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ABSTRACT
A PARALLELOGRAM MODEL OF TIMBRE ANALOGIES
By

David Edward Ehresman

Recent multidimensional scaling studies have found that
of the acoustical properties on which tones produced by mus-
ical instruments differ, two or three are important in the
perception of timbre. These findings were replicated and
the dimensions were used as the basis for a parallelogram
model of timbre analogies.

Fifteen naturalistic tones were synthesized by using an
analysis based additive synthesis technique. The complex
time varying amplitude and frequency/phase functions ob-
tained during the analysis step were simplified by replacing
them with straight line segment approximations during the
synthesis step. Five musically sophisticated and five mus-
ically untrained subjects rated the dissimilarity of all
possible pairs of the 15 tones. The multidimensional scal-
ing of this data was interpreted in two dimensions. The
most potent dimension was interpreted in terms of the spec-
tral energy distribution of the tones. The second dimension

was related to the attack portion of the tones, that is,
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whether the onset of the higher harmonics was synchronous or
asynchronous. These interpretations agree with previous
research.

The parallelogram model of timbre analogies is based on
a mapping of the stimulus tones onto a multidimensional
space. The model assumes that for an analogy of the form
A:B::C:? there is some ideal analogy point, I, that will
complete a parallelogram. The prediction of the model is
that in solving timbre analogies a subject will choose the
alternative, D, which is closest to I in the multidimen-
sional space. Three alternatives to the parallelogram model
were tested. One possibility is that the subjects are
unable to use the directional information that is the basis
of the parallelogram model. In this situation, a subject
might choose as the best solution to the analogy the alter-
native D which is most similar to B, the terminal tone of
the first half of the analogy. A second possibility is that
subjects only use the most salient dimension in solving the
analogies by projecting the parallelogram onto that axis.
This model predicts that subjects will choose as the best
solution the alternative D which is closest to the ideal
analogy point in that one dimension. The third alternative
model is a combination of the first two. It predicts that
the similarity of the terminal tones along the one dimension

is the basis for choosing the best solution.
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Using thce 15 tones from the first cxperiment, forty
timbre analogics were formed; cach analogy had lour alterna-
tive solutions. Nine subjects from the scaling phase of the
study rank ordered the four alternatives as to which best
completed the timbre analogy. The parallelogram model best
predicted subjects' solutions to the timbre analogies. The
effects of musical training were not reflected in either the

scaling solution or performance on the analogy task.



A PARALLELOGRAM MODEL OF TIMBRE ANALOGIES

By

David Edward Ehresman

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF ARTS

Department of Psychology

1977



ACKNOWLEDGMENTS

I would like to express my appreciation to Dr. James
Zacks, Dr. Gordon Wood, and Dr. William Hartmann for their
help in serving as members of my thesis committee. I am
also very grateful to Dr. David Wessel, my committee
chairman, whose guidance, assistance, and inspiration made
this work possible. My special thanks to to Dr. Judy
Frankmann and Joey Mazzella for their editorial assistance
and to my wife, Mary Anne, for her understanding support.
Finally, I would like to thank Toni Tryon for her willing

help in preparing this manuscript.

ii



TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
INTRODUCTION . . .

Timbre. .
Analogical Reasonlng

SYNTHESIS OF STIMULI

EXPERIMENT 1: DISSIMILARITY JUDGMENTS OF
NATURALISTIC TONES e e e e e e

Stimuli

Procedure

Subjects.

Results and dlscu551on

EXPERIMENT 2: A TEST OF THE PARALLELOGRAM MODEL
Stimuli
Procedure
Subjects. .
Results and dlscu551on
CONCLUSION . . v v v v v v v e e e e e e e e
REFERENCES . . . .

APPENDIX . .

iii

.1v



LIST OF TABLES

TABLE PAGE
1 KYST stress values. 30
2 INDSCAL goodness-of-fit correlations. 33

3 Rank order data averaged over all subjects
and all analogies. 48

4 Rank order data for musically sophisticated
subjects. 54

5 Rank order data for musically untrained subjects. 54

6 Rank order data from analogies of the form
A:C::B:D. 55

7 Rank order data from analogies of the form
A:B::C:D. 55

iv



FIGURE

10
11
12
13
14
15
16a

16b

17

18

LIST OF FIGURES

Oboe 1 (01) amplitude envelope.

Oboe 2 (02) amplitude envelope.
Clarinet 1 (Cl1l) amplitude envelope.
Clarinet 2 (C2) amplitude envelope.
English horn (EH) amplitude envelope.
Bassoon (BN) amplitude envelope.
Flute (FL) amplitude envelope.
Saxophone 1 (X1) amplitude envelope.
Saxophone 2 (X2) amplitude envelope.
Saxophone 3 (X3) amplitude envelope.
French horn (FH) amplitude envelope.
Trumpet (TP) amplitude envelope.
Cello 1 (S1) amplitude envelope.
Cello 2 (S2) amplitude envelope.
Cello 3 (S3) amplitude envelope.

Composite Shepard diagram for five musically
sophisticated subjects.

Composite Shepard diagram for five musically
untrained subjects.

Two dimensional subspace of the INDSCAL
three dimensional weight space.

INDSCAL two dimensional weight space.

PAGE
15
16
17
18
19
20
21
22
23
24
25
26
26
27
28

31

32

34
34



FIGURE
19
20

21

22

23a

23b

24

25

26

INDSCAL two dimensional timbre spacc.

INDSCAL X coordinates versus the first moment
of the average amplitude of the harmonics.

INDSCAL Y coordinates versus a weighted standard

deviation of the onset times of the upper
harmonics.

A two dimensional subspace of Grey's (1975)
three dimensional INDSCAL timbre space.

Two dimensional KYST timbre space for musically
sophisticated subjects.

Two dimensional KYST timbre space for musically
untrained subjects.

ID distance versus the proportion of subjects
who ranked an alternative as the best solution.

ID distance versus the logarithm of the
proportion of subjects who ranked an
alternative as the best solution.

Observed versus predicted proportion of

subjects who ranked each alternative as the
best solution.

vi

39

40

43

44

49

52

53



INTRODUCTION

The spectral energy distribution of a complex tone and
the temporal properties of its attack provide major cues in
the perception of its timbre. Recent multidimensional scal-
ing studies report timbre spaces with these properties as
salient dimensions. A parallelogram model of timbre analo-
gies is based on such a multidimensional timbre space. The
assumption is made that for an analogy of the form A:B::C:?,
where A, B, and C are points in the timbre space, there is
some ideal analogy point, I, that completes a parallelogram.
This model predicts that the alternative which is closest to
this ideal analogy point will be chosen as the best solution
to the analogy.

Timbre

Timbre is not a clearly defined term; it is usually
described negatively in terms of the qualities that are left
after loudness and pitch have been determined. The defini-
tion given by the American Standards Association (1960) is
such a definition by exclusion: "Timbre is that attribute
of auditory sensation in terms of which a listener can judge
that two sounds similarly presented and having the same
loudness and pitch are dissimilar." Similarly presented
presumably implies that the stimuli are of equal duration

and have the same spatial location.
1
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The classical theory of timbre perception originated
with Helmholtz. His argument, based on Ohm's Acoustical Law
(Ohm, 1843), stated that differences in timbre are a result
of the presence and the strength of harmonics in the tone
and that the phase relationships among the harmonics make
little difference (Helmholtz, 1877/1954). It is important
to note that Helmholtz studied only the steady-state portion
of complex tones, choosing to ignore the dynamically chang-
ing phenomena which are characteristic of naturalistic
auditory tones.

Helmholtz was able to show that the steady-state por-
tion of musical and vocal sounds is composed of sets of har-
monics and that the ear can distinguish a number of these
harmonics individually. After Ohm, he reasoned that the ear
performs a Fourier analysis on a tone and thereby identifies
the amplitude pattern of the resulting series of harmoni-
cally related sinusoids which forms the basis of timbre
judgment.

A modification of Helmholtz's classical theory makes
use of the notion of formant regions. A formant is a fre-
quency range in which the amplitudes of the harmonics are
considerably higher than the amplitudes of the harmonics in
the neighboring regions; a formant shows up as a peak in the
spectral envelope. This model, which originated in speech
perception research, contends that it is the formants, not
the harmonics, that provide the major cues in timbre judg-

ments (Fletcher, 1934; Bartholomew, 1945; Slawson, 1968).
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The classical theories of timbre dealt only with
steady-state tones. Musical tones, however, are usually
considered to consist of three segments: (1) the attack,
the portion of the tone in which it builds in amplitude,
(2) the steady-state, the portion which is reached at the
end of the attack, in which the tone remains stable, and
(3) the decay, the portion of the tone in which its ampli-
tude decreases until it has finished sounding. An important
question is to what extent the perception of timbre is
determined by the attack and decay portions of a tone where
many dynamic changes occur in the spectral distribution.

Several studies indicate that the acoustical details in
the attack transient are very important for the identifica-
tion of the instrument which produced a tone. In one of
these studies (Saldanha and Corso, 1964), trained musicians
identified the instrument which produced a tonal stimulus
when the tone consisted of (1) the initial transients and a
short steady-state (1/3 sec.), (2) the initial transients, a
short steady-state, and the decay transients, (3) the ini-
tial transients, a long steady-state (9 sec.), and the decay
transients, (4) a short steady-state without the character-
istic attack or decay, or (5) a short steady-state and the
decay transients. A tone for each condition was obtained
from eight wind instruments and two string instruments. The
absence of the decay transients (Group 1 vs. Groups 2 and 3;

Group 4 vs. Group 5) appeared to have minimal effect on the
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ability to recognize the instrument (i.e., label the
timbre). However, the absence of the characteristic attack
transient (Groups 1, 2, and 3 vs. Groups 4 and 5) was
detrimental to performance.

Berger (1964) found similar results for 10 wind
instruments. He asked musicians to identify the instrument
which produced a tone when the stimulus consisted of (1) the
unaltered tone, (2) the steady-state portion of the tone, or
(3) the fundamental component of the tone with the harmonics
filtered out. As expected, the unaltered tones were easier
to identify than those without the transients, which in turn
were easier to identify than those with the harmonics
filtered out. Wedin and Goude (1972) also noted that attack
transients were important in the identification of the
timbre of a tone. In addition, Saldanha and Corso (1964)
found that the timbre of tones played with vibrato, a tem-
porally dynamic phenomenon, was easier to identify than the
timbre of tones played without vibrato.

This work in timbre perception was valuable to investi-
gators in the related field of music synthesis. With a
growing awareness that temporal events play an important
role in timbre perception, these researchers sought a way to
synthesize naturalistic tones with dynamic attack transients.
Tones were analyzed to determine the temporal envelope (time
vs. amplitude) for several or all of the harmonics in the
tone. Part or all of this information was then used to

synthesize tones.
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Strong and Clark (1967a, 1967b) determined the
steady-state spectral envelope (frequency vs. amplitude)
and several temporal envelopes for three subsets of harmon-
ics associated with each of nine wind instruments. Using
this information, they synthesized tones with the aid of a
digital computer. Music students were able to identify the
synthesized tones with 66% accuracy as compared to 85% accu-
racy for the natural tones. After observing the effects of
systematically exchanging envelopes among instruments,
Strong and Clark concluded that tones from some instruments
had unique spectral envelopes and that for these tones the
spectral envelope was more important for correct identifica-
tion than was the temporal envelope. Tones from other
instruments did not have unique spectral envelopes, and for
these tones the temporal envelope was as important or more
important than the spectral envelope in the identification
process.

Grey (1975) approached the synthesis problem somewhat
differently. First, he determined the time varying ampli-
tude and frequency functions for each of the harmonics
present. Then he synthesized tones using all of the infor-
mation to test the validity of the analysis (full data
tones). Next he systematically simplified the information
used in the synthesis to determine the effect of particular
types of information. The simplifications he used were: (1)
representing the complex time variant amplitude and fre-

quency functions with small numbers of straight line
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segments (line segment approximation tones), (2) excluding
any clearly delineated initial attack segments which con-
tained low-amplitude inharmonicities (cut attack tones), and
(3) substituting constant frequencies for the time variant
frequency functions while retaining the time variant line
segment approximations for the amplitude functions (constant
frequency tones). Grey (1975) tested for discriminability
between the five types of tones, i.e., the original tones in
digitized form, the full data tones, and the three types of
simplified tones; he also asked his musically trained 1lis-
teners to rate the subjective distances between tones. The
results of both of these measures indicated that the full
data tones were an adequate representation of the original
tone. Verbal reports of the listeners indicated that dif-
ferences between the original and the full data tones were
difficult to detect, and when detected, the stimuli were
described as tones from the same instrument played with a
different articulation or style of playing. The line seg-
ment approximation tones were very similar to the full data
tones; however, the constant frequency tones and the cut
attack tones were too discriminable to be of general use.
Thus, it appears that perceptually convincing renditions of
naturalistic tones can be obtained when the details of
amplitude and frequency variation in each harmonic are
approximated with relatively few linear segments.

Several studies have used multidimensional scaling (MDS)

techniques (Shepard, 1962a, 1962b; Kruskal, 1964a, 1964b;
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Carroll and Chang, 1970) to gain a better understanding of
timbre perception. Using matrices of dissimilarities (or
similarities) between objects, these MDS techniques attempt
to represent the dissimilarities as distances between points
in an n-dimensional space (usually a two or three dimensional
Euclidean space). The resulting "picture' can be viewed in
two ways: (1) as a very useful data reduction suggesting
hypotheses for new lines of research, or (2) more specula-
tively, as a model of the way the objects are perceived.

Plomp and Steeneken (1969) were the first to use MDS as
a model of timbre perception. However, their study used
only steady-state tones. Tones which included the trans-
ients were used by Wessel (1973), who had music students
rate the dissimilarity of tones played on nine orchestral
instruments. Using MDS as a data reduction tool, he embed-
ded the instruments in a two dimensional Euclidean space.
One dimension differentiated among timbres by the distribu-
tion of energy in the steady-state region of the tones. The
energy of the tones on one end of this dimension was located
predominately in the lower harmonics, while tones on the
other end had more energy located in the higher harmonics.
The second dimension was more difficult to interpret using a
single physical characteristic of the tones. The tones
tended to be grouped by family (i.e., brass, woodwinds, and
strings). This dimension appeared to be related to temporal
properties of the tone, i.e., differences in the attack

segment. Wessel and Grey (in press) also scaled the
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similarity judgments of nine instrument tones reported by
Wedin and Goude (1972). The results were similar to those
described above and strongly supported the important role
of attack transients in providing perceptual distinctions
among instruments.

Grey (1975) used MDS techniques to analyze the similar-
ity of the 16 "line segment approximation'" tones described
earlier. Grey noted three ways in which these tones dif-
fered from the tones used by Wedin and Goude (1972) and
Wessel (1973). They were (1) shorter in duration, (2) syn-
thesized naturalistic tones rather than actual natural tones,
and (3) experimentally equalized for pitch, loudness, and
perceived duration. His data reduction yielded not two, but
three dimensions.

One dimension, the spectral energy distribution, paral-
leled the first dimension found in previous studies (Wessel,
1973; Wedin and Goude, 1972 as scaled by Wessel and Grey, in
press). A second dimension reflected patterns in the onset-
offset portion of the tones. At one extreme of this dimen-
sion all of the upper harmonics entered and exited at approx-
imately the same time or with synchrony; at the other extreme
the upper harmonics entered and exited gradually or asynchro-
nously. This dimension also related fairly well to musical
instrument families. The third dimension also focused on
the attack segment of the tones. Tones were differentiated
by the presence of high frequency, low amplitude, usually

inharmonic energy, during the attack segment as opposed to
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low frequency inharmonic energy, or at least the abscnce of
high frequency inharmoniousness in the attack. Since two of
Grey's dimensions were interpreted in terms of the attack
transients, it appears that they are encompassed by Wessel's
second dimension. The consistency of findings and the com-
plementary nature of the results in these studies clearly
pin-point important attributes of tones which need to be
taken into consideration in future studies of timbre.

Analogical Reasoning

Rumelhart and Abrahamson (1973) have presented an
intuitively appealing theoretical model of analogical reason-
ing based on MDS techniques. They assume that the elements
to be used in forming analogies have been embedded in a
multidimensional space. Their model states that for an anal-
ogy of the form A:B::C:?, there is some '"ideal analogy point"
(Rumelhart and Abrahamson, 1973, p. 4), '"I'", that completes
the analogy such that line segments connecting the four
points in the multidimensional space will form the sides of
a parallelogram. In other words, there is some vector, CI,
which is parallel to and equal in length to the AB vector.
The coordinates of this ideal analogy point, I, can be com-
puted from the following formula:

I(j) = C(3) + B(j) - A(j), J = 1,n (1)
where I(j), C(j), B(j), and A(j) refer to the coordinate on
the jth dimension of points I, C, B, and A respectively, and

n is the dimension of the multidimensional space.
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This model, which will be referred to as the parallel-
ogram model of analogical reasoning, predicts that for an
analogy of the form A:B::C:D1, D2, D3, or D4, the probabil-
ity that a particular alternative will be chosen as the best
solution to the analogy is a monotonic decreasing function
of the distance between that point and the point "I" (the
ID distance) in the multidimensional space.

Rumelhart and Abrahamson found support for this model by
using a three dimensional space of animal names obtained
from a scaling study by Henley (1969). A second experiment
reported in the same paper found further support for the
model. Forming analogies from the same set of animal names
they (1) replicated the first experiment, (2) showed that
the probability of choosing a particular alternative did not
depend on the particular analogy problem, provided that the
distances between the ideal solution point and the alterna-
tive were approximately equal, (3) found support for the
idea that the monotonic decreasing function which relates the
probability that an alternative will be chosen as the best
solution to the ID distance is an exponential one, and (4)
found that the 2nd, 3rd, and 4th best solutions were also
predicted by the distance between the alternative and the
ideal analogy point.

An implicit assumption of the parallelogram model is
that subjects are able to judge the similarity of the vectors
involved in an analogy. If subjects are unable to appreciate

the directional information implied by the concept of vectors,
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they may solve the analogies by choosing the alternative D
(the endpoint of the CD vector) which is most similar to B
(the endpoint of the AB vector). This alternative hypothesis
will be referred to as the similarity of terminal tones
model.
A second assumption is that subjects are able to use

multidimensional information in solving an analogy. However,

due to the complexity of the timbre analogy task, subjects
may resort to using only the most potent dimension in solving
an analogy. This possibility gives rise to two more alterna-
tive hypotheses.

The first of these potent dimension hypotheses is based
on the parallelogram model. It states that subjects project
the parallelogram onto the most potent dimension and proceed
as in the parallelogram model. This hypothesis predicts the
choice of the alternative D which is closest to the ideal
analogy point along the one dimension as the best solution.

The second potent dimension hypothesis is based on the
similarity of terminal tones hypothesis. The prediction of
this model is that the alternative D which is closest to
tone B along the potent dimension will be selected as the
best solution to an analogy.

The purpose of the following two experiments is to test
whether Rumelhart and Abrahamson's parallelogram model will
predict subjects' choices of the best solutions to timbre
analogies more accurately than the three alternative

hypotheses. As discussed previously, recent MDS solutions
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of tones of different timbre (Grey, 1975; Wedin and Goude,
1972 as scaled by Wessel and Grey, in press; Wessel, 1973)
have resulted in two or three interpretable axes. In
Experiment 1, a scaling of 15 tones of different timbre gave
rise to a two dimensional timbre space that is comparable to
those found by other researchers. Experiment 2 used this
scaling solution to test Rumelhart and Abrahamson's (1973)
parallelogram model of analogical reasoning in the timbre

domain.



SYNTHESIS OF STIMULI

In the following experiments, subjects were asked to
make judgments about 15 tones with different timbres. The
specific tones that were used were 15 of Grey's (1975) 1line
segment approximation tones, as discussed in the Introduc-
tion. These tones were originally played on the following
musical instruments: oboe (2 different instruments and
players), English horn, bassoon, b clarinet, bass clarinet,
flute, alto saxophone (2 tones from one instrument, played
at p and mf) soprano saxophone, trumpet, French horn, and
cello (3 tones from one instrument, played normally, muted
sul tasto, and sul ponticello). All 15 tones were played
near the pitch of EY above middle C (approximately 311 Hz),
at approximately the same loudness level, and with durations
between 280 and 400 milliseconds. These tones were then
analyzed by Grey using the heterodyne filter method (Moorer,
1973), which produces time variant amplitude and frequency/
phase functions for each harmonic. The tones were then
resynthesized by summing a set of harmonic sinusoids that
were controlled in time by the amplitude and frequency func-
tions obtained in the analysis stage. This process is called
analysis based additive synthesis. The line segment approx-

imation tones were synthexized by replacing the extremely

13
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complex time variant amplitude and frequency/phase functions
with a small number of straight line segments and using
these to control the harmonic sinusoids.

The tones used in this study were synthesized at
Michigan State University using a specialized additive syn-
thesis program implemented on a PDP-11/40 digital computer
(See Appendix). The data were supplied by John Grey in the
form of break-point tables (i.e., a list of the endpoints of
each line segment) of amplitude and frequency/phase functions
for each harmonic of each of the tones. The values of the
amplitude and frequency/phase functions (as determined from
the break-point table) for each time period were used to con-
trol the sampling from a sinusoid for each harmonic and
these samples were summed to yield the waveform value for
that time period. This process was repeated until the entire
tone was determined and stored on a magnetic disk in digital
form. Figures 1-15 display the waveforms of these tones.
Time is on the X axis, amplitude is on the Y axis, and fre-
quency (with the fundamental in the background) is on the Z
axis. A sampling rate of 25,000 samples per second was used.
During the experiments the tones were played via a 16 bit
digital to audio converter (DAC), constructed by Three Rivers

Computer Corporation (Kriz, 1975).
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Figure 1. Oboe 1 (01) amplitude envelope.



16

-N\-ooooooo

*® e o NI, - O P OO eSS
PR e Y L Y Y YTY
cmeo P IIEEEE s OO GRS
*O G IR - P PP OO
o PN P P OO e
* e o G ¢ ® ® ® ® ®

Figure 2. Oboe 2 (02) amplitude envelope.
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Figure 3. Clarinet 1 (Cl) amplitude envelope.



18

Figure 4. Clarinet 2 (C2) amplitude envelope.
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Figure 5. English horn (EH) amplitude envelope.
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Figure 10. Saxophone 3 (X3) amplitude envelope.
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EXPERIMENT 1: DISSIMILARITY JUDGMENTS OF NATURALISTIC TONES

Stimuli

The 210 possible pairs of the 15 tones were formed and
randomized for each subject.
Procedure

Subjects were asked to judge how dissimilar each pair
of tones was. The tones were presented to subjects in a
sound chamber via the DAC over a Philips 532 Motional Feed-
back loudspeaker. Subjects sat approximately two and one
half feet from the speaker. The tones were presented in
pairs; in order to hear a pair, the subject pressed a button
switch which was interfaced with the PDP-11/40. The subject
was allowed to listen to each pair as many times as he or
she desired and then registered a dissimilarity judgment by
using a linear potentiometer. Each judgment (the position of
the potentiometer) was read by the PDP-11/40 via a DR11C
interface when a second button switch was depressed, and was
stored on a magnetic disk for later analysis. Subjects were
given 20 practice trials to become familar with the procedure.
Subjects

Five musically sophisticated and five musically untrained
subjects were recruited from students and faculty at Michigan

State University.

29
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Results and discussion

The dissimilarity judgments were analyzed using two MDS
programs, KYST (Kruskal, 1964a, 1964b; Young and Torgerson,
1967; Shepard, 1962a, 1962b; Torgerson, 1958) and INDSCAL
(Carroll and Chang, 1970). Data from the musically sophis-
ticated subjects and from the musically untrained subjects
were analyzed separately using the KYST program. Three, two
and one dimensional solutions were obtained for both sets of
data. The goodness-of-fit of these solutions is assessed by

stress measures which are shown in Table 1. Large values of

Table 1. KYST stress values.

Number of Stress
Dimensions
Musically Musically
Sophisticated Untrained
Three 0.21 0.22
Two 0.28 0.30
One 0.43 0.43

stress indicate a poor solution. For both groups, the good-
ness of fit for the three dimensional solution was not sub-
stantially better than that for the two dimensional solution.
Stress for the one dimensional solutions was markedly
higher than that for the two dimensional solutions. There-
fore, the two dimensional solution seemed most appropriate.
The Shepard diagrams (solution distances versus the data
fitted with the monotone regression line) for both two
dimensional solutions are shown in Figure 16. Although the
stress was within acceptable limits, there was still consid-

erable scatter.
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The goodness-of-fit measure for INDSCAL is the correla-
tion between the data and the distances in the solution.
Again the three dimensional solution was little better than
the two dimensional solution (Table 2); however the correla-

tion did decrease when a one dimensional solution was obtained.

Table 2. INDSCAL goodness-of-fit correlations.

Number of Correlation
Dimensions
Three 0.65
Two 0.62
One 0.54

An examination of the subjects' weight space for the three
dimensional INDSCAL solution (Figure 17), yields yet another
reason for choosing the two dimensional solution: Subject U4
was the only one to place any weight on the third dimension.
Since there was no substantial improvement in goodness-of-fit
for the third dimension and since only one subject used the
third INDSCAL dimension, the two dimensional solution seemed
to be a more appropriate representation of the data.

Figures 18 and 19 show the INDSCAL two dimensional
subjects' weight space and group timbre space. The horizon-
tal dimension of the timbre space closely corresponds to the
first dimension found by Wessel and to Grey's Y dimension.

At one extreme are the tones, from instruments such as the
French horn and the cellos, which have most of their energy
located in the lower harmonics. At the other extreme are the

tones, such as those produced by the saxophones and oboes,
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which have more of their energy located in the higher
harmonics. One can think of this as a mellow to bright
continuum.
The first moment of the average amplitude of the
harmonics can be used as a quantitative measure of this
energy distribution dimension. The average amplitude of

the kth harmonic, AA(k), was computed as:

aAa(k) = LELe) de, (2)

where f(t) = the amplitude of the kth harmonic at time t,
a = the start time of the tone, and b = the stop time of the
tone. The first moment of the average amplitudes for a tone

was calculated as:

k AA(k)

=<

"
= =
([ o = B I [ o B
= p—

(3)
AA (k)

where M = the first moment, k = the harmonic number, and

n = the number of harmonics in the tone. This measure of
energy distribution is highly correlated (r = 0.85) with the
X coordinates of the INDSCAL solution (Figure 20).

As in previous work, the second dimension appears to be
determined by the attack portion of the tones. The onsets
of the upper harmonics in the tones at one extreme of this
dimension tend to be asynchronous; at the other extreme the
onsets look much more synchronous. The tones at the asyn-
chronous extreme, from instruments such as the clarinets and

the saxophones, have a roughness or raggedness in the attack;
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Figure 20. INDSCAL X coordinates versus the first moment of
the average amplitude of the harmonics.
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the tones which are more synchronous in the onsets of the
upper harmonics, created by instruments such as the trumpet
and the bassoon, have a much sharper or clearer attack.
A weighted standard deviation of the start times of the
upper harmonics, beginning with harmonic six, was chosen as
a quantitative measure of this dimension. The standard

deviation was calculated as:

=2
wsp = L (t(K) - t)” » AB;P(k) / TOTAMP ,

n -

(4)

where WSD = the weighted standard deviation, t(k) = the
onset time of the kth harmonic, t = the mean start time of
the upper harmonics, n = the number of harmonics in the tone,

AMP (k) = the energy in harmonic k, and TOTAMP

the total
amount of energy in the tone. The start of a harmonic was
defined to be the time at which its amplitude was 1.5 (about
20 dB). These weighted standard deviations correlate highly
(r = -0.78) with the Y coordinates of the INDSCAL solution
(Figure 21).

A comparison of the two dimensional INDSCAL solution
with a two dimensional projection of Grey's Y and X dimen-
sions (Figure 22) reveals that these two scaling solutions
are very similar. This supports the position that the scal-
ing solution is a reasonable one. However, there is a puz-
zling discrepancy between Grey's interpretation of the syn-
chronous-asynchronous dimension and the one just offered.
While both studies obtained this dimension, Grey claimed
that the woodwinds tend to be sychronous while the strings

and brasses tend to be asynchronous. This study
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claims exactly the opposite, that the woodwinds tend to be
asynchronous while the strings and brasses tend to be syn-
chronous. It is important to note that Grey arrived at his
interpretation by looking at spectrograms of his tones but
failed to give any quantitative measure to support his
interpretation.

One possible problem with the quantitative interpreta-
tion provided here is that some of the harmonics have fre-
quency glides. That is, at the start of the tones some
frequencies are not at their proper harmonic values but
glide to that value as the tone progresses. Thus a second
way of defining the start of a harmonic is that time at
which the frequencies reach some proportion of their proper
harmonic value. Exploration with this definition of start
time failed to provide as good a quantitative interpretation
as did the amplitude definition of start time. The modified
measure also failed to resolve the discrepancy since the
strings and brasses still tended to be synchronous while the
woodwinds tended to be asynchronous.

The start of an harmonic could also be defined to be
that time at which its frequency reaches some proportion of
its proper value and its amplitude exceeds some threshold.
Exploration with this measure also failed to equal or
improve upon the original measure, and again the discrepancy
remained unresolved.

As can be seen from the subjects' weight space shown in

Figure 18, there were no systematic differences between the
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musically sophisticated subjects and those with no musical
training. Three of the untrained subjects and the five
musical subjects clustered together at a point which indicates
that they were giving an approximately equal weight to both
dimensions. Subject U5 gave less weight to the first dimen-
sion that did the others and subject U4 gave little weight
to either dimension. This conclusion is further substantia-
ted by the two KYST solutions (Figure 23). Not only are the
stress values very nearly the same, but the solutions them-
selves are similar to each other. Note also that the two
dimensional KYST solutions are roughly comparable to the
INDSCAL solution. These convergent solutions serve to
increase our confidence in the interpretations that have

been provided.
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EXPERIMENT 2: A TEST OF THE PARALLELOGRAM MODEL

Stimuli

In this experiment, Rumelhart and Abrahamson's (1973)
parallelogram model of analogical reasoning was tested using
the timbre space derived in Experiment 1. Twenty timbre
analogies of the form A:B::C:D1, D2, D3, or D4 were formed
as follows: The 15 tones were arranged in random order; the
first three in this order were chosen as A, B, and C of the
first analogy, the second three were used to form the second
analogy, and so on. When the list was exhausted the tones
were rerandomized and the procedure repeated until 20 anal-
ogies had been formed. For each of the analogies thus
formed, the coordinates of the ideal analogy point, "I",
were calculated and the distances between each of the remain-
ing 12 tones and "I" were computed. Four alternative solu-
tions to the analogy were chosen such that each analogy had
an alternative in each of the following ranges: 0.00-0.25
units from "I", 0.25-0.50 units from "I", 0.50-0.75 units
from "I", and 0.75-1.00 units from "I'". The units which
were used are the ones produced by the INDSCAL program as
shown in Figure 19. 1If it was not possible to choose altern-
atives to meet these conditions, that analogy was discarded

and another one formed as above. If more than one tone fell

45
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within a given range, the one closest to the lower boundary
was chosen. The four chosen alternatives were also ordered
randomly for each subject.

If A is to B as C is to D, then it ought to be the case
that A is to C as B is to D. In terms of the parallelogram
model, the above two analogies are exactly the same parallel-
ogram. Therefore, for each of the 20 analogies formed above,
another analogy was formed which had the same components but
had the second and third elements reversed. In other words,
the analogies were of the form A:C::B:D1, D2, D3, or D4.
Procedure

The analogies were presented to subjects using the
audio equipment described in Experiment 1. A trial consis-
ted of the four alternative forms of an analogy (A:B:C:Dn,
where Dn is one of the four alternative solutions). Sub-
jects selected one of the alternative forms by depressing
one of four button switches; each alternative form was ran-
domly associated with one switch. Subjects listened to each
alternative as many times as he or she wished. Subjects
were asked to rank order each of the four alternatives as to
how well it completed the analogy. The rank order was indi-
cated by rearranging the order of the four button switches
until they were in the appropriate order. Subjects then
pressed a fifth switch which signaled to the computer that
the rank order was ready to be entered; subjects then pres-
sed each of the four switches in the appropriate order and
this was read by the PDP-11/40 via the DR11C interface and

was stored on a magnetic disk for later analysis.
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Subjects

Nine of the ten people who served as subjects in
Experiment 1 served as subjects in this experiment. Subject
M3 was unable to participate.

Results and discussion

The parallelogram model predicted subjects' responses
on the timbre analogy task better than any of the alternative

hypotheses. Of the alternative hypotheses, the potent dimen-

sion similarity of terminal tones model was the least satis-

factory. This model predicts that the alternative D closest
to the tone B along the potent dimension will be chosen as
the best solution. However, the correlation between the one
dimensional BD distance and the proportion of subjects who
ranked that particular alternative as the best solution was
quite low (r = -0.31).

The other two alternative hypotheses were slightly

better. The potent dimension parallelogram model predicts

that the alternative D which is chosen as the best solution

to an analogy is that one with the shortest ID distance

along the potent dimension. In this case, the one dimensional
ID distances correlated poorly with the proportion of subjects
who ranked that alternative D as the best solution (r = -0.39).

The prediction of the similarity of terminal tones model is

that the alternative D closest to tone B in the multidimen-
sional space will be chosen as the best 'solution to an
analogy. The correlation between the BD distances and the

distances and the proportions of subjects chosing a
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particular D as the best solution was the same as the
previous model (r = -0.39).
The parallelogram model predicts that the probability
of chosing a given alternative as the best solution is

inversely related to the ID distance. Table 3 lists the

Table 3. Rank order data averaged over all subjects and all

analogies.
RANK DISTANCE SUBJECT-ASSIGNED RANK
OF THE ALTERNA- = --------cmcmmmmm i mmmmmmme e oo e o
TIVE FROM I 1 2 3 4

0.422 0.303 0.156 0.119
0.322 0.283 0.217 0.178
0.169 0.267 0.358 0.206
0.086 0.147 0.269 0.497

SN -

proportion of responses, averaged over subjects and anal-
ogies, for which the Ith closest alternative to the ideal
analogy point was ranked as the Jth best solution, where I
is the row index and J is the column index. Column one

of this table shows that the prediction was indeed ful-
filled. In fact, the distance between an alternative and
the ideal analogy point predicts not only the best solution,
but the rank ordering of all four alternatives. Only one
exception occurred (see column two). Figure 24 shows the
scatter diagram of the ID distance versus the proportion of
subjects who ranked that alternative D as the best solution.
The product moment correlation coefficient is -0.52. This
correlation is not too disappointing when one takes into
consideration that the goodness of fit measure (r = 0.62) of

timbre space places a kind of ceiling on subsequent
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correlations derived from the distances in a way analogous
to the 1limit reliability places on validity in testing
theory.

By assuming Luce's choice rule (Luce, 1959; Atkinson,
Bower, and Crothers, 1965) the probability of choosing a
given alternative as the best solution can be predicted.
Luce's choice rule states that the probability of choosing
any given alternative Xi from the set of alternatives X1
. Xn is given by

Pr(X;[X;, . . . , Xn) = p; = v(di)/[zv(dj)], (5)

where di = distance between Xi and I, and v (di) is a mono-
tonically decreasing function of its argument. The addi-
tional assumption was made that

v(x) = exp (-ax), (6)
where x and o are positive numbers. The exponential function
was chosen for two reasons: (1) Shepard (1957) found a good
fit to an exponential generalization function over a simil-
arly derived space and (2) Rumelhart and Abrahamson found a
good fit to an exponential function in their work with the
parallelogram model. Taking the natural logarithm of both
sides of equation 5 yields

1n (pi) = 1n v(di) - 1n [Ev(dj)]. (7)
Substituting exp (-ax) for v(x) (equation 6), we get

In P; = -adi - 1n [Zexp(-adj)]. (8)
This function states that the parameter, -a, can be esti-

mated by the slope of the regression line fit to the ID
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distance versus the natural logarithm of the proportion of
subjects who ranked that alternative as the best solution
(Figure 25). Alternatives which were never chosen as the
best solution were eliminated while making this calculation.
This yielded an estimate of -a = -1.33. This parameter was
then used to predict the proportion of subjects who ranked
each alternative as the best solution. Figure 26 shows the
observed versus the predicted proportion of subjects who
ranked each alternative as the best solution. Again this
correlation (r = 0.52) is quite acceptable when compared to
the goodness of fit measure.

Given that there is no systematic clustering in the
INDSCAL subjects' weight space, it is not surprising that
there are no systematic differences in the analogy judgments
attributable to musical training. Table 4 gives the propor-
tion of responses, averaged over the musical subjects and
the analogies, for which the Ith closest alternative to I
was ranked as the Jth best solution. Table 5 gives these
same results averaged over the musically untrained subjects.
As one would expect, there were no systematic differences
between these two tables and their entries were highly
correlated (r = 0.89).

If the analogies work equally well along both dimensions
then the analogies of the form A:C::B:D should work as well
as those of the form A:B::C:D. Table 6 and Table 7 summarize
the data for these two forms of the analogies averaged over

all subjects. Since the subjects' weight space (Figure 18)
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Table 4. Rank order data for musically sophisticated

subjects.
RANK DISTANCE SUBJECT-ASSIGNED RANK
OF THE ALTERNA-  ---------mommmmme e e e e e
TIVE FROM 1 1 2 3 4
1 0.406 0.331 0.131 0.131
2 0.325 0.294 0.219 0.162
3 0.213 0.187 0.375 0.225
4 0.056 0.187 0.275 0.481

Table 5. Rank order data for musically untrained subjects.

RANK DISTANCE SUBJECT-ASSIGNED RANK
OF THE ALTERNA-  ------------c-ccmmcmmmmc e mmmcm e m oo o e -
TIVE FROM 1 1 2 3 4
1 0.435 0.280 0.175 0.110
2 0.320 0.275 0.215 0.190
3 0.135 0.330 0.345 0.190
4 0.110 0.115 0.265 0.510
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Table 6. Rank order data from analogies of the form

A:C::B:D.
RANK DISTANCE SUBJECT-ASSIGNED RANK
OF THE ALTERNA-  ----cmccm i i e m e e e e m e c e mem e e e m e oo -
TIVE FROM 1 1 2 3 4
1 0.389 0.344 0.167 0.100
2 0.361 0.283 0.200 0.156
3 0.189 0.239 0.367 0.206
4 0.061 0.133 0.267 0.539

Table 7. Rank order data from analogies of the form

A:B::C:D.
RANK DISTANCE SUBJECT-ASSIGNED RANK
OF THE ALTERNA-  ---c-ccmmmmmm e e e e e e e e e e e e e e e oo - -
TIVE FROM I 1 2 3 4
1 0.456 0.261 0.144 0.139
2 0.283 0.283 0.233 0.200
3 0.150 0.294 0.350 0.206
4 0.111 0.161 0.272 0.456
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shows that subjects tend to put nearly equal weights on both
dimensions, it is not surprising that these two tables are

quite similar (r = 0.92).



CONCLUSION

The principal dimension of the timbre space which was
obtained in the first experiment replicated the results of
previous studies. This not only supports the idea that a
reasonable solution was obtained, but also increases one's
confidence that the energy distribution provides an impor-
tant cue in the perception of timbre.

The fact that the second dimension was interpreted in
terms of the attack transient also agrees with previous
research. However, the details of exactly what property (or
properties) of the transient provides the perceptual cues
are not totally clear. An experiment comparing three vari-
ations of stimulus tones could provide further insight about
this problen.

This experiment involves three conditions. The first
condition would repeat the scaling part of this study with
the tones experimentally equalized for pitch, loudness, and
duration. The tones scaled in the second condition would be
synthesized by replacing the frequency functions used in the
first condition with frequency functions which are exactly
at the proper harmonic value, thus removing the frequency
glides as perceptual cues. The tones in the third condition

would be synthesized by replacing the amplitude functions of

57
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the original tones with trapezoidal functions that have the
same average amplitude as the origninal function. In this
condition, the amplitude envelope cannot provide any per-
ceptual cues. A separate dissimilarity matrix and scaling
solution would be found for each condition.

By comparing the scaling solutions from the fixed fre-
quency and the trapezoidal amplitude tones to the original
tones solution, one will be able to better understand what
effect the amplitude variations and the frequency glides
have on the perception of timbre. If the fixed frequency
scaling solution corresponds more closely to the original
solution than the trapezoidal amplitude solution, one will
be able to conclude that the perceptual cues provided by the
amplitude envelope are more important in the perception of
timbre than those cues provided by the frequency glides.
This would be consistent with the synchronous-asynchronous
interpretation of the second dimension. However, if the
trapezoidal amplitude scaling solution is better than the
fixed frequency solution, one will conclude that the fre-
quency glides provide important cues in the perception of
timbre. This would require that the synchronous-asynchronous
interpretation be modified or rejected.

Another method of evaluating the validity of the inter-
pretations that have been given to timbre spaces is to manip-
ulate directly the properties of the tone. If the centroid
of the energy distribution and the variability of the onset

times in the upper harmonics play the important role which
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this study suggests, it should be possible to synthesize
tones that map onto a predetermined area of the timbre space.
Such results would provide additional strong support for
this interpretation.

Although there is still room for improvement, the
parallelogram model predicts the solutions to timbre anal-
ogies more accurately than alternative models. Furthermore,
the model accomplishes this even though the particular tones
in the present study were only approximately equalized for
pitch, loudness, and duration. Although one rarely hears
precisely equalized tones in real life situations, a repli-
cation with tones that have been equalized experimentally
is still desirable.

An even more important step would be to carry out an
analogy experiment based on a more orderly timbre space.
Assuming the interpretation of the timbre space is correct,
it should be possible to construct a space where tones
actually occur at the ideal analogy point. Thus it would be
possible to get a better test of the parallelogram model.

These results open interesting and challenging avenues
for composers and musicians. The concept of timbre analogies
suggests that the idea of melodic transposition might now be

extended from the domain of pitch to that of timbre.
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APPENDIX

IADD: An Interpolating Additive Synthesis Program

FROGRAM "IALD® WRITTEN RY DAVID EHRESMAN
DEFARTMENT OF FSYCHOLOGY
MICHIGAN STATE UNIVERSITY
EAST LANSING, MI 48824

THIS FROGRAM» WHICH HAS REEN IMFLEMENTED ON A FIDF-11/40
MINI-COMFUTER AT MICHIGAN STATEs DOES ALDITIVE SYNTHESIS
USING AN INTERFOLATING OSCILLATOR. THE CONTROL FARAMETERS
ARE SAMFLING RATEs REATS FER SECONDy INITIAL FHASEs AND
SCALE FACTOR. THE ADDITIVE SYSTHESIS DONE RBY THIS FROGRAM
IS BASED ON STRAIGHT LINE AFFROXIMATIONS OF THE COMPFLEX
TIME VARYING AMFLITUDE AND FREQUENCY FUNCTIONS OF EACH
HARMONIC TO RE INCLUDED IN THE SYNTHESIZED TONE. THIS
FROGRAM USES THE RBREARFOINT INFORMATION FROM THESE
FUNCTIONS TO CONTROL THE SYNTHESIS. THE INFUT FILE MUST
RE IN THE FOLLOWING FORMAT?! LINE 1-AMF. LAEEL

(MAX. = 8 CHAR.){ LINE 2-TIME OF FIRST AMF. BRREAKFOINT
(I5) FOR HARMONIC 1% LINE 3-AMFLITULDE AT FIRST BREAKFOINT
(F10.0) FOR HARMONIC 1. THIS IS REFEATED UNTIL aLL THE
AMFLITUDE DATA FOR THE 18T HARMONIC HAS BEEN ENTERED.

THE NEXT LINE MUST CONTAIN 999 WHICH ACTS AS A DELIMITER.
THIS IS FOLLOWED RY THE FREQUENCY (HZ) RREAKFOINT DATA
FOR HARMONIC 1 USING THE SAME FORMAT A% AROVE. DATA FOR
EACH OF THE REMAINING HARMONICS MUST RE ENTERELD USING THE
SAME FORMAT. THIS PFROGRAM CAN FROCESS A MAX. OF 29
HARMONICS WITH A MAX. OF 19 BREAKFOINTS/HARMONIC. THE
DUTFUT IS STORED ON A DISK IN A FORMAT SUITARLE FOR
READING THRU A DAC.

THE FOLLOWING SURBROUTINES AND FUNCTIONS ARE NEEDED TO RUN

THIS FROGRAM:

(1) LINE - COMFUTES SLOFE AND CONSTANT FOR & LINE DEFINED
BY TWO FOINTS

(2) DSCIL - COMFUTES A SAMFLE WHEN GIVEN AMF.» SAMFLE

INCREMENTy AND FHASE INFORMATION

(2) 8SOUT - FACKS SAMFLES IN A FORMAT SUITARLE FOR USE
WITH OQUR DAC

(4) SYSBLIEB ROUTINES
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C
C 4omn 40ma tees seem Sun 44mm mve 0 us ome Sbee sowm Save Sese Sase S¥es Sene Shes FSaR Do sess bee suse [ A H 1"‘ “tm 4een same Gues tese sess S5re Semm Seem Soue Srea Sets Shes Fesa Beve veen Sare vems sbve shee sere sues Sene C
C
DOURLE FRECISION EXT
DIMENSION AMF (20,30)s ITIMEL (2030)y FREQ (20,30)y
$ I1 (30)y I2 (303y ITIME2 (20,30)y SLOFEL1C3O)
$ SLOFE2(30)y CONSTL (30)>CONST2 (30)y FHE (30D
$ ISFEC (39)
COMMON S»SINE (511
$ /BUFFER/ ICHANy INDEX» AMAXy SAMF (2060 TRUFF (256D
DATA INDEX /707y AMAX /0.0/2EXT Z6RTATEND/ »
$ SAMF /256%0.0/y ITREL /"007/
Cxx READ CONTROL FARAMETERS
WRITE (7+60)
60 FORMAT (747 "ENTER SAMFLING RATE (F10.06) ~ )

READ (5y120) SAMRAT
WRITE (7+70)
70 FORMAT (7%’ "ENTER REATS FER SECOND (F10.0) - )
READ (S5y120) EREAT
WRITE (7+735)
75 FORMAT (7479 "ENTER INITIAL FHASE (F10.0) —~ )
READ (5y120) FHASE
Cxx FIGURES SAMFLES FER BEAT
SFE = SAMRAT/RBEAT
WRITE (7976)
76 FORMAT (%7 "ENTER AMFLITUDE SCALE FACTOR (F10.0) - /)
READN (G»120) SCALE
Cxx READ OUTFUT & INFUT FILE NAMES IN STANDARD CSI
Cxx FORMAT AND OFEN FILES FOR I/0
WRITE (579)
79 FORMAT (/%7 "ENTER COMMAND STRING ~ )
IF (ICSICISFECYEXTy»»0) NELO) STOF “INVALID CSI STRINGS
IF (IASIGNCL1OyISFECC16)y ISFECCL7)v0r32) +NELO)
$  STOF “NO CHANNEL FOR INFUT’
ICHAN = IGETC ()
IF (ICHANLLT.O) STOF “NO CHANNEL FOR QUTFUT

IF (IENTERC(ICHANy ISFEC (1) yISPEC (5)).LT.0)
$  STOF “NO CHANNEL OR NOT ENOUGH DISK SFACE-

Cxx STORE A 512 SAMFLE SINE WAVE
TEMF = (2, % 3.14139265)/511.,
no 80 J = 0,511
SINE (J) = GIN (TEMFXJ)
80 CONTINUE
CXkx LOOF FOR MAX. OF 29 HARMONICS
no 190 J = 1,30

Xk READ AMF . BREAKFOINT DATA FOR HARMONIC J
READ (10y100yEND=200) LAREL
100 FORMAT (A12)

ng 130 I = 120
READ (105110)> ITIMEL (I«J)
IF (ITIMEL (I»DLEQ.99%) GO TO 1350
READ (105120) AMF (I+.)

110 FORMAT (1I3)
120 FORMAT (F10.0)
Cxx CONVERT EREATS TO SaMFLE NUMBER

ITIMEL (IsJd) = (ITIMEL (L)1) X HBFE + 1
130 CONTINUE



Cxok
Cxx

175
190
Cxx
200

Cxxk
Cxx

2350

Cxox

XX
Cxxk

Cxx
Cxx

Cxx
300

Cxx
C¥X

400
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READ FREQ. BREARFOINT DATA FOR HARMONTC o
READI (109100 LAREL
o 175 I = 1520
READ (105110) ITIME2 (Is0)
IF (ITIME2 (I»J).EQ.P99) GO TO 190
READ (10»120) FREQ (Is.0)
CONVERT EBEATS TO SAMFLE NUMRER &
HERTZ TO SINE TARLE INCREMENT
ITIME2 (I»J) = (ITIMEZ (Iyd)-1) % HFR + 1
FREQ (I»J) = FREQ (I»J) % Gl1. / SAMRAT
CONTINUE
CONTINUE
COMFUTE & FRINT NUM. OF HARMONICS & LENGTH OF FILE
NHAR = -1
ILEN = ITIMEZ (I-1sNHAR)
WRITE (75225) NHAR» (ILEN-1)/SAMRAT
FORMAT (707 TSy "NUMRER OF HARMONICS = “»I12/
$ 7 “»TSey’LENGTH OF FILE = “»G10.4y " SECONDE)
FIND INITIALIZE SLOFE & Y INTERCEFT FOR AMF. AND
FREQ. FUNCTIONS
no 250 J = 1yNHAR
I1¢Jy = 1
I2¢)) =1
CALL LINE (T1CD»JyAMFy ITIMELy SLOFELCH »CONSTLCUY)
CALL LINE (I201 2 JeFREQy ITIMEZ2ySLOFE2CJ) yCONST2CU))
FHS (J) = FHASE
CONTINUE
COMFUTE SAMFLES
[0 400 K = 1»ILEN
L. = MOD (K=1»256)+1
D0 300 J = 1syNHAR
UFDATE AMFSLOFE AND CONSTANT AT EACH
RREAKFOINT & COMFUTE AMF.
IF (KWEQJITIMEL (I1CD s> + 1)
% CALL LINE (I1CD»JrAMPyITIMEL» SLOFELCI)
% CONST1¢())
SAMAMF = SLOFEL (J) X K + CONSTL ()
UFDATE FREQ. SLOFE AND CONSTANT AT EACK
EREAKFOINT & COMFUTE SINE TARLE INCREMENT
IF (KWEQ.ITIMEZ (I2¢D»Jd) + 1)
$ CALL LINE (I2())sJsFREQyITIMEZySLOFE2CS)y
$ CONSTZ2¢))
I = SLOFEZ2 (J) % K + CONST2 (b
COMFUTE SAMFLE
SAMF (L) = SAMF (L) + 0OS8CIL (SAMAMF»SI»FHSC(UY)
CONTINUE
SCALE SAMFLE AND WRITE TO DISK IN EBLOCKNS OF
256 SAMFLES
SAMF (L) = SAMF (L) % SCALE
IF (L.EQ.256) CalL 50UT
CONTINUE
CaLL S0UT
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Cxx FRINT ENDING MESSAGEy CLOSE I/0 CHANNELS & RINOG
Cxxk DEC-WRITER RELL
WRITE (7y500) AMAX
500 FORMAT 707y "MAX AMFLITUDE I8 ‘y1FG20.10/
$ Ty LET’S SINGY)
CALL IWAIT (ICHAN)
CAaLL CLOSEC (ICHAN)
WRITE (7+600) IBELsIREL
600 FORMAT ¢’ +7»2A1)

STOF

ENDI
C
Cxx SURROUTINE L.INE
C

C LINE RETURNS THE SLOFE & Y INTERCEFT OF A LINE WHEN GIVEN
C TWO FOINTS THAT DEFINE THAT LINE

C
SUBROUTINE LINE (I»JsYAXIS»ITIMEySIL.OFEy CONGT)
DIMENSION YAXIS (20530)»ITIME (20+30)
SLOFE = (YAXIS(I+1sJ)-YAXIS(I»J)) /
$ (ITIMECI+HL s DD-ITIMEC(T Y J))
CONST = YAXIS (IsJ) - (SLOFE X ITIME (IsJ))
I = I+l
RETURN
END
C
Cxx FUNCTION OSCIL
C

C OSCIL RETURNS ONE SOUND SAMPLE WHEN GIVEN THE AMPLITUDE
C THE SAMFLE INCREMENT (FREQ.)> AND THE FHASE. A SINE TARLE
C  MUST ALREADY RE AT MEMORY LOCATIONS SINE(O) THRU
C SINE(311). THIS IS AN INTERFOLATING OSCILLATOR.
C
FUNCTION OSCIL (AMFsSIsFHS)
COMMON S»SINE (511)
IFHS1 = IFIX (FHS)
IFHS2 = MOD (IFHS1+1.511)
H = FHS - AINT (FHS)
FHS = AMOD (FHS+85Is511.)
IF (FHS) 1s 2y 2

1 PHS = FHS + S11.
2 0SCIL = AMF X (SINE (IFHS1) +
% (SINECIPHS2) - SINECIFHSLY) X% H)
RETURN
END
+TITLE SOUT
’ SAMFLE "FACKING" AND OUTFUT ROUTINE FOR FLOFP-11
’ WRITTEN EBY LARRY JOHNSONy LAST MODRIFIED 18-FER-76
MCALL  + V244 JREGDEF» JWALITy  JWRITE
+REGDREF

+GLOBL  S0UT



ICHAN?
INDEX?
AMAX 3
SAMF ¢
OUTERUF 3

S0UT
MOV

L.OOF ¢

NOSHFT :

LIST:
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JCSECT  RUFFER
JELKW 1

JELKW 1

JELKW 2

JELKW 1000

JELKW 400

LCSECT

JWAIT  ICHAN

$100000sR3 PR3 IS A MASK

MOV $SAMFY R4

MOV #OUTRUF » R

MOV @R4» KO

CL.R (R4)+

MOV @R 4y Rl

CLR (R4)+

THE NEXT VALUE OF SAMF HAS REEN MOVED INTO RO Kl
AND' IT’S VALUE CLEARED FROM /RUFFER/

MOV ROy R2

EIC K3y R2 SR2y K1 IS ARS(SAMF)
CMF K2y AMAX

ELO INT

EHI 1%

CMF Rily AMAX+2

EL.OS INT

AES (SAMF) » AMAXs S0 SET AMAX = ARS(SAMF)
MOV K2y AMAX

MOV Rl AMAX+2

CL.RE R

KISE RO » R1

SWAR R iC IS CLEARED

KIS R3y Rl

ROR Rl SR1 HAS 15 RITS OF INT (ARG (SAMF))
ASL. RO

ECC 1%

NEG Rl FIF SAMF + O THEN R1 = -R1
XOR R3» RO SMAKE EXF. 26 COMF.
SWAR KO

MOVE KOy RO FRO IS EXFONENT

NEG KO

ELE 2%

CLK RO 50 IS LARGE ENOUGH FOR ~EXFONENT
AL $17 RO JRO IS # OF RIGHT SHIFTS
ELE NOSHF T

ASK R1

SOR ROy 3%

MOV Ry (RS)+  #FUT RESULT INTO OUTEUF
CMF K4y FSAMF+2000

EL.O LOOF $LOOF RACK IF NOT DONE
JWRITE  #LIST» ICHANs #OUTEUF» #400s INDEX
INC INDEX

RTS FC

JELKW 5

+END
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