been possible.

TABLE OF CONTENTS

ACKNOWL	EDGMENTS	
LIST OF	TABLES	
LIST OF	ILLUSTRATIONS	
Chapter		Page
I.	INTRODUCTION	1
	Boating Growth Statement of Problem Hypothesis Definitions Significance of the Study Review of Literature	
II.	STUDY DESIGN	10
	Methods of Survey Research Advantages of Mailed Questionnaire Disadvantages of Mailed Questionnaire Design of the Questionnaire Question Type and Order Coding of the Data Sampling Procedures Evaluation of Bias Study Limitations	
III.	DATA ANALYSIS	27
	Income of Respondents Occupation of Respondents Education of Respondents Boats Owned by Multiple Boat Owners Distribution of Multiple Boat Ownershi Size and Distribution of Unregistered Fleet	מב

Chapter		Page
IV.	HYPOTHESIS TEST	44
	Analysis and Results Statistical Model Procedures and Results Interpretation of Results	
V.	CONCLUSIONS AND RECOMMENDATIONS	50
	Conclusions Recommendations	
APPENDI	CES	
Appendi	x	
Α.	Michigan Recreational Boating Needs Questionnaire	55
В.	County Breakdown of Mailed and Returned Sample	62
С.	Number of Multiple Boat Owners and Types of Boats Owned by County of Returned Sample	67
D.	Expansion Estimates of Unregistered and Multiple Boat Ownership	6 9
E.	Statistics on Transformed Variables	714
F.	County Identification Code	78
BIBLIOG	RAPHY	7 9

ř	
. >>	
·	

LIST OF TABLES

Table		Page
1.	Sample Selections and Returns - 1966 Boating Needs Survey	21
2.	Sample Selections and Returns - 1968 Boating Needs Survey	21
3.	Study Design for Control Test of Survey Bias	24
4.	Distribution of Respondents to 1968 Michigan Boating Needs Survey by Income Categories	28
5.	Distribution of Respondents to Mich- igan Outdoor Recreation Demand Study- Boating Survey-by Family Income Cate- gories	29
6.	Percentage Distribution of Respondents to 1964 and 1968 Studies by Family Income Categories	29
7.	Distribution by Income Categories of Respondents Owning Two or More Boats to the 1968 Michigan Boating Needs Survey and a Comparison with the Total Distribution of Respondents to the Survey	31
8.	Occupations of Boaters Responding to the 1968 Michigan Boating Needs Survey	33
9.	Distribution of Respondents to 1968 Michigan Boating Needs Survey by Educational Classes and Comparison with the Distribution of Respondents	
	to the M.O.R.D.S. Boating Survey	٦٢

Table		Page
10.	A Comparison of Greatest Percent Distribution of Multiple Boat Owners with Greatest Numerical Distribution of Multiple Boat Owners in Michigan by Counties of Residence	3 8
11.	A Comparison of Greatest Percent Distribution of Unregistered Boat Owners with Greatest Numerical Distribution of Unregistered Boat Owners in Michigan by Counties of Residence	38

LIST OF FIGURES

Figure		Page
1.	Percentage Distribution of Multiple Boat Owners by County as Reported by Re- spondents to the 1968 Michigan Rec- reation Boating Needs Survey	3 9
2.	Numerical Distribution of Multiple Boat Owners by County as Reported by Re- spondents to the 1968 Michigan Rec- reation Boating Needs Survey	40
3.	Number of Registered Boats by County as Reported by the Michigan Secretary of State	41
4.	Percentage Distribution of Unregistered Boats by County as Reported by Respondents to the 1968 Michigan Recreation Boating Needs Survey	42
5.	Number of Unregistered Boats by County as Reported by Respondents to the 1968 Michigan Recreation Boating Needs Survey	113

CHAPTER T

INTRODUCTION

Boating Growth

The growth of recreational boating in the United States and in Michigan has been phenomenal. In the 14 year period from 1950 to 1964, the number of recreational watercraft in the U.S. increased by nearly 120 percent. The number of people boating has also increased. More than 41 million Americans went boating in 1967 compared to 38.5 million in 1964, an increase of 11 percent in the 3 year period. The State of Michigan has experienced a similar trend and ranks in the top five states in the country in boat registrations and percentage of the total marine products market. Several factors have played a significant role in the growth of recreational boating as they have in the case of many other recreational activities.

National Association of Engine and Boat Manufacturers, and Outboard Boating Club of America, Boating 1964 - A Statistical Report on America's Top Family Sport, New York:
National Association of Engine and Boat Manufacturers, and Outboard Boating Club of America, 1965, p. 8.

²Boating Industry Association, The Marine Market (Chicago: Boating Industry Association, Annual Market Research Notebook, 1967) p. 43.

The increase in disposable income in the United States and Michigan undoubtedly accounts for a portion of this in-The amount of discresionary time periods are increasing as the length of the work week decreases and the paid vacations and holidays increase. Changes in desires and preferences at the societal and cultural level are in-This is one of the areas where assumptions are volved. usually made that have little quantitative justification. This preference level change is partially indicated by the shift to family-oriented outdoor recreation characterized by large investments in convenience and comfort facilities for family groups. Technological advances in the boating industry and better marketing techniques have facilitated distribution of boats to a large segment of the population. The unique water resources of Michigan have also been a factor in this boating explosion. These are some of the interrelated factors which apparently account for part of this increase, along with other more numerous minor factors.

As both the number of people participating in boating activities and participation rates in terms of hours per user per year increase, the demand for more access sites, launching ramps, docking facilities, and marinas correspondingly increases. Providing for this demand is a difficult problem compounded by the embryonic stages of the statewide planning process. Basic data on recreational boating still is at a minimum with only two statewide

surveys of boating use being made up to this present study.

These were the Michigan Outdoor Recreation Demand Study,

1964 Recreation Boating Survey; and the 1966 Boating

Needs Survey of the Michigan Waterways Commission.

Statement of Problem

Cognizant of the need for current, basic, statewide data, the Waterways Commission of the Michigan Department of Natural Resources requested that the Recreation Research and Planning Unit, Department of Park and Recreation Resources, Michigan State University, undertake a new study of Michigan's recreational boating needs. This study was designed to provide data for RECSYS-SYMAP, a computer simulation model for statewide comprehensive planning. The overall project was divided into four phases. The gathering of data was the first phase. The computer simulation was another phase. An analysis of transportation methods and selected characteristics of owners transporting boats was the third. Lastly, an attempt was made to determine the characteristics of multiple boat owners and formulate a

Michigan State University, Department of Resource Development, Michigan Outdoor Recreation Demand Study (Lansing, Michigan: State Resource Planning Program, Michigan Department of Commerce, June 1966) Vol. II.

Department of Conservation, Waterways Division, Transportation Predictive Procedures: Recreational Boating and Commercial Shipping (Lansing, Michigan, Department of Commerce, April 1967, Technical Report No. 9c).

.

predictive model for multiple boat ownership.

Two basic objectives guided the research on the fourth phase of the study: first, a need to estimate the number of unregistered boats owned by multiple boat owners and secondly, a desire to determine the factors which are connected with multiple boat ownership and explore their usefulness in predicting future multiple boat ownership patterns.

Hypothesis

The hypothesis of this study is that multiple boat ownership is positively related to selected socio-economic characteristics of boat owners and to the supply of boating opportunities. The independent socio-economic variables considered are: income, age, education, occupation, and family size. The supply of boating opportunities is defined, for the purpose of this study, as the amount of inland water per county plus the amount of Great Lakes water per county, if applicable, considered safe for the majority of boats under 20 feet in length.

The hypothesis expressed mathematically is:

$$Y_{i} = b_{o} + b_{1}x_{1j} + b_{2}x_{2j} = \cdots + b_{n}x_{nj} + E.$$

Where: Y_i is the observed dependent variable, multiple boat ownership.

x_{lj} is the observed independent variables: socio-economic characteristics and supply of boating opportunity.

b is the constant, the point where the line intersects the x-axis.

E is the observation of the random error term.

Definitions

The following are definitions of terms used in this study:

registered boat: (owner) The Michigan Legislature in 1958 enacted a law requiring all boats that are propelled by auxiliary mechanical power and operated on waters of the State be registered with the Michigan Secretary of State.

legally unregistered boats: Boats not powered by mechanical means but by oars or sail does not legally require registration. Often in this classification are boats that legally should be but for some reason are not registered. In this study, unregistered boats refers to legally unregistered boats.

multiple boat owner: A person owning two or more boats.

Significance of the Study

One of the goals of the study is to derive an estimate of the number of unregistered boats in Michigan owned
by registered boat owners. Since the study was based on
data from a sample of registered boat owners, this number
will be only an approximation. The owners of many unregistered watercraft were not included in the sample;

however, since some boat owners owned both a registered boat and an unregistered boat, some relevant data was gathered from this sample. This data on unregistered watercraft owned by registered boat owners will be expanded to provide information on the probable number of unregistered watercraft per county and then expanded to give statewide estimates.

The data from this study will not yield any information on the amount of boating done in these unregistered boats. This was one of the constraints of the study questionnaire in that information on the use of a specific registered boat was sought. Data on the use of additional boats was not gathered. In an analysis of the 1965 boating survey, Chubb indicated that a controlled use of judgment was used in estimating that unregistered boats amount to some 15 percent of the total number of registered boats in each county and that they received two-thirds as much use as registered boats.

Although use figures for unregistered boats are not yet available, a more accurate estimate of the ratio of unregistered to registered boats per county can be obtained from this study. This information could be utilized for an estimation of boat use periods. The resultant use estimates could be used as input to the

Inchael Chubb, Outdoor Recreation Planning in Michigan by a Systems Analysis Approach: Part III - The Practical Application of "Program RECSYS" and "SYMAP" (Lansing, Michigan: State Resource Planning Program, Michigan Department of Commerce, December 1967, Technical Report No. 12), p. 129.

RECSYS-SYMAP simulation in the statewide comprehensive planning process, a major objective of the investigation presently being done by the Recreation Research and Planning Unit for the Waterways Commission.

The provision of data for the comprehensive planning of recreation is one of the goals of the survey. Hope-fully this study will prompt further investigation of the characteristics of people owning more than one boat and the implications for planning boating facilities.

Review of Literature

The fact that the planning of statewide recreational boating facilities and related research in Michigan is in its infancy is illustrated by the limited amount of information concerning this topic. The boating chapter of the Michigan Outdoor Recreation Demand Study (MORDS) was the first general appraisal of recreational boating in Michigan. The study found that 28 percent of the sample respondents were multiple boat owners and that 16 percent of all the respondents owned one or more unregistered boats. This figure was then applied to the 1965 estimated total registered boat population of 398,902 and resulted in the estimate that these registered boat owners

¹Further discussion of the scope of the MORDS Recreational Boating Study can be found on page 10.3 of that report.

²Michigan State University, Department of Resource Development, Michigan Outdoor Recreation Demand Study, Vol. II, p. 10.11-10.12.

registration. Only the percentage of respondents with one or more unregistered boats in the total statewide MORDS sample of registered boat owners was calculated. The report gave no breakdown of unregistered boat owners ship on a county basis.

The second study of recreational boating in Michigan was the 1966 Boating Needs Survey by the Waterways Commission of the Michigan Department of Conservation. This study was similar to the MORDS Survey in that it only reported the overall statewide percentage of multiple boat owners. However, it was significant and different in that it asked the respondents to list how many watercraft they owned. Analysis of these data indicated that 65 percent of the respondents owned only one boat and 35 percent of the respondents owned two or more craft. The findings of the two studies are similar; however, the 1966 study includes more unregistered craft and therefore higher multiple boat ownership.

Each of these studies reported percentage of multiple boat ownership but neither attempted to relate the characteristics or develop a possible predictive method for

¹Chubb, Outdoor Recreation Planning in Michigan by a System Analysis Approach, p. 129

²The Michigan Department of Conservation was renamed the Michigan Department of Natural Resources in 1968.

³Department of Conservation, Waterways Division, Transportation Predictive Procedures, p. 27.

determining multiple boat ownership. The present study will be focused on these aspects of multiple boat ownership and also on a more detailed estimate of unregistered watercraft on a county basis.

CHAPTER II

STUDY DESIGN

Methods of Survey Research

One of the basic functions of recreation planning is the forecasting of probable future recreational demand. To be able to relate the distribution of magnitude of future demand for recreational boating requires basic data regarding:

- (1) Participation rates.
- (2) Distribution and extent of current demand.
- (3) Socio-economic characteristics of users.
- (4) Use (purpose, type and amount of use.)
- (5) Relevant resource supply data.

When information such as this is gathered over a period of time, use trends become evident and can be utilized in forecasting future demand. Gathering this data is one of the principle purposes of recreation survey research.

A variety of methods can be employed for survey research. The more common methods used by recreation researchers are: (1) observation, (2) personal interviews, and (3) self-administered questionnaires. Each method has different requirements and yields different

advantages and disadvantages of each method is given by Crapo and Chubb. The scope of each method and information desired should be carefully considered with regard to the research situation, before a method is selected. Consideration should be given to:

- (1) The type of information desired.
- (2) Characteristics of desired information.
- (3) The administrative framework within which the research is to be attempted. (The amount of funding, staff level and competence, and time period available for data collection and analysis should be evaluated.)
- (4) Alternatives or method combinations should be included in the decision process.²

Based upon these considerations and previous studies, the mailed questionnaire was the survey method decided upon by staff of the Waterways Division and the Recreation Research and Planning Unit. The study objectives required information that could be supplied only by the boaters after the boating season, thus eliminating the handout and early mail methods. Time and funding constraints precluded the use of observation and personal interview

louglas Crapo and Michael Chubb, Department of Park and Recreation Resources, Recreation Research and Planning Unit, Recreation Area Day-Use Investigation Techniques. (East Lansing, Michigan: Technical Report No. 6, April, 1969), Chapter II.

²<u>Ibid.</u>, p. 9-10.

••

methods. The mailed questionnaire had certain advantages and disadvantages for this study.

Advantages and Disadvantages of the Delayed Mailed Questionnaire

This method of survey research had these advantages for this study compared to those previously mentioned:

- (1) It allowed a larger, more statistically reliable sample to be drawn.
- (2) Stratified sampling could be readily adopted by this method.
- (3) The geographically scattered sample population could be easily reached.
- (4) Semi-skilled staff could handle the administrative duties in the preparation of the cuestionnaire for mailing.
- (5) In-depth questions regarding boating use could be answered by the respondent after consulting with other members of the boating group.
- (6) Respondents believe that their answers will remain anonymous.

This method also had disadvantages, the most important of which are:

(1) There were problems of recalling data. (The questionnaire requested data from the respondent concerning the 1968 boating season but was not mailed until the start of the 1969 season.)

•

of the state of t

. 1

- (2) Lower response rates, unless follow-ups are conducted. (Short questionnaires usually have better rates of return, while the longer in-depth questionnaires have lower rates.)
- (3) The answers to mailed questionnaires normally have to be accepted as final. (There is no opportunity to probe beyond the given answer or to clarify an ambiguous one.)
- (4) Follow-ups for non-respondents were not possible due to the large sampling size which would require a complicated checking system beyond the budget of the study. The decisions as to the type of survey method will be discussed in a later publication of the Recreation Research and Planning Unit.
- (5) Mailed questionnaires are often exposed to different types of bias resulting from: (a) the respondents' misunderstanding of the questions, resentment of interference in their personal affairs, or falsification for reasons connected with the subject of the survey; and (b) non-response to the questionnaire, which raises the problem of differences between respondents and non-respondents in the characteristics under investigation.²

¹C. A. Moser, Survey Methods in Social Investigation (London: Heinemans Educational Books Limited, 1958), p. 177.

²M. A. El-Badry, "A Sampling Procedure for Mailed Questionnaires," <u>Journal of the American Statistical</u> Association LI (1956) p. 209-227.

and the second of the second o

F and the second seco

The problem of low response rates and the possible resulting bias was the biggest disadvantage. The methods used to evaluate the extent of this bias will be discussed in a later section of this chapter, entitled "Evaluation of Bias".

Design of the Questionnaire

The design of the questionnaire was based on the objectives of the survey. The primary purpose, as explained in previous sections, was to provide basic data to be used in state recreation planning. The basic data needed to fulfill the objectives concerned: types and size of boats and motors used by boaters in the state; boat storage, transportation, and launching; actual use during the 1968 season for different water bodies - inland or Great Lakes; frequency and type of use on the various water bodies; origin and destination patterns; in-state use by out-of-state boaters and out-of-state use by in-state boaters; boat ownership and socio-economic characteristics of state boaters.

The questionnaire and cover letter used for the 1968 Michigan Boating Needs Survey appears in Appendix A. The development of this design was a cooperative effort of the Recreation Research and Planning Unit and the Waterways staff and will be reported in detail in forthcoming publications of the Unit.

Question Type and Order

The arrangement and order of questions in a survey has an effect on response. The type of question - openended, precoded, or fixed alternative - yields a certain type of answer. Jackson found that response rates for fixed alternative questions were higher than for openended questions. The staff of the 1968 study recognized these and other factors in the construction of the questionnaire.

The majority of the questions in the survey were fixed alternative or closed. Selltiz found that where the possible alternative replies are known and limited in number, the questions are more efficient. The order of the questions proceeded from easily answered closed type to the more in-depth fixed alternative to the closed type regarding personal information.

The initial questions concerned type of power system and horsepower of the boat, where it was registered, where it was kept during the boating season and the method and frequency of transport of the boat. These questions were basically of the closed type. The first in-depth, fixed alternative question, concerning the county where the boat

Robert Jackson, "Differential Value of the Mailed Questionnaire and the Interview in a Follow-up Study of High School Graduates," Unpublished Ph.D. Dissertation, University of Wisconsin, 1959, p. 110.

²Claire Selltiz, et.al., Research Methods in Social Relations, (New York: Holt, Rinehart, and Winston, 1967), p. 262.

was launched from most and the type of facility used, was also on the first page. This question was designed to provide data for an analysis of boating destinations.

The second and third pages of the questionnaire asked for information concerning boating on inland lakes, Great Lakes, and out-of-state. The question regarding boating on inland and Great Lakes also asked the county and the activities, expressed in boating days, of most use. This was to determine the destinations for boat use on inland and Great Lakes waters and the types of boating activities and total boating use period on these waters, for use in later RECSYS-SYMAP simulation. The question regarding out-of-state boating furnishes data for analysis on the amount of out-of-state use generated by in-state boaters.

The following pages of the questionnaire contained fixed alternative and closed questions requesting information on boat ownership, origin of the boater, and socioeconomic characteristics. The previous Michigan boating studies indicated a sizeable percentage of boat owners owned more than one boat. The question regarding boat ownership was designed to provide data for analysis on the number of multiple boat owners in Michigan and the number of unregistered boats owned by these boaters.

The question regarding place of permanent residence and zip code is structured to provide information on the origins of boaters in the state. The socio-economic

characteristics of the boaters made up the final question asked of the respondent. The question asked information regarding age and sex of head of family and each member. size of family, occupation, family income, and education.

Coding of the Data

The data from the questionnaire was coded on mark sense optical scan forms. These forms were designed so that the information could be taken directly from the questionnaires and placed on the forms. The need to precode questions was significantly reduced by this procedure. The forms were then run through optical scanning equipment which transferred the information to computer punch cards.

Equipment limitations and questionnaire length necessitated the use of five mark sense forms and punch cards for each questionnaire. The specific data coded on each form from the questionnaire is as follows:

- Form I. 1. Type and horsepower of the boat.
 - 2. County where boats were registered and location of boat during the boating season.
 - 3. Method and frequency of transporting the boat.
 - 14. Use of the boat outside Michigan location.
 - 5. Number of boats owned.
 - 6. Length of boat.
- Form II. 1. County where boat was launched the most.
 - 2. Type of facility where launched.

- 3. Other counties of uses and facilities used for launching.
- Form III. 1. Use of boat on Great Lakes.
 - 2. County of use.
 - 3. Activities boat was used for.
 - 4. Number of days the boat was used on each activity.
 - 5. Total days of boating on the Great Lakes.
- Form IV. 1. Information on use of the boat on inland waters same information as on Form III, only dealing with inland waters.
- Form V. 1. County of residence of boater.
 - 2. Zip code.
 - 3. Socio-economic data.

The data cards punched by the optical scanner were then run through an IBM 407 Accounting Machine in order to obtain a listing that could be checked for errors. The errors were corrected so that the data deck information was the same as the information on the questionnaire. This procedure was used as a quality control check on the accuracy of the coding process and the coders. The data was then programmed for analysis on Michigan State University's CDC 3600 computer.

Sampling Procedures

The sample procedures of the two previous boating surveys in Michigan were studied. The 1966 study had advantages over the MORDS survey in that the sample was larger and was stratified by boat length as well as by

county. The MORDS Boating Survey stratified the sample only by county; 3 percent of boaters in each county were sampled.

The sample size for the 1968 study was determined by experience with the sample size and procedures of the 1966 Boating Needs Survey and by budgetary constraints. The latter eliminated the use of follow-up reminders to the respondents on the original questionnaire. Indications from the two previous studies and other sources were that a 38 percent response rate could be expected without the use of follow-up procedures. Realizing the limitations of the response rate in attempting to obtain 5.000 to 6,000 usable questionnaires, the Research Unit's statistician recommended a sample size of 21.764.

The Waterways Commission requested detailed information by boat length which necessitated stratifying the sample. The use of stratification, as indicated by Cochran, is a common technique and if intelligently used will nearly always result in a smaller variance for the estimated mean or total than is given by a comparable simple random sample. Two other major considerations dictated the use of a stratified random sample: (1) The small number of boats in the over-20-feet class

¹Michigan State University, Department of Resource Development, <u>Demand Study</u>, Vol. II, p. 10.7.

William Cochran, Sampling Techniques (New York: John Wiley & Sons, Inc., 1953). p. 76.

compared to the entire registered boat population. (Boats over 20 feet in length numbered 24,068 out of the total population of 438,017 registered boats according to the Secretary of State's Office. Complete random sampling would not yield adequate representation of boats over 20 feet in length.) (2) All the counties should be included in the sample, but some counties with a small number of registered boats would not be adequately represented in a simple random sample.

Relying on data concerning response rates for the 1966 study, the desirable stratified sample size for boats over 20 feet was determined to be approximately 10 percent of the total population or 2.406 out of 24,068 boats. Boats under 20 feet in length required a stratified random sample size of approximately 5 percent of the total population or 20,700 out of 413,949 registered boats. Problems in transferring registration tape information from one of the computer systems utilized by the Secretary of State's Office to the CDC 3600 used by Michigan State University resulted in some sample mortality. The final mailed sample contained 2,296 in the over 20 feet boat length strata and 19,468 in the under-20 strata, a relatively small loss.

The sample was also stratified by counties. In each county 10 percent of the registered boats over 20 feet and 5 percent of the registered boats under 20 feet were sampled. A detailed county breakdown of the mailed sample is contained in Appendix B.

The stratified sample was in fact a stratified random sample. Once the strata were determined, the computer was programmed to fill the sample cells by a random selection process. The following tables indicate the sample selections and returns from the 1966 Boating Needs Study and from this study. The response rate was approxi-

TABLE 1
SAMPLE SELECTIONS AND RETURNS 1966 BOATING NEEDS SURVEY

Boat Size Class	No. of Regist. Boats	No. Ques. Mailed	No. of Usable Returns	% Usable Returns
20' or less	337,763	9444	3,643	38.6
Over 20'	21,139	J. 226	1,575	37.3
TOTAL	398,902	13670	5,218	38.1

^aDepartment of Conservation. Waterways Commission. Transportation Predictive Procedures, p. 19.

mately as anticipated with 5,647 questionnaires returned or a 25.9 percent response rate.

TABLE 2

1968 BOATING NEEDS SURVEY SAMPLE SELECTIONS AND RETURNS

Boat Size Class	No. of Reg. Boats	No. Ques. Mailed	No. of Ret Used In Analysis	t. % Usable Returns	Ret. Used In Socio- Econ. Anal.
20' or less	413,949	19,468	5,049	25.9	4,376
20' and over	24,068	2,296	598	26.0	1,39
TOTAL	438,017	21,764	5,647	2 5.9	4,815

The discrepancy between number of returns used in socio-economic analysis and returns in the final analysis (columns 6 and 4 in Table 2) resulted from funding constraints and administrative organization. The counties of Wayne, Kent, and Macomb were represented by large numbers of returned questionnaires and to code all these returns was beyond the initial means of the Unit's staff and budget. These county returns were randomly sub-sampled and a smaller number were coded and run through the computer for analysis. At a later date, the remaining questionnaires were coded and utilized in the final analysis.

Evaluation of Bias

Designing a questionnaire to limit the extent of bias resulting from respondents' misunderstanding of the question is a difficult procedure, complicated by the human nature of the respondents. One of the more important sources of possible bias is non-response. Non-response in most cases arises from differences in the characteristics under investigation between respondents and non-respondents. Moser found that the greater the extent to which non-respondents differ from those who respond, the greater will be the bias from non-response.

Increasing the rate of response is the best method to reduce this possible source of bias. Crapo and Chubb

¹ Moser, Survey Methods in Social Investigation, p. 128.

discuss the techniques by which this can be accomplished. The problem of non-response bias could be eliminated entirely by obtaining 100 percent returns but then the study changes from a survey to a census. Even then, the achievement of "bias-free responses" from questionnaires and interviews is not certain.

It should not be inferred that survey research is of no value due to possible bias from non-response. Moser is emphatic on this point: "it would be wrong to imply that non-response vitiates the scientific nature of sampling. Mail surveys included, it is usually possible to keep non-response down to a reasonable level and to estimate roughly what biasing effect it may have on the results."

This 1968 Boat Needs Survey study design, recognizing the low response rates of mailed questionnaires without follow-ups, attempted to estimate not only the bias effect of non-response but also the possible bias introduced by misunderstanding of questions in the questionnaire by the respondents. A follow-up study design was formulated using the interview method of research as a control. Three

¹ Crapo and Chubb, Recreation Area Day-Use Investigation Techniques, p. 27-31.

²Elwood Schafer, A Comparison of Four Survey Techniques Used in Outdoor Recreation Research. Unpublished Ph.D. Dissertation, Department of Forestry, Syracuse University, 1967, p. 13.

Moser, Survey Methods in Social Investigation, p. 127.

.

counties were selected as the control group: Ingham county because of its urban orientation and Grand Traverse and Leelanau counties because of their supply of boating opportunity. The initial design called for a total of 200 interviews: 100 from Ingham county, of which 75 were non-respondents and 25 respondents; and 100 total from Grand Traverse and Leelanau, of which 75 were non-respondents and 25 respondents. The original design was altered after a consideration of the budget and staff. The following table illustrates the number of interviews used as a control in the final design.

TABLE 3

ACTUAL SAMPLE FOR TEST OF SURVEY BIAS

County	Interviews of Non-respondents	Interviews of Respondents	
Ingham	3/4	13	
Grand Traverse	36	20	
Leelanau	15	2	
TOTAL	85	35	

The program for the study analysis was used on the control portion of the survey. This output was then analyzed for any gross biasing effects. The analysis was comparative in nature in that the results of the control for bias were matched with the original analysis to determine if there was a percentage difference between the figures. The findings of this analysis indicated that the percentage difference was minor.

Study Limitations

The limitations of the data from the questionnaire survey when used for the present study fall into two areas. The first area of limitation is in the structure of the questionnaire itself; and the second is in the survey sample.

The respondents (registered boat owners) were asked to list any other registered and unregistered boats owned by them or members of their immediate family. The question did not ask the respondent to specifically identify his unregistered boats but only to list any additional boats owned. This complicated the procedure used to identify registered and unregistered boats. After review of a number of the returned questionnaires, it was decided that any of the boats listed in response to this question that did not have a motor listed would be classified as unregistered. This is in accord with the definition of an unregistered boat expressed in Chapter 1 and with the requirements of the Secretary of State's Office regarding boat registration in Michigan.

The question of use generated by these additional boats was not included in the questionnaire. More precise data on the use of these boats would be helpful in reducing human judgments for the input data in the RECSYS SYMAP computer simulation. Data on activities and destinations of these boats would also increase the reliability of the information yielded by this method.

A limitation of the sample is the inclusion of only registered boat owners. The sample, compiled from data furnished by the Secretary of State's Office which contained only registered boat owners and is the only record on boat owners in Michigan. The computations of the present study, therefore, can only be based on this sample. The implication is that the total number of unregistered boats in the state cannot be accurately estimated since some unregistered boat owners do not own a registered boat, however, the total number of unregistered boats owned by registered boat owners can be estimated which will obviously be less than the size of the total unregistered boat fleet.

This partial data is useful for statewide planning in that it provides information, limited as it may be, for a more complete understanding of boating than if it were ignored. It also provides for estimation of unregistered boats on a county basis rather than the crude estimates used in the 1966 running of the computer model.

These limitations should not seriously invalidate the findings of this study. It will provide data to fill the information vacuum currently existing in statewide planning and will hopefully be used in that manner.

l <u>Supra</u>, p. 129.

CHAPTER III

DATA ANALYSIS

INTRODUCTION

The next two chapters will be devoted to an analysis of the information gathered by the survey. Chapter III will involve an analysis of selected characteristics of boat owners. The presentation of material in this chapter will be in the following sequence: (1) Characteristics of single and multiple boat owners, (2) Analysis of the types of boats owned by multiple boat owners, (3) Distribution of multiple boat owners, and (4) Size and distribution of the unregistered boat fleet in Michigan. Chapter IV will involve the analysis of the determinants of multiple boat ownership; more specifically, it will be a description of the hypothesis testing procedures.

Characteristics of Single and Multiple Boat Owners

The income, age, and education characteristics of the respondents will be analyzed and compared with similar characteristics of the 1964 Boating Survey.

This will be a crude type of comparison for respondent

¹Michigan State University, Department of Resource Development, Demand Study, Vol. II, p. 10.8-10.11.

characteristics. Chapter IV will deal with the more specific relationships between characteristics.

Income of Respondents

The distribution of respondents by income categories is reported in Table 4. The majority of respondents (63.6 percent) fall in the total family income range of \$8,000 to \$24,999. The majority of respondents under the \$8,000 range have total family incomes from \$3,000 to \$7,999.

TABLE 4

DISTRIBUTION OF 1968 MICHIGAN BOATING NEEDS SURVEY
RESPONDENTS BY INCOME CATEGORIES

Total Family Income	Number	Percent
Under \$3,000 \$3,000 - 4,999 \$5,000 - 7,999 \$8,000 - 9,999 \$10,000 - 14,999 \$15,000 - 24,999 \$25,000 and over	230 446 598 688 1,390 729 328	5.2 10.2 13.6 15.6 31.5 16.5 7.4
TOTAL	4,409	100.0

In comparing this distribution to the income distribution observed in the 1964 MORDS Boating Survey, (Table 5) a dissimilar distribution is evident.

TABLE 5

DISTRIBUTION OF 1964 MICHIGAN OUTDOOR RECREATION
DEMAND STUDY BOATING SURVEY RESPONDENTS BY FAMILY
INCOME CATEGORIES

Total Family Income	Number	Percent
Under \$3,000 \$3,000 - 5,999 \$6,000 - 7,999 \$8,000 - 9,999 \$10,000 - 14,999 \$15,000 and over	168 500 754 634 810 142	14.9 14.7 22.1 20.1 21.7 13.2
TOTAL	3,405	100.0

^aMichigan State University, Department of Resource Development, Demand Study, Vol. II, p. 10.1.

The major distribution differences are illustrated in Table 6. Closer scrutiny is complicated by the lack of uniformity in classifying income ranges in the two studies.

TABLE 6

PERCENTAGE DISTRIBUTION OF RESPONDENTS TO 1964

AND 1968 STUDIES BY FAMILY INCOME CATEGORIES

Total Family Income	1964 Percentage	1968 Percentage
Under \$3,000 \$3,000 - 7,999 \$8,000 - 9,999 \$10,000 - 14,999 \$15,000 and over	11.9 36.8 20.11 21.7 13.2	5.2 23.8 15.6 31.5 23.2
TOTAL	100.0	100.0

It is the contention of this author that this dissimilar distribution can be explained by two major factors.

(1) the different sampling techniques used in the surveys,
and (2) the time periods (4 years) between the two surveys
in which total family incomes increased.

The MORDS Boating Survey employed a randomly selected sample of boat owners. This sample was stratified by county but not by boat length. (For planning purposes in Michigan, boats are divided into two major classifications: those over 20 feet in length and those 20 feet or under in length.) Those boats over 20 feet in length comprise a smaller proportion of the total population than those 20 feet and under. The significance of this is that a random sample of all the boats would not yield an adequate response from the boat class over 20 feet in length. Other studies have found that income is closely related to the type of boat owned. The implication of this is that respondents with higher incomes own longer, more expensive boats; and that because of the random sampling methods employed by the MORDS Boating Survey, these boaters were not adequately sampled. Hence. lower numbers and percentages of respondents. Even if there is no major difference in response rates between income levels, as illustrated by the percent response by boat sizes in Tables 2, the numerical distribution of respondents will be less in those boat size classes and income classes. Therefore, as implied from Cochran,

a smaller variance for the estimated mean or total, in this case respondents by income distribution, than a comparable random sample.

Although no quantitative figures could be produced by this author relating to the increase of family incomes in the time period between the two surveys, it is intuitive that this has occurred.

A major part of this study is to determine the characteristics of multiple boat owners. The following table indicates the distribution of multiple boat owners by income categories in relation to the distribution of all respondents.

TABLE 7

DISTRIBUTION OF RESPONDENTS OWNING TWO OR MORE BOATS TO THE 1968 MICHIGAN BOATING NEEDS SURVEY BY INCOME CATEGORIES AND A COMPARISON WITH THE TOTAL DISTRIBUTION OF RESPONDENTS TO THE SURVEY

Distribution of Multiple Boat Owners All Respondents					
Total Family Income	Number	Percent	Number	Percent	
Under \$3,000 \$3,000 - 4,999 \$5,000 - 7,999 \$8,000 - 9,999 \$10,000 - 14,999 \$15,000 - 24,999 \$25,000 and over	76 183 226 266 602 380 197	3.9 9.5 11.7 13.8 31.2 19.7	230 Աև6 598 688 1,390 729 328	5.2 10.1 13.6 15.6 31.5 16.5 7.4	
TOTAL	1,930	100.0	11,1109	100.0	

¹Supra, p. 76.

The basic percentage distribution between the two is similar. The distribution for multiple boat owners above \$15,000 is higher (29.9 percent) than the distribution for all respondents (23.9 percent). The distribution of multiple boat owners under \$10,000 is less (38.9 percent) than the total for all respondents (44.5 percent). The greatest incidence of M.B.O. was in the \$10,000 - 14,999 income range, as was the distribution of all respondents.

Occupation of Respondents

The respondents were originally classified into 18 occupational categories; however, many of these categories contained a small number of respondents and were reclassified into the categories listed in Table 8.

The figures in this table show that nearly 60 percent of the respondents were employed in the professional or technical occupations. Of this percent, the skilled crafts category accounted for nearly 50 percent, or 26 percent of the total for all respondents. The second and third most indicated occupations were managerial and professional respectively, and the retiree category had a high proportion at 13.8 percent. The farm (1.7 percent) and service (4.6 percent) groups had very low indications.

The occupational distribution of multiple boat owners was almost identical with that for the total distribution of the respondent population. The two categories which differed by more than 3 percent were skilled craftsmen and managers (including elected officials.) The

DISTRIBUTION OF RESPONDENTS BY OCCUPATIONAL CATEGORIES TO THE 1968 MICHIGAN BOATING NEEDS SURVEY

Distribution of	Multiple	Boat Owners	All Respondents	
Occupation	Number	Percent	Number	Percent
Professional Farmers Managerial Sales & Clerical Skilled Crafts Operative Service Labor Housewife Retired Other Refused	321 22 121 150 141 129 77 13 7271 13 35	16.6 1.2 21.8 7.7 22.9 6.7 1.0 .7	687 75 791 335 1,119 325 201 31 13 606 111 82	15.6 1.7 18.0 7.6 26.0 7.1 1.6 .7 .3 13.8 2.1 1.9
TOTAL	1,930	100.0	11,1109	100.0

Occupational classes were derived from U. S. Census classifications.

distribution of multiple boat owners in the skilled crafts group was 3 percent less than in the same category for all respondents. In the managerial group, the distribution of multiple boat owners (21.8 percent) was almost 4 percent more than in the same category for all respondents.

These minor percentage variations are not particularly significant when the entire range is considered. Overall, the two distributions are similar. A conclusion of the MORDS which seems equally applicable in this case is that:

the average incomes associated with

the different occupation groups appear to affect the extent that these groups are represented among boat owners. I

A comparison of occupational distributions between the two studies would be misleading because of the lack of definition of competence making up the MORDS occupational classifications.

Education of Respondents

In general, the educational attainment of boat owners responding to this survey does not vary significantly from that of the MORDS. The lack of uniformity between the two classification systems makes a more detailed comparison impossible. The educational classifications of the MORDS were 13-15 years and 16 plus, whereas this survey had the classifications indicated in Table 9.

The general trend of the two surveys, however, are substantiated by the results as indicated in Table 9.

In general, the author concludes that the findings of this survey with regard to socio-economic characteristics of registered boat owners are representative of the Michigan boating population because of the comparisons with the findings of the MORDS Boating Survey.

Michigan State University, Department of Resource Development, Demand Study, p. 10.11.

TABLE 9

DISTRIBUTION OF MICHIGAN BOATING NEEDS RESPONDENTS SURVEY BY EDUCATIONAL CLASSES AND COMPARISON WITH THE DISTRIBUTION OF RESPONDENTS TO MORDS SURVEY⁸

Education	% Distribution of Resp. to MBN Survey	% Distribution of Resp. to MORDS Survey
1-5 6-8	7.7	
6-8 9-12	10.7 116.8	10.0 47.6
13-16	211.11	23.9
17+	10.11	18.5
TOTAL	100.0	100.0

^aMichigan State University, Department of Resource Development, Demand Study, Vol. II, p. 10.21-10.22.

Boats Owned By Multiple Boat Owners

The previous studies of boating in Michigan have indicated percentages of multiple boat ownership but have neglected to show the types of boats owned as second, third, or fourth boats. The findings of the current survey with regard to types of boats owned by multiple boat owners in Michigan are presented in Appendix C.

The boats were classified into the following types: inboards, outboards, sailboats, canoes, inboard-outboards, rowboats, and others. The 2,300 Michigan multiple boat owners in the sample owned a total of 4,562 additional

lnboard-outboards are boats with the engine contained in the boat, not mounted on the transom, with a drive system resembling in appearance an outboard system.

boats. The outboard type was most frequently listed. closely followed by the inboard. Outboards number 1690 and inboards 1520 for a total of 3210 or 70 percent of the boats owned by multiple boat owners. Sailboats, cances. inboard-outboards, rowboats, and others comprise the remaining 30 percent of boats owned. One possible problem with the use of these findings is that these boats listed as additional may not be the primary boat in terms of boat The survey requested that the respondents provide information on boat use for the boat identified by registration number and length. (This information was on the address label of the questionnaire.) This problem may not be significant if we accept the assumption that the boats in the sample are unbiased representation of the boating fleet.

Distribution of Multiple Boat Ownership

The survey sample information was expanded by a ratio method to statewide data concerning response rate ratios, number of multiple boat owners per county, and the percent of registered boat owners with unregistered watercraft. The expanded county and statewide information can be found in Appendix D.

The percent distribution of multiple boat ownership to total boat ownership is illustrated by Figure 1 on page 39.

¹ Expansion method explained in Appendix D.

There appears to be no specific trend; however, a higher percentage of multiple boat ownership is indicated for the counties in the northern lower peninsula of Michigan. This could be misleading if one assumes that the greatest number of multiple boat owners are in this region. Actually, the opposite is true: the gross number of multiple boat owners is highest in the urbanized counties of Michigan due to the greater number of boat owners in those counties. Table 10 and Figure 2 on page 40, illustrates this trend. These counties may have a lower percentage of multiple boat ownership, but because of the large numbers of registered boats the number of multiple boat owners is also larger.

Size and Distribution of the Unregistered Boating Fleet

This estimation is based upon a sample of registered boat owners and as such is probably an underestimate of the total unregistered boat population of Michigan.

The statewide projections for the number of unregistered boats by county are illustrated in Appendix D. The percent distribution of unregistered boat owners per county and the number of unregistered boats per county by quintiles are illustrated by the Figures 4 and 5 on pages 42 and 43. A comparison of percentage and numerical distribution of unregistered boats by counties is illustrated in Table 11.

TABLE 10

A COMPARISON OF GREATEST PERCENT DISTRIBUTION OF MULTIPLE BOAT OWNERS WITH GREATEST NUMERICAL DISTRIBUTION OF MULTIPLE BOAT OWNERS IN MICHIGAN BY COUNTIES OF RESIDENCE

Counties with Greatest No. of Regist. Boats		Counties with Greatest % of MBO	Counties with Greatest No. of MBO			
County	Number	County	Percent	County	Number	
Wayne Oakland Kent Genesee Macomb Ingham Kalamazoo Jackson Saginaw Muskegon	68,405 36,922 24,087 23,409 22,279 13,351 11,793 10,280 10,108 8,882	Cass Mackinac Gladwin Emmet Crawford Alcona Baraga Presque Is: Delta Otsego	77 69 69 68 67 66 61 ₄ 10 63 62 60	Wayne Oakland Kent Genesee Macomb Ingham Kalamazoo Cass Jackson Saginaw	23,91,1 14,797 11,329 10,065 6,684 6,542 5,668 5,270 4,523 4,144	

TABLE 11

A COMPARISON OF GREATEST PERCENT DISTRIBUTION OF UNREGISTERED BOAT OWNERS WITH GREATEST NUMERICAL DISTRIBUTION OF UNREGISTERED BOAT OWNERS IN MICHIGAN BY COUNTIES OF RESIDENCE

Counties with Greatest No. of Regist. Boats		Greatest % of		Counties with Greatest No. of Unregist. Boats	
County	Number	County	Percen	t County	Number
Wayne Oakland Kent Genesee Macomb	68,405 36,992 24,087 23,409 22,279	Kalkaska Mackinaw Manistee Crawford Emmet	35	Wayne Oakland Kent Genesee Ingham	8,209 5,179 4,095 3,227 1,870
Ingham Kalamazoo Jackson Saginaw Muskegon	13,351 11,793 10,280 10,108 8,882	Lapeer Presque Lake Wexford Benzie	23	Muskegon Saginaw Kalamazoo Ottawa Berrien	1,776 1,617

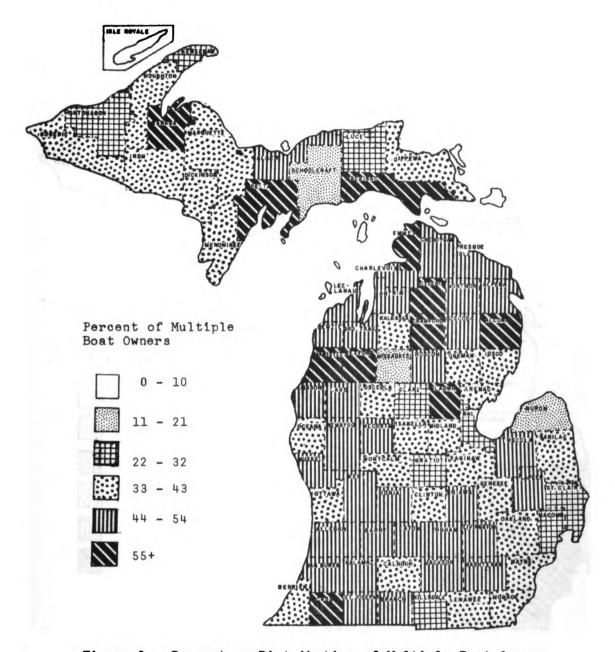


Figure 1.--Percentage Distribution of Multiple Boat Owners by County as Reported by Respondents to the 1968 Michigan Recreation Boating Needs Survey

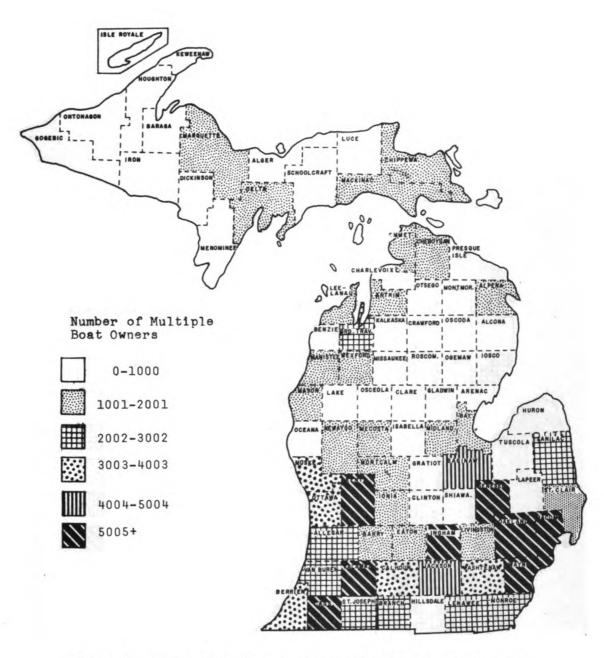


Figure 2.--Numerical Distribution of Multiple Boat Owners by County as Reported by Respondents to the 1968 Michigan Recreation Boating Needs Survey

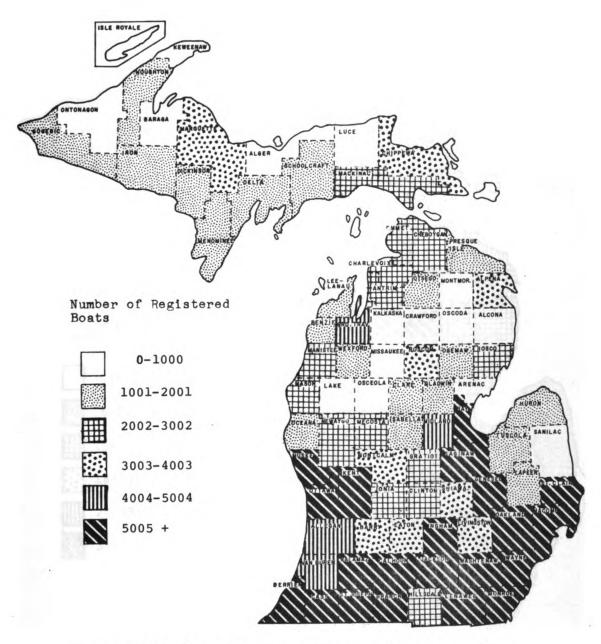


Figure 3.--Number of Registered Boats by County as Reported by Respondents to the 1968 Michigan Recreation Boating Needs Survey

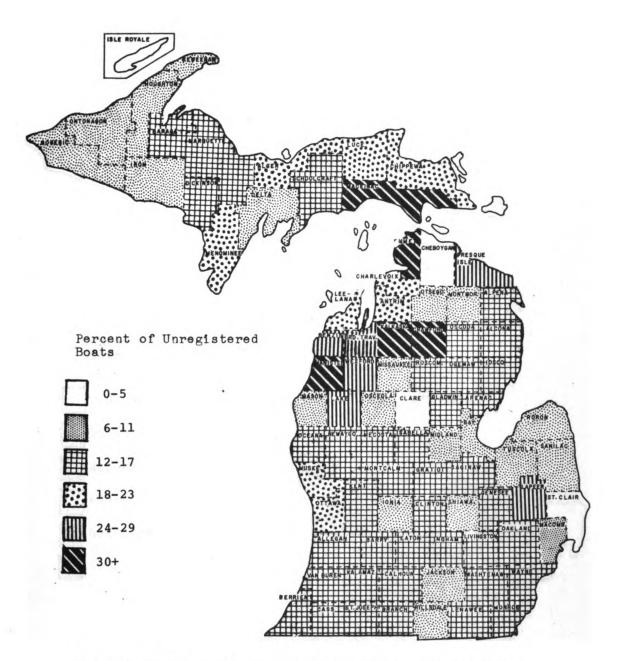


Figure 4.--Percentage Distribution of Unregistered Boats by County as Reported by the Michigan Secretary of State

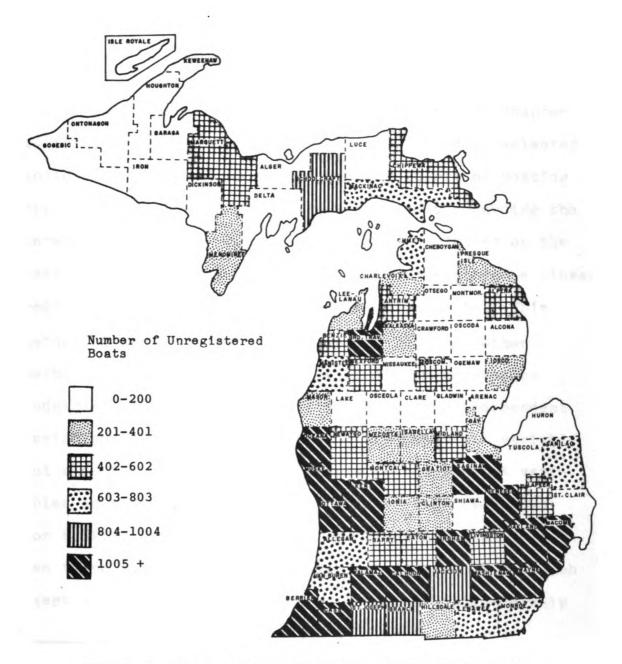


Figure 5.--Number of Unregistered Boats by County as Reported by Respondents to the 1968 Michigan Recreation Boating Needs Survey

CHAPTER IV

ANALYSIS AND RESULTS

The hypothesis of this study, discussed in Chapter I. is that multiple boat ownership is related to selected socio-economic characteristics and the supply of boating opportunity. The hypothesis is a statement regarding the parameter value that will be accepted or rejected on the basis of a statistical test. This study employed a linear regression procedure for testing the hypothesis. method of analysis has certain advantages over other Manderscheid found that a linear regression model is useful not only for identifying the independent variables exerting an influence on the dependent variable but also for estimating the effects of independent variables on a dependent variable. 2 Use of this technique for testing the hypothesis has the advantage that only can those socio-economic and supply characteristics which exert a significant influence on multiple boat ownership

A parameter is a characteristic which helps describe the population being investigated.

Lester Manderscheid, An Introduction to Statistical Hypothesis Testing, Revised Syllabus for Agricultural Economics 867, Michigan State University, East Lansing, Winter, 1969.

be identified but the extent of their influence can be estimated.

Statistical Model

One of the aims of regression analysis is to find an equation expressing the relationship between the dependent variable Y and the independent variable X. A mathematical model is a method of representing this relationship and is usually divided into two broad types: a linear function and a non-linear function. Equations that have coefficients raised to powers other than the first, or are combined by multiplication or division are non-linear. Equations that have coefficients combined by subtraction or addition and are raised only to the first power are classified as linear.

The mathematical model selected in this analysis was linear and was as follows:

$$Y_{MBO} = B_0 + B_1 x_1 + B_2 x_2 \cdot \cdot \cdot B_n x_n$$

where:

Y_{MBO} = conditional probability of the respondent owning two or more boats

 x_1 = age of the head of the family

 x_2 = total family income

 x_3 = educational attainment of head of family

 x_{j_1} = size of family

 x_5 = occupation of head of family

x = units of boating opportunity per county of residence l

Procedures and Results

The supply of "boating opportunity per county" data was punched on computer cards. This supply data was linked to the survey data by the following procedure. Respondent information to the survey was identified by a code obtained from the county of residence of the respondent. (For example, all the respondents residing in Alcona County - 01 - were ordered into the classification identified by the number 010001.) The computer input card containing boating supply data was linked to the survey data from a specific county by coding it with that county's identification number. This supply card was combined with the five other cards per respondent from the survey and was recorded on a magnetic tape.

A least squares deletion (ISDEL) computer program was used for the regression analysis. This routine is a multiple regression program that utilizes a stepwise deletion of variables to calculate an initial least

Michigan Department of Conservation, Recreation Resource Planning Division, "Michigan Lake Frontage 1965" unpublished computer print out dated October 26, 1966 quoted in Michael Chubb, Outdoor Recreation Planning in Michigan by a Systems Analysis Approach: Part III, op.cit., p. 150-152.

The production of the survey punch card decks has been described in Chapter II.

Michigan State University, Agricultural Experiment Station, LSDEL: Stepwise Deletion of Variables from a Least Squares Equation. (East Lansing, Michigan: Statistical Services Description No. 8, November 1969), p. 1.

.

• .

ad sees to see

. *

squares equation. The independent variable that least reduces the variance around the mean of the dependent variable is the deleted and a new equation is estimated. A second independent variable is deleted following the same criteria. This procedure continues until a variable meets the stopping criteria. A 5 percent significance level was specified as the stopping criteria.

The data for this part of the study (hypothesis testing) was prepared for the ISDEL routine by computer programmers at Michigan State University's Computer Center.

The program was run on the University's CDC 3600 computer.

The statistics on transformed variables and simple correlations are illustrated in Appendix E. The independent variables and related statistics that were identified as being significant in the final equation are also listed in this Appendix.

Interpretation of Results

The independent variables deleted by the LSDEL routine and identified as not significant at the specified level were the supply of boating opportunities and the size of the boaters family. It would seem that supply of boating opportunity would be a significant variable, however, the manner by which the data was used could be faulty. Instead of linking supply at the origin with the data it may have been more significant to relate cottage ownership to multiple boat ownership. This may have given a better indication of supply of boating opportunity than

an enumeration of acres of water per county. The wording of the questionnaire negated the possibility of this method of linking boating opportunity with multiple boat ownership.

The independent variables of age, income, education, and occupation were found to be significant at the 5 per-The R² (coefficient of determination which cent level. estimates the percentage of variance in the dependent variable that is explained by changes in the independent variable) for the final equation was .029. This would seem to indicate that these variables, although significant, explain approximately 3 percent of the variance leaving 97 percent to be explained by other factors. The unexplained factors comprising the remaining variance could be identified with further study. As one would suspect, these variables are related to other factors not directly within the socio-economic characteristics currently tested. Such factors as, public access to boating waters, cottage ownership, methods of transportation and recreational uses of water could affect multiple boat ownership. To attempt to identify the significance of these factors without quantifiable data would be difficult.

The identification of other characteristics and their inclusion into the linear model could possibly raise the coefficient of determination. It would appear that the

range of variables affecting multiple boat ownership is large and that more study is needed in this area.

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

This study was guided by two basic objectives: need to estimate the number of unregistered boats owned by multiple boat owners, and secondly a desire to determine the factors which are connected with multiple boat ownership and explore their usefulness in predicting future multiple boat ownership patterns. This second objective was expressed as the primary hypothesis of the study. The basic data for the study was provided by a questionnaire survey of registered Michigan boat owners. The data gathered consisted of socio-economic characteristics of state boaters, boat ownership; types and sizes of boats and motors used by boaters in the state; boat storage; transportation and launching; boating preferences for different water bodies-inland and Great Lakes; frequency and type of use; origin and destination patterns; in-state use by outof-state boaters; and out-of-state use by in-state boaters.

The survey sample information regarding boat ownership was expanded by a ratio method to statewide data concerning number of multiple boat owners and the number of unregistered boat owners and boats. The socio-economic characteristics of boaters, together with a supply of boating opportunity, were then related to multiple boat ownership by means of a least squares procedure.

The conclusions of the study are outlined below.

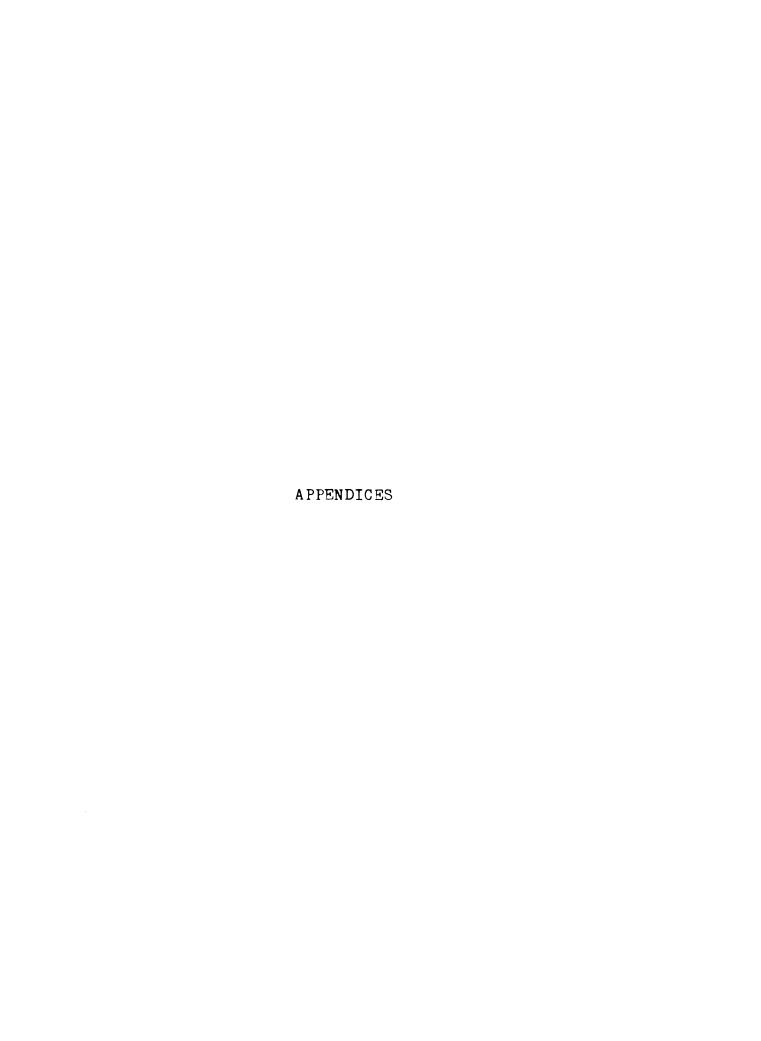
Conclusions

- l. The distribution of respondents by selected socio-economic characteristics (income, age, and education) was similar to the distribution of the 1964 Boating Survey. The distribution by income and occupational classes of respondents owning two or more boats compared to single boat owners was also very similar.
- 2. Analysis of the data indicates that 59 percent of the respondents owned only one boat and 41 percent owned two or more boats. This figure, when applied to the 1968 tabulated registered boat total yields an estimate of some 180,000 boat owners that can be classified as probable multiple boat owners.
- 3. There appears to be a greater incidence of multiple boat ownership in the counties in the northern lower peninsula of Michigan. The greatest numbers of multiple boat owners are not located in the northern rural counties but are in the urbanized counties of southern Michigan.
- 4. Outboards and inboards comprise 70 percent of the total boats owned by multiple boat owners. Sailboats, canoes, inboard-outboards, rowboats and others comprise the remaining 30 percent owned.

- 5. The analysis indicates that 12 percent of the respondents owned one or more unregistered boats. It is therefore estimated that registered boat owners in Michigan have nearly 60,000 additional watercraft not requiring registration.
- 6. The percentage and numerical distribution of unregistered boat owners is similar to that of multiple boat ownership. The percentage distribution of unregistered boats is the greatest in the northern counties of the lower peninsula of Michigan, however, the largest numbers of unregistered boats are in the urbanized southern counties of Michigan.
- 7. The characteristics of multiple boat ownership identified as being significant at the .95 level of confidence were age, income, education, and occupation. Although they were statistically significant, they did not account for a great deal of the variation around the mean of the dependent variable. The coefficient of determination (R²) for the final equation was .029. A model to accurately predict multiple boat ownership in Michigan must include other variables in addition to those of a socio-economic character.

Recommendations

1. The phenomena of multiple boat ownership is in need of further research. Emphasis should be placed on identifying the factors which account for multiple boat ownership and their significance. Further study is also


needed to determine the best statistical method that can be utilized for the identification of these factors.

- 2. The data gathering techniques employed should answer the following types of questions. Of the boats owned, which boat is the primary one in terms of gross amount of use? What is the total amount of use of each boat owned and the type of use? This type of information would identify not only primary and secondary boats but would indicate the amount of use generated by each.
- 3. The 1968 Boating Needs Study did not ask the respondent to specifically identify the boats not requiring registration. So the absence of an indication that a boat had a mechanical propulsion system was used as an indicator that it probably did not require registration. Positive identification of unregistered boats was not determined by this study. If the data obtained from future studies is to be utilized in the "RECSYS-SYMAP" approach to planning, then the amount and type of use generated by unregistered boats should be determined.
- boating fleet in Michigan was based upon a sample drawn from registered boat owners and as such results in an under-estimation of the total size of the fleet. Methods and procedures need to be devised to include in future studies a sample of unregistered boat owners who do not own registered boats. For planning and other purposes, it is desirable that all watercraft should be registered.

0.8011

Investigation of the administrative and political feasibility of the establishment of this procedure should be instigated.

5. The decision makers in the recreation field of resource management should be more aware of the methods and techniques of planners. Conversely, planners should be concerned with devising, interpreting and utilizing quantitative methods to provide reliable data for decision makers. If unreliable processes are used and the ensuing data is furnished to decision makers, less than desired provision for recreation opportunity results.

APPENDIX A

MICHIGAN RECREATIONAL BOATING NEEDS QUESTIONNAIRE

STATE OF MICHIGAN

NATURAL RESOURCES COMMISSION

HARRY H. WHITELEY

CARL T. JOHNSON

E. M. LAITALA

ROBERT C. McLAUGHUN

AUGUST SCHOULE

ROBERT J. FURLONG

Secretary to the Commission

GEORGE ROMNEY, Governor

DEPARTMENT OF NATURAL RESOURCES

RALPH A. MAC MULLAN, Director

WATERWAYS COMMISSION CHARLES A. BOYER

Chairman

VOLMAR J. MILLER Vice Chairman

LEONARD H. THOMSON

ROBERT F. KING PREDERICK O. ROUSE, JR.

> Stevens T. Mason Building Lansing, Michigan 48926 373-0626

Dear Boat Owner:

At this time of year, when boats are out of the water, the Waterways Commission, like everyone else, is making plans for the coming season and seasons ahead. We want to make sure that the rivers and lakes of Michigan, including the Great Lakes, offer safe and accessible recreation to all who love the water.

To help us in our job, we need your assistance in finding out more about the kinds of facilities you and other boaters require. If there are shortages in certain areas, we would like to know about them. We are, therefore, sending you this questionnaire with the request that you take a few moments to fill it out and send it back to us. This study is one of several research projects being undertaken for the Waterways Division by the Recreation Research and Planning Unit at Michigan State University.

Your name was taken at random from the list of boat registrants, and your reply need not be signed. It will be used with all the other replies to show us the pattern of boating in Michigan and indicate where we should be providing new or improved facilities. Simply place your completed questionnaire in the stamped, pre-addressed envelope and mail it back to us at your convenience.

Thank you very much for your help.

With best wishes for a good season in 1969.

Welson

Sipcerely,

Keith Wilson

Director

KW: jaw **Enclosures**

FOR YOUR ASSISTANCE:

MICHIGAN RECREATIONAL BOATING NEEDS QUESTIONNAIRE

PLEASE ANSWER QUESTIONS 1 THROUGH 13 FOR THE BOAT IDENTIFIED BY THE REGISTRATION NUMBER AND BOAT LENGTH WHICH APPEAR UNDER YOUR ADDRESS ON PAGE 1

1	WHAT TYPE OF POWER SYSTEM DOES THIS	BOAT HAVE? (C	Check one)			
	Outboard motor Inboard Sailboat with motor Other (w		Inboard motor	with outbo	ard drive	<u> </u>
_						
2	WHAT IS THE HORSEPOWER RATING OF THIHpHp. Indicate horsepower of any other motors used on			ORS) USED	ON <u>This</u> Bo	AT?
3	WHAT COUNTY IS THIS BOAT REGISTERED	IN?			0	County
4	WHERE DO YOU USUALLY KEEP THIS BOAT	DURING THE B	DATING SEAS	ON? (Checl	k one)	
	At my permanent home, which is not At waterfrontage located at my perma At a commercial marina—berth. At a summer cottage. At a publicly-owned marina. At a boat or yacht club.	anent home lot.				
	Other (specify)					
5			ar 1968)?			
6	WAS THIS BOAT TRANSPORTED BY:	☐ trailer	☐ c	ar-top carri	or	
7	PLEASE INDICATE THE TOTAL NUMBER OF OF STORAGE OR MOORING TO THE PLACE OF					PLACE
8	IN THE TABLE BELOW, NAME THE COUNTIL INDICATE THE NUMBER OF TIMES THE BOAT					T; AND
F.			Number of Times	This Boat La	unched at-	
	County (Write in)	Public	Marina or Ramp		Commercial	Private property
	<u>}</u>	City, County or Township	State Facilities	Federal	Marina	or other
	Most Launches:				-	
1 2	2nd most Launches:			1		
			↓	ļ		

ı	9	_		NY OF THE MICHI ST BOATING SEAS				LAKES, OR C	CONNECT-
			St.	ecting waters are Lak Mary's River, St. Cl	air River, an			ind St. Clair;	
				please proceed to q please continue wit		10.			
,	10	THIS BOAT WAS	S USED DURING ater under power	THE THREE GREA THE PAST BOAT or sail in each cour	TING SEASO	ON. Give the	number o	f days that th	ne boat was
		USI	OF THIS BOAT	ON GREAT LAKE	S AND COM	INECTING V	VATERS O	NLY	
	The may	: Count each part number of days spi not equal the total and column.	ent on specific boa	iting activities		Count each a particula as a full da		activity .	
	Total				No. c	Boating Acti lays you used t			
	Days of		County (Write in)	Trout/Salmon fishing	Other fishing	Hunting	Water skiing	Cruising	Other
	Costing			(No. Deys)	(No. Deys)	(No. Days)	(No. Days)	(No. Days)	(No. Days)
EXAMPLE	17		manistee	11	2	0	9	8	0
		County of most use:							
		County of 2nd most use:							
		County of 3rd most use:	•						
		Boating in "All Other" Counties:	•						
		OATING SEASON	(calendar year 196	NY INLAND LAKI 88)? ase proceed to ques ease continue with	tion 13.		MICHIGAN	DURING TH	IE PAST
		<u> </u>						· · · · · · · · · · · · · · · · · · ·	

12 IN THE TABLE BELOW, NAME THE THREE MICHIGAN COUNTIES WHERE THIS BOAT WAS USED MOST ON INLAND LAKES AND STREAMS DURING THE PAST BOATING SEASON' Give the number of days that this boat was actually in the water under power or sail in each of these counties; and give the number of boating days spent on various activities. (See map on page 2.)

					ivities		
	County	Trout/Salmon	No. o	lays you used t			
	(Write in)	fishing	fishing	Hunting	skiing	Cruising	Othe
		(No. Days)	(No. Days)	(No. Days)	(No. Days)	(No. Days)	(No. Days
	Montmorency	2	14	3	2	0	0
County of most use:							
County of Ind most use:							
County of Brd most use:							
				L			
	most use: County of and most use: County of 3rd most use: county of 3rd most use: oating in "All her" Counties:	County of most use: County of Ind most use: County of 3rd most use: cetting in "All her" Counties:	County of most use: County of and most use: County of 3rd most use: Dating in "All her" Counties:	County of most use: County of 3rd most use: County of 3rd most use: County of 4. County of 5.	Days) Days Days	County of 2 County of 3rd most use: County of 3rd most use: County of 3rd most use: County of 3rd most use:	Days)

*If unknown, please consult a highway map.
**(NOTE: count each part day of boating as a full day).

County of most use:

County of 2nd most use:

County of 3rd most use:

	TO THE ONE	TION CONCERNS OTHER REC IDENTIFIED BY THE REGIS	TRATION NUMBE	R ON PAGE 1.
14	IN THE TABLE BELOW, GIVE	ERS OF YOUR IMMEDIATE F	GISTERED AND	UNREGISTERED BOATS OWNED G WITH YOU. Also, give the boat
	Type of boat*	Length	н	orsepower rating of the motor
	•			
	*Include other inl	boards, outboards, sailboats, can	oes, inboard-outbo	ards, rowboats, etc.
	IT IS NECESSAR	AST THE FUTURE DEMAND F RY FOR US TO BE ABLE TO T NG USE PATTERNS. PLEASE A QUESTIONS IN THE FOLLO	IE IN FAMILY CH ASSIST US BY AN	ARACTERISTICS
15	PLEASE GIVE YOUR COUNTY CODE.	AND STATE OF PERMANEN	FRESIDENCE, AN	ND WRITE IN YOUR POSTAL ZIP
	County name		State	Postal Zip Code
16	WHAT IS THE AGE AND SEX	OF THE "HEAD OF YOUR F	AMILY?"	
	Age:years	Sex: Ma	le	
17	GIVE THE AGE AND SEX OF E	EACH MEMBER OF YOUR FAI	MILY RESIDING V	WITH YOU (excluding the "head of
	Male: ages:,_	,, Female:	ages:,	, , ,
18	WHAT IS THE OCCUPATION O		fILY?" (Please ind	icate the type of job that you hold,
		(Write in	1)	
19	PLEASE ESTIMATE YOUR TOT (Check only one box).	TAL FAMILY INCOME FOR 1	968 BY CHECKIN	IG THE PROPER BOX BELOW.
			00 to \$14,999 00 to \$24,999	☐ \$25,000 and over

20	WHICH	OF	THE	ANSV	VERS	BELC	W BE	ST IN	DICA	res t	HE T	OTAL	YEAF	RS OF	EDL	ICATI	ON C	OMPL	ETED BY
	THE "	2	3	4	5	6	7	CK One 8	9	10	11	12		13	14	□ 15	16	17	or more
21	IN TH	E SPA	ACE E	BELOV	V, PLI	EASE	INDIC	CATE /	ANY S	SPECI	AL B	OATIN	NG PR	OBLE	MS Y	OU N	IAY H	IAVE:	
										_									····
					- ,														· · · · · · · · · · · · · · · · · · ·
													 						
														-		-			
																			· · · · · · · · · · · · · · · · · · ·

THANKS FOR YOUR HELP!

If you accidently misplace the return envelope provided, please mail to:

Recreation Research and Planning Unit Room 312 Natural Resources Building Michigan State University East Lansing, Michigan 48823

APPENDIX B

COUNTY BREAKDOWN OF MAILED AND RETURNED SAMPLE

APPENDIX B

COUNTY BREAKDOWN OF MAILED SAMPLE

	tai	40	46	C	9	112	3	7	164	3	98	\vdash	9	398	(7	C	2	\sim	7	103	2	110	∞	186	0	S	Ts.	σı	225	9.7.0 1.7.1	1
	and Over To	0	0	0	, 0	0	0	C	0	m	0	0	0	2	0		0	H	0	0	0	-	0	0		2 1,	0	0	C	00	>
I.ENGTHS	30' - 40' 40'	0	0	0	0	0	0	0	0	6	0	н	0	2	7	н	H	н	0	0	0	н	0	0	0	ထ	0	C	2	00	>
ECAT		0	7		דד	2	0	7	ထ	23		23			15			10	2	Ņ	17	-	0	9	ယ	28	7	ιc	6	m w	>
	12' - 20'	33	28	100	122	9/	24	34	66	163	99	227	177	175	190	69	100	109	32	65	17	75	46	112	99	788	N D	62	161	50	1.
	12' or Less	7	16	94	31	31	4	ιΩ	99	63	17	165	œ	188	Н	23	20	18	34	33		32	42	89	27	372	15	23	54	26 4 5) "
	COUNTY	н	2	m	4	Ŋ	9	7	œ	6	70	11	12	13	14	15	16	17	18	1.9	20	21	22	23	2,4	25	56	27	28	30	;

APPENDIX B (Con'd)

APPENDIX B (Con'd)

l	1 1																							l
	Total		70	47	40	47	16		337	62	161	531	363	270	67	54	166	87	222	419	3,529	92	615	21,764
	40' and Over	,	H	c	0	0	٥	O	m	. 0	0	0	4	0	0	0	0	(-)	0	0	(O	0	c	09
DORT LENGTHS	30' - 40'		0	0	-	0	င	0	۲.	0	0	ø	6	٦	-	0	0	7	0	4	130	7	6	348
I TAOC	20: - 39:	ı	2	 1	m	 1	Ċ	m	36	7	12		83	17	7	0	9	2	7	29	472	7	51	1,388
	32' - 20'	:	4). CC	22	23	18	1	23		41	127	346	224	121	30	36	104	57	112	232	2,171	51	411	12,963
	12, or Less	•	19	24	13	5 8	6	22	103	19	19	141	43	131	16	18		21	103	154	$\boldsymbol{\omega}$	37	141	6,505
	COUNTY	,	49	65	99	29	89	69	70	71	72	73	74	75	9/	77	78	79	80	81	82	83	84	Total

APPENDIX B

BOAT OWNERS BY COUNTY OF RETURNED SAMPLE

 		1				ACA.						1	
	LESS TO	N 12	12 -	20 1	202	, En	30	1 0 4		•	-	T01	16
	-	6	1.0	9		.20		00.6	-	ء		18	187
()		5.		4 1	.		· ·	0.00	- .	.	0	• [503
۲. ۹	· ·	1.676	2:		• •	000					- L	٠ °	1.0000
. د		\ R		, R			- c			<u>.</u> c	: c) Y	1 5
٠ <		12		, 20	- c	-				ء :	, 0	; ; ;	773
^	_	12	6 0	2		20	-	0.00		٦	C	=	947
α	1 15	5		ć.	*	4	0	00.0	_	Ė	0	57	.0003
•	- 1÷	-		32	~	4.3	T	4.54	_	c.	0	7.	2573
c .		С.		.46	C 1	č	6	. o .		<i>:</i>	C	e T	.31R7
٦.	-	1 102.	.	-	***	2		c. c		٠	C 0	114	7
۲. ا	-	2 .		ž :	-	5	~ •			= (•		9,19,19
M, 4	× :			c i	T 1	9	~ •	``		٠,	:> (900	7/17
9 11	. ·	, c			-, ,	9 9	~ ·			= <	ى د	C 7	•
· 4		. u		9 6		- 6	- c		-	ت	- c	, e	48.00
		((· c	- 0	. 4					,	. ~	4.00
	. ~	. 4) h	• • !	5		00.0		ے .	· c		37188
(p	-	0		. 4	٠ .	0		00.0	. 	<u>۔</u>	· C	33	. 5343R
ر د د		O		4	,	.29		0.00	_	· ·	О	•	.18425
:		2		-	ت 	ë.		00.0	_	•	0	34	60209.
<u>د</u>	?÷.	. ķ3		. 33	c .	99	•	00.0	-	•	3	52	٩.
~;	~	25		6	6 0 1	6.	.		- •	•	~ (62	1.79793
3 U		2/4.	, ,	1 1690 1				0.0	-	,	9 0		26/26
, ,	·				Ļ.					•	o c	3, 4	•
	· ·r	, (·		٠.	- () C	· •	00.0	! 			7	37188
. , α .		. ()		12	. ue			54.6			0	. 64	1.13335
, 2,	-, 			رمو ،	٠.	4	-	0 . 0	-	•	ေ	10	\sim
e: 14,		7		4	۳,	0	0	30.0	_	•	0	; 50	51355
* .		1 505.		^	4	e e	1	90.0		0.0	C	<u>ب</u>	. 61050
32		'n.		4.0	-	0	: :	1.13	-	10.	=	18	.31875
۲,	- I	Š		0	11	23	_	2.4	_	ċ	C	252	3.03.29
7 F	? F	3		0	:	. 20	-	00.00		ن	ပ	83	67292
ئ د د	0.	. 637		r	ت	0	•	0.00	-	ċ	0	%	.44271
3.5		C)		-	ت : :	0	• -	0.0		د ه :	C;	- 55	38959
37	30	ي. دن		6.53	- 1	6	~	0.0	0 ⊶ (، ت	ပ	5	r.
الد	4	١.		ø	<u>ح</u>	ຄ.	_	7) (<u> </u>	:	0	121	2.14273
<u>ې</u>	۲۲.	~		.50	a v	.60		00.0	 .		C		•
4	:: :		.	•	c ;	5		0.0	· •	÷ ;	C: (٠,	ACH 81.
•	1.	ž. (145	ο.				7.1		- -	-		` '
۲,	-	. i	٠,	- '	c (c (- ·	20.6	•	•	\sim	•	S. S. C.
· ·		D t	٠,	4 .	-		-	00.0	- .	<u>.</u>	Э (* * * * * * * * * * * * * * * * * * * *
				۱		t				•	¢		

APPENDIX B (Con'd)

4 4 4 4 V V V V V V R V V V V V V V V V		24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		160	4 - (5	• • •	\$6	16	51		
**************************************	22 4 5 20 20 20 20 20 20 20 20 20 20 20 20 20	IND POSTER B BE ROOMS		. *			. ~				***	
		B - C - C - C - C - C - C - C - C - C -)	÷		4		•	3	63	170	
**************************************		PROPERTY IN THE RECEPT	- N. 4 20 4 4 4 5 4 5 4 7 12 4 12 12 12 12 12 12 12 12 12 12 12 12 12		2	.		-		57	2000	
		-C-Pr R B- RCD		• •		ں ن	0.000	-		- 0	51455	1
		THE REPORT	. wo 4 4 4 5 4 0 4 0 12 0 10 0 0					•		,		
	5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Ken K Ma Kaann	0 4 A 4 C 4 O 4 C W 6 N U U		9		. 20	0	0.03	*	3010	•
	W & W R C R V K I	THE ME RUDDE	444640400000	•	0		.00	0	63.	5.	031	
414 V & Q C + Q K +	2 4 6 6 6 4 K	T K MH KCOTT	4 4 5 4 0 4 0 % 6 10 % 0	•	ŝ	ပ	90.	•	.00	60 Cu	073	
# < V & Q & S & S & S & S & S & S & S & S & S	40.000	E NH KCOPP	4 C 4 C 4 C K C K C C	•	5	0	• 30	0	٠ د د	25	427	
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	6 6 6 6 6 6 6	E NE KCOPP	C 40 4 0 k 0 k 0 k 0 k	•	69	0	c.	:	.09	14	. 2479	•
~ « O C · O F · O	6 K A W I	Na KConn	40 4 C K C R C C		Ş	0	00.	0	00.	e (625	
« O C V O M O	4 4 K	N =	0400000	•	S	0	00.	•	9	OK.	1416	•
	2 27 5	~ ~~~~		٠.	Ξ,	ю (4.0	-	6.6	C (1675	
0 - K	r. (K (0	incro	•	ຣີ		3	;			2 6	!
. C.E.		4 4 5 5 5	, en o	٠,	200	٥,	0 .	-		? !	7 0 0	
- K - H - H	2 0	/ D - L -	ວທາດ	; ;	~ 6	- c	10	• •	•	9	7,75	
ς - •	7 4		$\sim \sim \sim$	<u>.</u> a	ے د د	> 0		•		C 0	200	
	: 5	1 20 1	782	i	. 4	٠ ،	2			1	3010	
	4			•	2	. .		• •	2		0.73	
	2	7.	402	; '	3		00	0	0.00	22	895	
7	5	9	.1771.	:	2	0	.00	-	6.		718	
 a.		· m	1 780.	ë	00		.00	0	00.	v	942	
		, 9 :	.1 571		2		.0	-	n.00	C T	.1770	
٠	4	69 I	1.987 1	'n	60	•	. 81		.00	123	7 2 1	
	٠.	1 12	345 1	٠	2	0	9	-	.00	14	479	:
٠ -	٠. تع	r	٥.	.	ę,	0	6	0	60.	7	.7240	
r. '	(V (1 -105		<u>ر</u>	Ę,	- 4	7		000	155	4 4 8	
	.12	13	431	•	2	0		-	6.	E P	a :	
	Λ,	0 1	ς,	=	C (.				5 1	2 5	1
- ·	, ,	37	. (• •	2	٥,		>		U 0	4	
	,,		1000	: .	= C	o «		•		0 a	9 6	:
		000	•			> c		· -) F	5112	•
		. P		•	٠ ر د د	, c				. o	7.44	
	• •				9	-		•	. 0	, v	1.15	•
	20	193	٠ ٠		Ē	, 2	.54	~	.00	4 M	29A0	
	.57		۳.	•	S	-	.13	-	00.0	23	.4073	; ;
- ,	5 u .	~	1 751.	Ē.	0	6	.00	0	.09	т,	511	
<u></u>	n. n	· .	€.	Ē	0	0	. 0.	0	.03	· C	000	
	.19	•	۳:	•	S	0	6.	9	.00	6 0	.1416	
	e.	6	000.0	ė	C		0	-	60.	C į	000	
a .	625.	12	۲,	•	20	ပ		- 0	00.	4 t	.7614	
- (9	25	1.695	; ;		~ .	> .	-		//	1 0000001	-
- ! -	4	•		15	0	-	7 1		. i	100	() !	
			7				* 1 1 1 1 1 1	-				

APPENDIX C

NUMBER OF MULTIPLE BOAT OWNERS AND TYPES OF BOATS OWNED BY COUNTY OF RETURNED SAMPLE

APPENDIX C

NUMBER OF MULTIPLE BOAT OWNERS, TYPES OF BOATS OWNED BY COUNTY OF RETURNED SAMPLE.

India otdos Sipt Cance 1/0 Mar. Other Total		n			· · · · · · · · · · · · · · · · · · ·	····· 6 ···· 6 ···· 6	***		# F		3 0 0 0) C (N) C (N)	15 11 3	7	2 0 0 2			•		9 2 0	20.	0 2 - 0 0	16	
	221 110 622	37 0	16	22	• • • • • • • • • • • • • • • • • • • •	77	09		22 0	56	24	25	51 2	245 15		11 0	. 24 0		216- 12	19	. 27 0	107	5 0	228	
24	a = a .	H 0 0	04	0,0		24	E .	13	(4 C	: 	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-12	5 12	M 14 .		2 0		0	ω4.	P		17 12	20	000	
94 M44 4 6 W 94 W D 11 11 11 11 11 11 11 11 11 11 11 11 1) 		- C F		or or o	N 6		0 0 1	4 6		: 0 : : :	e c		16			0	10	15		0	2 P	H C	14 12	
	LnbdsOcbds.		-c r		2	21 19	ç.				: : •	-		72	· ·	4	- 0	-	69 104		1	•		^	!

al	!		-	-		1		:	-		<u> </u>	:	. 	<u>.</u>	•	8		~	_	٠.	<u> </u>	~	_	_	_	_	_		~	_	.			-		•	~	_	7
Total		_	_	1	=			1	_		•	:	-	•		~	•	•	_	-,	_		_		č			×		,	1		~	:		÷ ;		1	71
ats Rwbt Other	, 44	: 0 .	0		~	-	c		•	•	6	: E	c	i c	6	: =	^	٠.	c	· ·	_	; =	c	ا ح	c	-	•		c	ė	c (·	c (e ·	- (~ (n •	$\left\{ \right.$	47
bt 0	•	-	•	0	•		2		0		2	:	S.	***		2	-	m			0			1	•		m		~	~	0		ο (.	v.	5 0 9	<u>.</u>		308
_	•	:		1				İ		1				:	ر	:		~		:		ł				-		-		-		1		:		, '	-		(,)
power BC	•	m	•	:	-	-	2		•	1	~	i	~		•	10	•	. 24	C	-	C	6	•	0	•	:	~	æ ;	0	-	, Cel		(~ ₽	' '	.	1	199
Non post	: •	-	0	0	n	n : .	0	1	0	~	~	0	, ,		0	60	-	- 18	0		0			0	•		-	9 . !	0	0	0	0		0	~ 0	N (<u>.</u>		158
:		:								!		1		1				1		•		:		:				•		: : : :		1		!					
rotal	, 69	75.	n	. 50	126	- 24	33	19	25	13	51	-	56	36	16	91	33	386	10	1/	10	25	8	12	122	52	73	. 123	Φ.	6 0	4.	7	2	91	96	13/	40 40 40		4562
Other	•	•	•	0	•	- -	0	0 :	•	0	•	0	0	0	n	- - -	n	<u>د</u>	0	7 -	0	0	0	•	0	0	4		0	0	m •			H (V 4		<u>_</u>	-	217
Rwbt	•	10	0	10	25	8	~	•		: -	ر -,	! •	•	: •	-1	•	m	37	0	<u>.</u> د	0	-	•	: 	Ţ	S.	9	12	- (V	~)) ;	۰,	• • •	2:	0 0	2 0	-	665
0/1,	•		0	; 0	•			6	6		0	0	~	0	-	· ~	0	·	0	0	0	: C	6	0	0	•	0	P 2	c		ο,	:11 -4 :	0	.	۰,	: H (N =	3	30
Canoe	: •	; :	•	0	n	+-	•	~	6	~	m	6	٨	- :	0		n	3	0		0	-	0	0	•	-	~	•		•	•			۸.	۰,		۰ ۵		248
Slbt	•	-	c	0	•		^	: ~	*1	~	n	-	₩.	~	0	12		10	C.	; ++	0	:	c ·	: :	11	+	-	7	c	د	0	c	- 1	- 1	~ 0	` ~ ;	~	-	192
Otbds	20	23	۳	19	61	: 20	7	•	٥	. 5	25	•	84	. 16	æ	37	11	162	•	: P2	œ	10	5	.:	4	6 -	19	55	~	~	e e	24	17	/	11.	25	9 71	-	1690
Inbds 0	60		c	21	30	•	15	•	a `	· · · · · · · · · · · · · · · · · · ·	1,		21	13	4	52	12	121	7	4	~		ю	· · · ·	43	10	31	-37	۸			16	23	:	53	2			1520 1
	•	.; eu	~			/	E-2	B	U.	4	8		7	1	J.		~		2	9	7		~	7	7	ì	·	1	4	1	νο -	-	٠,	1	.	•	ou e		-
PRCT	1.05	1.058	.122	.81	2,971	.407	,733	44	.525	.244	1.05	. 641	. 97	.651	, 2A.	2,157	.773	.8.01	, 2A.	346	.28	Š,	.122	. 24	.2,157	.366	80.	2.612	.24	;	936	. 6	1.547	,76.	600		4	.27	
Number MBO	26	% %	ĸ	20	73	10	13	11	13	c	9%	-	7.	13	7	53	19	197	7	5	7	e.	~ ;	4	53	•	25	. 49	•	~	. 23	2.0	65	14	27	6	200		2300
έγ	•	•							-									•										•			•								V
County	4	47	4	*	59	54		53	7			57	5.8	50	6	61	69	63	40	65	99	67	6 A	ô	7.	71	72	/3	7.4	7.5	7,4	11	78	6/	E 6	8	C .	٥	Totals

APPENDIX D

EXPANSION ESTIMATES OF UNREGISTERED AND MULTIPLE BOAT OWNERSHIP

APPENDIX D

Method of Expanding Sample Data to Statewide Estimates

The estimates concerning statewide information on the percentage and number of multiple boat owners and unregistered boats per county was obtained by expanding the sample data to total population estimates.

Response Rate Ratio's

The ratio was obtained by dividing the number of registered boats per county by the number of usable sample returns from that county. (For example, Alpena County had 3,278 registered boats and 39 usable returns, 3278/39, for a 84/1 response rate ratio.)

Number of Multiple Boat Owners

This estimate was derived by multiplying the total number of registered boats in the county by the percent of multiple boat ownership in the county. (To illustrate, Alpena had a multiple boat ownership percentage of 16 multiplied by 3278 registered boats, or 3278x.16, for a total of 1508 multiple boat owners.)

Percent of Multiple Boat Owners

The percentage of multiple boat ownership per county was estimated by dividing the number of multiple boat owners per county in the sample by the number of respondents

per county in the sample. (Alpena County had 18 multiple boat owners divided by 39 total respondents, 18/39, for a percentage of multiple boat ownership of 16.

Number of Unregistered Boats

The number of unregistered boats owned by registered boat owners per county was estimated by multiplying the percentage of unregistered boats in the county by the number of registered boats. (Alpena County had 3278 registered boats and an unregistered boat percentage of 15, 3278x.15, for a total of 492 unregistered boats.)

Percentage of Unregistered Boats

The percentage of unregistered boats owned by registered boat owners per county was estimated by dividing the total number of unregistered boats in the sample by the number of sample respondents. (Alpena County had 6 unregistered boats and 39 respondents 6/39, for a percentage of 15).

APPENDIX D

EXPANSION ESTIMATES ON UNREGISTERED AND MULTIPLE BOAT OWNERSHIP

County	Response Rate Ratio	Number of M.B.O.'s/Cty.	Percent of M.B.O.'s/Cty.	Unregist. Boats per County	% of Unregist. Bosts/Cty.
Alcona	1/68	474	¥99	121	17%
Alger	1,86 1,25	00°0	<u> </u>	195	25
Allegan	1\ \ \	7107 707	0 7 1	00.	ο u
Antrim	1. 89/1	1067	<u> </u>	121	ر ر د د
Arenac	61/1	243	77	16	ν _ς
Baraga	$\frac{63}{1}$	נקק	19	76	\\ <u></u>
Barry	65/1	1957	33	517	11
Вау	78/1	1385	25	332	9
Benzie	1/16	721	177	361	22
Berrien	/12/	3255	37	1,144	13
Branch	85/1	2622	S.	839	16
Calhoun	81/1	3669	43	1109	13
Cass	1/4/01	5270	77	1027	r.
Charlevoix	1/09	186	74	377	2,0
Cheboygan	1/1/6	5,141	7	105	=
Chippewa	1/121	ή 6 ὶι	38	597	19
Clare	1/19	807	c ,	óŽ.	TO!
Clinton	1/18	880	3 11.	336	13
Crawford	92/1	371	29	183	к. К.
Delta	Z=/12	1133	29	164	6
Dickinson	65/1	Ť <u>5</u> 9	O [†] 1	196	12
Eaton	59/1	1708	7 1/	24.5	15
Emme t	1/09	1537	89.	723	32
Genesee	74/1	10065	£†;	3227	1/1
Gladwin	72/1	T/6 L	c 9	150	33
Gogebic		639	33	101	10
Grand Traverse		2423	CV	1211	25
Gratiot	132/1	929	31	275	13
Hillsdale	1/4/6	8)،رع	31	273	٥L
Houghton	ר/75 ר/97	800 7	01 و	120 ניור	9 [
naron	1/6	100	1 <u>.</u>	1741	- r
Ionia	74/1	1265 1265	- L	303	ر ا ا

APPENDIX D (Con'd)

County	Response Rate Ratio	Number of M.B.O.'s/Cty.	Percent of M.B.O.'s/Cty.	Unregist. Boats per County	% of Unregist. Boats/Cty.
Tosco	85/1	8	Ç	21,5	76
Iron	89/1	801	<u>[</u>]	175	0
Isabella	ユ	745	£43	202	71
Jackson	85/1	1,523	10.	925 7	σ
Kalamazoo Kaleasea	1/69/1 ר/יויור	7 6 60	<u>.</u> c	1534 288	
Kent	89/1	11320	21	3372	1
Keweenaw	1/64	617	25	20	10
Lake	58/ 1,8/	289	<u>.</u>	1/1	27
Lapedr	1/6 1/15	1601	ទួក	νου Ο α κ	7 0
Lenawee	88/1	2264	17	773	1.1
Livingston	63/1	1648	91/	130	12
Luce	1/02	207	27	ር ነ ይ/	000
Mackinaw	(3/1	0,41	600	7/16	35
Manistee	1,28/1	1279	ን ያ	155/ 758	y o
Marquette	1/99	1170	/m /V	168	14
Mason	1/001	1105	48	207	10
Mecosta	80/1	1045	52	302	15
Menominee	1/16	다.	43	267	21
Midland	73/1	1876	m:	136	01
Missaukee	(0/1 (//8	2003		62 680	10
Montcalm	79/1	1262	30	485	ን ኮ
Montmorency	1/99	†19†i	57	69	ത
Muskegon	75/1	3997	<u>~</u>]	1776	20
Newaygo Opylend	1/1/	1359		359 20	<u> </u>
Oceana	1/1/	261	11	181	, v
Ogemaw	1/911	ווין	66.	751	13
Ontonagon	1/18	217	35	ሊ	α
Osceola	1/97	368	æ (20	C l
Oscoda	1/2/1	673	بر ت ت	בט ר	
	59/1	3050		11.19	50
Presque Isle	1/t/6	840 0482	1 9 1	381	ο .
Saginaw	65/1	म्मा ग	1,1	1617	16

APPENDIX D (Con'd.)

County	Rate Ratio	Number of M.B.O.'s/Cty.	Percent of M.B.O.'s/Cty.	Unregist, Boats per County	% of Unregist. Boats/Ctv.
St. Clair St. Joseph Sanilac Schoolcraft	89/7 1/75 1/77	1881 2613 302 165	28 46 33 13	269 739 101 165	4 EL
Shiawassee Tuscola Van Buren Washtenaw Wayne	637 637 107 107 107 107 107	1464 889 2169 3905 24625 1094	126 17 18 18 18 18 18 18 18 18 18 18 18 18 18	191 132 738 7527 199	20 20 20 20 20 20 20 20 20 20 20 20 20 2
TOTAL		180656		47147	

APPENDIX E

STATISTICS ON TRANSFORMED VARIABLES

APPENDIX E

STATISTICS ON TRANSFORMED VARIABLES

•	74
SQUARED DEVIATION FROM THE HEAN 711450.78680 996.66801 995.66801 993.66801 37241.19468 11951.23622 78149.17187	
SUM OF SOLARES 936455,00000 10531805,00000 664696,00000 60051,00000 13845,00000	20000 x 200000 x 20000 x 20000 x 20000 x 20000 x 20
2	i.00000 i.10000 19 10-19 10-0000
8 000 000 000 000 000 000 000 000 000 0	
4	1,00000 0,25500 0,27750 0,00051
STANDARD DEVIATIONS 13.2424984 12.0337876 12.037876 1.766929 3.0597675 1.7163423 0.6801526 4.3459404	0.000000000000000000000000000000000000
MEAN 7.44628 6.44628 4.076296 4.076296 10.444891 11.714200 11.085288 174538	SIMPLE CORRELATIONS 1496 1496 1496 1596 1596 1596 1596 1596 1596 1596 15
	S
MAXIMUM VALUE 99,08000 1,080000 11,00000 21,00000 124591,70000	1.0000 0.108277 0.10832 0.01032 0.01032 0.106888 0.02170
7 000000000000000000000000000000000000	10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
8 4058 4444 6 8 4058 45 40 5	700 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TABEL TABANSPOR AGE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE TAGONE	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

APPENDIX E (Con'd)

HINIMUM ERROR MEAN SOUARE CRITERION MET, RESULTS REQUESTED EVERY ITERATION,

ANY FOR OVERALLI REGRESSION

	7 5		R2 DELETES	0.01318	0,02323	0,02963	0,02997	0.02973	0.03061
\$10		STANDARD ERROR OF ESTIMATE 0.48829704	PARTIAL CORR COEFS	0,13393	0,08849	0.03587	0.03060	-0.03442	0,01641
21,5099		S ARD ERROR 0.4062		<0,000,00	<0,0005	0,021	0,049	0,027	0,297
MEAN SQUARE 5 <u>1</u> 12869880	0.23643400	STAND	68	73,9865 <0,0005	31,9684	2,2182	.3, 7957	4,8039	1,0910
	0.2	8 BAR 0.1716	48	8,6015	5,6541	2,2843	1,9482	*2,1918	01,0445
DEG OF FREEDOM	4051	MULTIPLE CORR COEFS R BAR 2 0.1757 0.0294	STD, ERRORS Of BETAS	0,01843	0,01922	0.01745	0.01769	0.01916	0.01562
SUM OF SQUARES 30,77219279	965,89611672 996,66830951	MULTIPLE (R 0,1757	BETA Weights	0,15856	0,10864	0.03987	0,03447	-0,04199	-0,01632
· •		R2 0,0309	STD, ERRORS OF COEFFICIENTS	0,00075925	0,00608680	0,00285545	0,00510906	0,01396141	0,00000044
REGRESSION (ABOUT MEAN)	ERROR TOTAL (ABOUT MEAN)	ss .	REGRESSION COEFFICIENTS	0.00653073	0.03441519	0.00652282	0,00995371	-0.03060021	-0.00000046
Ē.	gr Wi	OBSERVATIONS 4056	۲ ۲	> 10	15	16	17	18	20
		O	1 1 1 1 1 1	AGE	INCOME	EDCC.	FAM SIZE	OCCUPATA	# SUPPLY

STEP 2

APPENDIX E (Con'd)

VARIABLE DELETED BY CRITTRION 1 HAS X(20) H SUPPLY

W SUPPLY 20

RESULTS REQUESTED EVERY ITERATION,

VARIABLES IN ORDER DELETED

	SUM OF SQUARES	DEG OF FREEDOM	MEAN SOUARE	•	818
REGRESSION (ABOUT MEAN)	30,51205619	n	6,10241164	25,5931 40,0005	40.000
ERRO.₹	. 966,15625131	4052	0.23843935		
TOTAL (ABOUT MEAN)	996,66830951	4057			

		_	2		•		•	•	
S	330252	PARTIAL	CORR COEFS		0,13337	0,09139	0.03531	0,02996	0,03342
S TANDARD ERROR			8 10	0.129	<0.0000	<0.000,0>	0,023	0,053	0,031
STAN			.	2,2976	42,3784	34,1290	5,0595	4149°C	4,5320
82 4 00	0,1715		æ	e1,5025	8,5661	5,8420	2,2493	1,9082	.2,1289
COAR COEFS R BAR 2	0,0294	STD, ERRORS	OF BETAS		0,01842	0.01905	0.01744	0,01768	0,01912
MULTIPLE CO R	0,1750	BETA	HE GHTS		0.15778	0,11128	0.03924	0,03373	-0.04070
25	0,0306	STD, ERRORS	OF COEFFICIENTS	0,06971749	0,00075863	0.00603405	0,00285375	0,00510508	0,01393254
SNO.		REGRESSION	COEFFICIENTS	-0.10475370	0.00649856	0.03525095	0,00641902	0,00974170	-0,02966032
BSERVATIONS	4058		V A R	0	n	15	16	17	7. 9.
ō				CONSTANT	AGE	INCOME	5005	FAM SIZE	OCCUPATN

02940 02940 02940 02940

RESULTS REQUESTED EVERY ITERATION,

SIGNIFICANCE CRITERION MET.

STEP 3

APPENDIX E (Con'd)

VARIABLE DELETED BY CRITERION 1 WAS X(17) FAM SIZE

VARIABLES IN ORDER DELETED

FAM SIZE	17
N SUPPLY	20

	018	40,000,			ESTIMATE 61	PARTIAL CORR COEFS	0.13202	0.03410
	•	31,0608			S CANDARD ERROR OF ESTIMATE 0.40046161		71,0961, 40,0003 36,6067, 40,0003	•
	HEAN SOUARE	7,41095329	0,23859474		₽.			
		,,	6		R BAR 0.1697	18	6, 2792	2,1719
AOV FOR OVERALL! REGRESSION	UEG OF FREEDOM	•	4053	4057	MULTIPLE ÇORR COEFS R BAR 2 . 0.1725 0.0288	STD, ERRORS Of BETAS	0.01702	0.01744
AOV FOR OVERA	SUM OF SQUARES	29,64381316	967,02449635	996,66830951	HULTIPLE (BETA Weights	0.14432	0,03787
	NUS		96		R2 0,0297	ST OF C	0.0070104	
		REGRESSION (ABOUT MEAN)	ERRO4	TOTAL (ABOUT MEAN)	SNOI	REGRESSION COEFFICIENTS	0.00594420	0.00619483
		•	•		08SERVATIONS 4058	^	- w #	98
							AGE AGE	EDUC

0.01233 0.02045 0.02861

R2 DGLETES

APPENDIX F

COUNTY IDENTIFICATION CODE

APPENDIX F

County Identification Code

01 02 03 04 06 07 08 09 10 11 11 11 11 11 11 11 11 12 12 12 13	Alcona Alger Allegan Alpena Antrim Arenac Baraga Barry Bay Benzie Berrien Branch Calhoun Cass Charlevoix Cheboygan Chippewa Clare Clinton Crawford	43 4456 448 455555555556 61	Keweenaw Lake Lapeer Leelanau Lenawee Livingston Luce Mackinac Macomb Manistee Marquette Mason Mecosta Menominee Midland Missaukee Monroe Montcalm Montmorency Muskegon
15 16 17	Cheboygan	56 5 7 58	Missaukee
18 19	Clare Clinton	59 6 0	Montcalm Montmorency
20 21 22	Crawford Delta Dickinson	61 62 63	Muskegon Newaygo Oakland
23 24 25	Eaton Emmet Genesee	64 65 66	Oceana Ogemaw Ontonagon
26 27 28	Gladwin Gogebic	67 68	Osceola Oscoda
29 30	Grand Traverse Gratiot Hillsdale	69 70 71	Otsego Ottawa Presque Isle
31 32 33 34	Houghton Huron Ingh a m	72 73 74	Roscommon Saginaw Sanilac
35 36	Ionia Iosco Iron	75 76 77	Schoolcraft Shiawassee St. Clair St. Joseph
37 38 39 40 41	Isabella Jackson Kalamazoo Kalkaska Kent	78 79 80 81 82 83	St. Joseph Tuscola Van Buren Washtenaw Wayne Wexford

SELECTED BIBLIOGRAPHY

SELECTED BIBLIOGRAPHY

Books and Periodicals

- Cochran, William G. Sampling Techniques. New York: John Wiley and Sons, Inc., 1953.
- El-Badry, M. A. "A Sampling Procedure for Mailed Questionnaires." Journal of American Statistical Association, LI (1956), p. 209-227.
- Moser, C. A. Survey Methods in Social Investigation.
 London: Heinemann Educational Books Itd., 1958.
- Selltiz, Claire. Research Methods in Social Relations. New York: Holt, Reinhart, and Winston, 1967.

Public Documents and Reports

- . The Marine Market. Chicago: Boating Industry Association, Annual Market Research Notebook, 1967.
- Chubb, Michael. Outdoor Recreation Planning in Michigan by a System Analysis Approach: Part III-The Practical Application of "Program RECSYS" and "SYMAP". East Lansing: Department of Park and Recreation Resources, Michigan State University, 1967.
- Crapo, Douglas and Michael Chubb. <u>Recreation Area Day-Use Investigation Techniques</u>. <u>East Lansing:</u>
 Recreation Research and Planning Unit, Department of Park and Recreation Resources, Michigan State University, Technical Report No. 6, 1969.
- Michigan, Department of Conservation, Waterways Division.

 Transportation Predictive Procedures-Recreational
 Boating and Commercial Shipping. Lansing: State
 Resource Planning Program, Michigan Department of
 Commerce, Technical Report No. 90, 1066

- Michigan State University, Agricultural Experiment Station:

 LSDEL: Stepwise Deletion of Variables from a Least
 Sources Equation. East Lansing: Statistical Services Description No. 8, 1969.
- Michigan State University, Department of Resource Development. Michigan Outdoor Recreation Demand Study.

 Lansing: State Resource Planning Program, Michigan Department of Commerce, Technical Report No. 6, Volume II. 1966.
- America's Top Family Sport. New York: National Association of Engine and Boat Manufacturers and Outdoor Boating Club of America, 1965.

Other Sources

- Jackson, Robert. "Differential Value of the Mailed Questionnaire and the Interview in a Follow-up Study of High School Graduates." Unpublished Ph.D. dissertation, University of Wisconsin, Madison, 1959.
- Mandersheid, Lester. "An Introduction to Statistical Hypothesis Testing." Revised syllabus for Agricultural Economics, Department of Agricultural Economics, Michigan State University, East Lansing, 1969.
- Michigan Department of Conservation. Recreation Resource Planning Division. "Michigan Lake Frontage 1965." Unpublished Computer print out, Lansing, 1966.
- Shafer, Elwood L. "Effects of Sampling, Location, Period, and Method on Camper Survey Results." Unpublished Ph.D. dissertation, College of Forestry, Syracuse University, Syracuse, 1966.

MICHIGAN STATE UNIV. LIBRARIES
31293102527649