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ABSTRACT

DIFFERENTIAL GEOMETRY BASED MULTISCALE MODELING OF

SOLVATION

By

Zhan Chen

Solvation is an elementary process in nature and is of paramount importance to many sophis-

ticated chemical, biological and biomolecular processes. The understanding of solvation is an

essential prerequisite for the quantitative description and analysis of biomolecular systems.

Implicit solvent models, particularly those based on the Poisson-Boltzmann (PB) equation

for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc

solvent-solute interfaces are commonly used in the implicit solvent theory and have some

severe limitations.

We have introduced differential geometry based solvation models which allow the solvent-

solute interface to be determined by the variation of a total free energy functional. Our

models extend the scaled particle theory (SPT) of nonpolar solvation models with a solvent-

solute interaction potential. The nonpolar solvation model is completed with a PB theory

based polar solvation model. In our Eulerian formation, the differential geometry theory of

hypersurface is utilized to define and construct smooth interfaces with good stability and

differentiability, for use in characterizing the solvent-solute boundaries and in generating

continuous dielectric functions across the computational domain. Some techniques from the

geometric measure theory are employed to rigorously convert a Lagrangian formulation of

the surface energy into an Eulerian formulation, so as to bring all energy terms on an equal

footing. In our Lagrangian formulation, the differential geometry theory of surfaces is used to

provide a natural description of solvent-solute interfaces. By optimizing the total free energy



functional, we derive a coupling of the generalized Poisson-Boltzmann equation (GPBE) and

the generalized geometric flow equation (GGFE or also called Laplace-Beltrami equation)

for the electrostatic potential and the construction of realistic solvent-solute boundaries,

respectively. The coupled partial differential equations (PDEs) are solved with iterative

procedures to reach a steady state, which delivers the desired solvent-solute interface and

electrostatic potential for many problems of interest. These quantities are utilized to evaluate

the solvation free energies, protein-protein binding affinities, etc.

The above proposed approaches have been extensively validated.Extensive numerical ex-

periments have been designed to validate the present theoretical models, to test the com-

putational methods, and to optimize the numerical algorithms. Solvation analysis of both

small compounds and proteins are carried out to further demonstrate the accuracy, stability,

efficiency and robustness of the present new models and numerical approaches. Comparison

is given to both experimental and theoretical results in the literature.

Moreover, to account for the charge rearrangement during the solvation process, we also

propose a differential geometry based multiscale solvation model which makes use of electron

densities computed directly from a quantum mechanical approach. We construct a new total

energy functional, which consists of not only polar and nonpolar solvation contributions, but

also the electronic kinetic and potential energies. We show that the quantum formulation

of our solvation model improves the prediction of our earlier models, and outperforms some

explicit solvation analysis.
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Chapter 1

Introduction

1.1 Introduction to solvation models

1.1.1 Biological background

Almost all important biological processes in nature, including signal transduction, DNA

recognition, transcription, post-translational modification, translation, protein folding and

protein ligand binding, naturally occur in water, which comprises 65-90% of cellular mass.

The understanding of solvation is an elementary prerequisite for the quantitative description

and analysis of the above-mentioned processes. Solvation involves the energetics of interac-

tions between solute molecules and solvent molecules or ions in the aqueous environment.

Solute-solvent interactions are typically described by solvation energies (or closely related

quantities): the free energy of transferring the solute from a vacuum to the solvent environ-

ment of interest (e.g.,water at a certain ionic strength), as shown in more detail in Figure1.1.

Solvation free energy is a physical quantity that can be measured experimentally.

Although millions of organic compounds are known now, only several thousands of com-
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pounds have experimental data being reported for the solvation free energy. It is mainly due

to experimental difficulties associated with the precise measurement, particularly for those

compounds with low solubility and/or low volatility [182, 174]. Because of low solubility

and/or low volatility, accurate and time-consuming measurement is required with highly

sensitive instruments. Unfortunately, many important organic compounds belong to this

category. Moreover, attentions need to paid on the chemical stability of solute under inves-

tigation. Therefore, the experimental study of solvation free energy still remains expensive,

laborious and is sometimes inaccurate.

Computational approaches provide an alternative method to obtain the solvation free

energy. Solvation free energies can be calculated by a variety of computational methods,

ranging from very time-consuming quantum mechanical approaches [111, 183, 148, 118] to

simple phenomenological modifications of Coulomb’s law. Solvation models can be roughly

divided into two main classes [186, 239, 203, 200]: explicit solvent models that describe the

solvent in molecular or atomic detail [179], and implicit solvent models that generally replace

the explicit solvent with a dielectric continuum [8, 10, 65, 109, 186, 117]. Explicit solvent

models provide the detailed information on molecular constitutions, and generally require

extensive sampling to extract meaningful thermodynamic, statistical or kinetic properties of

interest. Whereas, implicit solvent models focus on the biomolecules of interest, and take a

mean field approximation for solvent properties. Because of their fewer degrees of freedom,

implicit solvent methods have become popular for many applications in molecular simulation

[7, 82, 9, 69].

To help the calculation of solvation energy, one can conceptually break up the solva-

tion process as follows: #1 in this figure can be decomposed into two basic processes: a
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“nonpolar” process of inserting the uncharged solute into solvent (#7) and a “polar” pro-

cess of charging the solute in vacuum (#2) and solvent (#6). The free energy change in

#7 is called the nonpolar solvation energy. The difference of energies associated with #6

and #2 is called the “charging” or polar solvation energy and represents the solvent’s effect

on the solute charging process. The polar portion of solvation originates from electrostatic

interactions, which are ubiquitous for any system of charged or polar molecules, such as

biomolecules (proteins, nucleic acids, lipid bilayers, sugars, etc.) in their aqueous environ-

ment [240, 65, 69, 105, 200, 239, 203, 86, 204, 7, 82, 9]. The nonpolar portion describes

the remaining contributions, including the surface tension, mechanical work, and attractive

solvent-solute dispersion interactions.

1.1.2 Polar solvation models

Electrostatic interactions are ubiquitous in nature. For biomolecular systems in aqueous

environment, the analysis of molecular solvation and electrostatics is of great importance to

research in chemistry, biophysics, medicine and nano-technology. Implicit solvent models are

widely used in such an analysis which can be classified into two general types: quantitative

analysis and qualitative study. One of the primary quantitative application in computa-

tional biology and chemistry has been the calculation of thermodynamic properties. Implicit

solvent methods “pre-equilibrate” the solvent and mobile ions, thus effectively pre-compute

the solvent contribution for a system [186]. Such pre-equilibration is particularly evident in

MM/PBSA models [246, 216, 173, 220, 149], which combine implicit solvent approaches with

molecular mechanical models to evaluate binding free energies from an ensemble of biomolec-

ular structures [16, 2, 133, 162, 145, 223, 161, 251, 162, 95, 150, 132, 131]. These methods
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Figure 1.1: A solvation free energy cycle adapted from Levy et al. [130]. The total solvation
energy (1) is decomposed into several steps: “charging” the solute in solvent (6) and vacuum
(2), including attractive dispersive solute-solvent interactions in solvent (5) and vacuum
(3), and cavity formation associated with repulsive solute-solvent interactions (4). The
energy associated with Step (7) is generally termed a “nonpolar solvation energy” while the
difference in energies associated with Steps (1) and (7) is generally considered as “polar
solvation energy”. For interpretation of the references to color in this and all other figures,
the reader is referred to the electronic version of this dissertation.
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have been employed to interpret experimental titration curves, analyze residue contribu-

tions in protein-protein and protein-ligand binding energetics, examine structural/functional

consequences of RNA nucleotide protonation, etc. Another quantitative application of

implicit solvent models is the evaluation of biomolecular kinetics where implicit solvent

models are generally taken to compute solvation forces for molecular Langevin dynamics

[219, 180, 181, 142, 141], Brownian dynamics [147, 89, 76, 195], or continuum diffusion

[49, 50, 255, 210, 211] simulations. A major qualitative study of implicit solvent methods is

the visualization and qualitative analysis of electrostatic potentials on and around biomolec-

ular surfaces [241, 177, 11, 7]. Visualization has become a standard procedure in the analysis

of biomolecular structures, including ligand-receptor binding, drug design, macromolecular

assembly, protein-nucleic acid complexes, protein-protein interactions, enzymatic mechanism

study, etc.

The polar solvation energy is generally associated with a difference in charging free en-

ergies in vacuum and solvent (see Figure 1.1 (#2) and (#6)). Polar solvation process and

electrostatic effect are described by a variety of implicit solvent models [240, 186, 239, 200,

65, 92, 120, 41, 193, 233, 198, 10, 9, 221]; however, the most widely-used ones are Poisson-

Boltzmann (PB) models [105, 69, 7, 125, 86, 200, 65, 117], generalized Born (GB) methods

[68, 15, 229, 167, 92, 263, 120, 226, 155, 41, 102] and polarizable continuum models (PCM)

[52, 227, 113, 218, 35, 14, 59]. Polarizable continuum models are proposed to model the

solvent either as polarizable dielectrics or as conductor-like media, and treat the solute com-

pound by the quantum mechanical means [52, 227, 113, 218, 35, 14, 59]. These approaches

have often been used in reactively kinetics where quantum mechanical descriptions are de-

sired. Generalized Born methods are relatively fast, but are not as accurate as the PB
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methods [9, 166, 68, 166, 63, 230, 226]. They are often employed in high-throughput appli-

cations such as molecular dynamics [15, 229, 203, 82, 120, 68, 167, 63, 41]. PB methods can

be formally derived from more detailed theories [22, 159, 107] and provide a more accurate,

although somewhat slower, approach for evaluating polar solvation properties [63, 166, 15].

Moreover, unlike most generalized Born methods, PB models offer a global description for

the electrostatic properties, therefore making them uniquely suited to visualization and other

studies [138, 29, 66, 234, 89, 76, 64, 196, 211] where the electrostatic information is required

for both inside and outside a biomolecule.

1.1.3 Poisson-Boltzmann theory

Mathematically, the PB equation [105, 69, 7, 125, 86, 199, 65] is a nonlinear elliptic partial

differential equation (PDE) which is solved for the electrostatic potential. It is a continuum

model at equilibrium state, which dictates the solvent with a piecewise dielectric constant

and ionic charge density by the Boltzmann distribution. The PB equation can be derived by

the Gauss law and the Boltzmann distribution law [108]. Additioally, in the physical point of

view, the free energy of the system must be minimized at the equilibrium state. Therefore, a

total electrostatic free energy functional may be developed based on the PB theory, then the

PB equation can also be obtained by the variational principle [199]. The standard formula

of the PB equation is the following:

−∇ · (ǫ(r)∇φ)−
Nc
∑

i=1

Qin
0
i e
−φQi/kBT =

Nm
∑

j

qjδ(r− rj) (1.1)

where ǫ is piecewise constant and depends on interface, being ǫs in solvent and ǫm in solute;

φ is electrostatic potential. Here qj is the partial charge on an atom located at xj , Qi is the

6



charge of ion species i, Nc is the number of ion species, kB is the Boltzmann constant, T is

the temperature, Nm is the total number of solute atoms, and n0i is the bulk concentration

of the ith ionic species. Note that the PB equation can appear in different forms according

to purposes as well as unit representation (detailed description can be found in Appendix B)

The PB theory is approximate and, as a result, has several well-known limitations which

can affect its accuracy [105, 159, 107, 69, 239, 198, 81, 56, 221, 222, 191, 45]. These limita-

tions have been reviewed in the literature and will only be briefly summarized here. First,

most continuum models assume linear and local solvent response [239, 198, 81, 22]. However,

nonlinear solvent response (usually through dielectric saturation or electrostriction), can be

important in regions of strong electric field [239, 198, 81]. Biologically-relevant examples of

nonlinear solvent response have been found near highly charged ions, biomolecules, and other

interfaces. Nonlocal solvent response generally involves the finite non-zero size of water and

its unique hydrogen bonding with solute and other solvent molecules. Such nonlocal response

can be important in describing the orientation of water at biomolecular interfaces [38], dif-

fering solvation of cations and anions, and the solvation of asymmetric charge distributions.

The second major limitation is the mean-field treatment of ions in PB theory [107, 159, 105].

Mean field models assume that each ion experiences only the average influence of the other

ions in solution. Such averaging precludes detailed ion-ion interactions involving steric repul-

sion of ions (or their solvation shells) and Coulombic interaction of ions, including repulsion

and attractive pairing. The mean field assumption thereby eliminates correlations and fluc-

tuations which can have important energetic and structural consequences for solutions of

divalent and multivalent ions surrounding highly-charged molecules such as nucleic acids

[56, 221, 222, 191, 45]. As suggested by the limitations above, PB models also neglect de-
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tailed ion-solvent interactions which eliminate differences between ion species in solution and

thereby prevent effects analysis of specific ion species – which can be important in biophys-

ical modeling. However, despite these limitations, PB methods are still very important for

biomolecular structural analysis, modeling, and simulation. Furthermore, these limitations

are currently being addressed through new implicit solvent models [5, 56, 159, 221, 175] and

hybrid treatments [232, 13, 128, 165, 156] which extend the applicability of the PB theory

while preserving some of its computational efficiency through pre-averaging solvent and ion

response.

1.1.4 Nonpolar solvation models

Poisson-Boltzmann methods provide polar solvation energies and therefore must be com-

plemented by nonpolar solvation models to provide a complete view of solvent-solute in-

teractions. As illustrated in Figure 1.1, nonpolar solvation is generally associated with the

insertion of the uncharged solute into solvent. There are many nonpolar solvation models

available. The most commonly used one is solvent-accessible surface area (SASA) mod-

els. They states that nonpolar solvent-solute interactions are proportional to the area of

the solvent-solute interface. It is worth to note that the proportional constant varies dra-

matically in the literature because the energies of other processes are also assumed to be

proportional to SASA [77]. Roughly speaking, SASA models are based on the scaled parti-

cle theory (SPT) [213, 178] which actually includes the energy of surface tension effect and

the mechanical work of immersing a particle into the solvent. Moreover, studies indicates

that nonpolar distribution should depend on the solvent-accessible volume and surface, with

a crossover to SASA when the size of solute is large [235]. Recent work by Levy, Gallic-
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chio, and others [90, 92, 130, 91, 235] has demonstrated the importance of nonpolar solvent

models which include treatment of attractive solute-solvent dispersion terms (#5 in Figure

1.1) as well as models of solvent-solvent repulsive interactions (#4 in Figure 1.1), which are

described by both area and volume contributions [235]. Based on these considerations, in

the present work, we use the following model for nonpolar solvation free energies [235]

Gnp = γ · Area + p · Vol +
∫

Ωs
ρsUssd~r, (1.2)

where γ is the surface tension, ”Area” is the solvent-excluded area of the solute, p is the

hydrodynamic pressure, ”Vol” is the solvent-excluded volume of the solute, ρs is the solvent

density, Ωs denotes the solvent accessible region, and Uss is the solvent-solute van der Waals

(vdW) interaction potential. The first two terms in Eq. (1.2) are those from the SPT model

[213, 178]. The first term is the surface energy. It measures the disruption of intermolecular

and/or intramolecular bonds that occurs when a surface is created. The second term is the

mechanical work of creating the vacuum of a biomolecular size in the solvent. The third

term represents the attractive dispersion effects near the solvent-solute interface which has

been shown by Wagoner and Baker [235] to play a crucial role in accurate nonpolar solvation

analysis.In general, Uss can be obtained by the sum of the interaction of individual atoms

in Ωm with the solvent continuum in Ωs under the assumption that the nonpolar solute-

solvent potential is pairwise: Uss =
∑

i V
vdW
i . This model of nonpolar solvation has

been demonstrated to give good agreement with explicit solvent solvation forces on proteins

[235] and RNA hairpins [71]. Work by Levy and co-workers has demonstrated the good

performance of a similar model [90, 92, 130, 91].

In the present work, we further allow the solvent density ρs to be a function of position in
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general. In particular, we split the solvent density ρs into the sum of atomic or ionic density

distribution functions ρs =
∑

i ρs,i. The distribution of an individual solvent component can

be computed by integral equations or other approaches, such as Monte Carlo and generalized

Langevin equation [231, 88, 23]. This design of solvent density allows us to recover the

nonlinear and nonlocal effects of the solvent-solute interactions.

1.2 Molecular interface definitions

The separation of discrete and continuum domains in implicit solvent models requires an

interface to indicate the separation of solute atoms from the surrounding solvent. Naturally,

such an interface can be regarded as the surface or the profile of a molecule. The definition of

molecular profiles, or molecular graphics traces back to Corey and Pauling in 1950s [58], who

tried to depict the profiles of amino acids, peptides and proteins from X-ray crystallography.

In quantum chemistry, molecular graphics are often associated with the shapes of polynomial

functions that provide approximation to electron wavefunctions. In fact, since the electron

wavefunction changes its distribution under different environments, molecular profiles change

accordingly. Commonly used interface definitions in implicit solvent models include the

van der Waals surface, the solvent accessible surface [126], and the molecular surface (MS)

[185, 57]. In certain sense, these interface definitions determine the performance of implicit

solvent models because all of the physical properties of interest, including electrostatic free

energies, biomolecular surface areas, molecular cavitation volumes, solvation free energies,

and pKa values are very sensitive to these interface definitions [70, 72, 163, 217].

The use of PB model encounters some challenges in molecular dynamics regarding sta-

bility and accuracy. For example, the widely used molecular surface based PB model results
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in forces which are unstable over time, lack analytical expression, are sensitive to grid dis-

cretization, and converge poorly [101]. Moreover, a discontinuous dielectric definition leads

to numerical instability regardless of the location of boundary [217]. Additionally, more

physically realistic surface definitions are desired because of the argument that the macro-

scopic physical properties must vary continuously. To overcome these difficulties, overlapping

atom-centered Gaussian or polynomial functions have been proposed to define the solute sur-

face, with smooth transitions between low and high dielectric values [101, 112]. Although

continuous dielectric functions give rise to an improvement of stability and computational

efficiency, some recent work demonstrates that most of them are physically incorrect, which

will be discussed more in Section 1.4.

The recent development of a new class of molecular interfaces that incorporate the fun-

damental laws of physics starts with the construction of partial differential equation (PDE)

based molecular surface by Wei el al. in 2005 [245]. This approach distinguishes itself

from many other PDE based surface smoothing methods [249, 256] by utilizing only atomic

information, i.e., atomic coordinates and radii, instead of an existing surface. The atomic in-

formation is embedded in the Eulerian formulation and a family of hypersurfaces are evolved

in time under the PDE operator, which is designed to control the curvature and surface

tension. The generalized molecular surface is subsequently extracted from the final hyper-

surface by a level-set type of approach [245]. This PDE based surface construction procedure

generates well defined molecular surfaces for both small molecules and large proteins [245].

To our knowledge, geometric PDE based approach was the first of its kind for molecular sur-

face construction. A further progress in the development of a “physical interface” was the

introduction of the minimal molecular surface (MMS) that minimizes a surface free energy
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functional by the variational principle and leads to the mean curvature flow in 2006 [18, 19].

To our knowledge, MMSs were the first set of biomolecular surfaces that had ever been con-

structed by means of variational principles. The construction of the MMS was driven by the

desire to understand the true physical boundary of a biomolecule in solvent. As a physical

concept, the solvent-solute interface should be in general determined by the minimization of

the free energy of a macromolecule in the aquatic environment. The MMS is constructed by

using essentially the same procedure as that developed in the first PDE based surface gen-

eration method [245]. Another desirable property of the MMS is that it is free of geometric

singularities. The MMS model was applied to the calculation of electrostatic solvation free

energies of 26 proteins [20].

1.3 Quantum mechanical continuum models

In most implicit solvent models, the solute is described as a collection of fixed atomic point

charges, which describes molecular polarizations at the atomistic level of resolution. How-

ever, it is well-known that charge rearrangement plays an important role in the solvation

process of proteins in various cases [99]. Similar arguments were used to incorporate the

quantum mechanics (QM) description in the classical implicit solvent theory [227, 228, 61].

The resulting QM version of continuum models, called quantum mechanical continuum mod-

els [52, 227, 113, 218, 35, 14, 59], offer the possibility of carrying out accurate quantum cal-

culations in solution and near interfaces. Quantum mechanical continuum models provide

a framework to describe the QM effect in solvent analysis [224]. However, this description

is often compromised by the use of a pre-determined solvent-solute interface model. To in-

tegrate a continuum model with a QM description, reaction field potential, i.e., the electric
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field induced by the polarized solvent, has been introduced as a unifying concept. It is ob-

tained from the electrostatic computation in the framework of continuum models. It also

exists in the Hamiltonian of the solute in the quantum calculation [224, 237, 42]. Therefore,

the quantum formulation of the continuum model involves two problems: (1) the classical

electrostatic problem of determining the solvent reaction field potential with the quantum

mechanically calculated charge density; (2) the quantum mechanical problem of calculat-

ing the electron charge density with fixed nucleus charges in the presence of the reaction

field potential. These two problems need to be resolved simultaneously. To carry out these

computations, a intuitive self-consistent iterative procedure can be constructed to resolve

the quantum problem for electron distribution and the classic electrostatic problem for the

reaction field potential [224, 99, 227, 237, 42].

After computing the QM charge density, there are still two ways to implement the sol-

vation analysis. The first approach is to use the continuous QM charge density directly

in the Poisson-Boltzmann equation. The second approach is to fit the QM charge density

into the atomic point charges, and then use the point charges as the source term in the

Poisson-Boltzmann equation. Various schemes have been proposed to compute atomic par-

tial charges with certain efficiency and convenience. The simplest way for atomic partial

charge assignments is the Mulliken analysis method [157]. In this approach, the charge

is distributed according to the orbital occupation. Many other schemes have also been

proposed, including the natural bond orbital analysis, the distributed multipole analysis

(DMA), the wavefunction mapping ‘Class IV’ model, the electrostatic potential expansion

and analysis, etc [184, 214, 202]. Presently, the most widely used method for estimating

atomic partial charges is the least-squared electrostatic potential (ESP ) fitting approach.
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It was first proposed by Momany and has subsequently been implemented in different ways

with different choices of grid points where the electrostatic potentials are calculated [154].

Examples of such potential-based methods are CHELP, CHELPG, and the Merz-Kollman

scheme [60, 205, 28, 53]. Hu and Yang have recently developed a new object function to

improve the quality and especially the numerical stability of the ESP fitting [110]. ESP

fitting methods are not only widely used in the simulation with molecular mechanical (MM)

force fields, but also extended to the QM/MM simulations as well as the molecular polariza-

tion calculation [110]. However, there are some well-known deficiencies in the atomic partial

charge approaches [201, 110]. First, atomic partial charge is not observable, i.e., it can not be

definitely determined by experimental data or directly obtained from quantum calculations.

Therefore, it is a term lacking a rigorous and consistent definition [110]. Additionally, the

approximation of quantum mechanical electron-electron interactions by simple Coulombic

interactions between atomic partial charges leads to inaccurate calculations. Moreover, re-

sults from different methods or definitions may show different numerical dependences upon

the QM level of the theory, basis sets used, and the choices of the number and location of

grid points. Finally, there is a concern about the transferability of the atomic partial charges

in different molecules. To avoid these problems, the direct use of the quantum charge density

in the continuum dielectric theory was proposed [227, 237].

The quantum mechanical problem of determining the electron charge density was solved

originally limited to the Hartree-Fock level, which is a traditional way to obtain complicated

many-electron wavefunctions. Density functional theory (DFT) was proposed in 1960s to

provide the ground state of a many-electron system in terms of a single electron wavefunction

[106, 122]. In DFT, the Kohn-Sham equation is the Schrödinger equation of a fictitious
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system. It has been more and more popular for quantum calculations in solid state physics

since the 1970s due to its low computational cost when compared with traditional approaches.

Moreover, the results of DFT calculations have been considered accurate enough especially

from 1990s when approximations used in the theory were greatly refined to better model

the exchange and correlation interactions. [127, 21, 33]. DFT is now a leading method

for electronic structure calculations in chemistry, physics and nano-technology. Therefore,

the incorporation of DFT to continuum solvation methods becomes a routine approach in

methods with the QM description of solute and the continuum description of solvent [227].

1.4 Limitations of current models

Current two-scale implicit solvation models have a severe limitation that undermines their

performance in practical applications. While traditional surface definitions have found much

success in biomolecular modeling and computation [212, 139, 62, 123, 25, 73, 114, 136], they

are simply ad hoc divisions of the solute and solvent regions of the problem domain. In

reality, the solvation is a physical process and its equilibrium state should be determined by

fundamental laws of physics. Moreover, these surface definitions confront many challenges.

First of all, as mentioned earlier, from the fundamental physical point of view, macroscopic

properties should vary continuously. Any description of the permittivity changing instanta-

neously from one point to another is incorrect. Secondly, they admit non-smooth interfaces,

i.e., cusps and self-intersecting surfaces, that lead to well-known instability in molecular

simulations due to extreme sensitivity to atomic positions, radii, etc [188]. Thirdly, each

pre-determined surface definition has its own limitations. For example, the van der Waals

surface (VDW) is not smooth in space. And there are a lot of un-physical solvent pock-
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ets inside the solute which cause the fluctuation of the electrostatic field [141]. the widely

used molecular surface (MS) accompanying with the discontinuous dielectric function is not

smooth in time for the molecular dynamic due to its definition, while it is much smoother

in space than VDW and embodies the ratio between contact surface and reentry surface

which maybe an important information of surface roughness. The solvent accessible surface

(SAS) is not suitable in terms of solvation energies, which are the strongest validation of the

PB theory. These difficulties associated with traditional discontinuous dielectric functions

often drive the use of alternative “smoothed” solvent-solute interface definitions [112, 101] by

applying overlapping atom-centered Gaussian or polynomial functions. However, smoothed

interface definitions increase computational cost [70, 72]. Moreover, interatomic crevices

and buried pockets of high dielectric, which are too small for a solvent molecule to occupy,

are introduced. Furthermore, they often overestimate the electrostatic solvation free energy

[217]. Finally, the wide range of surface definitions has often led to confusion and misuse

of parameter (radii) sets developed for implicit solvent calculations with specific surface

definitions.

It is celebrated that the construction of partial differential equation (PDE) based molec-

ular surface by Wei el al. in 2005 [245] generates well defined molecular surfaces for both

small molecules and large proteins [245]. Moreover, the construction of minimal molecular

surface (MMS) is determined by the minimization of the free energy of a macromolecule in

the aquatic environment, and it is free of geometric singularities [20]. However, the MMS,

which incorporates only the minimization of the free energy associated with the surface ten-

sion, offers only an approximation to the true physical boundary of a biomolecule in solvent.

Therefore, to account for other important effects that determine the solvent-solute inter-
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face, new potential driven geometric flows (PDGFs) needs to be proposed that allow the

incorporation of many other potential effects in surface formation and evolution.

Another criticism of implicit solvent models is the lack of uniqueness in polar and nonpolar

decomposition of the solvation process [148] and the neglect of the polar-nonpolar coupling as

well as solvent-solute interactions [4, 32, 38, 55, 74, 85, 87]. Dzubiella et al [74, 75] considered

this problem by adding a solvent-solute coupling (interaction) term to the total free energy

functional discussed by Sharp and Honig [200] and Gilson et al [97]. A feature of this new

model is that surface tension energy and mechanical work of immersing a molecule into the

solvent were also included in the total free energy functional. However, their initial work

does not provide a protocol for the construction of molecular interfaces and a systematical

analysis of solvation energy for macromolecules. Recently, Cheng et al. [48] have extracted

solvent-solute interfaces from the free energy functional of Dzubiella et al [74, 75] in a setting

very similar to our earlier Eulerian geometric PDE approaches of biomolecular surfaces and

solvation analysis [245, 18, 19, 20].

In the earlier PDE based molecular surface models [245, 20, 74] the solute is described as

a collection of fixed atomic point charges, which, together with the charge described in the

continuum approximation of the surrounding medium, give rise to the total charge source

for the Poisson-Boltzmann equation. The atomic partial charges describe molecular polar-

izations at the atomistic level of resolution. This approach is able to evaluate many physical

and chemical properties. However, it can not cover the whole range of properties of interest.

In particular, the charge rearrangement in the solute molecule during the transfer from the

gas phase to solution has not been taken into account in the calculation of solvation free

energies. Consequently, the highly accurate analysis of solvent-solute surfaces is discounted
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by the estimation of charge rearrangement during the solution process. Additionally, those

earlier solvation models depend on parameters from the existing molecular mechanical force

field parameters [147, 12, 112, 116], which are typically parameterized for certain class of

(macro-) molecular systems and may not be appropriate for other class of molecules. There-

fore, it is desired to develop a quantum mechanical (QM) description of the solute molecule

in PDE based molecular surface models, which gives accurate, self-consistent and force field

independent charge arrangement treatment during the solavtion process.

1.5 Mathematical issues and numerical challenges

Based on previous discussions, it is clear that there are various mathematical issues involved

in the modeling of solvation. In this work, the solvent-solute boundary can be modeled in the

framework of the differential geometry theory of surfaces and manifolds, which is employed to

result in new coupled geometric and potential flows for the generation of a physical solvent-

solute boundary and the optimization of solvation energy. Technically, the smoothness of

the resulting solute-solvent boundary is ensured by coupled geometric and potential flows

of parabolic type. A variational framework is established to couple different parts of the

solvation contributions. Governing equations are derived by variational principles. Other

than the modeling strategy, implementations of models encounter many numerical challenges,

which have attracted great mathematical interests for the past several decades. For instance,

the multidomain and multiscale treatment of both systems results in discontinous coefficient

based interface problems and a singular source in the partial differential equation. Highly

accurate and efficient numerical schemes are desired to handle these singularities in the

application of biological systems. Additionally, numerical convergence and efficiency of the
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self-consistent iteration need to be explored for the derived coupled governing equations. The

involved mathematical issues and associated numerical challenges in model implementations

are outlined as follows:

1.5.1 Geometry, PDE and interface

In this thesis, we consider the solvent-solute boundary as a two-dimensional (2D) differ-

ential manifold embedded into a 3D Euclidean space, or a hypersurface, in a Riemannian

manifold. The differential geometry theory of surfaces and manifolds is employed. The

above-mentioned minimal molecular surface, which incorporates only the minimization of

the free energy associated with the surface tension, offers only an approximation to the true

physical boundary of a biomolecule in solvent. To account for other important effects that

determine the solvent-solute interface, we have recently proposed a framework of potential

driven geometric flows (PDGFs) that allow the incorporation of many other potential effects

in surface formation and evolution [17]. The PDGFs are inherently multiscale in nature, and

enable the incorporation of microscopic interactions, such as van der Waals potentials, into

the macroscopic curvature evolution.

From a mathematical point of view, the molecular surfaces are constructed from the

geometric partial differential equation (GPDE) in this thesis. In general, GPDE is a PDE

which controls the motion of curves or surfaces and is merely formulated by the geometric

measure theory. It is related to geometric analysis, manifold theory, topology, PDE, calculus

of variation, and geometric measure theory. GPDE can be applied to the motion of interfaces

problems in the physical or chemistry field, e.g., dissolution, combustion, erosion in the

biology field, biomembrane vesicle problem, and the construction of protein surface. GPDE is
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also applied to computational geometry, computer graphics, image processing edge detection,

noise removal,image restoration. Moreover, it can be used to obtain some optimal properties

such as surface area minimization, total energy minimization, etc.

The surfaces generated by GPDE possess some attractive features such as smoothness and

a clear geometric sense. GPDE can be constructed by an energy functional based variational

approach. In this method, an energy functional with a physical target is formed. Then, the

first order variation of the energy functional gives rise to geometric PDEs. In the framework

of variational approach, many famous geometric flow equations are derived such as the mean

curvature flow, the Willmore flow, etc.

Because it is difficult to gain explicit solutions of the GPDEs , numerical solutions are

necessary. Numerical solutions of Geometric PDEs can be obtained by the generalized finite

difference method, the finite element methods and the level set like methods.

1.5.2 Geometric flow equation

Much of the recent development in implicit solvent models is due to the use of geometric

flows [245, 18, 20, 17, 243], particularly mean curvature flows, which have been of consider-

able interest in applied mathematics for decades [172, 187, 197, 84, 100, 153, 170, 190, 192,

197, 208, 247]. Earlier research work and part of present research are focused on image pro-

cessing [172, 187], computer vision, materials design [197] and surface smoothing [249, 256].

Computational techniques using the level set theory were devised by Osher and Sethian

[172, 187, 197] and have been further developed and applied by many others [37, 54, 206].

An alternative approach for image analysis is to minimize a functional in the framework of

the Mumford-Shah variational functional [158], and/or the Euler-Lagrange formulation of
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variation [30, 36, 134, 171, 187, 189]. Wei introduced some of the first family of high-order

geometric flow equations for image analysis [242]. In fact, the nonlinear production term

in these high-order operators provides a framework to accommodate the PDGF in our later

formation for macromolecular surfaces. Their high-order geometric flow equations have led

to many interesting applications [242, 244, 215, 144, 96, 39]. Mathematical analysis of these

high order equations in Sobolev space was carried out by Bertozzi and Greer [27, 103, 104],

who proved the existence and uniqueness of the solution to a case with H1 initial data and

a regularized operator. A similar analysis was performed by Xu and Zhou [250]. Wei and

Jia also introduced a coupled geometric flow equation system for image edge detection [244].

Such an algorithm works extremely well with texture images. Recently, Wei and his collab-

orators have proposed an evolution operator based single-step method for image denoising

and enhancement [215]. Most recently, a family of differential geometry based multiscale

models has been developed by Wei for chemical and biomolecular systems, including fuel

cells, ion channels, DNA packing, nanofluidic systems, and virus evolution [243]. These

models describe not only the structure, but also the dynamics and transport of the above

mentioned chemical and biomolecular systems.

1.5.3 Highly accurate and efficient solver for interface problems

In general, electrostatic energy is much larger than the non-electrostatic part so that the ac-

curacy of electrostatic potential calculation based on the Poisson-Boltzmann (PB) equation

plays a critical role in controlling the accuracy of the total solvation free energy. Therefore,

numerical methods that are able to deliver highly accurate solution of the PB equation is

desirable. In the present Lagrangian model, there exists a sharp solvent-solute interface and
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it leads to a discontinuous dielectric constant definition in the PB equation. When the dis-

continuous dielectric profile is applied across the interface, the standard numerical methods,

including the centered finite differences scheme, lose their accuracy and convergent order.

This problem is aggravated by complex geometric shapes, possible geometric singularity, and

singular charges of biomolecules. In the worst-case scenario, the standard numerical methods

do not converge at all for complex irregular solvent-solute interfaces [252, 93].

The solution of elliptic equations with discontinuous coefficients and singular sources is a

challenging problem in computational mathematics. In order to achieve high-order numerical

accuracy, it is indispensable to develop mathematical interface techniques. Peskin pioneered

the immersed boundary method (IBM) [124, 176] to address this class of problems. Recently,

many other elegant methods have been proposed, including the ghost fluid method [79, 137],

the upwinding embedded boundary method [34], finite-volume-based methods [164], and

integral equation methods [151]. A major advance in the field was due to LeVeque and

Li [129], who proposed a remarkable second order sharp interface scheme, the immersed

interface method (IIM) [129, 135]. Chen and Strain discussed a piecewise-polynomial dis-

cretization and Krylov-accelerated multigrid for elliptic interface problems [44]. However,

these interface techniques have not been implemented for the Poisson-Boltzmann equation

in the context of realistic biomolecules.

Wei and his coworkers have recently proposed a highly accurate algorithm, the matched

interface and boundary (MIB) method [254, 253, 258, 261, 260] for solving elliptic equations.

Many essential ideas of the current MIB method were introduced in earlier interface schemes

for solving Maxwell’s equations [258]. The MIB is of arbitrarily high-order accuracy in

principle, and sixth-order accurate MIB schemes have been constructed [253, 261]. Wei’s
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group has developed three generations of MIB based PB solvers, MIBPB-I [259], MIBPB-II

[252], and MIBPB-III [93]. The MIBPB-I is the first PB solver that explicitly enforces the flux

continuity conditions at the dielectric interface in a biomolecular context; however, it cannot

maintain its designed order of accuracy in the presence of molecular surface singularities,

such as cusps and self-intersecting surfaces commonly occurred in biomolecular systems [188].

This problem was first addressed in the MIBPB-II by utilizing an advanced MIB technique

developed by Yu et al. [253]; however, the MIBPB-II still loses its accuracy when the mesh

size is as large as half of the smallest van der Waals radius, because of the interference of the

interface and singular charges. To split the singular charge part of the solution [262, 43, 31],

a Dirichlet to Neumann mapping approach [51] was designed in the MIBPB-III, which is

by far the most accurate and stable PB solver. To our knowledge, the MIBPB method is

the only existing method that is able to offer second order accuracy in solving the Poisson-

Boltzmann equation with discontinuous coefficients, singular sources and arbitrarily complex

interfaces. The MIBPB is a few orders of magnitude more accurate at a given mesh size and

about three times faster at a given accuracy than some traditional PB solvers [93].

The most important idea in all interface techniques is to take care of interface conditions,

which may vary from systems to systems. Complex interface conditions are needed for

the Helmholtz equation [257] and Maxwell’s equations [258]. For the Poisson-Boltzmann

equation, interface conditions are the following

[φ]Γ = φ+(r)− φ−(r) = 0

[ǫφ]Γ = (ǫs∇φ+) ·N− (ǫm∇φ−) ·N = 0. (1.3)
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where φ+ and φ− are the electrostatic potential inside and outside the solvent-solute surface,

respectively. Different methods may have different strategies in dealing with these conditions.

The MIB method has a unique set of procedures in implementing Eq. (1.3). The interested

reader is referred to earlier work [254, 253, 258, 261, 260].

In this work, we make use of MIBPB-III scheme for PDE based interface problems. We

take dielectric constants ǫm = 1 and ǫs = 80 in our calculations. We use the Dirichlet far-

field boundary condition and the electrostatic potential values at the boundary are practically

obtained by the sum of potential contributions from individual atomic charges with an

exponential decay factor [93]. The MIBPB-III is used to handle discontinuous dielectric

constants, complex geometry and charge singularity. Note that although the geometry is

complex, there is no geometric singularities, such as cusps and intersecting surfaces, in the

biomolecular surfaces generated by our approaches. The extraction of surface information is

carried out by the marching cubes algorithm embedded in our codes.

1.5.4 Self-consistent iterative methods

It will be seen , through the optimization of the solvation energy, that the resulted general-

ized Poisson-Boltzmann (PB) equation and the generalized potential driven geometric flow

equation are fully coupled. The optimized electrostatic potential is obtained by solving the

Poisson-Boltzmann equation in which solvent-solute interface is used to determine the dielec-

tric constant and the domain decomposition. The interface is generated by the solution of

the potential driven geometric flow equation, which in turn depends on the electrostatic po-

tential. In other words, the solution of the potential driven geometric flow equation requires

the knowledge of electrostatic potential, while the solution of the generalized PB equation
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requires the input of the interface definition.

Therefore, the coupled generalized geometric flow equation and the generalized PB equa-

tion need to be solved simultaneously, in the present differential geometry based solvation

model. The existence and the uniqueness of their solution, under the biomolecular context,

can be an interesting mathematical issue. Numerically, both the convergence and efficiency

of the solutions of the coupled system will be given quite a bit of attentions.

In practice, this coupled nonlinear system can be solved by an iterative procedure, un-

til a self-consistency is reached. Iterative methods are often the only choice for nonlinear

equations. In computational mathematics, an iterative method is a mathematical procedure

that leads to approximate solutions for a class of problems. The most common iterative

method is Newton’s method. Other well-known examples include the Gummel’s method,

the steepest descent method, and the conjugate iterative method. An iterative method is

called convergent if the corresponding solution sequence converges for given initial approxi-

mations. A mathematically rigorous convergence analysis of an iterative method need to be

performed; however, heuristic-based iterative methods are also commonly used.

1.6 The rest of this thesis

The rest of this thesis is organized as follows. In Chapter 2, we present the Eulerian for-

mulation of our differential geometry based solvation models. The Eulerian analysis of

biomolecular surfaces utilizes the well-known coarea theorem from the geometric measure

theory. The resulting operator from surface area minimization can be identified as a general-

ized Laplace-Beltrami operator in a 3D dimension. Chapter 4 is devoted to the Lagrangian

formulation. Lagrangian analysis of biomolecular surfaces makes the direct use of differential
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geometry theory of surfaces and manifolds. The surface minimization leads to the Laplace-

Beltrami operator defined in 2D domain, or the mean curvature operator. In Chapter 4, the

connection of two representations is analyzed in the present work. The structure of governing

equations, and the accuracy and efficiency of two formulations are compared. The objective

of Chapter 3 is to incorporate a quantum mechanical description of charge density into our

earlier differential geometry based solvation model, which is described in Chapter 2. This

thesis is concluded by discussing the main achievements and future work.
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Chapter 2

Eulerian formulation

This chapter presents a differential geometry based model for the analysis and computation

of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized

to define and construct smooth interfaces with good stability and differentiability for use in

characterizing the solvent-solute boundaries and in generating continuous dielectric functions

across the computational domain. A total free energy functional is constructed to couple

polar and nonpolar contributions to the solvation process. Geometric measure theory is em-

ployed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian

formulation so as to bring all energy terms on an equal footing. By minimizing the total free

energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and

generalized geometric flow equation (GGFE) for the electrostatic potential and the construc-

tion of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and

GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the

smooth dielectric function, and thereby improve the accuracy and stability of implicit solva-

tion calculations. We also design efficient second order numerical schemes for the solution of
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the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated

with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to

improve the stability of solving the GGFE. Two iterative approaches are designed to solve

the coupled system of nonlinear partial differential equations. Extensive numerical experi-

ments are designed to validate the present theoretical model, test computational methods,

and optimize numerical algorithms. Example solvation analysis of both small compounds

and proteins are carried out to further demonstrate the accuracy, stability, efficiency and

robustness of the present new model and numerical approaches. Comparison is given to

both experimental and theoretical results in the literature.

This chapter is organized as follows. Section 2.1 is devoted to the theoretical foundation

of the present differential geometry based solvation model. A variational framework is es-

tablished to couple different parts of the solvation contributions. Governing equations are

derived by variational principles. The solution of the governing equations leads to physi-

cal solvent-solute boundaries and accurate solvation free energies. Numerical methods and

algorithms are discussed in Section 2.2. Schemes of the second order numerical accuracy

are designed for the construction and evolution of solute characteristic function. Appropri-

ate preconditioners are used for solving the generalized Poisson-Boltzmann equations. The

coupled equations are solved by two iterative schemes. Section 2.3 presents validation and

analysis of the proposed numerical approaches. The accuracy and convergence of various

computational schemes, including the surface area formulation based on the geometric mea-

sure theory, are carefully tested to ensure their computational reliability and efficiency. The

applications of the proposed theories, methods and algorithms are considered to two sets

of compounds: small molecules and proteins in Section 2.4. Finally, this chapter ends with
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Figure 2.1: The cross line of S and (1− S) of a diatomic system described in Section 2.3.3

concluding remarks.

2.1 Theory and model

In this section, a differential geometry based model of solvation is briefly described for macro-

molecules and their aquatic environment that are near equilibrium. More details about the

differential geometry based multiscale formalism, particularly dynamics and transport as-

pects, can be found elsewhere [243]. For a system near equilibrium, the density of charged

particles in the solvent can be approximated by the Boltzmann distribution, which consid-

erably reduces the number of degrees of the freedom of the solvation system. Alternatively,

the Nernst-Planck equations or the full set of the Navier-Stokes equations might be utilized

to describe systems that are far from the equilibrium [243].

29



2.1.1 Solute-solvent boundary

Let us consider a multi-domain setting of a macromolecule and solvent system. The macro-

molecule is described in discrete atomic detail, while the aqueous solvent is treated as a

continuum. Therefore, the domain Ω ∈ R
3 is essentially divided into two (types of ) re-

gions, i.e., aqueous solvent domain Ωs and macromolecular domain Ωm. Therefore, one has

Ω = Ωs
⋃

Ωm. However, because electron wavefunctions of the solvent and the solute overlap

at the atomic scale, Ωs and Ωm should overlap with each other at the boundary of molecules

and solvent, i.e., Ωb = Ωs
⋂

Ωm 6= ⊘, where Ωb is the region of solvent-solute boundary.

Therefore, we propose a characteristic function S : R3 → R to characterize this overlapping

solvent-solute boundary. As such, S(x) is a description function or a characteristic function

of the solute domain, i.e., it is one (S = 1) inside the biomolecule and zero (S = 0) in

the aquatic solvent. However, S takes a value between zero and one at the solvent-solute

boundary region. Therefore, (1−S) is a description function or a characteristic function for

the solvent domain. The profiles of S and (1 − S) are depicted in Figure 2.1 for a simple

system. It is seen that there is a transition region at the solvent-solute boundary where the

solvent and the solute regions overlap. Obviously, in our model, the evaluation of all the

solvent-solute properties depends on S. Physically, S and thus the profile of solvent-solute

boundary, must be determined by the energy minimization principle. Therefore, our task

is to identify the energy functional that to be optimized. This task is accomplished via the

differential geometry of surfaces and manifolds in the present work.
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2.1.2 Total free energy functional

The solvation process of macromolecules involves a number of interactions. As discussed in

the Introduction, typically, the free energy of solvation models consists of polar and nonpolar

contributions, as well as polar and nonpolar interactions.

2.1.2.1 Polar free energy functional

The polar part is standardly represented by electrostatic interactions, which are of special

importance because of their long range and influence on polar or charged molecules including

water, aqueous ions, and amino or nucleic acids. They are also some of the most important

aspects that determine the physical and chemical properties of biomolecules, such as protein

folding, protein-DNA binding, gene expression and regulation, etc. The widely used free

energy functional of the electrostatic system was given by Sharp and Honig [199] and Gilson

et al [97]. However, their formulation is based on a sharp interface that separates the

solvent and solute domains. In our formulation, we incorporate the function S into the polar

solvation free energy functional

Gp =

∫

Ω

{

S

[

ρmφ− 1

2
ǫm|∇φ|2

]

+(1− S)



−1

2
ǫs|∇φ|2 − kBT

Nc
∑

i=1

n0i (e
−φQi/kBT − 1)











dr (2.1)

where φ is the electrostatic potential whose domain is the whole computational domain Ω,

and ǫs and ǫm are the dielectric constants of the solvent and solute, respectively. Here

ρm =
∑

j qjδ(r − xj) is the density of molecular charges, with qj being the partial charge

on an atom located at xj , Qi is the charge of ion species i, Nc is the number of ion species,
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kB is the Boltzmann constant, T is the temperature, and n0i is the bulk concentration of the

ith ionic species. The term associated with S is the electrostatic free energy of the solute

and that with (1− S) is the electrostatic free energy of the solvent.

The above electrostatic free energy functional is inherently multidomain in nature and

the domain is divided into the solute subdomain and the solvent subdomain as indicated by

S and 1−S, respectively. These subdomains do not have to be mutually exclusive. A discrete

description of the solute and a continuum description of the solvent are also employed in Eq.

(2.1) in the framework of the implicit solvent treatment, in which the charge density of mobile

ions follows the Boltzmann distribution. Moreover, it will be demonstrated that the present

electrostatic free energy functional is able to reproduce the classical Poisson-Boltzmann

equation when a sharp solvent-solute interface is used and S becomes a Heaviside function.

Finally, we note that the terms that are quadratic in the potential gradient in Eq. (2.1) have

negative signs. Therefore, the free energy will be optimized instead of being minimized. In

this work, we have adopted the earlier sign convention in the field [199, 97].

2.1.2.2 Non-polar free energy functional

For the nonpolar contribution, we consider the nonpolar solvation free energy functional

discussed in the Introduction.

Gnp = γ ·Area + p · Vol + ρ0

∫

Ωs
Uattdr (2.2)

To obtain a functional relation for S, it is necessary to rewrite nonpolar free energy
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formulation in terms of S(r). The enclosed volume of biomolecule can be given by

Vol =

∫

Ωm
dr =

∫

Ω
S(r)dr. (2.3)

Similarly the attractive dispersion term can be rewritten in the form

ρ0

∫

Ωs
Uattdr = ρ0

∫

Ω
(1− S(r))Uattdr, (2.4)

where we assume that the solvent bulk density ρ0 is a constant in space.

Typically, one expresses the area of a unique surface as a surface integration over the

biomolecular boundary in the Lagrangian formulation. However, this approach does not

work directly in our formulation because no sharp solvent-solute boundary is assumed. In

fact, the concept of the surface area cannot be defined in the same manner as in the sharp

surface case. For a smooth boundary, there are infinitely many surfaces and the surface area

can be defined as a weighted mean of this family of surfaces. Additionally, for practical

purpose, we need an appropriate Eulerian formulation for the surface area so that we can

put all energy contributions on an equal footing. Therefore, we need to convert the surface

integral into a volume one. To this end, we make use of the coarea formula in the geometric

measure theory [78]. For a scalar field B in R
3, with C1 continuity condition, integrating a

function f over its isolevel c in a region Ω can be done directly by a volume integral over Ω

through the expression

∫

R

∫

B−1⋂Ω
fdσdc =

∫

Ω
‖∇B‖f(r)dr, (2.5)
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where c denotes an isovalue of B, and B−1 represents the c-isosurface, i.e., the set of points

{rc} such that B(rc) = c. Here, the coarea formula prescribes a relationship between

the sum of area integrals and a global volume integral. In our case, we introduce the

concept of mean surface area of the family of isosurfaces which are subsets of point satisfying

{S(r) = y}, where 0 ≤ y ≤ 1. Therefore the mean surface area can be given by a volume

integral as

Area =

∫ 1

0

∫

S−1(c)
⋂

Ω
dσdc (2.6)

=

∫

Ω
‖∇S(r)‖dr.

Note that ∇S 6= 0 only in the region of the solvent-solute boundary. Numerical test of this

formulation will be presented in Section 2.3.1.

Finally, the electrostatic free energy functional is complemented by the nonpolar free

energy functional to give the total free energy functional of solvation for biomolecules at

equilibrium

Gtotal =

∫

Ω
γ‖∇S(r)‖+ pS(r) + ρ0(1− S(r))Uatt (2.7)

+ S(r)

[

ρmφ− 1

2
ǫm|∇φ|2

]

+ (1− S(r))



−1

2
ǫs|∇φ|2 − kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)



 dr.

Note that the polar and nonpolar parts are coupled via the characteristic function S, which is

determined by the total energy optimization instead of the surface free energy optimization

as done in our earlier work [20]. The above total free energy expression provides a basis for
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the evaluation of the solvation free energy and a starting point for the derivation of governing

equations for the solvation analysis. A similar coupling of polar and nonpolar interactions

was described previously by Dzubiella and co-workers [74, 75]; however, the implementation

of non-polar interactions and the representation of continuum and discrete domains differ

significantly from the present work.

2.1.3 Governing equations

The solvation free energy functional is a functional in terms of characteristic function S and

potential φ. The integral is taken over the whole space. From the physical point of view, there

should exist an optimal function S(r) and an optimal potential φ at the equilibrium state

which optimize the total energy. Since S and φ can vary independently in our formulation,

to optimize Gtotal, it is necessary that

δGtotal
δφ

⇒ Sρm +∇ · ([(1− S)ǫs + Sǫm]∇φ) + (1− S)

Nc
∑

i=1

n0i Qie
−φQi/kBT = 0 (2.8)

and

δGtotal
δS

⇒ −∇ ·
(

γ
∇S

‖∇S‖

)

+ p− ρ0U
att + ρmφ− 1

2
ǫm|∇φ|2 (2.9)

+
1

2
ǫs|∇φ|2 + kBT

Nc
∑

i=1

n0i (e
−φQi/kBT − 1) = 0,

where ∇·
(

γ ∇S
‖∇S‖

)

is a generalized Laplace-Beltrami operator, which is a generalization of

the usual Laplacian operator to a smooth manifold [17, 243]. In general, γ can be a function

of the position γ = γ(r) to reflect surface hydrophobicity at different locations. However,
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Figure 2.2: The cross line profile of ǫ(S) of a diatomic system described in Section 2.3.3.
Here, we have set ǫs = 80 and ǫm = 1.

it is treated as a constant in our present computation. From Eq. (2.8) we result in the

generalized Poisson-Boltzmann equation (GPBE)

−∇ · (ǫ(S)∇φ) = Sρm + (1− S)

Nc
∑

i=1

n0i Qie
−φQi/kBT , (2.10)

where the dielectric function is given by

ǫ(S) = (1− S)ǫs + Sǫm. (2.11)

This expression provides a smooth dielectric profile. Figure 2.2 shows the cross line of the

dielectric function ǫ(S) of a diatomic system. It is seen that there is a smooth transition

region for the dielectric constant to change from ǫs to ǫm. The solution procedure of Eq.

(2.10) can differ very much from that of the standard PB equation, due to the smooth dielec-

tric function. Particularly, many mathematical difficulties of solving elliptic equations with

discontinuous coefficients [258, 261, 260, 254, 253] can be avoided in the present generalized

Poisson-Boltzmann equation.
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For a weak electrostatic potential, i.e., φ ≪ 1, one can linearize the generalized PB

equation

−∇ · (ǫ(S)∇φ) + (1− S)κ2φ = Sρm, (2.12)

where κ is a modified Debye-Hückel screening function describing the ion strength [108].

Furthermore, the solution of Eq. (2.9) leads to a “physical solvent-solute boundary”

(S). As discussed in earlier work [20, 17, 243], the solution of this elliptic partial differential

equation can be attained via a parabolic partial differential equation

∂S

∂t
=
√

‖∇S‖
[

∇ ·
(

γ
∇S

‖∇S‖

)

+ V

]

, (2.13)

where the generalized “potential” V is defined as

V = −p+ρ0Uatt−ρmφ+
1

2
ǫm|∇φ|2− 1

2
ǫs|∇φ|2−kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)

. (2.14)

Note that Eq. (2.13) has the same differential operator as the mean curvature flow equation

[20], except for the extra external source term. Therefore, it is a special case of the potential

driven geometric flow equation proposed in our earlier work [17]. In Eq. (2.13), as t → ∞,

the initial profile of S evolutes into a steady state solution, which solves the original Eq.

(2.9).

It is interesting to see that the sharp solvent-solute interface and the standard PB equa-

tion, as well as related interface conditions, can be recovered from Eq. (2.10). For a sharp

interface, S becomes a Heaviside function, having value 1 for the solute subdomain and 0

for the solvent subdomain. As such, the smooth transition region in the dielectric function

disappears and the dielectric function becomes discontinuous. Then, Eq. (2.10) reduces to
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the classical form of the Poisson-Boltzmann equation [108]

−ǫm∇2φm = ρm ∀r ∈ Ωm

−ǫs∇2φs =
∑

j Qjcje
(−φsQj/kBT ) ∀r ∈ Ωs

with appropriate interface conditions

φs = φm, and ǫm∇φm · n = ǫs∇φs · n ∀r ∈ Γ, (2.15)

where φm and φs represent the potential in the solute domain Ωm and solvent domain Ωs,

respectively, Γ denotes the sharp interface, and n is the normal vector of the solvent-solute

sharp interface.

Note that the generalized Poisson-Boltzmann Eq. (2.10) and the potential driven geo-

metric flow equation (2.13) are strongly coupled. Therefore, these two equations have to be

solved by appropriate iterative procedures. This aspect will be discussed in Section 2.2.3.

2.2 Methods and algorithms

This section presents a variety of computational methods and algorithms for the solution of

the generalized Poisson-Boltzmann equation and the generalized geometric flow equation.

2.2.1 Discretization schemes of the governing equations

We design second order finite difference schemes for governing equation derived from the free

energy optimization.
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2.2.1.1 The generalized Poisson-Boltzmann equation

For the solution of the generalized PB equation, the finite difference scheme is utilized in this

study. The continuous dielectric definition allows us to obtain accurate solution by using the

standard second order center difference scheme. Let the pixel (i, j, k) represent the position

(xi, yj, zk). The discretized form of Eq. (2.12) is

ǫ(xi +
1

2
h, yj, zk)[φ(i+ 1, j, k)− φ(i, j, k)] (2.16)

+ ǫ(xi −
1

2
h, yj, zk)[φ(i− 1, j, k)− φ(i, j, k)]

+ ǫ(xi, yj +
1

2
h, zk)[φ(i, j + 1, k)− φ(i, j, k)]

+ ǫ(xi, yj −
1

2
h, zk)[φ(i, j − 1, k)− φ(i, j, k)]

+ ǫ(xi, yj, zk +
1

2
h)[φ(i, j, k + 1)− φ(i, j, k)]

+ ǫ(xi, yj, zk − 1

2
h)[φ(i, j, k − 1)− φ(i, j, k)]

= (1− S(i, j, k))κ2φ(i, j, k)h2 − S(i, j, k)q(i, j, k)/h

where h is the grid spacing, and q(i, j, k) is the fractional charge at grid point (xi, yj, zk),

which is resulted from the interpolation of the charge density ρm. The second order inter-

polation (i.e., the trilinear mapping) is used to distribute charges. Thus, the discretized PB

equation can be cast into the standard linear algebraic equation system of the form AX = B,

where X is the solution of the interest, A is the discretization matrix and B is the source

term associated with the continuum and discrete charges. The boundary condition is built

up by the far field condition and practically obtained by the sum of potential contributions

from individual atomic charges with a decay factor from the continuum charge strength κ

[93]. We have explored the use of the biconjugate gradient method as the linear solver.
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Matrix acceleration is discussed in a later section. The initial guess of the solution is set to

0 and the convergence tolerance is set as 10−6. It is shown in the test section that the PB

solver is able to deliver the designed second-order accuracy. The solution of geometry flow

equation (2.13) is described in detail in Appendix A.

2.2.2 Acceleration procedures

The computational efficiency of the solution process is an important issue and can be a

bottleneck for further applications of the present model. Particularly, when this model is

applied to molecular dynamic simulation, the generalized PB equation and geometry flow

equation are to be solved up to millions of times. Therefore, any nontrivial improvement

in computational efficiency will make the present model more feasible to many practical

applications in chemical and biological systems.

2.2.2.1 Precondition of the PB solver

The linear algebraic system of the discretized PB equation can be solved by two major

approaches: direct methods and iterative methods. Large memory requirement prohibits

direct methods to be used in the matrix resulted from large chemical and biological sys-

tems. Widely used iterative methods, including Gauss-Seidel and successive over-relaxation

(SOR), work well for the generalized PB equation, but typically converge slowly. Con-

jugate Gradient method is quite efficient for symmetric and positively definite matrices.

However, the sparse matrix A resulted from Eq. (2.16) is seven-fold banded but non-

symmetric because the dielectric distribution function is not a constant and varies in the

transition region. The biconjugate gradient (BiCG) method can be a good choice for
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non-symmetric systems and has been adopted in a variety of our MIB schemes [258, 261,

260, 254, 253], but attentions are still to be paid in regard to the convergence issue. We

have studied the application of pre-conditioners in two linear solver libraries, the SLATEC

(http://people.sc.fsu.edu/˜burkardt/f src/slatec/slatec.html) and the PETSc (http:// www

.mcs.anl.gov/petsc/petsc-as/) to the solution of the PB equation [40]. It turned out that

combination of stabilized biconjugate gradient method (BiCG) and the blocked Jacobi pre-

conditioner (BJAC) from the PETSc and the combination of the orthomin method (OM) and

the incomplete LU factorization preconditioner (ILU) from the SLATEC performed better

compared to other tested solvers, preconditoners and their combinations [40]. In this study,

we focus on the combination of the ILU and the OM from the SLATEC, which is easy to in-

corporate into the present iteration procedure and provides a stand-alone package, while the

PETSc needs to be pre-installed before being used. In Section 2.3, we further demonstrate

the improvement by the combination of pre-conditioners and the iterative linear solvers.

2.2.2.2 Initial guess of the generalized PB solution

A good initial guess is always desired for the speedup of the iterative PB solver. Normally, the

initial guess can be simply set to 0 because it is complicated and computationally expensive

to find good ones. However, in our iteration procedure, it is found that the electrostatic

potential distribution does not change dramatically from the prior calculation due to the

small adjustment in dielectric from the prior step. Therefore, it is beneficial to take the prior

potential as a good guess for solving the linear system. It turns out that the generalized PB

solver converges faster when the electrostatic potential from the previous iteration is used

as an input.
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2.2.2.3 Convergence criteria in the generalized PB solver

The convergence criterion directly influences the accuracy and CPU cost of the solution of

the generalized PB equation. The smaller convergence criterion, the more accurate the solu-

tion of linear system is. However, the smaller convergence criterion requires more iterations

and longer CPU time in the iterative solution process. Therefore, it is worthwhile to find

a criterion which is a good compromise between the accuracy and the efficiency. Typically,

a value of 10−6 is used in many chemical and biological applications. Later on we will

numerically investigate the effect of convergence criterion on the electrostatic solvation en-

ergy, mean surface area and mean volume which are used to compute the total solvation free

energy. With the 10−8 as a standard, we will examine the efficiency and the accuracy for

several relaxed convergence criteria, such as 10−6, 10−4, 10−3, 10−2 and 10−1.

2.2.3 Dynamical coupling of the generalized Poisson Boltzmann

and geometry flow equations

As described in Section 2.1, the present differential geometry based solvation model prescribes

a procedure to set up the total free energy functional of the solvation. By the variational

principle, we obtain generalized coupled PB equation (2.10) and potential driven geometric

flow equation (2.10). The solution of these coupled nonlinear equations provides a “physical”

dielectric profile ǫ(S) and the electrostatic potential φ and thereby enables the calculation of

the solvation free energy. The solution of the potential driven geometric flow equation (2.10)

requires the knowledge of φ, while the solution of the generalized PB equation (2.10) requires

the input of S and ǫ(S). Therefore, in principle, the geometric flow equation needs to be

solved simultaneously with the generalized PB equation until a self-consistency is reached.
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In this study, we explore two self-consistent iteration procedures.

2.2.3.1 Approach I

The iteration process can be carried out by breaking up the process into an iterative sequence

of two steps as follows: Starting with an initial guess of characteristic function S, one finds

out the temporary electrostatic potential φ by solving the generalized PB equation with a

given initial S. Once the electrostatic potential is obtained, the electrostatic energy can

be calculated. The second step is to solve the time-dependent generalized geometric flow

equation for S with a prior calculated potential φ. In this step, the time integration can

usually reach a quasi-steady state. With the updated quasi-steady S, one can come back

to the first step for the next cycle until the solvation free energy converges to within a

pre-determined criteria. However, in practice, simply re-inserting S into the PB solver may

diverge. Because the quasi-steady S may vary dramatically during the iteration. Note that

all changes in S are concentrated around the solvent-solute boundary, as the final solution

of the potential driven geometric flow equation reflects the balance between the intrinsic

curvature energy and the external potential terms. A large change in S near the solvent-

solute boundary in turn leads to much adjustment in the electrostatic potential which differs

much in the solute and solvent regions. To avoid this problem, we adopt a simple relaxation

algorithm: the characteristic function S used for the PB solver is a linear combination of

the previous one Sold and the newly generated one Snew

S = αSnew + (1− α)Sold, 0 < α < 1. (2.17)
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It turns out that the convergence of the generalized PB equation is guaranteed if α is small

enough. In this work, α can be taken in the range from 0.1 to 0.7. The choice of α is

explored later. Note that this approach may fail sometimes when the generalized geometric

flow equation blows up due to a large variation in the temporary electrostatic potential. We

therefore utilize a similar procedure for the electrostatic potential used in the evolution of

the generalized geometric flow equation

φ = α′φnew + (1− α′)φold, 0 < α′ < 1, (2.18)

where φold and φnew are previous and newly resolved electrostatic potentials, respectively.

This treatment can avoid the blow-up of the generalized geometric flow solution.

2.2.3.2 Approach II

To reduce the dramatic changes in S and φ, we can consider a straightforward way in

which solving generalized PB equation follows each time-step integration of the generalized

geometry flow equation. However, this treatment makes the whole iterative procedure com-

putationally over expensive as many more PB solution processes are required. Additionally,

it may not be necessary since the change in the S from one time step to another one is

so small that the change in the corresponding potential distribution should be very small.

Indeed, it is practical to update electrostatic potential after a number of time steps (i.e.,

10 to 100 steps) in the generalized geometry flow equation integration rather than every

time step. We call the number of time integration between two φ updatings the number of

intermittency Nstep. This approach effectively speeds up the whole process. Additionally,

the relaxation algorithm given in Eqs. (2.17) and (2.18) can also be used here to guaran-
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tee the convergence. Moreover, in this approach, one better starts the iterative process by

solving the S from Eq. (2.13) without the electrostatic potential term. So that the later

iteration procedure can focus on the impact of electrostatic potential to the generation of

the solvent-solute boundary. This treatment reduces the total iteration number and save the

computational time significantly.

In fact, there is a relationship between Approach I and Approach II. When the number

of the time integrations becomes larger and larger, Approach II returns to Approach I. In

Section 2.3, we systematically study the difference between these two approaches. This can

be done by comparing the impacts of different approaches on the resulting total solvation free

energy, surface area and volume of the solute molecule. It is found that these two approaches

lead to the same results. This, to some degree, indicates the reliability and validity of the

proposed iteration procedures.

2.2.4 Evaluation of the solvation free energy

Once the electrostatic potential φ and the characteristic function S are obtained, the solva-

tion free energy is given by

∆G = G−G0 (2.19)

where G0 is the energy calculated from the homogeneous environment with ǫs = ǫm = 1

without the nonpolar energy part. Therefore, we have

∆G = Gp +Gnp −G0. (2.20)
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The expressions of Gp and Gnp are taken from Eq. (2.7). Here Gp −G0 can be considered

as the electrostatic solvation free energy. In all calculations presented here except for salt

effect calculation, mobile ions will be set to zero corresponding to a solution without salt.

Therefore we have the following approximation

Gp =

∫

Ω
S(r)ρmφdr−

1

2

∫

Ω
ǫ(S(r))|∇φ|2dr ≈ 1

2

∫

Ω
S(r)ρmφdr. (2.21)

Discretizing the integral yields

Gp =
1

2

Nm
∑

i=1

Q(ri)φ(ri), (2.22)

where Q(ri) is the ith partial charge at ri in the biomolecule, and Nm is the total number

of partial charges. Now the electrostatic solvation free energy can be calculated as

∆Gp = Gp −G0 =
1

2

Nm
∑

i=1

Q(ri)(φ(ri)− φ0(ri)), (2.23)

where φ and φ0 are electrostatic potentials in the presence of the solvent and the vacuum,

respectively. Here φ is computed from the generalized Poisson equation (2.10) using the

continuous dielectric distribution

−∇ · (ǫ(S)∇φ(r)) = Sρm (2.24)

where ǫ(S) and ρm are the same as the ones in Eq. (2.10). The homogeneous solution φ0

is computed with ǫ(S) = ǫp in the whole domain. The nonpolar part, Gnp, is computed

exactly by Eq. (2.2).
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2.3 Numerical test and validation

This section provides systematic validations for the computational algorithms and schemes

proposed in the last two sections. We first examine the behavior of the coarea formula,

then continue testing through various equation solvers, and finally check the impact of the

potential term in our generalized geometric flow equation.

2.3.1 The behavior of the coarea formula

As described earlier, the coarea formula plays an important role in describing the mean

surface area of an infinite family of smooth solvent-solute boundaries by a volume integral.

This Eulerian formulation puts the free energy of the surface area and other free energies

in an equal footing. Usually, the isovalue of the surface area in the coarea formula can be

any positive real number. But for the present derivation, it is limited to be between 0 and 1

because S is defined as a characteristic function of the solute. Here, we numerically explore

the behavior of the coarea formula in a bounded open set. To this end, we design some test

cases as follows: Let B be a smooth function with a specific expression according to the

geometry in the coarea formula, we set

mean surface area of {x|0 < B(x) < 1} =

∫ 1

0

∫

B−1⋂Ω
dσdc =

∫

Ω
‖∇B‖dx (2.25)

where Ω is a bounded open set. Therefore, the mean surface area has the same value as the

volume of open set Ω
⋂

{x|0 < B(x) < 1}. Computationally, integrating over the norm of

the gradient of B gives rise to the corresponding mean surface area. The volume integral of
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a density function f is just simply approximated by

∫

Ω
f(x, y, z)dr ≈

∑

(i,j,k)∈J
f(xi, yj, zk)h

3 (2.26)

where the summation is over J , the set of points inside Ω, and (xi, yj, zk) is the coordinates

of grid points (i, j, k). Table 2.1 lists the numerical results and exact values of the surface

areas for the following cases

(a) A unit sphere: Ω = {(x, y, z)|x2 + y2 + z2 ≤ 1} and B =

√

x2 + y2 + z2

(b) A cylinder: Ω = {(x, y, z)|x2 + y2 < 1,−4 ≤ z ≤ 4} and B =

√

x2 + y2

(c) A ellipsoid: Ω = {(x, y, z)|(x/a)2 + (y/b)2 + (z/c)2 ≤ 1} and

B =
√

(x/a)2 + (y/b)2 + (z/c)2, where a = 20/7, b = 25/14, and c = 25/14.

It is evident that the numerical result converges to the exact value. The errors from the

Table 2.1: Areas computed from the coarea formula for bounded open sets

grid spacing
case 0.5 0.25 0.1 0.05 0.025 exact value

Sphere 4.00 4.00 4.15 4.17 4.18 4.189
Cylinder 22.50 23.25 24.49 24.84 25.01 25.133
Ellipsoid 37.75 37.97 38.10 38.17 38.16 38.163

cylinder are slightly larger than those from the sphere and ellipsoid because the cylinder has

non-smooth edges. However, the errors are small for all cases. Therefore, we conclude that

the mean value of the areas of the family of smooth solvent-solute surfaces indeed converges

to the area of the corresponding sharp surface. Thus, the present definition of the mean

surface area of an infinite family of smooth surfaces is an important generalization of the

classic concept of the area of a sharp surface.
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2.3.2 Accuracy of the generalized PB solver

In this section, we investigate the accuracy of the proposed numerical solvers. The general-

ized geometric flow equation (A.8) has the same differential operator as the mean curvature

flow [20] except for the extra source terms. Previously, we have numerically proved that the

explicit Euler algorithm delivers the reliability and convergence of the solution of geometric

flow equations, and the finite central different scheme is of second order convergence in space

[17]. Here, we focus on the test of the accuracy of the generalized PB solver with the pro-

posed dielectric function ǫ(S). Although the discretization form of the second-order finite

difference PB expression has been used for other continuous dielectric definitions [112], the

accuracy of this approach has not been examined. Moreover, it is worthwhile to validate the

generalized PB solver due to its different settings of dielectric function, i.e., the ǫ(S) profiles

generated by the geometric flow equation. For this purpose, we construct a benchmark test

of a simple one-ball system. We examine the convergence order and the accuracy of the

finite difference scheme in solving the generalized PB equation. In particular, we consider a

modified Poisson equation with a designed dielectric definition given by

ǫ(r) = ǫ1Su(r) + ǫ2 · (1− Su(r)) (2.27)
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where r = (x, y, z), ǫ1 and ǫ2 are two constants to be determined, and

Su(r) =







































1 if

√

x2 + y2 + z2 < a;

−2





b−
√

x2+y2+z2

b−a





3

+ 3





b−
√

x2+y2+z2

b−a





2

if a ≤
√

x2 + y2 + z2 ≤ b;

0 if b <

√

x2 + y2 + z2;

(2.28)

where a < b. Note that through the definition of ǫ and Su(r), this designed case has the

same features of the dielectric definition as that in our model. The exact solution is designed

to be

φ0(r) = cos(x) cos(y) cos(z). (2.29)

Then the modified equation becomes

∇ · (ǫ∇φ) = ǫx∇xφ0 + ǫy∇yφ0 + ǫz∇zφ0 + ǫ∇2φ0 (2.30)

where

∇2φ0(x, y, z) = −3 cos(x) cos(y) cos(z)

∇xφ0 = − sin(x) cos(y) cos(z)

∇yφ0 = − sin(y) cos(x) cos(z)

and

∇zφ0 = − sin(z) cos(x) cos(y).
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For ǫ, if a ≤
√

x2 + y2 + z2 ≤ b, we have

ǫi(r) = 6(ǫ2 − ǫ1)





b−
√

x2 + y2 + z2

b− a









√

x2 + y2 + z2 − a

b− a



 (2.31)





i

(b− a)

√

x2 + y2 + z2





where i= x, y, z. Otherwise, ǫx = ǫy = ǫz = 0. Table 2.2 lists the computed errors under

different mesh sizes with a = 1 and b = 3. The standard absolute norm error measurement

L∞ is employed. Here ǫ1 is fixed to be 1 and ǫ2 is taken to be 80 or 10. The second order

convergence in space is observed for the scheme. Furthermore, it is found that a large ǫ2

may slightly deteriorate the convergence.

Table 2.2: Errors and convergence orders for the generalized PB solver (ǫ1 = 1)

ǫ2 = 80 ǫ2 = 10
spacing L∞ order L∞ order

1 0.22 0.13
0.5 8.13*10-2 1.65 3.18*10-2 2.02
0.25 2.06*10-2 1.99 7.97*10-3 2.00
0.125 5.44*10-3 1.94 1.98*10-3 2.01

2.3.3 Convergence of boundary profile and dielectric function

In the present model, the characteristic function S defines the solvent-solute boundary.

Consequently, it can significantly affect the solution of the generalized Poisson-Boltzmann

equation, the surface area and volume, and thus, plays a key role in the solvation free energy

calculation. To illustrate the evolution and the convergence of the generalized geometric
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flow equation and corresponding S function, we solve Eq. (2.13) without the electrostatic

potential term in this test. However, the electrostatic solvation free energy at a given time can

still be calculated. The expression of attractive interaction Uatti needs to be given explicitly

in order to solve the geometric flow equation. Here we consider the 6-12 Lennard-Jones (L-J)

pair potential to model Uatti (see the description in Appendix A). All the calculations in this

work are carried out by using the WCA decomposition.

To illustrate the S profile and evolution, we consider a diatomic system with the van der

Waals radius 2.2Å and coordinates (x, y, z) = (−3, 0, 0) and (1.4, 0, 0). The spacing and

time stepping are chosen as h = 0.25Å and τ = h2/4.5, respectively. The solvent probe

radius is set to 2Å, which is used for the initial value setting and constraint construction.

In fact a much small solvent probe radius can ensure the correct surface topology [20]. The

computational domain is set to [−8.70, 7.05] × [−5.7, 5.55] × [−5.7, 5.55]. Thus, the size of

computational system is 64×46×46. The L-J parameters are set as follows: σi is taken from

atomic radius and σs is chosen to be 0.65Å. We set well depth ǫi = 0.039 kcal/mol and bulk

density coefficient ρ0/γ = 2, where, γ = 1/15kcal/(molÅ2). To compute the electrostatic

solvation free energy during the evolution of solvent-solute boundary, 1 unit charge is set on

the center of each atom. We choose the dielectric constants ǫm = 1 and ǫs = 80, respectively.

We set pressure coefficient p/γ = 0.2. A different γ is used for real systems.

The evolution process of diatomic solvent-solute boundary is depicted through a group of

cross section profiles of the S function in Figure 2.3 where the values of S from a set of points

of (x, y, 0.05) are described. The cross sections start with a relatively fat-shaped interface

which reflects the solvent accessible density. Here, S = 1 inside the molecular domain

and S = 0 in the solvent domain. Then the solvent-solute boundary is driven inward by
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(T=0.07) (T=1.0)

(T=1.5) (T=5.0)

Figure 2.3: The evolutionary profiles of the S function at cross section (x, y, 0.05) in a
diatomic system plotted from four intermediate states.
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intrinsic geometric curvature effect and external potential. At the same time, there appears

a transition region between the solvent and the solute. Finally a convergence is reached

with a balance among intrinsic geometric curvature effect, different potentials and enforced

constraints. To have a clear idea about the distribution feature of the S function, we draw a

cross line from the cross section graph at T = 5 along x = −0.75 which are shown in Figure

2.1, where the functions of S and 1 − S are described together. It can be seen that the S

function in the transition region is rather smooth. Once the S function is determined, the

dielectric function ǫ(S) is calculated according to Eq. (2.11). Here the dielectric function

ǫ(S) corresponding to the S function in Fig (2.1) is also exhibited in Figure 2.2. It has a

pattern similar to 1− S but with different values. It is important to note that the dielectric

function ǫ(S) is also very smooth at the solute-solvent boundary. That is why the classical

finite difference scheme can be applied to solve the generalized PB equation without reducing

the accuracy of the solution.

Once the solution of the generalized PB equation is computed, the electrostatic solvation

free energy can be calculated. Therefore, the time history of the free energy along with the

evolution of solvent-solute boundary can be recorded. To illustrate the convergence pattern of

the solvation free energy, we compute the electrostatic solvation free energies in intermediate

states during the time evolution. The results are shown in Figure 2.4. In order to show

evolution histories of the surface area, volume and solvation free energy together in one plot,

we plot two linear functions F (Volume) and J(Area) which have the same time dependence

as the volume and the surface area, respectively. Here T denotes the time span and N = T
τ

represents the number of computational steps in the generalized geometric flow solver. It

is found that the solvation free energy decreases with respect to the time evolution, which

54



10
0

10
1

10
2

10
3

−250

−200

−150

−100

−50

N

Energy
F(Volume)
J(Area)

Figure 2.4: The time evolution histories of the electrostatic solvation free energy, F (Volume)
and J(Area), where F (Volume) = volume/5− 180 and J(Area) = (surface area)/5− 200.

is consistent with our theoretical formulation. It is observed that the solution of our model

converges to a steady state in terms of volume (Å3), area (Å2) and electrostatic solvation

free energy (kcal/mol). Moreover, to obtain the results at the steady state, N = 200 or

T = 3.5 is large enough to be taken as the stopping time in our geometry flow solver for

this system. Normally, it takes a longer evolution time for a large system to set down to the

steady state. The total integration time could be considerably shortened had a small probe

radius been used [20].

2.3.4 Consistency of iteration procedures

If the electrostatic potential effect is taken into account during the solvent-solute bound-

ary evolution, the iteration procedure has to be used to update the electrostatic potential

repeatedly. As described earlier, there are two possible iterative approaches which can be

explored to solve the coupling system, in which the simple relaxation algorithm guarantees
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the convergence of the algorithm. The question is whether these two approaches lead to the

same outcome.

Table 2.3: Comparison between two iteration approaches

2 atoms Gly
Approach I Approach II Approach I Approach II

Energy -231.18 -231.18 -12.44 -12.44
Surface area 128.67 128.67 271.91 272.02

Volume 100.72 100.83 287.85 287.93

To study the consistency between these two approaches, the above mentioned diatomic

system is employed as well as a small molecule called glycerol triacetate (Gly) from a

set of 17 test compounds whose detailed information is given in Section2.4. The self-

consistent iteration is performed until the electrostatic solvation free energy converges to

within 0.01 kcal/mol. The electrostatic solvation free energy(kcal/mol), surface area (Å2)

and volume(Å3) resulted from these two different methods are compared. The results are

shown in Table 2.3. Here we take α = 0.5 for both methods. The electrostatic potential

φ is updated in every 15 steps of the generalized geometric flow integrations in Approach

II. It is evident that the results from these two approaches are almost the same. Therefore,

they can be alternatives for each other at least in small molecular systems. But for large

protein systems, as we mentioned, it is better to use the second approach to avoid the pos-

sible blowup in the generalized geometry flow caused by unpredictable large changes in the

temporary electrostatic potential. Thus, in the following tests and applications, the second

method is applied except specified.

In Approach II, the relaxation factor α and the number of intermittency Nstep need to

be determined. We are interested in knowing whether the relaxation factor α plays a role in

the final result. Similarly, it is important to know whether the Nstep makes a difference in

56



the converged result. We address these issues by examining the effects of α and Nstep on the

electrostatic solvation free energy, surface area and enclosed volume. The above mentioned

diatomic system is used here again.

Table 2.4: Effect of relaxation factor α on final results
α 0.1 0.2 0.5 0.7 0.8

Energy -231.26 -231.18 -231.18 -231.18 divergence
Surface area 100.73 100.94 100.83 100.71

Volume 128.65 128.62 128.67 128.71

It is known that a stable α value is between 0 and 1 but can not be very close to 1. We

consider a number of α values in the diatomic system while keeping other settings fixed. Table

2.4 shows the electrostatic solvation free energy, surface area and volume for α = 0.1, 0.2, 0.5

and 0.7. It is found that the procedure diverges when α ≥ 0.8. However, convergence is

achieved as long as the relaxation factor α is small enough. Once the convergence is achieved

there is no much difference in the final outcome. We therefore take α = 0.5 in the following

tests and applications.

To study the effect of the number of intermittency, we take Nstep = 5, 10, 15, 40 and

100, while fixing α = 0.5 and other settings. The results are listed in Table 2.5. It is seen

that all values obtained from different number of intermittency are very close to each other.

However, a numerically too large or too small Nstep is not preferable. If Nstep is too large,

Approach II goes back to the first one. If Nstep is too small, the iterative process may stop

too early because the perturbation in each iteration is so weak that the convergence criteria

is satisfied unexpectedly sometimes. In addition, small step number makes the whole process

computationally expensive.
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Table 2.5: Effect of the number of intermittency in Approach II

Nstep 100 40 15 10 5

Energy -231.18 -231.19 -231.18 -231.17 -231.11
Surface area 100.83 100.83 100.83 100.89 101.07

Volume 128.63 128.63 128.67 128.48 128.63

2.3.5 Efficiency of the accelerated iteration procedure

We study the efficiency of the accelerated self-consistent iteration in this section. At the

beginning we analyze the CPU time usage based on an original combination of methods:

Biconjugate Gradient (BiCG) method for the generalized PB solver and a widely used explicit

scheme for the generalized geometric flow (GGF) solver. In addition, as commonly used in

the linear system of the PB equation, we take 10−6 as the initial convergence criteria and set

the first guess of the electrostatic potential in each generalized PB run to be 0. The above

mentioned diatomic and Gly systems will be utilized through this efficiency test. Table

2.6 lists the breakup of time spending in the different parts of the self-consistent iteration

procedure. It is seen that for these two systems the major computation cost lies in the

routines of the generalized PB solver and the generalized geometric flow solver (more than

90%). Therefore, the total time will be dramatically reduced when efficient accelerations are

achieved in the generalized PB solver and generalized geometric flow solver. Note that all

of the computations are performed on a SGI Altix 350 workstation with a 1.4 GHz Itanium

processor and 4 GB memory. Additionally, we explore the improvement made to the

generalized PB solver, the generalized geometric flow solver, and consequently to the total

time cost. First, we combine an appropriate preconditioner with the iterative solver of the

linear system. Additionally, we make use of the prior electrostatic potential as a first guess

for the next PB run. Moreover, we obtain the approximations through the relaxation of the
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Table 2.6: CPU time analysis from original schemes

2 atoms Gly
Time(s) % Time(s) %

Total 23.95 58.4
GF 4.95 21 11.31 19
PB 18.25 76 45.24 77

Other 0.75 3 2.03 4

convergence criteria of the linear solver. Finally, we employ the ADI scheme to integrate the

generalized geometric flow equation.

First of all, we do the following improvement: Take the prior potential solution as the first

guess of each run of the linear solver, then replace BiCG scheme with a combination of the

preconditioner and the iterative solver (ILU/OM), while keeping other settings unchanged.

Table 2.7: Speedup from adjustment of initial guess and preconditioner in PB solver

h size BiCG BiCG1 ILU/OM Speedup
1 17× 12× 12 0.0557(252) 0.0322(152) 0.0371(50) 1.50
0.5 32× 23× 23 0.775(419) 0.467(248) 0.420(82) 1.85
0.25 64× 46× 46 17.676(841) 10.410(490) 6.947 (166) 2.54
0.125 127× 92× 92 525.74(2771) 263.11(1371) 130.76 (410) 4.02

Table 2.7 gives the total computational costs of the generalized PB solver in the diatomic

system as well as the total iteration numbers which are inside the parenthesis. The third

column lists the time spending for original schemes, the fourth one makes use of prior po-

tential as a first guess and the fifth one records the time spending from the usage of the

preconditioner and the new first guess setting. It is seen that the gain of speedup is related

to the size of system: The larger size is the system, the more acceleration is achieved. For a

127× 92× 92 system, combination of the above two implementations can obtain a speedup

up to a factor of 4, while a single adjustment does not give much impressive improvement.

59



It is also found that although the total iteration number reduces dramatically by adding

the preconditioner, the total computational cost is reduced with a much smaller factor. The

reason is that the PB solver with a preconditioner takes more time in each step.

Next, we study the impact of the convergence criteria to the electrostatic solvation free

energy of the diatomic system. Table 2.8 summarizes the calculated electrostatic solvation

free energies and total time cost of the PB solver under different convergence criteria. It

indicates that 10−4 is good enough to deliver accurate results. In fact, 10−2 is still fine but

10−1 is clearly unacceptable. In this study, we take 10−4 as the convergence criteria of the

linear system in the following calculations except specified. Because it is able to save much

time compared to 10−6 while at the same time maintains the accuracy to a satisfied level.

In practical application, one might use 10−2. A further reduction in computational time is

possible if one sets the probe radius to rp = 0.25rvdW, where rvdW is the van der Waals

radius [20].

Table 2.8: Influence of convergence criteria on electrostatic solvation free energy and com-
putational time for the diatomic system

Criteria 10−8 10−6 10−4 10−3 10−2 10−1

Energy (kcal/mol) -231.17 -231.17 -231.19 -231.28 -231.07 -239.80
PB Time (s) 10.44 6.95 4.17 3.09 2.05 0.90

Finally, we implement the ADI scheme in the generalized geometric flow solver. Thus

we can use a much larger time increment than that used in an explicit scheme without the

stability concern. For example, if grid spacing is h = 0.25, the time step size can be taken

as large as 0.2 for the ADI scheme to be a good balance between accuracy and efficiency,

while it has to be less than 0.02 in the explicit scheme. The acceleration of the generalized

geometric flow solver can be found in Table 2.9, which is obtained by applying all of the
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speedup strategies we have discussed to the diatomic and Gly systems. This table shows all

the time spending for major routines in the iterative process before and after the acceleration.

It indicates that speedup in the PB solver can reach a factor of 4 or 5. However, the speedup

in the total time is not as impressive as in the PB solver. It is about a factor of 3 in the Gly

system and about a factor of 2 in the diatomic system. The reason is that the acceleration

in the generalized geometric flow equation through the ADI can not have the same speedup

factor as that of the PB solver. The electrostatic solvation free energies are also given in the

table for a comparison before and after the speedup. Little difference in energies is observed

due to varying schemes and the approximation.

Table 2.9: Comparison of CPU time (s) in the iteration procedures with and without accel-
erations

2 atoms Gly
without with Speedup without with Speedup

Total 23.95 8.87 2.70 58.40 16.28 3.59
GF 4.95 3.67 1.35 11.13 5.57 2.00
PB 18.25 4.45 4.10 45.24 8.71 5.19

Other 0.75 0.75 2.03 2.00
Energy -231.17 -231.18 -12.44 -12.44

2.3.6 Impact of potentials in the geometric flow equation

The potential source terms in the generalized geometric flow equation include pressure, long-

ranged attractive dispersion interaction and electrostatic potential. The solution (S) of the

generalized geometric flow reflects a balance between the intrinsic geometric curvature effect

and several external potentials at the equilibrium. In this section, we illustrate the impact

of involved potentials to the characteristic function S, and consequently to the solvation free

energy. Although in our model there is no explicit surface definition to be demonstrated, the
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impacts of these potentials can be reflected by volume, area and the electrostatic solvation

free energy. In particular, if the flow is driven inward by a potential, the volume should

become smaller, and an outward driving makes the volume larger. These are true at least

during the early stage of the solvent-solute boundary evolution. In fact, they are not true for

the system near the equilibrium. The present study is carried out through two proteins (PDB

ID 1ajj and 1fca) from protein data bank (PDB). Their detailed coordinates and parameters

are given in the application section of 22 proteins. Without any potential term, the mean

curvature flow equation is driven purely by intrinsic geometric curvature effect, which leads

to the minimal molecular surface (MMS) [20]. With the MMS as a reference, each time we

use one additional potential term in Eq. (2.13) to produce a new characteristic function

S which will be used in the PB solver to calculate the electrostatic potential. In other

words, starting with the MMS, we attain the different characteristic functions S with either

pressure, attractive non-polar potential, or electrostatic potential separately. Only when

electrostatic potential term is taken into account, is it needed to run the self-consistent

iteration process for the solution of the coupled system. Table 2.10 gives the calculated

volume and electrostatic solvation free energy under each potential term. We also calculate

the solvation free energy when all the potentials are turned on. It is seen that all the

potentials involved here drive the flow inward so that there are more solvent components

between or around two spherical solutes when just an individual potential is turned on. This

is consistent with the experimental observations [236] and our previous studies [17].
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Table 2.10: Effects of potentials on the solvent-solute boundary

1ajj 1fca
Volume Energy Volume Energy

MMS 6601.9 -975.6 9345.7 -1082.2
Pressure 6195.1 -1032.1 8866.6 -1123.2
Attractive 5533.8 -1139.3 8107.2 -1192.8

Electrostatic 6585.8 -1061.4 9329.3 -1112.4
Total potential 5381.6 -1165.6 7886.8 -1211.9

2.4 Applications

We consider two types of problems in this section. First, we apply our new approach to a set

of 17 small molecules. Then, some protein examples are studied. The Dirichlet boundary

condition is used for both the generalized Poisson-Boltzmann equation and the generalized

geometric flow equation as in our previous calculations [259, 252, 93, 20]

2.4.1 Set of 17 test molecules

We apply our optimized surface model (OSM) of solvation to compute the solvation free

energies of a set of 17 small compounds. This test set was studied by Nicholls et al [160]

using a number of approaches, including quantum mechanics, PB theory etc. An important

aspect about this test set is that experimental data are available. Therefore, solvation free

energies predicted from our new model can be compared with both experimental values and

other numerical results. Moreover, these compounds are considered as a challenging test

set for computational methods because the existence of polyfunctional or interacting polar

groups, which lead to strong solvent-solute interactions.

In our calculation, we set the dielectric constants ǫm = 1 and ǫs = 80. We use γ as

fitting parameter, and its initial value is set to γ = 1/15 kcal/(molÅ2) to compute other
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Table 2.11: Comparison of free energies (kcal/mol) for 17 compounds

Compound Gnp ∆Gp ∆G Exptl Error
glycerol triacetate 2.27 -12.44 -10.16 -8.84 -1.32
benzyl bromide 1.40 -4.89 -3.49 -2.38 -1.11
benzyl chloride 1.35 -5.02 -3.68 -1.93 -1.75

m-bis(trifluoromethyl)benzene 2.22 -3.22 -1.00 1.07 -2.07
N,N-dimethyl-p-methoxybenzamide 1.96 -9.20 -7.24 -11.01 3.77

N,N-4-trimethylbenzamide 1.86 -7.67 -5.81 -9.76 3.95
bis-2-chloroethyl ether 1.45 -4.22 -2.77 -4.23 1.46
1,1-diacetoxyethane 1.65 -8.24 -6.59 -4.97 -1.62
1,1-diethoxyethane 1.52 -4.40 -2.88 -3.28 0.40

1,4-dioxane 1.01 -5.65 -4.64 -5.05 0.41
diethyl propanedioate 1.82 -7.85 -6.03 -6.00 -0.03
dimethoxymethane 1.03 -4.52 -3.50 -2.93 -0.57

ethylene glycol diacetate 1.59 -8.43 -6.84 -6.34 0.50
1,2-diethoxyethane 1.55 -4.31 -2.76 -3.54 0.78

diethyl sulfide 1.22 -2.39 -1.17 -1.43 0.26
phenyl formate 1.37 -7.84 -6.48 -4.08 -2.40

imidazole 0.82 -11.27 -10.45 -9.81 -0.64

γ-dependent parameters, see Eq. (2.13). We choose ρ0/γ = 2 by comparing the bulk

density 0.033Å−3 and the possible γ value. For micro-molecular systems, pressure p can

be very small and sometimes is neglected in the calculation [48]. But here we still take it

into account and set p/γ to 0.2. Note that in the numerical simulation, all ratio parameters

here are treated as dimensionless. For L-J parameters, σs is chosen to be 0.65Å as a

good fitting solvent radius and σi is the solute atomic radii [235]. Note that due to the

continuum representation of solvent in our model, the 6-12 Lennard Jones potential formula

(A.2) differs from the standard version — the distance used in our formula is no longer

the distance between the centers of solute atoms and the centers of solvent atoms but the

distance between a specific position in the solvent area and the centers of solute atoms.

This should make the setting of well depth ǫi different from the ones taken from AMBER
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or OPLS force fields. However, the performance of the L-J potential should be similar, i.e,

the value of the L-J potential in the solvent caused by a solute atom only depends on the

distance from the center of the atom. It implies that the value of L-J potential caused by

a solute atom should be a constant on the van der Waals surface of the atom. In other

words, ǫi

[

(

σi+σs
|r−ri|

)12
− 2

(

σi+σs
|r−ri|

)6
]

= Di if r is on the vdW surface of the atom. Here

the constant Di should have different values for various types of atoms. For simplicity we

use a uniform constant D to determine the value of ǫi given σs and σi. In the present

calculation, we pick 1.0 for D and the WCA expression is chosen as the attractive van der

Waals potential. We choose grid spacing h = 0.25Å and time stepping τ = h2/4.5. Here, γ

(kcal/(molÅ2)) serves as a fitting parameter, and its final value is 0.0065 kcal/(molÅ2).

Structure and charge information of the 17 compounds are adopted from those of Nicholls

et al [160] and can be obtained from the supporting information of their paper. In particular,

charges are taken from the OpenEye-AM1-BCC v1 parameters [115]. Atomic coordinates

and radii are based on their new parametrization called ZAP-9 in which certain types of

radii are adjusted by them from Bondi radii to improve the agreement with experimental

free energy. With these structures and charges parameters, the root mean square error

(RMS) obtained in their paper is 1.71± 0.05 kcal/mol via the explicit solvent model. And

the smallest RMS error of their single - conformer Poisson-Boltzmann approach is 1.87±0.03

kcal/mol [160]. Such a large RMS error indicates the challenge of this test set. Usually,

different surface definitions in implicit solvent models should have their own optimal radii

set. In particular, a continuous dielectric definition based model is supposed to have radii set

with larger values than those of a discontinuous dielectric model. Otherwise, the calculated

free energy does not give a good fitting to experimental data [217]. This also occurs in the
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present model. Therefore, we multiply the radii from ZAP-9 by a common factor 1.1. It turns

out this treatment leads to a good agreement with experimental data in terms of electrostatic

solvation free energies and total solvation free energies. The results are summarized in Table

2.11, which gives a comparison between calculated and experimental values of solvation free

energies of 17 compounds. RMS error of the present model is 1.76 kcal/mol which is similar

to that of Nicholls et. al, i.e., 1.87 kcal/mol. This RMS error is competitive to that of

the explicit solvent approach (1.71±0.05 kcal/mol) under the same charge and structure

parameters set [160]. This may be credited to the more satisfactory nonpolar terms and

the enforcement of the potential driven geometric flow. Here, as expected, major errors

are from the calculation of benzamides which are between 3.5 and 4.0 kcal/mol, see Figure

2.5. Without these benzamide compounds, the RMS error drops from 1.76 kcal/mol to 1.24

kcal/mol. This problem with benzamides is likely due to radius adjustment for the carbonyl

oxygens and tertiary nitrogens in ZAP 9 under the OpenEye-AM1-BCC v1 charges [160]. In

other words, these large errors from benzamides can not be avoided if both OpenEye-AM1-

BCC v1 charge and corresponding optimized ZAP 9 radii are used in PB approaches. Based

on these considerations, one possible approach for improvement is to create a new charge

set more appropriate for the PB approach with the same ZAP radii. It may be realized by

introducing quantum mechanical corrections to our model to take care of charge density.

However, this aspect will be investigated in next chapter 3.

2.4.2 Solvation free energy of proteins

Validation by using a set of 17 molecules has shown that proposed differential geometry

based solvation model works well for the energy prediction of small compounds. Since small
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Figure 2.5: Correlation between experimental data and the present optimized surface model
(OSM)(also results from Nicholls’) in electrostatic solvation free energies of 17 compounds.

molecules are accessible to more accurate computational means, such as quantum mechanical

calculations, one of the main purposes of developing the present optimized surface model

(OSM) is to attack relatively large macromolecules. To this end, we consider a test set

of proteins employed by Mei et al [152]. For this set, the total number of residues ranges

from 21 to 275. The initial structures of all proteins are taken from the protein data bank

(PDB). The hydrogen atoms, which are typically missing from the X-ray data, are added

to the structures to obtain full all-atom models with optimized hydrogen bondings. Partial

charges at atomic sites and atomic van der Waals radii in angstroms are assigned from the

CHARMM27 force field [146]. All of these operations, i.e, the transformation from PDB

files to PQR files, can be easily done with a software PDB2PQR. Parameters of the present

calculation are set in the same way as those for 17 compounds except for Nstep = 2. Similar

to the treatment of the 17-compound set, the radii from the CHARMM force field need to

be multiplied by a common factor of 1.1. Our results are summarized in Table 2.12.
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For a comparison, The results of Mei et al are listed in Table 2.12 as well. Their results

obtained from the molecular fractionation with conjugate caps and conductor-like polarizable

continuum model (MFCC-CPCM). This is an approximate quantum approach that divides

the macromolecule into fragments, such that the quantum calculations at HF/6-31 G level

and B3LYP/6-31 G level can be applied. The solvation effect is estimated vis the polarizable

continuum method with the classic molecular surface [152]. It is seen from the table that

there are relatively large deviations, up to 28%, between results obtained by the present OSM

and those of the MFCC-CPCM. These derivations might due to the different methodologies,

computational environments and structures. In fact, the results from two different quantum

basis sets have up to 10% deviation for protein Amyloid. Another deviation between results

of two quantum basis sets is about 5% for the protein BPTI.

Table 2.12: Comparison of electrostatic solvation free energies (kcal/mol) obtained from the
MFCC-CPCM, the present model (OSM) and MIBPB.

△Gp(kcal/mol)
Protein PDBID No.of residues MIBPB-III MFCC-CPCM [152] OSM
RP71955 1RPB 21 -184.68 -267.60 -192.23
Amyloid 1AMC 28 -861.65 -886.01(-798.72) -852.68
Crambin 1CBN 46 -303.80 -361.52 -304.84
BPTI 1BPI 58 -1301.9 -1332.71(-1263.52) -1281.19

Calbindin 1CDN 75 -2188.96 -2259.62 -2195.42
Ubiquitin 1UBQ 76 -1170.61 -997.02 -1148.81
Lysozyme 2BLX 129 -1913.40 -1887.71 -1898.07
Subtilisin 1SBT 275 -1896.5 -2062.2 -2001.4

As the largest deviation between the results from the proposed OSM and that of the

MFCC-CPCM is quite large, we consider another independent approach, the MIBPB [259,

252, 93], to evaluate the present method. A specific MIBPB code, the MIBPB-III which

has the treatment of geometric and charge singularities [93], is employed in our calculations.
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Figure 2.6: Correlation between MFCC-CPCM [152] and the present optimized surface model
(OSM) in electrostatic solvation free energies of 8 proteins.

MIBPB-III has been intensively calibrated in the past and is the only known second accurate

method for solving the Poisson-Boltzmann equation with both molecular surfaces and partial

charges represented by the Dirac delta functions. To deliver such an accuracy, the MIBPB-III

has built in the MIB scheme [261, 254] and Dirichlet to Neumann mapping [93]. Similar to

the present approach, the structural data of MIBPB-III is also prepared with the PDB2PQR

software. As such, we can eliminate the difference due to the different treatment of initial

data. However, the MIPPB utilizes the classic PB equation and the molecular surface, while

the present method has a generalized PB equation, and an optimized smooth surface. It

is seen from Table 2.12 that solvation energy results from the present OSM and from the

MIBPB have an excellent agreement on most proteins except for Subtilisin. For this protein,

the difference of energies from two methods is about 5%.
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Figure 2.7: Correlation between MIBPB-III and the present model (OSM) in electrostatic
solvation free energies of 22 proteins

2.4.3 Twenty two proteins

Encouraged by the good consistency of the proposed method and the MIBPB-III, we further

compare these approaches by a larger set of protein molecules — twenty two proteins that

have been frequently used in previous studies [83, 252, 93, 17]. The implementation of these

two methods is the same as that described in the last section.

Table 2.13 shows the results from the present continuous dielectric model, denoted as

“Radii1” in the table, and those by MIBPB-III. It turns out that electrostatic solvation

energies obtained via our minimization process are very close to those based on the MIBPB-

III. This can also be seen through Figure 2.7 which shows that the results between them are

quite linearly correlated. The correlation coefficient is 0.999.

It is still interesting to understand how important it is to use a slightly enlarged radius

in smooth surface models [217]. To this end, we carry out the present calculations by using
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Table 2.13: Electrostatic solvation free energies for 22 proteins

△Gp(kcal/mol)
PDB-ID No. of atoms MIBPB-III Radii1 Radii0
1ajj 519 -1137.2 -1178.5 -1362.6
1bbl 576 -986.8 -965.94 -1158.7
1bor 832 -853.7 -871.4 -1066.5
1fca 729 -1200.1 -1200.6 -1340.9
1frd 1478 -2852.2 -2844.8 -3173.4
1fxd 824 -3299.8 -3291.9 -3496.9
1hpt 858 -811.6 -808.2 -1039.1
1mbg 903 -1346.1 -1328.2 -1535.4
1neq 1187 -1730.1 -1713.9 -2049.3
1ptq 795 -873.1 -866.2 -1064.5
1r69 997 -1089.5 -1072.7 -1294.0
1sh1 702 -753.3 -771.8 -973.8
1svr 1435 -1711.2 -1704.6 -2073.7
1uxc 809 -1138.7 -1125.7 -1350.9
1vii 596 -901.5 -892.0 -1052.1
2erl 573 -948.8 -935.8 -1067.3
2pde 667 -820.9 -843.0 -1049.3
451c 1216 -1024.6 -1020.6 -1291.8
1a2s 1272 -1913.5 -1900.3 -2155.0
1a7m 2809 -2155.5 -2179.8 -2666.1
1a63 2065 -2373.5 -2380.5 -2912.0
1vjw 828 -1237.9 -1226.6 -1411.4

the original CHARMM22 van der Waals radii, denoted as “Radii0”. This result is also listed

in Table 2.13. It is seen that results from the original CHARMM22 van der Waals radii can

have over 20% deviations from those of “Radii1”. This helps to come to a conclusion that

for continuous dielectric models, it is necessary to enlarge atomic radii obtained from widely

used force fields. Otherwise, the results will be inconsistent with those of other analysis. This

is in agreement with the observation in the literature [217]. The necessity of using larger

radii is also shown clearly in Fig 2.8 by the differences of electrostatic solvation free energies

obtained from the MIBPB-III and the present calculations with original radii (Radii0) or
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Figure 2.8: Differences between electrostatic solvation free energies obtained from the
MIBPB and the present model with original radii (Radii0) or enlarged radii (Radii1).

enlarged radii (Radii1).

Additionally, it is useful to demonstrate that the electrostatic potential function com-

puted in the present OSM can be illustrated at arbitrary isosurface of the characteristic

function S. This is done by first computing a sharp surface at a given S value, then pro-

jecting the φ value on the isosurface of a given S value. Figure 2.9 shows three plots of the

electrostatic potentials at S = 0.25, 0.5 and 0.75. A comparison of these potentials indicates

(S=0.25) (S=0.50) (S=0.75)

Figure 2.9: Surface potential display of one protein (PDBID: 1frd) at different isosurfaces
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the fast/slow electrostatic potential changing regions in the solvent-solute boundary. These

regions are also interactive regions in the protein-protein or protein-ligand interactions.

Finally, it remains an important issue to further improve the computational efficiency,

although systematical efforts have been made in this work to reduce CPU cost. Since the

coupled generalized PB and geometry flow equations are needed to evolve self-consistently to

reach the steady state, it takes more CPU time for the present method to calculate the total

free energy than some existing approaches that compute the polar and nonpolar energies

separately.

2.5 Chapter conclusions

This chapter presents a novel differential geometry based solvation model. A crucial con-

cept in the present model is the characteristic function or the description function of solute

molecules which is one inside the solute domain and zero inside the solvent. Near the

solvent-solute boundary, the characteristic function gradually changes from one to zero over

a region of transition. The exact position and width of the transition region are determined

by a variational framework, which is formulated based on the total solvation free energy.

As a key ingredient of the present framework, the total energy encompasses coupled polar

and nonpolar contributions. The polar solvation free energy functional is described by the

electrostatic theory at equilibrium, while the nonpolar solvation free energy functional con-

sists of surface energy, mechanical work and attractive solvent-solute interactions. Both the

polar and nonpolar solvation free energies are coupled through the characteristic function

S. In the present work, geometric measure theory is utilized to convert the Lagrangian

formulation of the surface into appropriate Eulerian formulation. By variation of the total
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solvation free energy functional with respect to the characteristic function and electrostatic

potential, a generalized geometric flow equation for the electrostatic potential and a gener-

alized Poisson-Boltzmann equation for the characteristic function are obtained. Unlike the

standard Poisson-Boltzmann equation, the generalized Poisson-Boltzmann admits a smooth

dielectric profile governed by the generalized geometric flow equation, which provides a phys-

ical description of the true solvent-solute dielectric boundary, according to the variational

principle. The generalized geometric flow equation balances the intrinsic geometric curva-

ture effect and external potential due to mechanical work, solvent-solute interactions, and

the electrostatic potential. The solution of the generalized geometric flow equation and the

generalized Poisson-Boltzmann equation leads to quantities for the direct evaluation of the

solvation free energy.
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Chapter 3

Quantum formulation

The objective of this chapter is to incorporate a quantum mechanical description of charge

density into our earlier differential geometry based solvation model, which is described in

Chapter 2. To this end, we hope to develop a more accurate and self-consistent multiscale

approach for the solvation analysis of both small and large molecules. The advantages

of the present quantum formulation of the differential geometry based multiscale solvation

models are follows. First, compared with our earlier solvation models, the present model

is able to provide more accurate descriptions of charge arrangement during the solvation

process and leads to more accurate prediction of solvation free energies. Additionally, the

present multiscale model reduces the dependence of our earlier solvation models on the

existing molecular mechanical force field parameters, which are typically parameterized for

certain class of (macro-) molecular systems and may not be appropriate for other class

of molecules. Therefore, the present model can be applied to a wider class of molecules.

Moreover, compared with other existing QM based solvation models [227, 237, 42], the

present model avoids the use of unphysical solvent-solute interfaces. The solvent-solute
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boundary in the present model is described by the differential geometry theory of surfaces.

Finally, a systematical framework is established to incorporate polar energy, nonpolar energy

and quantum energy into a total energy functional. The optimization of the total energy

functional leads to coupled governing equations for a set of important state functions, such

as electrostatic potential, electronic density, and solvent-solute boundary profile. This set

of state functions gives rise to theoretical predictions of solvation free energy, electrostatic

profile and solvent-solute interface of the solvent-solute complex.

This chapter is organized as follows. Section 3.1 is devoted to the theoretical formula-

tion of our differential geometry based quantum model of solvation. We provide a detailed

description of various solvation free energy functionals. Three governing equations, i.e., the

generalized Poisson-Boltzmann equation, the potential driven geometric flow (i.e., general-

ized Laplace-Beltrami) equation, and the Kohn-Sham equation are derived from the total

energy functional via the Euler-Lagrange variation. Numerical methods and algorithms are

presented in Section 3.2. This section offers detailed schemes for the solution of the above-

mentioned three governing equations. The dynamical coupling of these three equations is

achieved by an efficient iterative procedure. A formula for the solvation free energy esti-

mation is also derived from the multiscale total energy functional. The present multiscale

model is validated by numerical tests using a number of molecules in Section 3.3. To estab-

lish a valid approach, we have examined consistency of the electron density with the Poisson

equation. The unit conversion between conventions used in our Poisson solver and that in

a DFT software is discussed. The results from the present multiscale mode is compared

with those in our previous methods and those in the literature. Applications to three sets of

molecules are given in Section 3.4. Some of these sets are computationally challenging. We
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demonstrate that the present model performs well in the prediction of solvation free energies.

This chapter ends with a conclusion.

3.1 Theory and model

In this section, we first prescribe the polar and nonpolar free energy functionals based on

our differential geometry theory of the solvent-solute interface introduced in section 2.1.1 of

Chapter 2. We then give an expression for the quantum mechanical energy of electrons. In

the present work, the quantum mechanical energy of electrons is also treated as a part of

the multiscale total energy for the solvation system. Governing equations for the solvation

process are derived by the Euler-Lagrange variational principle.

3.1.1 Charge density based polar free energy functional

The solvation process involves both intermolecular and intramolecular interactions. Solva-

tion analysis has been following certain convention, which may not be precisely consistent

with that in other fields. Typically, solvation interactions are classified into polar type and

non-polar type. The polar type of interactions is often modeled by the Poisson-Boltzmann

(PB) equation with appropriate point charges at atomic central positions. In the original

electromagnetic theory, the charge source of the electric potential is to be “free charges”.

However, in biophysics, due to the atomistic nature of the description, the point charges are

obtained by the fitting of the electron density distribution of either a charged molecule or

a charge-neutral molecule into its atomic centers. Such point charge information is often

stored in the database of popular software packages, such as CHARMM [146]. Therefore,

the polar interactions include both charge and polarization effects inside the molecule. Note
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that the effect of the rearrangement of electron charges during the solvation process needs

to be computed twice, once before and once after the solvation. Polar interactions are also

called electrostatic interactions. However, not all electrostatic interactions are described by

the PB equation. Strictly, the electrostatic potential solved from the PB equation repre-

sents Coulombic type of interactions between charges. However, many other intermolecular

interactions, such as London dispersion interactions, Debye (induced dipole) interaction, ion-

dipole interactions and dipole-dipole interactions are also electrostatics in origin, and are not

represented by the PB equation [121, 1, 5, 6, 194].

Sharp and Honig [199] and Gilson et al. [97] have given a formulation for the electrostatic

free energy functional. However, their formulation is based on a given static sharp solvent-

solute interface. In the present work, we follow our earlier definition of differential geometry

based electrostatic free energy functional in Chapter 2

Gp =

∫

Ω

{

S

[

ρmφ− 1

2
ǫm|∇φ|2

]

(3.1)

+ (1− S)



−1

2
ǫs|∇φ|2 − kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)











dr

where Qi is the charge of ith ionic species, Nc is the total number of ionic species, kB is

the Boltzmann constant, T is the temperature, and n0i is the bulk concentration of the ith

ionic species. Here, ǫs and ǫm are the permittivity, or dielectric constants of the solvent

and solute domains, respectively. The ǫ is unity in vacuum, but assumes different values in

different environments. In solvation analysis, ǫ is usually set to 1 or 2 in the solute domain

and to 80 in the solvent domain. In Eq. (3.1), ρtotal is the total charge density of the
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molecule and is given by

ρtotal = qn(r)− qnn(r) (3.2)

= qn(r)− q
∑

I

ZIδ(r−RI ),

where q is the unit charge of an electron, n(r) is the electron density, nn(r) is the nu-

cleus density, and ZI and RI are the atomic number and the position vector of nucleus I,

respectively.

In Eq. (3.1), the term associated with S is the electrostatic free energy of the solute and

that associated with (1 − S) is the electrostatic free energy of the solvent. In our model,

the surface function S will be determined by the total energy optimization. Additionally,

non-polar solvent-solute interactions are modeled in the same framework as that in Section

1.1.4.

3.1.2 Quantum mechanical energy functional

In the present multiscale model, we need to evaluate the total charge density ρtotal(r) by

quantum mechanical principles or ab initio approaches. However, the ab initio calculation of

the electronic structure of a macromolecule is intractable at present due to the large number

of degrees of freedom. A vast variety of theories and algorithms have been developed in the

literature to reduce the dimensionality of this many-body problem. One of the simplest ab

initio approaches is the Hartree - Fock (HF) method, which replaces instantaneous Coulombic

electron-electron repulsion interactions with a mean-field average. A variational procedure is

used to minimize the energy. An alternative of the HFmethod is the density functional theory

(DFT), which is originated from the Thomas-Fermi model. DFT represents the electronic
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structure (principally the ground state) of a many-body system as a functional of a single

electron density. As usual in many-body electronic structure calculations, the nuclei of the

molecule of interest are treated by the Born-Oppenheimer approximation (i.e., as fixed) in

DFT to generate a static external potential in which the electrons are moving. The self-

consistent iterations are utilized to minimize the total energy of the system. Recently, DFT

has become one of the most popular and versatile methods available in computational physics,

computational chemistry and computational biology. In the present work, we incorporate

the DFT description of the electronic structure of the solute molecule into our differential

geometry based solvation model.

Despite the improvement in computer hardware and software for the quantum mechani-

cal calculation, computational costs are still a major concern for the QM simulation of large

molecules of interest. Therefore, so-called order-N algorithms [98, 169], in which the com-

puter time and memory scale linearly with the simulated system size, become increasingly

important. Though the plane wave basis set has advantages over local basis sets in terms

of avoiding basis-set superposition error as well as convergence concerns, it is difficult to be

used in the implementation of the O(N) method in DFT. As such, a localized basis set is

normally taken to develop fully self-consistent O(N) DFT algorithms. Along this line, a soft-

ware package named SIESTA (Spanish Initiative for Electronic Simulations with Thousands

of Atoms) was developed [209, 3]. It is based on a flexible linear combination of atomic

orbitals (LCAO) basis set and essentially perfect O(N) scaling. Therefore, it allows very

fast simulations using minimal basis sets and very accurate calculations with complete mul-

tiplezeta and polarized bases [169, 168]. Moreover, the pseudopotential is used in SIESTA

to avoid the calculation of core electrons and to achieve the expansion of a smooth (pseudo-
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) charge density on a uniform spatial grid domain, which further accelerates the speed of

quantum calculations.

3.1.2.1 Kinetic energy

Combining DFT with our differential geometry based solvation formulation, we define the

kinetic energy functional as

Gkin[n] =
∑

j

∫

S(r)
~
2

2m
|∇ψj(r)|2dr (3.3)

where m(r) is the position-dependent electron mass, ~ = h
2π with h being the Planck con-

stant, and ψj(r) are the Kohn-Sham orbitals. Here, the total electron density n is given

by

n(r) =
∑

i

|ψi|2, (3.4)

where the summation is over all the Kohn-Sham orbitals. Note that orbitals {ψj} are subject

to the orthonormality constraint

∫

Sψ∗i (r)ψj(r)dr =











1 i = j

0 i 6= j.

(3.5)

Obviously, Eq. (3.5) is an approximation which is valid as long as the boundary represented

by the characteristic function S is sufficiently far away from atomic centers of the solute

molecule. This is true in our model.
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3.1.2.2 Potential energy

Without external potentials, the electrostatic potential energy of nuclei and electrons can

be represented by the Coulombic interactions among the electrons and nuclei. There are

three groups of electrostatic interactions: interactions between nuclei, interactions between

electrons and nuclei, and interactions between electrons. Because of the Born-Oppenheimer

approximation, interactions between nuclei do not directly have a impact on the structure

of electrons in DFT.

According to the Coulombic law, the repulsive interaction between electrons can be ex-

pressed as the Hartree term

Uee[n] =
1

2

∫

q2n(r)n(r′)
ǫ(r)|r− r′| dr

′, (3.6)

where q is again the unit charge of an electron, ǫ(r) is the position dependent electric per-

mittivity, and r and r′ are positions of two interacting electrons. Equation (3.6) gives rise

to a nonlinear function in terms of electron density n. Therefore, the problem of solving the

electronic structure has to be resolved by self-consistent iterations.

Additionally, the attractive interactions between electrons and nuclei are given by

Uen[n] = −
∑

I

q2n(r)ZI
ǫ(r)|r−RI |

. (3.7)

Finally, we write the total potential energy functional as

Gpotential =

∫

Ω
S(r)

(

Uee[n] + Une[n] + EXC[n]
)

dr, (3.8)
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where the last term, EXC is the exchange-correlation potential, which includes all the many-

particle interactions in the solute molecule. In general, the exact form of the exchange-

correlation potential is not known. There are good approximations in the practical ap-

plications, such as the local-density approximation, the local spin-density approximation,

and generalized gradient approximations. A detailed elaboration of the exchange-correlation

potential is beyond the scope of the present work.

3.1.3 Total free energy functional

Intuitively, it may appear that the total free energy functional is the summation of the

polar, non-polar, kinetic and potential energy. However, such an approach will lead to some

double counting because of the coupling among different energy terms. For example, the

electrostatic energy depends on the charge density, which, in turn, depends on the kinetic

and potential energies of electrons. Additionally, the electrostatic potential serves as an

unknown in the polar energy functional, meanwhile it serves as an input in the potential

energy of electrons. To see this connection, we need to solve the Poisson equation in vacuum

(ǫ = 1)

−∇2φv(r) = ρvtotal(r), (3.9)

where φv is the electrostatic potential in vacuum and ρvtotal = nv + nn with nv(r) being

the electron density in vacuum. The solution of Eq. (3.9) is

φv(r) =

∫

qnv(r
′)

|r− r′| dr
′ −
∑

I

qZI
|r−RI |

. (3.10)
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Note that Eq. (3.10) is the exact total Coulombic potential of electron-electron interactions

and electron-nucleus interactions. As such, we do not need to include Uee[n] and Uen[n]

terms in the total free energy functional.

Finally, we propose a multiscale total free energy functional for biomolecules at equilib-

rium

Gtotal[S, φ, n] =

∫

Ω
{γ|∇S(r)|+ pS(r) + (1− S(r))ρ0Uss (3.11)

+(1− S(r))



−1

2
ǫs|∇φ|2 − kBT

Nc
∑

i=1

n0i

(

e−Qiφ/kBT − 1
)





+S(r)

[

ρmφ− 1

2
ǫm|∇φ|2

]

+ S(r)





∑

j

~
2

2m
|∇ψj |2 + EXC[n]











dr

where the first row is the non-polar energy functional, the second row is the electrostatic

energy functional and the last row is the electronic energy functional. As discussed above, the

term ρtotalφ also contributes to the Coulombic potentials of electron-electron and electron-

nucleus interactions. This total free energy functional provides a starting point for the

derivation of governing equations and a basis for the evaluation of solvation free energies.

3.1.4 Governing equations

The total free energy functional (3.11) is a function of characteristic function S, electrostatic

potential φ and electron density n. The governing equations of these quantities can be ob-

tained by the first variation of the total free energy functional (3.11). From the mathematical

point of view, there should exist optimal functions S(r), φ(r) and a set of orbitals {ψj} at the

equilibrium state in which the solvation free energy is optimized. The variational procedure
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for S(r), φ(r) and {ψj} is described below.

First, by the variation of Eq. (3.11) with respect to the electrostatic potential φ, we have

δGtotal
δφ

= 0 ⇒

Sρm + ∇ · ([(1− S)ǫs + Sǫm]∇φ) + (1− S)

Nc
∑

i=1

n0i Qie
−Qiφ/kBT = 0

(3.12)

The Euler-Lagrange equation is used in the above variation. Equation (3.12) is the general-

ized Poisson-Boltzmann (GPB) equation [243, 46]

−∇ · (ǫ(S)∇φ) = Sρtotal + (1− S)

Nc
∑

i=1

n0i Qie
−Qiφ/kBT , (3.13)

where the dielectric function is given by

ǫ(S) = (1− S)ǫs + Sǫm. (3.14)

This is a smooth function. It is clear that the GPB equation utilizes a smooth dielectric

profile. There is a smooth transition region for the dielectric function to change from ǫs to ǫm.

Therefore, the solution procedure of the present GPB equation (3.13) avoids many numerical

difficulties of solving elliptic equations with discontinuous coefficients [258, 261, 260, 254, 253]

in the classical PB equation. Furthermore, in a solvent without salt, the GPB equation is

simplified to the generalized Poisson equation

−∇ · (ǫ(S)∇φ) = Sρtotal. (3.15)
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Both Eqs. (3.13) and (3.15) are similar to our earlier results in Chapter 2. However, in

the present multiscale model, the charge source ρtotal is to be determined by solving the

Kohn-Sham equations, rather than by the fixed charges ρfix =
∑

j qjδ(r− rj).

Additionally, by the variation of Eq. (3.11) with respect to the surface function S, we

have

δGtotal
δS

= 0 ⇒

−∇ ·
(

γ
∇S
|∇S|

)

+ p− ρ0Uss −
1

2
ǫm|∇φ|2 + 1

2
ǫs|∇φ|2

+kBT

Nc
∑

i=1

n0i

(

e−Qiφ/kBT − 1
)

+ ρmφ+
∑

j

~
2

2m
|∇ψj |2 + EXC[n] = 0

(3.16)

In Eq (3.16), ∇ ·
(

γ ∇S
|∇S|

)

is a generalized Laplace-Beltrami operator, which is a gener-

alization of the usual Laplacian operator to a smooth manifold of macromolecular surface

[17, 243]. In general, γ can be a function of the position γ = γ(r) to account for the surface

hydrophobicity at different locations of the macromolecule. For simplicity, it is treated as a

constant in our present computation. By solving Eq. (3.16), we obtain a “physical solvent-

solute boundary” (S). As discussed in earlier work [20, 17, 243], the solution of this elliptic

partial differential equation (PDE) can be attained via a parabolic PDE

∂S

∂t
= |∇S|

[

∇ ·
(

γ
∇S
|∇S|

)

+ V

]

, (3.17)
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where the generalized “potential” V is defined as

V = −p + ρ0Uss +
1

2
ǫm|∇φ|2 − 1

2
ǫs|∇φ|2 − kBT

Nc
∑

i=1

n0i

(

e−Qiφ/kBT − 1
)

−ρtotalφ−
∑

j

~
2

2m
|∇ψj |2 −EXC[n] (3.18)

where the electronic potentials in last row do not contribute much to V at equilibrium.

This is due to the fact that they are essentially confined inside the solute molecular domain.

Note that Eq. (3.17) has the same structure as the potential driven geometric flow equation

defined in Chapter 2. As t→ ∞, the initial profile of S evolutes into a steady state solution,

which solves the original Eq. (3.16) with an optimal surface function S.

Finally, to derive the equation for the electronic wavefunctions, we need to incorporate the

constraint as shown in Eq. (3.5) into the total energy functional. This can be easily done

with a family of Lagrange multipliers
∑

i Ei

(

δij −
∫

Sψi(r)ψ
∗
j (r)dr

)

. Therefore, by the

variation of Eq. (3.11) with respect to the wavefunction ψ∗j (r) and subject to the constraint,

we have

δ
[

Gtotal +
∑

i Ei

(

δij −
∫

Sψi(r)ψ
∗
j (r)dr

)]

δψ∗j
= 0 ⇒

(

− ~
2

2m
∇2 + Ueff

)

ψj = Ejψj, (3.19)

where the Lagrange multiplier constants Ei have been interpreted as energy expectation val-

ues. Equation (3.19) is the Kohn-Sham equation in which the effective Kohn-Sham potential

is defined as

Ueff(r) = qφ+ VXC[n], (3.20)
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where VXC[n] =
dEXC[n]

dn
with qφ being the potential contribution from Coulombic inter-

actions. It is to be calculated by the GPB equation (3.12) with a given total charge density.

Apparently, Eq. (3.19) does not directly depend on the surface function S, so that existing

DFT packages can be used in our computations with a minor modification as described in

Section 3.2.2.

It is seen that the generalized Poisson-Boltzmann equation (3.13), the generalized Laplace-

Beltrami equation (3.17) and the Kohn-Sham equation (3.19) are strongly coupled to each

other. Therefore, these three equations have to be solved by appropriate iterative procedures.

This aspect is discussed in the next section.

3.2 Numerical methods and algorithms

3.2.1 Solution of the generalized Poisson-Boltzmann equation

The solution of generalized Laplace-Beltrami equations has been studied in appendix A,

including the details of some discretization schemes.

In solvation analysis, the generalized PB equation (3.15) is subject to the Dirichlet bound-

ary condition [93]

φ(r) =

Na
∑

j

qj

ǫs|r− rj |
, ∀r ∈ ∂Ω, (3.21)

where qj is the total fixed charge of the jth solute atom. One option is to use the point

charges from a force field model such as CHARMM. However, in the present work, we
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consider the following Dirichlet boundary condition

φ(r) =

∫

ρtotal(r
′)

ǫs|r− r′| dr
′, ∀r ∈ ∂Ω, (3.22)

where the boundary condition is nonlinear — it depends on the electron density n and thus

needs to be implemented iteratively.

The standard second order center difference scheme is applied in this study to solve Eq.

(3.15). An accurate solution can be obtained due to the continuous dielectric definition ǫ(S).

Let the pixel (i, j, k) represent the position (xi, yj, zk). The discretized form of Eq. (3.15)

is

[

ǫ

(

xi +
1

2
hx, yj, zk

)

[φ(i+ 1, j, k)− φ(i, j, k)]

+ ǫ

(

xi −
1

2
hx, yj, zk

)

[φ(i− 1, j, k)− φ(i, j, k)]

]

1

h2x

+

[

ǫ

(

xi, yj +
1

2
hy, zk

)

[φ(i, j + 1, k)− φ(i, j, k)]

+ ǫ

(

xi, yj −
1

2
hy, zk

)

[φ(i, j − 1, k)− φ(i, j, k)]

]

1

h2y

+

[

ǫ

(

xi, yj, zk +
1

2
hz

)

[φ(i, j, k + 1)− φ(i, j, k)]

+ ǫ

(

xi, yj, zk − 1

2
hz

)

[φ(i, j, k − 1)− φ(i, j, k)]

]

1

h2z

= −S(i, j, k)ρm(i, j, k)

(3.23)

where hx, hy and hz are the grid spacings at x, y and z directions, respectively. Here,

ρtotal(i, j, k) is the charge density at grid point (xi, yj, zk), which is calculated from the

electronic charge density n(r) and nucleus density nn. The implementation of ρtotal will
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be discussed in the next paragraph. As such, the discretized PB equation can be converted

into the standard linear algebraic equation system of the form AX = B, where X is the

solution of interest, A is the discretization matrix and B is the source term associated with

the charge density. It has been shown previously that the PB solver is able to deliver the

designed second-order accuracy in Chapter 2.

On the right hand side of Eq (3.23), the charge density at each grid point should be

given. As an efficient approach, atomic charges have been widely used to approximate the

charge density of electrons and nuclei, especially for large molecules of general interest.

Therefore, the point charge approach has gained much popularity in PB solvers as well as

PB applications [147, 12, 112, 116]. Nevertheless, charge assignment at atomic centers is a

nontrivial issue. The deficiencies of the atomic point charge approach have been discussed

in the Introduction. The direct implementation of the quantum mechanical charge density

can avoid errors caused by the atomic point charge approximation. Moreover, this approach

frees us from the electrostatic potential fitting process. To carry it out in the finite different

scheme, the total charge density ρtotal(i, j, k), which consists of the electron density n(r) and

nucleus density nn, needs to be prescribed at each grid point of the computational domain.

In particular, the nucleus density nn(r), which is considered as stationary and located at

the center of atoms, can be distributed to the nearest eight neighboring grid points by the

second order interpolation (i.e., the trilinear mapping). The distributed nucleus core point

charges are converted into the nucleus charge density by dividing point charges with the

volume of the unit grid. Finally, the total charge density at each grid point is obtained by

the summation of nucleus density and the electronic charge density which is directly taken

from the quantum mechanical calculation.
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However, a new issue arises from the above treatment of nuclei. Since each nucleus core

charge is split into its eight neighboring grid points, it is easy to find out that short range

interactions are biased and self-interaction energies are artificially introduced. This is due

to the interactions of grid charges within one single atom. It exists even in the absence of

solvent and any other charges. Apparently, this is a pure artifact due to the finite difference

approach and must be eliminated. Within the partial charge approach the artifact can be

canceled out mainly by calculating the PB equation twice, one in vacuum and the other in

the solvent. It turns out that this strategy also works well here. Numerical tests regard-

ing this cancellation of self-interaction energies are demonstrated later. It is important to

point out that numerically if one implements the quantum mechanical calculation with a

non-frozen core method, the remaining error from the self-interaction cancellation is still too

large to be neglected. In other words, the above cancellation strategy may fail when one

applies a non-frozen core approach. Therefore, frozen core approaches, such as pseudopo-

tential methods, must be applied in our quantum calculations here. Because frozen core

approaches dramatically reduce the number of charges in each nucleus and thus implicitly

decease implementation errors.

The biconjugate gradient method is a good choice in solving the PB equation. However,

as we have demonstrated in Chapter 2, the combination of stabilized biconjugate gradient

method (BiCG) and the blocked Jacobi preconditioner (BJAC) from PETSc (http://www.mc

s.anl.gov/petsc/petsc-as/), as well as the combination of the orthomin method (OM) and

the incomplete LU factorization preconditioner (ILU) from SLATEC, speeds up the process

of the PB solution. In this study, we apply the combination of ILU and OM from SLATEC.

In our iteration procedure, the prior electrostatic potential is taken as a good initial guess
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for the followed linear system solving procedure. It turns out that this treatment makes the

generalized PB solver converge much faster than simply setting the initial guess to be 0 [46].

Additionally, the convergence tolerance is set to be 10−4 as a good compromise between the

accuracy and efficiency.

3.2.2 Solution of the generalized Kohn-Sham equation

The generalized Kohn-Sham equation (3.19) admits all-electron and all-nucleus potentials.

The direct solution of Eq. (3.19) is very expensive for macromolecules. Therefore, further

simplifications are necessary. In particular, because classical DFT methods have been devel-

oped in the past few decades, the solution of Eq. (3.19) needs to make use of existing DFT

methods.

Note that the Coulombic potential functionals shown in Eqs. (3.6) and (3.7) involve

spatially varying dielectric constants, which reflect the solvation process. The related spa-

tially varying electrostatic potential is built in the generalized Poisson-Boltzmann equation

(3.13), whose solution gives rise to the electrostatic potential energy qφ used in the gener-

alized Kohn-Sham equation (3.19). In contrast, the standard Kohn-Sham equation is for a

molecular system in vacuum and its Coulombic potentials are of the form of qφv where φv

is given by Eq. (3.10) with the total charge density in vacuum described in the next section.

The effective potential in the generalized Kohn-Sham equation (3.19) can be written as

Ueff [n] = qφ+ VXC[n] = qφRF + U0eff(r), (3.24)

where

φRF = φ− φ0 (3.25)
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is called the reaction field potential. Here φ0 is the solution of the Poisson equation in the

homogeneous medium with the charge source ρtotal(r)

−∇ · ǫ0∇φ0(r) = ρtotal(r), (3.26)

where ρtotal(r) is obtained from the generalized Kohn-Sham equation (3.19). In Eq. (3.24),

U0eff(r) is the Kohn-Sham potential

U0eff(r) = qφ0 + VXC[n]. (3.27)

In the present work, U0eff(r) is represented by the traditional Kohn-Sham potential. Conse-

quently, a vast variety of computational techniques developed for the traditional Kohn-Sham

DFT can be utilized in the present work. What we need to do in solving the generalized

Kohn-Sham equation (3.19) is to add a reaction field potential qφRF to an existing Kohn-

Sham DFT solver.

The most important issues in the solution of the Kohn-Sham equation are the selection of

the exchange-correlation potential and the use of the pseudopotential. The pseudopotential

approach eliminates the complicated effects of core electrons and allows the expansion of a

smooth (pseudo-) charge density on a uniform spatial grid. In this approach, the chemically

active valence electrons are dealt with explicitly, while the core electrons are ‘frozen’ and

considered together with the nuclei as fixed non-polarizable ion cores. With the pseudopo-

tential approximation, the formalism of the total energy functional needs to be modified,
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which leads to the following expression of a Kohn-Sham effective potential [209]

U0eff(r) =
∑

I

V localI (r) +
∑

I

V nonlocalI + V H (r) + VXC(r) (3.28)

where V H (r) and VXC(r) are total Hartree and exchange-correction potentials, respectively.

Here, V localI and V nonlocalI are the local part and the nonlocal part of the pseudopotential

of atom I. For elaborated discussions of the above potentials, we refer the reader to an

excellent review [209].

In the present work, SIESTA (Spanish initiative for the electronic structure of thousands

of atoms), a quantum mechanical package of high efficiency, is utilized for solving our gen-

eralized Kohn-Sham equation (3.19). SIESTA possesses the ability to perform the density

functional theory (DFT) simulations of more than a thousand atoms. The details of the

package has been extensively described [209]. It develops a self-consistent density functional

method using the standard norm-conserving pseudopotential and a flexible numerical lin-

ear combination of atomic orbital (LCAO) basis sets with essential perfect O(N) scaling,

in which the computer CPU time and memory scale linearly with the simulated system

size. The exchange and correlation are treated within the Kohn-Sham DFT. Both the local

density approximation and local spin density approximation (LDA/LSDA), as well as the

generalized gradient approximation (GGA) are allowed. Moreover, SIESTA permits very

fast simulations by using minimal basis sets as very accurate calculations with complete

multiple-zeta and polarizable bases. Therefore, it can provide a general scheme to perform

quantum calculations with requirements ranging from being very fast to being very accurate.

For all of the simulations in the present work, the default double-ζ plus single polarization

(DZP) bases are used. The MeshCutoff is set as 125 Rydberg and the LDA is applied. The
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SolutionMethod is set to be ‘diagon’.

3.2.3 Evaluation of the solvation free energy

The solvation free energy is the energy required or released from the transfer of a unit of

solute molecules from vacuum to a solvent. By definition, it is calculated by the difference

of the total energies in solution and in vacuum

△Gtotal = Gtotal[S, φ, n]−Gvacuum[φv, nv] (3.29)

where φv is the electrostatic potential in vacuum and nv is the solute electronic density in

vacuum, which is defined in terms of the electronic wavefunctions of the solute in vacuum

ψvj (r)

nv(r) =
∑

j

|ψvj (r)|
2. (3.30)

In Eq. (3.29), Gtotal[S, φ, n] is given in Eq. (3.11) and Gvacuum[φv, nv] denotes the total

energy functional in vacuum

Gvacuum[φv, nv] =

∫
[

ρvtotalφv −
1

2
ǫ|∇φv|2 (3.31)

+
∑

j

~
2

2m
|∇ψvj |

2 + EXC[nv ]



 dr

where ρvtotal = qnv − qnn is the total charge density in vacuum. For simplicity, we have

omitted the ionic density kBT
∑Nc
i=1 n

0
i (e

−Qiφv/kBT − 1) in Eq. (3.29). Note that the

variation of Gvacuum[φv, nv] gives rise to the standard Poisson equation (3.9) and the
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standard Kohn-Sham equation

(

− ~
2

2m
∇2 + Uveff

)

ψvj = Evj ψ
v
j , (3.32)

where Evj and ψvj are appropriate eigenvalue and eigenfunction of Hamiltonian Hv =

− ~
2

2m∇2 + Uveff.

However, there is a technical difficulty in the direct evaluation of Gtotal[S, φ, n]. Namely,

the integration of the quantum mechanical terms in Eq. (3.11) requires the S function profile,

which is not involved in most Kohn-Sham DFT software packages. Therefore, in the present

work, we evaluation the solvation free energy by the following approximation

△Gtotal = Gnp + ∆Gp + ∆GQM (3.33)

where Gnp, ∆Gp and ∆GQM are the non-polar, polar and quantum mechanical contribu-

tions, respectively. The non-polar solvation free energy does not exist in vacuum, and its

form in solution is given by

Gnp[S] =

∫

[γ|∇S(r)|+ pS(r) + ρ0(1− S(r))Uss] dr. (3.34)

By using the Gauss’ divergent theorem and integration by parts, it is easy to show that the

polar solvation energy is given by

Gp[S, φ, n] =
1

2

∫

Ωs
ρtotalφdr. (3.35)

Similarly, the polar solvation energy in vacuum is 1
2

∫

ρvtotalφvdr. Therefore, one may com-
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pute the change of the polar solvation energy by 1
2

(

∫

Ωs
ρtotalφdr−

∫

ρvtotalφvdr
)

. How-

ever, this expression leads to a situation that the quantum mechanical contribution ∆GQM

cannot be evaluated in SIESTA because of the lack of required potential terms. Additionally,

such an expression is inconsistent with the conventional electrostatic solvation free energy of

the form

∆Gp =
1

2

∫

Ωs
ρtotal [φ− φ0] dr =

1

2

∫

Ωs
ρtotalφRFdr. (3.36)

Therefore, in the present solvation analysis ∆Gp is calculated by Eq. (3.36), which leads

to two remaining electrostatic potential terms 1
2

(

∫

Ωs
ρtotalφ0dr−

∫

ρvtotalφvdr
)

. These

terms are combined with the rest of the quantum energy functionals to compute the change

of the quantum mechanical energy as

∆GQM =
∑

j

[

< ψj |H0|ψj > − < ψvj |H
v|ψvj >

]

. (3.37)

where H0 = − ~
2

2m∇2 + U0eff. Note that wavefunctions {ψj} are computed with the full

Hamiltonian in the solution. The main advantage of the quantum mechanical energy change

given in Eq. (3.37) is that it can be easily computed by using existing DFT software packages

as discussed in the last section.

The current formula of the solvation free energy is systematically derived from the frame-

work of the differential geometry based solvation model. It consists of the non-polar energy

Gnp, the electrostatic solvation free energy ∆Gp, and the change of the solute self-energy

∆GQM due to the redistribution of electrons in the solvation process. It is of interest to see

that the formulation of the present solvation analysis is consistent with that in the litera-
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ture [224, 237, 238], which is basically computed by using a good chemical intuition. The

reliability and accuracy of the current model are further validated by a comparison of the

present prediction with experimental data, as well as with that in the literature in Section

3.3.

3.2.4 Dynamical coupling of involved PDE equations

As described in Section 3.1.4, the total charge density in the solution is obtained by solving

the Kohn-Sham equation in the presence of the reaction field potential φRF = φ − φ0,

which is computed by solving the PB equation and the Poisson equation, i.e., Eqs. (3.13)

and (3.26). On the other hand, the solution of the PB equation requires the quantum

mechanically calculated charge density, the surface profile S, and the dielectric profile ǫ(S)

which are generated by solving the generalized Laplace-Beltrami equation (LBE). Moreover,

the potential in the generalized Laplace-Beltrami equation contains the terms associated with

the electrostatic potential from the PB equation and the charge density from the Kohn-Sham

equations. In principle, the Laplace-Beltrami equation, the generalized PB and Kohn-Sham

equations need to be solved simultaneously until the convergence is reached, i.e, the solvation

energy of two runs agrees with each other within a prescribed tolerance. This can be achieved

via a self-consistent iteration procedure.

In practice, we adopt an inner-outer iterative strategy to implement the self-consistent

procedure. The inner iterations concern the solution of the coupled generalized PB equation

and the Laplace-Beltrami equation. These iterations have been carried out in Chapter 2,

except for the different representation of the continuous charge density. In the present work,

the inner iterations are combined with the solution of the Kohn-Sham equation during the
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Figure 3.1: Flowchart of the numerical solution of the coupled PDEs.

outer iterations. More details are described in the following and can be seen from a work

flow chart in Figure 3.1 as well.

Step 0 (Generation of the solute quantum energy in vacuum and initialization of the

charge density): We carry out a quantum mechanical calculation in vacuum with SIESTA

to obtain an initial total charge density. The solute quantum energy in vacuum is recorded

for computing ∆GQM in the output step.

Step 1 (Inner iteration of the coupled PB and Laplace-Beltrami equations): Given a total

charge density distribution, as described in Chapter 2, a temporary electrostatic potential φ

can be generated by solving the generalized PB equation with a temporary S. It is followed

by the evolution of time-dependent generalized Laplace-Beltrami equation for a number of

time iterations. With the updated intermediate S, one can update the electrostatic potential

via the PB equation. This cycle repeats until the electrostatic solvation energy converges
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within a pre-determined criterion. Note that the relaxation algorithm should be used to

guarantee the convergence.

Step 2 (Generation of a reaction field potential): Solve the PB equation in a homogeneous

medium with the same total charge density as that in the previous step. Then the reaction

field potential φRF is obtained by the difference between the electrostatic potential from the

previous step and the current Poisson calculation in the homogeneous medium.

Step 3 (Solution of the Kohn-Sham equation): Run the SIESTA program again to obtain

a new total charge density by incorporating the computed reaction field potential into the

Kohn-Sham Hamiltonian.

Step 4 (Calculation of the solvation energy and convergence check): Calculate the total

solvation free energy with the resulting φ, S and {ψj}. Go back to Step 1 until it converges.

When convergence is reached, one ends the iteration and outputs the solvation free energy.

To output the charge density in SIESTA, one needs to set SaveRho to be true in the

input fdf file, while SpinPolarized is false according to the fact that all tested molecules

in this work are neutral. Eventually, SIESTA generates an XV file to store lattice vectors

and atomic positions, together with an RHO file to record the values of the charge quantity

on the grid points. However, the standard input for our PB solver is a Gaussian CUBE

format file which contains the origin, grid spacing, atomic coordinates and charge densities.

Therefore, a CUBE formate file must be created based on the information from the XV file

and RHO file to transfer the charge density data from SIESTA to the PB solver. It can be

carried out by a subroutine grid2cube.x, which is included in the SIESTA package. During

the translation, the coordinates of the origin are shifted to make the molecule roughly appear

at the center of the computational domain.
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After the reaction field potentials are obtained by the PB solver, they are regarded as

an external solvent potential effect and must be incorporated into the Kohn-Sham quantum

calculation in SIESTA. As such, reaction field potentials have to be passed into SIESTA

during the self-consistent iteration process. It can be done by adding them into the variable of

total potential named Vscf in the subroutine file dhscf.F under “Siesta-3.0-b/Src”. Therefore,

a data translation procedure is required to pass the reaction field potential from the PB solver

into SIESTA. Furthermore, attention needs to be paid to the unit conversion. In particular,

the unit of distance used in SIESTA is Bohr, while it is Angstrom in the PB solver. The

units of potential are ec/Angstrom and Rydberg/ec in the present PB solver and in SIESTA,

respectively. Here ec denotes the fundamental charge used as the unit of a point charge in

both the PB solver and SIESTA.

3.3 Numerical test and validation

This section provides systematical validations for the proposed model and computational

algorithms. The performance of SIESTA has been tested and described in the literature

[209]. The generalized Laplace-Beltrami equation (3.17) has the same differential operator

as our earlier mean curvature flow [20] except for the extra source terms. Previously, we have

numerically proved that the explicit Euler algorithm delivers the reliability and convergence

of the solution of the Laplace-Beltrami equation, and the finite central difference scheme is

of second-order convergence in space [17]. For the PB solver, given the partial charges, it

has also been numerically proved to be of second-order convergence in Chapter 2. However,

here the source term in the PB equation is no longer represented by the partial charges

adopted from existing molecular mechanical force fields, such as AMBER or CHARMM. In
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this work, the source term is represented by the charge density obtained directly from the

quantum calculation. There are new concerns from this different charge strategy. First of

all, regarding the distribution of nucleus charges, which are much larger than partial charges,

it is crucial to know whether the self-interaction energy artifact within a single atom leads

to non-neglected bias even after the treatment of the energy cancellation. Secondly, it is

important to check whether the implementation is correct in terms of the data translation

and unit conversion between different solvers during the self-consistent iteration procedure.

Based on these considerations, we first examine the cancellation of self-interaction artificial

energy, then continue to check the data translation and unit conversion between the PB solver

and SIESTA. Finally, we demonstrate the overall accuracy of our model in the calculation

of solvation free energies, as well as the solvent effect on the solute electronic structure, by

a comparison with experimental data.

3.3.1 Validation of the cancellation of self-interaction energy

As described earlier, the use of the finite difference scheme in the solution of the Poisson-

Boltzmann equation results in the artifact of self-interaction energy which needs to be re-

moved. Although it is common to assign the partial charge at the center of each atom

to mimic the effect of electrostatic interactions, this approach also has a similar issue of

artificially introduced self-interaction energy using the finite different scheme. It is known

that the cancellation of self-interaction energy works fine with the partial charge formalism

by computing the PB equation twice. However, the direct use of the quantum mechanical

charge density in the PB equation behaves differently. Because the magnitude of distributed

nucleus charges is much larger than that of partial charges, the direct use of the quantum
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mechanic charge density leads to much larger self-interaction energy in the finite difference

scheme. Therefore, the accuracy of the PB solver for the reaction field potential and the

solvation calculation should heavily depend on the cancellation procedure. To our knowl-

edge, with the direct use of the quantum charge density in the PB equation, no numerical

test has been done for the impact of self-interaction, neither has the performance of the

artifact energy cancellation been examined. To validate our approach, we test 16 small

molecules whose partial charges can be obtained from the literature. The details of struc-

ture data and parameter setting are described in Section 3.4. In particular, a uniform grid

size 0.25Å is applied to the computation with the partial charge approach. However, in

quantum calculation the grid dimension is the same both in the PB solver and in SIESTA.

It is automatically generated in SIESTA by setting the MeshCutoff equal to 125 Rydberg.

Therefore, the grid size in the present simulation is no longer uniform and varies with dif-

ferent molecules. Take the water molecule as example, when cutoff energy is 125 Rydberg,

the grid size is hx × hy × hz = 0.1190Å×0.1192Å×0.1182Å, which is fine enough for the

solvation calculation. Table 3.1 and 3.2 list the total electrostatic energies both in vacuum

and in solution for these 16 molecules, together with the electrostatic solvation free energies

which are the difference between the total electrostatic energies in vacuum and in solution. It

is found that, as expected, the self-interaction energies with the quantum charge density are

much larger than those with the partial charge treatment. The former is hundreds of times

larger than the latter. However, through the cancellation, the electrostatic solvation free

energies are very close to each other. It can be concluded that most of the self-interaction

energy artifact can be removed in the present finite difference scheme with either the fixed

partial charge source or the charge density source. Therefore, the direct use of the quan-
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tum charge density in the PB solver with the finite difference scheme is validated. Note

that although the total electrostatic energies vary under different mesh cutoff energies, the

resulting electrostatic solvation free energies show convergence.

Table 3.1: Comparison of total electrostatic energy (kcal/mol) and electrostatic solvation
energy (kcal/mol) obtained with the partial charge approach.

Compound Vacuum Solution ∆Gp
glycerol triacetate 2443.64 2456.10 -12.46
benzyl chloride 210.88 215.93 -5.04
m-bis(trifluoromethyl)benzene 1472.87 1476.12 -3.25
N,N-dimethyl-p-methoxybenzamide 1068.47 1077.68 -9.21
N,N-4-trimethylbenzamide 866.22 873.91 -7.69
bis-2-chloroethyl ether 315.5 319.77 -4.23
1,1-diacetoxyethane 1754.93 1763.19 -8.25
1,1-diethoxyethane 613.59 618.04 -4.45
1,4-dioxane 316.81 322.47 -5.65
diethyl propanedioate 1726.22 1734.06 -7.84
dimethoxymethane 517.65 522.18 -4.55
ethylene glycol diacetate 1768.99 1777.45 -8.46
1,2-diethoxyethane 484.14 488.46 -4.32
diethyl sulfide 133.21 135.59 -2.39
phenyl formate 876.50 884.3 -7.85
imidazole 944.38 955.65 -11.27

3.3.2 Validation of data translation and unit conversion

In this section, we demonstrate the reliability of data translation and unit conversion between

the PB solver and SIESTA by comparing the results from the current calculations with ones

from the literature. As stated before, the solution of the PB solver depends on the input

of the quantum charge density from SIESTA. The polarization of electron cloud, in turn,

requires the input of the reaction field potential obtained from the solution of the PB solver.

Therefore, the reliability of charge density data passed into the PB solver can be tested by
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Table 3.2: Comparison of total electrostatic energy (kcal/mol) and electrostatic solvation
energy (kcal/mol) obtained with the direct use of charge density.

Compound Vacuum Solution ∆Gp
glycerol triacetate 704426.41 704439.14 -12.73
benzyl chloride 341037.68 341043.97 -6.29
m-bis(trifluoromethyl)benzene 669772.11 669774.74 -2.63
N,N-dimethyl-p-methoxybenzamide 533551.77 533563.01 -11.24
N,N-4-trimethylbenzamide 396325.28 396335.07 -9.79
bis-2-chloroethyl ether 478232.71 478239.05 -6.34
1,1-diacetoxyethane 471728.52 471736.99 -8.47
1,1-diethoxyethane 332415.49 332421.71 -6.22
1,4-dioxane 286515.14 286521.15 -6.00
diethyl propanedioate 434796.12 434805.20 -9.08
dimethoxymethane 258225.34 258230.45 -5.11
ethylene glycol diacetate 434943.17 434952.17 -9.00
1,2-diethoxyethane 343486.83 343493.67 -6.85
diethyl sulfide 223784.37 223788.70 -4.32
phenyl formate 328961.95 328968.86 -6.91
imidazole 199535.85 199549.02 -13.16

the solution of the PB equation. Meanwhile, the validity of reaction field potential values is

illustrated via the change of the solute self-energy due to the polarization of electrons. For

the purpose of a comparison, results by Wang et al [238] are used because of similar energy

decomposition in the solvation analysis. In their work, they studied the polarization of

electron cloud during the solvation process as well. A quantum mechanical calculation based

on density functional theory and the Poisson-Boltzmann equation was implemented. Finally,

by chemical analysis the solvation free energy was also decomposed into an electrostatic

solvation free term, a change term in the solute self-energy and a non-polar term. The

software UHBD together with a pre-determined solvent excluded surface was used for the

solution of the PB equation in their work [238]. Table 3.3 displays the comparison in solvation

free energy components for three small molecules which are water, NH3 and methanol. It is
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evident that the results of solvation components from two different methods are comparable

to each other. This consistency proves the appropriate data translation process used in

different forms of computation domains, as well as the correct unit conversion between the

PB solver and SIESTA.

Table 3.3: Comparison of solvation energy components between present results and those of
Wang et al [238] for three small molecules.

∆Gp (kcal/mol) ∆GQM (kcal/mol) Gnp (kcal/mol)

Compound OSMQ Wang OSMQ Wang OSMQ Wang
Water -7.55 -7.36 0.86 1.01 0.39 0.59

Methanol -6.18 -5.53 0.63 0.77 0.57 0.77
NH3 -5.12 -6.77 0.87 0.92 0.46 0.63

3.3.3 Accuracy of solvation free energies computed by the present

model

Besides the data translation and unit conversion, the overall accuracy of the present model

still needs to be further verified by comparing with experimental data. In particular, it is of

crucial importance to check the accuracy of the total solvation energy as well as the solvent

effect on the solute electronic structure. The contribution of the solvation free energy from

the polarization of electron cloud can be decomposed into two parts. As shown in Table 3.4,

prior to the polarization, the solvent interacts with the solute based on its vacuum electronic

distribution which gives rise to the electrostatic solvation energy ∆Gvp using the vacuum

charge density. When the polarization takes place, the electron cloud is redistributed to

reach a more favorable interaction with the solvent. This generates a gain for the solvation

free energy ∆∆Gp = ∆Gp−∆Gvp. However, the redistribution of the electron cloud leads to

the change of the interactions between electrons and nuclei and those between electrons. It

106



causes an unfavorable decrease in the solvation energy (∆GQM). Therefore, the total energy

contribution of the polarization is calculated by the sum of ∆GQM and ∆∆Gp. Table 3.4

summarizes the numerical results of the total solvation free energy and the decomposition

for the above mentioned three small molecules. Here, ∆Gtotal = ∆Gp + Gnp + ∆GQM.

As demonstrated in the table, the total solvation energies compare well with experimental

data [237]. Moreover, it is expected from the classical linear response theory that the loss

from the distortion of electron cloud is equal to about half of the gain from the solute-

solvent interaction energy [224]. It is evident that our results are quantitatively in accord

with the theory. The slightly higher ratio (about 0.6) may be caused by the change in the

exchange-correction energy term within the DFT calculations.

Table 3.4: Solvation free energy (kcal/mol) and its decomposition.

Compound ∆Gvp ∆Gp ∆∆Gp ∆GQM |
∆GQM
∆∆Gp

| ∆Gtotal Exptl [237]

Water -6.25 -7.55 -1.30 0.86 0.66 -6.31 -6.30
Methanol -5.18 -6.18 -1.00 0.63 0.63 -4.98 -5.11

NH3 -3.86 -5.12 -1.26 0.87 0.69 -3.79 -4.29

3.4 Applications

We consider three types of applications in this section. First, we apply our new multiscale

model to a set of 24 small molecules. Then, a challenging set of 16 molecules is studied.

Finally, three larger molecules are taken for efficiency and robustness test. The Dirichlet

boundary condition is used for both the generalized Poisson-Boltzmann equation and the

generalized Laplace-Beltrami equation as in our previous calculations [259, 252, 93, 20].
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Table 3.5: Comparison of solvation free energies (kcal/mol) obtained from the present model
and experimental data for 24 small molecules.

Compound Na Gnp ∆Gp ∆GQM ∆Gtotal Exptl [237] Error

Ethanol 9 0.74 -6.33 0.61 -4.98 -5.01 0.03
Propionamide 12 1.02 -12.19 2.14 -9.03 -9.41 0.38
H2O 3 0.39 -7.55 0.86 -6.31 -6.30 -0.01
Phenol 13 1.21 -7.88 1.01 -5.66 -6.60 0.94
Methanethiol 6 0.7 -4.29 0.50 -3.08 -1.24 -1.84
Propionic acid 11 1.02 -7.73 0.87 -5.84 -6.47 0.63
Acetamide 9 0.82 -14.23 2.65 -10.76 -9.71 -1.05
Acetonitrile 10 0.87 -8.23 1.36 -5.99 -3.9 -2.09
Ethanethiol 9 0.87 -4.53 0.47 -3.19 -1.3 -1.89
Aniline 14 1.23 -9.34 1.15 -6.97 -5.49 -1.48
Methanol 6 0.57 -6.18 0.63 -4.98 -5.11 0.13
Acetic acid 8 0.83 -8.67 1.03 -6.81 -6.7 -0.11
1-methylcytosine 16 1.32 -23.9 5.96 -16.62 -18.4 1.78
Pyridine 11 0.98 -7.61 1.49 -5.14 -4.7 -0.44
9-methyladenine 18 1.45 -18.5 3.17 -13.88 -13.6 -0.28
1-methyluracil 15 1.28 -15.35 2.78 -11.29 -14.0 2.72
NH3 4 0.46 -5.12 0.87 -3.79 -4.29 0.50
4-cresol 16 1.35 -7.94 1.00 -5.58 -6.13 0.55
4-Methylimidazole 12 1.04 -15.88 3.84 -11.00 -10.25 -0.76
Methylethyl sulfide 12 1.03 -4.83 0.55 -3.25 -1.49 -1.76
n-Butylamine 16 1.08 -7.19 0.81 -5.29 -4.29 -1.00
3-Methylindole 19 1.42 -10.40 1.66 -7.32 -5.91 -1.41
Methylamine 7 0.54 -7.70 1.07 -6.09 -4.5 -1.59
Benzene 12 1.20 -4.69 0.51 -2.98 -0.9 -2.08

RMS error 1.31
Average error 1.06

3.4.1 Solvation free energies of 24 small molecules

Encouraged by the successful reproduction of the solvation free energies for the above

three small molecules, we apply the present differential geometry based multiscale model

and algorithms to the solvation analysis of an extended set of 24 small neutral organic

molecules. In this application, all geometric structures are taken from the Pubchem database
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(http://pubchem.ncbi.nlm.nih.gov). The required pseudopotential input files for SIESTA in

the psf format are conveniently produced through a pseudopotential generator web (www.

tddft.org/programs/octopus). Atomic radii for the LB equation are adopted from a new

parametrization of ZAP-9 used by Nicholls [160] and in Chapter 2. Specifically, the radii of

hydrogen, carbon, oxygen, nitrogen, chlorine, fluorine and sulfur are set to be 1.1Å, 1.87Å,

1.76Å, 1.40Å, 1.82Å, 2.4Å and 2.15Å, respectively. Note that different surface definitions

in implicit solvent models should have their own optimal radii set [235]. In particular, it is

found numerically that a continuous dielectric definition based model is supposed to have

radii of slightly larger values than those of a sharp interface based model [46]. Therefore,

we multiply the radii from ZAP-9 by a factor. In practice, a factor of 1.1 is used for all

atomic radii in a molecule of more than 14 atoms. However, if a molecule has less than 15

atoms, the factor is given by a formula 1.02 + (Max(0, Na-5))*0.008, where Na represents

the total number of atoms. Numerically it turns out that the solvation energy predictions

are sensitive to the radii factor for small molecules with less than 15 atoms. In this case, the

fewer atoms, the smaller factor.

In our calculation, since the polarization is treated explicitly with the quantum mechan-

ical calculation, we set the dielectric constant in the solute region as ǫm = 1, while ǫs = 80

for the solvent region. Other parameters are set in a similar way as in Chapter 2: We choose

ρ0/γ = 2 and take into account the pressure by setting p/γ = 0.2. Note that in the numerical

simulation, all ratio parameters here are treated as dimensionless. For L-J parameters, σs is

chosen to be 0.65Å and σi is the solute atomic radii [235]. Due to the continuum represen-

tation of solvent in our model, the 6-12 Lennard Jones potential formula (A.2) differs from

the standard version— the distance used in our formula is no longer the distance between
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the centers of solute atoms and the centers of solvent atoms but the distance between a

specific position in the solvent region and the centers of solute atoms. Therefore, the setting

of well depth εi differs from the ones taken from AMBER or OPLS force fields. As we did in

Chapter 2, it is determined by an equality, that is, εi

[

(

σi+σs
|r−ri|

)12
− 2

(

σi+σs
|r−ri|

)6
]

= Di

if r is on the vdW surface of the atom. Here the constant Di should have different values

for various types of atoms. For simplicity we use a uniform constant D = 1.0 to determine

the value of εi. The grid dimension is the same both in the PB solver and in SIESTA, and

it depends on the MeshCutoff energy value in SIESTA, which is 125 Rydberg in current

simulations. The time stepping of τ = h2x/4.5 is used, where hx is the grid spacing at the x

direction. Finally, γ = 0.0065 kcal/(molÅ2) obtained from the previous work in Chapter 2

is applied to compute the total non-polar solvation energy.

Table 3.5 summarizes the numerical results of the solvation free energies of 24 molecules.

The root mean square error (RMS) of 1.31kcal/mol is obtained, which indicates a very

good agreement between the present prediction and experimental data [237]. The agreement

can also be seen from Figure 3.2. Moreover, to examine consistency, the ratio of ∆∆Gp

and ∆GQM is computed and listed in Table 3.6. It is evident that the numerical ratio is

always about 0.6. Therefore, the reliability and consistency of the present model have been

illustrated.

3.4.2 Solvation free energies of 16 molecules

Application of the set of 24 small molecules has shown that the proposed solvation model

works well for the solvation free energy calculation of small molecules. One of the motivations

in developing the present optimized surface model with the quantum charge density is to
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Figure 3.2: Correlation between experimental data and the present optimized surface model
with quantum correction (OSMQ) in solvation free energies of 24 small molecules.

(a) (b) (c) (d)

Figure 3.3: Illustration of surface electrostatic potentials of four small compounds at their
corresponding isosurfaces S = 0.50. (a) Glycerol triacetate; (b) 1,1-diethoxyethane; (c)
Bis-2-chloroethyl ether; (d) Dimethoxymethane.
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Table 3.6: Solvation free energy (kcal/mol) decomposition for a set of 21 molecules.

Compound ∆Gvp ∆Gp ∆∆Gp ∆GQM |
∆GQM
∆∆Gp

|
Ethanol -5.42 -6.33 -0.91 0.61 0.67
Propionamide -8.84 -12.19 -3.35 2.14 0.64
Phenol -6.30 -7.88 -1.58 1.01 0.64
Methanethiol -3.44 -4.29 -0.85 0.50 0.59
Propionic acid -6.31 -7.73 -1.42 0.87 0.62
Acetamide -10.13 -14.23 -4.10 2.65 0.65
Acetonitrile -6.04 -8.23 -2.19 1.36 0.62
Ethanethiol -3.77 -4.53 -0.76 0.47 0.62
Aniline -7.52 -9.34 -1.82 1.15 0.63
Acetic acid -7.01 -8.67 -1.66 1.03 0.62
1-methylcytosine -14.68 -23.90 -9.22 5.96 0.65
Pyridine -5.3 -7.61 -2.31 1.49 0.64
9-methyladenine -13.42 18.50 -5.08 3.17 0.62
1-methyluracil -10.88 -15.35 -4.47 2.78 0.62
4-cresol -6.40 -7.94 -1.54 1.00 0.65
4-Methylimidazole -10.03 -15.88 -5.85 3.84 0.66
Methylethyl sulfide -3.94 -4.83 -0.89 0.55 0.62
n-Butylamine -5.96 -7.19 -1.23 0.81 0.66
3-Methylindole -7.80 -10.40 -2.60 1.66 0.64
Methylamine -6.10 -7.70 -1.60 1.07 0.67
Benzene -3.72 -4.69 -0.97 0.52 0.53

deal with a relatively challenging set of compounds, which was studied by Nicholls et al.

[160] and in Chapter 2 where the PB theory and fixed partial charges were used. This set

is challenging to compute because of the existence of polyfunctional or interacting polar

groups, which lead to strong solvent-solute interactions. The challenge has been illustrated

numerically in the previous work [160, 46]. In particular, with the OpenEye-AM1-BCC v1

charge and corresponding optimized ZAP 9 radii, the root mean square error (RMS) obtained

by Nicholls et al. is 1.71± 0.05 kcal/mol via an explicit solvent model. The smallest RMS

error of their single - conformer Poisson-Boltzmann approach is 1.87±0.03 kcal/mol [160].

By using our previous optimized surface model (OSM) with OpenEye-AM1-BCC v1 charges,
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a better performance in the solvation calculation could be attained. However, RMS error was

still 1.76 kcal/mol. Large errors from benzamides can not be avoided if both OpenEye-AM1-

BCC v1 charge and ZAP 9 radii are used in the PB approaches. Errors from the calculation

of benzamides were still between 3.5 and 4.0 kcal/mol.

Therefore, hoping possible improvement, we introduce quantum mechanical corrections

to take care of the charge density. As we did before, structure data of this set of 16 molecules

is taken from the paper of Nicholls et al. [160]. In particular, atomic coordinates are taken

from their supporting information, which have been already optimized by using Gaussian03

package in vacuum with B3LYP/6-31G**. The atomic radii are still based on their new

parametrization ZAP-9 and multiplied by a common factor 1.1. All other parameters needed

in current model are set in the same way as described for the above set of 24 molecules.

Note that in the previous papers [160, 46], the set contains 17 molecules. Here we remove a

compound (benzyl bromide) because it has atomic species Br for which we can not obtain

a proper pseudopotential file from the mentioned pseudopotential generator website. Since

errors from the calculation of benzyl bromide previously was about 1 kcal/mol which is much

lower than RMS, exclusion of benzyl bromide should make the RMS increase in previous

results.

The results are summarized in Table 3.7 which lists the values of solvation free energies

for different components and gives a comparison of total solvation free energies between

calculated and experimental values [160]. It shows that the RMS error of 16 molecules from

the present model is 1.50 kcal/mol, which is much better than that from the explicit method

of 1.71 kcal/mol [160]. It is also better than our earlier OSM result of 1.76 kcal/mol in
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Table 3.7: Comparison of free energies (kcal/mol) for 16 compounds.

Compound Gnp ∆Gp ∆GQM ∆Gtotal Exptl

glycerol triacetate 2.24 -12.73 1.35 -9.13 -8.84
benzyl chloride 1.35 -6.29 0.82 -4.11 -1.93

m-bis(trifluoromethyl)benzene 2.24 -2.63 0.36 -0.03 1.07
N,N-dimethyl-p-methoxybenzamide 1.97 -11.24 1.85 -7.42 -11.01

N,N-4-trimethylbenzamide 1.86 -9.79 1.52 -6.41 -9.76
bis-2-chloroethyl ether 1.45 -6.34 0.55 -4.34 -4.23
1,1-diacetoxyethane 1.65 -8.47 0.92 -5.90 -4.97
1,1-diethoxyethane 1.50 -6.22 0.52 -4.20 -3.28

1,4-dioxane 1.00 -6.00 0.66 -4.35 -5.05
diethyl propanedioate 1.81 -9.08 0.89 -6.38 -6.00
dimethoxymethane 1.03 -5.11 0.48 -3.59 -2.93

ethylene glycol diacetate 1.59 -9.00 1.03 -6.38 -6.34
1,2-diethoxyethane 1.54 -6.85 0.61 -4.70 -3.54

diethyl sulfide 1.22 -4.32 0.41 -2.69 -1.43
phenyl formate 1.37 -6.91 0.89 -4.65 -4.08

imidazole 0.95 -14.10 3.29 -9.86 -9.81

RMS error 1.50
Average error 1.08

Chapter 2. Therefore, a conclusion can be reached that nontrivial improvement is made

using the charge density directly computed from quantum mechanical calculations. Figure

3.3 depicts the surface electrostatic potentials of four compounds at their corresponding

isosurfaces S = 0.50. These surface potential profiles correlate with the surface electron

density distribution and chemical properties of the molecules.

Unfortunately, as shown in Table 3.7, errors from two amide compounds are still quite

large. This problem leads us to further explore the source of their errors. Note that in this

work, structural parameters are pre-determined and have not been optimized during the

quantum calculation of the electronic density profile. Therefore, the aforementioned large

errors must be due to the structural parameters. To prove this assumption, we carry out the
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present solvation analysis of the 16 compounds based on the structural data provided from

the Pubchem database (http://pubchem.ncbi.nlm.nih.gov/). Our new results are listed in

Table 3.8. Indeed, errors from two amide compounds are significantly reduced. However,

the RMS error of the set (i.e., 1.50 kcal/mol) is exactly the same as that computed by using

ZAP-9 structural parameters [160], because larger errors from other compounds.

Note that our approach belongs to the so called “blind test” [160] in which the same set

of atomic parameters is used for all compounds. Certainly, our errors can be further reduced

if atomic parameters are chosen based on molecular information. As such, one is allowed

to use different atomic parameters based the chemical constitution and function groups of a

molecule. For example, carbons within the same molecule can have different atomic radii.

However, such approaches can no longer be called a “blind test” as discussed by Nicholls et

al. [160]

3.4.3 Solvation free energies of 3 larger molecules

The overall accuracy of the proposed model has been examined by the above two sets of

small molecules. Reliability, robustness and consistency are numerically illustrated as well.

As far as efficiency is concerned, the proposed model is expected to be slower than traditional

continuum models in the solvation analysis due to the involvement of QM calculations. How-

ever, the computational cost of the present model can be much less than the traditional QM

calculation and existing quantum mechanical continuum solvation models. This is due to the

following three reasons. First, implicit description of the solvent is adopted to dramatically

reduce the number of degrees of freedom. Second, the time-consuming quantum calculation
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Figure 3.4: Correlation between experimental data [160] and the present optimized surface
model with quantum mechanics (OSMQ) in solvation free energies of 16 compounds.
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Table 3.8: Free energies (kcal/mol) for 16 compounds using structures from Pubchem data.

Compound Gnp ∆Gp ∆GQM ∆Gtotal Error

glycerol triacetate 2.33 -13.01 1.44 -9.23 -0.39
benzyl chloride 1.34 -6.10 0.81 -3.94 -2.01

m-bis(trifluoromethyl)benzene 2.22 -3.29 0.41 -0.66 -1.73
N,N-dimethyl-p-methoxybenzamide 1.94 -12.00 2.04 -8.02 2.99

N,N-4-trimethylbenzamide 1.85 -10.59 1.77 -6.97 2.79
bis-2-chloroethyl ether 1.44 -5.85 0.58 -3.82 0.41
1,1-diacetoxyethane 1.66 -8.51 0.90 -5.94 -0.97
1,1-diethoxyethane 1.53 -6.07 0.58 -3.96 -0.68

1,4-dioxane 1.05 -5.13 0.49 -3.59 1.46
diethyl propanedioate 1.83 -11.78 1.62 -8.33 -2.33
dimethoxymethane 1.06 -4.61 0.34 -3.21 -0.28

ethylene glycol diacetate 1.68 -9.63 1.4 -6.91 -0.57
1,2-diethoxyethane 1.72 -5.68 0.44 -3.52 -0.02

diethyl sulfide 1.22 -4.57 0.51 -2.84 -1.41
phenyl formate 1.35 -6.61 0.90 -4.36 -0.28

imidazole 0.82 -13.16 2.97 -9.28 -0.53

RMS error 1.50
Average error 1.18

has been accelerated by the pseudopotential and minimum basis set in the framework of a

linear scaling density functional theory in SIESTA. Furthermore, EPS charge fitting pro-

cess, which depends on the definition of partial charges and the choices of sampling points,

is avoided in this model by the direct use of the charge density. Therefore, it is believed

that with powerful computer facilities, the current model can be a good choice to handle

complex systems such as large drug molecules, amino acids as well as moderately large

proteins. To examine the performance of this model for larger molecules, three molecules

are chosen, including phorbol (54 atoms), Staurosporine (66 atoms, a potent protein kinase

C inhibitor which enhances cAMP-mediated responses in human neuroblastoma cells), and

phorbol12,13-dibutyrate (71 atoms, an effective activator of calcium-activated, phospholipid-
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(a) (b) (c)

Figure 3.5: Illustration of surface electrostatic potentials of three compounds at their corre-
sponding isosurfaces S = 0.50. (a) Phorbol; (b) Phorbol12,13-dibutyrate; (c) Staurosporine.

dependent protein kinase C). Solvation free energies of these molecules are computed and

the computational cost is recorded with two quad-core Xeon 2.3 GHz processors. Our results

are listed in Table 3.9. It is also shown that the ratios of ∆∆Gp and ∆GQM are still about

0.6, which is consistent with those in smaller molecule calculations. In Figure 3.5, we illus-

trate the surface electrostatic potentials for the three compounds. The isosurface S = 0.50

is chosen for the plot. As shown in Chapter 2, different isosurfaces may exhibit different

electrostatic characteristic.

Table 3.9: Solvation free energies (kcal/mol) of 3 large molecules and corresponding CPU
time (hour).

Compound ∆∆Gp ∆GQM |
∆GQM
∆∆Gp

| Gnp ∆Gtotal Time

phorbol -3.02 1.94 0.64 3.24 -15.53 0.44
phorbol12,13-dibutyrate -4.94 2.91 0.59 4.60 -17.43 0.97

Staurosporine -8.39 4.78 0.57 3.79 -18.53 0.82
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3.5 Chapter conclusions

The polar solvation energy was computed by the Poisson-Boltzmann equation with partial

charges adopted from molecular mechanical force fields. Generally, partial charges in force

fields are parameterized for certain class of molecules and may not be accurate for other

molecules. Additionally, the fixed charge pattern does not describe the charge arrangement

during the solvation process. This drawback limits the accuracy and utility of our earlier

solvation models. The present work addresses such a limitation of our differential geometry

based solvation models by the incorporation of quantum density into our earlier models.

We believe that solvation is subject to the fundamental law of physics. As such, all the

important state functions, including the quantum density of the solute, must be determined

by a multiscale total free energy functional, which has the contribution from the quantum

mechanical energy of electrons at the finest scale. Therefore, we construct a new multiscale

total free energy functional which includes the electron kinetic energies and potential ener-

gies. Apart from the earlier two governing equations, i.e., the generalized Poisson-Boltzmann

equation for the electrostatic potential and the generalized Laplace-Beltrami equation for the

solvent-solute boundary, one additional governing equation, the Kohn-Sham equation for

electronic structures, is also derived from the total energy functional by the Euler-Lagrange

variation. The solution of these three governing equations give rise to the desirable minimal

free energy of solvation.

Numerical methods and algorithms are discussed for the solution of three coupled partial

different equations (PDEs). The Poisson-Boltzmann and the Laplace-Beltrami equations

(i.e., a generalized Laplace-Beltrami equation) are solved in a similar manner as that in

Chapter 2. The Kohn-Sham equation is solved twice, once for the solute in vacuum and
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the other in solution. By means of the reaction field potential, we can relate our Kohn-

Sham Hamiltonian in both situations to the standard one, so that existing computational

software packages can be utilized. The present work has developed a protocol to make use of

SIESTA (Spanish initiative for the electronic structure of thousands of atoms), an efficient

linear scaling DFT package, for the solution of the electronic density. Appropriate iteration

procedures are developed to dynamically couple three governing equations and ensure the

convergence of the solution.

The present multiscale model is validated by the solvation analysis of realistic molecules

whose experimental solvation free energies are available. We have particularly analyzed the

stability and consistency of the present model when atomic partial charges in our previous

Poisson solver are replaced by the continuous density distribution.
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Chapter 4

Lagrangian formulation

This chapter presents a Lagrangian formulation of our differential geometry based solvation

models. Therefore, we consider the solvent-solute boundary as a 2-dimensional (2D) dif-

ferentiable manifold embedded in a 3D Euclidean space or a hypersurface in a Riemannian

manifold. Then the subsequent free energy optimization can be carried out on the 2D man-

ifold. For example, the area of a solvent-solute interface is modeled as a surface integration

over the biomolecular manifold. The Lagrangian representation of biomolecular surfaces has

a few utilities/advantages. First, it provides an essential basis for biomolecular visualization,

surface electrostatic potential map and visual perception of biomolecules. Additionally, it is

consistent with the conventional setting of implicit solvent theories and thus, many existing

theoretical algorithms and computational software packages can be directly employed. Fi-

nally, the Lagrangian representation does not need to resort to artificially enlarged van der

Waals radii as often required by the Eulerian representation in solvation analysis.

The main goal of the present chapter is to explore the Lagrangian formulation of the

differential geometry based solvation model, and analyze the similarity and difference of two
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differential geometry based formulations. The mathematical analysis of biomolecular sur-

faces in the Lagrangian formulation is quite different from that of the Eulerian formulation.

The Lagrangian analysis of biomolecular surfaces makes the direct use of differential geome-

try theory of surfaces and manifolds. The surface minimization leads to the Laplace-Beltrami

operator, or the mean curvature operator. Whereas the Eulerian analysis of biomolecular

surfaces utilizes the coarea theorem of the geometric measure theory. The resulting operator

from surface area minimization can also be identified as a generalized Laplace Beltrami oper-

ator in a higher dimension. The connection of two representations is analyzed in this chapter.

The structure of governing equations, and the accuracy and efficiency of two formulations

are compared.

The rest of this chapter is organized as follows. In Section 4.1, we present the Lagrangian

formulation of differential geometry based solvation models. The total free energy functional

of solvation is constructed, and followed by detailed analysis of on-manifold variations. Such

variations produce coupled potential driven geometric flow and Poisson-Boltzmann equa-

tions. Section 4.2 is devoted to the computational methods and algorithms. We discuss

different realizations of biomolecular surfaces, including direct on-manifold evolution and

Eulerian embedding approaches. Algorithms for Eulerian and Lagrangian inter converting

are also discussed. A solution strategy for the coupled equations is designed and analyzed.

The proposed PDE methods are of second order in convergence. Method for solvation free

energy calculations is also given. The proposed methods and algorithms are validated in Sec-

tion 4.3. A large number of numerical examples are designed to test the numerical accuracy,

convergence order and the computational efficiency of numerical methods and algorithms.

The proposed differential geometry based solvation model is applied to two classes of prob-
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lems in Section 4.4. First, we examine the solvation free energy calculation of a set of

small molecules. We then extend our solvation calculations to a set of proteins. Results

are compared with experimental data, those obtained by using our earlier Eulerian formu-

lation and those obtained by the classic molecular surface definition. Finally, we consider

two cases of salt-regulated protein-protein interactions. The protein binding affinities are

computed by using the proposed new models. The resulting binding affinities compare well

with experimental data in the literature.

4.1 Theory and model

This section presents the differential geometry based solvation model. We first discuss a

few free energy functionals of solvation. These functionals may appear exactly the same as

the solvation energy expressions in the classic theory of solvation. However, a fundamental

difference is that, in the present approach, the solvent-solute interface will be obtained by

the variational principle, rather than by a prefixed surface, such as the van der Waals surface

or the molecular surface. The governing equations for the solvation system, including the

Poisson-Boltzmann equation and the generalized Laplace Beltrami equation, will be derived

from the first variation.

4.1.1 Solvation free energy functionals

This subsection presents a few solvation models and establishes the notations for the further

development of differential geometry based solvation analysis. A polar solvation model is de-

scribed before a nonpolar solvation model is given. The total solvation free energy functional

is designed as the combination of the polar and nonpolar components.
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4.1.1.1 Polar solvation functional

The free energy functional of the electrostatic system was given exactly by Sharp and Honig

[199], and Gilson et al [97]. A sharp solvent-solute interface is assumed in their free energy

expression

Gp =

∫

Ω



λmρmφ− 1

2
ǫ|∇φ|2 − kBTλs

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)



 dr (4.1)

where the involved notations are defined as those in Eulerian formulation, while the per-

mittivity ǫ(r) (also called dielectric coefficient) and the ionic function λm(r) and λs(r) are

defined as [7, 143, 93]

ǫ(r) = ǫmλm + ǫsλs (4.2)

and

λm(r) =











1 r ∈ Ωm

0 r ∈ Ωs

, λs(r) =











0 r ∈ Ωm

1 r ∈ Ωs

(4.3)

where, the computational domain is divided into two subdomains, Ω = Ωm ∪ Ωs, with Ωm

and Ωs denoting the solute and solvent accessible regions, respectively. The domains Ωm and

Ωs are separated by an interface Γ. Here, ǫm = ǫ0εm and ǫs = ǫ0εs are the permittivities

of the macromolecule and the solvent, respectively, where ǫ0 is the permittivity of vacuum

and εα (α = m, s) are relative permittivities. We treat εα as constants. Note that in the

classic PB theory, these functions explicitly depend only on the radii of the solute [7, 93] —

they do not depend on Γ. However, in the present theory, these functions not only implicitly

depend on the radii of the solute, but also explicitly depend on the interface Γ, which in
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turn, depends on the total energy functional.

4.1.1.2 Total free energy functional of solvation

The electrostatic free energy functional is complemented by nonpolar free energy functional

described in Section 1.1.4 to give the total free energy functional of solvation for biomolecules

at equilibrium

Gtotal = γ ·Area + p · Vol +
∫

Ωs
ρsUssdr+

∫

Ωm

(

ρmφ− ǫm
2
|∇φ|2

)

dr

−
∫

Ωs





ǫs
2
|∇φ|2 + kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)



 dr, (4.4)

where we have used the coefficient definitions provided in Eqs. 4.2 and 4.3 to simplify the

integrals. This total free energy functional might be subject to a variety of corrections and

modifications.

4.1.2 Surface variation

The total free energy functional (4.4) is an important component of the present differential

geometry based solvation model. However, it does not provide a protocol for practical

solvation analysis. This subsection describes the variation principle which leads to desirable

governing equations for the surface formation and evolution, and for the evaluation of the

electrostatic potential.

In our previous minimal molecular surface (MMS) model [18, 20], the surface variation

was accomplished via the Euler-Lagrange equation in the Eulerian representation. In the

present Lagrangian representation, we perform the optimization of Gtotal on manifold Ξ
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with respect to the solvent-solute interface Γ. In the spirit of differential geometry, the

interface can be represented as a closed surface in the 3D Euclidean space and denoted as

Γ(u1, u2), which depends on the two real parameters u1 and u2. The solute region, Ωm(Γ)

and the solvent region, Ωs(Γ) can be regarded as functions of Γ(u1, u2). We use
δ(·)
δΓ

to

denote the first variation of (·) with respect to surface definition Γ,

δGtotal
δΓ

=
δ

δΓ

[

γ ·Area + p · Vol +
∫

Ωs
ρsUssdr+

∫

Ωm
ρmφdr−

1

2

∫

Ωs
ǫs|∇φ|2dr

−1

2

∫

Ωm
ǫm|∇φ|2dr−

∫

Ωs
kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)

dr



 .

(4.5)

We set
δGtotal
δΓ

= 0 to construct the governing equation that describes the optimized solvent-

solute interface. To carry out this variation, we express the surface area and volume as the

following integrals

Area =

∫

Ξ
dσ and Vol =

∫

Ωm
dr, (4.6)

where dσ represents the infinitesimally small surface element on the solute-solvent interface.

The complete first variation formula of G can be obtained by adding up the variation of

each term from Eq. (4.5). To this end, we consider a surface element f(u1, u2) and its

infinitesimal displacement in the normal direction

f(ε)(u1, u2) := f(u1, u2) + εϕ(u1, u2) ·N(u1, u2) (4.7)

where N is the outward unit normal direction and ϕ is an arbitrary C2 function. In other

words, we consider a one-parameter family f(ε) of surface elements and the unperturbed
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surface element is a particular case, f = f(0). The tangent vectors of f(ε) are given by

∂f(ε)

∂ui
=

∂f

∂ui
+ ε

∂ϕ

∂ui
N+ εϕ

∂N

∂ui
. (4.8)

To analyze the impact of the perturbation, we examine the first fundamental form of differ-

entiable manifolds

g
(ε)
ij =

〈

∂f(ε)

∂ui
,
∂f(ε)

∂uj

〉

(4.9)

= gij + 2εϕ

〈

∂f

∂ui
,
∂N

∂uj

〉

+ ε2

(

ϕ2

〈

∂N

∂ui
,
∂N

∂uj

〉

+
∂ϕ

∂ui

∂ϕ

∂uj

)

= gij − 2εϕhij +O(ε2).

We therefore have

∂g
(ε)
ij

∂ε

∣

∣

∣

∣

∣

∣

∣

ε=0

= −2ϕhij . (4.10)

By virtue of surface elements f(ε) and the first fundamental form, we can carry out the
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surface variation of the area as follows

δA

δΓ
=

δ

δΓ

(
∫

Ξ
dσ

)

(4.11)

=
δ

δΓ

(
∫

U

√
gdu1du2

)

=
∂

∂ε

∣

∣

∣

∣

ε=0

(
∫

U

√

g(ε)du1du2

)

=

(
∫

U

∂

∂ε

∣

∣

∣

∣

ε=0

√

g(ε)du1du2

)

=

∫

U

1

2
√
g



g22
∂g

(ε)
11
∂ε

∣

∣

∣

∣

∣

∣

ε=0

+ g11
∂g

(ε)
22
∂ε

∣

∣

∣

∣

∣

∣

ε=0

− 2g12
∂g

(ε)
12
∂ε

∣

∣

∣

∣

∣

∣

ε=0



 du1du2

= −
∫

U
ϕ
1

g
(h11g22 + h22g11 − 2h12g12)

√
gdu1du2

= −
∫

U
ϕ2H

√
gdu1du2

= −
∫

Ξ
ϕ2Hdσ,

where g is the Gram determinant, g = Det(gij) = g11g22 − g212 and H the mean curvature

H = 1
2g (h11g22 + h22g11 − 2h12g12), where gij and hij are defined in Appendix C.

The first variation of the volume enclosed by the manifold Ξ is derived as follows. We

first express the volume enclosed by the surface element f(ε) as a Taylor expansion in terms

of ε

Vol(f(ε)) = Vol(f) + ε
δVol

δΓ
+O(ε2). (4.12)

As shown in the above calculation, we can pursue the volume variation with respect to Γ by

means of the variation with respect to ε

δVol

δΓ
=
∂Vol(f(ε))

∂ε

∣

∣

∣

∣

∣

ε=0

=
∂(Vol(f(ε))−Vol(f))

∂ε

∣

∣

∣

∣

∣

ε=0

. (4.13)
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It follows [24]

δVol

δΓ
=

∂(Vol(f(ε))− Vol(f))

∂ε

∣

∣

∣

∣

∣

ε=0

=
∂
∫ ε
0
∫

U
√
DetJdu1du2dτ

∂ε

∣

∣

∣

∣

∣

ε=0

=

∫

U

√
DetJdu1du2

∣

∣

∣

∣

τ=ε=0

=

∫

U
ϕ
√
gdu1du2

=

∫

Ξ
ϕdσ, (4.14)

where matrix J is defined as

J =



















〈

∂f(τ)

∂u1
, ∂f

(τ)

∂u1

〉 〈

∂f(τ)

∂u1
, ∂f

(τ)

∂u2

〉 〈

∂f(τ)

∂u1
, ∂f

(τ)

∂τ

〉

〈

∂f(τ)

∂u2
, ∂f

(τ)

∂u1

〉 〈

∂f(τ)

∂u2
, ∂f

(τ)

∂u2

〉 〈

∂f(τ)

∂u2
, ∂f

(τ)

∂τ

〉

〈

∂f(τ)

∂τ
, ∂f

(τ)

∂u1

〉 〈

∂f(τ)

∂τ
, ∂f

(τ)

∂u2

〉 〈

∂f(τ)

∂τ
, ∂f

(τ)

∂τ

〉



















, (4.15)

and similarly, f(τ) = f + τϕ ·N, τ ∈ (0, ε). We have carried out the calculation of inner

products
〈

∂f(τ)

∂ui
,
∂f(τ)

∂τ

〉∣

∣

∣

∣

∣

τ=0

=

〈

∂f(τ)

∂ui
, ϕN

〉∣

∣

∣

∣

∣

τ=0

= 0, (4.16)

where

〈

∂f(τ)

∂ui
, ϕN

〉

vanishes since ∂f(τ)

∂ui
and N are orthogonal to each other. Moreover,

we have
〈

∂f(τ)

∂τ
,
∂f(τ)

∂τ

〉

= ϕ2, (4.17)

where we use the fact that ∂f
(τ)

∂τ
= ϕN. Therefore, we can compute the determinant of the
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J matrix as

DetJ |τ=0 = Det

















〈

∂f
∂u1

, ∂f
∂u1

〉 〈

∂f
∂u1

, ∂f
∂u2

〉

0
〈

∂f
∂u2

, ∂f
∂u1

〉 〈

∂f
∂u2

, ∂f
∂u2

〉

0

0 0 ϕ2

















= ϕ2g. (4.18)

Moreover, the above derivation process can be extended to the first variation of a general

volume integral
∫

Ωm
F (r)dr.

δ
(

∫

Ωm
Fdr

)

δΓ
=

∂
∫ ε
0
∫

U F (u1, u2, τ)
√
DetJdu1du2dτ

∂ε

∣

∣

∣

∣

∣

ε=0

(4.19)

=

∫

Ξ
F (u1, u2)ϕdσ

where F represents a general integrable function of u1 and u2, and is defined in the whole

domain. Similar to the volume variation, we end up with a surface integral.

Furthermore, because
∫

Ω Fdr is independent of the surface variation, we have

δ(
∫

Ω Fdr)

δΓ
= 0. (4.20)

Then, it follows that

δ
(

∫

Ωs
Fdr

)

δΓ
=
δ(
∫

Ω Fdr−
∫

Ωm
Fdr)

δΓ
= −

∫

Ξ
Fϕdσ. (4.21)

Therefore, the first variation of all other volume integration terms in Eq. (4.5) can be
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attained by replacing F with appropriate integrands in Eq. (4.19) and Eq. (4.21)

δ
(

∫

Ωm
ρmφdr

)

δΓ
=

∫

Ξ
ρmφdσ, (4.22)

δ
(

∫

Ωs
ǫs|∇φ|2dr

)

δΓ
= −

∫

Ξ
ǫs|∇φ|2ϕdσ, (4.23)

δ
(

∫

Ωm
ǫm|∇φ|2dr

)

δΓ
=

∫

Ξ
ǫm|∇φ|2ϕdσ, (4.24)

δ
(

∫

Ωs
ρsUssdr

)

δΓ
= −

∫

Ξ
ρsUssϕdσ (4.25)

and

δ
(

∫

Ωs
kBT

∑Nc
i=1 n

0
i

(

e−φQi/kBT − 1
)

dr
)

δΓ
(4.26)

= −
∫

Ξ
kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)

ϕdσ,

where ∇φ on the surface represents the first derivative of potential φ.

Substituting Eqs. (4.11), (4.14), (4.22) (4.23), (4.24), (4.25) and (4.26) into Eq. (4.5)

yields

δGtotal
δΓ

=

∫

Ξ

[

−2γH + p− ρsUss + ρmφ+
1

2
ǫs|∇φ|2 −

1

2
ǫm|∇φ|2 (4.27)

+kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)



ϕdσ = 0.
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Since ϕ is an arbitrary function, the following condition must be satisfied for each point on

the optimized interface

Wn ≡ −2γH + p− ρsUss + ρmφ+
1

2
ǫs|∇φ|2 −

1

2
ǫm|∇φ|2 (4.28)

+kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)

= 0

It is noted that this condition was also obtained in our earlier work, but was derived in the

Eulerian representation using different mathematical techniques [243, 46].

4.1.3 Governing equations

The directional derivative of solvation free energy functional G in the direction of a normal

variation ϕ can be expressed as

DϕGtotal(f) =
∂Gtotal(f

(ε))

∂ε

∣

∣

∣

∣

∣

ε=0

=

∫

Ξ
Wnϕdσ. (4.29)

If we choose ϕ(u1, u2) = −Wn, then

DϕGtotal(f) = −
∫

Ξ
W2
ndσ ≤ 0

. This means that the total free energy decreases along the normal direction when ϕ(u1, u2) =

−Wn until it reaches a local minimal. Therefore the evolution f(ε) = f − εWnN leads to a

steady state and associated solvent-solute interface with strictly smaller energy. This analy-

sis motivates the following potential driven geometric flow equation for the optimization of
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the solute-solvent interface

∂X

∂t
= −WnN, (4.30)

where X ∈ Ξ ⊂ R
3 is a position vector on the evolving manifold Ξ. Equation (4.30) is a

Lagrange formulation of generalized geometric flows and its structure has been discussed in

our earlier work [17]. This approach is computationally efficient but may have difficulties in

handling topological changes during the biomolecule surface evolution. Numerical schemes

for the solution of geometric flow equations is similar to that in Appendix A.

The electrostatic potential φ is governed by the Poisson-Boltzmann equation for tra-

ditional continuum biomolecular electrostatics applications. In the present approach, the

Poisson-Boltzmann equation can be easily derived from the variation of the full free energy

functional in Eq. (4.4) with respect to the electrostatic potential φ for a fixed interface Γ via

the Euler Lagrange equation [199, 97, 243]

δGtotal
δφ

= 0 ⇒ −∇ · (ǫ(r)∇φ)− λs(r)

Nc
∑

i=1

Qin
0
i e
−φQi/kBT = λmρm. (4.31)

This Poisson-Boltzmann equation admits a sharp solvent-solute interface Γ and is quite

different from the generalized Poisson-Boltzmann equation derived in Chapter 2, which has

an optimized smooth surface (OSS).

Note that the Poisson-Boltzmann equation (4.31) and the potential driven geometric flow

equation (4.30) are fully coupled. The existence and the uniqueness of their solution under

the biomolecular context can be an interesting mathematical issue. In practice, these two

equations have to be solved in a self-consistent manner. This aspect is discussed in 4.2.2.

The solution of the Poisson-Boltzmann equation is subject to the far field boundary condi-
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tion, which in practice can be approximated by the Dirichlet type of boundary conditions

commonly used in the continuum electrostatic modeling (see Eq. (B.5)).

4.2 Methods and algorithms

This section discusses the solution strategies for a pair of coupled equations, the potential

driven geometric flow and the Poisson-Boltzmann equation.

4.2.1 Interconversion between the Lagrangian and Eulerian rep-

resentations

The generalized geometric flow equation (4.30) is in the Lagrangian representation which is

well suited for boundary element or finite element type of methods. Although this Lagrangian

formulation of geometric flow models is relatively easy to implement in many applications,

such as surface smoothing, it can lead to computational difficulties in the case where there

are topological changes, such as surface breaking or merging. These difficulties origin from

the fact of singularity development on the manifold which is supposed to be smooth and

differentiable. These topological changes commonly occur in biomolecular surface construc-

tions and molecular dynamics applications. One way to overcome these obstacles is to use

the Eulerian formulation [245, 18, 19, 20, 17]. The essential idea of resolving the difficulty

of a “singular manifold” or non-smooth surface is to embed the problem in a higher dimen-

sional space such that the embedded function is smooth and differentiable. Another way to

avoid the difficulty of singular manifolds is to use a hybrid Eulerian-Lagrangian approach

for the biomolecular surface generation. In such a hybrid approach, the surface evolution

is carried out mostly in the Lagrangian representation, but is temporally switched to the
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Eulerian representation whenever there is a singularity development on the manifold. In the

rest of this subsection, we discuss computational tools for the interconversion between the

Lagrangian and Eulerian representations.

4.2.1.1 Embedding the Lagrangian dynamics into the Eulerian representation

To embed a Lagrangian operator into its Eulerian representation, we introduce arbitrary

hypersurface function S(r) with r ∈ R
3. The earlier function χ(u1, u2) can be obtained by

solving S = 0. For example, if S = X0x
2 + Y0y

3 + Z0z + D0, where, X0, Y0 and Z0 are

constants, and z0 6= 0, then one can set

χ(t) = z = −x0x2 − y0y
3 − d0, x0 =

X0
Z0

, y0 =
Y0
Z0

, d0 =
D0
Z0

. (4.32)

Via this example, it is easy to verify that the unit norm vector defined in Eq. (C.5) can also

be expressed in term of S

N =
(−χ1,−χ2, 1)√

g
=

∇S
‖∇S‖ . (4.33)

Then the desired surface can be represented as a set of points with a constant value of

function S

Ξ = {r|S(r) = L} (4.34)

where L is an isosurface value. By the chain rule

∂S

∂t
=

∂S

∂X
· ∂X
∂t

(4.35)

= ∇S · ∂X
∂t

= −Wn∇S ·N,
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where X is a 3D position vector confined to the manifold Ξ. Due to Eq. (4.33), one has

∂S

∂t
= −‖∇S‖Wn (4.36)

= ‖∇S‖
[

2γH − p+ ρsUss − ρmφ− 1

2
ǫs|∇φ|2

+
1

2
ǫm|∇φ|2 − kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)





where all terms should be expressed in terms of level surface function S. In particular,

the surface mean curvature H must be rewritten in terms of S. The explicit form of mean

curvature (C.7) implies the equality 2H = ∇ ·N which gives

H =
1

2

[

∂

∂u1

(

χ1√
g

)

+
∂

∂u2

(

χ2√
g

)]

=
1

2
∇ ·
( ∇S
‖∇S‖

)

. (4.37)

One can easily verify this relation by Eq. (4.32). Equation (4.37) connects the Lagrangian

representation of the Laplace-Beltrami operator with its Eulerian representation. Eventu-

ally, the potential driven geometric flow equation in the Eulerian form is obtained for the

optimized solvent-solute interface

∂S

∂t
= ‖∇S‖

[

∇ ·
(

γ∇S
‖∇S‖

)

− p+ ρsUss − ρmφ− 1

2
ǫs|∇φ|2 (4.38)

+
1

2
ǫm|∇φ|2 − kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)





= ‖∇S‖
[

γ∇ ·
( ∇S
‖∇S‖

)

+ V

]
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where

V = −p+ρsUss−ρmφ−
1

2
ǫs|∇φ|2+

1

2
ǫm|∇φ|2−kBT

Nc
∑

i=1

n0i

(

e−φQi/kBT − 1
)

. (4.39)

Equation (4.38) is the same as the generalized geometric flow equation derived in Chapter

2 using the characteristic function and geometric measure theory . This consistency lays

the foundation for switches forwards and backwards between the Eulerian and Lagrangian

representations and the development of hybrid methods for biomolecular surfaces. In fact,

Eq. (4.38) has the same structure as that of our potential and curvature driven geometric

flows and V is essentially the generalized potential defined in our earlier work [17]. Eq.

(4.38) is subject to the similar boundary and initial conditions as those of geometric PDEs

described in our earlier work [18, 20, 17].

4.2.1.2 Transform from the Lagrangian representation to the Eulerian repre-

sentation

Usually the Lagrangian representation of surfaces is expressed in the form of triangulations

[188]. To convert the Lagrangian representation of surfaces into the Eulerian representation,

specifically, a Cartesian grid, we need to register the set of intersecting points between the

surface and the Cartesian mesh. For the purpose of computing the electrostatic potential

from the Poisson-Boltzmann equation which admits discontinuous coefficients across the

solvent-solute interface, we have to calculate the norms at all of the intersecting points

as well. A numerical algorithm for this Lagrangian-Eulerian transformation of molecular

surfaces was developed by Zhou et al. [259], although the original paper did not provide

implementation details.
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We first set up a plane equation for each triangle on the molecular surface. For each

plane equation, we compute all the intersection points between plane and the Cartesian

mesh. For this set of intersecting points, we further record the subset that are located

within the triangle. For this subset of intersecting points, we finally compute their norms as

well by the second order finite difference scheme [259]. This algorithm has been extensively

tested in our previous work [259, 252, 93, 20].

4.2.1.3 Transform from the Eulerian representation to the Lagrangian repre-

sentation

Once the hypersurface function S(x, y, z, T ), where T is the stopping time, is obtained from

the potential driven geometric flow equation (4.38) the solvent-solute interface can be ex-

tracted easily as an isosurface, S(x, y, z, T ) = L, where isosurface value L = (1 − δ)S0.

Here S0 is set as the initial amplitude in geometric flow equation and 1 > δ > 0. In our

earlier work [18, 20], we have chosen S0 = 1000 and a small δ. Recently, in our differential

geometry based multiscale models [243], we have designated S as characteristic function of

the solute and chosen 0 ≤ S ≤ 1. There is no need to specify L in such a formulation. In

the present work, we choose L = Smax/2, where Smax is the maximum of S. This choice is

computationally stable and delivers correct MMSs, when the potential term is absent. It is

to point out that S here is quite different from the S used in our Eulerian formulation [46].

In the present work, S only serves as a hypersurface function for evolving and extracting the

solvent-solute interface and can take any real value. Numerically, isosurface extraction can

be done by existing software such as MATLAB. However, for further electrostatic analysis,

we need a Cartesian representation of the interface locations and the associated norm values.

Therefore, we construct a stand-alone algorithm to extract interface information. To this
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end, the marching cubes method is adopted [140]. For a given grid partition, the marching

cubes algorithm simply deals with a local meshing problem by processing each cell or cube

independently. Each vertex of a cube can be either greater or less than the threshold value

L, giving 256 different scenarios. In considering the symmetry and complementarity, there

are only 15 canonical configurations in each cell needed to be addressed for the local meshing

[140, 67] A look-up table is a quite efficient local triangulation or Cartesian algorithm. The

marching cubes method can be modified in many ways to improve the accuracy, efficiency,

robustness, and topological correctness. Auxiliary binary tree structures are typically em-

ployed in the range-space approaches, such as kd-tree method and interval tree method, to

speed up the marching cubes method. For a structured grid dataset, geometric searching

methods exploiting spatial coherence can be simpler and more efficient than the range space

approaches.

To implement this scheme, first all points inside or outside the surface must be identified

according to S value in the Cartesian grid domain. The surface must intersect those cube

edges where one vertex is outside and the other is inside the surface. Therefore the surface

intersection points and their normal directions can be approximated by linear interpolation.

For instant, to compute an intersection point ro between an inside grid point r1 with value

S1 and an outside grid point r2 with value S2, the distance d between ro and r1 is calculated

by

L = S1 ∗ (1− d) + S2 ∗ d (4.40)

d =
S1 − L

S1 − S2

where L is the isosurface function value. Obviously, with known positions r1 and r2, distance
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d determines the position of the intersection point ro. To calculate the norm vector at ro,

we need to compute the normal vectors at r1 and r2. In general, the normal direction of a

grid point (xi, yj, zk) can be estimated by

nx(xi, yj, zk) =
Si+1,j,k − Si−1,j,k

2∆x
(4.41)

ny(xi, yj, zk) =
Si,j+1,k − Si,j−1,k

2∆y

nz(xi, yj, zk) =
Si,j,k+1 − Si,j,k−1

2∆z

n = (nx, ny, nz)

where nx, ny and nz are the x, y and z components of the norm, respectively. Thus, the

norm at the intersecting point ro, denoted as no, can be interpolated through n1 and n2,

the norms of r1 and r2, respectively

no = (1− d)n1 + dn2. (4.42)

Clearly, the choice of L = Smax/2 offers the best computational accuracy and stability.

The unit norm No at the intersecting point can be easily computed as No = no
‖no‖ . This

algorithm is used in our calculation of unit norms at the intersecting points. Obviously,

higher-order algorithms can be easily constructed when they are needed.

4.2.1.4 Numerical surface integral and volume integral in the Eulerian repre-

sentation

Very often, we need to accurately carry out surface integration and volume integration in the

Eulerian representation. The surface integral of a density function f can be approximated
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by [207]

∫

Ξ
f(x, y, z)dσ =

∫

Ω
f(x, y, z)δ(d(x, y, z))dr ≈

∑

i,j,k

f(xi, yj, zk)δ̃i,j,kh
3 (4.43)

where (xi, yj, zk) is the coordinate of grid point (i, j, k), d(x, y, z) is the distance of a point

(x, y, z) defined in Ω from the interface Γ, h is the uniform grid size, and f(x, y, z) is the

surface density function defined on Γ. The delta function δ̃i,j,k is given by

δ̃i,j,k = δ̃
(+x)
i,j,k

+ δ̃
(−x)
i,j,k

+ δ̃
(+y)
i,j,k

+ δ̃
(−y)
i,j,k

+ δ̃
(+z)
i,j,k

+ δ̃
(−z)
i,j,k

(4.44)

where δ̃
(±α)
i,j,k

, (α = x, y, z) are discrete delta functions [207]. To carry out integration exactly

on the interface, we use the following discrete surface integration formula [94]

∫

Ξ
f(x, y, z)dσ ≈

∑

(i,j,k)∈I

(

f(xo, yj, zk)
|nx|
h

+ f(xi, yo, zk)
|ny |
h

+ f(xi, yj, zo)
|nz |
h

)

h3

(4.45)

where (xo, yj, zk) is the intersecting point of the interface and the x meshline that passes

through (i, j, k), and nx is the x component of the normal vector at (xo, yj, zk). Similar

relations exist between (xi, yo, zk) and ny , and (xi, yj, zo) and nz . Since Eq. (4.45) has

already taken into account the contribution from irregular grid points outside the interface,

the summation is restricted to I, the set of irregular grid points inside or on the interface

[94]. The derivation of Eq. (4.45) is lengthy and is omitted here but it can be seen elsewhere

[94]. The surface area can be calculated by setting f = 1 in Eq. (4.45). The error of the

surface integration depends on the grid resolution and was observed to be approximately

second-order convergence [94].
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The volume integral of the density function f can be simply approximated by [94]

∫

Ωm
f(x, y, z)dr ≈

∑

(i,j,k)∈J
f(xi, yj, zk)h

3 (4.46)

where the summation is over J , the set of points inside the interface.

4.2.2 Dynamic coupling of the Poisson-Boltzmann and geometric

flow equations

The solution of potential driven geometric flow equation, or the generalized Laplace-Beltrami

equation, is discussed in Appendix A, including many discretization schemes. In general,

electrostatic energy is much larger than the non-electrostatic part so that the accuracy

of electrostatic potential calculation based on the Poisson-Boltzmann (PB) equation plays a

critical role in controlling the accuracy of the total solvation free energy. Therefore, numerical

methods that are able to deliver highly accurate solution of the PB equation is desirable.

In this work we apply matched interface and boundary method (MIB) to impose interface

conditions for high accuracy. This challenge is addressed in Section 1.5.3.

As described earlier, optimized electrostatic potential φ is obtained by solving the Poisson-

Boltzmann equation (4.31) in which solvent-solute interface Γ is used to determine ǫ and λ

values. The interface Γ is generated by the solution of the potential driven geometric flow

equation (4.38) which in turn depends on the electrostatic potential. Therefore, the geo-

metric flow equation and the PB equation need to be solved simultaneously in the present

differential geometry based solvation model. In practice, this coupled nonlinear system can

be solved by an iterative procedure: First solving the PB equation with a fixed interface Γ for
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φ; Then obtaining the interface Γ from solving the potential driven geometry flow equation

with a fixed potential φ. A more detailed algorithm is

1. Start with an initial solvent-solute interface, such as a solvent accessible surface.

2. Solve the Poisson-Boltzmann equation (4.31) for the potential with the initial solvent-

solute interface.

3. Obtain new solvent-solute interface by solving the potential driven geometric flow

equation (4.38) with the updated potential.

4. Calculate the solvation free energy with the resulting φ and Γ.

5. Go back to Step 2 until it converges.

The initial solvent-solute interface can be set by the solvent accessible surface with a probe

radius of 1.4 Å. Another way to define the initial geometry is to use the interface obtained

from solving the potential driven geometric flow equation (4.38) without the potential term

V . Both approaches lead to the same result. In this study, we take the latter. The iteration

will be stopped if the values of total solvation free energy converge to within a designated

small criteria value which is 0.01kcal/mol for small molecules and 0.1kcal/mol for proteins

in this chapter. Formulism of solvation free energy evaluation is similar to that in Chapter

2.

4.3 Validation

This section is devoted to the validation of the proposed differential geometry based sol-

vation model and a number of computational algorithms used in the present work. The

143



overall accuracy of solvation free energy calculation depends on the reliability and accuracy

of the solution of the geometric flow equation and the PB solver, surface and volume inte-

grations, and the interface extraction process. The explicit Euler algorithm guarantees the

reliability and convergence of the solution of the geometric flow equation. The finite central

different scheme is of second order convergence in space and first-order in time although it

is computationally expensive [17]. The MIBPB-III has been verified to be of second-order

in convergence even with molecular surface singularities of proteins [93]. Therefore, it will

be second order accurate for the present application. In fact, the biomolecular surfaces

generated with geometric flows are free of geometric singularities, which is computationally

easier.

We first examine the impact of the interaction potentials to the surface morphology, and

surface electrostatic potentials. A few small molecular systems and 23 protein molecules are

used in this examination. We then check the behavior of the surface area under different

potential interactions. In particular, we verify whether the proposed minimal molecular

surface (MMS) [20] provides the extreme surface area for various molecules and proteins.

Finally, we investigate the convergence of the proposed iterative procedure for solving the

coupled Poisson-Boltzmann and geometric flow equations.

4.3.1 Validation of the interface extraction scheme

The numerical algorithm for surface integrations has second-order convergence [207, 94].

However, the MIBPB-III here has been modified for our purpose to admit the present opti-

mized molecular surface (OMS) as the solvent-solute interface definition. This implies that

the reliability of the present MIBPB-III solver depends on the interface extracted by the
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marching cube algorithm. Moreover, the performance of our surface integration and vol-

ume integration algorithms is also determined by the resulting interface instead of some

pre-determined interface such as the molecular surface [185]. Therefore, it is worthwhile

to validate the interface extraction procedure and algorithm in terms of surface area (Å2),

surface enclosed volume (Å3) and electrostatic solvation free energy (kcal/mol). In general,

there is no analytical result for electrostatic energy except for the one-atom system due

to Kirkwood [119]. For the one-atom system without interaction potential, the resulting

solvent-solute interface from the geometry flow evolution is a sphere with the same radius

as the initial one, for which the PBE admits an analytical solution. The surface area and

volume can be calculated analytically. Therefore, we consider a dielectric sphere of radii

2Å with a unit charge at the center. We set
p
γ = 0.5, S0 = 1000 and L = 500. Table 4.1

lists the numerical results under different grid resolutions h, which are compared with the

exact solution. The convergence in space is observed and a satisfactory result is attained.

Table 4.1: Comparison of surface areas (Å2), volumes (Å3) and energies (kcal/mol) for two
small systems.

One Atom Diatom
h Area Volume Energy Area Volume Energy
0.5 48.86 34.00 -84.92 95.24 71.00 -238.03
0.25 49.04 33.56 -82.92 99.28 72.73 -233.66
0.125 50.09 33.52 -82.08 100.5 73.20 -232.37

Referenced Value 50.265 33.510 -81.98 100.34 71.18 −233.67

Another test is done with a diatom system. It has been illustrated previously that

molecular surface of a diatom system can be reproduced by our PDE based approach at an

appropriate constant potential value [17]. In particular, when the van der Waals (VDW) radii

of two atoms are 2Å, the generated surface with
p
γ = −0.222 will be almost identical visually
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to the molecular surface with probe radius rm = 1.4Å. In this setting, the corresponding

solvation free energy, surface area and volume calculated by our numerical procedure are

compared with those based on molecular surface. To calculate the electrostatic solvation

energy, a unit charge is set at the centers of two atoms (-2.3,0,0) and (2.3,0,0). The numerical

results are summarized in Table 4.1. For a comparison, the reference molecular surface area

and volume of this diatom system are obtained by using the MSMS program [188] with probe

radius 1.4 Å and density 100. The electrostatic solvation energy (-233.67 kcal/mol) based

on molecular surface is calculated by the original MIBPB-III [93]. A good agreement is also

observed from this test.

4.3.2 Effect of interaction potentials

In this section, we illustrate the impact of potentials to the generation of solvent-solute

interface, consequently to the solvation analysis. Since the effect of the pressure term has

already been shown in our previous study, we focus our attention on the study of potential

effects which include short-ranged repulsive interaction, long-ranged attractive dispersion

interaction and electrostatic potential effect. Here we consider 12-6 Lennard-Jones pair

potential to model V LJ
i . For the purpose of demonstration, all the surface profiles here are

constructed by using 6-12 decomposition and based on the geometric flow Eq. (4.36) in

absence of the pressure term and the ionic effect

∂S
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
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)
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Figure 4.1: Illustration of surface morphology of a diatom system with radii 1.87Å and
coordinates (x, y, z) = (−2.2, 0, 0), and (2.2, 0, 0) under different solute-solvent interactions.
Top Left: The MMS (no potential); Top Right: The surface obtained under a repulsive

potential (V
rep,LJ
i ); Bottom Left: The surface obtained under a full L-J potential (V LJ);

Bottom Right: The surface obtained under a full L-J potential and an electrostatic potential.
It can be seen that the repulsive potential produces a “fat” surface, while an attractive
potential or an electrostatic potential leads to a “slim” surface.

Without any potential term, this geometric flow equation leads to the minimal molecular

surface (MMS) [20]. The effects of those three potentials are demonstrated by a diatom

system, a four-atom system and finally a protein molecule which is also used to illustrate the

potential impacts on surface electrostatic potential analysis. In the present computation, we

have treated the solvent density ρs as homogeneous.

4.3.2.1 Surfaces of a diatom system

We first consider a diatom system with van der Waals radius 1.87Å and coordinates

(x, y, z) = (−2.2, 0, 0) and (2.2, 0, 0). Mesh size h = 0.04Å is used. The L-J parameters

are set as follows: σi is taken from atomic radius and σs is chosen to be 0.65Å. Well depth

ǭi = 0.035 kcal/mol and bulk density coefficient
ρs
γ = 2. To account for electrostatic

147



potential effect, a unit charge is set on the center of each atom and we choose ǫsγ = 80 ∗ ǫs

and ǫmγ = 80∗ǫm. We use ǫm = 1 and ǫs = 80 for dielectric constants in solute and solvent,

respectively. Figure 4.1 illustrates the different potential effects on the surface morphology

for the diatom system. We systematically change the potential effects to generate different

surfaces. We begin with no potential effect, which leads to the minimal molecular surface

(Top Left of Figure 4.1 ), then add the repulsive part of the L-J potential (Top Right of

Figure 4.1), then add an attractive interaction (Bottom Left of Figure 4.1) and finally add

the electrostatic potential effect (Bottom Right of Figure 4.1). It can be seen that the

repulsive potential produces a “fat” surface, while an attractive potential or electrostatic

potential leads to a “slim” surface. In other words, with a purely repulsive interaction

turning on, there is less bulk area between or around two spherical solutes, while more bulk

area with attractive potential or electrostatic potential turning on. This result is consistent

with experimental observations [236]

4.3.2.2 Surfaces of a four-atom system

The effects of potentials on the surface generation are further demonstrated by a four-

atom system in Figure 4.2 with van der Waals radius 1.87 Å and coordinates (x, y, z) =

(−3.40, 0, 0), (3.40, 0, 0), (0,−2.94, 0) and (0, 2.94, 0). The needed parameters in Eq. (4.47)

are set as the same as the above diatom system except for setting 1/2 charge at the center

of each atom. We also systematically change the potential effects by beginning with no

potential which leads to the MMS in Figure 4.2(Top Left), then add the repulsive part of

L-J potential (Top Right of Figure 4.2), then add the attractive part in Figure 4.2(Bottom

Left) and finally add the electrostatic potential effect in Figure 4.2(Bottom Right). The

impact of potentials is similar to that in the diatom system. It is found that the size of hole
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Figure 4.2: Illustration of surface morphology of a four-atom system with radii 1.87Å and
coordinates (x, y, z) = (−3.40, 0, 0), (3.40, 0, 0), (0,−2.94, 0) and (0, 2.94, 0) under different
solute-solvent interactions. Top Right: The surface obtained under a repulsive potential

(V
rep,LJ
i ); Bottom Left: The surface obtained under the full L-J potential (V LJ); Bot-

tom Right: The surface obtained under the full L-J potential and an electrostatic potential.
Again, it can be seen that the repulsive potential producess a “fat” surface; while an attrac-
tive potential or an electrostatic potential leads to a “slim” surface.
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Figure 4.3: The projection of electrostatic surface potentials of protein 451c onto different
surfaces obtained under various solvent-solute interactions. Top Left: Attractive surface;
Top Right: The MMS; Bottom Left: Repulsive surface; Bottom Right: Polar surface. It is
noted that the repulsive surface is a “fat” surface comparing to the MMS; while an attractive
surface or a polar surface is a “slim” surface.

in the four atoms changes dramatically when varying non-bonding potentials. This would

imply that the size of pocket or cavity inside a protein can be dramatically changed under

different electrostatic potentials and/or solute-solute interaction potentials. Therefore, it

may result in a significant difference in physical properties of biological systems, which can

dramatically influence the selectivity and gating mechanism of ion channels.
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Table 4.2: Electrostatic solvation free energies (kcal/mol), surface areas (Å2) and volumes

(Å3) of protein 451c with different solvent-solute interactions.

Surface Energy Area Volume
MMS -724.3 3695.0 12881.9

Repulsive -635.2 3805.6 13458.3
Attractive -897.9 3904.9 11635.6

Polar -838.1 3702.9 12595.7

4.3.2.3 Surfaces and electrostatic potentials of a protein

Having illustrated the effects of various potentials to surface generations for simple artificial

systems, we now consider their impacts to the surface morphology and the solvation anal-

ysis of proteins. For this purpose, we choose a protein called heme-binding protein, Fe(II)

cytochrome C551 from the organism Pseudomonas aeruginosa (PDB ID: 451c). For the

structure, extra water molecules that are attached to proteins are excluded and hydrogen

atoms are added to obtain a full all-atom model. Partial charges at atomic sites and atomic

van der Waals radii in angstroms are taken from the CHARMM22 force field [146]. To show

the potential effects, each time we keep one and only one potential term in Eq. (4.47) to

produce a new surface which is used in our PB solver to calculate the electrostatic potential.

Starting with the MMS, the surface is called a repulsive surface when only a repulsive po-

tential term is added, an attractive surface when only an attractive interaction is added and

a polar surface if only the electrostatic potential effect is allowed. The needed parameters

for potential expressions are set in the same way as in the 17 compounds which is described

in Section 4.4.1.1. Surface electrostatic potentials are plotted on the corresponding surfaces

in Figure 4.3. Meanwhile, electrostatic solvation free energies, surface areas and volumes

are calculated and listed in Table 4.2. Potential effects similar to the surface generations of
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the diatom and four-atom systems are observed. Moreover, it is interesting to note that the

minimal molecular surface (MMS) has the smallest surface area among them so that it in-

deed minimizes the surface free energy. This is consistent with the mathematical proof that

the mean curvature flow equation leads to the minimal surface area. Yet, the MMS does not

possess the minimal volume. Instead, the attractive solvent-solute interaction leads to the

minimal volume. The repulsive solvent-solute interaction gives rise to the largest volume.

These results might appear to be counterintuitive. However, one has to keep in mind that

proteins are partially charged molecules. The electrostatic free energy plays a dominant role

in the solvent-solute interactions. There is an obvious correlation between the solute volume

and the electrostatic free energy: The larger the solute volume is, the smaller the electro-

static free energy is in absolute value. Therefore, the repulsive potential interaction leads to

the smallest electrostatic solvation free energy in absolute value, which is an indication of

the hydrophobic nature of the repulsive potential interaction. As expected, the attractive

solvent-solute interaction leads to the largest electrostatic solvation free energy, reflecting

the hydrophilic nature of the attractive solvent-solute interaction. It is believed that the

results in Table 4.2 are very helpful to the understanding of the sophistication of solvation.

4.3.3 Isosurface function value and minimal surfaces

The minimal molecular surface (MMS) proposed in our earlier work [20] was based entirely

on the differential geometry theory of surfaces. Although the minimal surface theory is

mathematically rigorous, the resulting surface might not be exactly the one with the minimal

surface area, when the evolution of the Laplace-Beltrami operator is carried out in the

Eulerian representation. This problem is due to the surface extraction process. There are
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Table 4.3: Surface areas (Å2) for different surface definitions

Area
PDB-ID No.of atoms OMS MMS
1ajj 519 2201.4 2046.7
1bbl 576 2657.6 2434.1
1bor 832 2946.9 2683.9
1bpi 898 3274.9 3017.4
1cbn 648 2401.4 2212.7
1fca 729 2728.7 2474.1
1frd 1478 4467.2 3994.2
1fxd 824 3037.3 2762.5
1hpt 858 3368.3 3013.8
1mbg 903 3163.2 2831.3
1neq 1187 4829.0 4295.5
1ptq 795 2959.4 2685.8
1r69 997 3124.8 2806.3
1sh1 702 2808.4 2515.4
1svr 1435 4796.4 4247.9
1uxc 809 2916.1 2630.6
1vii 596 2571.2 2269.3
2erl 573 2380.4 2162.9
2pde 667 2782.0 2527.9
451c 1216 4184.7 3688.5
1a2s 1272 4507.5 3968.7
1a63 2065 7184.8 6369.7
1a7m 2809 7939.4 6918.9

infinitely many ways to select an isosurface value. Our tests indicate that the MMS can be

obtained if we choose L =
S0
2 . Therefore, we set the isosurface function value to 500 in the

present solvation free energy calculations rather than a value very close to 1000 which was

used in our earlier paper [20]. The results in Table 4.2 were obtained in this manner. In this

subsection, we further illustrate that the MMS indeed gives rise to the smallest surface area

for a set of 23 proteins. Moreover, we also study the impact of the pressure to the surface

area for a couple of given proteins.
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We consider a set of 23 proteins in the present study. The detail of preparation and

treatment of protein data is described in Section 4.4.1.2. Two types of surfaces are generated

in the present work. The first type is the MMS constructed by the mean curvature flow [20].

The second type of surfaces is called optimized molecular surface (OMS) generated by using

the present differential geometry based solvation model. Results are listed in Table 4.3. As

expected, the surface areas from the MMS model are always smaller that those from the OMS

model. Essentially, the optimization of total free energy differs much from the minimization

of the surface free energy.

The possession of the minimal surface area in the MMS can be further demonstrated as

follows: we consider situations where only the constant pressure (p) is added into the mean

curvature flow equation to cause a perturbation of the MMS. For our purpose, two arbitrarily

chosen protein systems (PDB-IDs: 1ajj and 451c) from the set of 23 proteins are explored.

In our simulation, we set p=-0.4,-0.3,-0.2,-0.1,0,0.2,0.3,0.4 and 0.5. The minimal molecular

surface is obtained when p = 0. Figure 4.4 illustrates the difference of surface areas (Å2)

between various resulting surfaces generated under different p values and the MMS for these

two protein systems. It is clearly seen that a small perturbation around MMS leads to a

larger surface area comparing to that of the MMS. In other words, the MMS indeed has the

minimal surface area.

4.3.4 Convergence of surface area, volume and energy

In this section, we also illustrate numerically the convergence and decreasing pattern of total

solvation free energy during the time integration, which has been shown theoretically in the

process of the model derivation. To this end, a small compound named diethyl propanedioate
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has been chosen from a set of 17 compounds described in Section 4.4.1.1. The time history

of the total solvation free energies along with the evolution of solvent-solute boundary is

recorded. To illustrate the convergence pattern of the solvation free energy, we compute the

total solvation free energies in the intermediate states during the time evolution. The results

are shown in Figure 4.5. Here T denotes the time span and N = T
τ represents the number

of computational steps in the generalized geometric flow solver. In order to put surface area,

enclosed volume and total solvation energy together in one evolution picture, we illustrate

J(volume), which is a linear function of volume and shares the same pattern with volume,

rather than volume. It is found that the total solvation free energy decreases with respect to

the time evolution, which is consistent with our theoretical formulation. It is observed that

the solution of our model converges to a steady state in terms of volume (Å3), area (Å2)

and total solvation free energy (kcal/mol).

4.4 Application

In this section, we consider the application of the proposed differential geometry model to the

calculations of solvation free energies and salt effects on the protein-protein binding affinity.

Previously, we have developed an optimized smooth surface (OSS) model in Chapter 2[46]

via the Eulerian formulation of the differential geometry based solvation model. It has been

demonstrated that OSS model successfully reproduces not only the solvation free energy of

small molecules but also the electrostatic solvation free energies of proteins. Although the

present optimized molecular surface (OMS) model is derived by using the same framework

of free energy functional optimization, the solvent-solute interfaces are entirely different in

two models. It is important to verify whether their results are consistent with each other.
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For a comparison, we choose the same set of 17 compounds used in Chapter 2. Thus the

results from the OSS model are taken directly from the earlier work. In addition, we also

choose a subset of 23 proteins from 30 proteins studied in Chapter 2. The protein-protein

binding affinity is investigated by using two protein systems.

4.4.1 Free energy calculations

4.4.1.1 Solvation energies of 17 compounds

This test set of 17 small compounds was studied by Nicholls et al. [160] using a number of

approaches, including quantum mechanical methods, the PB theory etc. It is considered as

a challenging test set for computational methods because of the existence of polyfunctional

or interacting polar groups, which leads to strong solvent-solute interactions. The nonpolar

solvent-solute interaction potential in the present model provides a potentially efficient means

to deal with strong solvent-solute interactions.

In our calculations, we set the initial amplitude S0 = 1000 and isosurface function value

L =
S0
2 . Other parameters are set in the same way as that in our previous work. Again,

here γ (kcal/(molÅ2)) serves as a fitting parameter and will have different values for differ-

ent expressions of the nonpolar potential. Details are listed in Table 4.4. Typically, only

attractive solvent-solute interactions contribute to the dispersion effects in the third term of

Eq. (1.2). Here, we have three choices for the dispersion effect: V att,WCA, V att,6/12 and

V LJ. It turns out that the use of full L-J potential expression can offer the smallest root

mean square (RMS) error for the set of 17 compounds. Therefore, it will be chosen from

now on for the further study in this chapter except specified.

Structure and charge information of compounds are adopted from those in Nicholls’s
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Table 4.4: RMS error with different nonpolar potentials.

Potential V att,WCA V att,6/12 V LJ

γ 0.0077 0.0094 0.0074
RMS (kcal/mol) 1.77 1.83 1.75

paper [160] too, which can be obtained from the supplementary information of the paper.

The results of the present full L-J potential model are summarized in Table 4.5. It gives

a comparison between the predicted and experimental values of solvation free energies of

17 compounds. The RMS error of the present model is 1.75 kcal/mol. This RMS error is

competitive with the explicit solvent approach (1.71±0.05 kcal/mol) under the same charge

and structure parameters set [160]. Moreover, it is interesting to note that the RMS is

almost the same as the one obtained from our earlier optimized smooth surface (OSS) model

using similar γ value (i.e., 0.0065 kcal/(molÅ2) vs 0.0074 kcal/(molÅ2)). This consistency

can also be seen through Figure 4.6 which shows that the results from the OSS and the

present OMS are linearly correlated. The correlation coefficient is 0.999. It may reveal at

least two facts. First, in the framework of free energy optimization, the calculated results

using the Lagrangian representation and the Eulerian representation should be similar to

each other. Additionally, a satisfactory nonpolar term and the enforcement of the potential

driven geometric flow really play a critical role in the analysis of solvation free energies.

4.4.1.2 A set of 23 proteins

The set of 17 compounds has already shown the present approach’s ability to predict the

total solvation free energy of small compounds. Tests on proteins are needed to demonstrate

the capacity on the large system of interest. Encouraged by the success in the application to
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Figure 4.6: Correlation of solvation free energy between previous optimized smooth surface
(OSS) model and the present optimized molecular surface (OMS) model in the set of 17
compounds listed in Table 4.5.
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Table 4.5: Predicted and experimental total solvation free energies for 17 small compounds.

Compound Gnp ∆Gp ∆G Exptl Error
(kcal/mol)

glycerol triacetate 2.33 -12.36 -10.03 -8.84 -1.19
benzyl bromide 1.39 -4.87 -3.47 -2.38 -1.09
benzyl chloride 1.36 -5.06 -3.70 -1.93 -1.77

m-bis(trifluoromethyl)benzene 2.22 -3.30 -1.07 1.07 -2.14
N,N-dimethyl-p-methoxybenzamide 1.99 -9.22 -7.22 -11.01 3.79

N,N-4-trimethylbenzamide 1.91 -7.84 -5.93 -9.76 3.83
bis-2-chloroethyl ether 1.44 -4.16 -2.71 -4.23 1.52
1,1-diacetoxyethane 1.67 -8.21 -6.53 -4.97 -1.56
1,1-diethoxyethane 1.55 -4.63 -3.08 -3.28 0.20

1,4-dioxane 1.01 -5.64 -4.62 -5.05 0.43
diethyl propanedioate 1.87 -7.75 -5.88 -6.00 0.12
dimethoxymethane 1.02 -4.64 -3.62 -2.93 -0.69

ethylene glycol diacetate 1.62 -8.40 -6.78 -6.34 0.44
1,2-diethoxyethane 1.57 -4.40 -2.83 -3.54 0.71

diethyl sulfide 1.22 -2.40 -1.17 -1.43 0.26
phenyl formate 1.37 -7.82 -6.45 -4.08 -2.37

imidazole 0.80 -11.56 -10.76 -9.81 -0.95

small compounds, we further consider a set of realistic proteins and compare the results with

those from previous optimized smooth surface (OSS) model and MIBPB-III [93] with pre-

determined molecular surfaces (MSs), which is defined as the inner surface smoothly traced

by a probe sphere as it rolls over the atomic sphere [185, 57]. Twenty three proteins, a test

set used in previous studies [17, 46], are chosen for the present calculations. All structures

and partial charges are obtained in the same way as the 451c system which is described

before. Table 4.6 shows the results of the present model, and those of the OSS and the

MIBPB-III. Results from the OSS and the MIBPB-III have been proved to be very close to

each other and they are competitive to those from quantum mechanic approaches [46]. Like

in the set of 17 compounds, results from the OSS and the OMS also show quite consistency.

The correlation coefficient between them are 0.999. This can also be observed in the Figure
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Figure 4.7: Correlation of electrostatic solvation free energy between the present optimized
molecular surface (OMS) model, and previous models, such as the optimized smooth surface
(OSS), the MIBPB-III and the MMS for 23 proteins listed in Table 4.6.

4.7. Therefore, this observation further convinces us that in the framework of differential

geometry based free energy optimization, the OSS and the OMS can be alternative to each

other in the aspect of solvation analysis. Since both of them share similar energy functional

expressions and take into account the key feature of total energy optimization at equilibrium.

If we remove the external potential effects in the surface evolution which are derived from

the energy optimization, the present OMS model returns to our previous minimal molecular

surface (MMS) model and the calculated results of solvation energies deviate dramatically.

Table Figure 4.8 demonstrates the difference of electrostatic solvation free energy between

the OSS and MMS models, as well as the difference between the OSS and OMS models. This

once again indicates the importance of polar-nonpolar coupling and solute-solvent interaction

in implicit solvent modeling and solvation analysis.
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Table 4.6: Comparison of electrostatic solvation free energies of 23 proteins.

△Gp(kcal/mol)
PDB-ID No. of atoms MIBPB-III OSS OMS MMS
1ajj 519 -1137.2 -1178.5 -1122.3 -921.0
1bbl 576 -986.8 -965.9 -972.0 -792.3
1bor 832 -853.7 -853.7 -836.3 -665.9
1bpi 898 -1301.9 -1281.2 -1295.1 -1060.0
1cbn 648 -303.8 -304.8 -291.0 -181.0
1fca 729 -1200.1 -1200.6 -1184.1 -1040.0
1frd 1478 -2852.2 -2844.8 -2846.7 -2499.5
1fxd 824 -3299.8 -3291.9 -3306.1 -3087.1
1hpt 858 -811.6 -808.2 -815.6 -570.0
1mbg 903 -1346.1 -1328.2 -1346.9 -1148.7
1neq 1187 -1730.1 -1713.9 -1742.9 -1401.6
1ptq 795 -873.1 -866.2 -872.9 -660.2
1r69 997 -1089.5 -1072.7 -1082.7 -824.4
1sh1 702 -753.3 -771.8 -753.9 -532.1
1svr 1435 -1711.2 -1704.6 -1716.7 -1321.3
1uxc 809 -1138.7 -1125.7 -1147.9 -919.3
1vii 596 -901.5 -892.0 -907.0 -724.2
2erl 573 -948.8 -935.8 -944.4 -812.2
2pde 667 -820.9 -843.0 -812.3 -591.3
451c 1216 -1024.6 -1020.6 -1016.8 -718.2
1a2s 1272 -1913.5 -1900.3 -1902.8 -1633.0
1a63 2065 -2373.5 -2380.5 -2382.6 -1851.0
1a7m 2809 -2155.5 -2179.8 -2152.6 -1699.9

4.4.2 Salt effect on protein-protein binding energies

Finally, we consider the application of our differential geometry based solvation model to

the calculations of salt effect on the protein-protein binding. This is the first time that

our new model is applied to the study of the salt effect. The ion concentration plays an

important role in the stability and even reactivity of biomolecules. This application can be

further extended to the binding affinity analysis of ligands, peptide, proteins, nucleic acids,

and membrane proteins. To this end, the potential terms caused by mobile ions need to be
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Figure 4.8: Difference of electrostatic solvation free energies between the OMS model and
previous OSS and MMS models for 23 proteins listed in Table 4.6.

restored in our calculation.

The full Poisson-Boltzmann (4.31) is coupled to the geometric flow Eq. (4.38) to obtain

the solvation free energy for proteins in the salted solvent. The solution procedure for the

nonlinear PB equation was described in our work [40]. The coupling of the nonlinear PB

equation and potential driven geometric flow equation is discussed in Section 4.2.2. For

low salt concentration and weak electrostatic potential, the linearized Poisson-Boltzmann

equation discussed in Section 4.1.3 can be applied.

For the binding free energy, only the electrostatic component and particularly, its salt

dependence are studied. The total binding free energy which includes many other terms that

do not depend on the salt concentration, does not need to be calculated. Then the electro-

static component of the binding energy (∆Gp) is found as the difference of the electrostatic

163



Figure 4.9: Protein-protein complexes. Left: Protein complex 1emv; Right: Protein complex
1beb.

free energies of the complex and those of the free molecules

∆Gp(I) = GABp (I)−GAp (I)−GBp (I), (4.48)

where GABp (I), GAp (I) and GBp (I) are the electrostatic free energies of the complex AB,

and the monomers A and B, respectively, at a given ionic strength, I. The salt dependence

of the binding free energy ∆∆Gp(I) is thus the difference in the electrostatic components

of the binding energies, Eq. (4.48), attained at some salt concentration I and at zero salt

concentration

∆∆Gp(I) = ∆Gp(I)−∆Gp(I = 0) (4.49)

= {GABp (I)−GABp (I = 0)}

−{GAp (I)−GAp (I = 0)}

−{GBp (I)−GBp (I = 0)},
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Figure 4.10: The salt dependence of the binding affinities of two protein complexes. Left:
Protein lemv; Right: Protein 1beb. Here OMS data are computed by our optimized molec-
ular surface (OMS) model. NLPB data are taken from Bertonati et al’s paper [26].

where each energy term at different ionic strengths can be calculated via Eq. (2.23). In

general, the nonlinear PB equation should be used for the evaluation of salt effects on the

protein-protein binding. However, as shown by Bertonati et al. [26], both the linearized

PB (LPB) and the nonlinear PB (NLPB) can be applied to calculate salt effects when the

ionic strength of the salt is weak and the net charges of the binding complex and individual

molecules are relatively small. The results obtained with the LPB were very close to those

obtained with the NLPB. This encourages us to use LPB in this section to reduce the

computational complexity.

To test the utility of our new model in the calculation of salt effects on the protein-protein

binding, a hetro-dimeric and a homo-dimeric complex are selected for our study. These cases

were considered by Bertonati et al [26]. In the experiment, NaCl is used for the salt with a pH

value of 3. As shown in Figure 4.9, each protein complex encompasses two separated pieces.

The structures and charges of them are attained in the same way as earlier 23 proteins,

so are the needed parameters in the potential driven geometric flow equation. The salt
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Table 4.7: Comparison of binding affinities of two proteins complexes from current simula-
tions and those from Bertonati et al’s paper.

PDB Complex Surface Charge of the Bertonati [26] OMS

code charge Area (Å2) free monomers LPB NLPB

1emv -3 1465 B=+5; A=-8 1.29 1.31 2.40

1beb +26 1167 A=B=+13 -2.48 -1.53 -2.02

dependence of the binding free energy from NLPB simulation by Bertonati et al. as well as

our OMS model is shown in Figure 4.10, where the binding free energy ∆∆Gp(I) is plotted

as a function of the logarithm of the salt strength I. Additionally, binding affinities are

summarized in Table 4.7, in which the first four columns describe the properties of proteins

and the last two columns are the binding affinities extracted from the slope of the lines in

Figure 4.10. Note that the calculation is performed by assuming that all Arg, Asp, Glu and

Lys residues are ionized in both free and bound states. It is seen that our model clearly

reproduces the experimental observation, i.e., for the hetero-dimeric complex, the binding

free energies increase with the increasing ionic strength; while for the homo-diemric complex,

the affinity is negative. Moreover, as shown in the table the quantities of the binding affinity

obtained from simulations with the present OMS model are in good agreement with those

obtained by LPB and NLPB methods in Bertonati et al’s paper in which NaCl is used for

salt with a pH value of 3. Note that in the case of Lactoglobulin dimer, the results obtained

with all acidic groups neutral are shown.

Note that proteins considered in the present work have fixed conformations before and

after their interaction. Ions are treated as structureless. Therefore, the salt effect studied in

the present work does not include the effect of ions on biomolecule conformation and complex
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formation due to different ion species [80, 225]. It takes more sophisticated models to study

the impact of the different ion species to molecular reaction rates and conformational change.

Such an aspect is beyond the scope of the present work.

4.5 Chapter conclusions

The objective of the present work is to explore an alternative formulation, the Lagrangian

formulation of differential geometry based multiscale solvation models. The Lagrangian rep-

resentation of biomolecular surfaces is suitable for the visualization, surface electrostatic

potential map and visual perception of biomolecules. It is can be directly employed in the

implicit solvent models and existing software packages. Finally, the Lagrangian represen-

tation has an advantage that it avoids artificially enlarging van der Waals radii as often

required by smooth surface models [235].

In the present approach, the discrete and continuum domains are separated by a sharp

solvent-solute interface, which naturally constitutes a smooth and differentiable manifold

enclosing the biomolecule of interest. The time evolution of the manifold is governed by the

potential driven geometric flow, a mathematical framework introduced in our previous work

[242, 243, 17]. The specific potential driven geometric flow equation used in the present

work is derived via the first variation of the total free energy functional of solvation in the

Lagrangian representation. Such a derivation differs much from our earlier derivation using

the Eulerian representation and geometric measure theory [243].

Although there are some similarities in expressions of coupled PB equation and geometric

flow equation between our previous optimized surface (OSS) model in Chapter 2 and the

present optimized molecular surface (OMS) model, there are important differences to be
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spelled out. First of all, the solute-solvent interface definitions in two models are fundamen-

tally different. In the OSS model, the solute and solvent region is described by a continuous

characteristic function denoted by 0 ≤ S ≤ 1. In contrast, in the present OMS model, solute

and solvent regions are strictly separated by a 2D differentiable manifold. The function S in

Eq. (4.38) only serves as a hypersurface function for the geometric surface evolution. This

difference has a dramatic computational implication. The generalized Poisson-Boltzmann

equation with an OSS is much easier to solve than the OMS is. However, a formal com-

parison of this computational aspect is beyond the scope of the present work. Moreover, in

the potential driven geometric flow equation (4.38), ∇φ+ 6= ∇φ− because of the disconti-

nuity of ∇φ inside and outside the solute-solvent interface. However, ∇φ+ = ∇φ− in the

overlap region of the OSS model due to continuous dielectric definition. Further, dielectric

constant ǫ(x) in the PB equation is defined in a totally different way: ǫ(S) is a function of

S in the OSS model, and there exists a smooth transition region from the low dielectric to

the high dielectric. In contrast, ǫ(x) is piecewise constant in the present model. In other

words, here ǫ = ǫs in solvent and ǫ = ǫm in solute, respectively. Further, a generalized

Poisson-Boltzmann equation was derived in the OSS model. Whereas, we formally end up

with the classical Poisson-Boltzmann equation in the present theory, although it is coupled

to the potential driven geometric flow equation. Yet, the present OMS brings up a number

of mathematical issues, including the singularity formation on the manifold, and Eulerian

embedding of Lagrangian dynamics. Finally, there are many computational problems associ-

ated with the Lagrangian formulation of our differential geometry based solvation model too.

For instant, the current discontinuous definition of ǫ leads to dramatic accuracy reduction

in the standard numerical schemes for the elliptic equations with discontinuous coefficients
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and singular sources [254, 253, 258, 261, 260]. To overcome this difficulty, we have incor-

porated the highly accurate MIB scheme into our PB solver [259, 252, 93]. In addition,

many other computational issues, such as hybrid Lagrangian and Eulerian dynamics, level

set methods, isosurface extraction, surface integration, and Dirichlet to Neumann mapping

[93], are relevant in the present Lagrangian representation.
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Chapter 5

Thesis achievements and future work

5.1 Contributions

As described in Chapter 1, solvation is an elementary process in nature that has a great

impact on many sophisticated physical, chemical, and biological processes. Therefore, the

importance of the understanding of solvation cannot be overemphasized. The major contri-

bution of this thesis is in the construction of a series of novel differential geometry based

multiscale solvation models for chemical and biomolecular systems. We have extended our

earlier variational formulation of the surface free energy to the analysis of total solvation free

energy via the differential geometric theory of surfaces. As a key ingredient of the present

framework, the total energy functional encompasses coupled polar and non-polar contribu-

tions with a self-consistent interface definition. The true physical boundary of a biomolecule

in a solvent, as a physical concept, is determined by the optimization of the total free energy

for the solvation equilibrium. As such, a natural description of the solvent-solute interface is

provided by the differential geometric theory of surfaces and implemented by the generalized
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Laplace -Beltrami equation, rather than simply ad hoc divisions of the solute and solvent

regions. Moreover, rigorous mathematical derivations have been demonstrated to obtain the

coupled PDE system in the spirit of the variational principle. Additionally, efficient and

robust computational algorithms have been designed for the 3D simulation. Finally, solva-

tion analysis of both small compounds and proteins are carried out to further display the

accuracy, stability, efficiency and robustness of the proposed new models and the associated

numerical approaches. Comparison is made with both experimental and theoretical results

in the literature.

Biologically, this thesis provides a self-consistent treatment of the dielectric boundary in

all energy terms in the implicit solvent model based on the Poisson-Boltzmann theory.the

non-polar free energy terms. It simultaneously optimizes the total solvation free energy. This

is considered as a novel and important advance in the continuum treatment of molecular free

energies. Moreover, we propose a new theory that allows one to predict the solvation free

energy of a biomolecule in a computationally inexpensive way. The relative simplicity of

the theory could make this a useful daily tool for researcher to describe general trends in

solvation behavior of different biomolecular systems. Furthermore, our method potentially

allows one to investigate the ionic effects on the thermodynamics of biomolecules.

In our Eulerian formulation, the surface, separating the low dielectric interior from the

high dielectric solvent, is for the first time treated through a 3-D function S. S function takes

a value of 1 or 0 in the solute and solvent regions, respectively, and smoothly varies between

these values in the interface region. Then the van der Waals interaction, mechanical work

and the surface free energy terms are introduced as functions of S. The total energy can then

be optimized by simultaneous solution of the generalized Poisson-Boltzmann (GPBE) equa-
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tion and the generalized geometric flow equation (GGFE) through the first order variation

with respect to the potential and S function. As such, realistic solvent-solute boundaries are

constructed. By solving the coupled GPBE and the GGFE, we obtain the electrostatic po-

tential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby

improve the accuracy and stability of implicit solvation calculations. We also design efficient

second order numerical schemes for the solution of the GPBE and GGFE. The matrix, which

results from the discretization of the GPBE, is accelerated with appropriate preconditioners.

An alternative direct implicit (ADI) scheme is designed to improve the stability of solving

the GGFE. Two iterative approaches are constructed to solve the coupled system of nonlin-

ear partial differential equations. Extensive numerical experiments are designed to validate

the present theoretical model, to test computational methods, and to optimize numerical

algorithms.

Generally, partial charges from the existing force fields are parameterized for certain class

of molecules and may not be accurate for other molecules. Additionally, the fixed charge pat-

tern does not describe the charge rearrangement during the solvation process. This drawback

limits the accuracy and utility of our earlier solvation models. The quantum formulation

work in this thesis addresses such a limitation by the incorporation of quantum electron

density in our earlier models. To this end, we initially construct a new multiscale total free

energy functional, which includes the electron kinetic energies and potential energies. By

means of the reaction field potential, we can relate the full Kohn-Sham Hamiltonian to the

standard Hamiltonian, so that existing computational software packages can be utilized. We

have developed a protocol to make use of the SIESTA (Spanish initiative for the electronic

structure of thousands of atoms), an efficient linear scaling Density Functional Theory pack-
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age, to obtain the solution of the electron density. Appropriate iteration procedures are

developed to dynamically couple three governing equations and ensure the convergence of

the solution.

In the Lagrangian formulation of our differential geometry based solvation model, the

solvent-solute interface is modeled as a 2D manifold embedded into a 3D space. It is

suitable for visualization, surface electrostatic potential mapping and visual perception of

biomolecules. The Lagrangian formulation is can be directly employed in the implicit sol-

vent model based existing software packages. Moreover, the Lagrangian representation has

an advantage in that it avoids artificially enlarging van der Waals radii as is often required

by smooth surface models. In this thesis, we also analyze the connections, similarities and

differences between the Eulerian and Lagrangian formulations of the solvation models. Such

analysis is important to the understanding of our differential geometry based solvation mod-

els. Finally, besides the solvation free energies, our Lagrangian formulation model is utilized

to evaluate the protein-protein binding affinities.

Most of the materials of this thesis are adopted from the following publications:

• Zhan Chen and Guo-wei Wei, “Differential geometry based solvation model III: Quan-

tum formulation.”, submitted to Journal of chemical physics

• Zhan Chen, Nathan A. Baker and Guo-Wei Wei, “Differential geometry based sol-

vation model II: Lagrangian formulation”, Journal of Mathematical Biology, in press,

2011.

• Zhan Chen, Nathan A. Baker and Guo-Wei Wei, “Differential geometry based solva-

tion model I: Eulerian formulation”, Journal of Computational Physics, 229, vol. 22,

pp.8231-8258, 2010
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The following publications are also closely related to the present thesis:

• Duan Chen, Zhan Chen and G.W. Wei, ”Quantum dynamics in continuum for proton

channel transport II: Variational interface”. in press, 2011

• Guo-Wei Wei and Zhan Chen , “Multiscale models for nano-bio systems”, Proceedings

of CMBE: ”2nd international conference on computational and mathematical biomed-

ical engineering, 19-22,2011

• Duan Chen, Zhan Chen, Changjun Chen, Weihua Geng and Guo-Wei Wei, “MIBPB:

A software package for electrostatic analysis”, Journal of Computational Chemistry,

32 vol.4,pp.756-770, 2011 , 2010

• P. W. Bates, Zhan Chen, Y.H. Sun, G.W. Wei and Shan Zhao, ”Geometric and

potential driving formation and evolution of biomolecular surfaces”, Journal of Math-

ematical Biology, 59, vol.2, pp.193-231, 2009

5.2 Future work

In our current research, implicit solvent models assume local and linear solvent responses.

Further, we concentrate on the solvation calculations in the differential geometry based mod-

els. As far as our future work is concerned, models, numerical simulations and mathematical

proofs can be improved and extended as follows:

1. A simple homogeneous solvent density is employed in the present work. In future work

we will consider the implementation of the solvent variation. In particular, such a variation

can be computed by the integral equation approaches of solutions. A combination of the

integral equation theories with the present differential geometry based models will lead to
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better predictions. This is because the non-uniform density fluctuations of solvent around

the solute-solvent interface can be taken into account.

2. Another important extension of the present work is the implementation of the im-

plicit solvation model based molecular dynamics (MD). Currently, the Poisson-Boltzmann

(PB) based molecular dynamics algorithms have not been commonly used in the practical

simulation of macromolecules. Major hurdles to this development include limits in accuracy,

stability, speed and reliability. The multiscale models proposed in this thesis have given rise

to a new promise for the development of the PB based molecular dynamics. The accuracy and

stability problems in the previous PB based MD methods will not appear in our new model.

This is because they are free of interface singularity. Moreover, in all differential geometry

base models, the force expressions differ much from those in the classic Poisson-Boltzmann

based MD algorithms.

3. The resulting nonlinear PDE systems in our models pose challenges to mathematicians.

Numerically, we have shown the existence and local uniqueness of the solutions, which lead

to the optimization of the solvation free energy. Moreover, the convergence of the iterative

algorithms has been displayed numerically. However, rigorous mathematical proofs have not

been studied yet. In future work, upon the promise of numerical performance, we can study

these properties using rigorous mathematical tools.

4. The understanding of solvation is an elementary prerequisite for the quantitative

description and analysis of a variety of biological, physical and chemical processes. At an

equilibrium state, many models are expected to return to the solvation model. Therefore, our

differential geometry based solvation models can provide a classic framework for testing the

validity of other proposed implicit solvent based biological models, such as ion channel trans-
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port models, proton transport models, protein-protein binding simulations, etc. Moreover,

it can be incorporated into other related models for accurate simulations in the future.
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Appendix A

Solution of the generalized

Laplace-Beltrami equation and the

ADI scheme

The solution of the generalized Laplace-Beltrami equations (also called the geometric flow

equation) Eq.(2.13) or Eq.(3.17) is studied here. First of all, to solve the geometry flow equa-

tion, the expression of solvent-solute interaction potential Uss must be prescribed explicitly.

Although Uss includes many unspecified interactions, we consider the following form

Uss(r) =
∑

i

Ui(r), (A.1)
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where Ui(r) is the potential due to the ith atom in the solute molecule. One possible choice

of Ui(r) is the following Lennard-Jones (L-J) 6-12 pair potential

ULJi (r) = εi

[

(

σi + σs
|r− ri|

)12
− 2

(

σi + σs
|r− ri|

)6
]

(A.2)

where εi is the well-depth parameter, and σi and σs are solute atomic and solvent radii,

respectively. Here r is the point of interest and ri is a position vector of an atom in the

solute molecule. The L-J potential can be divided into attractive term Uatt and repulsive

term Urep in different ways. It can be a “6-12” decomposition as follows:

U
att,6/12
i (r) = −2εi

(

σi + σs
|r− ri|

)6
(A.3)

U
rep,6/12
i (r) = εi

(

σi + σs
|r− ri|

)12
.

Alternatively, it can also be a “WCA” decomposition based on the original WCA model

[130]

U
att,WCA
i (r) =











−εi(r) 0 < |r− ri| < σi + σs

ULJi (r) |r− ri| ≥ σi + σs,

(A.4)

U
rep,WCA
i (r) =











ULJi (r) + εi(r) 0 < |r− ri| < σi + σs

0 |r− ri| ≥ σi + σs.

(A.5)

As indicated in Chapter 2, the WCA attractive potential provides good results for solvation.

Therefore, all the calculations in the present study are carried out by using the WCA de-

composition. Note that due to the fast decay of the potential, only those solute atoms which
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locate near the solvent-solute boundary are needed to include in the evaluation of Uss.

Additionally, a necessary step in solving our generalized Laplace-Beltrami equations is to

determine all the physical parameters involved. Because of the choice of the polar and nonpo-

lar separation and the continuum representation of solvent in our model, not all parameters

from the literature are suitable. In particular, surface tension γ serves as a fitting parameter

in our model due to the ambiguity of its specific value in atomic-scale models [130, 160, 235].

Therefore, we rewrite the generalized potential driven geometric flow equation as

∂S

∂t
= |∇S|

[

∇ ·
(

γ
∇S
|∇S|

)

+ V

]

(A.6)

= |∇S|γ
[

∇ ·
( ∇S
|∇S|

)

+ Vγ

]

where Vγ = V
γ . Therefore, in addition to the Lennard Jones parameters ε̄i, σs and σi, other

parameters including p/γ, ρs/γ, ǫs/γ, and ǫm/γ need to be pre-determined in the solution

of the generalized potential driven geometry flow equation.

The discretization scheme used here for the solution of the generalized geometry flow

equation (A.6) is similar to what we designed previously [20, 17]. It can be rewritten in the

form

∂S

∂t′ =
(S2x + S2y )Szz + (S2x + S2z )Syy + (S2y + S2z )Sxx

S2x + S2y + S2z
(A.7)

−2SxSySxy + 2SxSzSxz + 2SzSySyz

S2x + S2y + S2z
+
√

S2x + S2y + S2zVγ,

where t′ = tγ. To obtain the discretized form, we introduce the following notations. We

consider a discrete time tn := nτ where n is a non-negative integer and τ is the time stepping
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size. We denote Snijk to be the discretized form of S(xi, yj, zk, tn). An explicit scheme of

the generalized geometry flow equation is given by

Sn+1
ijk

− Snijk := [vxδ
2
x + vyδ

2
y + vzδ

2
z ]S

n
ijk + τfnijk, (A.8)

where

fnijk =

{

−2
SxSySxy + SxSzSxz + SzSySyz

S2x + S2y + S2z
+
√

S2x + S2y + S2zV

}n

ijk

vx = τ

{

(S2y + S2z )

S2x + S2y + S2z

}n

ijk

,

vy = τ

{

(S2x + S2z )

S2x + S2y + S2z

}n

ijk

,

vz = τ

{

(S2x + S2y )

S2x + S2y + S2z

}n

ijk

,

where

δ2xS
n
ijk = (Sn(i−1)jk − 2Snijk + Sn(i+1)jk)/h

2

δ2yS
n
ijk = (Sn

i(j−1)k
− 2Snijk + Sn

i(j+1)k
)/h2

δ2zS
n
ijk = (Sn

ij(k−1)
− 2Snijk + Sn

ij(k+1)
)/h2

{Sx}nijk = (Sn
(i+1)jk

− Sn
(i−1)jk

)/2h

{Sy}nijk = (Sni(j+1)k − Sni(j−1)k)/2h

{Sz}nijk = (Sn
ij(k+1)

− Sn
ij(k−1)

)/2h
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{Sxy}nijk = (Sn(i+1)(j+1)k + Sn(i−1)(j−1)k − Sn(i+1)(j−1)k − Sn(i−1)(j+1)k)/4h
2

{Sxz}Snijk = (Sn
(i+1)j(k+1)

+ Sn
(i−1)j(k−1)

− Sn
(i+1)j(k−1)

− Sn
(i−1)j(k+1)

)/4h2

and

{Syz}nijk = (Sn
i(j+1)(k+1)

+ Sn
i(j−1)(k−1)

− Sn
i(j+1)(k−1)

− Sn
i(j−1)(k+1)

)/4h2.

Equation (A.6) is solved with the Dirichlet boundary condition S(r, t) = 0, ∀r ∈ ∂Ω.

For the initial value of S, we consider

S(x, y, z, 0) =











1, (x, y, z) ∈ Dsa

0, otherwise

(A.9)

where we define the domain enclosed by the solvent accessible surface to be Dsa =
⋃Na
i=1{r :

|r−Ri| < ri+ rp}, with ri and rp being atomic van der Waals radius and the probe radius,

respectively. Here, Ri is the atomic center position vector of the ith solute atom and Na

denotes the total number of atoms for a given macromolecule. To protect the van der Waals

surface and make the computation more efficient, we only update the values of S(x, y, z, t)

at the points in between the van der Waals surface and the solvent accessible surface; i.e.,

(x, y, z) ∈ Dsa/DvdW , where DvdW is the domain enclosed by van der Waals surface

DvdW =
⋃Na
i=1{r : |r−Ri| < ri}. Numerically, to avoid possible zeros in the denominator

of Eq. (A.6) we add a very small number, such as 10−7, into the denominator expression,

which does not affect the result at all.

For simplicity, the widely used explicit Euler scheme can be applied to the solution of

the generalized Laplace-Beltrami equation for the time integration. The Euler scheme can
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be combined with the second order central difference scheme for the spatial discretization

[20]. Nevertheless, this algorithm is not very efficient because a very small time stepping

size is required to guarantee the stability of the time integration. Therefore, an alternative

direction implicit (ADI) scheme is desirable. The ADI scheme is second order in both spatial

and time discretizations. It builds in a fast O(N) Thomas algorithm to solve the tridiagonal

linear system and thus is very efficient. The ADI algorithm is unconditionally stable and

allows a much larger time stepping size than does the explicit Euler scheme. An splitting

algorithm based ADI scheme reported in our earlier work [17] was the fastest scheme among

the tested ones under typical accuracy requirement for the mean curvature flow. Considering

the similarity of the current differential operator and the mean curvature flow, we adopt the

ADI scheme to speed up our generalized geometric flow solver. To this end, we modify Eq.

(A.8) as

(

1− vx
2
δ2x − vy

2
δ2y − vz

2
δ2z

)

Sn+1
ijk

=
(

1 +
vx
2
δ2x +

vy

2
δ2y +

vz
2
δ2z

)

Snijk + τf(Snijk) (A.10)

It follows that

(

1− Ax
2

)(

1− Ay

2

)(

1− Az
2

)

Sn+1
ijk

(A.11)

=

[(

1 +
Ax
2

)(

1 +
Ay

2

)(

1 +
Az
2

)

− AxAyAz

4

]

Snijk + τf(Snijk)

where

Ax = vxδ
2
x,Ay = vyδ

2
y, Az = vzδ

2
z (A.12)

Here vx, vy, vz, δ
2
x, δ

2
y and δ2z are defined in Section 2.2.1. The following multi-step imple-

183



mentation can be carried out.

Step 1:

(

1− Ax
2

)

S
n+1

3
ijk

=

(

1 +
Ax
2

+ Ay + Az

)

Snijk + τf(Snijk) (A.13)

Step 2:

(

1− Ay

2

)

S
n+2

3
ijk

= S
n+1

3
ijk

− Ay

2
Snijk (A.14)

Step 3:

(

1− Az
2

)

Sn+1
ijk

= S
n+2

3
ijk

− Az
2
Snijk. (A.15)
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Appendix B

PB equation in different forms

Assuming that there are only two mobile ion spices and all ions are univalent, we can treat

them as positive and negative ions with charge +ec and −ec, where ec is the electron charge.

Then the nonlinear Poisson-Boltzmann (NLPB) equation (1.1) becomes [93, 108]

−∇ · (ǫ(r)∇φ) + κ2(r)

(

kBT

ec

)

sinh

(

ecφ

kBT

)

= λmρm, (B.1)

where κ is the modified Debye-Hückel screening function describing ion strength and is

determined by

κ2 =

(

2λsNae
2
c

1000kBT
Is

)

, (B.2)

where Na the Avogadro’s number, and Is the ion strength in the unit of mole. Numerically,

when T = 298K, the value of κ2 can be obtained via κ2 = 0.675365 Å−2Is. Note that

Debye-Hückel parameter κ can also be expressed as [97]

κ2 =
λs
kBT

Nc
∑

i=1

n0i Q
2
i . (B.3)
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Equations (B.2) and (B.3) are equivalent to each other via the following formula [108]

Is =
1

2e2c

Nc
∑

i=1

n0i Q
2
i =

1000M

Na
, (B.4)

whereM is the bulk concentration of ions in the unit of mole per cubic centimeter
(

mol
cm3

)

for

both positive and negative ionic charges. Equation (B.1) is subject to the far-field bound-

ary condition φ(∞) = 0. However, the Dirichlet boundary condition is used in practical

computations

φ(r) =
∑

i

φi =

Nm
∑

i=1

qi
ǫs|r− ri|

e−κ|r−ri|/ǫs ∀r ∈ ∂Ω, (B.5)

where φi is the exact solution of a single ion in a homogeneous media. The linear superposi-

tion in Eq. (B.5) is very accurate if the macromolecule domain Ωm is sufficiently away from

the boundary ∂Ω.

Let define a dimensionless potential u through u = ecφ/kBT , one yields another formu-

lation of the nonlinear PB equation in terms of u [40]

−∇ · (ǫ(r)∇u) + κ2(r) sinh(u) =
ec
kBT

λmρm. (B.6)

If the potential is very weak, i.e., u≪ 1, one can numerically solve the following linearized

PB (LPB) equation

−∇ · (ǫ(r)∇u) + κ2(r)u(r) =
ec
kBT

λmρm. (B.7)

Note that in the Poisson-Boltzmann theory, there are two unit conventions in the liter-

ature that differs by a factor of 4π. Specifically, the convention used by Sharp and Honig

[200], and in some of our earlier work [93, 40] has a factor of 4π in the Poisson-Boltzmann
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equation. Whereas, the convention used by Gilson et al. [97] and in our recent work [243]

as well as the present derivation, the 4π factor does not appear. Therefore, care is needed

in the comparison of the electrostatic potentials computed by these two conventions.
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Appendix C

Differential geometry theory

preliminary

The solvent-solute boundary can be considered as a 2-dimensional (2D) differentiable man-

ifold embedded in a 3D Euclidean space or a hypersurface in a Riemannian manifold. For

example, the subsequent free energy optimization can be carried out on the 2D mani-

fold. Consider a C2 immersion f : U → R
n+1, where U ⊂ R

n is an open set and U

is compact[248]. Here f(u) = (f1(u), f2(u), · · · , fn+1(u)) is a hypersurface element (or

a position vector), and u = (u1, u2, · · · , un) ∈ U . Tangent vectors (or directional vec-

tors) of f are Xi = ∂f
∂ui

, i = 1, 2 · · ·n. The Jacobi matrix of the mapping f is given by

Df = (X1, X2, · · · , Xn). The first fundamental form is a symmetric, positive definite met-

ric tensor of f , given by I(Xi,Xj) := (gij) = (Df)T · (Df). Its matrix elements can

also be expressed as gij =
〈

Xi,Xj

〉

, where 〈, 〉 is the Euclidean inner product in R
n,

i, j = 1, 2, · · · , n.
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Let N(u) be the unit normal vector given by the Gauss map N : U → Rn+1,

N(u1, u2, · · · , un) := X1 ×X2 · · · ×Xn/‖X1 ×X2 · · · ×Xn‖ ∈ ⊥uf , (C.1)

where “×′′ denotes the cross product. Here ⊥uf is the normal space of f at point X = f(u),

where the position vector X differs much from tangent vectors Xi. The normal vector N is

perpendicular to the tangent hyperplane Tuf at X. Note that Tuf ⊕ ⊥uf = Tf(u)R
n, the

tangent space at X. By means of the normal vector N and tangent vector Xi, the second

fundamental form is given by

II(Xi,Xj) = (hij)i,j=1,2,···n =

(〈

−∂N
∂ui

,Xj

〉)

ij
. (C.2)

The mean curvature can be calculated from H = 1
nhijg

ji, where we use the Einstein sum-

mation convention, and (gij) = (gij)
−1.

For n = 2, which fits into our purpose, let us choose f(u) = (u1,u2, χ), where χ(u1, u2)

is a function of interest. We have the first fundamental form:

(gij) =







1 + χ21 χ1χ2

χ1χ2 1 + χ22






, (C.3)

where χi =
∂χ
∂ui

, i = 1, 2. The inverse matrix of (gij) is given by

(gij) =
1

g







1 + χ22 −χ1χ2

−χ1χ2 1 + χ21






, (C.4)
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where g = Det(gij) = 1 + χ21 + χ22 is the Gram determinant. The normal vector can be

computed from Eq. (C.1)

N =
(−χ1,−χ2, 1)√

g
, (C.5)

The second fundamental form is given by (hij) =

(

1√
g
χuiuj

)

, i.e., the Hessian matrix of

χ.

The explicit form for the mean curvature operator can be written as

H =
1

2g
(h11g22 + h22g11 − 2h12g12) (C.6)

=
1

2

[

∂

∂u1

(

χ1√
g

)

+
∂

∂u2

(

χ2√
g

)]

. (C.7)

In Section 4.1.3, we show that the mean curvature operator can be expressed in a (3D)

formulation.
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