MAXIMAL WORK CAPACITY AS RELATED TO STRENGTH, BODY COMPOSITION, AND PHYSICAL ACTIVITY IN YOUNG WOMEN

Thesis for the Degree of M. A. MICHIGAN STATE UNIVERSITY Doris Darwick 1964

ŧ

)

MAXIMAL WORK CAPACITY AS RELATED TO STRENGTH, BODY COMPOSITION, AND PHYSICAL

ACTIVITY IN YOUNG WOMEN

By

Doris Darwick

AN ABSTRACT OF A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

Department of Health, Physical Education, and Recreation

ant Chr) est Approved

ABSTRACT

MAXIMAL WORK CAPACITY AS RELATED TO STRENGTH, BODY COMPOSITION, AND PHYSICAL ACTIVITY IN YOUNG WOMEN

by Doris Darwick

The relationship of physical activity, strength, and body composition to the maximal work capacity of young women was studied. Twenty-eight college women, age 18 to 22, were measured to determine their: (a) body composition by assessing body fat and calculating fat-free body weight from the predicted specific gravity, (b) habitual physical activity by means of an activity history recall questionnaire, (c) strength using the cable tensiometer in the measurement of eleven positions, and (d) maximal work capacity by determining the maximal oxygen consumption in a graded treadmill test.

Gross body weight and fat-free body weight were found to correlate .64 (r) with maximal oxygen consumption. Body weight and fat-free body weight correlated .69 and .62, respectively, with the daily caloric expenditure estimated from the recall questionnaire data. Maximal oxygen intake correlated .51 with hip flexion and .50 with knee extension. The best strength measures to indicate total strength were hip flexion (.88), knee extension (.84), and elbow flexion (.83). Active subjects as rated from the recall questionnaire were: (a) heavier and possessed a greater fat-free body weight, (b) found to expend more energy per day, (c) capable of higher maximal oxygen consumptions, and (d) stronger in total and trunk extension strength.

Physical education majors as a group had higher fatfree body weights, expended more energy per day, were capable of higher maximal oxygen intakes, and were consistently stronger than the non-physical education majors.

MAXIMAL WORK CAPACITY AS RELATED TO STRENGTH, BODY COMPOSITION, AND PHYSICAL ACTIVITY IN YOUNG WOMEN

Bу

Doris Darwick

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

Department of Health, Physical Education, and Education

ACKNOWLEDGMENT

The author wishes to extend sincere thanks to Dr. Janet A. Wessel for her invaluable assistance and encouragement.

DEDICATION

Dedicated to my family for their love, faith, and prayers.

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	l
	Purpose of the Study	3
	Need for the Study	3
	Limitations of the Study	4
	Definition of Terms	4
II.	REVIEW OF THE LITERATURE	7
	Studies Concerning Methods for Determin-	
	ing Body Composition and Specific	
	Gravity	7
	Studies Concerning Maximal Oxygen	
	Consumption as Related to Body	
	Composition	10
	Studies Concerning Methods and Procedures	
	for Determining Maximal Oxygen	
	Consumption	14
	Studies Concerning Responses to Maximal	
	Work Capacity of Men and Women	17
	Studies Concerning Responses to Maximal	
	Work Capacity of Men	20
	Studies Concerning Maximal Work Capacity	
	as Related to Physical Activity	27
III.	METHODOLOGY	
	Subjects	29

Chapter														Page
	Tes	t Pro	cedur	res	and	. Da	ata	001	tai	ned	•	•	•	29
	Ant	hropo	metri	Lc M	leas	ure	emer	nts	•	•	•	•	•	30
	Phy	sical	Acti	lvit	У	•	•	•	•	•	•	•	•	32
	Met	aboli	c and	l He	art	Ra	ate	Teo	chn:	ique	es	•	•	33
	Cab	le Te	nsior	n St	ren	gth	1.	•	•	•	•	•	•	37
IV. AN	ALYS	IS OF	DATA	١.	•	•	•	•		•	•	•	•	50
	Des	cript.	ion c	of S	lubj	ect	s a	and	Cor	npai	rati	.ve		
		Data.	•	•	•	•	•	•	•	•	•	•	•	50
	Int	errel	ation	nshi	DS	of	Pai	rame	etei	?s	•	•	•	56
		lysis			-		•		•				•	64
V. SUI		Y, CO) RH	ECON	MEI	IDAJ	ION	IS	•	110
		mary.		•	,									110
		clusi	ons							•	•	•		111
		ommen												116
BIBLIOGRAPH		•			•	•	•	•	•	•	•	•	•	117
APPENDICES.		• •	•	•	•	•	•	•	•	•	•	•	•	122
Appendix	•	· ·	• •	• 02	• Phy	•	•	• Cha	•	• •tor	• •tet	•	•	<u> </u>
Appendix	н.		ubjec		•							103	,	
			Ū			•		-		-				
		Phys												100
	Ð	Capa	•••				-							123
Appendix	в.											ICU	-	
		late					_				-			
	-	Compo		-									•	130
Appendix	с.													
		Grav										-		_
		Weigh	nt, a	.nd	Pon	der	al	Ind	lex	•	•	•	•	133

LIST OF TABLES

Table		Page
I.	Weight, Per Cent Body Fat, and Specific	
	Gravity as Determined in Young's Study	8
II.	Metabolic Responses	18
III.	Aerobic Work Capacity, Oxygen 1; ml/kg	19
IV.	Subject General Description, Body Composition	
	and Predicted Specific Gravity of Young's	
	Study as Compared with the Present Study .	51
ν.	Metabolic Responses to Maximal Work Capacity	
	of Test One as Compared to the Retest . $$.	53
VI.	Mean Metabolic Responses to Maximal Work of	
	the Present Study as Compared to Other	
	Studies on Women	54
VII.	Maximal Work Capacity as Correlated with Body	
	Composition of the Present Study as Com-	
	pared with Other Studies	55
VIII.	Cable Tension Strength in Kilograms	56
IX.	Inter-correlation Matrix of All Variables	57
Χ.	Daily Caloric Expenditure of Group I,	
	Group II, and Total Subjects	65
XI.	Analysis of Variance of Per Cent Body Fat	
	in Group I	72
XII.	Analysis of Variance of Body Weight in	
	Kilograms in Group I	72

Table		Page
XIII.	Analysis of Variance of Fat-Free Body Weight	
	in Kilograms in Group I	73
XIV.	Analysis of Variance of Standing Height (in	
	Centimeters) in Group I	73
XV.	Analysis of Variance of Ponderal Index in	
	Group I	74
XVI.	Analysis of Variance of Calorix Expenditure	
	(One Day Average) in Group I	74
XVII.	Analysis of Variance of Maximal Oxygen Uptake	
	in Liters Per Minute in Group I	75
XVIII.	Analysis of Variance of Maximal Oxygen Uptake	
	Per Kilogram of Body Weight in Liters Per	
	Minute in Group I	75
XIX.	Analysis of Variance of Maximal Oxygen Uptake	
	Per Kilogram of Fat-Free Body Weight in	
	Liters Per Minute in Group I	76
XX.	Analysis of Variance of Time (in Minutes) of	
	Maximal Oxygen Uptake Attainment in Group I	76
XXI.	Analysis of Variance of the Heart Rate	
	Simultaneous with the Maximal Oxygen	
	Uptake Attainment in Group I	77
XXII.	Analysis of Variance of the Heart Rate of the	
	Last Minute on the Treadmill in Group I	77
XXIII.	Analysis of Variance of the Total Treadmill	
	Time (in Minutes) in Group I	78

-.

Table	F	'age
XXIV.	Analysis of Variance of Total Strength in	
	Group I	78
XXV.	Analysis of Variance of Hip Flexion Strength	
	in Group I	79
XXVI.	Analysis of Variance of Hip Extension	
	Strength in Group I	79
XXVII.	Analysis of Variance of Knee Extension	
	Strength in Group I	80
XXVIII.	Analysis of Variance of Shoulder Extension	
	Strength in Group I	80
XXIX.	Analysis of Variance of Elbow Extension	
	Strength in Group I	81
XXX.	Analysis of Variance of Elbow Flexion	
	Strength in Group I	81
XXXI.	Analysis of Variance of Ankle Extension	
	Strength in Group I	82
XXXII.	Analysis of Variance of Shoulder Horizontal	
	Flexion Strength in Group I	82
XXXIII.	Analysis of Variance of Shoulder Flexion	
	Strength in Group I	83
XXXIV.	Analysis of Variance of Trunk Flexion	
	Strength in Group I	83
XXXV.	Analysis of Variance of Trunk Extension	
	Strength in Group I	84
XXXVI.	Analysis of Variance of Per Cent Body Fat in	
	Group II	84

XXXVII.	Analysis of Variance of Body Weight in	
	Kilograms in Group II	85
XXXVIII.	Analysis of Variance of Fat-Free Body Weight	
	in Kilograms in Group II	85
XXXIX.	Analysis of Variance of Standing Height (in	
	Centimeters) in Group II	86
XL.	Analysis of Variance of Ponderal Index in	
	Group II	86
XLI.	Analysis of Variance of Caloric Expenditure	
	(One Day Average) in Group II	87
XLII.	Analysis of Variance of Maximal Oxygen Uptake	
	in Liters Per Minute in Group II	87
XLIII.	Analysis of Variance of Maximal Oxygen Uptake	
	Per Kilogram of Body Weight in Liters Per	
	Minutes in Groups II	88
XLIV.	Analysis of Variance of Maximal Oxygen Uptake	
	Per Kilogram of Fat-Free Body Weight in	
	Liters Per Minute in Group II	88
XLV.	Analysis of Variance of Time (in Minutes) of	
	Maximal Oxygen Uptake Attainment in	
	Group II	89
XLVI.	Analysis of Variance of the Heart Rate	
	Simultaneous with Maximal Oxygen Uptake	
	Attainment in Group II	89
XLVII.	Analysis of Variance of the Heart Rate of	
	the Last Minute on the Treadmill in	
	Group II	90

Page

Table

XLVIII.	Analysis of Variance of the Total Treadmill	
	Time (in Minutes) in Group II 90	0
XLIX.	Analysis of Variance of Total Strength in	
	Group II 92	1
L.	Analysis of Variance of Hip Flexion Strength	
	in Group II 92	l
LI.	Analysis of Variance of Hip Extension Strength	
	in Group II	2
LII.	Analysis of Variance of Knee Extension	
	Strength in Group II 93	2
LIII.	Analysis of Variance of Shoulder Extension	
	Strength in Group II 9	3
LIV.	Analysis of Variance of Elbow Extension	
	Strength in Group II 9	3
LV.	Analysis of Variance of Elbow Flexion	
	Strength in Group II 9	4
LVI.	Analysis of Variance of Ankle Extension	
	Strength in Group II 9	4
LVII.	Analysis of Variance of Shoulder Horizontal	
	Flexion Strength in Group II 9	5
LVIII.	Analysis of Variance of Shoulder Flexion	
	Strength in Group II 9	5
LIX.	Analysis of Variance of Trunk Flexion	
	Strength in Group II 9	6
LX.	Analysis of Variance of Trunk Extension	
	Strength in Group II 9	6

Page

-

Table

Page XLI. Analysis of Variance of Per Cent Body Fat in Group III 97 XLII. Analysis of Variance of Body Weight in Kilograms in Group III. 97 XLIII. Analysis of Variance of Fat-Free Body Weight in Kilograms in Group III. 98 LXIV. Analysis of Variance of Standing Height (in 98 Centimbers) in Group III LXV. Analysis of Variance of Ponderal Index in 99 Group III LXVI. Analysis of Variance of Caloric Expenditure (One Day Average) in Group III . . . 99 LXVII. Analysis of Variance of Maximal Oxygen Uptake in Liters Per Minute in Group III . . . 100 LXVIII. Analysis of Variance of Maximal Oxygen Uptake Per Kilogram of Body Weight in Liters Per Minute in Group III. 100 LXIX. Analysis of Variance of Maximal Oxygen Uptake Per Kilogram of Fat-Free Body Weight in Liters Per Minute in Group III 101 LXX. Analysis of Variance of Time (in Minutes) of Maximal Oxygen Uptake Attainment in Group 101 III Analysis of Variance of the Heart Rate LXXI. Simultaneous with the Maximal Oxygen Uptake Attainment in Group III 102

xi

.

Table		Page
LXXII.	Analysis of Variance of the Heart Rate of the	
	Last Minute on the Treadmill of Group III.	102
LXXIII.	Analysis of Variance of the Total Treadmill	
	Time (in Minutes) in Group III	103
LXXIV.	Analysis of Variance of Total Strength in	
	Group III	103
LXXV.	Analysis of Variance of Hip Flexion Strength	
	in Group III	104
LXXVI.	Analysis of Variance of Hip Extension	
	Strength in Group III	104
LXXVII.	Analysis of Variance of Knee Extension	
	Strength in Group III	105
LXXVIII.	Analysis of Variance of Shoulder Extension	
	Strength in Group III	105
LXXIX.	Analysis of Variance of Elbow Extension	
	Strength in Group III	106
LXXX.	Analysis of Variance of Ankle Extension	
	Strength in Group III	106
LXXXI.	Analysis of Variance of Elbow Flexion	
	Strength in Group III	107
LXXXII.	Analysis of Variance of Shoulder Horizontal	
	Flexion Strength in Group III	107
LXXXIII.	Analysis of Variance of Shoulder Flexion	
	Strength in Group III	108
LXXXIV.	Analysis of Variance of Trunk Flexion	
	Strength in Group III	108

Table		Page
LXXXV.	Analysis of Variance of Trunk Extension	
	Strength in Group III	109
LXXXVI.	Raw Date on Physical Characteristics of	
	Subjects	124
LXXXVII.	Raw Data on Pubic Skinfold, Per Cent Body	
	Fat, Fat-Free Body Weight, and Relative	
	Weight	125
LXXXVIII.	Raw Data on Predicted Specific Gravity,	
	Ponderal Index, and Daily Caloric	
	Expenditure	126
LXXXIX.	Raw Data on Strength	127
XC.	Raw Data on Test One Metabolic Responses	128
XCI.	Raw Data on Retest Metabolic Responses	129

LIST OF FIGURES

Figures		Page
1.	Shoulder Extension	39
2.	Elbow Extension	40
3.	Ankle Plantar Flexion	41
4.	Elbow Flexion	42
5.	Shoulder Horizontal Flexion	43
6.	Hip Flexion	44
7.	Hip Extension	45
8.	Shoulder Flexion	46
9.	Trunk Flexion	47
10.	Trunk Extension	48
11.	Knee Extension	49
12.	Elementary Linkage Analysis: Type I	60
13.	Elementary Linkage Analysis: Type II	61
14.	Elementary Linkage Analysis: Type III	62
15.	Elementary Linkage Analysis: Type IV	63
16.	Elementary Linkage Analysis: Type V	63

CHAPTER I

/.

INTRODUCTION

"And the Lord God formed man of the dust of the ground, and breathed into his nostrils the breath of life; and man became a living soul." Oxygen is necessary not only to life itself but to every act of human performance; mental and physical actions are dependent upon oxygen supply to the working tissues. Bard stated that "maximal cxygen consumption is probably the best single physiological indicator of a man's capacity for maintaining extremely hard work."² According to Astrand and Rhyming, "the individual's capacity: (or fitness) for heavy prolonged muscular work will first of all be dependent on the supply of oxygen to the working muscles. In types of work which engage large groups of muscle the limiting factor for the maximal oxygen intake (aerobic capacity) will probably be the capacity and regulation of the oxygen transporting system."³ Astrand

¹Genesis, 2:7.

²Phillip Bard (ed.), <u>Medical Physiology</u> (11th ed.; St. Louis: The C. V. Mosby Company, 1961), p. 498.

³P. O. Astrand and Irma Rhyming, "A Nonogram for Cal-Culation of Aerobic Capacity (Physical Fitness) from Pulse Rate During Submaximal Work," <u>Journal of Applied Physiology</u>, 7:118, July, 1954 to May, 1955. believes that "it is of essential physiological interest to know a) the maximal activity level of the normal healthy human and how this level varies with sex and age; b) the factors normally limiting this upper level and, therefore, the physical performance."⁴

As the human body is designed for action it is evident that physical work capacity should be assessed during muscular work: preferrably to determine maximal work during maximal performance. Because of natural endowed physical capacities and anatomical structure, performance, although relatively constant in one individual, varies considerably between individuals. It is apparent that sex, age, body composition, inherent skills, and similar factors all influence the physical work capacity of the individual. Just what level of physical work capacity is necessary and/or desirable for general health is not yet known. It is generally agreed, however, that an individual should possess a work capacity level above that which is necessary to carry on their daily activities. It is the objective of this study to contribute to the better understanding of physical work capacity of Young women and the individual variations as influenced by strength, body composition, and physical activity.

⁴P. O. Astrand, "Human Physical Fitness With Special Reference to Sex and Age," <u>Physiological Reviews</u>, 36:380, July, 1956.

Purpose of the Study

This study was designed with the intent of determining the relationship of physical activity, strength, and body composition to the maximal work capacity of young women.

In order to realize this purpose four main objectives were selected:

- to determine maximal oxygen capacity of young women,
- to determine the effect of body composition on maximal oxygen consumption,
- to determine the relationship of strength and maximal oxygen consumption, and
- 4. to determine the differences between active and less active individuals in relation to maximal oxygen consumption.

Need for the Study

The literature reveals only a few studies on women concerning maximal work capacity as related to age and body composition and none relating physical activity or strength to maximal work capacity. Contributions of basic information in the analysis of human biological individuality are essential if man is to gain:

- a. understanding of human difference,
- b. understanding of fitness and efficiency of performance,

understanding of activity programs and procedures
 to increase the effectiveness thereof.

Limitations of the Study

Sample.

- The number of subjects in the sample were limited to twenty-eight women.
- All subjects were college women 18 to 22 years of age.
- 3. All subjects were volunteers.

Techniques and procedures.

- The design of the study was limited in that each of the subjects participating could not follow a definite order and sequence in testing and retesting.
- The physical activity history recall questionnaire was based on the subjects individual record of activities for a limited period of five days.
- Very little research evidence was available on ways to assess maximal work capacity of women or levels of performance.

Definition of Terms

Per cent of standard weight (relative body weight).⁵ Per cent of standard weight was calculated by dividing the

⁵Build and Blood Pressure Study, 1959, Vol. I (Chicago: Society of Actuaries, 1959).

predicted weight into the actual weight. The predicted weights were obtained from the <u>Build and Blood Pressure</u> <u>Study.</u>

Predicted specific gravity.⁶ Specific gravity was predicted by using the following formula:

weight per height and age).

Per cent of fat of body weight.⁷ Body fat content was calculated from densiometrically determined specific gravity using the Rathbun and Pace formula:

Per cent fat = $\frac{100}{\text{Specific Gravity}} = 5.044$)

<u>Fat-Free body weight</u>. Fat-free body weight was computed by subtracting the calculated fat content from the body weight.

<u>Ponderal index</u>. Ponderal index was computed by dividing height by the cube root of weight.

3 <u>Height</u>

⁶Charlotte Young, Elizabeth Martine, Rosalinda Tensuan, and Joan Blondin, "Predicting Specific Gravity and Body Fatness in Young Women," Journal of the American Dietetic <u>Association</u>, 40:105, February, 1962.

⁷E. N. Rathbun and N. Pace, "Body Composition I," Journal of Biological Chemistry, 158:675, 1945.

Physical activity. All subjects completed an activity history recall questionnaire in which they recorded their activity for a consecutive five day period. Energy expenditure; i.e., physical activity, was determined by the computation of the subject record.

Maximal work capacity. Maximal oxygen consumption was determined during a "run" on the treadmill at 6 mph with a one per cent grade increase each minute until the subject was unable to continue. The "run" was preceded by a ten minute warm up "walk" at 3.5 mph on zero grade.

CHAPTER II

REVIEW OF LITERATURE

In order to develop a complete review of the literature pertaining to this study, it was necessary to consider several aspects of investigation. The several topics involved will be treated as separate areas of review and will appear under separate headings.

Studies Concerning Methods for Determining Body Composition and Specific Gravity

Young^o and her associates reported a pilot study designed to obtain normative data on the lean body mass and fatness of a representative sampling of 94 Cornell University women 17 to 30 years of age. The authors were interested in studying the interrelationships existing between estimates of lean body mass and/or adiposity based on determinations in each of body density, total body water, skinfold measurements, fat-pat measurements from soft tissue x-rays, anthropometric measures, creatine excretion, and basal oxygen consumption.

⁸C. M. Young, M. E. Martin, M. McCarthy, M. J. Marniello, E. Harmuth, and J. Feyer, "Body Composition of Young Women," <u>Journal of the American Dietetic Association</u>, 38:332-340, April, 1961.

The authors findings⁹ on body weight, fat-free body weight, per cent body fat, and specific gravity are presented in Table I.

TABLE I

Characteristic	Range	Mean	S.D.
Weight (kg)	44.11 - 76.20	58.96	6.445
Fat-free body weight (kg)	31.94 - 61.11	42.15	6.073
Per cent body fat (Rathbun-Pace)	15.81 - 38.62	28.69	4.856
Specific gravity	1.0217-1.0665	1.0408	0.0094

WEIGHT, PER CENT BODY FAT, AND SPECIFIC GRAVITY AS DETERMINED IN YOUNG'S STUDY

The authors further stated that the "pubis" measurement correlated best of all measurements with both total skinfold thickness (r=.90) and density (r=-.66).

Young¹⁰ and her associates in a more recent article published a predictive equation for specific gravity. Intercorrelations between skinfolds, with total skinfold thickness and with density, were obtained. Using the

9<u>Ibid</u>., p. 335.

¹⁰Young, <u>et al</u>., <u>op. cit</u>., 102-107.

skinfold measurements obtained in their earlier study,¹¹ linear regression equations were formulated to predict specific gravity. After numerous computations the authors found that when a standard weight was included as a variable there was no significant difference in predicting specific gravity using only one skinfold. The pubis skinfold used in this formula had the best correlation with both total skinfold thickness (r = .90) and density (r = -.66) as reported in the previous study. The following equation was formulated for predicting specific gravity.¹²

Specific gravity = $1.0884 - .0004231_{X1} - .0003401_{X13}$

- When X₁ = skinfold on the mid-abdominal line halfway between the umbilicus and the pubis (in mm).
 - X_{13} = percentage "standard" weight (average weight per height and age).

The correlation between determined and predicted specific gravity based on this equation was r = .70; standard deviation of differences was 0.0068 units. This was found to be approximately 3.4 per cent body weight as fat.

¹¹<u>Ibid</u>. ¹²<u>Ibid</u>., p. 105.

Studies Concerning Maximal Oxygen Consumption as Related to Body Composition

Mahadeva, Passmore, and Woolf¹³ investigated the relationship between energy expenditure during standardized walking and stepping, and weight, height, race, and sex in 50 subjects. Energy expenditure was found to be closely correlated with body weight, but was not significantly correlated with height, age, race, or sex. The authors concluded that in any physical activity in which a large proportion of energy expenditure is used to move the body the metabolic cost will be directly proportional to the body weight.

Seltzer¹⁴ measured the oxygen intake of 34 male students, aged 20 to 38 years, during a maximal two to five minute run on the treadmill. The mean maximal oxygen uptake was 3.35 liters per minute. A number of anthropometric measurements were correlated with energy expenditure. Maximal oxygen uptake per minute correlated with stature (r = .59 and with weight (r = .88).

¹³K. Mahadeva, R. Passmore, and B. Woolf, "Individual Variations in the Metabolic Cost of Standardized Exercises: The Effects of Food, Age, Sex, and Race," Journal of Physiology, 121:225-231, 1953.

¹⁴Carl C. Seltzer, "Body Build and Oxygen Metabolism at Rest and During Exercise," <u>American Journal of Physiology</u>, 129:1-13, 1940.

Buskirk and Taylor¹⁵ studied the relationships between maximal oxygen intake and components of body composition. Fifty-nine young college students and soldiers participated in the experiment. The following correlation coefficients were obtained: maximal oxygen intake with body weight r = .63, maximal oxygen intake with fat-free body weight r = .85, maximal oxygen intake with "active" tissue" r = 91, and maximal oxygen intake with blood volume r = .78. They defined "active tissue" as body weight minus estimated body fat (densitometry), thiocyanate space and bone mineral (7 per cent of fat-free body weight). The subjects were also divided into three groups of nine relatively sedentary students classified according to the percentage of body fat (less than 10, 10-25, and 25 and above). Each group was compared with respect to the maximal amount of oxygen used per minute per kilogram of fat-free body weight. The authors found no observable difference existing between the groups.

Von Dobeln¹⁶ investigated the relationships between maximal oxygen intake, total hemoglobin, and (body weight minus adipose tissue) 2/3. In all, 33 male and 32 female subjects participated in the study. For each subject,

¹⁵E. Buskirk and H. Taylor, "Relationships Between Maximal Oxygen Intake and Components of Body Composition," Federation Proceedings, 13:21, March-December, 1954.

¹⁶Wilhelm Von Dobeln, "Maximal Oxygen Intake, Body Size and Total Hemoglobin in Normal Man," <u>Acta Physiologica</u> <u>Scandinavica</u>, 38:193-199, September, 1956.

total hemoglobin, per cent fat based on hydrostatic weighing, and maximal oxygen consumption per unit of time was obtained. Maximal oxygen intake values were plotted against the respective values for body weight minus adipose tissue. A correlation coefficient of r = .76 was reported between (weight minus adipose tissue) 2/3 and maximal oxygen intake.

Von Dobeln¹⁷ administered a maximal oxygen uptake test to 35 men and 35 women to determine the differences in maximal oxygen uptake as related to body composition. The mean maximal uptake for men was 3.91 liters per minute and for the women 3.06 liters per minute. The mean weight of the men was 69.3 kilograms and of the women 62.8 kilograms; however, the men at a ten per cent higher body weight attained a twenty-eight per cent higher maximal oxygen uptake than the women. Von Dobeln concluded that there was not a linear relationship between body size and maximal oxygen intake. The author suggested that the difference in maximal metabolic rate between the sexes was due to the difference in the hemoglobin content of the blood. The mean hemoglobin content of the men was 14.95 g/100 ml. and in the women 13.47 or ten per cent less.

¹⁷Wilhelm Von Dobeln, "Human Standard and Maximal Metabolic Rate in Relation to Fat-Free Body Mass," <u>Acta</u> <u>Physiologica Scandinavica</u>, Vol. 37, Supplementum 126:3-38, 1956.

Welch, Riendeau, Crisp, and Isenstein¹⁸ studied the relationship of maximal oxygen consumption to various components of body composition in 28 healthy young men. The authors stated that on the basis of previous studies conducted by Taylor and Buskirk,¹⁹ and Von Dobeln,²⁰ the assumption was that oxygen was more highly related to lean tissue than to any other description of body composition. "One can infer from the correlations reported that maximum oxygen consumption is dependent mainly on the amount of lean tissue in the body."²¹

The subjects used in this study were tested on the treadmill at grades of 6, 8.5, and 11 per cent. The time of the runs was 2 minutes and 45 seconds. Maximal oxygen consumption was considered to be attained when running at the next higher grade did not increase the maximal oxygen consumption by more than 150 cc. above the previous grade. Significant correlations (P < 0.01) between maximal oxygen consumption in liters per minute and body weight (r = .59); body weight minus fat (r = .65); and body weight minus bone (r = .64) were obtained. The authors emphasized that the

¹⁸B. E. Welch, R. P. Riendeau, C. E. Crisp, and R. S. Isenstein, "Relationship of Maximal Oxygen Consumption to Various Components of Body Composition," Journal of Applied Physiology, 12:395-398, May, 1958.

¹⁹Taylor and Buskirk, <u>loc. cit</u>. ²⁰Von Dobeln, ²¹Welch, e<u>t al</u>., <u>loc. cit</u>.

correlations obtained by Taylor and Buskirk.²² and Von $Dobeln^{23}$ can be interpreted in that from 53 to 83 per cent of the variability in maximal oxygen consumption may be attributed to variations in the percentage of lean body mass. Welch and his associates concluded that the percentage of fat in the body had no significant influence on the maximal oxygen consumption when expressed as either liters per minute or cubic centimeters per minute per kilogram of fat-free body weight. Significant differences were found when maximum oxygen consumption was expressed as cubic centimeters per minute per kilogram of weight. The authors suggested that although fat may not have an effect on the ability of the tissues to extract oxygen, it did have a significant effect on the circulatory capacity of the individual. This was due to the fact that fat increased weight, and therefore, the energy requirement. However, there was not a corresponding increase in the maximum oxygen intake.

<u>Studies Concerning Methods and Procedures</u> for Determining Maximal Oxygen Consumption

Johnson, Brouha, and Darling²⁴ discussed methods and procedures used to determine an adequate test of fitness

²⁴R. E. Johnson, L. Brouha, and R. C. Darling," A Test of Physical Fitness for Strenuous Exertion," <u>Revue</u> <u>Canadienne De Bilogic</u>, 1:491-503, June, 1942.

²²Taylor and Buskirk, <u>loc. cit</u>.

 $^{^{23}}$ Von Dobeln,

for strenuous exertion. The same investigators concluded that hard work must be used to determine hard work if hard work is in question as differences between fit and unfit individuals during submaximal work are arithmetically smaller at lower metabolic rates.

The authors stated that the type of exercise used is not important provided that it:

- a. stresses the cardio-vascular system by involving large muscle groups,
- b. is of such intensity that it exhausts one-thirdof all the subjects within five minutes, and
- c. does not demand any unusual skill for successful performance.

The authors further postulate that all subjects should work at a rate linearly proportional to their body weight. The reactions of the fit and unfit individual of the same weight to the same maximal work differ in that the fit individual will consume more oxygen, attain a lower maximal heart rate, and will endure longer before reaching exhaustion.

Taylor, Buskirk, and Henschel²⁵ examined maximal ^{0xy}gen consumption methods and procedures by running several

²⁵H. L. Taylor, E. Buskirk, and A. Henschel, "Maximal Oxygen Intake as an Objective Measure of Cardio-Respiratory Performance," Journal of Applied Physiology, 8:73-80, July, 1955 to May, 1956.

experiments on the motor driven treadmill. Data was collected on 27 soldiers and 46 student males between the ages of 18 and 35.

The warm-up consisted of walking at 3.5 mph on a 10 per cent grade for ten minutes to one hour. Within five minutes or less of completing the walk, the subject started running at 7 mph for three minutes. The subject repeated the test procedure on three successive days with a grade increase of 2.5 per cent each day.

The authors found that using a constant speed (7 mph) and increasing the grade in steps of 2-1/2 per cent was more satisfactory than using a constant grade and increasing the speed. The increase in oxygen consumption, associated with an increase of 2-1/2 per cent grade (below maximal oxygen intake), was approximately 300 cc/minute. If the oxygen intake at two different grades differed by less than 150 cc/minute or 2.1 cc/kgm of body weight per minute, they assumed that a maximal oxygen intake had been obtained.

Increasing the working muscle mass by simultaneous running and arm work increased the maximal oxygen intake. Therefore the same investigators concluded that maximal oxygen intake was only maximal under specific working conditions. The authors further postulate that after maximal oxygen had been reached changes in speed or grade of the treadmill did not change the oxygen intake. It appeared to the authors that as long as changes in grade running skill

did not change the muscle mass used for this purpose that maximal oxygen intake must be independent of skill.

The coefficient of reliability for these procedures was 0.95 in 69 test-retest determinations.

Studies Concerning Responses to Maximal Work Capacity of Men and Women

Metheny and associates²⁶ determined physiologic responses of men and women to strenuous work on the motor driven treadmill. The subjects consisted of 17 women between the ages of 19 and 27 and 30 men between the ages of 19 and 23. The exercise consisted of running at 7 mph on an 8.6 per cent grade for five minutes or until unable to continue. During maximal work the average run for the women was only half that of the men before becoming exhausted. The women attained a maximal oxygen consumption of 40.9 cc/kg/min., a maximal R.Q. of 1.06, and a maximal heart rate of 197/min. The men attained 51.3 cc/kg/min., 1.14, and 194/min. respectively.

In a study by Astrand²⁷ 44 physically active female ^{Subjects} 20 to 65 years of age were examined three to seven

²⁶E. Metheny, L. Brouha, R. E. Johnson, and W. H. Forbes, "Some Physiologic Responses of Men and Women to Moderate and Strenuous Exercise: A Comparative Study," <u>American Journal of Physiology</u>, 137:318-326, August-November, 1942.

²⁷Irma Astrand, "Aerobic Work Capacity in Men and Women with Special Reference to Age," <u>Acta Physiologica Scandinavica</u>, Vol. 49, Supplementum, 169:11-87, 1960.

different days when cycling at submaximal to maximal loads. Heart rate, pulmonary ventilation, and oxygen uptake were determined during work and blood lactate concentration was measured after each work load.

I. Astrand and P. O. Astrand administered various maximal work capacity tests to women of many ages. Metabolic responses concerning the age ranges pertinent to the present study are presented in Table II.

TABLE I	I

Age	Number of Subjects	Maximal 02 1/ Minute	Maximal 02 ml/ kg/min.	Maximal Heart Rate	Oxygen Pulse
20-29	8	2.23 <u>+</u> .09	39.9 <u>+</u> 1.66	187 <u>+</u> 3.4	11.9 <u>+</u> .45
20-25 P.O. Astrand	32	2.88 <u>+</u> .04	48.4 <u>+</u> .49	199 <u>+</u> 1.8	
20-25 P.O. Astrand 1952	44	2.90 <u>+</u> .04	48.4 <u>+</u> .50	198 <u>+</u> 1.5	

METABOLIC RESPONSES

Maximal oxygen uptake was indicated by: (a) an oxygen uptake which did not increase despite a rising work load, but reached a level and/or two liters and (b) a blood lactate concentration which was high, 90-100 mg per 100 ml, after work of at least four minutes duration. Oxygen uptake at

certain loads was somewhat smaller for younger subjects. Women had a lower oxygen uptake than men at a fixed work load but calculated mechanical efficiency was identical. At lower loads (300 rpm/minute) the mechanical efficiency was significantly lower for older than younger subjects. Mechanical efficiency decreased from about twenty-five to eleven per cent when decreasing the load from 450 to 50 rpm per minute. A rectilinear relationship between oxygen uptake per minute and pulmonary ventilation per minute and also an approximate rectilinear relationship between heart rate and oxygen uptake per minute was found in all age groups.

Astrand classified aerobic work capacity into norms to evaluate work capacity. The figures used to evaluate women of normal body weight aged 20-29 are presented in Table III.²⁸

TABLE III

AEROBIC WORK CAPACITY, OXYGEN 1; ml/kg

Low	Fair	Average	Good	High
≤ 1.69	1.70-1.99	2.00-2.49	2.50-2.79	2.80 <u>></u>
≦ 28	29-34	35-43	44-48	49 <u>≥</u>

²⁸<u>Ibid</u>., p. 83.

Studies Concerning Responses to Maximal Work Capacity of Men

Taylor²⁹ administered a submaximal and maximal treadmill test twice to 31 male college students ranging in age from 19 to 26. The test consisted of a four minute walk on the treadmill; 108 meters per minute at a grade of 5 per cent, and a run to exhaustion; 162 meters per minute set at the initial grade of 5 per cent elevated one per cent each minute until time of subject exhaustion. The test and retest were three days apart. The mean maximal values attained were heart rate; 198 per minute, and oxygen in liters per minute; 3.48. The test-retest correlations were r = .81 and r = .70 respectively.

During the submaximal test per cent oxygen correlated positively with time run while body weight and carbon dioxide were insignificantly correlated. However, the responses (heart rate, respiratory rate, ventilation, and blood lactate) to the maximal test were insignificantly correlated with time run. Taylor stated that this evidence revealed that each subject ran to his individual maximal value which had little relation to his fitness; the length of the time he was able to run being the essential value.

In submaximal exercise the oxygen consumption correlated with body weight r = .71 and with weight partialled

²⁹Craig Taylor, "Some Properties of Maximal and Submaximal Exercise with Reference to Physiological Variation and the Measurement of Exercise Tolerance," <u>American</u> <u>Journal of Physiology</u>, 142:200-212, August to December, 1944.

out r = .23. In maximal exercise the oxygen consumption correlation dropped to r = .43 and with weight partialled out rose to r = -.46. Taylor concluded that in submaximal exercise oxygen consumption is chiefly a function of body weight and only slightly related to fitness but that in maximal exercise the relation with weight drops and the fitness criterion increases considerably.

Heart rate and blood lactate were found to be the most reliable submaximal measures but were approximated in maximal work by per cent oxygen and oxygen consumption. Ventilation was of low reliability in both submaximal and maximal work, while respiration became highly reliable in the maximal exercise.

C. Taylor³⁰ determined the circulatory, respiratory, and metabolic responses of four male subjects (three physical education students with athletic experience and one completely untrained) to a periodically increasing work-load on a bicycle ergometer set at 70 rpm. All experiments were continued without interruption until the subject was forced to quit from exhaustion.

On the approach to maximal levels there was no ^{man}ifest sign of circulatory failure accompanying exhaustion; ^{however}, failure of an adequate blood supply to certain

³⁰Craig Taylor, "Studies in Exercise Physiology," <u>American Journal of Physiology</u>, 135:27-42, December 1941-February, 1942.

tissues was thought to possibly affect the onset of exhaustion.

Total ventilation displayed a linear increase with work-load tending toward excessive acceleration at maximal levels. The rate of increase varied considerably between subjects but was fairly constant for each individual. Final ventilations ranged from 40 to 115 liters per minute.

The rate of oxygen consumption was considered to be a highly significant physiological variable not only because it represented the physiological cost of the work, but because it gave evidence of the transport capacity of the circulatory and respiratory mechanisms. The oxygen consumption curve as related to work load was found to be a good measure of the efficiency of the subject. The trend of oxygen consumption at maximal levels was considered to be of great significance because of the prevailing view that the ability to absorb oxygen is a limiting factor in an individual's physical performance. In Taylor's study oxygen consumption was by no means always deficient at exhaustion levels. In fact, in 50 per cent of the cases no deviation in the linear increase of oxygen intake occurred and in the remaining cases the value accelerated rather than declined. In the cases where the curve turned upward approaching exhaustion it was the opinion of the author that the effectiveness of the muscles performing the work had to lower to necessitate the mobilization of additional motor units to be able to sustain the rate of work.

The alveolar pCO2 and per cent CO2 in expired air both increased in the transition from rest to work and remained on a fluctuating plateau throughout most of the work range and declined sharply at exhaustion. These variables as well as ventilation were considered to be the most reliable signals of exhaustion onset.

Wyndham and associates³¹ tested four highly trained men at various levels of work on the bicycle ergometer to attempt to determine the level at which maximal oxygen intake is attained and to compare the results with previous studies. The subjects warmed up for ten minutes at 3000 ft. lb/min. followed by a training run on the cycle set at 70 rpm at 7500 ft. lb/min. for thirty minutes each day. After the training run they worked to exhaustion at various levels of work between 9000 and ll,000 ft. lb/min. Training covered a period of four months.

The maximal oxygen level remained constant over a number of months. The average coefficient of variation of heart rate of the four men at the same three levels of work was 3.5 per cent indicating that in trained men maximal heart rate is constant.

³¹C. H. Wyndham, N. B. Strydom, J. S. Maritz, J. F. Morrison, J. Peter, and Z. U. Potgieter, "Maximum Oxygen Intake and Maximum Heart Rate During Strenuous Work," Journal of Applied Physiology, 14:927-936, 1959.

There was a significant difference between the maximal observed heart rate of some of the men. The mean of the asymptote values was 178.3 beats per minute as compared to Astrand's³² mean heart rate for young men which was 194.6 beats per minute.

The authors found that after the maximal heart rate, and presumed maximal cardiac output was reached, that the oxygen uptake continued to rise. The same investigators considered this evidence that a small additional quantity of oxygen could be obtained from the circulating minute-volume of blood after the maximal cardiac output was attained.

The authors discussed criterion used by other authors in the determination of an absolute level of maximal oxygen uptake attainment and rejected them due to their own study results and conclusions. Wyndham and associates felt that there was not sufficient knowledge of the relationships between oxygen uptake and rate of work to accept with certainty criteria for determining maximal oxygen intake attainment.

Schneider³³ tested 6 sedentary men on a bicycle ergometer carrying loads of 2000, 4000, 6000, 8000, and

³²P. Astrand, <u>Experimental Studies of Physical Working</u> <u>Capacity in Relation to Sex and Age</u> (Copenhagen: Munksgaard, 1952).

³³E. C. Schneider, "A Study of Responses to Work on a Bicycle Ergometer," <u>American Journal of Physiology</u>, 97:353-364, April to July, 1931.

10,000 foot pounds at a set rate of 70 rpm's/minute. Preceding the experiment and between each work period of six to eight minutes the subject completely rested for twenty minutes.

A linear relationship between oxygen consumption and work load was maintained during submaximal work; however, as work load increased the linear relationship was broken for four out of the six cases. Heart rate also maintained an approximate linear relationship to work load; however, it was found to vary from man to man. Beyond this oxygen uptake and heart rate responded to the load to a lesser degree than at submaximal loads. An overload was found to fail to increase oxygen uptake. Schneider considered this to be sufficient evidence to conclude that a load of work may be undertaken in which heart rate will also be unable to increase.

Oxygen pulse rose steadily with an increase in work load except for the heaviest loads. Some of the subjects made only a slight addition to the oxygen pulse upon reaching their maximum load but a few were able to increase beyond expectation even at the heaviest loads.

Mitchell, Sproule, and Chapman³⁴ administered a treadmill test to determine the physiological meaning of the

³⁴J. H. Mitchell, B. J. Sproule, and C. B. Chapman, "The Physiological Meaning of the Maximal Oxygen Intake Test," Journal of Clinical Investigation, 37:538-547, 1958.

maximal oxygen intake to 65 normal men. Subjects warmed up for ten minutes at 3 mph on a 10 per cent grade which was followed by a ten minute rest period. After the rest the subject ran at 6 mph at zero grade for 2-1/2 minutes. After another ten minute rest period the grade was raised 2-1/2per cent (speed remaining at 6 mph) and the procedure was repeated. This procedure continued until oxygen intake per minute leveled of f.

Maximal intake was taken at the point at which the oxygen intake curve ceased to rise. In 72 per cent of the cases oxygen intake either remained the same or declined when work load was increased beyond this intake. Because of a relatively slight rise in some cases a final value of 54 ml or a rise of less than 142 minus 88 ml per minute was accepted as the criterion to determine at which point maximal oxygen intake was attained. The mean maximal oxygen intake was 3.22 liters ± 0.46 per minute and the mean maximal heart rate was 187 ± 10 per minute.

Robinson³⁵ administered a treadmill test to 93 normal non-athletic males ranging in age from 6 to 91 years to study the interrelations of age, basal heart rate, and the adaptation of heart rate work to various levels of work. The subjects walked for fifteen minutes at 5.6 mph on an

³⁵Sid Robinson, "Experimental Studies of Physical Fitness in Relation to Age," <u>Arbeitsphysiologie</u>, 10:251-323, 1938.

8.6 per cent grade. After a ten minute rest they ran at a rate which exhausted them in two to five minutes.

Men aged 20 to 29 attained an average maximal heart rate of 189 beats per minute as compared to a mean of 195^{36} and ranges of 174 to 192 (men) and 168 to 192 (women)³⁷ of comparable studies. The mean maximal oxygen consumption of subjects 18 years of age was 3.61 liters per minute and of subjects 25 years of age 3.56 liters per minute.

Studies Concerning Maximal Work Capacity as Related to Physical Activity

Knehr, Dill, and Neufield³⁸ performed a study on 14 college men over a period of six months. Data were collected before and during the training period for subjects working to maximum on the motor driven treadmill. The subjects walked for eight minutes at 3.5 mph on an 8.6 per cent grade and then immediately ran on the same grade, or a higher grade, at 7 mph for five minutes or until exhausted.

The same investigators found a mean increase of 60 per cent in work done due to greater use of anaerobic mecha nisms for energy transformation as evidenced by an increased

³⁶D. B. Dill and L. Brouha, <u>Travail Humain</u>, 5:1, 1937.
 ³⁷E. H. Christensen, <u>Arbeitsphgsiologie</u>, 4:453, 1931.
 ³⁸C. A. Kneur, D. B. Dill, and W. Neufield, "Training and Its Effects on Man at Rest and at Work," <u>American</u> Journal of Physiology, 136:148-155, March-July, 1942.

maximal oxygen intake. This was indicated by increased lactate tolerance and an increased oxygen debt. The authors concluded that the capacity to accumulate lactate runs parallel with and furnishes an excellent index to cardiovascular fitness. There was also an increase in oxygen transport to the working tissues which represented a gain in aerobic work capacity.

Astrand³⁹ in a review of the literature, summarized the effects of training evident during maximal work. The effects of training are:

- a. An unchanged maximal heart rate,
- b. An increased aerobic capacity,
- c. An increased oxygen debt capacity,
- d. An increased capacity for supplying oxygen to the tissues,
- e. An increased utilization of anaerobic reserves,
- f. An increased lactic acid capacity, and
- g. An increased blood sugar level.

³⁹Astrand, "Human Physical Fitness with . . . ," <u>loc. cit.</u>

CHAPTER III

METHODOLOGY

To determine the relationship of body composition, strength, and habitual physical activity to maximal oxygen consumption in young college women the following methods and procedures were followed.

Subjects

The 28 women used in this experiment were undergraduate students at Michigan State University between the ages of 18 and 22. The majority of the women were freshmen, 17 of which were physical education majors and 11 which were non-majors attending instructional classes in physical education. They did not represent a random sample of young women since they were selected on a volunteer basis with an attempt to select subjects representative of different levels of habitual physical activity. All subjects were examined by the university hospital and were considered to be of good health.

Test Procedures and Data Obtained

Data collection covered a period of approximately five months. Measurements on each subject were completed in two testing periods of an approximate length of one hour each. Subjects were tested five days a week beginning at 7:00 A.M. and ending at 5:00 P.M. All metabolic data were collected in the A.M. from 7:00 to 12:00 Noon.

Anthropometric Measurements

The procedures followed for these measurements were taken from the instructions issued by the Committee on Nutritional Anthropometry of the Food and Nutrition Board of the National Research Council.⁴⁰

<u>Height</u>. The subject removed shoes; stood with her back against the calibration on the stadiometer; heels, hips, shoulders, and head touching the backboard. The head was erect with the chin tucked in slightly. The subject stood as tall as possible. The square was placed against the calibration on the backboard above the head of the subject. It was brought down until it fitted firmly against the top of the subject's head. The reading was taken at the lower edge of the square. Height was recorded to the nearest onehalf centimeter.

<u>Weight</u>. The subjects were weighed without shoes in standardized dress of bermudas, blouse, and socks. Weight was recorded to the nearest half-kilogram.

⁴⁰Committee on Nutritional Anthropometry of the Food and Nutrition Board, Nutritional Research Council, in <u>Body Measurements and Human Nutrition</u>, J. Brozek, editor (Detroit: Wayne University Press, 1956).

Per cent of standard weight (relative weight). Per cent standard weight was calculated by dividing the predicted weight into the actual weight. The predicted weights were obtained from the <u>Build and Blood Pressure</u> Study.⁴¹

The standard weight figures in the Build and Blood Pressure Study included shoe heel height of about two inches and usual indoor clothing, which on women approximates four to six pounds. In order to make the figures in this study comparable the average heel height of one inch was added to each height and two pounds added to the weight to cover the extra clothing.

<u>Pubic skinfold</u>. The pubic skinfold site is located on the mid-abdominal line halfway between the umbilicus and the pubis. The skinfold was grasped between the thumb and index finger in the vertical plane of the body. The size of the skinfold was enough to include two thicknesses of skin and subcutaneous fat but no fascia.

The application of the Lange* Calipers was about 1 cm. from the fingers and at a depth approximately equal to the thickness of the fold. Three successive measurements were

⁴¹Build and Blood Pressure Study, op. cit.

^{*}Werna-Gren Aeronautical Research Laboratory, Kentucky Research Foundation, University of Kentucky, Lexington, Kentucky.

taken on the right side of the body while the subject was in a supine position. The three measurements were averaged and recorded in mm.

<u>Predicted specific gravity</u>. Predicted specific gravity was obtained by the use of the prediction formulas devised by Young and her associates.⁴² The pubis skinfold measurement and the per cent of standard weight were based on the predicted weight for age and height as determined by the Build and Body Structure Study.

Per cent fat of body weight. Per cent fat of body weight was derived from the Rathbun and Pace formula⁴³ using specific gravity figures.

Physical Activity

All subjects completed an activity history recall questionnaire in which they recorded their activity for a consecutive five day period. Energy expenditure, i.e., physical activity, was determined by computing the activity in terms of calories per hour per body weight. The subjects were listed in rank order according to the total energy ^expended in activity over the five day period.

⁴²Young, <u>et al</u>., "Body Composition of Young Women," <u>op. cit.</u>, p 334.

⁴³Rathbun and Pace, <u>op. cit</u>., p. 675.

Metabolic and Heart Rate Techniques

The maximal work capacity test. Subjects began walking on the Reeves motor driven treadmill at 3.5 mph on zero grade for ten minutes. During this ten minute "warm up" period oxygen was not collected nor heart rate recorded. .During the last thirty seconds of the walk the subject was connected to a Collins plastic triple "J" high velocity valve by means of a rubber mouthpiece with the nose being completely closed with a nasal clamp. At the end of the tenth minute the treadmill speed was increased to 6 mph (without interrupting the experiment) to begin the "run." At the completion of each minute of the "run" the grade was raised one per cent until the subject was unable to continue. The speed remained constant at 6 mph throughout the "run."

<u>Subject dress</u>. The subjects wore standardized dress of bermuda shorts, blouse, athletic socks, and tennis shoes.

Electrode placement. The chest-back type electrodes were used to record heart rate during the "run." The three sites of electrode placement were:

- a. On the chest: one inch above and to the center of the left breast,
- b. On the chest: one inch below and to the center of the left breast, and
- c. On the back: parallel with the lower chest

electrode and three inches to the left of the spinal column.

Cramer Tuf-skin was applied to the skin site and then roughed with paper toweling to insure electrode placement. A small area (the size of the electrode) was scraped clear of tuf-skin at the exact spot of the electrode placement. The inner cap of the placement side of the electrode was thinly covered with Sanborn Redux Electrode paste before placing the electrode in the cleared area of the site. Johnson and Johnson one inch waterproof adhesive tape was then placed over the electrode to stabilize it. The center of the three inch strip of tape was placed on the electrode and held in place as one side of the tape was stretched and secured to the side of the electrode and then the same procedure was repeated to secure the other side of the tape. Duke elastoplast (a four inch square) was stretched and placed over the tape and electrode to prevent the tape from loosening or curling due to body perspiration during activity. The electrode lines were then brought toward the left shoulder, straight but with slight slack, looped, and Secured to the shoulder with adhesive tape. The cord extended through the collar of the blouse and was inserted into the Sanborn portable electrocardiograph recorder.

<u>Subject directions.</u> The subject was directed to walk and run using her natural stride and to attempt to focus on a point directly ahead of her. It was emphasized that an

all out performance would be necessary for the experiment to be successful. The nose clip and mouthpiece were positioned to give her the proper feel of the equipment. (The valve was adjusted to her height by raising or lowering the valve attached by a rubber hose clamped over an overhead ceiling bar.) All subjects were able to adjust to the treadmill during the ten minute warm up walk and had no difficulty adapting to the speed change of the run.

Experiment procedures. Seven persons were necessary to administer the all out test on the treadmill. Each testor had a specific responsibility during the all out run. The jobs consisted of:

- a. Operating the Reeves motor driven treadmill: to regulate the speed at 3.5 mph for the ten minute walk on zero grade and at 6 mph during the run with a one per cent grade increase each minute;
- b. Operating the Sanborn portable electrocardiograph and twin visa recorder: recording heart rate and calling a 5 second count down at the end of each thirty seconds;
- Exchanging the Douglas gas bags each thirty seconds;
- d. Standing along side of, encouraging, and watching the subject for signs of impending exhaustion;
- e. Transporting the Douglas gas bags to the person

operating the Fisher gas partioner and the Beckman infared 02 analyzer;

- f. Operating the Fisher gas partioner and the Beckman infared 02 analyzer: to analyze the expired air for carbon dioxide and oxygen content, and
- g. Operating the Kofranyi meter: to determine the temperature and volume of the gas metered.

<u>Calculated maximal work capacity data</u>. The following data were calculated:

- a. Maximal oxygen uptake in liters per minute,
- Maximal oxygen uptake per kilogram of body weight in liters per minute,
- c. Maximal oxygen uptake per kilogram of fat-free body weight in liters per minute,
- d. Time (in minutes) of maximal oxygen uptake attainment,
- e. Heart rate simultaneous with the maximal oxygen uptake attainment,
- f. Heart rate of the last minute on the treadmill,
- g. Total treadmill time (in minutes).
- h. Exercise R.Q. simultaneous with maximal oxygen attainment,
- i. Maximal R.Q.,
- j. Oxygen pulse,

Determination of maximal oxygen attainment. The thirty second gas bags (necessary due to the smallness of the bags available) were analyzed and the readings combined to determine one minute oxygen per kilogram of body weight calculations. The criteria for determining maximal oxygen consumption was the same as used by Taylor.⁴⁴ Taylor stated that "if the oxygen intake at two different grades differs by less than 150 cc/min. or 2.1 cc/kg of body weight, it can be safely assumed that the maximal oxygen has been attained. In the present study maximal oxygen consumption did not show in the same way for all subjects. In thirteen of the cases maximal oxygen rose to a peak followed by a decline and in the remaining fifteen cases it rose upward and then leveled off. In those cases where there was a peak followed by a decline maximal oxygen was taken at the peak minute. In those cases where the oxygen consumption leveled off and was relatively constant over the previous minute maximal oxygen consumption was taken in the minute where there was no further increase over .00150 liters per minute.

Cable Tension Strength

Eleven strength measures were determined by use of the cable tensiometer. The strength measures included:

⁴⁴Taylor, <u>et al.</u>, <u>op. cit.</u>, p. 79.

- a. Shoulder Extension
- b. Elbow Extension
- c. Ankle Extension
- d. Elbow Flexion
- e. Shoulder Horizontal Flexion
- f. Hip Flexion
- g. Hip Extension
- h. Shoulder Flexion
- i. Trunk Flexion
- j. Trunk Extension
- k. Knee Extension

The measures were taken at least twice at each site according to instructions outlined by Clarke.⁴⁵ If the second measure differed from the first by more than 2.0 points additional measures were made until two of the measures differed by not more than 2.0 kg when corrected. The first of the two measures differing by not more than 2.0 kg were averaged and recorded.

Directions and diagrams for subject positioning and cable tensiometer attachments as taken from Clarke's⁴⁶ manual of cable tension strength tests are reprinted here with permission granted by personal communication with the author.

⁴⁵H. Harrison Clarke, <u>A Manual</u>: <u>Cable Tension Strength</u> <u>Tests</u> (Chicopee: Brown-Murphy Company, 1953).

Shoulder Extension. 47

Starting Position

- a. Subject in supine lying position; hips and knees flexed, feet resting on table; free hand resting on chest.
- b. Upper arm on side tested adducted at shoulder to 180 degrees; shoulder flexed to 90 degrees; elbow flexed with wrist in prone position.

Attachments

- a. Regulation strap around humerus midway between shoulder and elbow joints.
- b. Pulling assembly attached to wall at subject's head.

Precautions

- a. Prevent shoulder elevation by bracing with hand.
- b. Prevent humerus abduction by guiding elbow.

Objectivity coefficients: 0.97

Figure 1. Shoulder Extension

⁴⁷<u>Ibid</u>., pp. 17-18.

Elbow Extension. 48

Starting Position

a. Same as for Elbow Flexion, except elbow is in 40 degrees flexion.

Attachments

- a. Regulation strap around forearm midway between wrist and elbow joints.
- b. Pulling assembly hooked to wall below subject's head.

Precautions

- a. Prevent shoulder elevation by bracing.
- b. Prevent raising elbow and abudcting upper arm by bracing elbow to side.
- c. Require subject to keep head straight so as to reduce tendency to flex the spine laterally.

Objectivity coefficient: 0.94

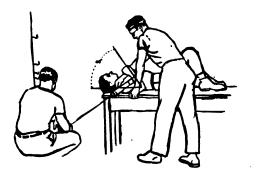


Figure 2. Elbow Extension

⁴⁸<u>Ibid</u>., pp. 16 and 18.

Ankle Plantar Flexion. 49

Starting Position

- a. Subject in supine position; hips in 180 degrees extension and adduction; knees in 180 degrees extensions; arms folded on chest.
- b. Ankle on side tested is in 90 degrees plantar flexion.

Attachments

- a. Regulation strap around food above metatarsalphalangeal joint.
- b. Pulling assembly attached to wall at subject's head.

Precautions

- a. Prevent: inversion or eversion at ankle joint, extension of metatarsal-phalangeal joint; and raising of leg.
- b. Brace behind shoulders to stabalize subject.

Objectivity coefficient: 0.93

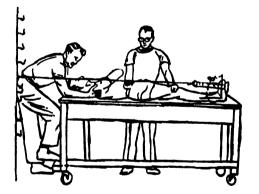


Figure 3. Ankle Plantar Flexion

49<u>Ibid</u>., pp. 30-31.

Elbow Flexion.⁵⁰

Starting Position

- a. Subject in supine lying position, hips and knees flexed, feet resting on table, free hand resting on chest.
- b. Upper arm on side tested adducted and extended at shoulder to 180 degrees; elbow in 115 degrees flexion; forearm in mid-prone supine position.

Attachments

- a. Regulation strap around forearm mid-way between wrist and elbow joints.
- Pulling assembly hooked at wall at subject's feet.

Precautions

a. Prevent raising elbow and abducting upper arm by bracing at elbow.

Objectivity coefficient: 0.95

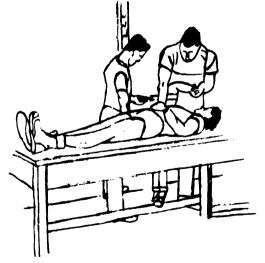
Figure 4. Elbow Flexion

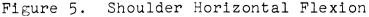
⁵⁰<u>Ibid</u>., pp. 16 and 18.

Shoulder Horizontal Flexion.⁵¹

Starting Position

- a. Subject in supine lying position; hips in 180 degrees extension and adduction; knees fully extended; free hand on chest.
- b. Upper arm on side tested flexed at shoulder to 90 degrees; elbow flexed to 90 degrees; forearm directly across body in mid-prone-supine position.


Attachments


- a. Regulation strap around humerus midway between shoulder and elbow joints.
- b. Pulling assembly attached to wall away from body.

Precautions

- a. Prevent trunk from lateral flexion and shoulders from lifting by bracing; require subject to keep head straight.
- b. Steady subject's arm in testing position by holding.

Objectivity coefficient: 0.93

⁵¹<u>Ibid</u>., pp. 17-19.

Hip Flexion.⁵²

Starting Position

- a. Subject in supine lying position; hip and knee of free leg flexed with foot resting on table; arms folded on chest.
- b. Hip and knee of leg being tested extended and adducted to 180 degrees.

Attachments

- a. Regulation strap around thigh, lower third between hip and knee joints.
- b. Pulling assembly attached beneath subject through slit in table.

Precautions

a. Prevent lifting of shoulders by bracing.

Objectivity coefficient: 0.90

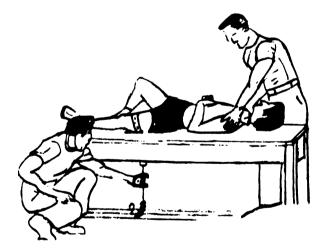


Figure 6. Hip Flexion

⁵²<u>Ibid.</u>, pp. 24-25.

Hip Extension.⁵³

Starting Position

a. Subject in prone lying position; hip in 180 degrees extension and adduction; knees fully extended; arms along sides of body.

Attachments

- a. Regulation strap around thigh, lower third between hip and knee joints.
- b. Pulling assembly attached beneath subject through slit in table.

Precautions

a. Prevent lifting of hips by bracing.

Objectivity coefficient: 0.94

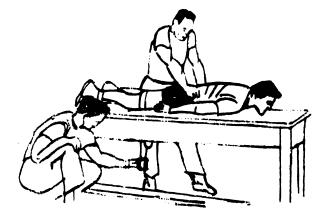


Figure 7. Hip Extension

⁵³<u>Ibid</u>., pp. 25-26.

Shoulder Flexion.⁵⁴

Starting Position

- a. Subject in supine lying position, hips and knees flexed, feet resting on table; free hand resting on chest.
- b. Upper arm on side tested adducted at shoulder to 180 degrees; shoulder flexed to 180 degrees; elbow in 90 degrees flexion.

Attachments

- a. Regulation strap around humerus mid-way between shoulder and elbow joints.
- b. Pulling assembly hooked to cross piece below subject's arm.

Precautions

- a. Prevent shoulder elevation by bracing with hand.
- b. Maintain right angle at elbow.

Objectivity coefficient: 0.94

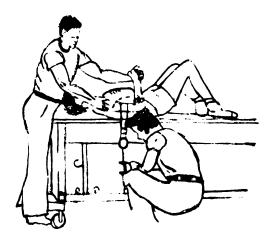


Figure 8. Shoulder Flexion

⁵⁴<u>Ibid</u>., pp. 16-18.

Trunk Flexion.⁵⁵

Starting Position

a. Subject in supine lying position; hips in 180 degrees extension and adduction; knees fully extended; arms folded on chest.

Attachments

- a. Trunk strap around chest, close under arm pits.
- b. Pulling assembly attached beneath subject through slit in table.

Precautions

a. Prevent lifting of hips by bracing.

Objectivity coefficient: 0.90

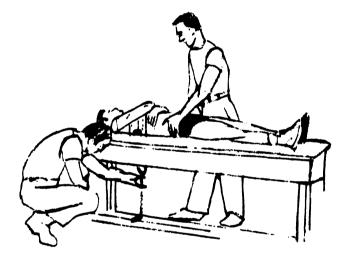


Figure 9. Trunk Flexion

⁵⁵<u>Ibid</u>., pp. 23 and 25.

Trunk Extension.⁵⁶

This test is performed in the same manner as trunk Flexion, except subject is in prone position with hands clasped behind back.

Objectivity coefficient: 0.99

Figure 10. Trunk Extension

Knee Extension.⁵⁷

Starting Position

- a. Subject in sitting, backward-leaning position; arms extended to rear, hands grasping sides of table.
- b. Knee on side tested in 115 degrees extension.

Attachments

- a. Regulation strap around leg midway between knee and ankle joints.
- b. Pulling assembly attached to hook at lower end of table.

Precautions

a. Prevent lifting buttocks.

b. Prevent flexion of arms.

Objectivity coefficient: 0.94

Figure 11. Knee Extension

⁵⁷<u>Ibid</u>., pp. 28 and 31.

CHAPTER IV

ANALYSIS OF DATA

Description of Subjects and Comparative Data

A general description of the subjects is presented in Table IV. Comparative data of the present study and Young's⁵⁸ study on body composition and specific gravity are also shown in Table IV. The mean values in Young's study for body weight (58.96 kg) and fat-free body weight (42.15 kg) are almost identical to that of the present study; 58.46 kg and 43.89 kg respectively. The other measures are also similar.

Maximal work capacity. Maximal oxygen consumption was determined on 28 young women who ran on the treadmill at 6 mph with a one per cent grade increase each minute until unable to continue. The "run" was preceded by a ten minute warm-up "walk" at 3.5 mph on zero grade. Eight subjects re-ran on the treadmill at maximal capacity to determine the reliability. The metabolic responses

⁵⁸Charlotte Young, "Body Composition of Young Women," Journal of the American Dietetic Association (April, 1961), 38:332-340.

TABLE IV

SUBJECT GENERAL DESCRIPTION, BODY COMPOSITION, AND PREDICTED SPECIFIC GRAVITY OF YOUNG'S STUDY AS COMPARED WITH THE PRESENT STUDY

		Young's	Study	Pre	Present S1	Study
Characteristics	Mean	S.D.	Range	Mean	S.D.	Range
Body weight in kilograms	58.96	6.445	44.11 - 76.20	58.46	6.32	48.0 - 69.0
Fat-free body weight in kilograms	42.15	6.073	31.94 - 61.11	43.89	3.90	37.0 - 50.0
Per cent of body fat (Rathbun-Pace formula)	28.69	4.856	15.81 - 38.62	24.71	2.84	20.5 - 31.7
Predicted specific gravity	1.0408	.0096	1.0217 - 1.0665	5 1.054	.0070	1.035-1.057
Per cent of standard weight	98.93	8.61	83.2 - 128.0	102.95	8.66	84.65-128.39
Age in years and months	20.36	1.951	17.2 - 27.2	18.2	1.2	18.0 - 22.9
Standing height in centimeters	167.47	6.10	140.8 -181.1	164.28	5.89	150.0 -175.5
Ponderal index				12.82	.5507	11.66-13.94

to the maximal test and retest are presented in Table V. The reliability correlations are also shown in Table V.

Mean metabolic responses to maximal work capacity as compared to the mean results of other studies on women by I. Astrand,⁵⁹ P. O. Astrand,⁶⁰ Metheny,⁶¹ and Von Dobeln⁶² are presented in Table VI.

It is interesting to note the work of others as compared to the present study. Maximal work capacity as correlated with different body composition measures compared similarly with four other studies even though the subjects used in the other studies were men. Table VII presents maximal oxygen consumption as correlated with body composition measures of the present study and those of Buskirk and Taylor, ⁶³ Von Dobeln, ⁶⁴ Welch, ⁶⁵ and Seltzer. ⁶⁶

⁵⁹Astrand, "Aerobic Work Capacity . . ., " <u>loc. cit</u>. ⁶⁰<u>Ibid</u>. ⁶¹Metheny, <u>et al., loc. cit</u>. ⁶²Von Dobeln, "Human Standard and Maximal Metabolic . . .," <u>loc. cit</u>. ⁶³Buskirk and Taylor, <u>loc. cit</u>. ⁶³Buskirk and Taylor, <u>loc. cit</u>. ⁶⁴Von Dobeln, "Maximal Oxygen Intake, Body . . .," <u>loc. cit</u>. ⁶⁵Welch, <u>et al.,loc. cit</u>. ⁶⁶Seltzer, <u>loc. cit</u>.

TABLE V

METABOLIC RESPONSES TO MAXIMAL WORK CAPACITY OF TEST ONE AS COMPARED TO THE RETEST

Chostost oxisting		Test 1	N = 28		Retest	N = 8	
VIIALACCELISCICS	Mean	S.D.	Range	Mean	S.D.	Range	retest
Maximal oxygen consumption in liters per minute	2.19	.3628	1.65 - 3.12	2.21	.2913	1.81 - 2.67	.91
Maximal oxygen consumption per kilogram of body weight in liters per min.	.0369	.0038	.02890440	.0380	.0029	.03450423	.78
Maximal oxygen consumption per kilogram of fat-free body weight in liters/min.	.0499	.0062	.03970637	.0510	.0043	.04570575	62.
Time of maximal oxygen attainment in minutes	14:45	1:29	13:00 - 18:00	15:45	1:48	13:00- 18:00	.73
Heart rate simultaneous with maximal oxygen attainment	189	9.71	174 - 215	194	10.58	183- 216	74.
Total treatmill time in minutes	15:00	1:29	13:00 - 18:00	15:47	1:36	14:00- 18:30	.82
Last minute on treadmill heart rate	194	8.15	17 4 - 215				
R.Q.simultaneous with max- imal oxygen attainment	1.05	.113	.91 - 1.37	·			
Maximal R. Q.	1.14	.192	.93 - 1.74	_			53
Oxygen pulse	11.6	2.23	9.3 - 15.4				

IN STRIVE

•

IΛ	
TABLE	

MEAN METABOLIC RESPONSES TO MAXIMAL WORK OF THE PRESENT STUDY AS

	COMPARED T	COMPARED TO OTHER STUDIES ON WOMEN	DIES ON WOM	IEN ,		
Characteristics	I. Astranda	P.O. Astrand ^b	P.O. Astrand ^c	Metheny ^d	Von Dobeln ^e	Present Study
Maximal oxygen consumption in liters per minute	2.23	2.90	2.88		3.06	2.19
Maximal oxygen consumption per kilogram of body weight per minute	39 .9 ml	1m 4.84	48.4 ml.	40.9 cc.		36.9ml
Maximal heart rate	187	198	199	197		189
Oxygen pulse	11.9					11.6
Maximal R. Q.				1.06		1.05
^a Irma Astrand, "Aerobic Work Capacity in Men and Women with Special Reference to Age," <u>Acta Physiologica Scandinavica</u> , Vol. 49, Supplementum 169:11-87, 1960. h	ic Work Capa <u>ica</u> , Vol. 49	.city in Men , Supplemen	and Women tum 169:11-	with Speci .87, 1960.	al Reference	to Age,"
⁷ P. O. Astrand, "Human Physical Fitness with Special Reference to Sex and Age," Physiological Review, 36:307-335, July, 1956.	n Physical F 7-335, July,	ltness with 1956.	Special Re	ference to	Sex and Age,	-

^CP. O. Astrand and I. Rbyming, "A Nonogram for Calculation of Aerobic Capacity (Physical Fitness) from Pulse Rate During Submaximal Work," <u>Journal of Applied Physiology</u>, 7:218-221, July, 1954.

•

^dE. Metheny, <u>et al</u>., "Some Physiologic Responses of Men and Women to Moderate and Strenuous Exercise: <u>A C</u>omparative Study," <u>American Journal of Physiology</u>, 137:318-326, August-November, 1942.

54

^eW. Von Dobeln, "Human Standard and Maximal Metabolic Rate in Relation to Fat-Free Body Mass," <u>Acta Physiologica Scandinavica</u>, Vol. 37, Supplementum 126:3-38, 1956.

TABLE VII

MAXIMAL WORK CAPACITY AS CORRELATED WITH BODY COMPOSITION OF THE PRESENT STUDY AS COMPARED WITH OTHER STUDIES

Maximal Oxygen Consumption vs.	Seltzer ^a	Seltzer ^a Von Dobeln ^b	Buskirk & Taylor ^c	Welch ^d	Present Study
Body weight in kilograms	. 88	1	.63	.59	.64
Fat-free body weight in kilograms		.76	.85	.65	.64
Per cent of body fat	8	1 1 1	1	1 	.35
Standing height	.59	1	1	8	.35

^bW. Von Dobeln,"Maximal Oxygen Intake, Body Size and Total Hemoglobin in Normal Man," <u>Acta Physiologica Scandinavica</u>, 38:193-199, September, 1956.

^cE. Buskirk and H. Taylor, "Relationships Between Maximal Oxygen Intake and Com-ponents of Body Composition," <u>Federation Proceedings</u>, 13:21, March-December, 1954.

^dB. E. Welch, <u>et al</u>., "Relationship of Maximal Oxygen Consumption to Various Components of Body Composition," <u>Journal of Applied Physiology</u>, 12:395-398, May, 1958.

<u>Strength</u>. Eleven cable tension strength measurements were taken in various areas of the body as outlined by Clarke⁶⁷ in <u>A Manuel</u>: <u>Cable Tension Strength Tests</u>. The means, standard deviations, and ranges found in the present study are presented in Table VIII. No comparable data on women were found in the literature.

TABLE VIII

CABLE TENSION STRENGTH IN KILOGRAMS

Characteristics	Mean	S.D.	Range
Total strength	383.96	77.00	243 - 572
Hip flexion	57/14	14.55	36.00-94.32
Hip extension	44.09	10.35	26.35-65.50
Knee extension	64.90	18.83	39.25-117.61
Shoulder extension	25.31	6.35	13.00-38.38
Elbow extension	17.08	4.25	9.75-26.88
Ankle extension	41.78	13.29	22.00-74.42
Elbow flexion	26.34	4.73	14.75-35.75
Shoulder horizontal flexion	16.90	3.92	10.75-24.65
Shoulder flexion	27.64	7.00	15.25-43.38
Trunk flexion	303	10.72	14.13-60.00
Trunk extension	32.34	12.10	14.75-52.88

Interrelationships of Parameters

Pearson Product-Moment correlations. The Pearson Product-Moment Coefficient of Correlation was employed to estimate the interrelationships of parameters. Table IX presents the matrix of intercorrelations of all the variables.

⁶⁷Clarke, <u>op. cit</u>.

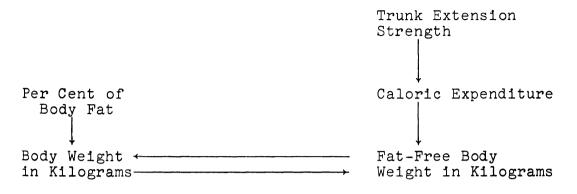
TABLE IX

INTER-CORRELATION MATRIX OF ALL VARIABLES

25	notenstar Strength djgnerig	2547 0465 0465 0465 0465 0465 0464 1457 0464 1457 0464 1450 0464 1450 1450 1450 1450 1450 1450 1450 145
54	noixeil XnunT. Ciganera2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
23	Shoulder Flexion Shoulder Flexion	1 18452 - 18452 - 18452 - 18452 - 18452 - 18452 - 18452 - 18651 - 186551 - 186551 - 186551 - 18655555 - 18655555 - 1865555555555 - 186
22	Flexion Torizontal Flexion Strength	1 1 1 1 1 1 1 1 1 1 1 1 1 1
21	Elbow Flexion Strength	2984 13430 13430 13430 11558 11557 15519 15515519 1551
20	noisneatxE einaion Gigrendigi	1191 0785 0785 0785 0785 0449 0449 0449 0449 0449 0449 0449 044
19	noisneitä vodiä digneitä	10000 100000 100000 100000 1000000
18	noienetze Extension Strengtn	11110 1235 1335 1335 1335 1335 1335 1335 1335
17	noizneitä eenä signeitä	2007 2007 2007 2007 2007 2007 2007 2007
9	noisneatkä q1H Häynendä	8172 91877 91877 91877 9175 9175 9175 9175 9175 9175 9175 91
15	dignenië noixelf qif	1 1 1 1 1 1 1 1 1 1 1 1 1 1
77	digneric istol	4309 7527 7527 7527 7527 1527 1527 1527 1527
13	Yebni İstebnof	0 0 0 0 0 0 0 0 0 0 0 0 0 0
15	nt fräteR SalbnetS SrefenstreO	
11	JdgleW ybof seat fr amsayolli ni	6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
10	Sody Weight in Kilograms	99 1442 1442 1442 1442 1442 1442 1442 14
6	lo sysrevy ysc en0 erutibnegxä strois0	
80	Per Cent of Body Fat	- 1000 - 1000 - 1000 - 1000 - 0000 - 0000 - 0000 - 1000 - 0000
7	Total Time on the Treadmill in Treadmill in	
ę	Herri Rate during Last Minute on the Treadmill	2000 000 000 000 000 000 00 00 00 00 00
n	-nedlumiC ote9 treog LemixeM ditw suco JoemaleiiA nexxxC	4 8 8 4 9 8 8 9 8 9 8 9 9 4 9 0 9 9 4 9 0 9 9
-7	To filmbaor no amit no servicientxe convicientxe SoduntN of JupanieitA	Construction (Construction)
e	nowykó lemikaM nowykó lemikaM Serek 11. octomucnof Pres Klaskykowski nistk otuniMykonotki nistk	00000
c,	nevvat find term to strong to the second second to the second to the	non Non Non Non Non Non
1	nosyxC ismixsM ni noitymened .niM mee metid	· · · · · · · · · · · · · · · · · · ·

The results of the intercorrelations reveal that:

- 1. The two body composition measures indicating the highest relationship with maximal oxygen consumption were body weight (r = .64) and fat-free body weight (r = .64).
- Body weight and fat-free body weight indicated a higher relationship with daily caloric expenditure than other body composition parameters. The correlations were
 r = .69 and r = .62 respectively.
- 3. Maximal oxygen consumption and trunk extension strength indicated a higher relationship with daily caloric expenditure than other metabolic and strength parameters. Maximal oxygen consumption and trunk extension strength each correlated with daily caloric expenditure r = .59.
- 4. The two strength measurements indicating the highest relationship with maximal oxygen consumption were hip flexion (r = .51) and knee extension (r = .50).
- 5. The best indicators of total strength were hip flexion (r = .88), knee extension (r = .84), and elbow flexion (r = .83).

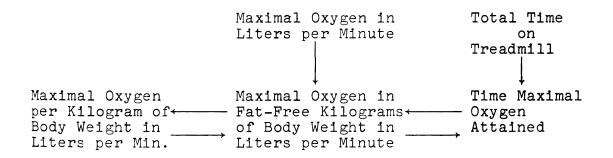

Elementary linkage analysis. Elementary Linkage Analysis for isolating Orthogonal and Oblique Types and Typal Revelancies⁶⁸ was performed on the intercorrelation matrix

⁶⁸Louis L. McQuitty, "Elementary Linkage Analysis for Isolating Orthogonal and Oblique Types and Typal Relevancies," Journal of Educational and Psychological Measurement, Vol. 17, no. 2, Summer, 1957.

for the purpose of clustering related parameters. Elementary linkage is defined as "the largest index of association which a variable has with any or all of the other variables."⁶⁹ Every variable is assigned to a type or cluster in terms of its highest index of association. Each variable in a type has a higher correlation with some other variable in that type than it has with any variable not in the type. A prototype is the characteristic common to all members of the cluster. The results of the Elementary Linkage Analysis are presented in Figures 12 to 16.

The results of the Elementary Linkage Analysis of Types III to V indicated inherent relationships; i.e., strength with strength and metabolic responses with metabolic responses. Types I and II, however, indicated interrelationships of parameters of separate origins. Type I indicated that the subjects who possessed more body fat and a greater fat-free body weight were more active and were stronger in trunk extension strength. It is interesting to note that trunk extension strength did not relate to any of the other strength measures. Type II indicated that the subjects who possessed a greater fat-free body weight were able to consume more oxygen and were able to run for a longer period of time before becoming exhausted.

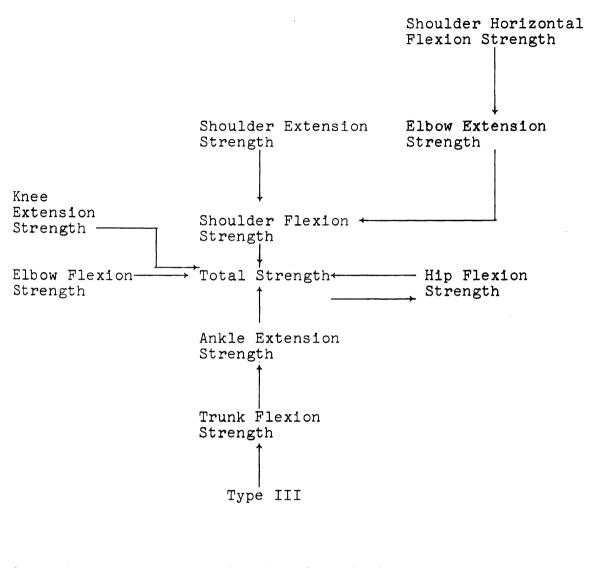
69_{Ibid}., p. 208.



Means a reciprocal pair of variables.

Means that the variable at the tail of the arrow is highest with the one at the head, but the one at the head is not highest with the one at the tail.

Figure 12. Elementary Linkage Analysis: Type I



Means a reciprocal pair of variables.

Means that the variable at the tail of the arrow is highest with the one at the head, but the one at the head is not highest with the one at the tail.

Figure 13. Elementary Linkage Analysis: Type II

Means a reciprocal pair of variables.

Means that the variable at the tail of the arrow is highest with the one at the head, but the one at the head is not highest with the one at the tail.

Figure 14. Elementary Linkage Analysis: Type III

Heart Rate Simultaneous with Maximal Oxygen Attainment Heart Rate During Last Minute on Treadmill

Type IV

<u>Means a reciprocal pair of variables.</u>

Means that the variable at the tail of the arrow is highest with the one at the head, but the one at the head is not highest with the one at the tail.

Figure 15. Elementary Linkage Analysis: Type IV

Standing Height -Ponderal Index

Type V

Means a reciprocal pair of variables.

Means that the variable at the tail of the arrow is highest with the one at the head, but the one at the head is not highest with the one at the tail.

Figure 16. Elementary Linkage Analysis: Type V

Analysis of Variance

One way analysis of variance using unequal subclasses was applied to determine if there were significant differences between the sub-groups. All subjects completed an activity history recall questionnaire in which they recorded their activity for a consecutive five day period. The subjects were listed in rank order according to the average daily energy expended in activity over the five day period. Next subjects were classified into two groups with two corresponding sub-groups based on rank order energy expenditure. The groups were:

- Group I: The upper 20 per cent or "active" subjects as compared to the lower 20 per cent or "less active" subjects determined by a one day average of caloric expenditure, and
- Group II: The upper 10 per cent or "most active" subjects as compared to the lower 10 per cent or "least active" subjects determined by a one day average of caloric expenditure.

Data on daily caloric expenditure is shown in Table X. The subjects were further classified into another group with two corresponding sub-groups. The group was:

Group III: Physical education majors as compared to non-physical education majors.

The null hypothesis states that there are no signifi-Cant differences between the two groups. Variance ("F" ratio) Was accepted at the .05 level of confidence.

TABLE X

DAILY CALORIC EXPENTITURE OF GROUP I, GROUP II, AND TOTAL SUBJECTS

Groups	Mean	S.D.	Range
Group I "Active" upper 20 per cent	2551	335	2201 - 2975
"Less Active" lower 20 per cent	664	469	371 - 992
Group II "Most Active" upper 10 per cent	2812	144 1	2688 - 2975
"Least Active" lower 10 pe r ce nt	535	101	371 - 621
All subjects	·1590	687	371 - 2975

Results of analysis of variance for the upper 20 per cent or "active" subjects as compared to the lower 20 per cent or "less active" subjects. Analysis of variance data of body composition are presented in Tables XI to XV. The significant differences found upon examination of these tables are:

- The "active" subjects were heavier than the "less active" subjects. (Significant at the .01 level of confidence.)
- 2. The "active" subjects possessed a greater fatfree body weight than the "less active" subjects. (Significant at the .01 level of confidence.)

Analysis of variance data of physical activity are presented in Table XVI. The significant differences found upon examination of this table are:

 The "active" subjects expended more energy per day than the "less active" subjects. (Significant at the .01 level of confidence.)

Analysis of variance data of maximal work capacity are presented in Tables XVII to XXIII. The significant differences found upon examination of these tables are:

> 1. The "active" subjects possessed a greater maximal oxygen consumption in liters per minute than the "less active" subjects. (Significant at the .05 level of confidence.)

Analysis of variance data of strength are presented in Tables XXIV to XXXV. The significant differences found upon examination of these tables are:

> The "active" subjects were stronger in trunk extension strength than the "less active" subjects. (Significant at the .01 level of confidence.)

Results of analysis of variance for the upper 10 per cent or "most active" subjects as compared to the lower 10 per cent or "least active" subjects. Analysis of variance data of body composition are presented in Tables XXXVI to XL. The significant differences found upon examination of these tables are:

- 1. The "most active" subjects possessed more body
 fat than the "least active" subjects. (Significant at the .01 level of confidence.)
- 2. The "most active" subjects were heavier than the "least active" subjects. (Significant at the .01 level of confidence.)
- 3. The "most active" subjects possessed a greater fat-free body weight than the "least active" subjects. (Significant at the .01 level of confidence.)
- 4. The "most active" subjects had a lower ponderal index than the "least active" subjects.(Significant at the .05 level of confidence.)

Analysis of variance data of physical activity are presented in Table XLI. The significant differences found upon examination of this table are:

 The "most active" subjects expended more energy per day than the "least active" subjects.

(Significant at the .01 level of confidence.) Analysis of variance data of maximal work capacity are presented in Tables XLII to XLVIII. The significant differences found upon examination of these tables are:

- The "most active" subjects possessed a greater maximal oxygen consumption in liters per minute than the "least active" subjects. (Significant at the .01 level of confidence.)
- 2. The "most active" subjects possessed a greater maximal oxygen consumption per kilogram of fatfree body weight in liters per minute than the "least active" subjects. (Significant at the .05 level of confidence.)

Analysis of variance data of strength are presented in Tables XLIX to LX. The significant differences found upon examination of these tables are:

- The "most active" subjects possessed a greater total strength than the "least active" subjects. (Significant at the .05 level of confidence.)
- 2. The "most active" subjects were stronger in hip flexion strength, hip extension strength, knee

extension strength, elbow extension strength, and shoulder flexion strength than the "least active" subjects. (Significant at the .05 level of confidence.)

3. The "most active" subjects were stronger in trunk extension strength than the "least active" subjects. (Significant at the .01 level of confidence.)

Results of analysis of variance for the physical education majors as compared to the non-physical education majors. Analysis of variance data of body composition are presented in Tables LXI to LXV. The significant differences found upon examination of these tables are:

 The physical education majors possessed a greater fat-free body weight than the nonphysical education majors. (Significant at the .05 level of confidence.)

Analysis of variance data of physical activity are presented in Table LXVI. The significant differences found upon examination of this table are:

> The physical education majors expended more energy per day than the non-physical education majors. (Significant at the .01 level of confidence.)

Analysis of variance data of maximal work capacity are presented in Tables LXVII to LXXIII. The significant

differences found upon examination of these tables are:

- The physical education majors possessed a greater maximal oxygen consumption in liters per minute than the non-physical education majors. (Significant at the .01 level of confidence.)
- 2. The physical education majors possessed a greater maximal oxygen consumption per kilogram of fat-free body weight in liters per minute than the non-physical education majors. (Significant at the .05 level of confidence.)

Analysis of variance data of strength are presented in tables LXXIV to LXXXV. The significant differences found upon examination of these tables are:

- 1. The physical education majors possessed a greater total strength than the non-physical education majors. (Significant at the .05 level of confidence.)
- 2. The physical education majors were stronger in hip extension strength than the non-physical education majors. (Significant at the .05 level of confidence.)
- 3. The physical education majors were stronger in trunk extension strength than the non-physical education majors. (Significant at the .01 level of confidence.)

In general then it was found that:

- 1. The "active" subjects (upper 20 per cent), "most active" subjects (upper 10 per cent), and the physical education majors: a. possessed more fat-free body weight, b. were more active, c. possessed a greater oxygen consumption, and d. were stronger than the "less active" subjects (lower 20 per cent), "least active" subjects (lower 10 per cent), and the non-physical education majors respectively.
- 2. The physical education majors were most like the "most active" subjects (upper 10 per cent) except that the "most active" subjects displayed greater strength in more areas of the body as compared to the "least active" subjects (lower 10 per cent) than the physical education majors as compared to the non-physical education majors.

The analysis of variance data are presented in Tables XI to LXXXV.

	ANALYSIS	IS OF VARIANCE OF	PER CENT	BODY FAT IN	GROUP I		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Active Less Active	26.0833 24.0833	Between Groups Within Groups	12.0000 49.4166	1 10	12.0000 4.9416	2.42833	N.S.
From Table F The F ratio v	able F for df _l = 1 and ratio was not found to	df ₂ = 10. be signifi	F at .05 F at .01 cant; ther	.05 = 4.96 .01 =10.04 therefore, the null	null hypothesis	hesis was	accepted.
		ТА	TABLE XII				
	ANALYSIS (OF VARIANCE OF BO	BODY WEIGHT	IN KILOGRAMS	S IN GROUP	Ι	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Active	65.1666	Between Groups	385.3333		385.3333	011 75275	
Less Active	53.8333	Within Groups	155.6666	10	15.5666		+ •
From Table F The F ratio s hypothesis wa	for df showed as reie	and df ₂ = 10. ficance at the The alternate	F at .05 = F at .01 = .01 level of hvnothesis.	<pre>= 4.96 = 10.04 of confidence s. that there</pre>	and, wax x	therefore, t ignificant d	the null differences2
between the groups	groups in	dy weigh	lograms, wa	accept	2 3		

TABLE XI

ANAL	ANALYSIS OF VARIANCE	RIANCE OF FAT-FREE	E BODY WEIGHT	3HT IN KILOGRAMS	RAMS IN GROUP	I ANC	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	ידיי Ratio	Signifi- cance
Active	48.3333	Between Groups	168.7500	Г	168.7500		
Less Active	40.8333	Within Groups	56.1666	10	5.6166	30.0449L	10.
From Table F for df ₁ = The F ratio showed sign hypothesis was rejected ences between the group	'for df _l = 1 and showed significan as rejected. The n the groups in f	<pre>1 and df₂ = 10. ificance at the . The alternate s in fat-free bo</pre>	at .05 at .01 L level /pothesi weight	<pre>= 4.96 = 10.04 of confidence .s, that there in kilograms,</pre>	and, was was	re, ant	the null differ-
		Τ	TABLE XIV				
ANA	ANALYSIS OF VA	VARIANCE OF STANDING	НЕІСНТ	(IN CENTIMETERS)	NI	GROUP I	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	167.9333	Between Groups	184.8675	1	184.8675		v Z
Less Active	160.0833	Within Groups	470.4616	10	47.0461	7+77.C	· · · ·
From Table F for df _l = 1 and The F ratio was not found to	F for df _l = 1 and was not found to	l and df ₂ = 10. F at F at und to be significant;		.05 = 4.96 .01 = 10.04 therefore, the n	null hypothesis	was	accepted.

73

TABLE XIII

	иЕп
П	Mean
IN GROUF	es of
INDEX	Degrees of
ANALYSIS OF VARIANCE OF PONDERAL INDEX IN GROUP	Sum of
OF	
VARIANCE	Source of
OF	01,
ANALYSIS	

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Me an Squares	"F" Ratio	"F" Signifi- Ratio cance
Active	12.6316	Between Groups	.2408		.2408		
Less Active	12.9150	Within Groups	4.1014	10	.4101	67/06.	• 0 • 2
From Table F for df _l and df ₂ The F ratio was not found to	for df _l ar vas not fou		F at .05 = 4.96 F at .01 =10.04 ificant; therefo	<pre>= 10. F at .05 = 4.96 F at .01 =10.04 be significant; therefore, the null hypothesis was accepted.</pre>	111 hypothe:	sis was	accepted.

TABLE XVI

ANALYSIS OF VARIANCE OF CALORIC EXPENDITURE (ONE DAY AVERAGE) IN GROUP I

Group	Mean	Source of Variance	Sum of D Squares	Degrees of Freedom	Mean "F" Squares Ratio	"F" Ratio	Signifi- cance
Active	2517.5000	Between Groups	10310094.0832	г	10310094.0832	32 10 57515 NET	
Less Active	663.6666	Within	767612.8330	10	76761.2833	3	+) ·
From Table F for df ₁ = 1 and	for $df_1 = 1$	and $df_2 = 10$.	df ₂ = 10. F at .05 = 4.96 F at .01 = 10.04	4.96 10.04			
The F ratio showed signif hypothesis was rejected. ences between the groups	The F ratio showed significan hypothesis was rejected. The ences between the groups in c	The F ratio showed significance at the .01 level of confidence and, therefore, the nul hypothesis was rejected. The alternate hypothesis, that there was significant differences between the groups in caloric expenditure (one day average), was accepted.	ce at the .01 level of confidence and, therefore, the null alternate hypothesis, that there was significant differ- aloric expenditure (one day average), was accepted.	confidenc that ther e day aver	e and, ther e was signi age), was a	efore, t ficant d ccepted.	he null iffer-

TABLE XV

OupSource of MeanSum of SquaresDegrees of RreedomMean SquaresTrueve2.5583Between Groups.95201.9520 7.48332 Active1.9950Within Groups1.272210.1272 7.48332 Active1.9950Within Groups1.272210.1272 7.48332 F ratio showed significance at the .05 level of confidence and, therefore, th thesis was rejected. The alternate hypothesis, that there was significant di thesis was rejected. The alternate hypothesis, that there was significant di thesis was rejected. The alternate nypothesis, that there was significant di thesis was rejected. The alternate nypothesis that there was significant di thesis was rejected. The alternate nypothesis that there was significant di thesis was rejected. The alternate nypothesis that there was significant di thesis was rejected. The alternate nypothesis that there was significant di thesis was respected. The alternate nypothesis that there was significant di thesis was respected. The alternate of confidence and the was accepted there was significant di thesis was respected. The alternate of confidence and the confidence at the .05 level of confidence confidence confidence at the .05 level of confidence confidenc								
2.5583Between Groups.9520 7.48332 ctive1.9950Within Groups 1.2722 10 $.1272$ 7.48332 able F for df= 1 and df= 10.04F at $.05 = 4.96$ 4.96 7.48332 able F for df= 1 and df= 10.04F at $.01 = 10.04$ 4.96 7.48332 able F for df= 1 and df= 10.04F at $.01 = 10.04$ 4.96 7.48332 able F for df= 1 and df= 10.04F at $.01 = 10.04$ 4.96 4.96 able significance at the $.05$ level of confidence and, therefore, the esis was rejected. The alternate hypothesis, that there was significant di between the groups in maximal oxygen uptake in liters per minute, was accepted between the groups in maximal oxygen uptake in liters per minute, was accepted between the groups in maximal oxygen uptake in liters per minute, was accepted between the groups in maximal oxygen uptake in liters per minute, was accepted between the groups in maximal oxygen uptake in liters per minute, was accepted between the groups in maximal oxygen uptake in liters per minute, was accepted between the groups in maximal oxygen uptake in liters per minute, was accepted between the groups in maximal oxygen uptake in liters per minute, was accepted between the group in 0.000 7.9833 abilityMature .0367Within Groups.000110.0000 79833		ean	Source of Variance	Sum of Squares	E	Mean Squares	"F" Ratio	Signifi- cance
Active1.9950Within Groups1.27221012721.40032I Table F for df1and df=10.04F at .01=10.04F ratio showed significance at the .05 level of confidence and, therefore, ththesis was rejected. The alternate hypothesis, that there was significant dis between the groups in maximal oxygen uptake in liters per minute, was accepAMALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODYAMALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODYOupMeanSource ofSum ofDegrees ofWe.0388Between Groups.0000Active.0367Within Groups.0001Active.0367Within Groups.0001		583		.9520	-	.9520		L
<pre>Table F for df_1 = 1 and df_2 = 10. F at .01 = 10.04 F at .01 = 10.04 F at .01 = 10.04 F at .01 = 10.04 thesis was rejected. The alternate hypothesis, that there was significant di thesis was rejected. The alternate hypothesis, that there was significant di s between the groups in maximal oxygen uptake in liters per minute, was accep ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODY WEIGHT IN LITERS PER MINUTE IN GROUP I ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODY WEIGHT IN LITERS PER MINUTE IN GROUP I OUP Mean Variance Squares Freedom Squares Ratio ve .0388 Between Groups .0000 1 .0000 79833 Active .0367 Within Groups .0001 10 .0000</pre>		950	Within Groups	1.2722	10	.1272	25504.1	•
F ratio showed significance at the .05 level of confidence and, therefore, th thesis was rejected. The alternate hypothesis, that there was significant di s between the groups in maximal oxygen uptake in liters per minute, was accep ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODY WEIGHT IN LITERS PER MINUTE IN GROUP I Oup Nean Source of Sum of Degrees of Mean Weinder Groups On Active .0388 Between Groups .0000 Oup 1 Ve .0367 Within Groups .0001 10 .0000		11	and $df_2 =$	at .05]			
TABLE XVIIIANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODY WEIGHT IN LITERS PER MINUTE IN GROUP IDWEIGHT IN LITERS PER MINUTE IN GROUP IPSource of Sum of VariancePSource of Sum of Variance0388Between Groups0388Between Groups0367Within Groups0367Within Groups000110000010	ne F ratio showe /pothesis was re nces between the	d sigr jected group	ficance The a in maxi	.05 level (hypothes1; gen uptake	- LUCY of confiden s, that the in liters	and, was r min	refore, ificant was acc	he null iffer- pted.
ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODY WEIGHT IN LITERS PER MINUTE IN GROUP I Mean Source of Sum of Degrees of Mean "F" Variance Squares Freedom Squares Ratio .0388 Between Groups .0000 1 .0000 .79833 tive .0367 Within Groups .0001 10 .0000 .79833			TABI	LE XVIII				
<pre>p Source of Sum of Degrees of Mean "F"</pre>	ANALYSIS	OF VI	0F IN	L OXYGEN UI PER MINUTH	TAKE PER IN GROUF		ВОDҮ	
.0388 Between Groups .0000 1 .0000 .79833 N ctive .0367 Within Groups .0001 10 .0000		ean	Source of Variance	Sum of Squares	II E	Mean Squares	"F" Ratio	Signifi- cance
Active .0367 Within Groups .0001 10 .0000		88	L .	.0000		. 0000	CC807	0 12
	Active	67	Within Groups	.000	10	.0000	550K1.	N. C. N

TABLE XVII

×
н
×
ਸ਼੍ਰ
Н
Д
4
EH

	FAT-FR	FAT-FREE BODY WEIGHT IN LITERS PER MINUTE IN GROUP I	LITERS PE	R MINUTE IN C	ROUP I		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	.0529	Between Groups	.0000		.0000		
Less Active	.0487	Within Groups	.0004	10	.0000	1.12030	
From Table F	for dfl =	From Table F for $df_1 = 1$ and $df_2 = 10$. F at .05 = 4.96 Figure 9.1 F at .01 = 10.0	F at .05 = 4.96 F at 01 = 10 04	= 4.96 = 10.01			
The F ratio v	ias not fo	The F ratio was not found to be significant; therefore, the null hypothesis was accepted	cant; ther	efore, the nu	Ill hypoth	esis was	accepted.

ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF

TABLE XX

ANALYSIS OF VARIANCE OF TIME (IN MINUTES) OF MAXIMAL OXYGEN UPTAKE ATTAINMENT IN GROUP I .

-							
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	15.0000	Between Groups	.0833	1	.0833		0 W
Less Active	14.8333	Within Groups	24.8333	10	2.4833		
From Table F for df ₁ = and	for df ₁ =	$df_2 = 10.$	F at .05 = 4.96 F at .01 = 10.04	4.96 10.04			
The F ratio	was not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the nu	ull hypoth	esis was	accepted.

4 2 h h b

XXI	
Ы	l
TAB	

		OXYGEN UPTAKE ATTAINMENT IN GROUP I	T.N. AMN LAT.T.	T GROUP T			
Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	192.5000	Between Groups	8.3333	Ч	8.3333	76000	
Less Active 190.8333	190.8333	Within Groups	898.3333	10	89.8333	0/260.	. C. M
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 10$. F at .05 = 4.96 From Table P for $df_1 = 1$ and $df_2 = 10$. F at .05 = 4.96	Frat.05 = 4.96 Frat.01 = 10.04	= 4.96 = 10.04			
The F ratio was not found	was not fou	ind to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the n	ull hypoth	esis was	accepted.

ANALYSIS OF VARIANCE OF THE HEART RATE SIMULTANEOUS WITH THE MAXIMAL OXYGEN UPTAKE ATTAINMENT IN GROUP I

TABLE XXII

ANALYSIS OF VARIANCE OF THE HEART RATE OF THE LAST MINUTE ON THE TREADMILL IN GROUP I

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	195.3333	Between Groups	70.0833		70.0833	ccllao	U W
Less Active 190.5000	190.5000	Within Groups	726.8333	10	72.6833	· v · ·	·
From Table F	for df ₁ =	From Table F for df ₁ = 1 and df ₂ = 10. F at .05 = 4.96 F at .01 = 10.04	F at .05 : F at .01 =	= 4.96 = 10.04			
The F ratio	was not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; there	efore, the n	ull hypothe	esis was	accepted.

ANALYS	ANALYSIS OF VARIANCE	ANCE OF THE TOTAL TREADMILL TIME (IN MINUTES) IN GROUP I	TREADMILL	TIME (IN MI	NUTES) IN (3ROUP I	
Group	Mean	Source of Variance	Su m of Squares	Sum of Degrees of Squares Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	15.0833	Between Groups	.0208		.0208		
Less Active	15.0000	Within Groups	28.2083	10	2.8208	. 00/ 39	
From Table F	for df _l =	From Table F for $df_1 = 1$ and $df_2 = 10$.	Fat.05 = 4.96 Fat.01 = 10.04	= 4.96 10.01			
The F ratio 1	was not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted	cant; ther	efore, the n	ull hypothe	esis was	accepted.

TABLE XXIV

ANALYSIS OF VARIANCE OF TOTAL STRENGTH IN GROUP I

Group	Mean	Source of Variance	Sum of [Squares	Degrees of Freedom	Mean "F" Squares Ratio	"F" Ratio	Signifi- cance
Active	411.8333	411.8333 Between Groups 10800.0000	10800.0000	-T	10800.0000	נטבפר ו	0 2
Less Active	351.8333	351.8333 Within Groups	78951.6666	IO	7895.1666	C 7 1 0 C • T	. C
From Table F for df _l = and	for df ₁ =	and $df_2 = 10$.	Fat.05 = 4.96 Fat.01 = 10.04	4.96 0.01			
The F ratio was not found	vas not fou	nd to be significant; therefore, the null hypothesis was accepted	icant; there	core, the l	null hypoth	esis was	accepted.

TABLE XXIII

	ANALYSIS OF	OF VARIANCE OF HIP FLEXION STRENGTH IN GROUP I	HIP FLEXIO	N STRENGTH I	N GROUP I		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	ודיי Ratio	Signifi- cance
Active	62.9550	Between Groups	285.7727	Г	285.7727	22028	0
Less Active	53.1950	Within Groups	3244.9801	10	324.4980	00000.	
From Table F for df ₁ = and df ₂ = 10 The F ratio was not found to be sign	for df _l = /as not fou	44	F at .05 = 4.96 F at .01 = 10.04 cant; therefore, th	2 = 10. F at .05 = 4.96 F at .01 = 10.04 be significant; therefore, the null hypothesis was	ull hypothe	sis was	accepted.
		1					

TABLE XXVI

н
GROUP
TH IN (
STRENGTH
S OF VARIANCE OF HIP EXTENSION STRENGTH IN GROUP
HIP
ОF
VARIANCE
ОF
ANALYSIS

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	יידיי Ratio	Signifi- cance
Active	48.8133	Between Groups	123.4566	1	123.4566	70770 L	U M
Less Active	42.3983	Within Groups	896.3240	10	89.6324	10110.1	.C.N
From Table F for df ₁ = and	for df _l =	and $df_2 = 10$.	F at .05 = 4.96 F at .01 = 10.04	= 4.96 = 10.04			
The F ratio v	vas not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the n	ull hypoth	esis was	accepted.

TABLE XXV

НI
XX
ы
Ë,
AB
EH

~	
Ē	1
d I U U U U	5
Ā	
Ċ)
1N	
· · ·	
Ξ	
Ē	1
Ċ)
STRFN	
ЦЦ	
Ē	1
2	2
Z	
Ċ	2
-	
5	
Ē	1
E	4
×	
Ē	
Ē	1
r+	1
Ξ	
KNF	
_	
ЪС	
C	,
۲÷	1
ē	>
ž	
4	
-	
Щ	
1	
-	
Ē	
C)
• •	
Ľ.	1
v)
>	1
ALVSTS	1
₫.	
2	1
-	•

н

Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	75.7733	Between Groups	1306.2533	Ч	1306.2533	ר <u>ה</u>	0 2
Less Active	54.9066	Within Groups	3176.9006	10	317.6900	· C· N 2/TTT · L	. C.
From Table F for df _l = and The F ratio was not found t	for df _l = /as not fo	and $df_2 = 10$. F at .05 = 4.96 F at .01 = 10.04 und to be significant; therefore, the null hypothesis was accepted.	F at .05 = 4.96 F at .01 = 10.04 cant; therefore, th	= 4.96 = 10.04 fore, the r	ull hypothe	esis was	accepted.

н	
Н	
н	
~	
\mathbf{k}	
- -	
~~~	
TABLE	

⊢	4
۰ م	4
IC	2
GR(	5
2	
	•
н	ł
UN N	
TRENC'	]
Ev	1
NC	
TON	Š
	2
YTENS	
Ē	1
цц	1
L.	Ì
OIIT	2
SH S	5
Ē	_
C	5
ЦC	2
A N(	
F	j
ΔR.	
ч	
E	5
0	2
F ℃.	1
7.2	
NΔ	
	1

					r ) ) ; ;	4	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	25.4183	Between Groups	4.5387	1	4.5387		0
Less Active 26.6483	26.6483	Within Groups	640.2713	10	64.0271	60010.	
From Table	F for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 10$ .	F at .05 = 4.96 F at .01 = 10.04	10 01 =			
The F ratic	) was not fo	The F ratio was not found to be significant; therefore, the null hypothesis was accepted	cant; ther	efore, the nu	lll hypoth€	esis was	accepted.

XIXX
TABLE

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	18.3550	Between Groups	10.0833	Ţ	10.0833		U M
Less Active	16.5216	Within Groups	220.5698	10	22.0569	CT/C+.	.C. M
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 10$ .	F at .05 = 4.96 F at .01 = 10.04	= 4.96 = 10.04			
The F ratio w	vas not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the n	ull hypoth€	esis was	accepted.

ANALYSIS OF VARIANCE OF ELBOW EXTENSION STRENGTH IN GROUP I

TABLE XXX

н ANALYSIS OF VARIANCE OF ELBOW FLEXION STRENGTH IN GROUP

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	41.8583	Between Groups	8.9787	г	8.9787		U M
Less Active 43.5883	43.5883	Within Groups 2232.1905	2232.1905	10	223.2190	N N O + O •	N. C.
From Table F	^r for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 10$ .	Frat.05 = 4.96 Frat.01 = 10.04	= 4.96 4.00			

significant; therefore, the null hypothesis was accepted. F ratio was not found to be The

	OTOTOVIU	T TOOME WI HIDNENDER NOTENED FURNING OF FAMILIAN AND TO STOTENEN	NATA ANN	TENTIL NOT	TOOUD NT TI	4	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	36.5250	Between Groups	249.3784		31.1723		
Less Active 43.5883	43.5883	Within Groups	54.9486	10	18.3161	06T01.T	
From Table F	for df, =	From Table F for df, = 1 and df, = 10.	F at .05 = 4.96	= 4.96			

ANALYSIS OF VARTANCE OF ANKLE EXTENSION STRENGTH IN GROUP I

TABLE XXXI

Fatio was not found to be significant; therefore, the null hypothesis was accepted. The

### TABLE XXXII

н ANALYSIS OF VARIANCE OF SHOULDER HORIZONTAL FLEXION STRENGTH IN GROUP

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"ፑ" Ratio	Signifi- cance
Active	17.8800	Between Groups	3.2760		3.2760		o V
Less Active 16.8350	16.8350	Within Groups	222.8659	10	22.2865	• T4100	• C• N
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 10$ .	F at .05	Fat .05 = 4.96 Fat .01 = 10.01			
The F ratio v	was not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the n	ull hypothe	esis was	accepted.

н
н
H
×
×
×
TABLE

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	28.8766	Between Groups	29.6730	7	29.6730		
Less Active	25.7316	Within Groups	753.9812	10	75.3981		· 0 · N
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 10$ .	Fat.05 = 4.96 Fat 01 = 10.04	Fat.05 = 4.96 Fat.01 = 10.04			
The F ratio was not found	vas not fou	und to be significant; therefore, the null hypothesis was accepted.	cant; there	efore, the n	ull hypothe	esis was	accepted.

ANALYSIS OF VARIANCE OF SHOULDER FLEXION STRENGTH IN GROUP

н

### TABLE XXXIV

н ANALYSIS OF VARIANCE OF TRUNK FLEXION STRENGTH IN GROUP

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	"F" Ratio	Signifi- cance
Active	24.0533	Between Groups	7.2385		7.2385		
Less Active 25.6066	25.6066	Within Groups	504.4686	10	50.4468	• 14349	
From Table F for df ₁ = and	for df ₁ =	and $df_2 = 10$ .	Fat.05 Fat.05	Fat.05 = 4.96 Fat.01 = 10.04			
The F ratio was not found	was not fo	und to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the nu	ull hypoth	esis was	accepted.

	ANALYSIS C	ANALYSIS OF VARIANCE OF TRUNK EXTENSION STRENGTH IN GROUP I	UNK EXTENS	ION STRENGTH	IN GROUP	Г	
Group	Mean	Source of Varlance	Sum of Squares	Degrees of Freedom	Mean Squares	ידיי Ratio	Signifi- cance
Active	43.7783	Between Groups	1494.5471	-	1494.5471	E7 667110	
Less Active	21.4583	Within Groups	259.1663	10	25.9166	0+100.10	T O •
From Table F	for df _l =	From Table F for $df_1 = 1$ and $df_2 = 10$ .	F at .05 F at .01	= 4.96 = 10.04			
The F ratio showed signific hypothesis was rejected. T ences between the groups in	showed sigr as rejected 1 the group	ъъ	.01 level ( hypothesis	2	<b>•</b> •••	therefore, th significant di	the null differ-
		TAB	TABLE XXXVI				
	ANALYSIS	OF VARIANCE	OF PER CENT BODY FAT	ODY FAT IN G	IN GROUP II		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Squares	יידיי Ratio	Signifi- cance
Most Active	26.8333	Between Groups	37.5000	1	37.5000		
	(		•			31.U3440	T N •

From Table F for  $df_1 = 1$  and  $df_2 = 4$ . F at .05 = 7.71 The F ratio showed significance at the .01 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis; that there was significant differ-ences between the groups in per cent body fat, was accepted. 31.03448 1.2083 4 4.8333 Within Groups Least Active 21.8333 l

84

TABLE XXXV

XXXVII	
TABLE	

TI JOON NI CHANDOLLY NI LIDIAN JOO JO JONNINA JO CICINANA	Source of Sum of Degrees of Mean "F" Signifi- Mean Variance Squares Freedom Squares Ratio cance	67.0000 Between Groups 400.1666 1 400.1666	ive 50.0000 Within Groups 24.1666 4 6.1666	From Table F for $df_1 = 1$ and $df_2 = 4$ . F at .05 = 7.71 The F ratio showed significance at the .01 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis; that there was significant differences between the groups in body weight in kilograms, was accepted.
TTANA	Group Mea	Most Active 67.(	Least Active 50.0000	From Table F for df ₁ = 1 The F ratio showed signif hypothesis was rejected. ences between the groups

ANALYSTS OF VARIANCE OF BODY WEIGHT IN KILOGRAMS IN GROUP II

## TABLE XXXVIII

ANALYSIS OF VARIANCE OF FAT-FREE BODY WEIGHT IN KILOGRAMS IN GROUP II

WIN	JO OTOIT	ANALISTS OF VANIANCE OF FAI-FALE DOUL WEIGHT IN ALLOGAAMS IN GAOOF IL	NEE DUUI WE	TTY NT TUNT	NT CHANDO	TT JOOUD	
Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom	Mean Squares	"ד" Ratio	Signif- cance
Most Active	49.0000	Between Groups 130.6666	130.6666		130.6666		
Least Active 39.6666	39.6666	Within Grups	10.6666	4	2.6666	49.0000	T D •
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	Fat.05 = 7.71 Fat.01 = 21.20	= 7.71 = 21.20			
The F ratio showed signi hypothesis was rejected.	howed sig s rejecte	The F ratio showed significance at the .01 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypotheses; that there was significant differ-	.01 level c hypotheses	f confidence ; that ther	e and, the e was sign	refore, th ificant di	e null ffer-

ences between the groups in fat-free body weight in kilograms, was accepted.

ANAI	YSIS OF VA	ANALYSIS OF VARIANCE OF STANDING HEIGHT (IN CENTIMETERS) IN GROUP II	NG HEIGHT	(IN CENTIMET	ERS) IN GF	ROUP II	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	167.7666	167.7666 Between Groups	14.4150		14.4150		0
Least Active	164.6666	Least Active 164.6666 Within Groups	41.9933	4	10.4983	L.3/300	N. 0.
From Table F for $df_1 = and df_2 = 4$	for df ₁ =	and $df_2 = 4$ .	F at .05 F at .01	F at .05 = 7.71 F at .01 = 21.20			
The F ratio was not found to	as not fou		cant; ther	be significant; therefore, the null hypothesis was accepted.	ull hypoth	lesis was a	tccepted.

XL	
E	
AB	
H	

ANALYSIS OF VARIANCE OF PONDERAL INDEX IN GROUP II

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	12.4933	Between Groups	1.3920		1.3920		
Least Active 13.4566	13.4566	Within Groups	.4099	τ	1024	00206.61	Cn•
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at .05 = 7.71 F at .01 = 21.20	= 7.71 = 21.20			
The F ratio showed signi hypothesis was rejected.	showed sigr as rejected	The F ratio showed significance at the .05 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis; that there was significant differ-	.05 level c	of confidences; that there	e and, th e was sig	erefore, t nificant d	he null iffer-

ences between the groups in ponderal index, was accepted. •

TABLE XXXIX

ANALYSI	ANALYSIS OF VARIANCE OF		PENDITURE	CALORIC EXPENDITURE (ONE DAY AVERAGE) IN GROUP	RAGE) IN G	ROUP II	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom:	Mean Square	"F" Ratio	Signifi- cance
Most Active	2811.6666	Between Groups	7772540.1669		7772540.1669	1	
Least Active	535.3333	Within Groups	84077.3332	32 4	21019.3333	3 309.1003	TU. 50
From Table F for $df_1 = 1$ and	for df _l =	$df_2 = 4.$	Frat.05 Frat.01	= 7.71 = 21.20			
The F ratio showed significance hypothesis was rejected. The a ences between the groups in calo	showed sign as rejected n the group	ficance at the The alternate in caloric exp	.01 level c hypothesis enditure (c	confi that e day	and, was ge),	therefore, t significant d was accepted.	the null differ-
		TAB	TABLE XLII				
	ANALYSIS	ANALYSIS OF VARIANCE OF MA PER MINUTE	OF MAXIMAL OXYGEN INUTE IN GROUP II	UPTAKE	IN LITERS		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedome	Mean Square	"R" Ratio	Signifi- cance
Most Active	2.8970	Between Groups	1.8559		1.8559		6
Least Active	1.7846	Within Groups	.1877	4	.0469	54-74-64	
From Table F	for df ₁ =	1 and $df_2 = 4$ .	F at .05 F at .05	= 7.71 = 7.71			
The F ratio showed sign hypothesis was rejected ences between the group	showed signi ras rejected. n the groups	ificance at t . The altern s in maximal	.01 level hypothesi gen uptake	f confider that the in liters	and, was s r minu	refore, ificant was acc	e, the null ⁸ nt differ- ² accepted.

TABLE XLI

TABLE XLIII

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	.0421	Between Groups	.0000		.0000		
Least Active .0352	.0352	Within Groups	.0000	4	.0000	00700.0	2. 2.
From Table F for df _l = and	for df1	From Table F for $df_1 = and df_2 = 4$ . F at .05 = F at .01 =	F at .05 F at .01	21.2		10	

ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODY WEIGHT IN LITERS PER MINUTES IN GROUP II

The F ratio was not found to be significant; therefore, the null hypothesis was accepted.

TABLE XLIV

ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF FAT-FREE BODY WEIGHT IN LITERS PER MINUTE IN GROUP II

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	ידיי Ratio	Signifi- cance
Most Active	.0591	Between Groups	.0003	1	.0003	שכיטט וי	
Least Active .0450	.0450	Within Groups	.000	17	.0000	TT.20130	•
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at .05 = 7.71 F at .01 = 21 20	= 7.71 = 21.20			
The F ratio s	howed sign	ificance at the	.05 level o	.05 level of confidence and, therefore, the null	e and the	and, therefore, the nul	e null

hypothesis was rejected. The alternate hypothesis; that there was significant differ-ences between the groups in maximal oxygen uptake per kilogram of fat-free body weight in liters per minute was accepted

XLV
Э
ABI
E

EN UPTAKE	
, OXYGEN	
<b>MAI</b>	
ОF	II
MINUTES)	ATTAINMENT IN GROUP
NI)	TN
OF TIME (IN M	ATTAINME
'ALYSIS OF VARIANCE OF TIME (IN MINUTES) OF MAXII	-
ОF	
ANALYSIS	

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active 15.6666	15.6666	Between Groups	2.6666		2.6666		
Least Active 14.3333	14.3333	Within Groups	15.3333	4	3.8333	C0C60.	· C · N
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at .05 = 7.71 F at .01 = 21 20	Fat .05 = 7.71 Fat .01 = 21 20			
The F ratio w	as not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the n	ull hypoth	esis was	accepted.

TABLE XLVI

ANALYSIS OF VARIANCE OF THE HEART RATE SIMULTANEOUS WITH MAXIMAL OXYGEN UPTAKE ATTAINMENT IN GROUP II

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	יד" Ratio	Signifi- cance
Most Active	191.0000	191.0000 Between Groups	8.1666	-1	8.1666		
Least Active	193.3333	Least Active 193.3333 Within Groups	736.6666	14	184.1666	.04434	N. V.
From Table F for df ₁ = 1 and	for df _l =	$1 \text{ and } df_2 = 4.$	F at .05 = 7.71	= 7.71 - 7.70			
The F ratio was not found to	las not fou	und to be signifi	cant; there	be significant; therefore, the null hypothesis was accepted.	ull hypoth€	esis was	accepted.

89

•

II/	
XLV	
Ц	
AB.	
H	

ANALYSIS OF VARIANCE OF THE HEART RATE OF THE LAST MINUTE ON THE TREADMILL IN GROUP II

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	192.3333	192.3333 Between Groups	42.6666	1	42.6666		5
Least Active	187.0000	Least Active 187.0000 Within Groups	454.6666	4	113.6666	15015.	· 0 • N
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at .05 = 7.71 F at .01 = 21.20	= 7.71 = 21.20			
The F ratio w	las not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; there	efore, the n	null hypot	nesis was	accepted.

TABLE XLVIII

TOTAL TREADMILL TIME (IN MINUTES) IN GROUP II ANALYSIS OF VARIANCE OF THE

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	16.1666	Between Groups	5.0416		5.0146		
Least Active 14.3333	14.3333	Within Groups	12.3333	ħ	3.0833	1.0314	. C
From Table F for df ₁ = 1 and	for df ₁ =	1 and $df_2 = 4$ .	F at .05 F at .01	F at .05 = 7.71 F at .01 = 21.20			

F ratio was not found to be significant; therefore, the null hypothesis was acceptec. The

	ANALYSIS OF V	OF VARIANCE OF TOTAL	TOTAL STRENGTH	IGTH IN GROUP	P II		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	489.0000	Between Groups	47526.0000	г	47526.0000		
Least Active	311.0000	Within Groups	18408.0000	4	4602.0000	C>12517	Cn•
From Table F	for df ₁ = 1	and $df_2 = 4$ .	F at .05 F at .05	= 7.71 = 21.20			
The F ratio showed significance hypothesis was rejected. The a ences between the groups in tota	showed signi is rejected. 1 the groups	at the lternate al stren	.05 level c hypothesis gth, was ac	, <b>ч. •</b> • •	and, was	therefore, t significant d	the null differ-
		TA	TABLE L				
· ·	ANALYSIS OF V	ARIANCE OF	HIP FLEXION	STRENGTH	IN GROUP II		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	77.4933	Between Groups	1790.5337		1790.5537	311 11 2 2	
Least Active	42.9433	Within Groups	925.1775	4	231.2943	C+T+1.1	Cn•
From Table F for df ₁ = 1 and df The F ratio showed significance	for df _l = showed sign	2 = 4. at the	F at .05 F at .01 .05 level	7.71 21.20 confi	and,	therefore, t	the null
hypothesis was rejected. ences between the groups	as rejected 1 the group	I. The alternate s in hip flexion	hypothesis; strength, w	s; that there was accepted	was.		allier-

...

91

TABLE XLIX

		TAB	тп дпдИ.Т.				
	ANALYSIS OI	ANALYSIS OF VARIANCE OF HIP EXTENSION STRENGTH IN GROUP II	EXTENSION	STRENGTH I	N GROUP II		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	ודיי Ratio	Signif- cance
Most Active	50.8333	Between Groups	285.2461		285.2461		
Least Active 37.0433	s 37.0433	Within Grups	140.3379	4	35.0844	0.13021	G n •
From Table I	For df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at 05 =	= 7.71 - 7.71			
The F ratio showed signifi hypothesis was rejected. erences between the groups	showed sign vas rejected veen the gro	difficance at the .05 level of confidence and d. The alternate hypothesis; that there was oups in hip extension strength, was accepted	by the second of the second se	of confidence and, therefore, is: that there was significant ngth, was accepted.	confidence and, therefore, that there was significant h, was accepted.	refore, t Ificant d	the null differ-
		TABL	TABLE LII				
	ANALYSIS OF VAN	F VARIANCE OF KNEE EXTENSION STRENGTH IN GROUP II	EXTENSION	STRENGTH I	N GROUP II		
		Source of	Sum of	Degrees of	Mean	แษน	Signifi-

Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom:	Mean Square	"F" Ratio	Signifi- cance
Most Active	89.2000	Between Groups	3013.6968		3013.6968		
Least Active 44.3766	44.3766	Within Groups	623.5594	4	155.8898	TY.33666	CD.
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at .05 = 7.71 F at .01 = 21 20	= 7.71 			
The F ratio showed signific hypothesis was rejected. Th ences between the groups in	howed signed ts rejected the group	The F ratio showed significance at the .01 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis; that there was significant differences between the groups in knee extension strength, was accepted.	.01 level o hypothesis lon strengt	f confidenc that ther h, was acce	e and, the e was sign pted.	refore, t ificant d	he null iffer-

.

TABLE LI

III
7
BLE

Group	Mean	Source of Variance	Sum of Squares	Degre∉s of Freedom∷	Mean Square	"F" Ratio	Signifi- cance
Most Active	31.5433	Between Groups	71.6912	Ч	71.6912	שכוושט	5 2
Least Active 24.6300	24.6300	Within Groups	297.3626	ц.	74.3406	• • • • •	.C.N
From Table F for $df_1 = 1$ and	for df ₁ =	1 and $df_2 = 4$ .	F at .05 = 7.71 F at .01 = 21 20	= 7.71 = 21.20			
The F ratio was not found to	as not for		cant; there	be significant; therefore, the null hypothesis was accepted	ull hypoth	esis was	accepted.

ANALYSIS OF VARIANCE OF SHOULDER EXTENSION STRENGTH IN GROUP II

### TABLE LIV

ANALYSIS OF VARIANCE OF ELBOW EXTENSION STRENGTH IN GROUP II

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	21.2500	Between Groups	63.3750	Г	63.3750	שנכטכ וו	
Least Active 14.7500	14.7500	Within Groups	22.2500	η	5.5625	02020.11	· ·
From Table F for $df_1 = 1$ and	for df ₁ =	1 and df ₂ = $\mu$ .	F at .05 = 7.71 F at .01 = 21.20	= 7.71 = 21.20			
The F ratio showed significs hypothesis was rejected. Th ences between the groups in	showed signed ts rejected to the group	The F ratio showed significance at the .05 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis; that there was significant differences between the groups in elbow extension strength, was accepted.	.05 level c hypothesis sion streng	nce at the .05 level of confidence and, a alternate hypothesis; that there was elbow extension strength, was accepted.	e and, the e was sigr epted.	erefore, tl lificant d	he null iffer-

Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	53.1333	Between Groups	140.3600	T	140.3600		
Least Active 43.4600	43.4600	Within Groups	996.6962	4	249.1740	05506.	. C. M
From Table F for df ₁ = 1 and	for df ₁ =	$1 \text{ and } df_2 = 4.$	F at $.05 = 7.71$	= 7.71 = 7.71			
The F ratio w	ias not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted	cant; there	efore, the n	ull hypothe	esis was	accepted.

ANALYSIS OF VARIANCE OF ELBOW FLEXION STRENGTH IN GROUP II

TABLE LV

TABLE LVI

ANALYSIS OF VARIANCE OF ANKLE EXTENSION STRENGTH IN GROUP II

c		Source of		Degrees of	Mean	드 년 11 년 11 년 11 년	Signifi-
uroup	mean	Variance	squares	r'reedom	square	катіо	cance
Most Active	29.9166	29.9166 Between Groups	117.0416	1	117.0416	E 06768	U N
Least Active 21.0833	21.0833	Within Groups	78.5833	4	19.6458	00106.0	
From Table F	for df _l =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at .05 = 7.71 F at .01 = 21.20	= 7.71 = 21.20			
The F ratio w	vas not fou	The F ratio was not found to be significant, therefore, the null hypothesis was accepted.	cant, there	efore, the n	ull hypoth	esis was	accepted.

II	Sig
GROUP	"F"
IN	=
OF SHOULDER HORIZONTAL FLEXION STRENGTH IN GROUP II	Mean
LEXION	s of
ZONTAL F	Degrees
HORI?	Sum of
SHOULDER	
OF	0 L
OF VARIANCE	Source of
S	
ANALYSI	

TABLE LVII

Signifi-

Group	Mean	Variance	Squares	Freedom	Square	Ratio	cance
Most Active	21.0500	Between Groups	42.0820		42.0820		
Least Active 15.7533	15.7533	Within Groups	60.4662	4	15.1165	<.10303	N. 0.
From Table F for $df_1 = 1$ and	for df _l =	1 and $df_2 = 4$ .	Fat.05 = 7.71 Fot 01 = 21 20	= 7.71 = 21 20			
The F ratio was not found to	as not fou	Ind to be significant, therefore, the null hypothesis was accepted.	rav. vr cant, there	fore, the	null hypoth	lesis was	accepted.

## TABLE LVIII

ANALYSIS OF VARIANCE OF SHOULDER FLEXION STRENGTH IN GROUP II

Group	Mean	Source of Variance	Sum of ] Squares	Degrees of Freedom	Mean Square	ידי Ratio	Signifi- cance
Most Active	37.1266	Between Groups	317.1173	Г	317.1173		
Least Active 22.5866	22.5866	Within Groups	133.7975	η	33.4493	20004.6	
From Table F for df ₁ = 1 and	for df ₁ = .	1 and df ₂ = $4$ .	Fat.05 = 7.71 Fat.01 = 21.20	= 7.71 = 7.71 = 21.20			
The F ratio showed signif hynothesis was rejected.	howed sign:	The F ratio showed significance at the .05 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis: that there was significant differ-	.05 level o	f confidence that there	e and, the was sign	refore, t ificant d	he null iffer-

j0 nypounesis was rejected. The alternate hypounesis, that there was sences between the groups in shoulder flexion strength, was accepted.

	ANALYSIS OF VA	DF VARIANCE OF TRUNK FLEXION STRENGTH IN GROUP II	NUNK FLEXION	STRENGTH I	N GROUP II		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Most Active	30.9366	Between Groups	39.6808	-	39.6808	1 L O O O	
Least Active 25.7933	25.7933	Within Groups	158.9185	4	39.7296	11066.	. C. M
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	Fat.05 = 7.71 Fat.01 = 21.20	= 7.71 = 7.71			
The F ratio	was not fou	The F ratio was not found to be significant, therefore, the null hypothesis was accepted.	cant, there	fore, the n	ull hypoth	esis was	accepted.

TABLE LX

ANALYSIS OF VARIANCE OF TRUNK EXTENSION STRENGTH IN GROUP II

Group	Mean	Source of Variance	Sum of I Squares	Degrees of Freedom:	Mean Square	"F" Ratio	Signif- cance
Most Active	45.6700	Between Groups 1007.7695	1007.7695		1007.7695		
Least Active 19.7500	19.7500	Within Groups	155.8796	4	38.9699	07000.07	T 0 •
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 4$ .	F at .05 = 7.71 F at .05 = 7.71	= 7.71 00 10 =			
The F ratio showed signi:	showed sigr	The F ratio showed significance at the .01 level of confidence and, therefore the null	.01 level o	f confiden	ce and, the	erefore the	e null

Ō ences between the groups in trunk extension strength, was accepted.

TABLE LIX

	ANALYSIS	ANALYSIS OF VARIANCE OF PER CENT BODY FAT IN GROUP III	CENT BOD	Y FAT IN GRO	UP III		
Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedoms	Mean Square	"F" Ratio	Signifi- cance
Majors	24.8588	Between Groups	.9955	г	.9955	900 E E	0
Non-majors	24.4727	Within Groups	217.4029	26	8.3616	00677.	• C • N
From Table F	r for df _l =	From Table F for $df_1 = 1$ and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7.72	= 4.22 = 7 72			
The F ratio	was not fc	The F ratio was not found to be significant; therefore, the null hypothesis was accepted	cant; ther	efore, the n	ull hypoth	lesis was	accepted.

TABLE LXII

ANALYSTS OF VARIANCE OF BODY WEIGHT IN KILOGRAMS IN GROUP III

	TURN JO CICITRIN	ARMARING OF DODI WEIGHT IN MITTOOMARIN IN GIVOR TH		T CHANNOLLAN	TT TOOUD N	4	
Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedoms	Mean Square	"F" Ratio	Signifi- cance
Majors	60.3529	Between Groups	154.3546		154.3546		U Z
Non-majors	55.4642	Within Groups	924.6096	26	35.5619	4.54045	.C.N
From Table	From Table F for df ₁ = and	and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7.72	= 4.22 = 7 72			
The F rat1(	) showed sig	The F ratio showed significance at the .05 level of confidence and, therefore the	.05 level	.05 level of confidence and, therefore the	e and, the	refore th	e.

null hypothesis was rejected. The alternate hypothesis; that there was significant differences between the groups in body weight in kilograms, was accepted.

TABLE LXI

97

ţ

н
Н
Н
×
Ц
щ
Ę
BLI
Ę

III	
IN GROUP	
Ĥ	
AT-FREE BODY WEIGHT IN KILOGRAMS	
NI	
WEIGHT IN	
ВОDҮ	
FAT-FREE	
ОF	
VARIANCE OF	
ОF	
ANALYSIS OF V.	

Group	Mean	Source of Variance	Sum of I Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	45.2352	Between Groups	77.9833	1	77.9833		
Non-majors	41.8181	Within Groups	332.6951	26	12.7959		•
From Table F	From Table F for df ₁ = 1 and	and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7.72	= 4.22 = 7.72			
The F ratio hypothesis w ences betwee	The F ratio showed significs hypothesis was rejected. Th ences between the groups in	The F ratio showed significance at the .05 level of confidence and, therefore, hypothesis was rejected. The alternate hypothesis; that there was significant ences between the groups in fat-free body weight in kilograms, was accepted.	.05 level o hypothesis dy weight in	f confidence ; that there n kilograms,	e and, the e was sign was acce	and, therefore, t was significant d was accepted.	the null differ-

TABLE LXIV

ANALYSIS OF VARIANCE OF STANDING HEIGHT (IN CENTIMETERS) IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	וידי Ratio	Signifi- cance
Majors	165.8764	Between Groups 109.9941	109.9941	1	109.9941		0 2
Non-majors	161.8181	Within Groups	828.1469	26	31.8518	1000+•0	. C.
From Table F	for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7.72	i = 4.22 = 7 72			
The F ratio	was not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; ther	efore, the r	ull hypoth	iesis was	accepted.

	ANALYSIS	ANALYSIS OF VARIANCE OF PONDERAL INDEX IN GROUP III	ONDERAL IN	DEX IN GROUI	III d		
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	12.7570	Between Groups	.1914		.1914		
Non-majors	12.9263	Within Grups	7.9964	26	.3075	.02744	
From Table F	for df _l =	From Table F for $df_1 = 1$ and $df_2 = 26$ .	Fat.05 = . Fat.01 = .	= 4.22 = 7.72			
The F ratio was not found to	was not fou	be		1	the null hypothesis	esis was	accepted.
		TABI	TABLE LXVI				
ANALYS	ANALYSIS OF VARIANCE	NNCE OF CALORIC EXPENDITURE (ONE DAY AVERAGE) IN GROUP III	KPENDITURE	(ONE DAY AV	/ERAGE) IN	GROUP III	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	1896.9411	Between Groups	4081593.5296	1	4081593.5296	6 	

From Table F for  $df_1 = 1$  and  $df_2 = 26$ . F at .05 = 4.22 F at .01 = 7.72 The F ratio showed significance at the .01 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis; that there was significant differences between the groups in caloric expenditure (one day average), was accepted. F for df₁

TABLE LXV

99

.01

12.25354

333095.0991

26

8660472.5780

Within Groups

1115.1818

Non-majors

I

н
н
$\geq$
×
Ц
Ш
E
m
A
FH

IN LITERS PER	
<b>/GEN UPTAKE</b>	
OXYGEN	JP III
MAXIMAL	IN GROUN
VALYSIS OF VARIANCE OF MAXIMAL OXYC	MINUTE
ОF	
ANALYSIS	

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom.	Mean Square	"F" Ratio	Signifi- cance
Majors	2.3534	Between Groups	1.1447	-1	1.1447		
Non-majors	1.9394	Within Grups	2.4086	26	.0926	15/02.21	T ) .
From Table F for df ₁ = 1 and	F for df ₁	= 1 and df ₂ = 26.	F at .05 = 4.22	= 4.22			

The F ratio showed significance at the .01 = 7.72hypothesis was rejected. The alternate hypothesis; that there was significant differences between the groups in maximal oxygen uptake in liters per minute, was accepted.

## TABLE LXVIII

# ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF BODY III WEIGHT IN LITERS PER MINUTE IN GROUP

Group	Mean	Source of Nariance	Sum of Squares	Degrees of Freedom:	Mean Square	"F" Ratio	Signifi- cance
Majors	.0378	Between Groups	.0000	-	. 0000	ווטטכר כ	U Z
Non-majors	.0353	Within Groups	.0003	26	.0000	+0707.0	
From Table F	'for df ₁	From Table F for $df_1 = and df_2 = 26$ .	F at .05 = 4.22	5 = 4.22			
The F ratio was	was not	<pre>- F at .01 = 7.72 not found to be significant; therefore, the null hypothesis was accepted</pre>	F at .0] lcant; the	r = 7.72 refore, the	null hypot	thesis was	accepted.

TABLE LXIX

	BODY	BODY WEIGHT IN LITERS PER MINUTE IN GROUP III	S PER MINU	TE IN GROUP I			
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom∷	Mean Square	"F" Ratio	Signifi- cance
Majors	.0519	Between Groups	.000	1	.000		
Non-majors	.0466	Within Groups	.0008	26	.0000	1+74C.C	•
From Table F for df ₁ = 1 and df ₂ = The F ratio showed significance at hypothesis was rejected. The alter ences between the groups in maximal in liters per minute, was accepted.	for df _l = showed sign as rejected n the group r minute, w	From Table F for $df_1 = 1$ and $df_2 = 26$ . F at .05 = 4.22 F at .01 = 7.72 The F ratio showed significance at the .01 level of confidence and, therefore, the null hypothesis was rejected. The alterante hypothesis; that there was significant differences between the groups in maximal oxygen uptake per kilogram of fat-free body weight in liters per minute, was accepted.	F at .05 F at .01 01 level . hypothesi fen uptake	$df_2 = 26$ . F at .05 = 4.22 F at .01 = 7.72 Ince at the .01 level of confidence and, therefore, the nul is alterante hypothesis; that there was significant differ- maximal oxygen uptake per kilogram of fat-free body weight cepted.	and, the was sigr of fat-f	erefore, t ilficant d Free body	he null iffer- weight

ANALYSIS OF VARIANCE OF MAXIMAL OXYGEN UPTAKE PER KILOGRAM OF FAT-FREE

TABLE LXX

ANALYSIS OF VARIANCE OF TIME (IN MINUTES) OF MAXIMAL OXYGEN UPTAKE ATTAINMENT IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom:	Mean Square	"F" Ratio	Signifi- cance
Majors	14.7647	Between Groups	.0093	1	.0093		
Non-majors	14.7272	Within Groups	59.2406	26	2.2784	.00411	. C. M
From Table F fo	for df ₁ = and	ų į	$f_2 = 26.$ F at $.05 = 1$ F at $.01 = 7$	+-	22	•	

The F ratio was not found to be significant; therefore, the null hypothesis was accepted.

TABLE LXXI

ANALYSIS OF VARIANCE OF THE HEART RATE SIMULTANEOUS WITH THE MAXIMAL OXYGEN UPTAKE ATTAINMENT IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Me <b>an</b> Square	"F" Ratio	Signifi- cance
Majors	198.1764 Bet	Between Groups	46.2307	1	46.2307		C M
Non-majors	187.5454	187.5454 Within Groups	2501.1978	26	96.1999	10004.	. C. M
From Table F	for df_ =	From Table F for $df_1 = 1$ and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7.72	= 4.22 = 7.72			
The F ratio was not found to	was not fou	nd to be significant; therefore, the null hypothesis was accepted	cant; there	efore, the n	ull hypoth	esis was	accepted.

TABLE LXXII

ANALYSIS OF VARIANCE OF THE HEART RATE OF THE LAST MINUTE ON THE TREADMILL OF GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"די" Ratio	Signifi- cance
Majors	195.3529	Between Groups 111.1858	111.1858		111.1858	0 3 7 1 2 1	2
Non-majors 191.2727	191.2727	Within Groups 1684.0641	1684.0641	26	64.7716	0001/.1	. 0
From Table The F ratic	From Table F for df _l = 1 and The F ratio was not found to	: l and df ₂ = 26. wund to be signifi	F at .05 = 4.22 F at .01 = 7.72 icant; therefore,	df ₂ = 26. F at .05 = 4.22 F at .01 = 7.72 be significant; therefore, the null hypothesis was accepted.	ull hypothe	esis was	accepted.

н
н
Н
×
×
Ы
Ы
Ч
Д
A
E

ANALYSIS	ANALYSIS OF VARIANCE OF	NCE OF THE TOTAL	TREADMILL	THE TOTAL TREADMILL TIME (IN MINUTES) IN GROUP III	UTES) IN (	FROUP III	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	יידיי Ratio	Signifi- cance
Majors	15.1176	Between Groups	.0924		4260.		
Non-majors	15.0000	Within Groups	59.2647	26	2.2794	66040.	N. 0.
From Table F for $df_1 = 1$ and	for df _l =	1 and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7.72	= 4.22 = 7 72			
The F ratio was not found to	as not fou	_	cant; ther	be significant; therefore, the null hypothesis was accepted	ull hypoth	lesis was	accepted.

TABLE LXXIV

ANALYSIS OF VARIANCE OF TOTAL STRENGTH IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	ידי Ratio	Signifi- cance
Majors	407.1176	407.1176 Between Groups	23197.5632	2 1	23197.5632	ו ויטכככ	
Non-majors	348.1818	348.1818 Within Groups	136869.4010 26	0 26	5264.2077	4.40000	Cn•
From Table F	for df _l =	From Table F for $df_1 = 1$ and $df_2 = 26$ .	F at $.05 = 4.22$ F at $01 = 7.72$	= 4.22 = 7 72			
The F ratio showed signif hypothesis was rejected. ences between the groups	showed sign as rejected n the group	The F ratio showed significance at the .05 level of confidence and, therefore, the null hypothesis was rejected. The alternate hypothesis, that there was significant differences between the groups in total strength, was accepted.	.05 level o hypothesis gth, was ac	f confidenc t that ther cepted.	e and, ther e was signi	efore, t ficant d	he null iffer-

	ANALYSIS	ANALYSIS OF VARIANCE OF HIP FLEXION STRENGTH IN GROUP III	LP FLEXION	STRENGTH IN	GROUP III		
Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	60.2029	Between Groups	714.4497	-1	741.4497		
Non-majors	49.8600	Within Grups	5001.5993 26	26	192.3692	CY24 1.5	• 0 • N
From Table F	^r for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 26$ .	F at .05 = 4.22 E .t .01 = 7.72	= 4.22 - 7.72			
The F ratio	was not fo	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; ther	- 1.12 efore, the n	ull hypoth	esis was	accepted.

TABLE LXXV

TABLE LXXVI

ANALYSIS OF VARIANCE OF HIP EXTENSION STRENGTH IN GROUP III

						=	
Group	Mean	source of Variance	sum of I Squares	Degrees of Freedom	Mean Square	Ratio	Signifi- cance
Majors	47.1676	Between Groups	408.8247	-1	408.8297		Li C
Non-majors	39.3436	Within Grups	2485.0359	26	95.5783	C+//>•+	· ·
From Table F for df ₁ = and	For df ₁ =	and $df_2 = 26$ .	Fat.05 = 4.22 Fat.01 = 11.72	= 4.22 = 11.72			
The F ratio hypothesis v ences betwee	showed sign vas rejected en the group	The F ratio showed significance at the .05 level of confidence and, therefore, the nu hypothesis was rejected. The alternate hypothesis, that there was significant differences between the groups in hip extension strength, was accepted.	.05 level or hypothesis on strength	f confidence , that there , was accept	confidence and, therefore, the null that there was significant differ- was accepted.	erefore, ificant d	the null iffer-

н
н
$\sim$
5
$\sim$
50
12
н
Ы
Ц
щ
4
E

ANALYSIS OF VARIANCE OF KNEE EXTENSION STRENGTH IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"ፑ" Ratio	Signifi- cance
Majors	69.6858	Between Grups	993.2195	Г	993.2195	80050 6	0 2
Non-majors	57.4909	Within Grups	8576.5007	26	329.8654	06070.0	.C.N
From Table F The F ratio	r for df _l = was not fou	From Table F for df ₁ = 1 and df ₂ = 26. F at .05 = 4.22 F at .01 = 7.72 The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	F at .05 = 4.22 F at .01 = 7.72 cant; therefore,	= 4.22 = 7.72 efore, the n	ull hypoth	esis was	accepted.

TABLE LXXVIII

SHOULDER EXTENSION STRENGTH IN GROUP III ANALYSIS OF VARIANCE OF

						+ + +	
Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	יודיי Ratio	Signifi- cance
Majors	26.5841	Between Groups	70.1691		70.1691		
Non-majors	23.3427	Within Groups	1017.6394	26	39.1399	т. 1 Ус 1 1	. C. N
From Table	F for df ₁ =	From Table F for $df_1 = 1$ and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7.72	= 4.22 = 7.72			
The F ratio	was not fo	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	cant; there	sfore, the n	ull hypoth	nesis was	accepted.

		TTT 10000 MT MIDNING MOTORING MOTORIA IN ROMANNAL IN CITATION				4	
Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	17.7352	Between Groups	18.8052	-	18.8052		
Non-majors	s 16.0572	Within Groups	468.1472	26	18.0056	L•0444	• 0 • N
From Table	<pre>&gt; F for df₁ =</pre>	From Table F for $df_1 = 1$ and $df_2 = 26$ .	F at .05 = 4.42 F at .01 = 7.72	= 4.42 = 7.73			
The F rati	to was not fou	The F ratio was not found to be significant; therefore, the null hypothesis was accepted.	ant; there	- /./ c efore, the nu	<pre>ll hypoth</pre>	iesis was	accepted.

ANALYSIS OF VARIANCE OF ELBOW EXTENSION STRENGTH IN GROUP III

TABLE LXXIX

TABLE LXXX

ANALYSIS OF VARIANCE OF ANKLE EXTENSION STRENGTH IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signif- cance
Majors	41.0858	Between Groups	20.6347	1	20.6347		
Non-majors	42.8436	Within Grups	4745.5868	26	182.5225	COCTT.	.C.N
From Table F for $df_1 = 1$ and	F for df ₁ =	1 and $df_2 = 26$ .	F at .05 = 4.42 F at .01 = 7 72	= 4.42 = 7 72			
The F ratio was not found to	was not fo		cant; ther	be significant; therefore, the null hypothesis was accepted	ull hypothe	esis was	accepted.

IXX.
LX LX
BLE
ΤA

III
GROUP
NI
STRENGTH
FLEXION
ELBOW
ОF
VARIANCE
ОF
ANALYSIS

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	27.3017	Between Groups	40.3844		40.3844	רון כי ס ר	2
Non-majors	24.8427	Within Groups	563.4808	26	21.6723	т.0034т	. C. N
From Table F for $df_1 = 1$ and	for df_ =	1 and df ₂ = 26. F at .05 = $4.22$ F at .01 = 7.72	F at .05 = 4.22 F at .01 = 7.72	= 4.22 = 7.72			
The F ratio was not found to	was not fou		cant; there	be significant; therefore, the null hypothesis was accepted.	ull hypoth	nesis was	accepted.

2, 2 • 2 b

# TABLE LXXXII

ANALYSIS OF VARIANCE OF SHOULDER HORIZONTAL FLEXION STRENGTH IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Sum of Degrees of Squares Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	17.7447	Between Groups	30.6417	г	30.6417	08890 0	0 2
Non-majors	15.6027	Within Groups	385.0792	26	14.8107	K0000.2	
From Table F for df ₁ = 1 and	for df ₁ =	1 and $df_2 = 26$ .	Fat.05 = 4.22 Fot.01 = 7.72	= 4.22 = 7.73			
The F ratio was not found to	was not fou	and to be signifi	cant; ther	be significant; therefore, the null hypothesis was accepted.	ull hypoth	iesis was	accepted.

IIIXXX	
SLE LI	
TAB	

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signif- cance
Majors	29.3758	Between Groups 130.1786	130.1786		130.1786		
Non-majors	24.9609	Within Groups 1191.4785	1191.4785	26	45.8260	Z.040/J	. n
From Table	From Table F for df ₁ = 1 and	$1 \text{ and } df_2 = 26.$	F at .05 = 4.22 F	= 4.22 - 7.72			
The F ratio	The F ratio was not found to		icant; ther	be significant; therefore, the null hypothesis was accepted.	ull hypoth	esis was	accepted.

ANALYSIS OF VARIANCE OF SHOULDER FLEXION STRENGTH IN GROUP III

TABLE LXXXIV

ANALYSIS OF VARIANCE OF TRUNK FLEXION STRENGTH IN GROUP III

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	"F" Ratio	Signifi- cance
Majors	30.2100	Between Groups	1.3964		1.3964		
Non-majors	29.7527	Within Groups	3100.6236	26	119.2547	T/TTO.	
From Table F for df ₁ = 1 and	، for df _l =	1 and df ₂ = 26.	F at .05 = 4.22	= 4.22 5.2			
The F ratio was not found to	was not fo		r'at .01 = 7.72 cant; therefore, '	F at .01 = $7.72$ be significant; therefore, the null hypothesis was accepted.	ull hypoth	esis was	accepted.

LXXXV
TABLE

Group	Mean	Source of Variance	Sum of Squares	Degrees of Freedom	Mean Square	ידי Ratio	Signifi- cance
Major	37.4129	Between Groups 1112.9849	1112.9849	1	1112.9849		
Non-majors	24.5036	Within Groups	2837.2234	26	109.1239	1266T.UT	10.
From Table F for df ₁ = 1 and	۹ for df _l =	1 and $df_2 = 26$ .	F at .05 = 4.22 F at .01 = 7 72	= 4.22 = 7 72			
The F ratio	showed sig	The F ratio showed significance at the	.01 level	.01 level of confidence and, therefore, the null	ce and, the	refore, t	he null

ANALYSIS OF VARIANCE OF TRUNK EXTENSION STRENGTH IN GROUP III

hypothesis was rejected. The alternate hypothesis; that there was significant differ-ences between the groups in trunk extension strength, was accepted.

.

### CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

### Summary

This study was designed with the intent of determining the relationship of physical activity, strength, and body composition to the maximal work capacity of young women.

In order to realize this purpose four main objectives were selected:

- to determine maximal oxygen capacity of young women,
- to determine the effect of body composition on maximal oxygen consumption,
- 3. to determine the relationship of strength and maximal oxygen consumption, and
- 4. to determine the differences between active and less active individuals in relation to maximal oxygen consumption.

Data on twenty-eight college women was obtained in the following areas:

- a. Body Composition: The body fat and fat-free body weight was calculated from predicted specific gravity.
- Physical Activity: Habitual physical activity was measured by an activity history recall questionnaire.

- c. Strength: Cable tension strength was assessed in eleven sites throughout the body.
- d. Maximal Work Capacity: Maximal oxygen consumption was determined while performing strenuous work which consisted of running at a constant speed of 6 mph on a motor driven treadmill with a grade increase of one per cent each minute until the subject was unable to continue. The run was preceded by a ten minute warm up walk at 3.5 mph on zero grade.

### Conclusions

From the statistical analysis of data the following conclusions were drawn:

### Pearson Product-Moment Correlation

- 1. The two body composition measures indicating the highest relationship with maximal oxygen consumption were body weight (r = .64) and fat-free body weight (r = .64).
- 2. Body weight and fat-free body weight indicated a higher relationship with daily caloric expenditure than other body composition parameters. The correlations were r = .69 and r = .62 respectively.
- 3. Maximal oxygen consumption and trunk extension strength indicated a higher relationship with daily caloric expenditure than other metabolic and

strength parameters. Maximal oxygen consumption and trunk extension strength each correlated with daily caloric expenditure r = .59.

- 4. The two strength measurements indicating the highest relationship with maximal oxygen consumption were hip flexion (r = .51) and knee extension (r = .50).
- 5. The best indicators of total strength were hip flexion (r = .88), knee extension (r = .84), and elbow flexion (r = .83).

Elementary linkage analysis. The results of the Elementary Linkage Analysis indicated:

- inherent relationships in strength and metabolic responses,
- 2. that the subjects who possessed more body fat and a greater fat-free body weight were more active and were stronger in trunk extension strength, and
- 3. that the subjects who possessed a greater fat-free body weight were able to consume more oxygen and were able to run for a longer period of time before becoming exhausted.

### Analysis of Variance

One way analysis of variance using unequal subclasses was applied to determine if there were significant differences between the sub-groups. The groups as classified into sub-groups were:

- Group I: the upper 20 per cent or "active subjects as compared to the lower 20 per cent or "less active" subjects determined by a one day average of caloric expenditure,
- Group II: the upper 10 per cent or "most active" subjects as compared to the lower 10 per cent or "least active" subjects determined by a one day average of caloric expenditure, and

Group III: physical education majors as compared to nonphysical education majors.

Results of analysis of variance for the upper 20 per cent or "active" subjects as compared to the lower 20 per cent or "less active" subjects. The significant differences were:

<u>Body composition</u>. The "active" subjects were heavier and possessed a greater fat-free body weight than the "less active" subjects. (Significance = .01) <u>Physical Activity</u>. The "active" subjects expended more energy per day than the "less active" subjects. (Significance = .01)

<u>Maximal Work Capacity</u>. The "active" subjects possessed a greater maximal oxygen consumption in liters per minute than the "less active" subjects. (Significance = .05)

Strength. The "active" subjects were stronger in trunk flexion strength than the "less active" subjects. (Significance = .01) Results of analysis of variance for the upper 10 per cent or "most active" subjects as compared to the lower 10 per cent or "least active" subjects. The significant differences were:

<u>Body composition</u>. The "most active" subjects possessed more body fat, were heavier, and possessed a greater fat-free body weight than the "least active" subjects. (Significance = .01)

The "most active" subjects had a lower ponderal index than the "least active" subjects. (Significance = .05) <u>Physical activity</u>. The "most active" subjects expended more energy per day than the "least active" subjects. (Significance = .01)

<u>Maximal work capacity</u>. The "most active" subjects possessed a greater maximal oxygen consumption in liters per minute than the "least active" subjects. (Significance = .01)

The "most active" subjects possessed a greater maximal oxygen consumption per kilogram of fat-free body weight in liters per minute than the "least active" subjects. (Significance = .05)

<u>Strength.</u> The "most active" subjects possessed a greater total strength and were stronger in hip flexion strength, hip extension strength, knee extension strength, elbow extension strength, and shoulder flexion strength than the "least active" subjects. (Significance = .05) The "most active" subjects were stronger in trunk extension strength than the "least active" subjects. (Significance = .01)

Results of analysis of variance for the physical education majors as compared to the non-physical education majors. The significant differences were:

Body composition. The physical education majors were heavier and possessed a greater fat-free body weight than the non-physical education majors. (Significance = .05)

> <u>Physical activity</u>. The physical education majors expended more energy per day than the non-physical education majors. (Significance = .01) <u>Maximal work capacity</u>. The physical education majors possessed a greater maximal oxygen consumption in liters per minute than the non-physical education majors. (Significance = .01)

The physical education majors possessed a greater maximal oxygen consumption per kilogram of fat-free body weight in liters per minute than the nonphysical education majors. (Significance = .05) <u>Strength</u>. The physical education majors possessed a greater total strength and were stronger in hip extension strength than the non-physical education majors. (Significance = .05) The physical education majors were stronger in trunk extension strength than the non-physical education majors.

(Significance = .01)

In general then it was found that:

- 1. The "active" subjects (upper 20 per cent), "most active" subjects (upper 10 per cent), and the physical education majors:
  - a. possessed more fat-free body weight,
  - b. were more active,
  - c. possessed a greater oxygen consumption, and
  - d. were stronger

than the "less active" subjects (lower 20 per cent), "least active" subjects (lower 10 per cent), and the non-physical education majors respectively.

2. The physical education majors were most like the "most active" subjects (upper 10 per cent) except that the "most active" subjects displayed greater strength in more areas of the body as compared to the "least active" subjects (lower 10 per cent) than the physical education majors as compared to the non-physical education majors.

### Recommendations

- A valid method to assess habitual physical activity which would classify subjects into activity groups is vitally needed.
- 2. A larger number of randomly selected subjects are necessary to establish norms and to determine interrelationships of body composition, metabolic, and functional characteristics of women of various ages.

BIBLIOGRAPHY

.

### BIBLIOGRAPHY

### Books

- American Medical Association. <u>Handbook of Nutrition</u>. Second edition. New York: Country Life Press Corporation, 1951.
- Astrand, P. Experimental Studies of Physical Working Capacity in Relation to Sex and Age. Copenhagen: Munksgaard, 1952.
- Bard, Phillip (ed.). <u>Medical Physiology</u>. St. Louis: The C. V. Mosby Company, 1961.
- Brozek, Josef (ed.). Body Measurements and Human Nutrition. Committee on National Anthropometry of the Food and Nutrition Board, National Research Council. Detroit: Wayne University Press, 1956.
- Clarke, H. Harrison. <u>A Manual: Cable Tension Strength Tests</u>. Chicopee: Brown-Murphy Company, 1953.
- Consolazio, C. F., R. E. Johnson, and L. J. Pecora. <u>Physiological Measurements of Metabolic Functions in</u> <u>Man. New York: McGraw-Hill Book Company, 1963.</u>
- Johnson, Warren R. (ed.). <u>Science and Medicine of Exercise</u> and Sports. New York: Harper and Brothers Publishers, 1960.
- Society of Actuaries. <u>Build and Blood Pressure Study</u>. Chicago: Society of Actuaries, 1959.

### Periodicals

- Astrand, Irma. "Aerobic Work Capacity in Men and Women With Special Reference to Age," <u>Acta Physiologica Scandinav-</u> <u>ica</u>, Vol. 49, Supplementum 169:1-90, 1960.
- Astrand, P. O. "Human Physical Fitness With Special Reference to Sex and Age," Physiological Reviews, 36: 307-335, July, 1956.
- Astrand, P. O. and I. Rhyming. "A Nonogram for Calculation of Aerobic Capacity (Physical Fitness) from Pulse Rate During Submaximal Work," <u>Journal of Applied Physiology</u>, 7:218-221, July, 1954-May, 1955.

- Billings, C. E., J. F. Tomashefski, E. T. Carter, and W. F. Ashe. "Measurement of Human Capacity for Aerobic Muscular Work," <u>Journal of Applied Physiology</u>, 15:1001-1006, January-November, 1960.
- Buskirk, E. and H. Taylor. "Relationships Between Maximal Oxygen Intake and Components of Body Composition," Federation Proceedings, 13:21, March -December, 1954.
- Darling, Robert C. "The Significance of Physical Fitness," Archives, of Physical Medicine, 28:140-145, 1947.
- Henderson, Y. and A. L. Prince. "The Oxygen Pulse and the Systolic Discharge," <u>American Journal of Physiology</u>, 35:106-115, 1914.
- Holger, Wahlund. "Determination of the Physical Working Capacity," <u>Acta Medica Scandinavica</u>, Supplementum 215:5-74, 1948.
- Johnson, R. E., L. Brouha, and R. C. Darling. "A Test of Physical Fitness for Strenuous Exertion," <u>Revue</u> <u>Canadianne De Biologie</u>, 1:491-503, June, 1942.
- Knehr, C. A., D. B. Dill, and N. Neufield. "Training and Its Effects on Man at Rest and at Work," <u>American</u> <u>Journal of Physiology</u>, 136:148-155, March-July, 1942.
- LeBlanc, J. A. "Use of Heart Rate as an Index of Work Output," Journal of Applied Physiology, 10:275-280, January-March, 1957.
- Mahadeva, K., R. Passmore, and B. Woolf. "Individual Variations in the Metabolic Cost of Standardized Exercises: The Effects of Food, Age, Sex, and Race," <u>American</u> <u>Journal of Physiology</u>, 121:225-231, July-September, 1953.
- McQuitty, Louis L. "Elementary Linkage Analysis for Isolating Orthogonal and Oblique Types and Typal Revelancies," Journal of Educational and Psychological Measurement, Vol. 17, No. 2, Summer, 1957.
- Metheny, E., L. Brouha, R. E. Johnson, and W. H. Forbes. "Some Physiologic Responses of Women and Men to Moderate and Strenuous Exercise: A Comparative Study," <u>American Journal of Physiology</u>, 137:318-326, August-November, 1942.
- Mitchell, J. H., B. J. Sproule, and C. B. Chapman. "The Physiological Meaning of the Maximal Oxygen Intake Test," Journal of Clinical Investigation, 37:538-547, 1958.

- Rathbun, E. W. and N. Pace. "Studies on Body Composition I: The Determination of Total Body Fat by Means of the Body Specific Gravity," Journal of Biological Chemistry, 158:667-691, 1945.
- Robinson, Sid. "Experimental Studies of Physical Fitness in Relation to Age," <u>Arbeitsphysiologie</u>, 10:251-321, July, 1938.
- Schneider, E. C. "A Study of Responses to Work on a Bicycle Ergometer," <u>American Journal of Physiology</u>, 97:353-364, April-July, 1931.
- Seltzer, Carl. "Body Build and Oxygen Metabolism at Rest and During Exercise," <u>American Journal of Physiology</u>, 129:1-13, April, 1940.
- Taylor, Craig. "Some Properties of Maximal and Submaximal Exercise With Reference to Physiological Variation and the Measurement of Exercise Tolerance," <u>American</u> <u>Journal of Physiology</u>, 142:200-212, August-December, 1944.

_____. "Studies in Exercise Physiology," American Journal of Physiology, 135:27-42, December 1941, February, 1942.

- Taylor, H. L., E. Buskirk, and A. Henschel. "Maximal Oxygen Intake as an Objective Measure of Cardio-Respiratory Performance," Journal of Applied Physiology, 8:73-80, July, 1955, May, 1956.
- Von Dobeln, Wilhelm. "Human Standard and Maximal Metabolic Rate in Relation to Fat-free Body Mass," Acta Physiologica Scandinavica, Vol. 37, Supplementum 126: 1-70, 1956.

. "Maximal Oxygen Intake, Body Size, and Total Hemoglobin in Normal Man," <u>Acta Physiologica Scan</u>dinavica, 38:193-199, September, 1957.

- Welch, B. E., R. P. Riendeau, C. E. Crisp, and R. S. Isenstein. "Relationship of Maximal Oxygen Consumption to Various Components of Body Composition." <u>Journal of Applied</u> Physiology, 12:395-398, May, 1958.
- Wyndham, C. H., N. B. Strydom, J. S. Maritz, J. E. Morrison, J. Peter, and Z. U. Potgieter. "Maximum Oxygen Intake and Maximum Heart Rate During Strenuous Work," <u>Journal</u> of Applied Physiology, 14:927-936, 1959.

- Young, C. M., M. E. Martin, M. McCarthy, M. J. Marniello, E. Harmuth, and Feyer, J. "Body Composition of Young Women," <u>Journal of the American Dietetic</u> <u>Association</u>, 38:332-340, April, 1961.
- Young, C., M. E. Martin, R. Tensuan, and J. Blondin. "Predicting Specific Gravity and Body Fatness in Young Women," Journal of the American Dietetic Association, 40:102-107, February, 1962.

APPENDICES

### APPENDIX A

### RAW DATA ON PHYSICAL CHARACTERISTICS OF SUBJECTS, BODY COMPOSITION, PHYSICAL ACTIVITY, MAXIMAL WORK CAPACITY, AND STRENGTH

LXXXVI	
TABLE	

RAW DATA ON PHYSICAL CHARACTERISTICS OF SUBJECTS

2200 2010 2010 2010 2010 2010 2010 2010	∞∞∞∞∞∞∞∞∞∞∞∞ ⊙∓∞∞≠∞∞∞∞∞≠∞	276677787787787787787777777777777777777	11111111111111111111111111111111111111	138.7 115.5 138.6 140.3 129.6 132.6	l m
	<i>ೲೲೲೲೲೲೲೲೲೲೲೲ</i> ೲೲೲೲೲೲೲೲೲ ೲೲೲೲೲೲ	~0~000mmaa64a	20020000000000000000000000000000000000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	)
	<i>∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞</i>	$\circ$	20000000000000000000000000000000000000		52.5
	∞∞∞∞∞∞∞∞∞∞∞ ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞	$v \circ v w w \infty $ $v \dashv a$	5000000 500000000000000000000000000000	 	
	∞∞∞∞∞∞∞∞∞∞ ∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	665 70 70 70 70 70 70 70 70 70 70		т.
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ονφοφοφα οτ∞οτοφυο	$\phi$ $\psi$ $\psi$ $\phi$ $\phi$ $\psi$ $\psi$ $\phi$ $\phi$ $\psi$ $\psi$ $\phi$ $\psi$ $\phi$ $\psi$ $\psi$ $\phi$ $\psi$ $\psi$ $\phi$ $\psi$	2002. 2002.	32.	6.
	∾∞∞∞∞∞∞∞ ∾∞⊂⊐∞∞ <del>⊐</del> ⊙	www.w.w.	666. 670.	32.	4.
0000000000000000000000000000000000000	∞∞∞∞∞∞∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	www.o.i.a	666. 670.		0
00 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 - 0 0 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	000000 070070	$\infty \infty $ $\dot{\upsilon} \dot{\neg} \dot{\sigma}$	67 69.	23.	0
	200000 20070	œ ن ب a	66 70.	43.	ك
	∞∞∞∞ ∞≠0	0.4a	70. 70.	32.	0
оно 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	∞ <del>0</del> 0 0 <del>-</del> 0	Ηa	с У	51.	8
оно 200 200 200 200 200 200 200 20	0 t	α		48.	7.
рново 200 200 200 200 200 200 200 20	0	2	72.	37.	ч У
NN P. E. E. P. E. E. P. E. E. P. E.		<u>و</u>	65.	34.	÷
6 Р.Е. Р.Е. 9 NР.Е. 20-1 18- 18- 18- 18- 18- 18- 18- 18- 18- 1	7 6	2	65.	10.	0
201 8 8 NР.Е. 201 9 NР.Е. 18- 18- 18- 19- 19- 19-	10 6	5	62.	24.	0
8 NP.E. 18- 9 NP.E. 18- 0 P.E. 18- 1 NP.E. 19- 1 29-	2	•	67.	40.	4.
9 NP.E. 18- 0 P.E. 18- 1 NP.E. 19- 2 NP.E. 19-	ц С	•	50.	24.	0
0 P.E. 18- 1 NP.E. 19- 2 N. 5 5	0	ņ	58.	34.	<b>-</b>
1 NP.E. 19-	9	.0	59.	10.	0
מר יז כר וא כי	9	4	60.	07.	<u>б</u>
-OT ?:	9	m.	68.	08.	<u>б</u>
3 NP.E. 18-1	9	7.	63.	18.	m
4 NP.E. 18-	e	2	55.	 16	m.
5 NP.E. 18-		.⊤	58.	06.	∞
6 NP.E. 18-	8	e.	76.	45.	<b>.</b>
7 NP.E. 18-1	0	ω.	69.	27	<u>с</u>
8 NP.E. 18-1	0	.7	56.	48.	$\sim$

#Major: P.E. = Physical Education; N.-P.E. = Non-Physical Education.

## TABLE LXXXVII

Subject	Pubic Skinfold in Centimeters	Per Cent of Body Fat	Fat-Free Body Weight in Kilograms	Per Cent of Standard Weight
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\end{array} $	5.7 4.0 $17.06.35.76.014.315.314.010.718.79.35.08.07.036.05.011.09.05.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.09.75.011.021.6$	24.0 21.5 28.5 27.0 23.0 22.5 25.0 24.5 26.0 26.0 26.0 26.0 26.0 26.0 26.5 27.5 28.0 26.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 23.0 26.5 25.0 26.5 26.5 26.5 26.5 27.0 28.5 26.5 26.5 26.5 27.0 28.5 26.5 27.0 28.5 26.0 28.5 26.0 28.5 26.0 28.5 27.0 28.5 26.0 28.5 26.0 28.5 26.5 27.0 28.5 26.5 27.0 28.5 26.5 26.5 27.0 28.5 26.0 28.5 28.5 27.0 28.5 26.5 27.5 26.5 27.5 28.5 27.5 28.5 27.5 28.5 27.5 28.5 27.5 28.0 26.5 27.5 27.5 28.0 26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27	47.1 41.2 45.1 46.6 45.4 42.1 45.2 42.1 45.2 42.3 45.7 49.9 48.1 46.0 39.8 40.7 44.7 39.8 40.7 44.7 39.8 40.7 44.7 39.8 39.2 41.8 39.9 38.0 39.2 41.8 39.9 39.2 41.8 39.0 39.0 50.0 43.5 46.3	106.6 93.1 111.7 120.9 99.8 95.7 101.9 95.1 108.9 98.5 112.7 114.0 99.6 105.6 84.7 99.4 103.4 121.9 119.1 91.7 93.0 85.3 98.8 107.0 93.8 105.6 95.9 128.4

# RAW DATA ON PUBIC SKINFOLD, PER CENT BODY FAT, FAT-FREE BODY WEIGHT, AND RELATIVE WEIGHT

#### TABLE LXXXVIII

RAW DATA ON	PREDICTED	SPECIFI	C GRAVITY,
PONDERAL	INDEX, AND	DAILY	CALORIC
	EXPEND	ITURE	

Subjects	Predicted Specific	Ponderal	Daily Calorid
	Gravity	Index	Expenditure
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\end{array} $	$ \begin{array}{c} 1.052\\ 1.055\\ 1.043\\ 1.044\\ 1.052\\ 1.052\\ 1.053\\ 1.047\\ 1.049\\ 1.045\\ 1.050\\ 1.042\\ 1.046\\ 1.052\\ 1.046\\ 1.052\\ 1.049\\ 1.057\\ 1.057\\ 1.051\\ 1.055\\ 1.053\\ 1.055\\ 1.053\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1.055\\ 1$	12.69 13.12 12.22 11.80 12.88 12.94 12.84 13.15 12.58 13.29 12.58 12.32 13.17 12.69 13.62 12.81 12.72 11.86 12.17 13.07 13.07 13.30 13.94 13.13 12.57 13.22 13.22 13.50 11.66	$ \begin{array}{c} 1649\\ 2010\\ 1429\\ 2261\\ 2095\\ 1682\\ 1960\\ 1377\\ 2975\\ 2208\\ 2772\\ 2688\\ 1591\\ 992\\ 1196\\ 1252\\ 1735\\ 733\\ 2150\\ 1572\\ 614\\ 371\\ 621\\ 651\\ 1381\\ 2201\\ 1273\\ 1076 \end{array} $

TABLE LXXXIX

RAW DATA ON STRENGTH

риллоошилодой виде в 25trength силлосоции с с с с с с с с с с с с с с с с с с	4 6
2 C 0 8 3 3 2 C 0 0 8 3 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0 2 C 0	7.6
24rength 24rength 24rength 24rength 24rength 25rength 25rength 25rength 25rength 25rength 25rength 25rength	2.5 1.3
A       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B       B	4.5 0.1
BUNNONONONONONONONON Strength BUNNON FUNNSONONONONONON STRENgth BUNNON FUNNSONONONONONON STRENgth EJEVIN EJEVIN	5.2
	2.8
алолоооолавоалолооллоллооол Strength 20000000800000000000000000000000000000	2.3
24rength 26rength 26rength Extension 25rength Extension 25rength 25rength 25rength 25rength 25rength 25rength	7.8
THE STAND STAND STREET	4.4 0.6
2 2 2 2 2 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	6.2
24 24 24 24 24 24 24 24 24 24	2.8
или и по	7 37 8 42

127

no əmiT İstoT Treadmill in Rinutes	14.0 14.5 16.0	 m = =		а М	~ m	44.	 7.	-1 G	1 L	 С М	,	5	- m h r	'n
.9.7 lsmixsM	1.74 1.12 1.15	0.4-	i - m	о. <b>г</b> .	Ч.6.	ч	0.7	0.6	0.0	<u>ч</u> .	.2	0.	000	ע
-nstlumi2.9.9 Seus w/waixsM/w suoe -nisttA n9gvx0 tn9m	0100	0.6-	i - m	<u>о</u> г.	00	ここ	<u>б</u> . С	0.6	00	-I C	. ~	ο. C	6.0.0	
Oxygen Pulse	13.7 10.0 13.6			М И	5. 10 17		ч.	ч. Ч.	о н	<u>.</u>		0 c		•
etafi taate Daring Last .miseor Treadm.		$0 \otimes C$	$\infty \circ \alpha$	60	$\sigma \infty$	10	$\sigma \sigma$	$\sigma \infty$	80	~ C	$\infty$	σσ	~~~~	5
Heart Rate Suoenstlumi2 MwMaximal Suygen Astain.	952	6 h c	$\infty \circ \infty$	99	$\sigma \infty$	$\circ \infty$	99	ထထ	~8	~ C	0	$\sigma \alpha$	$\infty \sim 0$	5
Time on Tread- nill of Maximal Oxygen Attainment in Minutes	3:00 5:00	0.00	4:0	6:0	9:0 3:0	3:0 6:0	7:0	5:0	0.0 2:0	5:0	5:0	5:0 .0		2: C
Maximal Oxygen Consumption in Pody Wt. in ni .jw Min ni riers	05200 04753 05402	405 405 405	424 473	621 516	636 517	553	527 627	494 520	437 480	433	428	50 J 20 J 20 J	101 101 101	397
Maximal Oxygen Consumption in Kilograms of Body Weight in Liters per Min.	0386 0386 0384	339370357	910 910 910	440 400	452 371	416 393	409 376	376 378	320367	332	337	308 208		Σαα
Maximal Oxygen Consumption in Titers per Adnute	444 949 431	200	066	.98	.11	44 44	.10	.13	.96	. 64 90	.79	0. 0. 0.		α.
stostdu2	ЧИМ	≠ ഗv	° 78										0 <b>7</b> 0 0	

RAW DATA ON TEST ONE METABOLIC RESPONSES

TABLE XC

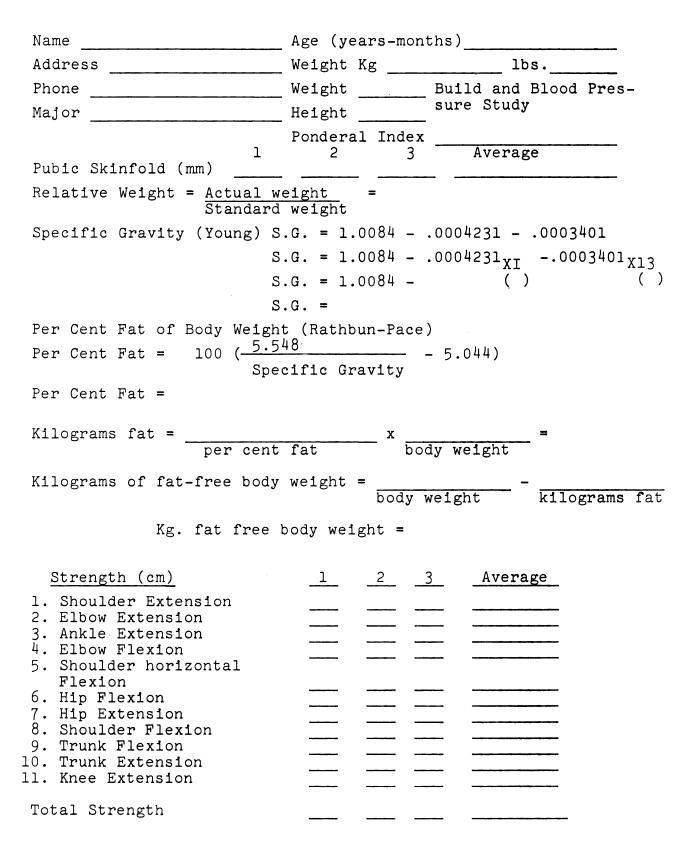
128

## TABLE XCI

Subjects	Maximal Oxygen Consumption in Liters per Minute	Maximal Oxygen Consumption in Kilograms of Body Weight in Liters per Minute	Maximal Oxygen Consumption in Fat-free Kilo- grams of Body Wt. in Liters per Min	Time on Treadmill of Maximal Oxygen Attainment in Min	Heart Rate Simul- taneous w/Maximal Oxygen Attainment	Total Time on Treadmill in Minutes
1	2.268	.03684	.04825	16.0	183	16.0
3	2.586	.04106	.05746	17.0	202	16.5
4	2.148	.03450	.04570	13.0	216	14.0
9	2.669	.04058	.05560	18.0	193	18.5
15	2.149	.04234	.05372	18.0	188	17.5
18	2.053	.03649	.05007	14.0	189	14.0
20	1.811	.03548	.04643	15.0	187	15.0
24	1.993	.03677	.05110	15.0	192	15.0

RAW DATA ON RETEST METABOLIC RESPONSES

APPENDIX B


DATA SHEETS USED TO RECORD AND CALCULATE MAXIMAL WORK CAPACITY, BODY COMPOSITION, AND STRENGTH

SHEET
DATA
CALCULATION
METABOLIC

-

		Deart	Treadmill Room	mor	L'ahc	Laboratory Room	ROOM					Major	00700 -1				
		Temperature Humidity	ante		Temperature B. Pressure	ature						Year Heigh Birth	Year in School Height (cm) Birthdate		Weight (kg)		
Time of Ka	Finial Kafronyi	Initial Kafronyi	+ Samp. Gas	= Kafr. Diff.	X Kafrony1 Cf. 1.07	X STPD Corr.	CO ₂ Reâd.	0 C 94	02 Reading	BR N O	RQ	- Corr. Vent.	True 02 X Corr. Vent.	T1me		Body Wgt. (kg)	= 02 1/min/kg
-																	
-																	
-																	
+																	
+																	
+																	
+-																	
+																	
+												-					
+																	
+									0.5								
+												31					
+											-						

#### BODY COMPOSITION -- STRENGTH DATA SHEET



APPENDIX C

FORMULAS USED TO COMPUTE SPECIFIC GRAVITY, PER CENT FAT, FAT-FREE BODY WEIGHT, AND PONDERAL INDEX FORMULAS USED FOR PER CENT OF FAT OF BODY WEIGHT, KILOGRAMS OF FAT OF BODY WEIGHT, PER CENT OF FAT-FREE BODY WEIGHT, AND PONDERAL INDEX

(1) PER CENT FAT OF BODY WEIGHT*

Per cent fat = 100  $\left(\frac{5.548}{\text{specific gravity}} - 5.044\right)$ 

(2) KILOGRAMS OF FAT OF BODY WEIGHT

Kilograms fat = _____ rer cent fat x _____ body weight

(3) KILOGRAMS OF FAT-FREE BODY WEIGHT

Kg fat-free body wt. = body weight - kg fat

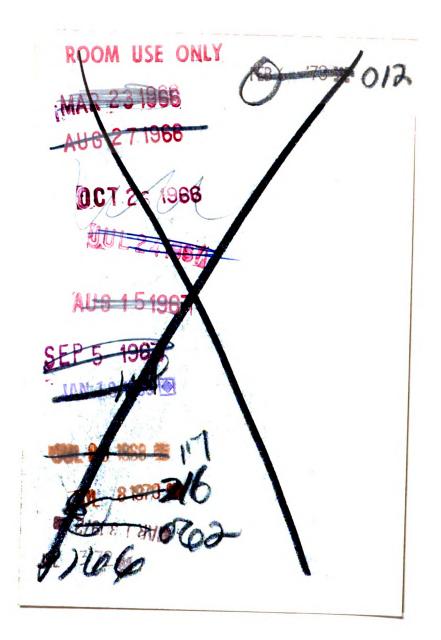
(4) PONDERAL INDEX

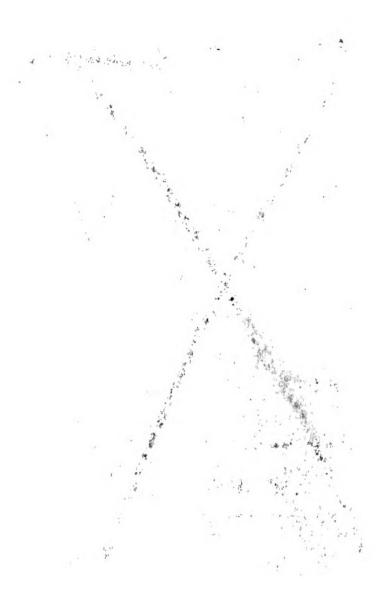
Ponderal Index =  $3 \frac{\text{Height}}{\text{Weight}}$ 

*E. W. Rathbun and N. Pace, "Studies on Body Composition I," Journal of Biological Chemistry, 158:674, 1945.

#### PREDICTIONS FORMULA FOR SPECIFIC GRAVITY*

```
(1) Specific gravity = 1.0084 - .0004231_{X1} - .0003401_{X13}
```


when X1 = skinfold on mid-abdominal line halfway between the umbilicus and the pubis (in mm)


X13 = percentage "standard" weight (average weight per height and age)**

Per cent standard weight =  $\frac{\text{actual weight}}{\text{standard weight}}$ 

*C. Young, et al., "Predicting Specific Gravity and Body Fatness in Young Women," Journal of the American Dietetic Association, 40:105, February, 1962.

**Percentage standard weight used in this formula was calculated on the basis of the predicted weight determined by the Society of Actuaries, <u>Build and Blood Pressure Study</u>, Volume I, 1959.





