A FORTRAN PSYOHROMETHIC WODE

Thasis for the Dagise of M. 太.
MOHION STATE UNVERSTV
HovD EucEve Lexay
1872

ABSTRACT

A FORTRAN PSYCHROMETRIC MODEL

BY

LLOYD EUGENE LEREW

Psychrometric properties are basic to many agricultural systems. A psychrometric model is therefore required for computer simulation and analysis of such systems.

A collection of theoretical and empirical psychrometric equations have been programmed as a set of efficient and interconnected FORTRAN sub-programs.

Dry-bulb, wet-bulb and dew-point temperature, absolute and relative humidity, vapor and saturated vapor pressure, latent heat, enthalpy, and specific volume are included in the model. Given any two of these properties (if they are independent), it is possible to find the remaining properties with the model.

Specific instructions for the use of the model are given for a number of pairs of independent starting properties.

A FORTRAN PSYCHRONETRIC MODEL

BY

LLOYD EUGENE LEREW

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Agricultural Engineering

1972

ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance, trust and encouragement provided by his major professor, Dr. F. W. Bakker-Arkema.

The financial support provided by the Crops Research Division of the Agricultural Research Service of the United States Department of Agriculture is greatly appreciated.

PREFACE

The thesis, A Fortran Psychrometric Model, written by Lloyd E. Lerew represents only a small part of his research efforts over the past two years. Following is a complete list of the projects to which Lloyd E. Lerew has either contributed significantly or has been its sole researcher:

1. Grain Drying

Bakker-Arkema, F. W., T. W. Evans, and L. E. Lerew (1970) Michigan State Grain Drying Models. ASAE Paper No. 70-832.

Bakker-Arkema, F. W. and L. E. Lerew (1970) Single particle cooling and thin-layer drying simulation. In Proceedings of the Institute for Simulation of Cooling and Drying Beds of Agricultural Products, Agricultural Engineering Department, Michigan State University, East Lansing, Michigan.

Bakker-Arkema, F. W., R. J. Patterson, and L. E. Lerew (1971) Multiple-zone drying in stationary and moving bed dryers. ASAE Paper No. 71-302.

Bakker-Arkema, F. W., L. E. Lerew, and R. J. Anderson (1972) Better quality grain through the use of concurrent flow grain drying with counterflow cooling. In Proceeding of Grain Damage Symposium, Ohio State University, Columbus, Ohio.

Bakker-Arkema, F. W., L. E. Lerew, and S. F. DeBoer (1972) Grain dryer simulation. Research Report - Michigan Agricultural Experiment Station, Michigan State University, East Lansing, Michigan.

Bakker-Arkema, F. W., M. G. Roth, and L. E. Lerew (1972). Gleichzeitig Warme-und Stoff-Austausch in einem getreidetrockner mit gegenstrom. Landtechnische Forschung (accepted for publication).

Brooker, D. B., L. E. Lerew, and F. W. Bakker-Arkema (1971) Drying by alternating heated and unheated air: a mathematical analysis. ASAE Paper No. 71-307.

Lerew, L. E. (1970) Comparison of thin-layer drying equations for corn. Unpublished Report.
2. Potatoes

Lerew, L. E. (1972) Energy and time requirements for heating potatoes after storage. In Proceedings of the Midwest Potato Storage Workshop, Cooperative Extension Service, Michigan State University, East Lansing, Michigan.

Rosenau, J. R., F. W. Bakker-Arkema, and L. E. Lerew (1970) Cooling of a bed of potatoes (or apples, tomatoes, sugarbeets, onions): a realistic model. In Proceedings of the Institute for Simulation of Cooling and Drying Beds of Agricultural Products, Agricultural Engineering Department, Michigan State University, East Lansing, Michigan.
3. Other

Bakker-Arkema, F. W. and L. E. Lerew (1972) Heat exchangers, computer analysis. IFT Convention, Minneapolis, Minnesota.

Lerew, L. E. (1972) Toward more effective use of the CDC 6500 (how to get the 6500 before it gets you). To be published, Department of Agricultural Engineering, Michigan State University, East Lansing, Michigan.

Lerew, L. E., F. W. Bakker-Arkema, and G. H. Bulgrien (1972) User's guide to SGRAF6 and SPLOT6: printer and Calcomp plot packages. Unpublished report.

It was the intention of the guidance committee to include in this thesis all the papers of which Lloyd E. Lerew had been the author or a co-author. Unfortunately current administration procedures within the Colleges of Engineering and of Agriculture and Natural Resources at Michigan State University did not allow this.
F. W. Bakker-Arkema Chairman Guidance Committee of L. E. Lerew and Major Professor.

TABLE OF CONTENTS

Page
INTRODUCTION 1
BASIC PSYCHROMETRIC EQUATIONS 2
FORMULATION OF THE MODEL 6
USE OF THE MODEL 15
ZEROIN 17
USER CONSIDERATIONS 20
MODEL VALIDATION 21
RECOMMENDATIONS FOR FURTHER STUDY 22
SUMMARY 23
BIBLIOGRAPHY 24
APPENDIX A: Original References 27
APPENDIX B: Model Listing 28
APPENDIX C: Suggested Calling Sequence With DB Known 34
APPENDIX D: Suggested Calling Sequence To Find DB 37
APPENDIX E: Validation Program 38
APPENDIX F: Results Of Validation Program 41

LIST OF TABLES

Page
Mnemonic Codes Used in the FORTRAN Psychrometric Model 10
Psychrometric Properties by Independent Groups 10
Relationships Given by the Equations 11
Pairs of Properties Which Require Two-Dimensional Search 11
Pairs of Beginning Properties for the Psychrometric Model 12
Function Subprograms in the Model 13

LIST OF SYMBOLS

T	Dry-bulb temperature, R
T ${ }_{\text {b }}$	Wet-bulb temperature, R
T_{dp}	Dew-point temperature, R
P_{v}	Vapor pressure, psi
P_{8}	Saturation vapor pressure at T, psi
$\mathrm{P}_{\text {swb }}$	Saturation vapor pressure at T_{wb}, psi
H	Humidity ratio, 1 b water per 1 b dry air
H^{\prime}	Humidity ratio at saturation at $T_{w b}$, 16 water per 16 dry air
${ }^{\text {fg }}$	Latent heat of vaporization of water at saturation, Btu per 1 b
$\mathrm{h}^{\prime} \mathrm{fg}$	Latent heat of vaporization of water at $T_{w b}$, Btu per lb
$h^{\prime \prime}{ }_{f g}$	Latent heat of vaporization of water at $T_{d p}$, Btu per 1 lb
$h_{i g}$	Heat of sublimation of ice, Btu per lb
$h_{i g}^{\prime}$	Heat of sublimation of ice at $T_{w b}$, Btu per 1 l
$h^{\prime \prime}{ }_{18}$	Heat of sublimation of ice at T_{dp}, Btu per lb
h	Enthalpy of air-vapor mixture, Btu per lb dry air
rh	Relative humidity, decimal
V_{sa}	Air specific volume, ft^{3} per 1 b dry air

INTRODUCTION

Psychrometrics is basic to research and design of many agricultural processing, storage and environmental systems applications. A number of professional organizations have publiched psychrometric charts and tables to be used as standards for their industries (ASHRAE, 1963; ASAE, 1971).

Charts and tables are not well suited to the application of computer aided design and simulation. The recent increase in the use of computer techniques has created the need for a standard computer model of the psychrometric chart.

The psychrometric model presented here is based on a combination of theoretical and empirical equations. Ten thermodynamic properties are considered. In all but five cases, it is possible to find the eight remaining properties when given two independent properties which uniquely describe a state point of a dry air--water vapor mixture.

The model has been designed to be easily implemented as well as easily modified. Several novice programers have already successfully applied portions of the model (Farmer, 1971; Schluckbier, 1972). Equations for additional properties or more accurate equations can be easily added. Portions of the model have been used in the simulation of grain dryers (Bakker-Arkema et al., 1972).

BASIC PSYCHROMETRIC EQUATIONS

Brooker (1967, 1970) has compiled and tested a number of equations for psychrometric properties. Appendix A contains the original references given by Brooker for the equations used here. All error limits presested here are taken from Brooker (1970).

The following assumptions were made by Brooker (1970):
(1) The properties of steam are properly described by Kennan and Keyes (1936).
(2) Air-water vapor mixtures can be treated as a mixture of ideal gases.

The saturation line can be described by

$$
\begin{aligned}
& \operatorname{LnP}_{8}=23.3924-\frac{11286.6489}{T}-0.46057 \operatorname{Ln~T} \\
& 459.69 \leq T \leq 491.69
\end{aligned}
$$

and by

$$
\begin{equation*}
\operatorname{Ln}\left(\mathrm{P}_{\mathrm{B}} / \mathrm{R}\right)=\frac{\mathrm{A}+\mathrm{BT}+\mathrm{CT}^{2}+\mathrm{DT}^{3}+\mathrm{ET}^{4}}{\mathrm{FT}-\mathrm{GT}^{2}} \tag{2}
\end{equation*}
$$

$$
491.69 \leq \mathrm{T} \leq 959.69
$$

where

$$
\begin{array}{ll}
R=0.3206182232000000 \mathrm{D} 04 & D=0.2153211916363544 \mathrm{D}-04 \\
\mathrm{~A}=-0.2740552583614256 \mathrm{D} 05 & E=-0.4620266568199822 \mathrm{D}-08 \\
\mathrm{~B}=0.5418960763289505 \mathrm{D} \mathrm{02} & \mathrm{~F}=0.2416127209874000 \mathrm{D} 01 \\
\mathrm{C}=-0.4513703841126545 \mathrm{D}-01 & G=0.1215465167060546 \mathrm{D}-02
\end{array}
$$

The form of equation (1) results from the integration of the Clausius-Clapeyron equation. Coefficients were obtained by fitting the equation to the data of Keenan and Keyes for a temperature range of 0 to 32 F. The deviation from Keenan and Keyes for a temperature range of -20 to 32 F is as follows:
$0.00002 \leq \mathrm{P}_{\text {error }} \leq 0.00069$
$0.2993 \leq \%$ error ≤ 0.8501
Equation (2) is empirical. The deviation from Keenan and Keyes data is shown below for a few data points where the error was large when compared to the error at other temperatures.

At $32 \mathrm{~F} \quad$ Absolute error $=0.0002$ psia Percent error $=0.228$
At $40 \mathrm{~F} \quad$ Absolute error $=0.0001$ psia Percent error $=0.081$
At $470 \mathrm{~F} \quad$ Absolute error $=0.5027$ psia Percent error $=0.097$
Latent heats are found by the following empirical equations:

$$
\begin{align*}
& h_{1 g}=1220.844-0.05077(T-459.69) \tag{3}\\
& 459.69 \leq T \leq 491.69 \\
& h_{f g}=1075.8965-0.56983(T-459.69) \tag{4}\\
& 491.69 \leq T \leq 609.69
\end{align*}
$$

$$
\begin{equation*}
h_{f g}=\left(1354673.214-0.9125275587 \mathrm{~T}^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

$$
609.69 \leq T \leq 959.69
$$

Equation (3) can be used for temperatures as low as -20 F with an absolute error $\ln h_{i g}$ of 0.66 Btu per 1 b . For a temperature range of 0 to 32 F , the error range is as follows:
$0.0209 \leq h_{\text {error }} \leq 0.1932$
$0.0017 \leq \%$ error ≤ 0.0158
Error limits for equations (4) and (5) from 32 to 480 F are as follows:
$0.00 \leq h_{\text {error }} \leq 1.47$
$0.00 \leq \%$ error ≤ 0.20
From 480 to 500 F , the absolute error increases to $3.2 \mathrm{Btu} / 1 \mathrm{~b}$. At 500 F , the percent error is 0.45 .

The wet-bulb line is described by

$$
\begin{equation*}
P_{s w b}-P_{v}=B\left(T_{w b}-T\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{B}=\frac{0.2405\left(\mathrm{P}_{\mathrm{swb}}-\mathrm{P}_{\mathrm{atm}}\right)\left(1+0.15577 \mathrm{P}_{\mathrm{v}} / \mathrm{P}_{\mathrm{atm}}\right)}{0.62194 \mathrm{~h}_{\mathrm{fg}}} \\
& 459.69 \leq \mathrm{T} \leq 959.69
\end{aligned}
$$

Equation (6) was derived on the assumption that ($H^{\prime}-H$) lb of water vapor is combined with one lb of dry air and H lb of water vapor is combined with one 1 b of dry air and H lb or water vapor by an adiabatic process at wet bulb temperature. The derivation is shown by Brooker (1967).

For temperatures below 32 F values of $\mathrm{h}^{\prime}{ }_{i g}$ are used in equation (6) rather then $h^{\prime}{ }_{f g}$.

There is no way to express the accuracy of equation (6) except to use the equation and then check the answer against some known standard. Examples are given by Brooker (1967).

The equation for absolute humidity is

$$
\begin{align*}
& H=\frac{0.6219 P_{v}}{P_{\text {atm }}-P_{v}} \tag{7}\\
& 459.69 \leq \mathrm{T} \leq 959.69
\end{align*}
$$

This equation is based directly on the definition of H and assumes that dry air and water vapor are ideal gases.

Specific volume is found by the equation

$$
\begin{align*}
& \mathrm{V}_{\mathbf{s a}}=\frac{53.35 \mathrm{~T}}{144\left(\mathrm{P}_{\text {atm }}-\mathrm{P}_{\mathrm{v}}\right)} \tag{8}\\
& 459.69 \leq \mathrm{T} \leq 959.69
\end{align*}
$$

Equation (8) is the ideal gas law and needs no explanation.
Enthalpy is best described as

$$
\begin{aligned}
& \text { Enthalpy = Enthalpy of air + Enthalpy of water (or ice) at dew point } \\
& \text { temperature + Enthalpy of evaporation (or sublimation) } \\
& \text { at dew-point temperature + Enthalpy added to the water } \\
& \text { vapor (superheat) after evaporization. }
\end{aligned}
$$

The results in the equations

$$
\begin{align*}
& \mathrm{h}=0.2405\left(\mathrm{~T}_{\mathrm{db}}-459.69\right)-\mathrm{H}[143.35+0.485(491.69 \\
& \left.\left.-\mathrm{T}_{\mathrm{dp}}\right)^{2}\right]+\mathrm{h}^{\prime \prime}{ }_{\mathrm{ig}} \mathrm{H}+0.448 \mathrm{H}\left(\mathrm{~T}_{\mathrm{db}}{ }^{\left.-T_{\mathrm{dp}}\right)}\right. \\
& 459.69 \leq \mathrm{T}_{\mathrm{dp}} \leq 491.69 \tag{9}
\end{align*}
$$

and

$$
\begin{gather*}
\mathrm{h}=0.2405\left(\mathrm{~T}_{\mathrm{db}}-459.69\right)+\mathrm{H}\left(\mathrm{~T}_{\mathrm{dp}}-491.69\right) \tag{10}\\
+\mathrm{h}^{\prime \prime} \mathrm{fg}_{\mathrm{fg}} \mathrm{H}+0.448 \mathrm{H}\left(\mathrm{~T}_{\mathrm{db}}-\mathrm{T}_{\mathrm{dp}}\right) \\
491.69 \leq \mathrm{T}_{\mathrm{dp}} \leq 671.69
\end{gather*}
$$

The value of specific heat for water vapor is considered to be 0.448 Btu per 1 b per F in equations (9) and (10). This value is appropriate for dew-point temperatures of 70 F or less. If for some reason the dew-point temperature is higher, the specific heat of the vapor should be considered a function of temperature and increased.

Relative humidity is defined as

$$
\begin{equation*}
r h=\frac{P_{v}}{P_{s}} \tag{11}
\end{equation*}
$$

Equations (1) through (11) constitute the complete set on which the psychrometric model is based.

In order to simplify the notation, the mnemonic codes listed in Table 1 were developed.

A number of the ten properties shown in Table 1 are not independent. To uniquely describe a point on the psychrometric chart, two independent properties must be given. Table 2 lists dependent properties together by groups; two properties not in the same group in Table 2 do describe a point uniquely.

A complete model of the psychrometric chart should be capable of finding the remaining eight properties regardless of which pair of independent properties are given. If relationships are known such that given any property within a group all other properties within that group can be found, all that remains to completely model the chart is to specify the relationships among groups.

Equations (1) through (5) represent relationships between DB and the other properties of group I. Equation (6) is a relationship among groups I, II, and III (DB, PV, and WB respectively). A relationship between members of group II is given by equation (7). Equation (8) deals with groups I, II, and V, equations (9) and (10) with I, $I I$, and III, and equation (11) with groups I, II, and IV. This is summarized in Table 3.

The form of the equations makes explicit solution for some of the properties impossible or quite difficult. Equation (2), for example, is difficult to solve for $D B$, the dy bulb temperature, and equation (6) can not be solved explicity for $W B$. The use of a search technique helps to overcome these difficulties.
-

Abstract

Careful examination of equations (1) through (11) reveals that relationships between groups III and IV, groups III and V, or groups IV and V with any other group are non-existent. This means that, given properties from any two of these groups, the relationships to explicitly solve for the remaining properties are missing.

The equations which express relationships among groups are all keyed to groups I and II (see Table 3). With the aid of a two-dimensional search, it is possible to find group I and group II properties when only group III, IV, or V properties are given. Table 4 lists the possible pairs of properties which would require a two-dimensional search.

TABLE 1. Mnemonic Codes Used in the FORTRAN Psychrometric Model

Code	Property	Units
DB	dry bulb temperature	R
DP	dew point temperature	R
EN	enthalpy	Btu/lb dry air
HA	absolute humidity	lb water/lb dry air
HL	latent heat of vaporization (sublimation)	Btu/lb water
PS	saturation vapor pressure	psia
PV	relative humidity	psia
RH	search or special	decimal
S	specific volume of dry air	ft ${ }^{3} / 1 b$
VS	wet bulb temperature	R

TABLE 2. Psychrometric Properties by Independent Groups

Group	Properties
I	DB, HL, PS
II	DP, HA, PV
III	EN, WB
IV	RH
V	VS

TABLE 3. Relationships Given by the Equations

Equation Number	Relationship
	1
2	I
3	I
4	I
5	I
6	I, II, III
7	II
8	I, II, V
9	I, II, III
10	I, II, IV
11	

TABLE 4. Pairs of Properties which Require a Two-Dimensional Search
EN and RH
WB and RH
EN and VS
WB and VS
RH and VS

TABLE 5. Pairs of Beginning Properties for the Psychrometric Model
$P=$ Possible to find remaining properties starting with these two.

N = Two dimensional search necessary to find remaining properties starting with these two.

I = Infeasible; this pair does not uniquely describe a point on the psychrometric chart

	DP	EN	HA	HL	PS	PV	RH	vs	WB
DB	P	P	P	I	I	P	P	P	P
DP		P	I	P	P	I	P	P	P
EN			P	P	P	P	N	N	I
HA				P	P	I	P	P	P
HL					I	P	P	P	P
PS						P	P	P	P
PV							P	P	P
RH								N	N
vS									N
WB									

TABLE 6．Function Subprograms in the Model

Name	Statement	Equation Number
DBPSS非	$0=P S-P S D B(D B)$	1
DPDBENS非	$0=.2405 *$（DB－459．69）－EN＋HA＊HLDB（DP）+	
	． 448 ＊HA＊（DB－DP）－HA＊（143．35＋．485＊	
	（491．69－DP））	
	for DP ＜ 491.69	9
	$0=.2405 *$（DB－459．69）－EN＋HA＊HLDB（DP）+	
	．448＊HA＊（DB－DP）＋HA＊（DP－491．69）	
	for $D P \geq 491.69$	10
DPHAS非	$0=\operatorname{PVHA}(\mathrm{HA})-\mathrm{PSDB}(\mathrm{DP})$	
ENDBDP	$=[.2405 *(D B-459.69)+\mathrm{HLDB}$（DP）＊ $\mathrm{HA}+.448$＊	
	HA＊（DB－DP）］－［HA＊（143．35＋．485＊（491．69	
	－DP））］for DP＜ 491.69	9
	$=[.2405 *(D B-459.69)+$ HLDB（DP）＊HA	
	＋．448＊HA＊（DB－DP）］$+\mathrm{HA*}$（ $\mathrm{DP}-491.69$ ）	
	for $D P \geq 491.69$	10
HADBRH	＝ $\operatorname{HAPV}(\mathrm{RH} *$ PSDB（DB）$)$	11
HADP	$=\operatorname{HAPV}(\operatorname{PSDB}(\mathrm{DP})$ ）	11
HAPV	＝． $6219 * \mathrm{PV} /(\mathrm{PATM}-\mathrm{PV})$	7
HLDB	$=1220.844-.05077 *(D B-459.69$	
	for $D B<491.69$	3
	$\begin{aligned} = & 1075.8965-.56983 *(D B-459.69) \\ & \text { for } 491.69 \leq D B<609.69 \end{aligned}$	4

$=\operatorname{SQRT}\left(1354673.214-0.912575587 * \mathrm{DB}^{2}\right)$ for $D B 209.69$ 5
PSDB $=\operatorname{EXP}[23.3924-11286.6489 / D B-.46057 *$ $\operatorname{ALOG}(D B)]$ for $D B<491.69$ 1
$=\mathrm{R} * E \mathrm{EXP}\left[\left(A+B * D B+C * \mathrm{DB}^{2}+\mathrm{D} * \mathrm{DB}^{3}+E \mathrm{E}^{2} \mathrm{DB}^{4}\right) /\right.$(F*DB-G*DB ${ }^{2}$)] where R, A, B, C, D, E, F, Gare constants (Brooker, 1970)2
PVDBVS - PATM-53.35*DB/VS/144 8
PVDBWB $=\left\{\begin{array}{l}\mathrm{PSDB}(\mathrm{WB}) \star[.62194 * \mathrm{HLDB}(\mathrm{WB}) \star \text { PATM }]\end{array}\right.$ 6
$-[.2405 *($ PSDB (WB)-PATM)*(WB-DB)]$\left.*_{\text {PATM }}\right\},\{[.62194 * \mathrm{HLDB}($ WB $) *$ PATM $]$$+\{.15577 *[.2405 *($ PSDB (WB) -PATM* (WB-DB $]\}\}$
PVHA $=\mathrm{HP*PATM} /(.6219+\mathrm{HA})$ 7
DBHA $=\mathrm{PVHA}(\mathrm{HA}) / \mathrm{PSDB}(\mathrm{DB})$ 11
RHPSPV - PV/PS 11
VSDBHA $=53.35 *$ DB* $(.6219+H A) / 144 . / .6219 /$ PATM 8
WBDBHAS非
$0=\mathrm{TWB}-\mathrm{DB}-(\operatorname{PSDB}(\mathrm{WB})-\mathrm{PVHA}(\mathrm{HA})) /[.2405 *$ (PSDB (TWB)-PATM)*(1.+.15577*PVHA(HA)/ PATM)]*(.62194*HLDB(WB)) 6

[^0]Since the occurrence of a situation which would provide only one of the pairs of properties listed in Table 4 is considered to be very unlikely, a two-dimensional search is not included with this model. A number of such routines are avallable (Rosenbrock, 1966; Powell, 1964) and can be implemented easily if the need arises.

Table 5 depicts fourty-five combinations of the ten properties taken two at a time, and shows which are infeasible due to dependence, which would require the use of a two dimensional search, and which are possible with this model. Note that of the thirty-eight physically possible starting pairs, thirty-three can be used without the aid of a two-dimensional search.

The model contains nineteen function subprograms and one subroutine (a zero finding technique discussed later) and required less than 1300 octal memory positions. Several of the function subprograms are used internally only and need not concern the user. Those with which the user is concerned have been named using the codes of Table 1 and a mnemonic scheme. The first two letters are the code of the property that is sought; the second two and third two (if present) are the codes of the properties of which the first is a function. If the first is a function of two values, they are listed in alphabetical order.

Examples:

$$
\begin{aligned}
& \text { RHDBHA - relative humidity as a function of dry bulb } \\
& \text { temp and absolute humidity (humidity ratio). } \\
& \text { PVHA - vapor pressure as a function of humidity ratio. }
\end{aligned}
$$

If the property which is being sought is a temperature (dry-bulb, wet-bulb, or dew-point), the equations require the search routine for a solution; and the user will have to supply additional parameters
(discussed later). An " S " is added to the names of these routines to help remind the user to supply the additional values.

Table 6 lists the sixteen function names which are accessible to the user and the principle statement along with the number of the equation from which it was developed. Most of the developments are straightforward. The zero finding search technique (subroutine ZEROIN) is used to solve equations of difficult form or, as in the case in DPHAS, to solve for a property common to two equations.

The computer programs are listed in Appendix B.

The sixteen functions in Table 6 plus the search technique enable the user to find the eight remaining properties given DB and any other independent property. In addition, it is possible to find DB given one property from group II and one property from groups III, IV or V. Appendices C and D contain $11 s t s$ of suggested function calls and the order of calls and the order of calls to accomplish this.

Use of the non-search functions (those without an S attached) is simple and best illustrated by examples:

1) If TABS = absolute dry bulb temperature and $R=r e l a t i v e$ humidity (decimal)* and it is desired to find the humidity ratio H, the following FORTRAN statement would be used $H=\operatorname{HADBRH}(T A B S, R))$
ii) If the vapor pressure VAP is desired, the following might be used

$$
V A P=P V H A(H A D B R H(T A B S, R))
$$

This 18 simply a nested call similar to $X=\operatorname{EXP}(S I N(Y))$ for $x=e^{\sin (y)}$. Use of the search functions (those with an S appended) is only slightly more difficult. The general form is:
FNAME (PAR1 , PAR2 , GUESS 1, GUESS2 , EPSLON)
where

$$
\begin{aligned}
& \text { FNAME = the function name (DBPS, WBDBHAS, etc.) } \\
& \text { PAR1, PAR2 }= \text { first and second (if applicable) parameters } \\
& \text { specified by the two letter codes in the } \\
& \text { function name. } \\
& \text { GUESS1 = a lowestimate of the answer } \\
& \text { GUESS2 = a high estimate of the answer } \\
& \text { EPSLON = allowable tolerance in the result }
\end{aligned}
$$

The values of GUESS1, GUESS2, and EPSLON should be chosen with care as they greatly affect the time required for the zero-finding search

[^1]technique to arrive at a solution. In general, it should be remembered that input psychrometric quantities are seldom accurate to more than 2 or 3 decimal places and hence an EPSLON of .01 or .001 should be sufficient. The search routine guarantees convergence (usually better than linear, Dekker, 1967), but small EPSLONs require more time. If the values of GUESS1 and GUESS2 are chosen such that both are above or both are below the correct answer, an appropriate error message is printed but computation continues.

Example:
If the following are known
TDB = dry bulb temperature, R
TDP = dew point temperature, R
and the wet bulb temperature is needed, Appendix C says that the absolute humidity must first be found from HADP and then the wet bulb can be found from WBDBHAS. Therefore the calls could take the form

HAVS=HADP(TDP)
TWB=WBDBHAS (TDB , HABS ,TDP ,TDB, .01)
or
TWB=WBDBHAS (TDB, HADP (TDP, HADP (TDP) , TDP , TDB, .01)
if the absolute humidity is not desired separately. Note the use of TDP and TDB as GUESS1 and GUESS2.

ZEROIN is the root finding search technique included in the psychrometric mode. Although used by some of the functions in the model, this subroutine remains completely independent of them and can thus be freely used for other purposes.

ZEROIN is based on an algorithm presented by Dekker (1967) which is a mixture of linear interpolation, extrapolation and bisection. Convergence to a small interval in which a zero exists is guaranteed. No derivates are used.

ZEROIN must be given a function for which a zero exists on an interval J, end points A and B of this interval and EPS the largest acceptable final interval. ZEROIN then works with three points A, B, and C on the interval and the function values at these points FA, FB, and FC. Point B is the most recent ilerate, point A the previous one and point C the "contrapoint" or the last one satisfying SIGN (FB) \neq SIGN (FC). Initially, point B is taken as the end point of J which results in the smallest absolute value of the function; points A and C are taken as the opposite end point. Interpolation or extrapolation is performed between A and B yielding a provisional value I for the next iterate according to the formula:

$$
I=\frac{-(B-A) F B}{F B-F A}+B
$$

If this division results in a divide fault or overflow, bisection is used to determine I by the equation:

$$
I=M=\frac{B+C}{2}
$$

Computation continues using the newly calculated value. If no problem exists with the division, I and M are checked to determine which is closer to B. I is then assigned this value.

Having determined a suitable value for I, the difference between B and I is compared to EPS. If EPS is larger, I is re-evaluated as: $I=S I G N(C-B) \times E P S+B$

If EPS is smaller, the following reassignments are made in preparation for the next step:
$A=B \quad B=I \quad F A=F B \quad F B=$ the function evaluated at I.
One further check is necessary before beginning the following step. If $S I G N F B=S I G N F C, C$ is reassigned to A and $F C$ is reassigned the value of FA .

When $|C-B| \leq 2 x$ EPS the termination procedure is initiated. ZEROIN takes the mid-point value between B and C, assigns it to A and evaluates the function at this point, FA. The final values returned are A and B or C (whichever one has a function evaluation different in sign from FA).

A call to ZEROIN takes the form:
CALL ZEROIN (A, B,EPS,FUNC)
where A and $B=$ the end points of the interval containing a zero
EPS = the largest acceptable final interval containing a zero

FUNC = the name of the user supplied function subprogram containing the function for which a zero is to be found.

Note that FUNC must be typed EXTERNAL in the calling routine.
ZEROIN returns in A and B the endpoints of the final interval of length less than EPS. Either A or B or their average can be used as the zero.

ZEROIN checks the function values of the initial interval end points. If the function values have the same sign, ZEROIN sets the value of ICHK in the labeled common area ICHECK to one. Calculations Calculations then continue as this indicates that multiple roots or no roots occur within the given interval.

In the case of multiple roots one of them will be found. In the case of no roots ZEROIN will converge to the point where the absolute value of the function is a minimum, whether this occurs at an end point or arbitrary value within the interval.

Subroutine 2EROIN can easily be used to form additional functions from the sixteen given. For example, suppose that dew-point temperatures DP and wet-bulb temperatures $W B$ are known in some cases and relative humidity RH and DP are known in other cases and that in both cases the dry-bulb temperature $D B$ is to be found. Appendix D shows that in the first case absolute humidity and then vapor pressure should be found so that PVDBWB can be used with ZEROIN to solve for DB. This might be programmed as

FUNCTION DB1(T)
COMMON/BLOCK/PV,WB
DB1 = PV-PVDBWB(T,WB)
RETURN
END
where T is a dummy variable representing the various values for $D B$ tried by ZEROIN.

Appendix D also shows that in the second case the absolute humidity should be found and that RHDBHA should be solved for DB using ZEROIN. This might be as follows:

FUNCTION DB2 (T)
COMMON/BLOCK2/RH, HA
$\mathrm{DB2}=\mathrm{RH}-\mathrm{RHDBHA}(\mathrm{T}, \mathrm{HA})$
RETURN
END

The calling routine might be

```
PROGRAM SAMPLE(INPUT,etc.)
COMMON/PRESS/PATM
COMMON/BLOCK1/PV,WB
COMMON/BLOCK2/RH,HA
EXTERNAL DB1
EXTERNAL DB2
```

 statements to assign values
 to PATM, EPS EST1, EST2 and
determine whether DP and WB
or DP and RH are given
when DP and WB are given
CALL ZEROIN(EST1,EST2,EPS,DB1)
$\mathrm{DB}=(\mathrm{EST} 1+\mathrm{EST} 2) / 2$.
-
when DP and RH are given
CALL ZEROIN(EST1,EST2,EPS,DB2)
DB=(EST1+EST2)/2.
-
-
END

Note the labeled common area PRESS. This must be specified in all programs which use the model and a value for atmospheric pressure in psia must be assigned to PATM.

The following should help the user avoid possible errors and locate problems that do arise:

1. These routines are said to give accurate results from 440 to 960 R (-20 to 500 F). Accuracy within this region is generally better than can be read from a psychrometric chart.
2. The values returned from these functions for a temperature of 491.69 R (32 F) are those for water vapor mixtures at that temperature. Lower temperatures will cause the heat of fusion to be included where appropriate.
3. All temperatures must be in degrees Rankine.
4. All relative humidities must be decimal.
5. A MODE 0 error (on CDC 6000 series computers) indicates that the EXTERNAL card has been omitted.
6. The following names are used by this package (in addition to the functions listed in Table 6) and should not be used in the user's program

DPL1
DPL2
DBL
WBL
SPECIAL
7. The following statement must appear in the user's program COMMON/PRESS/PATM
and a value must be assigned to PATM.

MODEL VALIDATION

No attempt was made to check the error limits reported by Brooker (1970) for individual equations. Instead, a validation program was written (Appendix E) which computes all remaining properties given DB and HA. These computed properties were then used, one at a time, with the given $D B$ to recompute all remaining properties. The resulting output is in table form for easy comparison of all computed values.

Appendix F contains a number of results from the validation program. The values of DB and HA were chosen so that comparison with the psychrometric chart would be easy. Only a few points show variation to the accuracy printed and this is never more than one or two in the least significant digit.

Comparison of the computed values with the chart shows the model to be at least as accurate as the chart.

Although the inclusion of a two-dimensional search enables this model to completely describe the psychrometric chart, it is not recommended as a standard. Differences in computer hardware and software preclude this.

Ideally, a model of the psychrometric chart should need neither a one-dimensional nor two-dimensional search. Work should be done to derive theoretical or empirical relationships among more of the properties.

A true standard would need to specify accuracy and number of significant digits to be carried through the calculations.

In addition, the effect of changes in atmospheric pressure may not be properly reflected by this model. More experimental data at various pressures is needed.

SUMMARY

This package of subprograms was written to facilitate the use of psychrometric parameters and the processing of psychrometric data. The included Tables and examples are intended to assist the user in the application of these routines and are not to be considered the only possibilities. Much thought was, however, was put into the lists of suggested calls and calling orders and it is believed that they are the most efficient.

The routines have been thoroughly tested. They gave excellent results when compared to the thermodynamic values read from the standard psychrometric charts.

BIBLIOGRAPHY

BI BLIOGRAPHY

ASAE (1971) Agricultural Engineers Yearbook. American Society of Agricultural Engineers. St. Joseph, Michigan

ASHRAE (1963) ASHRAE Guide and Data Book: Fundamentals and Equipment. American Society of Heating, Refrigerating, and Air Conditioning Engineers. New York, New York.

Bakker-Arkema, F. W., Lerew, L. E., and DeBoer, S. F. (1972) Grain dryer simulation. Research Report - Michigan Agricultural Experiment Station, Michigan State University, East Lansing, Michigan.

Brooker, D. B. (1967) Mathematical model of the psychrometric chart. Transactions of the ASAE (10) 558.

Brooker, D. B. (1970) Modeling of the psychrometric chart. Proceedings of the Institute for Simulation of Cooling and Drying Beds of Agricultural Products, Michigan State University, Nov. 2-4, 1970.

Brunt, David (1941) Physical and dynamical meteorology. Cambridge University Press, Pp. 85-87.

Dekker, T. J. (1967) Finding a zero by means of successive linear interpolation. In Conference of Constructive Aspects of the Fundamental Theorem in Algebra, Zurich, Switzerland. Wiley and Sons, Inc., New York, New York.

Farmer, D. M. (1971) Personal communication.
Keenan, J. H. and F. G. Keyes (1936). Thermodynamic properties of steam. John Wंiley and Sons, Inc.

Powell, M. J. D. (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal 7(2)155.

Rosenbrock, H. H. and C. Story (1966). Computational Techniques for Chemical Engineers. Pergamon Press.

Schluckbier, G. W. (1972) Personal communication.
Smith, L. B., Keyes, F. G. and H. T. Gerry (1934) Proc. American Academy of Arts and Science. (69)137.

APPENDICES

APPENDIX A

Original References

References for equations given by Brooker (1970).	
Equation Number 1	Reference
2	Brooker (1967)
3	Smith, et al. (1934)
4	Brooker (1967)
5	Ibid.
6	Brooker (1970)
7	Brunt (1941)
8	Brooker (1970)
9	Ibid.
10	Ibid.
11	Ibid.

```
C**-44
C*E***
C*****
C*****
C***** OESCRIPTION
        GROUP OF HIGHLY INTERACTIVE FUNCTION SUBPROGRAMS BASEO
        ON EQUATIONS BY BROOKER (1967,1Э7C) AND A ROOT FINDING SUB-
        ROUTINE BASED ON AN ALGORITHM BY DEKKER (1967) USEJ TO FIND
        AND CONVEZT FSYCHROMETRIC FROFERTIES
C*****
C*****
C*****
C*****
C*****
C*****
C*****
C*****
C**4**
C*****
C******
C*****
C*****
C*****
C*****
C*****
C******
C*****
C**444
C*****
C*****
C*****
C*****
C*****
C*****
    PSYCHROMETRIC MOOEL
                            L.E. LEREW, PROGRAMMER
C******
C*****
C*****
C*****
FUNCTION SUBPROGRAMS CONTAINED
        OBPSS
        OOL (USED INTERNALLY ONLY)
        OPOBENS
        DPHAS
        DPL1 (USED INTERNALLY ONLY)
        OPL2 (USED INTERNALLY ONLY)
        ENO8JP
        HADURH
        HAOF
        HAPV
        HLDB
        PSOB
        PVHA
        PVOBVS
        PVO3HB
        RHFSJV (ENTRY--RHOBHA)
        VSOSHA
        WBOBTAS
        H3L (USED INTERNALLY ONLY)
        SUBROUTINES CONTAINED
        ZEROIN
            FUNCTION DBPSS(PS,G1,G2,EPS)
            COMMON /SPECIAL/PV,TB,XTRA
            COMMON/ICHECK/ICHK
            EXTERNAL OBL
            A=G1 $ B=G2 & XTRA=PS
            CALL ZEROIN (A,B,EPS,DBL)
            UBFSS=(A+B)/2.
            IF(ICHK.EQ.1) PRINT 21U,G1,G2,OBPSS
        210 FORMAT(1HO,130(1HS)/10X54HH A R N I N G--NO OR MULTIPLE ROOTS OETE
        1CTED BY ZEKOIH/3OX33HCALLEO FROM OBFSS - GUESSES ARE,G21.24,4H A
        2NO,G2L.14/3.X17HRETURNED VALUE IS,G21.14)
        RETURN
        ENO
        FUNCTION DBL(T)
        COMMON /SPECIAL/PV,TB,PS
        OBL=PS-PSOB(T)
        RETURN
        END
```

```
    FUNCTION DPD3ENS(OB,EN,G1,G2,EPS)
    COMMON /SPECIAL/PV,TB,XTRA
    COMMON/ICHECK/I CHK
    EXTERNAL OPLZ
    A=G1 $ B=G2
    XTRA=.2405*(DB-459.69)-EN
    TB=DB
    CALL ZEROIN (A,B,EPS,DPLZ)
    DFDBENS=(A+B)/2.
    IF(ICHK.EQ.1) PRINT 210,G1,G2,DPDBENS
210 FORMAT(1HO,13J(1HS)/10X54HW A R N I N G--NO OR MULTIPLE ROOTS DETE
    1CTED BY ZEROIN/30X33HCALLED FROM DFUBENS. GUESSES ARE,G21.14,4H A
    2ND,G22.14/3uX17HRETURNED VALUE IS,G21.14)
    RETURN
    END
```

 FUNCTION OPHAS(HA,G1,G2,EPS)
 COMMON /SPECIAL/PV,OB,XTRA
 COMMON/ICHECく/ICHK
 EXTERNAL DPLI
 \(P V=P V H A(H A)\)
 \(A=G 1\) \& \(B=G 2\)
 CALL ZEROIN (A,B,EPS,OPL1)
 DPHAS = (A+B)/2.
 IF(ICHK.EQ.1) FRINT 210,G1,G2,OFHAS
 210 FORMAT(1HO,13U(1HS)/10X54HH A R N I N G--NO OR MULTIPLE ROOTS DETE
1CTED BY ZEROIN/30X33HCALLED FROM DPHAS • GUESSES ARE,G21.14,4H A
2NO,G22.14/30X17HRETURNED VALUE IS,G21.14)
RETURN
END
FUNCTION DPLI(TOP)
COMMON /SPECIAL/PV,DB,XTRA
OPLI = PV-PSDO (TDP)
RETURN
ENO
FUNCTION DFL2 (TDF)
COMMON /SPECIAL/PV,OB,XTRA
$H A=H A D P$ (TDP)
T2 = HA*HLO3(TJF) +. 44 8* HA* $^{*}(03-$ TOF)
IF(TOP-491.6Э) 1,2,2
1 DPL2 2 XTRA + T2 $-H A+(143.35+.485 *(491.69-T D P))$
RETURN
2 JFL2 $=X T R A+T 2+H A *(T D P-491.69)$
RETURN
ENO

```
    FUNCTION ENDBOP (DB,OP)
    COMMON/PRESS/ PATM
    HA=HADF(OF)
    T1=.2405*(DB-459.69)+HLDB(DP)*HA+.448*HA* (OB-DP)
    IF(DP-491.69) 1,2,2
1 ENDBDP=T1-HA*(143.35+.485*(491.69-DP))
    RETURN
2 ENDBDP=T1+HA*(DP-491.69)
    RETURN
    ENO
```

 FUNCTION HAD3RH(OB,RH)
 HADBRH = HAPV(RH*PSOB(OB))
 RETURN
 ENO
 FUNCTION HAUP(OP)
 HAOP = HAPV (PSDZ(DP))
 RETURN
 END
 FUNCTION HAPV (PV)
 COMMON/PRESS/PATM
 HAPV \(=6219 * P V /(P A T M-P V)\)
 RETURN
 END
 FUNCTION HLUB (DB)
 IF(OB-491.69) 1,2,2
 1 HLUE \(=1220.844-.05 C 77 *(U B-459.69)\)
 RETURN
 2 IF (DB-609.69) 3,4,4
3 HLDB=14.75.8965-.56983*(D8-459.69)
RETURN
4 HLOB=SQRT (1354673.214-. $9125275587 * J B^{*}$ OB)
RETURN
END
\square

```
    FUNCTION PSOB (OB)
    OATA R,A,B,C,O,E,F,G/.3206182232E04,0. 274055258361426E05,. 54189607
A6328951EO2,-.45137U384112655E-1,.215321191636354E-4,0.462026656819
B982E-8,.2416127209874E01,.121546516706055E-2/
    IF(DB-491.69) 1,2,2
1 PSOB=EXP(23.3924-112806.6489/DB-.46057*ALOG(DB))
    RETURN
2PSDB=R*EXP((A+DB*(B+DB*(C+DB*(D+DB*E))))/(DB*(F-G*DB)))
    RETURN
    END
```

FUNCTION PVHA (HA) COMMON/FRESS/FATM PVHA $=H A * P A T M /(.6219+H A)$ RETURN
ENO

FUNCTION PVUZVS(DB,VS)
COMMON/PRESS/PATM FVOBVS=FATM-53.35*DB/VS/144. RETURN
END

```
FUNCTION PVUUWZ(OB,HB)
    COMMON/PRESS/PATM
    A=FSDB(WB) & B=.62194*HLOU(WB)*PATM & C=. 2405*(A-PATM)*(WO-OB)
    PVDBWB=(A*B-こ*PATM)/(B+.15577*C)
    RETURN
    ENO
```

 FUNCTION RHFSPV(01,D2)
 \(A=01\) \& \(B=02\) \$ GO TO 1
 ENTRY RHOBHA
 \(A=P S D B(01) \& B=F V H A(02)\)
 1 RHPSPV=B/A
RETURN
ENO

```
    FUNCTION VSOFHA (OB,HA)
COMMON /PRESS/PATM
VSDEHA=53.35*Od*(.6219+HA)/144./.6219/PATM
RETURN
ENO
FUINCTION WBD3HAS(OB,HA,G1,G2,EPS)
COMMUN /SPECIAL/PV,TB,XTRA
COMMON/IGHECく/ICHK
EXTERNAL HBL
\(A=G 1\) \$ \(B=G 2\)
\(T B=O B\)
\(P V=P V H A(H A)\)
CALL ZEROIN (A,B,EPS,WBL)
WBJBHAS = ( \(A+B) / 2\).
IF(ICHK.EQ.1) PRINT 210,G1,G2,WBDBHAS
210 FORMAT(1HO,13J(1HS)/1OX54HW A R N I N G--NO OR MULTIPLE ROOTS DETE 1CTED उY ZEROIN/30X33HCALLED FROM H3DBHAS. GUESSES ARE,G21.14,4H A 2NO,G22.14/3'メ17HRETURNED VALUE IS,G21.14)
RETURN
END
```

```
FUNCTION WBL(THB)
```

FUNCTION WBL(THB)
CO.1MON /PRESS/PATM
CO.1MON /PRESS/PATM
COMMON /SPECIAL/PV,DB,XTRA
COMMON /SPECIAL/PV,DB,XTRA
PW3=PSDB(TWB)
PW3=PSDB(TWB)
WBL=TWB-D3-(PWB-PV)/(.2405*(PWB-PATM)*(1.+.15577*PV/PATM))*(.62194
WBL=TWB-D3-(PWB-PV)/(.2405*(PWB-PATM)*(1.+.15577*PV/PATM))*(.62194
1*HLOB(THB))
1*HLOB(THB))
RETURN
RETURN
ENO

```
    ENO
```

SUBROUTINE ZEROIN(A,B,EPS,FUNC)

```
C*****
C***** CAUTION
C***** THE FOLLUHING ARE INTRINSIC LIBRARY FUNCTIONS ON THE COC 6500
C*****
C******
C***** LEGVAR - SHECKS CHARACTERISTIC OF ARGUMENT ANO RETURNS O FOR
C*****
C*****
C*****
    AND MAY HAVE TO BE CHANGEO FOR OTHER MACHINES
        VORMAL. USEO HERE AS A OIVIDE FAULT CHECK
    SIGN - TRANSFERS SIGN OF SECOND ARGUMENT TO FIRST ARGUMENT
COMMON/ICHEC</ICHK
REAL I,M
ICHK=0
FA=FUNC(A) ; FB=FUNC(B) & FC=FA & C=A
IF(SIGN(1.,F3).NE.SIGN(1.,FC)) GO TO 1
ICHK=1
1 IF(ABS(FC)-ABS(F3)) 2,3,3
2 C=S & B=A & A=C $ FC=FB $ FB=FA $ FA=FC
3 IF(ABS(C-B)-2.*EPS) 12,12,4
4 I=(B-A)*F3/(FB-FA) $ J=LEGVAR(I) $ M=(C+B)/2. $ IF(J-0) 7,5,7
5I=-I+B & CHIVT=(B-I)*(M-I) $ IF(CHINT) B,8,7
I=M
8 IF(ABS(B-I)-EFS) 9,10,10
I=SIGN(1.,(C-B))*EPS+B
10 A=B & B=I & FA=FB & FO=FUNC(B)
IF(SIGN(1.,FB)-SIGN(1.,FC)) 1,11,1
11 C=A $ FC=FA $ GO TO 1
12 }A=(C+B)/2. & FA=FUNC(A
IF(SIGN(1.,FA),EQ.SIGN(1.,FB)) B=C
RETURN
END
```


APPENDIX C
 Suggested Calling Sequence with DB Known
 GIVEN DB* AND

HA	To Find	RH	Use	RHDBHA
		PV		PVHA
		VS		VSDBHA
		EN		DPHAS then EADBDP
		WB		WBDBEAS
		DP		DPHAS
RH		HA		HADBRH
		PV		HADBRH then PVEA
		Vs		HADBRH then VSDBHA
		EN		HADBRH then DPHAs then EADBDP
		WB		HADBRH then WBDBHAS
		DP		HADBRH then DPHAS
PV		HA		HAPV
		RH		PSDB then RHPSPV or HAPV then RHDBHA
		VS		HAPV then VSDBEA
		EN		HAPV then DPHAS then ENDBDP
		WB		HAPV then WBDBHAS
		DP		HAPV then DPHAs
VS		HA		PVDBVS then RAPV

VS	To Find	RH	Use	PVDBVS and PSDB then RHPSPV or PVDBVS then BAPV then REDBEA
		PV		PVDBVS
		EN		PVDBVS then HAPV then DPHAS then ENDBDP
		WB		PVDBVS then HAPV then WBDBHAS
		DP		PVDBVS then HAPV then DPHAS
EN		HA		DPDBENS then HADP
		RH		DPDBENS then HADP then RHDBHA
		PV		DPDBENS then PSDB (using DP as argument)
		VS		DPDBENS then HADP then VSDBHA
		WB		DPDBENS then HADP then WBDBHAS
		DP		DPDBENS
WB		HA		PVDBWB then HAPV
		RH		PVDBWB and PSDB then RHPSPV or PVDBWB then HAPV then RHDBHA
		PV		PVDBWB
		VS		PVDBWB then HAPV then VSDBHA
		EN		PVDBWB then HAPV then DPHAS then ENDBDP or PVDBWB then DBPSS (using PV as argument, resulting in DP) then ENDBDP
DP		HA		HADP
		RH		HADP then RHDBHA
		PV		PSDB (using DP as argument)

DP To Find	VS Use	HADP then VSDBHA
	EN	
	EADBDP	
	HB	

*Note: PS and HL can be found any time that $D B$ is known by using PSDB and HLDB.
Given HA And RH Use HADBRH and ZEROIN

PVHA then PVDBVS and 2EROIN

DPHAS then ENDBDP and ZEROIN

PVHA then PVDBWB and ZEROIN

HAPV then HADBRH and ZEROIN

HADP then RHDBHA and ZEROIN

PVDBVS and ZEROIN

HAPV then DPHAS then ENDBDP and ZEROIN

PVDBWB and ZEROIN

HADP then PVHA then PVDBVS and ZEROIN

ENDBDP and ZEROIN

HADP then PVHA then PVDBWB and ZEROIN

DBPSS

HLDB and ZEROIN

APPENDIX E

Validation Program

The following program was written for the sole purpose of testing the psychrometric package. The general scheme of the program is as follows:

1. Read in a dry-bulb temperature, humidity ratio and low estimate (for those routines using the search).
2. Solve for those properties which are temperature dependent only, i.e. PS and HL , and print them.
3. Using the routines and calling order suggested in Appendix C, find all other properties from $D B$ and $H A$. Save these values for later use and print them.
4. Using Appendix C and the RH found in number 3, resolve for all other properties and print them.
5. Same as number 4 using $P V$ found in number 3.
6. Same as number 4 using WB found in number 3 .
7. Same as number 4 using DP found in number 3.
8. Same as number 4 using vS found in number 3.
9. Same as number 4 using EN found in number 3.
10. Go back to 1 and read more data and repeat.

This program uses all routines at least once and prints the results in tabular form for comparison (Appendix F). If the routines are working properly, all values should be approximately the same for a given data sheet.

```
    PROGRAM PSYCHVL (INPUT,OUTPUT,TAPE60=INPUT)
    COMMON /PRESS/PATM
    DATA PATM/14.OO6/
C**** INFUT TEMF ANO HUMIDITY
    1 REAO(60,2LO)T,H,GSLOH
        IF(EOF(60)) 99,2
    2 DB=T+459.69
        PS=PSO8(08)
        HL=HLDB(DB)
        GSLOW=GSLOW+459.69
        PRINT 210,T,PS,HL
        FIND REMAINING VALUES FROM T AND H, PRINT,AND SAVE
        RHSV=RHOBHA(JB,H)
        FVSV=PVHA(H)
        WBSV =WBOOHAS(OB,H,GSLOW,OB,.OUO1)
        DPSV=DPHAS(H,GSLOW,WBSV,.OJO1)
        VSSV=VSOdHA (JB,H)
        ENSV=ENDBDF(D3,DFSV)
        WBPR=WBSV-459.69
        OPPR=OPSV-453.69
        FRINT 2:1,H,H,RHSV,FVSV,WBPR,DFFR,VSSV,ENSV
C **** FIND VALUES USING T AND RH-SAVED AND PRINT
    H=HADBRH(DB,RHSV)
    PV=FVHA(H)
    WB=WBOBHAS (U3,H,GSLOH,OB,,JJO1)
    DP=OPHAS(H,GSLOW,WB,,OOC1)
    VS=VSOUHA (D.3,H)
    EN=ENOBDF (DB,OP)
    WGPR=WB-459.69
    DPPR=DP-459.69
    FRINT 212,RHSV,H,RHSV,FV,WBFR,UFFR,VS,EN
C****
                    FIND VALUES USING T AND PV-SAVED ANO PRINT
    H=HAPV(PVSV)
    RH=RHOBHA (OB,H)
    Ho=WBOBHAS(O3,H,GSLOW,DB,.OOO1)
    OP=DFHAS(H,GSLOW,HB,,UOO1)
    VS=VSOBHA (DI,H)
    EN=ENOBOF (O3,OP)
    WBPR=WB-459.69
    OPPR=OP-459.69
    FRINT 213,FVSV,H,RH,FVSV,WBFR,OFFR,VS,EN
C **** FIND VALUES USINĞT AND HB-SAVEO AND PRINT
    PV=PVOBWB(DB,WBSV)
    H=HAFV(PV)
    RH=RHPSPV (PS,PV)
    DP= OBPSS(PV,FSLOH,WBSV,.CCO1)
    VS=VSOBHA (D3,H)
    EN=ENDBUF (OB,OF)
    WGPR=WBSV-459.69
    OFPR=DP-459.69
    FRINT 214,WEFR,H,RH,FV,WGFR,OFFR,VS,EN
    FIND VALUES USING T AND DP-SAVEO ANO PRINT
        H=HAUP (OPSV)
        RH=RHOBHA (UB,H)
        FV=FVHA(H)
        WB=WBOBHAS(O3,H,DPSV,DB,,iCO1)
        VS=VSDUHA (OB,H)
        EN=ENOUUF(DJ,OFSV)
        WHPR=WB-459.69
        OPPR=OPSV-459.69
```

```
    PRINT 215,DPPR,H,RH,PV,HBPR,OPPR,VS,EN
C
    FIND VALUES USING T AND VS-SAVED AND PRINT
    FV=FVOBVS(DB,VSSV)
    H=HAPV(PV)
    RH=RHOBHA (OB,H)
    WE=WBUYHAS(O3,H,GSLOW,OB,.OOO1)
    DF= OPHAS(H,GSLOW,W8,.UOO1)
    EN=ENUBDP (OB,OP)
    WBFR=W3-459.59
    DPPR=OP-459.69
    PRINT 216,VSSV,H,RH,PV,HBPR,DPPR,VSSV,EN
C **** FIND VALUES USING T AND EN-SAVEO ANO PRINT
    OF=DFDBENS(U3,ENSV,GSLOW,OB,.OUO1)
    H=HADP(OP)
    RH=RHOBHA (OB,H)
    FV=FVHA(H)
    Wo=WOOBHAS(DB,H,GSLOW,OB,.OjO1)
    VS=VSOBHA (OB,H)
    WBPR=W8-459.69
    DFFR=OP-459.69
    PRINT 217,ENSV,H,RH,PV,WBPR,DPPR,VS,ENSV
    GO TO 1
    99 CONTINUE
2)u FORMAT(3F1U..J)
21| FORMAT(IH1,1JX,22HDRY BULB TEMPERATURE =F7.2,6H OEG F/10X17HSAT VA
        1POR PRESS =FЭ.4,4H PSI/IUX37HLAT HEAT VAFORIZATION (SUBLIMATION) =
        2F8.2,7H BTU/LB/////36X8HCOMPUTEO//18X2HHA7X2HRH7X2HPV7X2HWB7X2HDP7
        3X2HVS7X2HEN/5X5HGIVEN)
    211 FORMAT(1HO2X4HHA =F7.5,I9,Fg.5,Fg.4,F9.2,F9.2,F9.3,F9.2)
    212 FO.RMAT(LHO2X4HRH =F7.5,F9.5,IG,FG.4,F9.2,FG.2,FG.3,F9.2)
    213 FORMAT(LHJ2X4HPV =F7.4,FG.5,Fg.5,IG,FG.2,FG.2,FG.3,F9.21
    214 FORMAT(1HO2X4HWB =F7.2,FG.5,FG.b,FG.4,IG,FG.2,FG.3,FG.2)
    215 FORMAT(1HO<X4HDF =F7.2,F9.5,F9.b,FY.4,F9.C,IG,F9.3,F9.2)
    216 FORMAT(1HU2X4HVS =F7.3,Fg.5,F9.5,FY.4,F9.2,FG.2,IG,FG.2)
    217 FORMAT(1HUCX4HEN =F7.2,F9.5,F9.5,F9.4,F9.2,F9.2,F9.3,I9)
        ENO
```

COMPUTEO


```
            ORY BULG TEMPERATURE = 100.U0 DEG F
                SAT VAPOR FRESS = .9492 FSI
LAT HEAT VAPORIZATION (SUBLIMATION) = 1U18.91 BTU/LB
```


COMFUTED

GIVEN

$H A=$. 01500	x	. 36465	.3461	77.48	68.60	14.450	40.36
RH $=$. 36465	. 01500	x	. 3461	77.46	68.66	14.450	40.36
$\mathbf{P V}=$. 3461	. 01500	. 36465	x	77.48	63.60	14.450	40.36
$W B=$	77.48	. 0150	- 36465	. 3461	X	68.64	14.450	40.36
OP =	68.6'3	-0́150J	. 36465	. 3461	77.48	x	14.450	40.36
$V S=$	14.450	. 01500	. 36465	. 3461	77.46	68.60	x	40.36
EN $=$	4J.36	. 01500	. 36465	. 3461	77.48	63.6u	14.450	x

ORY BULB TEMPERATURE = 7J.UO DEG F SAT VAPOR PRESS = . 3631 PSI LAT HEAT VAPORIZATION (SUBLIHATION) $=1036.01$ BTU/LB

COMPUTED

GIVEN			HA	RH	PV	WB	DP	VS	EN
	$=$. U08」3	x	. 51408	.1866	58.89	51.26	13.525	25.43
	$=$.51403	. 00800	x	.1866	58.89	51.26	13.525	25.43
	$=$. 1866	. 00800	. 51438	x	58.89	51.26	13.525	25.43
	=	58.83	- 3J800	. 51408	.1866	X	51.26	13.525	25.43
	$=$	51.26	-60800	-514u் 8	. 1866	58.89	x	13.525	25.43
	$=$	13.525	. 0980 u	. 51408	. 1866	58.89	51.26	x	25.43
EN	$=$	25.43	. 00800	. 51408	.1866	58.89	51.26	13.525	x

ORY BULB TEMPERATURE $=70.00$ DEG F SAT VAPOR FRESS = .3531 FSI LAT HEAT VAPORIZATION (SUOLIMATION) $=1036.01$ BTU/LB

COMfuted							
	HA	RH	PV	W8	OP	VS	EN
GIVEN							
$H A=.00300$	X	.19432	. 0706	49.97	26.93	13.418	20.11
$\mathrm{RH}=.19432$.00300	x	. 07 ن6	49.97	26.93	13.418	20.11
PV = - 7 J 6	. 00300	. 19432	X	49.97	26.93	13.418	20.11
$W B=49.97$.00300	.19432	. 0706	X	26.93	13.418	20.11
$D P=26.93$	-.J030	. 19432	. 0706	49.97	X	13.418	20.11
$v S=13.413$	- U0300	. 19432	. 0706	49.97	26.93	x	20.11
$E N=20.11$	- JU30」	. 19432	. 07 U6	49.97	26.93	13.418	x

DRY BUL 3 TEMPERATURE $=32.00$ DEG F
SAT VAPOR PRESS = . 0387 PSI
LAT HEAT VAFORIZATION (SUBLIMATION) $=1 U 57.66$ BTU/LB

COMPUTED

	HA	RH	ev	WB	OP	VS	EN
$H A=.00300$	x	. 79503	.0706	29.82	26.93	12.455	10.92
$\mathrm{RH}=.79503$. 00300	X	. 0766	29.82	26.93	12.455	10.92
$P V=0 \cup 7 u 6$	- 30330	. 79533	X	29.82	26.93	12.455	10.92
$W B=29.82$. 00300	. 79503	. 0706	x	26.93	12.455	10.92
$D P=26.93$	-00340	. 79503	. 0706	29.82	X	12.455	10.92
$V S=12.455$	- 0430 C	. 79503	. 0706	29.82	25.93	x	10.92
$E N=101.92$. 00300	.79503	. 0706	29.82	26.93	12.455	x

> ORY BULB TEMMERATURE $=$ U.JO DEG F
> SAT VAPOR PRESS $=$ HASI 186 PSI
> LAT HEAT VAPORIZATION (SUBLIMATION) $=1220.84 \mathrm{BTU} / \mathrm{L}$

GIVEN	COMPUTED						EN
	HA	RH	PV	WB	$D P$	vS	
$H A=0$ OUU5	x	. 63428	. 0118	-1. 22	-8.52	11.598	. 53
$R H=.63428$. 00050	X	. 0118	-1.22	-8.52	11.598	- 53
$P V=. C 118$	- OOC5C	. 63428	x	-1.22	-8. 52	11.598	. 53
$W: 3=-1.22$. 00050	. 63426	. 0118	X	-8.52	11.598	. 53
$D P=-8.52$. 0005 u	. 63428	- 0118	-1.22	X	11.598	. 53
$v S=11.593$	- 30U55	. 63428	- 0118	-1.22	-8.52	X	. 53
$E N=.53$	- U005	. 63428	. U118	-1.22	-8.52	11.598	x

ORY BULB TEMPERATURE $=-20.00$ DEG F
SAT VAPOR PRESS = -.J 62 PSI
LAT HEAT VAPORIZATION (SUBLIMATION) $=1221.86 \mathrm{BTU} / \mathrm{LB}$

COMPUTED							
	HA	RH	PV	WB	DP	VS	EN
HA $=$-UJULO	x	. 37995	. 00224	-20.77	-36.25	11.086	-4.70
$R H=.37995$.00010	X	. 0024	-20.77	-36.25	11.086	-4.70
$P V=.0424$.00010	. 37995	X	-20.77	-36.25	11.086.	-4.70
$H 3=-20.77$. 00016	. 37994	. OU24	X	-36.25	11.086	-4.70
$D P=-36.25$. 00010	.37994	. 0024	-20.77	x	11.086	-4.70
$V S=11.586$. 00024	. 37995	. 0024	$-2 \mathrm{~V} .77$	-36.25	x	-4.70
$E N=-4.70$. 00010	. 37994	. 0024	-20.77	-36.25	11.086	x

[^0]: 非 These equations are solved via SUBROUTINE ZEROIN.

[^1]: * Note that all temperatures are in degrees Rankine and that the relative humidity is in decimal form.

