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ABSTRACT

A PARALLELOGRAM MODEL OF TIMBRE ANALOGIES

By

David Edward Ehresman

Recent multidimensional scaling studies have found that

of the acoustical properties on which tones produced by mus-

ical instruments differ, two or three are important in the

perception of timbre. These findings were replicated and

the dimensions were used as the basis for a parallelogram

model of timbre analogies.

Fifteen naturalistic tones were synthesized by using an

analysis based additive synthesis technique. The complex

time varying amplitude and frequency/phase functions ob-

tained during the analysis step were simplified by replacing

them with straight line segment approximations during the

synthesis step. Five musically sophisticated and five mus-

ically untrained subjects rated the dissimilarity of all

possible pairs of the 15 tones. The multidimensional scal-

ing of this data was interpreted in two dimensions. The

most potent dimension was interpreted in terms of the spec-

tral energy distribution of the tones. The second dimension

was related to the attack portion of the tones, that is,
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whether the onset of the higher harmonics was synchronous or

asynchronous. These interpretations agree with previous

research.

The parallelogram model of timbre analogies is based on

a mapping of the stimulus tones onto a multidimensional

space. The model assumes that for an analogy of the form

A:B::C:? there is some ideal analogy point, I, that will

complete a parallelogram. The prediction of the model is

that in solving timbre analogies a subject will choose the

alternative, D, which is closest to I in the multidimen-

sional space. Three alternatives to the parallelogram model

were tested. One possibility is that the subjects are

unable to use the directional information that is the basis

of the parallelogram model. In this situation, a subject

might choose as the best solution to the analogy the alter-

native D which is most similar to B, the terminal tone of

the first half of the analogy. A second possibility is that

subjects only use the most salient dimension in solving the

analogies by projecting the parallelogram onto that axis.

This model predicts that subjects will choose as the best

solution the alternative D which is closest to the ideal

analogy point in that one dimension. The third alternative

model is a combination of the first two. It predicts that

the similarity of the terminal tones along the one dimension

is the basis for choosing the best solution.
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Using the 15 tones from the first CXporiment, forty

timbre analogies were formed; each analogy had {our alterna-

tive solutions. Nine subjects from the scaling phase of the

study rank ordered the four alternatives as to which best

completed the timbre analogy. The parallelogram model best

predicted subjects' solutions to the timbre analogies. The

effects of musical training were not reflected in either the

scaling solution or performance on the analogy task.
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INTRODUCTION

The spectral energy distribution of a complex tone and

the temporal properties of its attack provide major cues in

the perception of its timbre. Recent multidimensional scal-

ing studies report timbre spaces with these properties as

salient dimensions. A parallelogram model of timbre analo-

gies is based on such a multidimensional timbre space. The

assumption is made that for an analogy of the form A:B::C:?,

where A, B, and C are points in the timbre space, there is

some ideal analogy point, I, that completes a parallelogram.

This model predicts that the alternative which is closest to

this ideal analogy point will be chosen as the best solution

to the analogy.

Timbre

Timbre is not a clearly defined term; it is usually

described negatively in terms of the qualities that are left

after loudness and pitch have been determined. The defini-

tion given by the American Standards Association (1960) is

such a definition by exclusion: ”Timbre is that attribute

of auditory sensation in terms of which a listener can judge

that two sounds similarly presented and having the same

loudness and pitch are dissimilar.” Similarly presented

presumably implies that the stimuli are of equal duration

and have the same spatial location.

1
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The classical theory of timbre perception originated

with Helmholtz. His argument, based on Ohm's Acoustical Law

(Ohm, 1843), stated that differences in timbre are a result

of the presence and the strength of harmonics in the tone

and that the phase relationships among the harmonics make

little difference (Helmholtz, 1877/1954). It is important

to note that Helmholtz studied only the steady-state portion

of complex tones, choosing to ignore the dynamically chang-

ing phenomena which are characteristic of naturalistic

auditory tones.

Helmholtz was able to show that the steady-state por-

tion of musical and vocal sounds is composed of sets of har-

monics and that the ear can distinguish a number of these

harmonics individually. After Ohm, he reasoned that the ear

performs a Fourier analysis on a tone and thereby identifies

the amplitude pattern of the resulting series of harmoni-

cally related sinusoids which forms the basis of timbre

judgment.

A modification of Helmholtz's classical theory makes

use of the notion of formant regions. A formant is a fre-

quency range in which the amplitudes of the harmonics are

considerably higher than the amplitudes of the harmonics in

the neighboring regions; a formant shows up as a peak in the

spectral envelope. This model, which originated in speech

perception research, contends that it is the formants, not

the harmonics, that provide the major cues in timbre judg-

ments (Fletcher, 1934; Bartholomew, 1945; Slawson, 1968).
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The classical theories of timbre dealt only with

steady-state tones. Musical tones, however, are usually

considered to consist of three segments: (1) the attack,

the portion of the tone in which it builds in amplitude,

(Z) the steady-state, the portion which is reached at the

end of the attack, in which the tone remains stable, and

(3) the decay, the portion of the tone in which its ampli-

tude decreases until it has finished sounding. An important

question is to what extent the perception of timbre is

determined by the attack and decay portions of a tone where

many dynamic changes occur in the spectral distribution.

Several studies indicate that the acoustical details in

the attack transient are very important for the identifica-

tion of the instrument which produced a tone. In one of

these studies (Saldanha and Corso, 1964), trained musicians

identified the instrument which produced a tonal stimulus

when the tone consisted of (l) the initial transients and a

short steady-state (1/3 sec.), (2) the initial transients, a

short steady-state, and the decay transients, (3) the ini-

tial transients, a long steady-state (9 sec.), and the decay

transients, (4) a short steady-state without the character-

istic attack or decay, or (5) a short steady-state and the

decay transients. A tone for each condition was obtained

from eight wind instruments and two string instruments. The

absence of the decay transients (Group 1 vs. Groups 2 and 3;

Group 4 vs. Group 5) appeared to have minimal effect on the
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ability to recognize the instrument (i.e., label the

timbre). However, the absence of the characteristic attack

transient (Groups 1, 2, and 3 vs. Groups 4 and 5) was

detrimental to performance.

Berger (1964) found similar results for 10 wind

instruments. He asked musicians to identify the instrument

which produced a tone when the stimulus consisted of (l) the

unaltered tone, (2) the steady-state portion of the tone, or

(3) the fundamental component of the tone with the harmonics

filtered out. As expected, the unaltered tones were easier

to identify than those without the transients, which in turn

were easier to identify than those with the harmonics

filtered out. Wedin and Goude (1972) also noted that attack

transients were important in the identification of the

timbre of a tone. In addition, Saldanha and Corso (1964)

found that the timbre of tones played with vibrato, a tem-

porally dynamic phenomenon, was easier to identify than the

timbre of tones played without vibrato.

This work in timbre perception was valuable to investi-

gators in the related field of music synthesis. With a

growing awareness that temporal events play an important

role in timbre perception, these researchers sought a way to

synthesize naturalistic tones with dynamic attack transients.

Tones were analyzed to determine the temporal envelope (time

vs. amplitude) for several or all of the harmonics in the

tone. Part or all of this information was then used to

synthesize tones.
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Strong and Clark (1967a, 1967b) determined the

steady-state spectral envelope (frequency vs. amplitude)

and several temporal envelopes for three subsets of harmon-

ics associated with each of nine wind instruments. Using

this information, they synthesized tones with the aid of a

digital computer. Music students were able to identify the

synthesized tones with 66% accuracy as compared to 85% accu-

racy for the natural tones. After observing the effects of

systematically exchanging envelopes among instruments,

Strong and Clark concluded that tones from some instruments

had unique spectral envelopes and that for these tones the

spectral enve10pe was more important for correct identifica-

tion than was the temporal envelope. Tones from other

instruments did not have unique spectral envelopes, and for

these tones the temporal enve10pe was as important or more

important than the spectral envelope in the identification

process.

Grey (1975) approached the synthesis problem somewhat

differently. First, he determined the time varying ampli-

tude and frequency functions for each of the harmonics

present. Then he synthesized tones using all of the infor-

mation to test the validity of the analysis (full data

tones). Next he systematically simplified the information

used in the synthesis to determine the effect of particular

types of information. The simplifications he used were: (1)

representing the complex time variant amplitude and fre-

quency functions with small numbers of straight line
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segments (line segment approximation tones), (2) excluding

any clearly delineated initial attack segments which con-

tained low-amplitude inharmonicities (cut attack tones), and

(3) substituting constant frequencies for the time variant

frequency functions while retaining the time variant line

segment approximations for the amplitude functions (constant

frequency tones). Grey (1975) tested for discriminability

between the five types of tones, i.e., the original tones in

digitized form, the full data tones, and the three types of

simplified tones; he also asked his musically trained lis-

teners to rate the subjective distances between tones. The

results of both of these measures indicated that the full

data tones were an adequate representation of the original

tone. Verbal reports of the listeners indicated that dif-

ferences between the original and the full data tones were

difficult to detect, and when detected, the stimuli were

described as tones from the same instrument played with a

different articulation or style of playing. The line seg-

ment approximation tones were very similar to the full data

tones; however, the constant frequency tones and the cut

attack tones were too discriminable to be of general use.

Thus, it appears that perceptually convincing renditions of

naturalistic tones can be obtained when the details of

amplitude and frequency variation in each harmonic are

approximated with relatively few linear segments.

Several studies have used multidimensional scaling (MDS)

techniques (Shepard, 1962a, 1962b; Kruskal, 1964a, 1964b;
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Carroll and Chang, 1970) to gain a better understanding of

timbre perception. Using matrices of dissimilarities (or

similarities) between objects, these MDS techniques attempt

to represent the dissimilarities as distances between points

in an n-dimensional space (usually a two or three dimensional

Euclidean space). The resulting "picture" can be viewed in

two ways: (I) as a very useful data reduction suggesting

hypotheses for new lines of research, or (2) more specula-

tively, as a model of the way the objects are perceived.

Plomp and Steeneken (1969) were the first to use MDS as

a model of timbre perception. However, their study used

only steady-state tones. Tones which included the trans—

ients were used by Wessel (1973), who had music students

rate the dissimilarity of tones played on nine orchestral

instruments. Using MDS as a data reduction tool, he embed-

ded the instruments in a two dimensional Euclidean space.

One dimension differentiated among timbres by the distribu-

tion of energy in the steady-state region of the tones. The

energy of the tones on one end of this dimension was located

predominately in the lower harmonics, while tones on the

other end had more energy located in the higher harmonics.

The second dimension was more difficult to interpret using a

single physical characteristic of the tones. The tones

tended to be grouped by family (i.e., brass, woodwinds, and

strings). This dimension appeared to be related to temporal

properties of the tone, i.e., differences in the attack

segment. Wessel and Grey (in press) also scaled the



8

similarity judgments of nine instrument tones reported by

Wedin and Goude (1972). The results were similar to those

described above and strongly supported the important role

of attack transients in providing perceptual distinctions

among instruments.

Grey (1975) used MDS techniques to analyze the similar-

ity of the 16 ”line segment approximation" tones described

earlier. Grey noted three ways in which these tones dif-

fered from the tones used by Wedin and Goude (1972) and

Wessel (1973). They were (1) shorter in duration, (2) syn-

thesized naturalistic tones rather than actual natural tones,

and (3) experimentally equalized for pitch, loudness, and

perceived duration. His data reduction yielded not two, but

three dimensions.

One dimension, the spectral energy distribution, paral-

leled the first dimension found in previous studies (Wessel,

1973; Wedin and Goude, 1972 as scaled by Wessel and Grey, in

press). A second dimension reflected patterns in the onset-

offset portion of the tones. At one extreme of this dimen-

sion all of the upper harmonics entered and exited at approx-

imately the same time or with synchrony; at the other extreme

the upper harmonics entered and exited gradually or asynchro-

nously. This dimension also related fairly well to musical

instrument families. The third dimension also focused on

the attack segment of the tones. Tones were differentiated

by the presence of high frequency, low amplitude, usually

inharmonic energy, during the attack segment as opposed to
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low frequency inharmonic energy, or at least the absence of

high frequency inharmoniousness in the attack. Since two of

Grey's dimensions were interpreted in terms of the attack

transients, it appears that they are encompassed by Wessel's

second dimension. The consistency of findings and the com—

plementary nature of the results in these studies clearly

pin-point important attributes of tones which need to be

taken into consideration in future studies of timbre.

Analogical Reasoning
 

Rumelhart and Abrahamson (1973) have presented an

intuitively appealing theoretical model of analogical reason-

ing based on MDS techniques. They assume that the elements

to be used in forming analogies have been embedded in a

multidimensional space. Their model states that for an anal-

ogy of the form A:B::C:?, there is some "ideal analogy point”

(Rumelhart and Abrahamson, 1973, p. 4), "I", that completes

the analogy such that line segments connecting the four

points in the multidimensional space will form the sides of

a parallelogram. In other words, there is some vector, CI,

which is parallel to and equal in length to the AB vector.

The coordinates of this ideal analogy point, I, can be com-

puted from the following formula:

I(J’) = C0) + 30') - A(j), J'= 1m (1)

where I(j), C(j), B(j), and A(j) refer to the coordinate on

the jth dimension of points I, C, B, and A respectively, and

n is the dimension of the multidimensional space.
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This model, which will be referred to as the parallel-

ogram model of analogical reasoning, predicts that for an

analogy of the form A:B::Cle, D2, D3, or D4, the probabil-

ity that a particular alternative will be chosen as the best

solution to the analogy is a monotonic decreasing function

of the distance between that point and the point "I" (the

ID distance) in the multidimensional space.

Rumelhart and Abrahamson found support for this model by

using a three dimensional space of animal names obtained

from a scaling study by Henley (1969). A second experiment

reported in the same paper found further support for the

model. Forming analogies from the same set of animal names

they (1) replicated the first experiment, (2) showed that

the probability of choosing a particular alternative did not

depend on the particular analogy problem, provided that the

distances between the ideal solution point and the alterna-

tive were approximately equal, (3) found support for the

idea that the monotonic decreasing function which relates the

probability that an alternative will be chosen as the best

solution to the ID distance is miexponential one, and (4)

found that the 2nd, 3rd, and 4th best solutions were also

predicted by the distance between the alternative and the

ideal analogy point.

An implicit assumption of the parallelogram model is

that subjects are able to judge the similarity of the vectors

involved in an analogy. If subjects are unable to appreciate

the directional information implied by the concept of vectors,
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they may solve the analogies by choosing the alternative D

(the endpoint of the CD vector) which is most similar to B

(the endpoint of the AB vector). This alternative hypothesis

will be referred to as the similarity of terminal tones

model.

A second assumption is that subjects are able to use

multidimensional information in solving an analogy. However,
 

due to the complexity of the timbre analogy task, subjects

may resort to using only the most potent dimension in solving

an analogy. This possibility gives rise to two more alterna-

tive hypotheses.

The first of these potent dimension hypotheses is based

on the parallelogram model. It states that subjects project

the parallelogram onto the most potent dimension and proceed

as in the parallelogram model. This hypothesis predicts the

choice of the alternative D which is closest to the ideal

analogy point along the one dimension as the best solution.

The second potent dimension hypothesis is based on the

similarity of terminal tones hypothesis. The prediction of

this model is that the alternative D which is closest to

tone B along the potent dimension will be selected as the

best solution to an analogy.

The purpose of the following two experiments is to test

whether Rumelhart and Abrahamson's parallelogram model will

predict subjects' choices of the best solutions to timbre

analogies more accurately than the three alternative

hypotheses. As discussed previously, recent MDS solutions
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of tones of different timbre (Grey, 1975; Wedin and Goude,

1972 as scaled by Wessel and Grey, in press; Wessel, 1973)

have resulted in two or three interpretable axes. In

Experiment 1, a scaling of 15 tones of different timbre gave

rise to a two dimensional timbre space that is comparable to

those found by other researchers. Experiment 2 used this

scaling solution to test Rumelhart and Abrahamson's (1973)

parallelogram model of analogical reasoning in the timbre

domain.



SYNTHESIS OF STIMULI

In the following experiments, subjects were asked to

make judgments about 15 tones with different timbres. The

specific tones that were used were 15 of Grey's (1975) line

segment approximation tones, as discussed in the Introduc-

tion. These tones were originally played on the following

musical instruments: oboe (2 different instruments and

players), English horn, bassoon, Eb clarinet, bass clarinet,

flute, alto saxophone (2 tones from one instrument, played

at p and mf) soprano saxophone, trumpet, French horn, and

cello (3 tones from one instrument, played normally, muted

sul taste, and sul ponticello). All 15 tones were played

near the pitch of Eb above middle C (approximately 311 Hz),

at approximately the same loudness level, and with durations

between 280 and 400 milliseconds. These tones were then

analyzed by Grey using the heterodyne filter method (Moorer,

1973), which produces time variant amplitude and frequency/

phase functions for each harmonic. The tones were then

resynthesized by summing a set of harmonic sinusoids that

were controlled in time by the amplitude and frequency func-

tions obtained in the analysis stage. This process is called

analysis based additive synthesis. The line segment approx-

imation tones were synthexized by replacing the extremely

13
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complex time variant amplitude and frequency/phase functions

with a small number of straight line segments and using

these to control the harmonic sinusoids.

The tones used in this study were synthesized at

Michigan State University using a specialized additive syn-

thesis program implemented on a PDP-ll/40 digital computer

(See Appendix). The data were supplied by John Grey in the

form of break-point tables (i.e., a list of the endpoints of

each line segment) of amplitude and frequency/phase functions

for each harmonic of each of the tones. The values of the

amplitude and frequency/phase functions (as determined from

the break-point table) for each time period were used to con-

trol the sampling from a sinusoid for each harmonic and

these samples were summed to yield the waveform value for

that time period. This process was repeated until the entire

tone was determined and stored on a magnetic disk in digital

form. Figures 1-15 display the waveforms of these tones.

Time is on the X axis, amplitude is on the Y axis, and fre-

quency (with the fundamental in the background) is on the Z

axis. A sampling rate of 25,000 samples per second was used.

During the experiments the tones were played via a 16 bit

digital to audio converter (DAC), constructed by Three Rivers

Computer Corporation (Kriz, 1975).
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Figure 3. Clarinet 1 (Cl) amplitude envelope.
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Figure 12. Trumpet (TP) amplitude envelope.
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EXPERIMENT 1: DISSIMILARITY JUDGMENTS OF NATURALISTIC TONES

Stimuli

The 210 possible pairs of the 15 tones were formed and

randomized for each subject.

Procedure
 

Subjects were asked to judge how dissimilar each pair

of tones was. The tones were presented to subjects in a

sound chamber via the DAC over a Philips 532 Motional Feed-

back loudspeaker. Subjects sat approximately two and one

half feet from the speaker. The tones were presented in

pairs; in order to hear a pair, the subject pressed a button

switch which was interfaced with the PDP-ll/40. The subject

was allowed to listen to each pair as many times as he or

she desired and then registered a dissimilarity judgment by

using a linear potentiometer. Each judgment (the position of

the potentiometer) was read by the PDP-ll/40 via a DRllC

interface when a second button switch was depressed, and was

stored on a magnetic disk for later analysis. Subjects were

given 20 practice trials to become familar with the procedure.

Subjects

Five musically sophisticated and five musically untrained

subjects were recruited from students and faculty at Michigan

State University.

29
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Results and discussion
 

The dissimilarity judgments were analyzed using two MDS

programs, KYST (Kruskal, 1964a, 1964b; Young and Torgerson,

1967; Shepard, 1962a, 1962b; Torgerson, 1958) and INDSCAL

(Carroll and Chang, 1970). Data from the musically sophis-

ticated subjects and from the musically untrained subjects

were analyzed separately using the KYST program. Three, two

and one dimensional solutions were obtained for both sets of

data. The goodness-of-fit of these solutions is assessed by

stress measures which are shown in Table 1. Large values of

Table l. KYST stress values.

Number of Stress

Dimensions

Musically Musically

Sophisticated Untrained

Three 0.21 0.22

Two 0.28 0.30

One 0.43 0.43

stress indicate a poor solution. For both groups, the good-

ness of fit for the three dimensional solution was not sub-

stantially better than that for the two dimensional solution.

Stress for the one dimensional solutions vvas markedly

higher than that for the two dimensional solutions. There—

fore, the two dimensional solution seemed most appropriate.

The Shepard diagrams (solution distances versus the data

fitted with the monotone regression line) for both two

dimensional solutions are shown in Figure 16. Although the

stress was within acceptable limits, there was still consid-

erable scatter.
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The goodness-of-fit measure for INDSCAL is the correla-

tion between the data and the distances in the solution.

Again the three dimensional solution was little better than

the two dimensional solution (Table 2); however the correla-

tion did decrease when a one dimensional solution was obtained.

Table 2. INDSCAL goodness-of-fit correlations.

Number of Correlation

Dimensions

Three 0.65

Two 0.62

One 0.54

An examination of the subjects' weight space for the three

dimensional INDSCAL solution (Figure 17), yields yet another

reason for choosing the two dimensional solution: Subject U4

was the only one to place any weight on the third dimension.

Since there was no substantial improvement in goodness-of—fit

for the third dimension and since only one subject used the

third INDSCAL dimension, the two dimensional solution seemed

to be a more appropriate representation of the data.

Figures 18 and 19 show the INDSCAL two dimensional

subjects' weight space and group timbre space. The horizon-

tal dimension of the timbre space closely corresponds to the

first dimension found by Wessel and to Grey's Y dimension.

At one extreme are the tones, from instruments such as the

French horn and the cellos, which have most of their energy

located in the lower harmonics. At the other extreme are the

tones, such as those produced by the saxophones and oboes,
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which have more of their energy located in the higher

harmonics. One can think of this as a mellow to bright

continuum.

The first moment of the average amplitude of the

harmonics can be used as a quantitative measure of this

energy distribution dimension. The average amplitude of

the kth harmonic, AA(k), was computed as:

r f(t) dt ,
mm = b _ a (2) 

where f(t) = the amplitude of the kth harmonic at time t,

a = the start time of the tone, and b = the stop time of the

tone. The first moment of the average amplitudes for a tone

was calculated as:

k AA(k)

7
?
‘

W

I
I
M
D
I
I
M
D

r
—
I

r
—
a

3

ll 
(3)

AA(k)

where M = the first moment, k = the harmonic number, and

n = the number of harmonics in the tone. This measure of

energy distribution is highly correlated (r = 0.85) with the

X coordinates of the INDSCAL solution (Figure 20).

As in previous work, the second dimension appears to be

determined by the attack portion of the tones. The onsets

of the upper harmonics in the tones at one extreme of this

dimension tend to be asynchronous; at the other extreme the

onsets look much more synchronous. The tones at the asyn-

chronous extreme, from instruments such as the clarinets and

the saxophones, have a roughness or raggedness in the attack;
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the tones which are more synchronous in the onsets of the

upper harmonics, created by instruments such as the trumpet

and the bassoon, have a much sharper or clearer attack.

A weighted standard deviation of the start times of the

upper harmonics, beginning with harmonic six, was chosen as

a quantitative measure of this dimension. The standard

deviation was calculated as:

WSD = 
z (t(k) - E12 * AMELk) / TOTAMP , (4)

n 5

where WSD = the weighted standard deviation, t(k) = the

onset time of the kth harmonic, ? = the mean start time of

the upper harmonics, n = the number of harmonics in the tone,

AMP(k) = the energy in harmonic k, and TOTAMP = the total

amount of energy in the tone. The start of a harmonic was

defined to be the time at which its amplitude was 1.5 (about

20 dB). These weighted standard deviations correlate highly

(r = -0.78) with the Y coordinates of the INDSCAL solution

(Figure 21).

A comparison of the two dimensional INDSCAL solution

with a two dimensional projection of Grey's Y and X dimen-

sions (Figure 22) reveals that these two scaling solutions

are very similar. This supports the position that the scal-

ing solution is a reasonable one. However, there is a puz-

zling discrepancy between Grey's interpretation of the syn-

chronous-asynchronous dimension and the one just offered.

While both studies obtained this dimension, Grey claimed

that the woodwinds tend to be sychronous while the strings

and brasses tend to be asynchronous. This study
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claims exactly the opposite, that the woodwinds tend to be

asynchronous while the strings and brasses tend to be syn-

chronous. It is important to note that Grey arrived at his

interpretation by looking at spectrograms of his tones but

failed to give any quantitative measure to support his

interpretation.

One possible problem with the quantitative interpreta-

tion providedlmme is that some of the harmonics have fre-

quency glides. That is, at the start of the tones some

frequencies are not at their proper harmonic values but

glide to that value as the tone progresses. Thus a second

way of defining the start of a harmonic is that time at

which the frequencies reach some pr0portion of their proper

harmonic value. Exploration with this definition of start

time failed to provide as good a quantitative interpretation

as did the amplitude definition of start time. The modified

measure also failed to resolve the discrepancy since the

strings and brasses still tended to be synchronous while the

woodwinds tended to be asynchronous.

The start of an harmonic could also be defined to be

that time at which its frequency reaches some proportion of

its proper value and its amplitude exceeds some threshold.

Exploration with this measure also failed to equal or

improve upon the original measure, and again the discrepancy

remained unresolved.

As can be seen from the subjects' weight space shown in

Figure 18, there were no systematic differences between the
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musically sophisticated subjects and those with no musical

training. Three of the untrained subjects and the five

musical subjects clustered together at a point which indicates

that they were giving an approximately equal weight to both

dimensions. Subject U5 gave less weight to the first dimen-

sion that did the others and subject U4 gave little weight

to either dimension. This conclusion is further substantia—

ted by the two KYST solutions (Figure 23). Not only are the

stress values very nearly the same, but the solutions them-

selves are similar to each other. Note also that the two

dimensional KYST solutions are roughly comparable to the

INDSCAL solution. These convergent solutions serve to

increase our confidence in the interpretations that have

been provided.
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EXPERIMENT 2: A TEST OF THE PARALLELOGRAM MODEL

Stimuli

In this experiment, Rumelhart and Abrahamson's (1973)

parallelogram model of analogical reasoning was tested using

the timbre space derived in Experiment 1. Twenty timbre

analogies of the form A:B::Cle, D2, D3, or D4 were formed

as follows: The 15 tones were arranged in random order; the

first three in this order were chosen as A, B, and C of the

first analogy, the second three were used to form the second

analogy, and so on. When the list was exhausted the tones

were rerandomized and the procedure repeated until 20 anal-

ogies had been formed. For each of the analogies thus

formed, the coordinates of the ideal analogy point, "I",

were calculated and the distances between each of the remain-

ing 12 tones and ”I" were computed. Four alternative solu-

tions to the analogy were chosen such that each analogy had

an alternative in each of the following ranges: 0.00-0.25

units from "I", 0.25-0.50 units from "I", 0.50-0.75 units

from "I", and 0.75-1.00 units from "I". The units which

were used are the ones produced by the INDSCAL program as

shown in Figure 19. If it was not possible to choose altern-

atives to meet these conditions, that analogy was discarded

and another one formed as above. If more than one tone fell

45
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within a given range, the one closest to the lower boundary

was chosen. The four chosen alternatives were also ordered

randomly for each subject.

If A is to B as C is to D, then it ought to be the case

that A is to C as B is to D. In terms of the parallelogram

model, the above two analogies are exactly the same parallel-

ogram. Therefore, for each of the 20 analogies formed above,

another analogy was formed which had the same components but

had the second and third elements reversed. In other words,

the analogies were of the form A:C::B:Dl, D2, D3, or D4.

Procedure
 

The analogies were presented to subjects using the

audio equipment described in Experiment 1. A trial consis-

ted of the four alternative forms of an analogy (A:B:C:Dn,

where Dn is one of the four alternative solutions). Sub-

jects selected one of the alternative forms by depressing

one of four button switches; each alternative form was ran-

domly associated with one switch. Subjects listened to each

alternative as many times as he or she wished. Subjects

were asked to rank order each of the four alternatives as to

how well it completed the analogy. The rank order was indi-

cated by rearranging the order of the four button switches

until they were in the appropriate order. Subjects then

pressed a fifth switch which signaled to the computer that

the rank order was ready to be entered; subjects then pres-

sed each of the four switches in the appropriate order and

this was read by the PDP-ll/40 via the DRllC interface and

was stored on a magnetic disk for later analysis.



47

Subjects

Nine of the ten people who served as subjects in

Experiment 1 served as subjects in this experiment. Subject

M3 was unable to participate.

Results and discussion
 

The parallelogram model predicted subjects' responses

on the timbre analogy task better than any of the alternative

hypotheses. Of the alternative hypotheses, the potent dimen-
 

sion similarity of terminal tones model was the least satis-
 

factory. This model predicts that the alternative D closest

to the tone B along the potent dimension will be chosen as

the best solution. However, the correlation between the one

dimensional BD distance and the proportion of subjects who

ranked that particular alternative as the best solution was

quite low (r = -0.31).

The other two alternative hypotheses were slightly

better. The potent dimension parallelogram model predicts
 

that the alternative D which is chosen as the best solution

to an analogy is that one with the shortest ID distance

along the potent dimension. In this case, the one dimensional

ID distances correlated poorly with the proportion of subjects

who ranked that alternative D as the best solution (r = -0.39).

The prediction of the similarity of terminal tones model is
 

that the alternative D closest to tone B in the multidimen-

sional space will be chosen as the best solution to an

analogy. The correlation between the BD distances and the

distances and the proportions of subjects chosing a
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particular D as the best solution was the same as the

previous model (r = -0.39).

The parallelogram model predicts that the probability

of chosing a given alternative as the best solution is

inversely related to the ID distance. Table 3 lists the

Table 3. Rank order data averaged over all subjects and all

analogies.

RANK DISTANCE

OF THE ALTERNA-

SUBJECT-ASSIGNED RANK

 

TIVE FROM I 1 2 3 4

1 0.422 0.303 0.156 0.119

2 0.322 0.283 0.217 0.178

3 0.169 0.267 0.358 0.206

4 0.086 0.147 0.269 0.497

prOportion of responses, averaged over subjects and anal-

ogies, for which the 1th closest alternative to the ideal

analogy point was ranked as the Jth best solution, where I

is the row index and J is the column index. Column one

of this table shows that the prediction was indeed ful-

filled. In fact, the distance between an alternative and

the ideal analogy point predicts not only the best solution,

but the rank ordering of all four alternatives. Only one

exception occurred (see column two). Figure 24 shows the

scatter diagram of the ID distance versus the proportion of

subjects who ranked that alternative D as the best solution.

The product moment correlation coefficient is -0.52. This

correlation is not too disappointing when one takes into

consideration that the goodness of fit measure (r = 0.62) of

timbre space places a kind of ceiling on subsequent
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correlations derived from the distances in a way analogous

to the limit reliability places on validity in testing

theory.

By assuming Luce's choice rule (Luce, 1959; Atkinson,

Bower, and Crothers, 1965) the probability of choosing a

given alternative as the best solution can be predicted.

Luce's choice rule states that the probability of choosing

any given alternative Xi from the set of alternatives X1,

. Xn is given by

Prcxilxl, . . . .Xn) = pi = Map/[map]. (5)

where di = distance between Xi and I, and v (di) is a mono-

tonically decreasing function of its argument. The addi-

tional assumption was made that

V(X) = 8X13 C-GX). (6)

where x and a are positive numbers. The exponential function

was chosen for two reasons: (1) Shepard (1957) found a good

fit to an exponential generalization function over a simil-

arly derived space and (2) Rumelhart and Abrahamson found a

good fit to an exponential function in their work with the

parallelogram model. Taking the natural logarithm of both

sides of equation 5 yields

ln (pi) = ln v(di) - ln [£v(dj)]. (7)

Substituting exp (-ax) for v(x) (equation 6), we get

ln pi = -adi - ln [£exp(-adj)]. (8)

This function states that the parameter, -a, can be esti-

mated by the slope of the regression line fit to the ID
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distance versus the natural logarithm of the proportion of

subjects who ranked that alternative as the best solution

(Figure 25). Alternatives which were never chosen as the

best solution were eliminated while making this calculation.

This yielded an estimate of -a = -l.33. This parameter was

then used to predict the prOportion of subjects who ranked

each alternative as the best solution. Figure 26 shows the

observed versus the predicted proportion of subjects who

ranked each alternative as the best solution. Again this

correlation (r = 0.52) is quite acceptable when compared to

the goodness of fit measure.

Given that there is no systematic clustering in the

INDSCAL subjects' weight space, it is not surprising that

there are no systematic differences in the analogy judgments

attributable to musical training. Table 4 gives the propor-

tion of responses, averaged over the musical subjects and

the analogies, for which the Ith closest alternative to I

was ranked as the Jth best solution. Table 5 gives these

same results averaged over the musically untrained subjects.

As one would expect, there were no systematic differences

between these two tables and their entries were highly

correlated (r = 0.89).

If the analogies work equally well along both dimensions

then the analogies of the form A:C::B:D should work as well

as those of the form A:B::CzD. Table 6 and Table 7 summarize

the data for these two forms of the analogies averaged over

all subjects. Since the subjects' weight space (Figure 18)
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Table 4. Rank order data for musically sophisticated

 

subjects.

RANK DISTANCE SUBJECT-ASSIGNED RANK

OF THE ALTERNA- -----------------------------------------

TIVE FROM I l 2 3 4

1 0.406 0.331 0.131 0.131

2 0.325 0.294 0.219 0.162

3 0.213 0.187 0.375 0 225

4 0.056 0.187 0.275 0.481

Table 5. Rank order data for musically untrained subjects.

 

RANK DISTANCE SUBJECT-ASSIGNED RANK

OF THE ALTERNA- ------------------------------------------

TIVE FROM I 1 2 3 4

1 0.435 0.280 0.175 0.110

2 0.320 0.275 0.215 0 190

3 0.135 0.330 0.345 0.190

4 0.110 0.115 0.265 0.510
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Table 6. Rank order data from analogies of the form

 

A:C::B:D.

RANK DISTANCE SUBJECT-ASSIGNED RANK

OF THE ALTERNA- ------------------------------------------

TIVE FROM I l 2 3 4

1 0.389 0.344 0.167 0.100

2 0.361 0.283 0.200 0.156

3 0.189 0.239 0.367 0.206

4 0.061 0.133 0.267 0.539

Table 7. Rank order data from analogies of the form

A:B::C:D.

 

RANK DISTANCE SUBJECT-ASSIGNED RANK

OF THE ALTERNA- ------------------------------------------

TIVE FROM I 1 2 3 4

1 0.456 0.261 0.144 0.139

2 0.283 0.283 0.233 0.200

3 0.150 0.294 0.350 0 206

4 0.111 0.161 0.272 0.456
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shows that subjects tend to put nearly equal weights on both

dimensions, it is not surprising that these two tables are

quite similar (r = 0.92).



CONCLUSION

The principal dimension of the timbre space which was

obtained in the first experiment replicated the results of

previous studies. This not only supports the idea that a

reasonable solution was obtained, but also increases one's

confidence that the energy distribution provides an impor-

tant cue in the perception of timbre.

The fact that the second dimension was interpreted in

terms of the attack transient also agrees with previous

research. However, the details of exactly what property (or

properties) of the transient provides the perceptual cues

are not totally clear. An experiment comparing three vari-

ations of stimulus tones could provide further insight about

this problem.

This experiment involves three conditions. The first

condition would repeat the scaling part of this study with

the tones experimentally equalized for pitch, loudness, and

duration. The tones scaled in the second condition would be

synthesized by replacing the frequency functions used in the

first condition with frequency functions which are exactly

at the prOper harmonic value, thus removing the frequency

glides as perceptual cues. The tones in the third condition

would be synthesized by replacing the amplitude functions of

57



58

the original tones with trapezoidal functions that have the

same average amplitude as the origninal function. In this

condition, the amplitude envelope cannot provide any per-

ceptual cues. A separate dissimilarity matrix and scaling

solution would be found for each condition.

By comparing the scaling solutions from the fixed fre-

quency and the trapezoidal amplitude tones to the original

tones solution, one will be able to better understand what

effect the amplitude variations and the frequency glides

have on the perception of timbre. If the fixed frequency

scaling solution corresponds more closely to the original

solution than the trapezoidal amplitude solution, one will

be able to conclude that the perceptual cues provided by the

amplitude envelope are more important in the perception of

timbre than those cues provided by the frequency glides.

This would be consistent with the synchronous-asynchronous

interpretation of the second dimension. However, if the

trapezoidal amplitude scaling solution is better than the

fixed frequency solution, one will conclude that the fre-

quency glides provide important cues in the perception of

timbre. This would require that the synchronous-asynchronous

interpretation be modified or rejected.

Another method of evaluating the validity of the inter-

pretations that have been given to timbre spaces is to manip-

ulate directly the properties of the tone. If the centroid

of the energy distribution and the variability of the onset

times in the upper harmonics play the important role which
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this study suggests, it should be possible to synthesize

tones that map onto a predetermined area of the timbre space.

Such results would provide additional strong support for

this interpretation.

Although there is still room for improvement, the

parallelogram model predicts the solutions to timbre anal-

ogies more accurately than alternative models. Furthermore,

the model accomplishes this even though the particular tones

in the present study were only approximately equalized for

pitch, loudness, and duration. Although one rarely hears

precisely equalized tones in real life situations, a repli-

cation with tones that have been equalized experimentally

is still desirable.

An even more important step would be to carry out an

analogy experiment based on a more orderly timbre space.

Assuming the interpretation of the timbre space is correct,

it should be possible to construct a space where tones

actually occur at the ideal analogy point. Thus it would be

possible to get a better test of the parallelogram model.

These results open interesting and challenging avenues

for composers and musicians. The concept of timbre analogies

suggests that the idea of melodic transposition might now be

extended from the domain of pitch to that of timbre.
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APPENDIX

IADD: An Interpolating Additive Synthesis Program

PROGRAM “IADD” WRITTEN BY DAVID EHRESMAN

DEPARTMENT OF PSYCHOLOGY

MICHIGAN STATE UNIVERSITY

EAST LANSING: MI 48824

THIS PROGRAM; WHICH HAS BEEN IMPLEMENTED ON A PDPwl1/4O

MINIMCOMPUTER AT MICHIGAN STATE! DOES ADDITIVE SYNTHESIS

USING AN INTERPOLATING OSCILLATOR. THE CONTROL PARAMETERS

ARE SAMPLING RATE! BEATS PER SECONDy INITIAL PHASE: AND

SCALE FACTOR. THE ADDITIVE SYSTHESIS DONE BY THIS PROGRAM

IS BASED ON STRAIGHT LINE APPROXIMATIONS OF THE COMPLEX

TIME VARYING AMPLITUDE AND FREQUENCY FUNCTIONS OF EACH

HARMONIC TO BE INCLUDED IN THE SYNTHESIZED TONE. THIS

PROGRAM USES THE BREANPOINT INFORMATION FROM THESE

FUNCTIONS TO CONTROL THE SYNTHESIS. THE INPUT FILE MUST

BE IN THE FOLLOWING FORMAT: LINE 1mAMP. LABEL

(MAX. m S CHAR.)$ LINE 2~TIME OF FIRST AMP. DREAKPOINT

(IS) FOR HARMONIC 1? LINE 3wAMPLITUDE AT FIRST DREAKPOINT

(FI0.0) FOR HARMONIC 1. THIS IS REPEATED UNTIL ALL THE

AMPLITUDE DATA FOR THE 1ST HARMONIC HAS BEEN ENTERED.

THE NEXT LINE MUST CONTAIN 999 WHICH ACTS AS A DELIMITER.

THIS IS FOLLOWED BY THE FREQUENCY (HZ) DREAKPOINT DATA

FOR HARMONIC 1 USING THE SAME FORMAT AS ABOVE. DATA FOR

EACH OF THE REMAINING HARMONICS MUST DE ENTERED USING THE

SAME FORMAT. THIS PROGRAM CAN PROCESS A MAX. OF 29

HARMONICS WITH A MAX. OF 19 DREAKPOINTS/HARMONIC. THE

OUTPUT IS STORED ON A DISK IN A FORMAT SUITABLE FOR

READING THRU A DAC.

THE FOLLOWING SUBROUTINES AND FUNCTIONS ARE NEEDED TO RUN

THIS PROGRAM:

(1) LINE ~ COMPUTES SLOPE AND CONSTANT FOR A LINE DEFINED

DY TWO POINTS

(2) OSCIL ~ COMPUTES A SAMPLE WHEN GIVEN AMP.y SAMPLE

INCREMENT9 AND PHASE INFORMATION

(3) SOUT W PACKS SAMPLES IN A FORMAT SUITABLE FOR USE

WITH OUR DAC

( 4 ) S Y ‘ I... I D R OUT I MES

63
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C .... .. .... .... .... .... .. .._ -.. .... .. .... .. .... .. .... .... .... .. .. .. .... '[ A I. I" .... .... .... .... .. .... .. .... .... .... .... .... .... .... .... .... .... i“

C

DOUBLE PRECISION EXT

DIMENSION AMP (20,30), ITIMEI (20930)! FREO (20y30)r

$ II (30)! 12 (3039 ITIMEB (20,30), SLOPE1(30)9

$ SLOP12(30)9 CONSTI (SO)9CONST2 (30)! PHS (SO)y

$ ISPEC (39)

COMMON SySINE (511)

S /BUFFER/ ICHANv INDEX! AMAX! SAMP (256), IDUFF (256)

DATA INDEX /0/, AMAX /0.0/rEXT /6RDATSND/v

$ SAMP f256*0.0/y IDEL /"007/

C** READ CONTROL PARAMETERS

WRITE (7960)

60 FORMAT (’$’p’ENTER SAMPLING RATE (F10.0) M ’)

READ (5,120) SAMRAT

WRITE (7970)

70 FORMAT (’$’r’ENTER BEATS PER SECOND (FI0.0) “ “)

READ (5,120) BEAT

WRITE (7’75)

75 FORMAT (’$’p’ENTER INITIAL PHASE (F10.0) w ’)

READ (SrISO) PHASE

C** FIGURES SAMPLES PER BEAT

SPD 3 SAMRAT/DEAT

WRITE (7y?6)

76 FORMAT (’$’r’ENTER AMPLITUDE SCALE FACTOR (F10.0) w ’)

READ (5,120) SCALE

C*# READ OUTPUT 8 INPUT FILE NAMES IN STANDARD CSI

CXX FORMAT AND OPEN FILES FOR I/O

WRITE (5979)

79 FORMAT (’$’r’ENTER COMMAND STRING M ’)

I F (I CS I (I SPEC , EXT 9 r 9 0) . NE . 0) STOP ’ I NVAL. I III CS I STRING"

IF (IASIGN(10!ISPEC(16)yISPEC(17)vOrSQ).NE.0)

$ STOP ’NO CHANNEL FOR INPUT’

ICHAN a IGETC ()

IF (ICHAN.LT.0) STOP ’NO CHANNEL FOR OUTPUT’

IF (IENTER(ICHAN9 ISPEC (1)!ISPEC (5)).LT.0)

$ STOP ’NO CHANNEL OR NOT ENOUGH DISK SPACE’

CXX STORE A 512 SAMPLE SINE WAVE

TEMP m (2. * 3.14159265)/511.

DO 80 J x 0,511

SINE (J) m SIN (TEMPXJ)

SO CONTINUE

C** LOOP FOR MAX. OF 29 HARMONICS

DO 190 J 3 1,30

C** READ AMP. BREANPOINT DATA FOR HARMONIC J

READ (109100yEND3200) LABEL

100 FORMAT (A12)

DO 130 I a 1:20

READ (10,110) ITIMEI (IrJ)

IF (ITIMEI (Ird).EO.999) GO TO ISO

READ (109120) AMP (Ivd)

110 FORMAT (IS)

120 FORMAT (F10.0)

CXX CONVERT BEATS TO SAMPLE NUMBER

ITIMEI (I’d) m (ITIMEI (IvJ)“1) X SPD + 1

130 CONTINUE



C**

150

C**

C**

1?5

190

C**

200

C**

C**

250

C**

C**

C**

C**

C**

C**

300

C**

C**

400
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R EAIII F R E Q . BR EARF‘O INT DATA FOR l-~|Al-"<M(I)N IC J

READ (109100) LABEL

OD 175 I x 1’20

READ (10,110) ITIME2 (IrJ)

IF (ITIME2 (I!J).EQ.999) GO TO 190

READ (10,120) FREQ (IvJ)

CONVERT BEATS TO SAMPLE NUMBER X

HERTZ TO SINE TABLE INCREMENT

ITIME2 (IyJ) a (ITIME2 (IrJ)”1) * SPB + 1

FREQ (IrJ) 3 FREQ (IrJ) * 511. / SAMRAT

CONTINUE

CONTINUE

COMPUTE X PRINT NUM. OF HARMONICS 8 LENGTH OF FILE

NHAR le

ILEN ITIME2 (I~1yNHAR)

NRITE (7’225) NHAR!(ILEN"1)/SAMRAT

FORMAT (’O’rTSr’NUMBER OF HARMONICS m ’yIR/

$ ’ ’9T57’LENGTH OF FILE 3 ’y610.4y’ SECONUS’)

FIND INITIALIZE SLOPE 8 Y INTERCEPT FOR AMP. AND

FREQ. FUNCTIONS

DO 250 J x lyNHAR

11(J) 3 1

I2(J) : 1

CALL LINE ( I1 (J) r J r AMF‘ r I T IME 1 9 $55!...t'3l3'li-I .‘l. (J) 9 CONST 1 (J) )

CALL. LINE (I133( J) , J y FREQ r IT IMEZ? 9 SI...D|3'IE§I;2 ( J) r C(I)NST12( J) )

F'HS (J) == PHASE

CONTINUE

COMPUTE SAMPLES

DO 400 K 3 lrILEN

L 3 MOD (K~1p256)+1

HQ 300 J m lyNHAR

UPDATE AMRoSLOPE AND CONSTANT AT EACH

BREAKPOINT 8 COMPUTE AMP.

IF (K.EQ.ITIME1 (Il(J)yJ) + 1)

$ CALL LINE (11(J)vJyAMPyITIMElySLOPE1(J)r

$ CONST1(J))

SAMAMR = SLOPEl (J) K K + CONSTI (J)

UPDATE FREQ. SLOPE AND CONSTANT AT EACK

BREAKROINT 8 CDMPUTE SINE TABLE INCREMENT

IF (K.EQ.ITIME2 (IB(J)9J) + 1)

$ CALL LINE (12(J)erFREQyITIMERySLOPE2(J)r

$ CONST2(J))

SI 3 SLOPE2 (J) i K + CONST2 (J)

COMPUTE SAMPLE

SAMP (L) SAMR (L) + OSCIL (SAMAMP)SI:PHS(J))

CONTINUE

SCALE SAMPLE AND URITE TO DISK IN BLOCKS OF

256 SAMPLES

SAMP (L) m SAMP (L) * SCALE

IF (L.EQ.256) CALL SOUT

CONTINUE

CALL SOUT

M
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C** PRINT ENDING MESSAGE! CLOSE I/O CHANNELS x RINO

C** DECMURITER DELL

WRITE (7,500) AMAX

500 FORMAT (’O’y’MAX AMPLITUDE IS ’rlPORO.10/

$ ’ ’y’LET”S SINO’)

CALL INAIT (ICHAN)

CALL CLOSEC (ICHAN)

WRITE (79600) IBELsIBEL

600 FORMAT (’+’r2A1)

STOP

END

C

C*# SUBROUTINE LINE

C

C LINE RETURNS THE SLOPE X Y INTERCEPT OF A LINE UHEN GIVEN

C THO POINTS THAT DEFINE THAT LINE

C

SUBROUTINE LINE (IvJyYAXISrITIMEySLOPErCONST)

DIMENSION YAXIS (20930)!ITIME (20,30)

SLOPE a (YAXIS(I+1:J)"YAXIS(19J)) /

$ (ITIME(I+1rJ)mITIME(IyJ))

CONST 3 YAXIS (IrJ) m (SLOPE * ITIME (I!J))

I 2 1+1

RETURN

END

C

CXX FUNCTION OSCIL

C

C OSCIL RETURNS ONE SOUND SAMPLE UHEN GIVEN THE AMPLITUDE:

C THE SAMPLE INCREMENT (FREQ.) AND THE PHASE. A SINE TABLE

C MUST ALREADY BE AT MEMORY LOCATIONS SINE(O) THRU

C SINE(511). THIS IS AN INTERPOLATING OSCILLATORQ

C

FUNCTION OSCIL (AMPySIyPHS)

COMMON SySINE (511)

IPHSI x IEIX (PHS)

IPHSQ = MOD (IPHS1+19511)

H m PHS ~ AINT (PHS)

PHS x AMOD (PHS+819511.)

IF (PHS) 1, 2! 2

1 PHS w PHS + 511.

2 OSCIL m AMP * (SINE (IPHSI) +

$ (SINE(IPH92) w SINE<IPH$1)) # H)

RETURN

END

.TITLE SUUT

; SAMPLE "PACKING" AND OUTPUT ROUTINE FUR PUP 11

§ URITTEN BY LARRY JOHNSON, LAST MODIFIED 18 FEB 76

.MCALL ..V2..y .REGDEF;.UAIT: .HRITE

.REGUEF

.OLOBL SOUT



ICHAN:

INDEX:

AMAX:

SAMP:

OUTBUF:

SOUT:

MOV

LOOP:

NOSHFT:

LIST:
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:JSECT BUFFER

.BLRN 1

.BLKU 1

.BLKU 2

.BLKU 1000

.BLKU 400

.CSECT

.UAIT ICHAN

#1000009R3 §R3 IS A MASK

MOV #SAMP9 R4

MOV #OUTBUF9RS

MOV @R49 R0

CLR (R4)+

MOV @R49 R1

CLR (R4)+

THE NEXT VALUE OF SAMP HAS BEEN MOVED INTO R09 R1

AND IT’S VALUE CLEARED FROM /BUFFER/

MOV R09 R2

BIC R39 R2 $R29 R1 IS ABS<SAMP)

CMP R29 AMAX

DLO INT

BHI 1$

CMP R19 AMAX+2

BLOS INT

ABS(SAMP) ‘ AMAX9 SO SET AMAX : ABS(SAMP)

MOV R29 AMAX

MOV R19 AMAX+2

CLRB R1

BISB R09 R1

SUAB R1 §C IS CLEARED

BIS R39 R1

ROR R1 3R1 HAS 15 BITS OF INT(ADS(SAMP))

ASL R0

BCC 1$

NEG R1 $IF SAMP { 0 THEN R1 3 “R1

XOR R39 R0 §MAKE EXP. B’S COMP.

SUAB R0

MOVB R09 R0 5R0 IS EXPONENT

NEG R0

BLE 2$

CLR R0 90 IS LARGE ENOUGH FOR wEXPONENT

ADD #179 R0 §R0 IS # OF RIGHT SHIFTS

BLE NOSHFT

ASR R1

SOB R09 3$

MOV R19 (R5)+ $PUT RESULT INTO OUTBUF

CMP R49 #SAMP+2000

DLO LOOP 3LOOP BACK IF NOT DONE

:URITE #LIST9 ICHAN9 #OUTBUF9 #4009 INDEX

INC INDEX

RTS PC

.BLKU 5

.END
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