It»! ‘. Es" DESIGN or A PILOT-SCALE CONCURRENT FLOW GRAIN DRYER Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY DENNIS PETER KUNE ’ 1977 "I! I'I'II‘II'I‘LIWI'IIIIII'” MIMI} WWW ‘9. I . ’n . ~- , . ‘. P¥ 1k ' . ‘.' ,i'-'a‘ e \_.\k \U S [I ... I a, n:- .-/1i"-. ~-J;‘;L‘ a. ‘ 1 Luna... . n.'.-..Y;;- -3.» ABSTRACT DESIGN OF A PILOT-SCALE CONCURRENT FLOW GRAIN DRYER BY Dennis Peter Kline A continuous flow pilot-scale grain dryer with concurrent drying and counter-flow cooling was designed, constructed and tested. The dryer constitutes an evolu- tion of previously designed models. Mechanical air locks and spreading devices have been eliminated. A positive grain metering mechanism has been installed to obtain con- sistent grain throughput rates. The main body of the thesis details the construc- tion and operation of the pilot-scale dryer used. Corn was used to test the dryer initially. After modification of the dryer, soybeans were dried. Approved EW/ jflgé /éd/M2 Major Professor I Approved B. «M Department Chairman [6267 DESIGN OF A PILOTHSCALE CONCURRENT FLOW GRAIN DRYER BY Dennis Peter Kline A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Agricultural Engineering 1977 g‘i .. _ ACKNOWLEDGMENTS It has been the author's privilege to work under the guidance of Dr. Fred W. Bakker-Arkema, whose friend- ship and advice are appreciated. I would like to thank Dr. Lynn S. Robertson and Lloyd E. Lerew for serving on my guidance committee and for the knowledge I gained from them while completing my program. I would also like to thank the Andersons of Maumee Ohio for their financial support during the pro- gram. I offer my gratitude to my parents, Mr. and Mrs. George D. Kline, for the help they provided in the prepa- ration of the final copy of the thesis and for the moral support they offered to me throughout the program. The pilot-scaled dryer was designed, constructed, and tested jointly with my good friend, Stephen J. Kalchik. I would especially like to thank Stephen and my many friends at Michigan State University for their help and encouragement while completing my program. ii TABLE OF CONTENTS LIST OF TABLES . . . . . . . . . . . LIST OF FIGURES . . . . . . . . . . LIST OF SYMBOLS . . . . . . . . . . LIST OF TERMS . . . . . . . . . . . INTRODUCTION . . . . . . . . . . . Background on Concurrent Flow Dryers . Background on Concurrent Flow Laboratory Dryers O O O O O O O O O 0 Objectives . . . . . . . . . . DESCRIPTION CONSTRUCTION AND TESTING OF DRYING APPARATUS O O O O O O O O O O C C Concurrent Section . . . . . . Grain Level Maintenance and Air Lock Components . . . . . . . . . Counter-Flow Section . . . . . . Instrumentation . . . . . . . . Operation . . . . . . . . . Testing of Dryer Using Corn . . . . SUMMARY . . . . . . . . . . . . . CONCLUSIONS . . . . . . . . . . . . SUGGESTIONS FOR FUTURE STUDY . . . . . . APPENDIX . . . . . . . . . . . . REFERENCES . . . . . . . . . . . . iii Page iv vi vii 12 17 20 20 27 31 36 41 43 51 52 53 55 134 LIST OF TABLES Table Page 1. Summary of Monitoring Equipment . . . . 38 2. Data Collected During the First Corn Drying Test . . . . . . . . . . . 48 3. Heat Balance Calculations . . . . . . 49 4. Mass Balance Calculations . . . . . . 50 iv Figure 1. Theoretical Concurrent Air and Grain Temperatures . . . . . . . 2. Theoretical Crossflow Air and Grain Temperatures . . . . . . . 3. Oholm Grain Dryer . . . . . . 4. M and W Perfect Kern'l Grain Dryer 5. Mfihlbauer Grain Dryer . . . . 6. Anderson Spreaderless Design . . 7. Anderson Pendulum Spreading Device 8. Westelaken Floor . . . . . . 9. Westelaken Three Stage Dryer . . 10. Westelaken Three Stage Dryer with Heating Air Recirculators . . . . . . 11. Pilot-Scale Dryer Before Modifications 12. Revolving Spreading Device . . . 13. Modified Spreaderless Design . . 14. Overall View of Pilot-Scale Concurrent Flow Grain Dryer . . . . . . 15. Exposed View of Concurrent Section 16. Exposed View of Grain Level Maintenance and Airlock Components . . . . 17. Exposed View of Counter-Flow Section 18. Instrumentation Diagram . . . . LIST OF FIGURES Page 10 11 13 13 15 18 18 21 23 28 34 39 LI ST OF SYMBOLS Absolute humidity, lb. water/lb dry air (kg water/kg dry air). Moisture content, % dry basis. Moisture content, inlet, % dry basis. Moisture content, outlet, % dry basis. Rate of wet air movement, cfm/min (m3/min). Rate of dry movement, cfm/min (m3/min). Specific heat of air, .24 BTU/lb air/°F (10004 J/kg air/°C). Temperature °F (°C). vi Air Lock Concurrent Flow Concurrent Section Cooling Air Cooling Zone Counter-current Flow Counter-flow Section Cross Flow Heating Air Heating Zone Product LIST OF TERMS A device which inhibits air passage while allowing for grain movement. Condition which exists when grain and air move in the same direction. That portion of the dryer which includes the heating section, tem- pering section, and related compo- nents so as to allow for concurrent flow of product and air. Ambient air which is forced through the cooling section. That portion of the counter-flow section in which the cooling air and product have flow velocities in opposite directions. Condition which exists when grain and air move in opposite directions. That portions of the dryer which includes the cooling section and related components to allow for counter-flow of air and product. Condition which exists when grain and air flow in perpendicular directions. Air that has passed through the burner and which is forced through the heating section That portion of the concurrent section in which the heating air and product have flow velocities in the same directions. The biological material being arti- ficially dryed. vii Spreading Device Tampering Zone A device which mechanically intro- duces a layer of wet grain on top of the heating section. That portion of the concurrent sec- tion in which heated grain travels in an environment free of air movement allowing the grain to temper. viii INTRODUCTION The first section of this study involves the design, construction, and testing of a pilot-scale dryer using corn as the product. The pilot-scale dryer uses the principle of concurrent heating and counter-flow cooling. The maximum product temperature is lower than the maximum heating air temperature (see Fig. 1). In a cross- flow grain dryer, the temperature of the product will approach or equal the maximum value of the heating air (see Fig. 2). Corn was used as the testing medium. Background on Concurrent Flow Dryers A concurrent flow grain dryer, patented in the United States by a Swedish inventor (Oholm, 1955), fea- tures a method of transferring energy to the grain in the upper drying bed without increasing the absolute humidity of the heating air (see Fig. 3). Hot liquid can be cir- culated through pipes to transfer heat to the grain. The concept could prove practical if direct fired burners could not be supplied with the relatively clean burning fuels now available. A portable concurrent flow grain dryer is produced by the M andW Gear Company (see Fig. 4). The M and W 1 Temp. 450 20 180‘“ 160- 140“ 120 °F Heating air temperature Product temperature Temp. 2 Figure l.--Theoretical Concurrent Air and Grain 30 60 90 120 cm I 1 l I l l l I 1 2 3 4 ft Temperatures. °C 230 90 80 70 60 SO Temp. °F Temp. °C 200 n . 90 Heating Air Temperature 180 - #— I. 80 160‘ .. 70 140 Product Temperature ”’60 60 90 120 cm I I 1 l I I I l 1 2 3 4 ft Depth Figure 2.--Theoretical Crossflow Air and Grain Temperature FIGURE 3.--Oholm Grain Dryer. Legend: 1. Heating element 2. Grain inlet 3. Heating pipes 4. Heating air exhausts 1 Grain velocity 0 Hot air velocity {=34LL..<:: 4L)‘==’ =§" .————3 P P F P It ‘A‘AiAiA‘A‘ —4 I- x—x x—u x—x x—x x—x FIGURE 4.--M and W Perfect Kern'l Grain Dryer Legend: 1. Grain inlet auger 2. Hot air inlet . Hot air and cooling air exhaust Cooling air inlet . Grain metering mechanism Grain outlet auger Grain velocity Hot air velocity Cooling air velocity ”(zemmnw Perfect Kern'l grain dryer is similar in design and prin- ciple to a drying apparatus patented by Graham (1967a). The dryer is similar in design to the first concurrent flow dryer constructed by Anderson (1972). The heated air temperature is limited to 300°F (149°C) with a grain throughput rate of approximately 2.5 bushels of corn per hour per square foot (.85 m3/m2) (Graham 1967). Mfihlbauer et al., (1971) constructed a concurrent flow dryer in which the heating air escapes upward through the grain placed on top of the dryer (see Fig. 5). No detrimental effect on grain quality or dryer efficiency was observed. One of the first commercial continuous flow grain dryers using a concurrent heating section and a counter- flow cooling section is described by Anderson (1972). The dryer has no spreading device (see Fig. 6) and is reported to cause excessive grain damage as a result of overdrying the grain. Bees wings collected in the valleys and was believed to have been responsible for many fires. The grain flow rate was reported to be approximately five bushels per hour per square foot (.18 m3/m2). The temr perature of the heating air was limited to 350°F (177°C) in order to reduce the fire hazard and preserve grain quality. Another problem encountered was that of unequal heating air temperature distribution across the top of .3 C AA AA AA AA Figure 5.--Muhlbauer Grain Dryer. . Grain inlet Heating air inlet Heating section Heating air exhaust Cooling air exhaust Cooling section Cooling air inlet Legend: 1 2 3 4 5 6 7 the heating bed due to heat losses through the long air ducts. A second prototype was constructed by Anderson (1972) with a spreader built on top of the heating sec- tion. The spreading device (see Fig. 7) eliminated many of the problems encountered with the first prototype. A point of interest is that the suggested safe Operating temperature is 525°F (274°C) for corn, and is limited by the ignition point of bees wings which was experimentally found to be between 550 and 575°F (287 and 302°C). Spreaderless, continuous flow concurrent drying and counter-flow cooling grain dryers are being con- structed for commercial grain operations by Westelaken (1975). The dryers use a "grid" type floor with insulated round steel tubes located above the heating bed to intro- duce the heating air to the product (see Fig. 8). The steel "grid" floor combined with high air and product flow rates is used to prevent the problems of other spreader- less designs while eliminating the need for the extra moving parts found in spreader-type dryers. Many of these dryers are multi-stage designs (see Fig. 9). Two or more concurrent heating stages are installed. Grain is allowed to temper between the heating stages. Improved grain quality and greater overall drying efficiency as a result of the extra heating and tempering sections are two benefits of using multi-stage dryers. mumocson aflwum ocm new Dom“ ooo >ue00am> Hem pom SUHUOHm> :Hmuw » Hmcumm new pom .H "ocmmmq .amflmmo mmmaumcmmumm GOmHmoc4 Unfortunately, there apparently is no temperature and time v. quality data to use for management but the simula- tion can be used when the information becomes available. Quality Analysis Results Germination of the soybeans was above 50% for all samples. For counting of cracks in individual beans (cracks are defined as any fissure in the surface) two Operators were used. One for each run. This makes the results between runs somewhat less than absolutely compar- able because of the subjectivity of the Operators. How- ever, the trends are the same. Table 3 shows germination, cracks, maximum predicted temperatures, maximum measured bed temperatures and heated air temperatures. The method of counting splits, or broken soybean pieces, was not *Interview with R. C. Brook, Research Associate, Department of Agricultural Engineering, Michigan State University, March 1977. 109 TABLE 3.--Concurrent Exhaust Relative Humidity Predicted v. Calculated Values. First Run First Run First Pass Second Pass Second Run Air Temperature Measured F 152. 155. 171. C 67. 68. 77. Relative Humidity Calculated % 20 l8 14 Air Temperature Predicted F 131. 152. 158. C 55. 67. 70. Relative Humidity Predicted % 22 15 16 Difference Between Measured and Pre— dicted Relative Humidity -2 +3 -2 110 accurate enough to be included but few splits did occur. The number of splits was certainly less than 1%. It is apparent that even though the soybeans may have reached the critical quality temperature of 175°F (79 C) (as indicated by Bunn, 1970) there was no extreme decrease of germination. This indicates that temperature is related to quality but the time at a given temperature is also very important. Referring to the computer simu- 1ation, the soybeans were at their maximum temperature for relatively short periods of time. Drying caused only small changes in germination and cracking percentages in the operation planned as one of the early steps in soybean oil extraction. Decreasing the grain flow rate from what was used in the tests will increase the amount of drying but will increase the grain tempertature within the dryer and may adversely affect the quality. Samples were combined to provide two inlet and two outlet samples per run to be processed for quality by the Food Science Department. Four duplicates of each test were processed. Table 4 shows the results of the analy- sis. There was no significant change in quality as measured with the tests after drying of the soybeans in a concurrent flow dryer. The peroxide value would have been the first indicator of deterioration and it remained 111 TABLE 4.--Germination and Stress Cracks of the Soybean Samples. First Run First Run First Pass Second Pass Second Run Heated Air Temperature F 350. 300. 450. C 177. 149. 232. Maximum Predicted Temperature of Soybeans F 156. 181. 192. C 69. 83. 89. Maximum Measured Temperature F 160. 152. 182. C 71. 67. 83. % germination before drying 99. 66. 99. after drying 66. 51. 57. % cracks before drying 2. l8. . 1. after drying 18. 37. 21. 112 unchanged. The oil quality was superior before as well as after drying (Dokhani, 1977). Some interior breakdown of the physical soybean structure may have occurred and as a result the allowable. storage life may have decreased. Stine* noted that none of these quality indicators would measure such a problem. For use as a dryer in an oil extraction plant, however, storage will likely be only for a very short period. Thus, interior breakdown, if it exists, is not a major concern. If breakdown of the soybeam structure occurres, the oil yield may be favorable affected due to easier extraction; the test did not show a significant change in oil yield. TABLE 5.-—Results of Chemical Oil Analysis. First Run First Pass Second Run % Crude Fat Before drying 18.06 16.88 After drying 18.20 17.14 Peroxide value as milliequi— valents of peroxide per kilogram of Oil Before drying <0.0l <0.01 After drying <0.01 <0.01 % Free Fatty Acids as Oleic Before drying 0.192 0.176 After drying 0.176 0.205 *Interview with Dr. Charles Stine, Department of Food Science, Michigan State University, February 1977. CONC LUS I ONS 1. Air temperatures of at least 450.°F (232 C) may be used to dry soybeans from 13% to 9% in a concurrent flow dryer without significant reduction of the resulting ' oil quality provided the flow rate is adjusted to less 4 than 10 bushels per hour square foot (0.032 cubic meters per hour square meter). There is likely to be a limit not far from these values for oil quality to suffer dele- terious effects but the limiting temperature, grain flow rate, and moisture content range have not yet been deter- mined. 2. Mechanical leveling devices are not necessary on the concurrent bed surface for introducing the wet grain. 3. It is possible to have a concurrent dryer function effectively without the use of rotary airlocks to control air and grain movement. 4. Instrumentation to continuously monitor mois- ture content in the dryer would assist in management. 5. The difference in temperature between the inlet cooler air and outlet grain temperature of about 40°F (22 C)_ probably did not stress the soybeans. 6. Reduction of moisture content in the cooler was not very high. 113 SUGGESTIONS FOR FURTHER STUDY DevelOpment of instrumentation to accurately record the exhaust air relative humidity and continuously monitor grain moisture content would greatly assist lab- oratory work in this area. Future work should also include statistical evaluation of drying parameters to find optimum conditions for both energy efficiency and high quality grain output. Computer simulation models predicting output moisture content with changing inlet moisture contents would assist in the management of dry- ing Operations. Quality tests to be considered should include more than those of oil analysis. Protein Dispersibility Index and Nitrogen Solubility Index should be included as measures of heat damage to the protein of the soybeans. Changes in safe length of storage for retention of quality due to any interior structural breakdown should be con- sidered if the dried soybeans are not immediately proc- essed. The relationship of quality to grain flow rate and moisture content decrease should also be investigated. 114 PAGE 016058.13 04/15/77 FTN 5.60433 OPT=1 N 73/73 PKCORAH GRA N‘INPUT.OUTPUI97495603INPUtoTA9861=0UTPUI) HIOQTDSIQ‘HO"IRH.CFP N 1 ‘T .J 1’)" I-.'\L.. ‘I'muu C) (Ltd Jti'u. QGK;H GRAI C F '0 (‘AN 0 (3.494 v4 v‘v-OH '9 In APPENDIX A CONCURRENT DRYER ANALYSIS PROGRAM “ 5 Q) .8 {T 6‘» +J CI 8 “a 2 °* 0) m tn #I-H E: g (n 'H >R +’ 0 F4 U) G (U '3 8 :2 O m x (O o .J N J x D Q a A N O. In 0 as Q A Q I m o X 0 .4 O u. H a. n N .1 I1 11. 0 v4 0 d t W c) .- u, a. m t H o) I.“ a- H I; .- 0 o o as H U U U I IL I x t D o Q In In 0’ M o O u. .9 u. H 7. I.“ O o: O a J X H "‘ U u. he a O L: m t H a- \D (O m o 0 a T. O 0 U D D 0 I (x H D u 3 o x 0 K O O O I u. D' O U m b- x R‘ (Y x N O 0' \ a O O o‘ m N v-o Lu N a o X n! #4 m b- . O D I- 0 CL - 4 X N la 3 w m 2 X I.“ d N 0 J o N O a I L) .J m N O I o 0- m o o 0 r. A u’ o H v- 0 x o m .1 o a v. o m H U 0 (D N 0 U r4 3 O W H. 0 D O L) In x I: o x u_ q 0 IL 9 a d J I D N <1 0 F) 3 o I x o x H IL Q Q Q o d c- C )1 X N X N u. o o a- . In 3 IL .4 .1 on U o C‘ (a 0 x X we x o O 0 o \L N M N e x (1' N In N O .4 X D o 3 o 0 0 O N 0‘ W 0 '4 IL v4 '4 i- 0 C o O r- F) 0 d O H u. '0 LL 2 1 .1 v-O Z 3 O O o v o 0 t- . o m 0 u. u. H O I» D- o O o x Z 0 X (L' .1 0’ o 2 D d to '4 m u: )- u. u.’ u. u. x m In H o u. M a u. '0 0’. v- M D (Y b- \D 3 3 0 0 O o o 0.‘ H u o) In 2 M w hi )4 w o x o :3 U) 0 2 0- :) o I— 0- d a: o O a- c: 0‘ Z O 2 a. O I! O I Z 2 D D n O H In v4 '6 H Z In t O D U .- w m D— D- o O 0. ' u o O O m C) D O- b- q d O on I u: o I > O O- >- (J > O 2 Z I! t! i- . h “I; . *— fi- u. .- h 0 Q ‘J ‘U D O O h I: 2 r4 2 H (x rd 2 r4 3 (J Q Q.¢x O p. t- m u) m C) H d H r: N H o O I: I: o u 9 m out (I) H H 4 H H H .J u: m m Ul .- H 5. a o IL) I: :D I; I O- I N 3 I lL 0. 11 O- !- U I t- O o (1)- D r 2) O 2 o D O 3 3 3 .5 no 11 o o N o I 2 d r .J m In I O -1 x 2 I- t- z 2 no 0 0 1:313 I o a: u. H O- h- u. H M U) H H .- Hd L) or.) 'JQ'D MM 0 a QCL 2 D m r 'J -x 'n CL 4.) 4 H H '1 a m 0 MN! 2M”) #94 a - H 0H. D O I'D H I m C.‘ O H m 0: Q C) u: nr u) no I Hv-c OHH H v-o MILIIU‘ u! b- 1: q t! I d o q q o 3. I: u L5 '- D-p— < H OO O m OIuOQN 0 Q Q 0 O O O A 0 t O O O 1 O O o 00 000 p—r— «x 0—0 a». Q 0 o o o I o o . o o O p o a D a o O o 00 0-0—r- It-D— CI 0 0 h. IA-Q. J X )It X X X X X H x X X X ‘4 X X x L90 ’1 'n o 0'? ') o t—V (.5 LHlfia 9“ th'hATIhT'\ I!‘ m maT v_\-.‘~f_\m 10 lb :3 ih 'h In «a. H .00 '"DO 0'5 3H \0 \v—ru.T-u.:+". t~chuN'I'N O‘LN N510)! r1 WNON 'IHNON N NON?! on. Q Jct') 1.00! n- 5' utuO 0‘“! .2 l '.\:J‘-~’ A 04.; 01. 0H '~ 0. ' 1 01 .z o H -.L 9 I: 00 *L! 'H ‘0 .(3 oil 0. ”-4.... MA ooo-\r- 3"WMJVI\~C-r-'4\ none-O rzv «~10 Q. p—ouogb— 49-10 CLO gazes-ova MOI O 3 U‘h‘ffl U111") HM"H..‘ KW '. .(‘\~‘ ht':(,“r~ +\") | o D 0 o 5 . o ‘ . O .- h.‘ o o o o . . o. '1 o. o. c 0010“ JHTO"\O IT'J' L-fI'UTW-‘O’OQIAUAOMO Lb. fx. 0". fl. '1' OflmttnOONO ‘7‘. “I‘M. UXOKOJ‘ 9-(‘3 Ix-vhp- "JD—D- p-r-o o 4 1 | _)O b- L- r!- -.1 :e—r— :‘H- vv'avv Ev \v 4" ”v I v-n- .I<;:J.4-—.a‘-'vvcvv4‘-'u'~mw.J-'u\ *N .2 u var—43 om 10 0.11:)? h: hm V’IJOU. 21"u. LP-w' .‘H MHr—vfl-Nb “n—DI- "no "Jr I-Jb- ;_ ) PI»- uth‘Jr-f AHN""'*N“CIV‘~ o . .4-1 0 .rOo-l c on 0 on )"J" ‘IF-F-*'"X luv-xv Il1bs‘.b-b--l-rlh- (M r- (a-J—nl emu-4x {13)—wt“! F-v'r-dF-vu—db-wu—dh- 'JUo .".T()<)6’T)U#:.‘(It—"’1!IIIIII-tlldl'IIIlitllfirfrr'73‘3Y‘fVoIf)" :‘r'JT'hH-TS‘JS'TSTJY.‘".‘.‘._'1':? 7: v~.¢(.l(-—v jxvvffvvh II II n/finl’iun.t) .'i‘y-()"H-cv-newt—41>“.w.) 0,- HuH J" v-0000.‘ 1DC.."-4ui-‘"0h/Hut—Qf¥h§ lLLLII untamedIt..n..LLIIl4.u.(T‘..HJ‘: J'JQI‘CTL‘I'- 71.1% :4 .. 7.11.3.2? (I: 2' m.” 3-1.0.9 Q"l|-kj to 1'01. L") (U-L3tI’DIJ'DILQL’ MHZ :vilnHuz'23HHzHr-n-D'z 3;: 'thtxqu‘L 171: L-mx I'LllL Cruz} ILlLll ()llt.‘ (Luau. H 01 u" .ck own-.1 “N N M mnumhxjd" NON «900.4 14 «id dam MN Nan-0'" or. .0 V‘Nm: Mr: r11 n: r "1 '1‘ .~.. «3'4 m ts «a v4 ’0'. HHH HH M‘OU‘v-‘VQNNIHJ\\D.U'\NND h—e a HIVN‘J‘VNN NM N(.,'N(\J I) m D m (.3 (A O In 0 m H H N N M M .t J u\ u" 115 0' “3.1.1441 LL. H tum J m -1! 1H 0‘" “1(va 60 111-.0.me 1L0 teak-mum 04 ohm mo «NM .1 won ‘0 74"“ HN NA’FJ “J‘V‘VNN WNNN (\J‘UFJHJNNNN ES 70 7 151(5 nan mathgau . ..moa«o ¢h¢o zH momma... .. harnom Mm gum“ ..«x «mm o4..x~.«.oau.xan.oban upaa IOJI zHaaoo.xm~.o ..»qr¢o«« one «ma o4..x~.n.oau.xo~..znqau town ou>o=mm cuhaxo.xm~.o...»qranm . . .omqnwmahammemmd «.o«u x~«.ozH¢ao zouu duhqz u>ozmm o» cum: >ommzu..xm~.m. “.mqruau no: :4 ......nru ..oz qua 04..x~. n.uau. xo .oomzuam mzqaumu.. .xmmm.. .thrlgm Qua. mqwhrnwna a: «ma :hm..x~. «. nag. xo~..rmpm>m ahzu >uauzu mmorwo. memuduw»flrw“w. .ov; ama ahmo.x~.«. can. xe~..:u»m>m chza >u¢w2m hm: .xmmwuanmhmrwum L . . ... x «Muhapnuwxmam.mfl an xn .hao ozq 2H 0: 02¢ arm» ch mac muquo :am u. xm~.. a.h«rynu MMWHNIMIwwwom .ox: «we am..x~.~. can. xfln..hao mpqa :04“ zuqmu.. -m.. m.wmnmmm 423%”? .U . C .x~ « aau xod..on»oum h7-amao «ukzaoo 2H xOJILqu.an.. ..»qrunu fm.~m~mwnmm (pa ,0 on~ o» oo.onrq.»o.uwxmpuwu ma m4..x~.«.o«u.xa~..zoubumm hzmxaauzou zH :oguuHao.xn~.. ..hmadom 1a.m«~»ywua« x «mm o4..x~.~.aau.x;u..mu¢ »o ou>ozwu «mpg: 4<»0ho.x- ~.. ..»chmm :2 Minna? . I O . adu.xa..¢ua >m zomhumm pzuuuauzou 2H om>ozwa «u»a:..xm~&.ao‘hqrzou nxq.dm~_zngq uw. o an~ a» oo.oH:q. t.“mo:«.wwfl LL rum m4..x~.~.o«u.x¢«..zuaau roan amuormu «uhq: uo nozn.xm~.oo.m_aruou -“ v4.4" ’J 1 M-‘OJP J'tr enrom r3 r11“ «4 NMJIn ON a can“ van 9') 39:) m 3 J I(. NN NNN N NN N NNNN NN N «‘7‘ QNN hs\mu\49 macaw... z»... «nkao ask; znqmu tcuuoxm aw.” no so m J a: In 0. [LID um a“ .1 D- .J .J U) ILIn my Int! 0' tutu own: (711 54060 Q U'CDLLDHJ'DLLO DJQUQJU-l 69090006 of) IN 00°C) (SKID QDU‘ 0C mom’nokv—«M Ody-QJONQ c .'O I 0 3. L0! EXHAUST UNYERFLOH EXHAUST QUN NUMBER $N' FLOH AMBIENY QFLOH >- .- NCUPRENT F .T QDHZHIC‘HD h- 2 2 m t! H d 2 Z (Z n 2 H I: H O I- H L) t 20 t- ! 0 run 0 (Y cw) 2w; 0 IL 00‘) 2 I90- ” < u: ZQD—I- w Orr-1mm t t «:2 ma: wt w m 3H ILD)- -K bfb d (any—T) IUI’! IL!!! 02 2() OP)- )0 lU')OUI b—o-r-mm O >UIU'YJID'D :1: C >J‘b'OUI1I’DO l-JO IZ’O D dd LL'H} QZUIMCO’Z IL u U]? Drov- v-HDQ f)“ (V‘- (am, up- an: L)’)O"\IDH>-Z.' m tJ>IL " 0:10) div-Ho- OOK3IU‘ | HIT/31'.” 31:14 .JJU'LZ DUI umzxxuu. LLuuu Q: 00 >z Z)- Ou’.) JJZZL’Hu-Od' '9'! 'II'TLLLLPCFIQ' mmrm hkl-u n'qqum-JOJL. ma«_)‘-4Htlxz'nu...: xm—q-zuo-uzomur 1. RUN NUMBER I'D .1 I! In a um um I!) .J O- .l .J m ILV‘ um mo’ :1: Um Uunv' m (to. Hrvo a I!) 1'0"“: 1' u'mLLDmmILc'I OJUUCJJU—l Nail‘MQDCDC) ‘9 OJ “(van (”U-[fl 0")". OLD IDL' IWCDNGT‘J’ UHH 2*ch: o o o .- In t- D 2 <1 u I b H x In m In D I: 01 d 3 I O X 3 J u 0 IL .4 3 IL I— O 21?.) .- thLL 2 06.“! m)- IYILuJ It). D'xr— (Yrs (3'02 :01 Zr—D ZUZ'IUZD HZIUI'JJU On- t" id.) D->Q)- O-O— II b- .— ZHZHuH£H uIOH-erJHJ HH (1'4 H {BOILJDOD «II—J uu lI-JI '1 >0— LI. rnvm'm-tm -_cn CvnHr‘ud'H'n t—q‘tdId-t 1 Corn Run of 2/7/77 2 - H In; an JJMWO’ o’duunnm Ia'r lulu“). 0 HHMN ‘JC‘CI'JID 34904;!“th .JC. 09er anm’c MK4 0 o o 1‘\O 5000‘” ON VIU‘IDJ IO 0 O FUHUHD. ‘t-F— {fl OI'TTQ'IL'F- OO 0‘ I]: I‘JQQCLO U .‘ 1 .Jlt‘ .IJ'U‘IIF ‘IL ’ I. IL D-b—O D I) 3 ITO-I—ZZ H'fivn—u—cr— aghgrq {1((1 'JfC‘ULKIl.’ J 07. £00?- !WYO’ m uaouwanxttudb II III 11 am! (Y m‘Ynl’YIYQ’n II'IIJIIJM'HO mi JILL; mu H‘Q (LIL IuCLhJ an 0.0.(1 01L _ D DmmmmDmhhhchm 4.! 4.3.1 (1)..” ma‘ .JCD—J @NNDJIIKNHKHIRM th)oomoooo~0* O 0 COO OC‘C’NQNU‘Q IOInNuxafu-va-un 0N o JWJ'O :v-‘IDszv-m v-IOJM r0 Imn '- d 3 H n a O > z 2 m < H < z z I! O 2 H u 04 O b- H u I to 8 I: O HLIJ «m 2m 0 E I! om 2 c»- H 1 ¢ zm—o- u tun-402: a r- ocrqum) I: t (2 (IQ mu: m I» IN k3)- c1; htt— t! cum—3 mm un’. 2 Oh)- >I.’ moans b-l-b-IKD O >LJJA‘LUL' 33 It “.3 >4. moo-1030 Inc 720 Do- I) (It! m'i'ozuluuoz IL 0. mZIH—t- :O-IQO njqcle-z n Launch urn-z u Du. O) f... Gui—1.1..) zznlumdod ;l-XLLILo-a'~l.l' WCLW b.-’-*l 'L'l'l Alh\)O'-D- 04004-4135: u.LtY2~1 III-QdIDL‘) USCG-I113 10 RUN NUHBEP Q J U U Q ILC no: .1 .- J M um um! ILQ' nu: UIUIL' Q0. H010. ID SIGN—3 NCDILDLUQ DJQUDJ BOOGDD o o o .- In t- D Z d W I H X m U I: 4 3 0 3 .J 0 II. .1 II. '- Z i- u z or u!)- I! art- 3 ' .4 3m 3 2020.0 HZUJIU Ofl‘u >0 |-> t-t— u ’- ZHZHQH h ‘CJHQHO mmmmqm LY!" 0!: .J n b—«l -!<1 I“ First Run - 2 :5 H ILILG I: .J--mma 'Yddll’ UILIJ ll 1 1' AUJO. QHH'IIY 0 IT. .JI-I'UJ' ut- IerILr-v—O DD 3 Zr-r—z HL‘V/DHHO- «quq-xn 1'00 1.» m ozroon— First Pass Soybeans O'rYn’ d" onuuuzx10..13 11112: I en «my a: mamo’on'umwuw wtumu mo on u 4|” 0.& 0. Q. 2) :5 :2 mmmnmr-r-v—ct-m JJJII‘JIT‘mmJC-J NQHNG40¢3¢IDA Om 0") o o 0 ch in 0 on onNMIOOJ~t amhonO‘Hm 9N o fiwmaunnm INHH «av-«.3 N 10:. 9. :3 O 0 z 2 d H a z D.’ H 0 Q 2'. z I O H I! <1 2 0 IL (I O 7 U H q 0. no- u IHQ Q. r- can: t I! ‘2 d m In In 3H u> ht» a mo— mm W D Z )- >LD .LJOIAfl-D—O-UI'J‘) O >u~LDD >- It 0"(0()Iuv)0 IMO I a FR OO'Y-fhl'.’ [IN-fl n: Dan/CH»; In um»: z on a) D-uJZJI'x>-fKDuJO sip-HQ )leumb’t IL 04.12270 umq 0.x qu. HHO’ MQIK'U t—I—T- I-I ”FOO”..— cry-c r (LI. Ju’u Zq IU-QCIDHJZL91‘U1 2o RUN NUMBER 118 First Run - FTFPFP L8 r C CCflMVES D p v LB P‘? L8 \DLJIMMC‘JU‘ "HHMQ o o .— m b- D 2 <1 In) I H X m In I: c 3 U 3 J 0 IL J IL P- 2 b- III 2 d m)- n: u..- D {H 'J DU') 2 250-5110 94; II) 0"!” >0 h)- r—r— m’ r- 2H294Q.¢ tho-c-n-q'.) H»4 xD—I 4")"er if 2- )I)..(.)') “If JhJulI IL. I)- :2" ')">‘ {\1 (4“. ‘T .J J t—NI (11“ Second Pass Soybeans .‘1 IL ILCO FIN .J-lm'/‘fi' W41 II'II‘H' w-I 1 Iultlc. ( I.‘ In: 1 C’HHIp'uluCfl .J‘. D!) C- J U431 O Q Q TVOTDan CHOUO’UI 0‘ 0 0H r-uJJt-v— 'DHkud O-'-"Y'L"- 01.)” 1‘9 IQ! "1.10 O 1.): .J-II'II‘IJ'I ”- IL 2. ) Plug" JD ‘ :Zt-b— 232 *0 ')L1'0-n-. 'K' I'4-I 1.x) (103-l Y1] QZTJDLDM Nfln m (1000111110 -12) 11111 I Q'u’ um 'L‘ «030 liM-HUH'MI~(K I: ummyumaah d-u aaaao a (L 133:) ') manDc‘ b—D— (II-Q 4440'; mam .4ch huswodannm W 0") o o o o: «o 0 0° QU‘JNMIDNF: J'Mnoaruwo-) a.) mmdma‘dmaav: NJ'C N Inn .- D O D Z Z < H q 2 u: H U o r z I: O H (Y a Z 0 IL M O 2 I!) H 4 a: LYD- Lu THU O. .- Oth t t «12 In 1.1 3H u.» b—I'D- ‘1 h” UIJILF-fi-D—WU‘) O M4133 > It o>muouflo no 1'03 3 r- 0'12 MIQIIJHQOZ IL uude-b— P-HOO and 1'00"? Ink“) ‘I’ (”tax-3H»: '0 un.‘ 7. I'D t .2) p.123 L-1>-L}."J- ,3 ~lb-l-ID DIUIUGV 3E .i"! 4.10 CT 1'? u KILLIL =u.ml -l.' IL I.) >4: ’.'. (3.) IZLYLDIum'lL‘K -(lLHHu' no. ("lg v-I-v'ruu uo-( H) 1. (150- In -»';- 11...:4 IHQIDQIU 301'“: 3. RUN NUMBER Second Run Soybeans PER L3 It.” ILC m J h J «J In I: '11 um’ U'” 0' I~ll| LHAJIU h] OJC. Hrn n. L” 7“J 1' IUG‘ILD'IIO‘ILO CJLJQQ-JUJ neocomo a") no 0?“an 4‘0—4 com ova BUJMu-wmn OHHJOHD o o o .- In I- D Z '1 In I U- H X w m h' D t cl 4 3 I O x 3 .3 II) 0 II. .J 3 IL 0'- O 21.) .- luau. Z n‘.1.t LL) :n‘u‘nu OJ- .74..— uH (.‘IUZ 3m Zr-Z.) ZI-‘;'0.0.ZL_) HZuZU'DQ c‘ '.l 0 >0 o—->L))- hr— I r— k ZHZ-(TDQZp-q Id .J’ "3' ”-3' 40 HH db. H IT‘, I.— TTC 1: 32 702-11503 r-«iq-u :--.-14 z *0 uh. JMM 0' 44'0“ 0.1T , “J“ v. .J'aliulll'd \L.L'l h!- ’J zo-v-z z HUM/)HI-Q DTIOO 58.2 LBS PER 8U OUT TESI HGT HQ HQ HF H: HO HP R H: 9. H9 H9 R R Q Q Q o wumemm aaoaaam no mmcmoamthm JJJJAWJmeJmJ p:c Ho PE! H? U P p 8 PER EU on 4 0 1mm 0. D .— ncc H3IhNMMIh80M MD can-mp doom ?POJH 00‘0 am y d D H O a O p 2 z o < H 4 Z Z a O 2 H u H O h H 0 t 20 h t O Hm U M <01 lel 0 IL a cm 2 up H a a Zdhh w t'ufiUZ fl. .- ow0 ILO’D‘IJ hi—I—UIL‘) O >UultxDD >- It smuooumo L10 £233» 3 k «a mmrczmmaoz u. u uzabh hHDO c~hfiddvz who My ()onzoroon- 2 III m): 2 OuD) OYJJJZZQmquM LI“ILLILHHN mam“: Dov—‘- r («awn-ooh». QQUDI~IIIIKZHIII L'Jd er- ddOQMI-OQJMI 119 APPENDIX B CHEMICAL OIL ANALYSIS PROCEDURES SAMPLING AND ANALYSIS OF COMMERCIAL FATS AND OILS A.O.C.S. Official Method Ca Sal-40 Revised 1971 Corrected 1913 Free Fatty Acids Definition: This method determines the free fatty acids existing in the sample. Scope: Applicable to crude and refined vegetable and marine oils and animal fats. A. Apparatus: 1. Oil sample bottles, 115 or 230 ml. (‘1- or 8 oz.) or 250-m1 Erlenmeyer flasks. B. Reagents: 1. 2. Ethyl alcohol, 95% (U.S.S.D. Formulas 30 and 3A are permitted). The alcohol must give a definite, distinct and sharp end-point with phenolphthalein and must be neutralized with alkali to a faint but permanent pink color just before using. Phenolphthalein indicator 50111., 1% in 93% alcohol (see Note 1). 3. Sodium hydroxide solns., accurately standardized. 0. Procedure: F. r. A. Range. <7. Grams of sampled MI. 0! Aleuhol Strength cit—Alkali 0.00 to 0.2 56.4 :t 0.2 50 0.1 N 0.2 to 1.0 28.2 1:0.2 50 0.1 N 1.0 to 30.0 7.05 $0.05 75 0.25 N 30.0 to 50.0 7.05 $0.05 100 0.25 or 1.0 N 50.0 to 100 3.525 1' 0.001 100 1.0 N 1. Samples must be well mixed and entirely liquid before weighing. 2. Use the table above to determine quantities to be used with various ranges of fatty acids. Weigh the designated size of sample into an oil-sample bottle or Erlenmeyer flask (see Note 2). . Add the specified amount of hot, neutralized alcohol and 2 ml. of indicator. . Titrate With alkali shaking vigorously to the appearance of the first permanent pinl: color of the same intensity as that of the neutralized alcohol before addition of the sample. The color must persist for 30 seconds. D. Calculations: 1. The percentage of free fatty acids in most types of fats and oils is calculated as oleic acid, although in coconut and palm kernel oils it is frequently expressed as lauric acid and in palm 011 in terms of palmitie acid. a. Free fatty acids as oleic, % = Ml. of all-tall X N X 28.2 \Vcight of sample b. Free fatty acids as lauric, % = Ml. ofallgaii X N X 20.0 lVeight of sample 120 121 SAMPLING AND ANALYSIS OF COMMERCIAL FATS AND OILS Free Fatty Acids Ca Sat-40 Page 8 . c. Free fatty acids as palmitie, % = Ml. of alkali X N X 25.6 “Veight of sample 2. The free fatty acids are frequently expressed in terms of acid value instead of % free fatty acids. The acid value is defined as the num- ber of mg. of KOH necessary to neutralize 1 g. of sample. To convert % free fatty acids (as oleic) to acid value, multiply the former by 1.99. 1:. Notes: 1. Isopropanol, 99% may be used as an alternate solvent with crude and refined vegetable oils. 2. Cap bottle and shake vigorously for one minute if oil has been blanketed with carbon dioxide gas. 122 SAMPLING AND ANALYSIS or COMMERCIAL FATS AND OILS A.O.C.S. Otiicial Method Cd 853 Oflchl 1950 Peroxide Value Definition: This method determines all substances, in terms of mini-equiv- alents of peroxide per 1000 grams of sample, which oxidize potassium iodide under the conditions of the test. These are generally assumed to be peroxides or other similar products of fat oxidation. Soaps: Applicable to all normal fats and oils including margarine. This method is highly empirical and any variation in procedure may result in variation in results. A. Apparatus: 1. Pipet, Mohr, measuring type, l-ml. capacity. 2. Erlenmeyer flasks, glass-stoppered, 250 ml. B. Reagents: 1. Acetic acid-chloroform solution. Mix 3 parts by volume of glacial acetic acid, reagent grade, with 2 parts by volume of chloroform, U.S.P. grade. 2. Potassium iodide solution, saturated solution of KI, A.C.S. grade, in recently boiled distilled water. Make sure the solution remains satu- rated as indicated by the presence of undissolved crystals. Store in the dark. Test daily by adding 2 drops of starch solution to 0.5 ml. of the potassium iodide solution in 30 m1. of acetic acid-chloroform solution. If a blue color is formed which requires more than 1 drop of 0.1 N sodium thiosulfate solution to discharge, discard the iodide solution and prepare a fresh solution. 3. Sodium thiosulfate solution, 0.1 N, accurately standardized. 4. Sodium thiosulfate Solution, 0.01 N, accurately standardized. This solution may be prepared by accurately pipetting 100 ml. of the 0.1 N solution into a 1000-ml. volumetric flask and diluting to volume with recently boiled distilled water. 5. Starch indicator solution, 1.0% of soluble starch in distilled water. C. Procedure for Fats and Oils: 1. Weigh 5.00 i- 0.05 g. of sample into a 250-ml. glass-stoppered Erlen- meyer flask and then add 30 ml. of the acetic acid-chloroform solu- tion. Swirl the flask until the sample is dissolved in the solution. Add 0.5 m1 of saturated potassium iodide preferably using Mohr type measuring pipet. 2. Allow the solution to stand with occasional shaking for exactly 1 minute and then add 30 ml. of distilled water. 3. Titrate with 0.1 N sodium thiosulfatc adding it gradually and with constant and vigorous shaking. Continue the titration until the, yel- low color has almost disappeared. Add ca. 0.5 ml. of starch indicator solution. Continue the titration, shaking the flask vigorously near the endpoint to liberate all the iodine from the chloroform layer. Add the thiesulfate dropwise until the blue color has just disappeared. Note: If the titration is less than 0.5 ml., repeat the determination using 0.01 N sodium thiosulfate solution. ‘11"; ‘ 123 SAMPLING AND ANALYSIS OF COMMERCIAL FATS AND OILS Peroxide Value Cd 8-53 Page 3 4. Conduct a blank determination of the reagents daily. The blank titra- tion must not exceed 0.1 ml. of the 0.1 N sodium thiosulfatc solution. D. Calculation: .1. Peroxide value as milliequivalents of peroxide per 1000 g. of sample == (S—B) (N) (1000) B = Titration of blank , weight of sample S = Titration of sample. N = Normality of sodium thiosulfate solution. E. Procedure for Margarine: 1. 2. Proceed as directed above in Paragraphs 1 through 4 after prepara- tion of the sample as directed below. Melt sample by heating with constant stirring on hot plate set at low heat, or by heating in air oven at (SO-70°C. Avoid excessive heating and particularly prolonged exposure of oil to temperatures above 40°C. . When completely melted, remove the sample from the hot plate or oven and allow to settle in a warm place until the aqueous portion and most of the milk solids have settled to the bottom. . Dceant the oil into a clean beaker and filter through a \Vhatman No. 4 paper (or equivalent) into another clean beaker. Do not reheat unless absolutely necessary for filtration. The sample should be clear and brilliant. 124 CRUDE FAT DETERMINATION OF SOYBEAN SAMPLES (Official Methods of Analysis of the Asso- ciation of Official Agri. Chemists) The whole batch (about 1.0 lb) of soybean was ground in a Wiley Mill for 5.0 min. The ground sample was dried in a vacuum oven (v.o.) at 100°C and 29 inches pressure for 5.0 hours. It was then cooled in a desic— cator. About 2.0 grams of v.0. dried sample was weighed accurately with a microbalance and soxhlet extracted with anhydrous ethyl ether for 12.0 hrs., and the yield of crude fat extract was determined as percent. In all trials duplicates were used. (Written by S. Dokhani) APPENDIX C COMPUTER SIMULATIONS FONCUFRENT STAIN DRYER SIMULATION USING THE SABBAH THINLA ER EUUQTIUN FOR BEANS INFUT CONFITIUN: NUAUKH OF STAUES TU BE SIMULATED 1 AMBIENT TEMP. F7 INLET MOISTUVE CONTENT: UET BASIS PERCENT12.47 STWGC 1 INPUT LUNUIIIUNS: IHLTI 61H TLKV. F400. INLET 6P3 HUM RfiTI0.0063 AIRFLCU RATE. CFM/Bu FTiAT AMBIENT CONDITIONS) 141. LRRLN FLLM RATE. BU/HR/SG FT 11.38 LAYER LENGTH. FT 3. OUTPUT INTERVAL FT.1 ' Second Run w, . Conditions rhtLIHINARY CALCULATED VALUES REL nun. [ECIfiAL .0003 . AIRFLm HATE. LB I-RY AIFT/HR/SG FT 605.7 CFM AT TIN 240.3 Soybean Drying le‘fl' rmxwraa soar. BTU/EIH/SG FT/F 15.902 simulation £331. as. we r:acr~7 .04 DRY BASIS. DECIMAL .0004 INLET AC. any 39313 BECIHAL .1425 EEniV VELUQITY. FT/HH 14.16 LB DRY HATTER/HR/SG FT 572.21 HEPTH TIHF 01R fihg REL GRAIN NC NC lLffi’ liLTi iiUTi thd’ U15 U15 FT HF F LB/LB DECIMRL F PLRCENT UECIMAL 000 000 44:09 00063 00004 7700 12047 01425 .10 .01 219.0 .0075 .0098 184.3 12.39 .1415 70 .01 196-2 .0089 .0190 171.9 2.26 .1597 53 .02 152.2 .0105 .0212 '90.5 12.13 .1330 .1. .03 189.6 .0121 .0294 188.2 12.00 .1364 .36 .04 135 6 .0141 .0365 105.3 11.83 .1342 .52 .04 183.3 .0149 .0398 194.1 11.76 .1333 .72 .05 133.5 .0161 .0446 182.3 11.66 .1320 .32 .06 191.7 .0173 .0495 190.7 11.57 .1308 .96 .07 177.1 .0191 .0578 178.1 11.42 .1290 1.63 .07 173.1 .0197 .0611 177.1 11.37 .1293 1.11 .08 1X7.1 .0201 .0544 176.2 11.31 .1276 inL‘: 00“.) 117.102., .0716 00/1. 174.4 .102 0120.3 1.31 .09 171.4 .0222 .0743 173.5 11.16 .1257 1.17 .10 1/2.3 .0235 .0826 171.5 11.05 .1242 1.64 .11 1 1.5 .Oflsl .0859 170.7 11.01 .1237 1.60 .11 110.7 .0246 .0892 170.0 10.96 .1231 1.73 .12 169.2 .0255 .0958 168.5 10.89 .1221 1.H0 .13 163.3 .0260 .0991 167.8 10.84 .1216 1.93 .11 167.2 .026 .1056 166.5 10.77 .1207 2.66 .15 163.9 .0277 .1120 165.3 10.70 .1198 2.13 .13 165.3 .0231 .1152 164.7 10.66 .1194 2.26 .16 164.1 .020‘ .1216 161.5 13.60 .1185 2.32 .16 165.3 .3293 .124d 163.0 10.57 .1181 2.46 .17 162. .0300 .1310 161.9 10.50 .1174 2.55 .18 161.6 .0305 .1357 161.1 10.46 .1168 2.62 .19 161.1 .0309 .1388 160.6 10.43 .1165 2.73 .19 160.1 .0315 .1449 159.7 10.38 .1158 2.8? .2 159.7 .0318 .1479 159.2 10.35 .1155 2.95 .21 153.3 .0324 .1539 158.3 10.30 .1148 3.01 .21 1b3. .0327 .1569 157.9 10.28 .1145 STATIC PFESSURF. INCHES 0F H20 9.08 HORSEPSHER/SG FT .20 125 ENERGY INPUTS: BTU/BU FAN (.b EFF) 90. HEAT AIR 4900. MOUE GRAIN 0. TOTAL 4990. UATER REHOUEflv LF/PU 1.40 BTU/LB H20 3552.21 QUALITY CHANGE, PERCENT 11. QUALITY CHANGE: PERCENT 11. 18 18 126 ESTIMATE OF THE MOISTURE REMOVAL TO COOL TO AMBIENT HOISTUFE REHOUEDI POINTS UET BASIS FINAL MOISTURE CONTENT: UET BASIS TOTAL BTU/LB H20 END CONCUR 3552.21 1.004 CP SECONDS EXECUTION TIME EEnDY 16.33.51 22::‘36. F/FC EEGUN.16.34.06. LSING THE EAHPHH IHEJT»COEN;TIOW*3 NiHPrR I)" T-TIICFS TO BE AfiHIEUT TEN?) F69. Ii1-LT E‘UIST’NQE C(HTHEHTI STAGE 1 INPUT CONDITIONS: INEET AIR TEMP. F350. INLET APS HUM RATI0.003 SIMULATED 2 2.13 8.49 THIHLAYER EQUATION FOR BEQNS UET BASIS PERCENT13.6 AIRFLOU RATE; CFM/SQ FT(AT AMBIENT CONDITIONS) 128. GFfiIN FLOU FATE. BU/HR/SO FT 10.32 LIVER LENGTH, FT 3. OUTPUT INTERVAL: FT.1 TEHF';F.'ING LENGTH, FT '3. PRELIMINAWT CALCULATED VALUES FEL HUM! PECIHAL .0005 - fiIFTLCU PATE- LB FRY AIR/HF/SO F 537.1 CFM AT “FLT FFALSFEH CJlEr IfllLfifli/SQ FT/F 15.167 LCUIL ”C. MB FEHC.MT .03 LHY BASIS: UECIMAL INLET MC. DRY BASIS DECIMHL UFHIN VELOCITY, FT/HR 12.84 .1574 LE flRY HATTER/HH/SU DEPTH TIME AIR ABS REL TEMP HUM HUM FT HR F LB/LB DECIMAL .00 .00 347.6 .0030 .0005 .10 .01 173.7 .0038 .0132 .20 .02 159.6 .0049 .0243 .34 .03 135. .0064 .0347 .41 .03 134.1 .0071’ .0393 L'- I‘A dl'f" l 13".“ flafll TIN 196.4 .0003 MC 08 PERCENT 13.60 13.54 13.45 13.32 13.27 1" 1’ MC DB DECINAL .1574 .1566 0 . 524 .1537 .1530 {E‘I First Run Conditions Soybean Drying Simulation , ._. l .. -u.’ ‘14-.4 cJ-JU .33 .CS 131.2 .CCvO .0553 150.4 1$.11 O 'L! 9C1; 1'1909 0001’)", 00.304 1":9.1 l3.‘~'4 .76 .0; 106.7 .0130 .0’7‘,”I 135.0 117.37 1.?5 .0'1 146.0 ." 1:5 . 1141 145.3 12.13. 1.3' .0? 153.3 .0130 .0939 144.6 12.7? 1.16 .09 144.6 .3135 .OWSQ 113.9 12.75 1.7:? .10 14.3.? .0140 .0759? 14.3.3 171./’1 1.35 .11 1473.6 .0148 .10/? 142.0 113.5“? 1.42 .11 15-1.0 .0133 .1130 141.4 13.6.0 1'." .13 1.0.5 .0152 .1344 140.“. 13.32 7.1'; .13 1 39.7 .(1'.."./) 12'”. 1.59. 3 1'.‘.1p"/ ;..'.3 .13 :"‘?.-3 .ii‘l7.) .I‘z’. '17-‘33? 13.-1. 1.2! .14 1 ”.5 .0157 .1331 137.8 1? 4O 1.“. .113 'i :/.L.' .01150 .11I'I 1.3/3.5 13.57 9.04 .16 Y‘L.8 .0187 .15fl? 13$.4 12.32 I...‘.1 .16 17-).) .0190 .101“.- 1317.‘? 12?.2‘” 1.13 .1" LJJ.U .0195 .1/0? 133.0 12.2‘ :.'1 . 11'; 1 Jr?) ."117‘? .1749 1.34.6 1.7.2.3 7. 3% .1" ii ..3 .‘V”}5 .E’HjC .L33-(3 12. 17 :.-J .19 177.8 02:8 . 391 133.4 12.15 1' in; “i". ‘f ..k) .0314 .1970 1313.4 12.0‘,‘ _...: .31 . ._T.'1 .5531? .2011 132.0 13.07 . :5 .12 ;.1.7 .0332 .9118 131.3 12.03 2.'$ .75 ‘1.3 .0324 .213 131.0 17.01 3.3. .73 13“.$ .0277 .2242 130.3 11.97 3317:”. T 'I ' , 1571.." . OF {-1210 7.71 ..- - -.‘ fi/ -, ' 1 . .6.- 5. ‘f’ ; ,’.. .;1v/"’. ' : ’.7 P F. 7.. 3 '..' f... .3?” i. $.92 033;“ ”. {DIAL 3/9;. 34738 FCHCWEUI LB/BU 1.03 S'U/LE hi) "T2?.NQ (v- “I?! :1". ”.v 1:! "311' 7.2? 3‘7-C ._ If '1“ '. I-YlfCié): 1. 1: . -’ L ...1. 7 1‘ (1‘1. . i-.. " - '7. 99:. .. 1113003 i'~ .i . 1K9 {.H/yx 174$? QAHIENT CONDITIONS) 12”. 1.741."! I '13.. .,:I-_ . .3; '1'133/1'10 :17 10.31! I f I ‘ .1. 24': _l. I... '"L': 15:-..‘...L_1 “1.1 1'1:_L -'.El.’r’"—'Y Ltv'i‘ " 1111' 11:11 U!“ 1-1"; . 1n! . 3..., .‘1 :n- 1’1" 1f} {-77;£4 QA'E. n my. WIMzH"/99 F! 557.“ CFM hf TIN 177 q.' " c "2" '.".‘-. 1 ' .J/H... ‘65? "f."’ ‘. .315 :. .':L_ .Lv ..'.:3 'r- ‘C. Q. .Q‘? 7.121 {$5313.}; LECITL'IL .000? 7’ :7 fr -w“f 1."f—.‘thTflf1 ..Ji4 3.:LJ J? SL.T(, rr/zn 1?.34 L5 DRY hhTTER/HR/SG FT $18. {4111' Hi1.” F ‘7 11 F: 'W‘- 'v')‘; l y 127 MC 1.18 ERA TN "113m" RFL HUM {I 11 (‘3 H U 1‘1 B/L3 UCCINI‘.L 1‘ F’1:i\'CL1‘~1." Punt/I. .f‘.{‘.1.'\ 171’: 7 11,‘)7 0 O ' 0 O .1 '2‘ L.’ 11.32)? 11.100 1 4""; 141.71 14.66 1‘15]. 1 '11)!) 1 15. T’ 14413 14.51 '1 -'. Z’,’ i—‘Hv-éb-‘r—b-LF-y—F‘ H..- 111‘. UL». 011211.91 1?A0 010 0‘)! 1.32.9 00041 000‘??? .33 .02 1115.2 .OCHJS .011u3 .32 .02 180.3 .00/0 .0211 .11 .01 1752.4 .0077? .0757 .01 .01 175. I .00‘1‘3 .0303 .51 .03 1‘T3.1 .(1104 .031K‘ ./1 .06 173.6 .0114 .0397 .31 .05 17?.1 .0124 .0444 0""; .03 1‘270: 001.59 0052‘]? 1.04 .03 107.0 .0145 .0536 1.1 .09 163.2 .0150 .0583 1.2 .10 Iéd.£ .0161 .0651 I.-6 .11 137.1 .0171 .0715 I.-.:'- .11 1.73.4 . 1-76 .0747 1.3? .12 163.7 .0137 .0396 1 .65 .13 1"/‘.-’) .0171 .03‘3/ 1.72 .13 161.4 .3195 .0539 1.35 .14 1;}.2 .0703 .0951 1.92 .13 E 7.6 .0207 .0982 2.C5 .16 i;3.3 .0315 .1044 2.12 .16 177.9 .0318 .1075 2.25 .13 13.5.9 .'.":7".7'.5 .1131: 2. 51 .18 1176.4 .0333 .1156 2.33 .1'7 15.3.4 .0.’ 55 .1221. 2 31 .70 1;§.7 .OTJV .12/0 2.51 .20 1L4.3 .0343 .1299 2.71 .21 If{.4 .0?43 .1338 3.31 .52 ‘57.0 .0231 .1333 3.71 .23 113.2 .0336 .1443 3.02 .23 131.3 .0259 .1472 S'fi-"I': F'F'ET‘V'JJ'Z'Fy 137313723 {11: HBO 7.47 .' _-,".~..-.5"_1L."_‘:'\'. '31 FT . l". E1 {\UY oi” L 73, L [Li/[I‘ll Ff... ( b I." 1:.-.3) 7.1 o ‘4‘- ? (119‘? i593}. :vur bnn.u o. TOTA 3010. a. E" R‘H-VELy ’W/fifi 1. 7 7' .IL :1 ”-J "' ' 7 "I! 135.531-11.1’ CHANGE 1 F'E'EWTiIiv'I' 1.2 . 3‘7 ' ’5_ f'! r' Cé'ffil‘JGt-I PEI»: J“! 170.03 . i ;: .. ... v. -..A . .. ., ....., ., ,. .‘.'.-'J: .‘Fu; r.. ..\/‘;-y uxl‘v .3 wlgr H.331.) Fifi-J H'JISTIJ'J‘Z Cir’Tth‘iTy HEW Hint-713 .- """"'..“.9F_ '32: THE i":I..'1 IT’If-IES 1';i:i‘tC6‘.'.3|L TU CUL’L I TOYA; BfL/LB H?) 3002.76 gun COHLUR 2.014 CF SCCUNHS EXECUTION TIHE FEQD! 16.47.45 -L)L..U..LIto J33 (0373 3 9.07 TB 128 179.1 '50.? 177.1 177. ’9 1/L).7 174.1 172.7 171.3 169.1 168.2 167.4 1.33.? 3.1.4 16307 162.1 161.": 1.30.8 59.6 159.1 538.0 157.4 356.4 1|. 1'.“ 4..'_'o 1 Y7T3 . 1) 1C)» . .5 153.8 1513.0 152.6 131.8 131.4 8 . 38 11.88 11.77 11.3.5 11.15 11.4d 11.37 11.39 11.3 11.09 11.04 11.00 10.?1 10.33 10.79 10070 10.c6 10.63 10.36 10.53 10.47 10.44 1U.33 10.35 10.30 1U926 10.19 10.17 10.10 5111.3 IEN T 2.04 . 115‘313 .1334 . 131‘? .1306 .1395 .1?83 .1273 .1263 .1217 o 12‘! 1 .1236 1 an!“ o 1... J .1114 .1210 . 13 ‘28 . 1 19.". . 1 18'? .1181 .11/7 . 1 1.69 o 1 1.1.1.1 .1158 .1117... .1148 . 1 1 4.5 .1140 .1134 .1132 .1126 .1123 129 '-. (Tn-u ~ rh‘ “n ogfllhlriul V V cit,“ "W1 IKQKYCCw 7E HLfiYLK CUUAWICN FDR CORN Zu-‘LrT hf?! TEN?- F433. 2 1-.;.‘ 5.553 thi 7.'.T'..).".‘I"J'o3 425.57.;‘u2' 7.53-7 .."":/':;:l Fl'lFIT HhL‘lltNF LUNL-ITIDNS) 141. ’ fE_w..‘.' I'Zrir-v '1' 74. LT 7.3.351" ifflr“; F70. ET $33911. v’; LSI'HLTu‘Tv MIST BABIES PERCENTIC‘.47 ,' ‘ J‘LEJ: ”TIL: L‘i'J/nH/S'u FT 11.58 :4: f..." L_ L377?” .-' T ‘.."JI'.: UT I'JI’E‘UAL: FT.1 F1" '._:."-1f'."- ' '.:'.‘ {J’li :‘I'K-Z' VALUES 3'2- li'J‘.' : .fi-Z Emil .0905 HER-"LCM Hfiiliv Lb [H-I'.’ th/lLH/SG FT 605.7 3 nin' 7'7"".3 E“ 92375. Ii‘fl’l'hH/Si] 177/F 15.902 7.7 .L "‘5' {.‘Cf 34'731-i...':."i.' .13 LI'x‘Y {73'5fo DECIMM- .0013 ZL‘J'.-L' :""3- 153;: {-5.313 DECIA'ML .1435 SF] i‘a' )CL‘lLI'TYI FTI’F'A‘ 14.16 !...B "LIRY ilfiiTTER/HR/SU FT 548.01 T’-.3‘V'--. TIME: GER .H'ti-fi F'TL CR‘EIN RC Mi? 1' '.- "i5 ' 1 RH“: HUM 71‘. 1": ."" MB 1' U (-1- riF.‘ l_.:‘/.-1* [IECIHflL 1': F'Eh‘CEN] 1|[;{.:.L:‘H":L .0} .‘30 [47.5 .0063 .0303 71.6 12.47 .1425 UL) 001 225,06 000/3 0001’] 23702 1203‘) 0141.4 .31 .01 217.9 .0084 .rllé 217.1 12.29 .1401 T! "v'? '1!'.‘ '3 “(101 (‘17! '7‘". " 1" 1L“ '2 70’) 11 Second Run Conditions Corn Drying Simulation CFM AT TIN 240 AJ CO.-- '1“. -‘M 130 I A. .7» ~ .51 .33 31..1 .0106 .0156 213.4 12.11 .53 .93 312.1 .0117 .0180 211.4 12.01 .-‘.J (,.'. 210.7 .C'i'lff. .0192. 210.0 11.94 .71 .05 ?Q7.0 .3155 .021? 209.3 31.86 .5) . "('6 f" '. 4 .01 \?4 .03’42 :'-').’..-q 11 .733 09:) 005 20-103 00.11.33 .0204 2'.)!‘02 11.70 1.00 .0/ 201.3 .9152 .OlVd 20$.7 ll.bJ ;.L 3 .0?! :CH'.K .Glf73 .‘T330 :5? .7 11.Tu5 3.3? .0? ‘2)".‘r' .0]?- .’)'S-1-; 333.3 11.1.3 1.1.7 .09 1“;’.7 .0113? .0383.)- 199.1 11.4; 2.41 .10 17's.!) .0193 .Ofi'iv Eff/.3 11.3.59 1.31 .1.‘ 17./.0 .""."l'.'{ .04.!1 196.13 11.3?! 1.3; .11 175.7 .030? .0442 19h.2 11.11 1.71 .1" 1/?.4 .0316 .016: 173.9 1.10 1.13 .13 123.2 .0225 .0175 1):..7 11.10 1.7” .1“ 131.0 .0227 .0331 171.5 11.04 X. _: ...4 L173 .3 .ULLT? .(flSOZ! 1&F?.i3 lk).$\3 -.£1 .15 19”.b .0243 .0330 ‘59.1 10.92 7- '. .1.5 1C{;.D .CL'?b .()éCL3 1LL1.() 10.33! 3... .10 1%".fi .0734 .Oé33 18/.O 10.52 L 4L .27 130.4 .CTdC .Qfi63 135.0 10.77 : .i .13 1H¢.4 .ffifT .0571 190.0 10.75 L.’ ".1 .123 131.4 .QQXU .0/3.‘/ 1114.0 10.68 3.79 .1'4 .‘é..:'-.':: .273"; .0747 431.1 10.64 11.-G 9..."? 1:4,..6 0’! 'u\) 00774 183.2 10050 7.”. .£0 1.1.7 .0234 .03): 131.3 10.LU 3.1: .1”. 2.3;.7 .0390 .(‘855 180.3 10.5' ETKTIQ *f'ngFVI IFLHiS CT H2 15.79 F: .L. J..-' 71‘ i T . JJ ;. :1 - "to, "..I’...'u 17N 1.3 hlr} IUf. If. i:. . I"? 4900. 11.70%: Off-MIN 0. 301fi1. '30J7. 1i ff v JEL: :_B/FLI 1.21 3 L4.’ fl 41’...1 L V- U." . L. \ 1.393 S? thUfibS EéLuUTION TiHC F;RH' 16.02.46 4:":139. (3C E'ElrUN. 14.. “.3'3.’ 2. C..;3 REL? 6 win Lfifih SIfiULATION L. IN," EhE Ti13i’.r-(..vl li11-.i-.5..’:.h' ELika-iTIUN i'bR CURN INPUT CTJPITfflti: I“? :: f-IF.’ TEN-'9 74'3"). I{L-T 333 HUN RQYIU.OO3 AIFFLJU Fa“?! LEM/50 FT(AT AMBIENT CONDITIONS) 128. AMAIIWT TEuP. Fofl. INLI'f EifiI;3 TE”VW 1:70. IN_£ HGISTbHE CSNFEhI. MET BASIS PERCENT13.6 C'fili FWJTJECLTEr BU/HH/fiillrr 10.32 URIER LEFSTH. rr 3. OUTPUT INthVfiLv FT.1 FFELIHINARY CALCULPTED VALUES ”fi- :4...'P.'.b-u :-~‘—“P now-’9‘ H‘CIWOI—‘(D'v“’-—..$ .-‘ :0...” 1' J‘-. M .JJ/7 .1354 o 1 Tit—Id o 134:”) .1333 First Run - First Pass Conditions Corn Drying Simulation l3]. RFl HUM. DFVYHWL .0305 ATFFLfiu RRTF. 1F DRY AIRIHR/SN FT 559.1 CFM AT TIN 176 I” .r fr-./...':..'»L'=: 1..-: . L«;._./u.