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ABSTRACT 

 

LIFE MODEL FOR ROLLING CONTACT, APPLIED TO THE OPTIMIZATION OF A 

TRIPODE CONSTANT VELOCITY JOINT 

 

By 
 

Eduardo R. Mondragon-Parra 
 
 

A Constant Velocity Joint (CVJ) is a mechanical device capable of transmitting 

torque and motion between two rotating shafts that are misaligned. Most front wheel 

drive vehicles have torque and motion transmitted to the driven wheels through a set of 

inboard CVJ’s (transmission side) and a set of outboard CVJ’s (wheel side). One of the 

most common types of inboard joints is the Tripode Joint, which is composed of a 

housing, a spider and three sets of roller assemblies that connect the spider to the 

housing and allow for stroking motion and rotation of the joint at an angle. Wear fatigue-

life in a Tripode Joint is defined by how many rotation cycles a Joint can complete 

before experiencing spalling or flaking of the internal surfaces subject to contact forces. 

Similarities and differences between a Tripode Joint and roller bearings are discussed. 

Internal contacts are treated as non-Hertzian and the state of stress is determined 

based on the kinematics of the joint, the geometry of the interacting components and 

the way internal forces are distributed when a torque is applied. 

 

A rolling contact wear fatigue-life model for Tripode Joints, that relates the critical 

shear stress in the contacts to the number of cycles a joint can perform before spalling, 

is proposed and compared to actual test data. Residual stresses were considered to 

obtain the stress-life exponent of the Tripode equation. 



 
Optimization of the geometric form of the contact surfaces in the spider is 

performed, aimed to minimize the peak contact load and to minimize the load 

differences between adjacent needle rollers. Reduction of the peak contact load allows 

an increment in durability of the Tripode Joint. The optimized profile in the contact 

surfaces of the spider is compared against traditional geometric forms, such as perfect 

circular and elliptical. The proposed model has a direct application in the auto-industry. 
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Para Carolina, mi hija amada. 

(To Carolina, my beloved daughter) 

 

“… Of making many books there is no end, and much study wearies the body. Now all 

has been heard; here is the conclusion of the matter: Fear God and keep his 

commandments, for this is the whole duty of man.” 

Ecclesiastes 12:12-13 
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1. INTRODUCTION 

 

 

1.1 Background 

This work focuses on the wear life prediction of the Tripode (TP) type Constant 

Velocity Joint (CVJ). Internally, the TP CVJ is composed of rolling elements which 

function similar to those of roller bearings. Rolling bearing technology, as we know it 

today, began to develop in the nineteenth century. In 1881, H. Hertz published his 

contact stress analysis beginning the analytical study of bearings. The first paper 

discussing life bearing prediction was published in 1924 by A. Palmgren [1]. Bearing 

technology, contact stress and life prediction theories continued to develop in the 

second half of the twentieth century and are still developing. 

 

A Constant Velocity Joint (CVJ) is a mechanical device capable of transmitting 

torque and motion between two rotating shafts that are not aligned. One of the first 

applications of constant velocity joints in the U.S. auto industry was in the 1960’s, in the 

halfshafts of front wheel drive vehicles [2]. A halfshaft is an assembly of two constant 

velocity joints and an axle bar. Its purpose is to transmit motion and torque from the 

transmission to the powered wheels of a vehicle. One of the most common halfshaft 

configurations includes a fixed center constant velocity joint and a stroking constant 

velocity joint. Such configuration allows the halfshaft to articulate and change its length 

as a result of steering and suspension motions in a vehicle, as shown schematically in 

Figures 1.1a and 1.1b 
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Figure 1.1a. Steering motion (schematic aerial view) 

 

 

Figure 1.1b. Suspension motion (schematic front view) 
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Even though constant velocity joints have been around for almost one hundred 

years little has been done to develop specific analytical models to predict its wear life. 

It’s the purpose of this work to develop a wear life model for a specific type of constant 

velocity joint, the Tripode joint. 

 

 

1.2 Fixed center constant velocity joints 

 The first predecessor of the constant velocity joint was the Universal Joint or 

Cardan Joint, named after Geronimo Cardano who was the first to describe it in the mid 

sixteenth century [3]. The Universal joint allows transmission of torque and motion 

between two shafts that are not aligned but with variation of torque and speed. A 

schematic view of the Universal Joint is shown in Figure 1.2. 

 

Figure 1.2. Universal Joint 

 

Almost 100 years later Robert Hooke had the idea of combining two universal 

joints to eliminate the non-uniformity, which was the first mechanism with true constant 

velocity properties [3]. 
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Figure 1.3. Double Hooke Joint 

 

One of the first ball-type constant velocity joints, as we know it today, was 

patented by Alfred Rzeppa in 1934 [4]. This joint is composed on an inner race member, 

an outer race member, balls connecting the two races and a cage to keep the balls in 

the constant velocity plane. The constant velocity transmission is achieved by keeping 

the balls on a bisecting plane, which is the same principle that is used to transmit 

constant velocity using bevel gears. 

 

 

Figure 1.4. Fixed Center CVJ 
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1.3 Stroking constant velocity joints 

There are several types of stroking or plunging constant velocity joints. They can 

be classified in ball-type joints and tripode-type joints. The first type uses the same 

principle of the bisecting plane to transmit constant velocity. The two most common 

types of ball-type stroking joints are the cross groove joint (CGJ) and the double offset 

joint (DOJ) [2]. 

 

 

Figure 1.5. CGJ (left) and DOJ (right) 

 

The tripode-type joints are not perfect constant velocity joints but they approximate 

constant velocity at the typical operating angles in a vehicle, and can be considered a 

constant velocity joint for practical purposes. Section 2 of this work explains in detail the 

kinematics of the tripode joint and explains why it is a quasi-constant velocity joint. 
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Figure 1.6. Tripode Joint 

 

 

1.4 Rolling Bearings and Tripode Joints 

A tripode joint is composed of a spider assembly and a housing. The spider 

assembly is composed of a spider and three sets of rollers that rotate and slide along 

the trunnions of the spider. Some of the characteristics that make the roller sets in a 

tripode joint different from a typical roller bearing are the following: 
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Figure 1.7. Axial motion and support in Roller Bearing and Tripode Joint 

 

1. In most roller bearing applications the race members remain axially static or 

quasi-static with respect to themselves. In a tripode joint the outer member of the 

roller set, named roller or ball, moves axially with respect to the inner member, 

named trunnion. This is shown schematically in Figure 1.7. 

 

2. In most roller bearing applications the needle rollers connecting the races are 

fully supported. In a tripode joint the needle rollers are not fully supported all the 

time. As shown in Figure 1.7. 

 

3. In most roller bearing applications the outer race is fully supported. In a tripode 

joint the outer member of the roller set is supported at only one point. This is 

shown schematically in Figure 1.8. 
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Figure 1.8. Outer member support in Roller Bearing and Tripode Joint 

 

4. In most roller bearing applications possible misalignment is constant, making 

easier to predict load distributions. In a tripode, equivalent misalignment in the 

roller set continuously changes within a revolution and is a function of the joint 

angle, making it necessary to predict instantaneous load distributions. This is 

shown schematically in Figure 1.9 and will be covered in detail in Section 4. 

 

 

Figure 1.9. Variation of load distribution in a tripode joint 
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5. In most roller bearing applications the race members are round. In a tripode joint 

the trunnion may have non-round shapes, which changes the load distribution in 

the needle rollers. A circular and a non-circular shape are shown schematically in 

Figure 1.10. The non-circular shape has been exaggerated for visualization 

purposes. 

 

 

Figure 1.10. Inner member shape in Roller Bearing and Tripode Joint 

 

For the reasons formerly mentioned, traditional approaches to estimate the life of the 

roller set in a tripode joint, such as the ISO-ANSI/AFBMA standards, can not be 

employed. A new specific analytical model, with experimental verification, to predict the 

life of tripode joints is necessary.  
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1.5 Benefits of a life model 

Traditionally, a semi-empiric approach has been used by some CVJ manufacturers 

to estimate the life of a tripode joint, resulting in joints that may be over-designed or 

under-designed. By knowing the kinematics of the joint, the internal load conditions, the 

generated stress fields in the contacts and its relationship to wear life, optimized joints 

can be developed, resulting in packaging, mass and cost reductions. 

 

Another benefit of developing a valid analytic model is that in a family of products 

only one size needs to be tested and validated. Larger and smaller sizes can be 

developed with a bigger level of confidence, reducing the development time and cost of 

the project. 

 

 

1.6 Joint Size and Packaging 

The size of a tripode joint is typically defined by the torque capacity of the largest 

axle bar that can be plugged into the spider. “Yield Torque” is a common term used by 

CVJ manufacturers and refers to the maximum torque an axle bar or splined interface 

can transmit before having plastic deformation. The joint used for the experimental 

portion of this work is a “21-size” joint. The yield torque of the largest axle bar that can 

be used in combination with the joint is around 2100Nm.  

 

The “packaging” of the joint is another common term used by CVJ manufacturers 

and is used to refer to the maximum swing diameter of the joint. 
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1.7 Project description 

The sequence of steps taken in this project is as follows: 

1. Description of the architecture of the tripode joint 

2. Study of the kinematics of the tripode joint 

3. Study of the forces at the internal contacts of the tripode joint 

4. Calculation of the stress field resulting from the forces at the contacts 

5. Use of the state of stress to predict wear life using fatigue theories 

6. Experimentation, analysis and correlation of results 

7. Optimization of the roller assemblies to maximize life and/or minimize 

packaging. 

 

The experimental portion of this work was conducted at an industrial facility that 

has specialized test machines for halfshafts, proprietary to the CVJ manufacturer 

sponsoring this work. Details of the testing performed such as speed, torque, angle and 

test time, and inspection results of tested parts will be discussed in Section 7. 
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2. KINEMATIC ANALYSIS OF A STROKING TRIPODE JOINT 

 

 

2.1 Introduction 

The tripode joint has been around for almost a hundred years [2]. However, 

many investigations have not been published. Most of them are related to motion 

analysis, kinematic structure and properties [5-10], dynamic effects such as Generated 

Axial Force (GAF) [11-14] and general design guidelines [2, 3, 15-16]. The purpose of 

this section is not to propose a totally new kinematic approach to analyze the tripode 

joint but to use, improve and expand what is currently available, knowing its limitations 

and related assumptions, in order to define internal displacements, which will be 

subsequently used to predict internal forces and the state of stress at the contacts 

within the joint. 

 

Figure 2.1. Exploded view of tripode joint 
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This work treats the tripode joint as a single universal joint. Therefore, the joint 

angle and the respective positions of the input and output shafts are chosen arbitrarily. 

As shown in Figure 2.1, the joint is composed of: 

 

• A housing (1) with three straight parallel and equally spaced ball bores (grooves 

or slots). 

• A spider (2) whose three trunnions (legs) lie on the same plane, are equally 

spaced and converge to the same point. 

• Three spherical rollers (3) which can rotate and slide on the trunnions thanks to 

the interaction with the needle rollers (4). This interaction can be simplified to a 

cylindrical pair for purposes of kinematic analysis. The interaction between 

spherical balls and housing ball bores can be simplified to a sphere-groove 

kinematic pair. 

• A set of rings (6) and roller retainers (5) whose main function is to keep all 

components in place. Their kinematic and dynamic effects can be neglected 

since they are not mobile parts and its mass is very small compared to the mass 

of other components formerly mentioned. 

• Optional spacer rings (7) which can be used to eliminate edge contact on the 

needle rollers at the base of the trunnion. Its kinematic and dynamic effects can 

also be neglected. 
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2.2 Assumptions 

Individual components are considered as rigid bodies. Geometrical errors (i.e. 

spacing errors) and clearances are neglected during the kinematic and quasi-static 

analysis since they are very small compared to the displacements and joint dimensions. 

 

 

2.3 Definitions 

 

The reference frames used in this section are shown in Figure 2.2, Figure 2.3 

and Figure 2.4. The housing is typically connected to the transmission output in a 

vehicle and its only motion is rotational about its axis. Thus, a fixed reference frame X-

Y-Z is chosen on the housing side, where plane X-Y is the housing plane and Z is the 

housing axis. The spider rotates together with the housing and at the same time it can 

displace and change its orientation with respect to the housing due to suspension and 

steering motion in a vehicle. Thus, two moving frames are chosen on the spider side. 

The first one, denoted by 'X - 'Y - 'Z  has its origin at the spider center O’ and 'Z  is the 

spider axis. Plane 'X - 'Y  is the spider plane. 'Y  is oriented parallel to the common 

perpendicular of the Z and 'Z  axes. The second moving frame, *X - *Y - *Z , has its 

axes, *X , *Y  and *Z  parallel to axes 'X , 'Y  and 'Z , respectively. Origin O* is the 

intersection of the spider plane and the housing axis. *X  and *Y  lie on the spider 

plane. The following terms are defined: 

 

Housing plane: An arbitrary plane normal to the housing axis, Z (Figure 2.2). 



 15 

BCD: Ball Circle Diameter, the diameter of the circle on the housing plane passing 

through the intersections of ball bore centerlines and housing plane (Figure 2.2). This is 

a main joint parameter and will be constantly referenced. 

BCR: Ball Circle Radius, defined in this work as variable a. It is half of the BCD 

Ball bore plane: A plane that passes through the housing axis and a ball bore centerline 

or ball bore axis (Figure 2.2). 

Housing rays: Equally spaced (each 120° apart), represent the intersection between 

housing plane and ball bore planes. The three rays intersect at the housing axis (Figure 

2.2). 

Spider rays: The centerline or axis of each trunnion (leg) of the spider, equally spaced 

(each 120° apart) (Figure 2.3).  

Spider center: The common intersection of the three spider rays (Figure 2.3). 

Spider plane: The plane that passes through the three spider rays (Figure 2.3). 

Spider axis: Axis perpendicular to the spider plane passing through the spider center 

(Figure 2.3). 

Spherical roller (ball) center: The center point of each of the three spherical rollers 

(Figure 2.3). 
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Figure 2.2. Housing Reference Frame 

 

 

Figure 2.3. Spider Reference Frame 
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The eccentricity e shown in Figure 2.4 is defined as the distance from O* to O’. 

The rotation of the spider shaft (output) is defined as ψ and the rotation of the housing 

shaft (input) is defined as ϕ. The joint angle θ is defined as the angle between the spider 

and housing axes. Due to the small variations between input and output angular 

displacements, which are inherent to the kinematic structure of the joint, the tripode joint 

is in fact a non-constant velocity joint.  

 

0≠−ψϕ               (2.1) 

  

 

Figure 2.4. Fixed and mobile coordinate frames 
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Neither ϕ nor ψ are constants, the derivatives of Eq. (2.1) with respect to time 

clearly indicate that the variations between input and output displacements translate into 

the variations between input and output angular velocities. Such variation has little 

influence in the displacements of the spherical rollers during normal operation 

conditions in most commercial applications (typically, joint angle is below 25deg). This 

problem has been treated in detail by Akbil and Lee [7-8] and by Mariot and K’Nevez [9] 

and will be discussed in the following subsections. Both investigations lead to the same 

equations of motion.  

 

 

2.4 Spherical roller positions 

When the tripode joint is angulated an eccentricity e of the spider center with 

respect to the housing axis is generated since the pivoting point is not the center of the 

spider (Figure 2.3 and Figure 2.4). The magnitude of such eccentricity, O*O’, is [2, 5, 7, 

9]. 

 

θ

θ

cos

)cos1(

2

−
=

a
e              (2.2) 

 

This eccentricity when projected on the X* and Y* axes has the components 

 

( )ξπ −= coseex              (2.3) 
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( )ξπ −= sineey              (2.4) 

 

where ξ  is the angular displacement of O*O’ with respect to *X . Because of the 

symmetry of the tripode joint, the orientation of O*O’ with respect to *X  will repeat 

three times per revolution. The expression relating rotation of the spider and angular 

displacement of the eccentricity vector O*O’ is [4], 

 

πψξ −= 3               (2.5) 

 

Then, Eqs. (2.3) and (2.4) can be rewritten as a function of spider rotation 
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When the joint rotates, the eccentricity previously described causes an orbiting 

motion of the spider. Position of the spider center with respect to the fixed reference 

frame is [7], 

 

( ) ( )( )ψϕψθψϕψ −−−= cos3coscossin3sinex        (2.8) 

( ) ( )( )ψϕψθψϕψ −−−−= sin3coscoscos3siney       (2.9) 
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and the position of the center of the spherical rollers with respect to the fixed reference 

frame is given by [7] 

 

( ) ( )( ) zaZ ii +−+= θψθψ tan3coscos1cos22/        (2.10) 

( ) oo cbz +−= θθ coscos            (2.11) 

 

for i = 1, 2, 3, where “z” is the position of O’ with respect to the fixed reference frame in 

the Z-direction, oc  is the initial stroke position of the spider (axial position) and oθ  is the 

joint angle when ϕ = 0. These initial conditions correspond to the stroke-angle position 

of the joint, a function of the suspension and steering motions in an automobile. It is 

assumed in this work that the tripode joint will be coupled to a fixed-center type constant 

velocity (C/V) joint, through the spider shaft. A fixed-center C/V joint can be simplified as 

a spherical joint. The case when two tripode joints are coupled has been studied by by 

Mariot and K’Nevez [9] and will not be considered here. 
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Figure 2.5. Coordinates and orientation of spider shaft 

 

The position of the end of the shaft that is coupled to the spherical joint can be 

identified as point P(h,g,k). The length of spider shaft or distance from the spider center 

to the spherical joint center is defined as distance b. At the same time the orientation of 

the shaft can be defined by three direction angles, α, β, θ, with respect to the fixed 

coordinate system X-Y-Z (Figure 2.5). Then, the direction cosines of 'Z  (spider axis) are 

 

( ) bxh /cos −=α             (2.12) 
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( ) byg /cos −=β             (2.13) 

( ) bzk /cos −=θ             (2.14) 

 

If g, h and b are treated as independent variables, k may be obtained by simple 

trigonometry. Eqs. (2.12), (2.13) and (2.14) can be combined with Eqs. (2.8) and (2.9), 

which is simplified to get 

 

( ) ( )2222 3sin3coscossin ψψθθ eebgh ++=+        (2.15) 

 

Then, Eq. (2.2) can be substituted into Eq. (2.15) and solved numerically for θ. An 

important expression that relates the input and output angular displacements, derived 

by Akbil and Lee [7-8], is 

 

( ) αβψϕ cos/costan =−            (2.16) 

 

Eq. (2.16) can be solved for ϕ, numerically, by substituting Eqs. (2.12), (2.13), 

(2.8) and (2.9) and using the value of θ obtained from solving Eq. (2.15). The radial 

position of the ball centers, with respect to the spider center is given by [4, 6] 
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for i = 1, 2, 3 
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Therefore, the displacement of the spherical roller center is 

 

( )ii ef ψ2cos21+=              (2.18) 

for i = 1, 2, 3 

 

 

2.5 Numerical examples of spherical roller positions and displacements 

It is interesting to note that Eqs. (2.17) and (2.18) indicate that spherical roller 

positions depend only on joint angle (orientation of spider shaft), BCD and rotational 

displacement of the joint. The reader is reminded that variable a is defined as half of the 

BCD. A computer program was written to perform calculations. The code was debugged 

by verifying the outputs with the numerical results of the examples published by Akbil 

and Lee [8]. Graphics and numerical values in this and subsequent sections were 

obtained using the characteristics of the actual tripode joint design that will be used to 

do the experimental portion of this work, unless otherwise indicated. The joint 

characteristics are: 

 

Nominal BCD    = 40.8mm 

Shaft length    = 300mm 

Maximum functional angle  = 23° 

Trunnion diameter   = 20.97mm 

Needle roller diameter  = 1.9975mm 

Number of needles (n)  = 36 
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Spherical roller outer diameter = 34.942mm 

 

Figure 2.6 describes the fluctuation of joint angle in a revolution, when the joint is 

operating at a nominal joint angle oθ  of 23°, and was obtained solving Eq. (2.15). The 

coordinates of the center of the spherical joint were obtained using Eqs. (2.19) and 

(2.20). 

 

( )oo
a

bh θθ cos1
2

sin −−−=            (2.19) 

222 hgbk −−=              (2.20) 
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Figure 2.6. Fluctuation of joint angle in a revolution 
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Figure 2.7. Deviation from nominal angle in a revolution 

 

Figure 2.7 was obtained from Eq. (2.21), which represents the angle variation with 

respect to the nominal joint angle. 

 

oθθθ −=∆               (2.21) 

 

Figure 2.8 represents the spider orbiting path and was obtained by generating a 

parametric plot of xe  versus ye  where ψ is the parameter. The dashed line represents 

the orbiting path neglecting joint angle fluctuation (ψ = ϕ), while the solid line represents 

the orbiting path including joint angle fluctuation θ∆ . Orbiting path on spider plane is a 

circle. 
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Figure 2.8. Orbiting path of spider on spider plane 

 

Figure 2.9 was obtained from solving simultaneously Eqs. (2.2) and (2.15). If joint 

angle fluctuation θ∆  was ignored the function plotted in Figure 2.9 would be a straight 

horizontal line. 
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Figure 2.9. Fluctuation of eccentricity within a revolution 
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Figure 2.10. Difference between input and output angular displacements 

 

Figure 2.10 is obtained solving Eq. (2.16). It shows the difference between input 

and output angular displacements caused by joint angle fluctuation θ∆ . From Figure 
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2.10 it can be observed that the joint behaves as a true C/V joint at six specific positions 

within a revolution. Such positions are ψ = nπ /3, where n = 0, 1, 2, …, ¶. 
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Figure 2.11. Orbiting path of spider on housing plane 

 

Figure 2.11 represents the spider orbiting path on the housing plane. It was 

obtained generating a parametric plot of x versus y where ψ is the parameter. The 
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dashed line represents the orbiting path neglecting joint angle fluctuation (ψ = ϕ), while 

the solid line represents the orbiting path including joint angle fluctuation θ∆ . Orbiting 

path on housing plane is an ellipse. 
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Figure 2.12. Variations of the axial displacement of the spider center 

 

Figure 2.12 describes the movement of the spider center along axis Z, when the 

joint is operating at a nominal joint angle oθ  of 23°. It was obtained solving Eq. (2.11). 

Similarly, Figure 2.13 was obtained solving Eq. (2.10). 
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Figure 2.13. Displacement of the spherical roller center along ball bore axis 
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Figure 2.14. Radial position of the spherical roller center, from spider center 
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Figure 2.14 represents the radial position of ball center with respect to the spider 

center. It was obtained solving Eq. (2.17). The position at zero joint angle would be half 

of the BCD, a = 20.4mm. 
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Figure 2.15. Radial displacement of the spherical roller center, along trunnion axis 

 

Figure 2.15 represents the displacement of the ball center along the trunnion with 

respect to its “zero” position, which is defined then ir  = a. It was obtained solving Eq. 

(2.18). 

 

 

2.6 Needle roller positions and displacements 

There is no published work about needle roller positions and displacements within 

a tripot joint. Motion of spherical rollers (balls) causes rolling and sliding motion of 
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needle rollers on contacting trunnions. A cylindrical coordinate system iU - iΦ - iV , 

whose origin is O’, can be defined for each trunnion, i = 1, 2, 3. Axis iV  is a spider ray 

and iΦ  is measured positive from the spider plane around iV  in a CCW direction, as 

shown in Figure 2.16. Variable ijφ , also shown in Figure 2.16, defines the angular 

position of each needle roller, labeled j = 1, 2, 3, … , n. It is assumed that needles are 

uniformly spaced around the trunnion and clearance between them is neglected. On the 

other hand, interference is not allowed by design. 

 

Figure 2.16. Trunnion, local cylindrical coordinate system 
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A secondary housing reference frame, H
i

X - H
i

Y - H
i

Z , and a secondary spider 

reference frame, S
i

X - S
i

Y - S
i

Z , which rotate together with the joint are also defined. Axis 

H
i

Z  is always parallel to axis Z and axis S
i

Z  is always parallel to axis 'Z  (Figure 2.17). 

 

Figure 2.17. Secondary-rotating coordinate systems 

 

To define the angular position of a needle on a trunnion, it is necessary to know 

the amount of rolling of the spherical roller (ball) due to translation of its center along 

ball bore axis. If the rolling axes of spherical rollers were parallel to housing rays, there 

would be pure rolling motion, no sliding. On the other hand, if they were perpendicular 

there would be pure sliding, no rolling at all. In a tripode joint, spider rays are the rolling 

axes of spherical rollers and they are neither parallel, with the exception of few specific 
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positions, nor perpendicular to housing rays. Ball rolling is a function of trunnion axis 

inclination, relative to the housing plane, measured on an auxiliary plane formed by 

vectors S
i

X  and H
i

Z  since ball rolling can only occur around axis S
i

X  and ball 

translation along ball bore can only occur on H
i

Z  direction. The orientation of the 

trunnion axis S
i

X  is defined by the direction angles iκ , iλ , iµ , measured from H
i

X , H
i

Y  

and H
i

Z , respectively. Trunnion axis inclination with respect to plane H
i

X - H
i

Y  is 

identified by angle iδ  and is measured on auxiliary plane S
i

X - H
i

Z , as previously 

indicated. 

 

To calculate the angles formerly mentioned the orientation matrix developed by 

K’Nevez, Mariot and Diaby [10] (obtained using different reference frames) is modified 

such that orientation can be described with respect to the reference frames used in this 

work. Modification consisted of adding a π / 2 phase to the input and output angular 

displacements. After some algebraic and trigonometric manipulation the matrix that 

defines orientation of the spider reference frame S
i

X - S
i

Y - S
i

Z  with respect to the 

housing reference frame H
i

X - H
i

Y - H
i

Z  can be written as, 

 

















−−

+−

−+

=

θψθθψ

ϕθψϕψϕθψϕψϕθ

θϕϕψψϕθψϕψϕθ

cossinsinsincos

sinsincoscossinsincossincoscossincos

sincossincossincoscossinsincoscoscos

Ai  

where iψψ =  and iϕϕ =  ; for i = 1, 2, 3        (2.22) 
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To calculate the direction angles of spider rays the dot products between unit 

vector S
i

X  and unit vectors H
i

X , H
i

Y , H
i

Z , are obtained 

T

i

iiii

iiii
S
i

















−

+

=

θϕ

ϕψψϕθ

ψϕψϕθ

sincos

sincossincoscos

sinsincoscoscos

X         (2.23) 

[ ]001=H
i

X              (2.24) 

[ ]010=H
i

Y              (2.25) 

[ ]100=H
i

Z              (2.26) 

iiiii ψϕψϕθκ sinsincoscoscoscos +=         (2.27) 

iiiii ϕψψϕθλ sincossincoscoscos −=         (2.28) 

θϕµ sincoscos ii =             (2.29) 

 

Using simple trigonometry, angle iδ  may be related to the complementary angle of iµ . 

 

2)(cos1cos ii µδ −=            (2.30) 

ii µπδ −= 2/              (2.31) 

 

Even though Eqs. (2.30) and (2.31) are equivalent, only Eq. (2.31) can indicate on 

which side of the housing plane (positive or negative H
i

Z ) the trunnion is located (Figure 

2.18 and Figure 2.19).  



 36 

 

1 2 3 4 5 6
y @radD

5

10

15

20

d @degD

 

Figure 2.18. Angle δ, per Eq. (2.30) 
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Figure 2.19. Angle δ, per Eq. (2.31) 
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When the spherical roller is tilted only a fraction of the distance traveled along the 

housing ball bore will cause rolling (Figure 2.20). More tilting means less rolling. In the 

case of constant inclination, the arch length displaced at the outer diameter of the 

spherical roller can be obtained from Eq. (2.32), which is valid only if there is contact, all 

the time, between spherical roller and housing ball bore. 

 

iii Zs δcos=             (2.32) 

 

 

Figure 2.20. Partial rolling of ball due to tilting 
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However, in a tripode joint, angle iδ  is not constant (Figure 2.19) during the whole 

iZ  displacement. Therefore, a differential approach has to be followed and Eq. (2.32) 

can be rewritten as Eq. (2.33). If Eqs. (2.29) and (2.30) are substituted into Eq. (2.33) 

then Eq. (2.34) is obtained. 

 

dsi = dZi cosδi             (2.33) 

2)cos(cos1 θϕ iii dZds −=           (2.34) 

 

Variable iZ  is a function of angular displacement iψ  and joint angle θ. Let’s 

consider a simple case for the sake of clarity. Assume that the initial position of the 

spider in Figure 2.20 is the position where the origin of the spider reference frame 

coincides with the origin of the housing reference frame. This can only happen when 

joint angle θ is zero. Then, without rotating the joint ( 0== ii ϕψ ) change joint angle θ 

from 0 to oθ  (if 0=iϕ , then oi θδ = ). When the spherical roller starts to displace, tilting 

angle will be very small and its effect in ball rolling could be discarded but as joint angle 

gets closer to oθ  tilting will impact ball rolling. If the actual ball rolling wants to be known 

Eq. (2.34) has to be integrated from zero joint angle to actual joint angle, for a given 

rotational (angular) displacement iψ  of the spider. Differential idZ  can be obtained from 

Eqs. (2.10) and (2.11). 

 

o
o

i
i

i

ii
i d

Z
d

Z
d

Z
dZ θ

θ
ψ

ψ
θ

θ ∂

∂
+

∂

∂
+

∂

∂
=          (2.35) 
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Where 0=idψ , since idZ  will be evaluated for a specific displacement iψ . Thus, Eq. 

(2.34) becomes 
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2
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)cos(cos1

      (2.36) 

 

and the partial differentials contained in Eq. (2.36) are, 

 

( )

θθψθ

θψθψ
θ

tansin3cos
2

1
sin

sec3cos)cos1(cos2
2

1 2

i

ii
i

ab

a
Z

++

−+=
∂

∂

       (2.37) 

o
o

i b
Z

θ
θ

sin−=
∂

∂
             (2.38) 

 

Eq. (2.36) can be evaluated numerically to calculate is . Displacement is  follows 

the same trend that iZ , as expected (Figure 2.13 and Figure 2.21). On the other hand, 

the difference between iZ  and is  is maximum at the points where angle δi is maximum, 

and zero (Figure 2.22) where iδ  is zero, which is the condition when the spherical roller 

doesn’t displace along the ball bore. 
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Figure 2.21. Actual arch displaced at ball outer diameter 
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Figure 2.22. Difference in arch displacement without and with ball tilting effect 

 

Before proceeding to calculate angles ijφ , there is an additional component that 

must be taken into account due to the change of orientation of the spider axis within a 
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revolution. Let’s consider another simple case. When angular displacement 2/πψ =i  

the spherical roller will not move along the ball bore. However, there will be an angle 

between the plane that passes through 01 =iφ  and a plane parallel to the housing plane 

that passes through the point of contact between ball and ball bore (Figure 2.23). 

Needle j = 1 is the needle that is located at 1iφ  when joint angle θ = 0 (Figure 2.16).  

 

 

Figure 2.23. Graphical representation of angle ε 

 

The angle formerly mentioned will be named iε  and can be obtained from 

calculating the angle between vectors S
i

Y  and H
i

Y . Thus, the dot product of such 

vectors is 

 

iiiii ϕψψϕθε coscossinsincoscos +=         (2.39) 
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Evaluating iε  numerically, through one revolution, can be observed that only 

positive angles are obtained (Figure 2.24). Even though this is mathematically correct, it 

represents a disadvantage. Position of needles on the trunnion depends not only on the 

magnitude of angle iε . Let’s consider needle j =1. Position 1iφ  of this needle on the 

trunnion will be a positive number when 2/πψ =i  and negative number when 

2/3πψ =i , even though magnitude of iε  is the same at both iψ  positions (Figure 2.23).  
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Figure 2.24. Angle ε, per expression (2.39) 

 

To overcome such problem a SIGN function, which depends on iψ , can be used. 

Angle iε  is redefined as angle i'ε , which is phase corrected (Figure 2.25). 

 

( ) ( )iiiiii ϕψψϕθψε coscossinsincosarccossinsign' +⋅=      (2.40) 
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Figure 2.25. Angle ε', per expression (2.40) 

 

Then, after considering the effects of ball tilting and the change in spider 

orientation, the angular displacement of the contact point between spherical roller (ball) 

and ball bore, with respect to the local trunnion reference frame, is defined as iη . 

 

i
o

ii s
m

2
' −= εη              (2.41) 

 

The second term of Eq. (2.41) comes from dividing the arch length displaced, is , 

calculated from Eq. (2.36), by the outer radius of the spherical roller. Eq. (2.41) can also 

be evaluated numerically and plotted (Figure 2.26).  
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Figure 2.26. Angle η, per expression (2.41) 

 

Relative angular motion between spherical rollers and trunnions will result in 

needle angular displacements. It is convenient to establish a relationship between the 

angular displacement of the ball and the angular displacement of the needles, with 

respect to the local trunnion cylindrical coordinate system iU - iΦ - iV  (Figure 2.16).  

Assuming contact and no sliding between trunnion, needle rollers and spherical roller 

(ball), consider the case where a needle roller displaces from position (B-C) to position 

(B’-C’) as a result of an angular displacement iη  of the ball, from point (A) to point (A’). 

Since no needle sliding around the trunnion was assumed, it can be said (based on 

kinematic principles of relative motion) that the arch-length of segment (C-C’) equals 

arch-length of segment (B’-D) (Figure 2.27). 
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Figure 2.27. Angular displacements and positions in trunnion-rollers set 

 

Diametrical clearance in the trunnion-rollers set can be neglected (as stated in the 

beginning of this section) for kinematic analysis purposes. Clearance is three to four 

orders of magnitude smaller than the trunnion diameter. This makes the inner diameter 

of the ball similar to the trunnion diameter plus two times the needle roller diameter. 

Thus, the following identities can be generated when initial needle position is zero, 

 

dtmi 2+≈              (2.42) 
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




+=            (2.43) 

 

Isolating position ijφ  from Eq. (2.43) and adding a term to take into account the initial 

conditions of needles that are not in a zero position it is obtained, 

 

n
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d
t

iij
π

ηφ
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)1(2 −+
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
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+
=            (2.44) 

for j = 1, 2, 3, … , n 

 

Evaluating Eq. (2.44), numerically, and plotting for the case i =1 and j = 1, 

  

1 2 3 4 5 6
y @radD

-10

0

10

20

f11 @degD

 

Figure 2.28. Angular position of needle j = 1, per expression (2.44) 
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It must be noted that when j = 1, position and displacement are equal in 

magnitude. Therefore, 1iφ  will be used to refer to needle displacement as well. 

 

 

2.7 Critical joint angle 

Critical joint angle is an important design parameter. In a tripode joint, it is defined 

as the joint angle that causes a total needle displacement equal to the angular spacing 

between needles. In other words, critical joint angle is when fatigue cycles duplicate due 

to more than one needle passing over the same trunnion area in a joint revolution. 

Given the complexity of the equations derived in previous sub-sections, it is difficult to 

obtain a closed form solution for critical angle. Such problem can be tackled 

numerically, using a numeric method that iterates joint angle until total needle 

displacement equals needle spacing. 

 

( ) ( ) 0,,/2 min1max1 =−− ioiioin ψθφψθφπ          (2.45) 

 

A computer program was developed to solve Eq. (2.45) for oθ . The calculated 

critical angle of the joint used for the experimental portion of this work, whose main 

characteristics were previously described, is crθ  = 5.965° 
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2.8 Critical joint angle, when ball tilting is neglected and ψψψψ = ϕϕϕϕ 

In most commercial applications, joints will spend most of its life running between 

3° and 5°. In some applications, continuous running angles may be as high as 11° but 

that is uncommon. Tripode joints are designed to have a critical angle in the range of 5° 

to 9°, typically. It was discussed in previous sub-sections the joint angle variation due to 

the small variations in input and output displacements. Such joint angle variation 

reduces as the nominal joint angle decreases. Figure 2.29 compares the deviation from 

nominal angle, in a revolution, at two different nominal angles. The solid line represents 

a nominal angle of 23°, maximum deviation is 0.342° or 1.49%. The dashed line 

represents a nominal angle of 6°, maximum deviation is 0.022° or 0.37%.  
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Figure 2.29. Deviation from nominal angle in a revolution at oθ  = 23°, 6° 
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Figure 2.30 shows the maximum proportional deviation from nominal angle as a 

function of nominal angle. It can be observed that the behavior is almost linear and that 

even at angles as high as 15° the relative error is still less than 1%. Of course the 

maximum deviation will be different for different joint dimensions but magnitude will be 

of the same order. In this work a relative error of joint angle variation of less than 1% will 

be considered acceptable when predicting critical angle. Therefore, it can be assumed 

that ii ϕψ = , and consequently oθθ = , for the purpose of calculating critical joint angle. 
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Figure 2.30. Maximum proportional deviation from nominal angle vs. oθ   

 

Given the assumption of equal input and output displacements, many of the 

equations used to calculate needle roller displacement can be simplified. Let’s start by 

defining *1iφ  as needle displacement and *iη  as angular ball displacement, when 

ii ϕψ = . 
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*2*1 ii
dt

d
t

ηφ



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






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



+

+
=             (2.46) 

 

Similarly, *'iε  and *is  are defined when ii ϕψ = , 

 

*
2

*'* i
o

ii s
m

−= εη             (2.47) 

 

It was mentioned in the previous section that the effect of ball tilting at low joint 

angles could be neglected.  

 

Figure 2.31 shows the difference between iZ  and is , in a revolution, for a joint 

angle of 6°, while Figure 2.32 shows the relative error, with respect to is , of assuming 

is  = iZ . The absolute error in arch length displaced is in the order of microns, while the 

relative error is less than 0.2%, including joint angle variation ( ii ϕψ ≠  ). If joint angle 

variation is ignored, the relative error becomes 0.37%, at 6° (Figure 2.33). 
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Figure 2.31. Difference in arch displacement without and with ball tilting, at 6° 
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Figure 2.32. Relative error of ignoring ball tilting, at 6° 

 

Figure 2.33 shows the maximum relative error caused by ignoring ball tilting and 

ignoring joint angle fluctuation. It can be observed that the behavior is highly non-linear 
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at large angles. However, at low angles the error is in the order of 1% or lower. Such 

error will be considered acceptable in this work and it will be assumed that ii sZ ≈  for 

the purpose of calculating critical joint angle. 
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Figure 2.33. Relative error of arch-length displacement, ignoring tilting, vs. oθ  

 

Once the two main assumptions for a simplified formulation of critical angle have 

been established, Eqs. (2.10), (2.40), (2.46) and (2.47) can be reduced and 

reformulated. Another secondary assumption, nevertheless important, is that initial 

stroke 0=oc . Therefore, 

 

( )( ) oiiii
a

Zs θψθψ tan3coscos1cos2
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




 ⋅−⋅= ioii ψθψε 22 sinsin1arccos)sign(sin*'        (2.49) 
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Eq. (2.45) represents the simplified formulation for needle roller displacement, 

which is valid only at low joint angles, as previously described. Figure 2.34 shows a 

comparison between 1iφ  and *1iφ  at 23° joint angle. The solid line represents the 

needle roller displacement including joint angle fluctuation and ball tilting effect. The 

dashed line represents the simplified version. 

 

Eq. (2.45) can be rewritten as Eq. (2.52) and solved numerically for oθ , using the 

same joint parameters.  

 

( ) ( ) 0,*,*/2 min1max1 =−− ioiioin ψθφψθφπ         (2.52) 

 

Then, the resulting critical angle is *crθ = 5.981° 
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Figure 2.34. Needle roller displacement, complete vs. simplified solution 

 

Relative error of *crθ , with respect to crθ , is calculated and is found to be equal 

to 0.27%. It was mentioned before that this difference will change from joint to joint but 

the order of magnitude will be the same. Therefore, Eqs. (2.51) and (2.52) will be 

considered as fairly good approximations to calculate critical angle. To finalize this 

section, it will be made reference to an expression, formerly used by a C/V joint 

manufacturer [14], to calculate critical angle in tripode joints. Such expression was 

developed considering only one position of ψ, which was ψ = 0. 
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Evaluating Eq. (2.53) with previously used joint parameters, it is found that the 

critical angle predicted by this expression is 'crθ  = 7.83°. This represents a 

considerable difference with respect to the exact and the approximate solutions derived 

in this work. The source of this difference, as previously explained, is the fact that Eq. 

(2.53) was derived without considering full joint rotation, which makes it incomplete. 
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3. QUASI-STATIC ANALYSIS OF A STROKING TRIPODE JOINT 

 

 

3.1 Introduction 

This section deals with the way internal forces are distributed in a tripode joint. 

Forces can be dynamic or static and be influenced by the friction in the system. Many 

authors [2-3, 11-15] have dealt with this problem from different perspectives. Small 

variations between input and output angular displacements may cause non constant 

velocity (CV) behavior in a tripode joint. Such variations were discussed in Section 2. 

The reader may refer back to Eq. (2.1) and Figure 2.10. The first major assumption in 

this section will be to neglect the small variations between input and output angular 

displacements, as well as the joint angle fluctuation caused by them (Figures 2.6 and 

2.7), and consider the tripode joint as a true constant velocity (CV) joint. Urbinati and 

Pennestri [11] performed a complete dynamic analysis of the tripode joint. They 

concluded that in steady state or constant input velocity the effect of joint angle 

fluctuation (source of the deviation from constant velocity) on reaction forces inside the 

joint can be neglected.  

 

The second major assumption made in this section is relative to inertial forces. In 

most commercial applications tripode joints operate at relatively low speeds. Mariot, 

K’Nevez and Barbedette [12] verified in their work that for a constant input velocity, 

dynamical effects are negligible versus static effects. 
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The third major assumption is relative to rolling and sliding friction between 

spherical roller and needle rollers on the trunnion. Sliding between spherical roller and 

needle rollers occurs when the spherical roller displaces along the trunnion. Serveto, 

Mariot and Diaby [13] modeled analytically and numerically (ADAMS model) the 

Generated Axial Force (GAF) in tripode joints. GAF is the main generator of shudder 

and vibrations in the joint and is a function of internal forces. They concluded that 

friction between spherical roller and needle rollers on the trunnion, when the joint is 

lubricated, has little influence in GAF and its effect can be neglected. Lee [14] in his 

doctoral dissertation measured the sliding friction force between spherical rollers and 

needles and found the average to be very close to zero, within a joint revolution, under 

quasi-static conditions. 

 

Published studies on GAF [12-14] identify the friction between spherical roller 

and ball track as the dominant element in the disturbances generated by the joint. 

Friction forces at this contact are also larger than friction forces between spherical roller, 

needle rollers and trunnion, by one order of magnitude, even in the absence of 

lubricant. 

 

 

3.2 Normal forces at spider trunnions 

Input torque is applied to the tripode at the housing axis. This torque is 

transmitted through three loads to the spider. Loads on the spider generate torque at 

the spider axis, equal in magnitude to the input torque.  If sliding and rolling friction 
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between spherical rollers and trunnions are ignored, it can be assumed that the forces 

that generate torque in the spider axis are all located on the spider plane 'X - 'Y , pass 

through the center of the spherical roller and are perpendicular to the trunnion axes 

(Figure 3.1).  

 

Neglecting inertial effects the analysis can be simplified to a simple static 

analysis. Thus, the three equations that define the sum of forces and moments in the 

spider plane are: 

 

( ) ( ) 03/4cos3/2coscos 321 =++++ πψπψψ ppp       (3.1) 

( ) ( ) 03/4sin3/2sinsin 321 =++++ πψπψψ ppp       (3.2) 

ψtrprprp =++ 332211            (3.3) 

 

Solving Eqs. (3.1), (3.2) and (3.3) simultaneously, 
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Let’s remember that ir  can be obtained from Eqs. (2.2) and (2.14),  
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for i = 1, 2, 3 

 

Then, the sum of 1r , 2r , and 3r  can be expressed as, 
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Therefore, 
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3.3 Normal forces at ball bores 

Forces iq  are defined to be perpendicular to ball bore axes. Forces ip  are 

components of forces iq  when projected on the spider plane. Wagner [2] derived 

expressions to estimate forces iq  as a function of torque through graphical methods, for 

only two phase angles of the joint (ψ = 0 and ψ = π / 2). Orain [15] derived expressions 

for a full revolution of the joint, which yield numerical values similar to those obtained 

from Wagner’s expressions at ψ = 0, ψ = π / 2 and mirror positions. Lee [14] measured 

values of iq  and ip  in a joint lubricated with grease under quasi-static conditions and 
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found them to be very close, where ip  behaves like a constant within a revolution and 

iq  has little fluctuation, following a trend similar to that predicted by Orain [15].  

 

 

Figure 3.1. Forces on spider plane 

 

 Experimental data, computer simulations (ADAMS) and analytical formulations 

presented by Mariot, Serveto and Diaby [13] for GAF show that the influence of 

rotational speed in GAF can be neglected, within the normal operation range in most 

commercial applications. GAF is a function of friction and internal loads. The formerly 

mentioned authors simplified the analysis at low joint angles by making ii pq ≈  to 

develop GAF expressions. The equations used in this work to calculate GAF are 
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equivalent to expressions derived by Lee [14], Wagner [2] and Mariot, Serveto and 

Diaby [13]. 

 

∑
=

=
3

1i

iwGAF               (3.7) 

( ) ( )iiriiiibi qqw ψµψδδµ sinsignsinsinsignsin +=       (3.8) 

 

where angle iδ  can be obtained from Eqs. (2.31) and (2.29), derived in the previous 

section, 

 

ii µπδ −= 2/               (2.31) 

θϕµ sincoscos ii =             (2.29) 

  

After a break-in period, friction in the joint is assumed to be constant. Therefore, 

peak GAF will be proportional to the normal load applied on the ball bore, where the 

constants of proportionality are the friction coefficients. 

 

This being said, equations for iq  can be developed making sure quasi-static 

equilibrium of forces is maintained. 

 

(q1 + q2 + q3 )a = tψ = tϕ           (3.9) 
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The input torque and the distance between housing axis and ball bore axes are 

constants. Therefore, the sum of normal forces acting on housing ball bores is an 

invariant. In the position shown in Figure 3.2 the normal force on the ball bore has the 

same direction of the normal force on the trunnion. In other words, ii pq =  at iψ  = 0. 

 

Figure 3.2. Rotating coordinate systems and joint orientation when iψ  = 0 

 

When the joint has rotated 90° and 270°, the relationship between iq  and ip  can 

be represented graphically as shown in Figure 3.3.  
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Figure 3.3. Graphical representation of angle ε and forces iq  and ip  

 

It will be noticed that ip  has the same direction that S
i

Y  and iq  has the same 

direction that H
i

Y . Therefore, the angle ε between pi and qi is equivalent to angle iε , 

from Eq. (2.39), for i = 1. 

 

iiiii ϕψψϕθε coscossinsincoscos +=         (2.33) 

 

Since pi is a projection of qi its relationship can be expressed as 

 

iii pq εcos/=              (3.10) 
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3.4 Numerical examples and GAF experimental results 

Following the process developed in the previous section, a computer program was 

written to perform calculations. The code was debugged verifying the outputs with the 

numerical results of examples published by Wagner [2] and Orain [15]. Graphics and 

numerical values in this section were obtained using the characteristics the tripode joint 

used to do the experimental portion of this work. The joint characteristics and torque 

applied are: 

Nominal BCD    = 40.8mm 

Shaft length    = 300mm 

Maximum functional angle  = 23° (design limit) 

Trunnion diameter   = 20.97mm 

Needle roller diameter  = 1.9975mm 

Number of needles (n)  = 36 

Spherical roller outer diameter = 34.942mm 

Input torque    = 2118Nm (design limit) 

 

Figure 3.4 compares the magnitude of force 1p  assuming a constant joint angle 

(dashed line) and including joint angle variation (solid line). It can be observed that the 

frequency is the same as joint angle variation calculated in section two. The maximum 

and minimum values in a revolution, at the design limits of the joint, are: max1p  = 

33,175.3N and min1p  = 33,131.2N. The magnitude of the variation, with respect to the 

maximum value of 1p  is 0.13%. This small variation justifies the assumption of 

neglecting joint angle fluctuation, as indicated at the beginning of the section. 
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Figure 3.4. Magnitude of 1p  with (solid line) and without joint angle variation 

 

Similarly, 1q  is calculated and plotted in Figure 3.4 with and without joint angle 

variation effects. The maximum and minimum values for each case are, 

 

max1q (constant joint angle) = 36,040.4N 

min1q (constant joint angle) = 33,175.3N 

max1q (joint angle variation) = 36,062.9N 

min1q  (joint angle variation) = 33,175.3N 

 

The relative error associated with ignoring joint angle variation to calculate the 

maximum value of 1q  is 0.06%, at extreme joint conditions. This verifies the assumption 

of neglecting joint angle variation and considering the tripode joint as a CV joint through 
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the rest of this work. The reader will also notice that the amplitude of 1q  is small with 

respect to its medium value, even at maximum joint angle of 23° (Figure 3.5). It must be 

considered that at lower joint angles the amplitude to mean value ratio will reduce. 
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Figure 3.5. Magnitude of 1q  with (solid line) and without joint angle variation 

 

GAF was measured in joints that have the geometric characteristics of the joint 

simulated in this section. The same greases that Lee [5] used in his experiments are 

used in this work. Table 3.1 summarizes the main characteristics of the greases.  

 

A total of sixteen tripode joints were tested. Only the average of peak GAF values 

(third order components) are reported in this work and compared against the theoretical 

calculations using Eqs. (3.7) and (3.8). The full set of measurements can be found in 
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referenced Nexteer Automotive Test Activities [17]. Such experiments were performed 

in a machine specifically designed and created to measure GAF in CV joints. Details of 

the machine are not disclosed in this work since they are proprietary to Nexteer 

Automotive. 

 

Figures 3.6 and 3.7 show the graphs corresponding to Eqs. (3.8) and (3.7). Load 

used to generate such figures was 600Nm, at 7.5°, using grease A, with bµ  = 0.04 and 

rµ  = 0.001. For grease B bµ  = 0.08 and rµ  = 0.001. The coefficients of friction used in 

this work are slightly lower than coefficients of friction reported by Lee [14]. Hardware 

used by Lee to do his experiments was made by manufacturing processes less 

accurate than the processes used to make the hardware used for the experimental 

portion of this work. 

______________________________________________________________________ 

Properties     Grease A    Grease B 

Type       PU (polyurea)   PU (polyurea) 

Performance     Low Friction   High Durability 

NLGI grade     2     2 

Base oil      Mineral / synthetic  Mineral 

Viscosity @ 100ºC η (mPa-s)  12     12 

Representative additives   Organo-molybdenum  Solid EP* 

Color      Green    Blue 

Table 3.1. Properties of CVJ greases. (*) stands for “Extreme Pressure” 
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Figure 3.6. Tangential force 1w , at 600Nm, 7.5°, grease A 

 

Figures 3.8 and 3.9 compare theoretical calculations against experimental values, 

for two levels of torque, two different greases and a set of joint angles that range from 

2.5° to 17°. 
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Figure 3.7. Generated axial force, at 600Nm, 7.5°, grease A 
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It can be observed that theoretical calculations do not match experimental data 

perfectly but clearly follow the same trend. The purpose of this work is not to develop an 

accurate GAF model, which could be achieved by defining coefficients of friction as 

functions of torque and joint angle instead of constants. Such approach was already 

used by Lee [5] and is outside of the scope of this work.  
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Figure 3.8. Generated axial force, at 300N, experimental vs. theoretical values 

 

The purpose of comparing theoretical GAF calculations against real experimental 

data is to justify the validity of the assumptions described at the beginning of this section 
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to calculate normal loads on trunnions. Such loads will be the basis to estimate load 

distribution at the contacts between needle rollers and trunnion and determine the state 

of stress, in the next sections. 
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Figure 3.9. Generated axial force, at 600N, experimental vs. theoretical values 
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4. LOAD DISTRIBUTION ON A TRUNNION 

 

 

4.1 Introduction 

This section deals with the way contact forces are distributed on trunnions of a 

tripode joint. Three areas in the joint where mating surfaces are subjected to contact 

forces are: 

a) Contact between spherical roller and ball bore in the housing 

b) Contact between needle rollers and spherical roller (ball) 

c) Contact between needle rollers and trunnion 

 

Typically, the contact region to present the first signs of wear is the contact area 

between trunnion and needle rollers. Countless validation tests of different sizes of 

joints throughout the past 30 years at Nexteer Automotive support the statement. This is 

the reason to consider that the wear life of a tripode joint will be defined by the wear 

performance of trunnion surface. It is possible for needles to wear first. However, this 

condition occurs rarely in tripode joints. 

 

Methods used to analyze roller bearings will be employed to study load 

distribution in spider trunnions. The following assumptions are made: 

a) Needle rollers and trunnions are made of steel, similar elastic properties and 

homogeneous material. 
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b) Unless otherwise indicated, it is assumed in this section that plastic 

deformation doesn’t occur at the contacts. 

c) Unless otherwise indicated, residual stresses are assumed to be zero in this 

section. 

 

 

4.2 Normal load distribution on needles (axial direction) 

The forces transmitted from housing to spider are shown to be normal to the 

trunnion axis in Section 3. The spherical roller rotates and slides with respect to the 

trunnion. The spider assembly can be treated as a set of three roller bearings, where 

the trunnions function as inner races, the needles are equivalent to simple cylindrical 

rollers and the spherical rollers or balls function as outer races, one per roller bearing.  

 

In traditional roller bearings the rollers are fully supported in both inner and outer 

races. This is not the case in a tripode joint, where needles are not fully supported on 

the sphericall roller with axial relative motion between them. Three main load cases are 

identified, as shown schematically in Figures 4.1, 4.2a and 4.2b. It must be noted that, 

for the sake of clarity, the sketches represent only one needle and the concentrated 

force  ijp   is the equivalent concentrated force acting on that particular needle and not 

the total force acting between spherical roller and ball bore. 
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Figure 4.1. Case 1: Spherical roller fully supported, no offset 

 

Figure 4.1 depicts Case 1, which is the ideal case. The equator of the spherical 

roller is aligned with the transversal plane of symmetry of the needles. Since there is no 

offset between such planes, the load transmitted by the needles can be considered 

uniformly distributed along the effective contact length. Figure 2.14 was presented to 

show radial position of the spherical roller center from the spider center, measured 

along the trunnion axis. Case 1 will occur at one radial position. Typically, this position 

will be ir  ≈ a. The reader is reminded that a = BCD / 2. Solving Eq. (2.17) for ir  ≈ a, it is 

found that Case 1 will occur four times per joint revolution. 
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Figure 4.2a. Case 2: Positive offset (Λ) 

 

Figure 4.2b. Case 3: Negative offset (–Λ) 
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Figure 4.2a and Figure 4.2b depict Case 2 and Case 3, respectively, which occur 

twice per revolution. Case 2 represents the condition where the ball spends more time 

in a joint revolution. Offset Λi is a direct function of ball axial displacement. Therefore, it 

can be expressed as, 

 

( )ioioi ef ψΛΛΛ 2cos21++=+=           (4.1) 

for i = 1, 2, 3 

 

where oΛ  is the offset at zero degree joint angle. In other words, oΛ  is an initial 

condition. The ends of the needle rollers have the clearance  oΘ , with respect to roller 

retainer and ring spacer, which allows some additional axial motion of the needles with 

respect to the trunnion. This motion is very small if compared to the length of the needle 

but not very small if compared to the ball displacement at low angles. It will be assumed 

that the coefficient of friction between needle and ball is larger than the coefficient of 

friction between needle and trunnion. Therefore, the needle will displace together with 

the ball while there is clearance between the top end of the needle and the roller 

retainer in one direction, and the low end of the needle and the ring spacer in the 

opposite direction. Once the clearance becomes zero, the needle will stop displacing 

and the ball will continue its motion. This is shown graphically in Figure 4.3. 
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Figure 4.3. Clearance between needle, roller-retainer and spacer ring 

 

Such displacement can be considered as a lash that allows the needles to oscillate 

to the same frequency of the ball axial displacement, twice per revolution. Thus, the 

following piecewise function is defined to take into account needle axial displacement, 
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Using the same joint characteristics employed in Section 2 and Section 3, 

Expression (4.2) is plotted for two different joint angles, 6° and 23°, for a nominal value 

oΘ  = 0.452mm. 

 

1 2 3 4 5 6
y @radD

0.00

0.05

0.10

0.15

Q1 @mmD

 

Figure 4.4a. Needle axial displacement at 6° joint angle 
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Figure 4.4a shows that the loaded needles follow the same axial motion of the ball. 

Amplitude of the motion is less than the clearance  oΘ . Therefore, it is expected that 

the motion of the needles will not be limited by lack of the clearance. On the other hand, 

Figure 4.4b shows the truncation of the amplitude of axial motion of needles beyond the 

clearance oΘ . This clearly indicates that the needle displacement will be limited by the 

contact between roller retainer and spacer ring during a revolution. 
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Figure 4.4b. Needle axial displacement at 23° joint angle 
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Figure 4.5. Offset between ball equator and needles symmetry plane 

 

Then, Eq. (4.1) can be re-written by adding a term for needle motion, resulting in 

Eq. (4.3). It is plotted in Figure 4.5, for oΛ  = –0.206mm. 

 

( ) iioiioi ef ΘψΛΘΛΛ −++=−+= 2cos21         (4.3) 

for i = 1, 2, 3 

  

Once the offset between ball and needles has been defined, the analysis can 

continue to estimate load distribution on needles. Average loads per unit of length in ball 

and trunnion, are respectively, 

 

b

ij
bmij

c

p
p =               (4.4) 
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t
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tmij

c

p
p =               (4.5) 

 

Crowning of needle rollers used in tripode joints is very small and its effect will be 

neglected in this section. Effective contact length between needle and trunnion tc  is a 

constant, while the effective contact length between needle and ball bc  is a function of 

offset iΛ  and is defined by Eq. (4.6) through Eq. (4.8). The relationship is plotted in 

Figure 4.6, 
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Figure 4.6. Effective contact length between needle roller and ball, at 23° 

 

Orain’s [15] assumption of linear load distribution will be considered in this section 

and moments trying to rotate the ball in any direction perpendicular to trunnion axis will 

be neglected. Therefore, the equivalent concentrated force applied on the ball will be 

collinear with the equivalent concentrated reacting force on the trunnion. Under these 

conditions, the following relationship can be established for the load distribution 

between needle and ball, 

 

ijbbmij
bdijbuij

b pcp
pp

c ==

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 +

2
          (4.9) 

 

Simplifying, 

 

buijbmijbdij ppp −= 2             (4.10) 
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The following paragraphs will describe the load distribution at the contact between 

needle roller and ball for the three cases previously identified. 

 

Case 1 occurs when bdijbuij pp = . If the ball is symmetric, bdobuob ccc += .  

Case 2 occurs when offset iΛ  is positive. Then, summing the moments with respect to 

point BD, 
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Simplifying, 

 

0
63

22

=−− bbdijbbuij
bdoij

cpcp
cp            (4.12) 

 

Case 3 occurs when offset iΛ  is negative. Then, doing sum of moments with respect to 

point BU, 
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Simplifying, 
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Equations (4.10) and (4.12) can be solved simultaneously to obtain buijp  and 

bdijp  for Case 2, 
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When 0≤bdijp , the above solution is no longer valid since bdijp  can not be 

negative.  Additionally, such condition is not desired during the operation of the joint 

since the load would be concentrated on a very small area. Thus, making 0=bdijp  in 

Eq. (4.16) and solving for bc  it can be found the minimum contact length required for 

ball support when Case 2 is present. 
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 Using Eqs. (4.6), (4.7) and (4.8), the effective contact length between needle and 

ball for Case 2 can be expressed as, 
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From Eqs. (4.1), (2.2) and (2.18), it is known that iΛ  is a function of joint angle and 

reaches its maximum value when phase angle iψ  equals zero or π. The formerly 

mentioned equations are combined with Eqs. (4.17) and (4.18), where minbb cc =  and 

0≈iΘ . Such conditions are equivalent to assume the needle does not displace axially 

(which is the worst possible condition). Then, it can be solved for the maximum joint 

angle where the full contact between needle and spherical roller exists, when offset iΛ  

is positive, 
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The dimensions of the joint used for the experimental portion of this work are used 

to evaluate Eq. (4.19) and +Λθ
bcr

 = 23.56°. 

 

Similarly, Eqs. (4.10) and (4.14) can be solved simultaneously to obtain buijp  and 

bdijp  for Case 3, 
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When 0≤buijp , the above solution is no longer valid since buijp  cannot be 

negative.  Additionally, similar to Case 2, such condition is not desired during the 

operation of the joint since load would be concentrated on a very small area. Thus, 

making 0=buijp  in Eq. (4.20) and solving for bc  it can be found the minimum contact 

length required for ball support when Case 3 is present. 
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 If the ball is symmetrical, bdobuo cc = , and Eq. (4.17) equals Eq. (4.22). Using 

Eqs. (4.6), (4.7) and (4.8), the effective contact length between needle and ball for Case 

3, can be expressed as, 
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b c
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             (4.23) 

 

Similar to Case 2, Eqs. (4.22), (4.23), (4.1), (2.2) and (2.18) are combined for iψ  = 

π / 2, minbb cc =  and 0≈iΘ . Then, it can be solved for the maximum joint angle, where 

full contact between needle and spherical roller exists, when offset iΛ  is negative, 
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Evaluating Eq. (4.24) numerically, −Λθ
bcr

 = 35.77°. 

 

Load distribution at the contact between needle and ball has been obtained, as 

well as the joint angles where the assumption of linear load distribution stops being 

valid. Now the analysis will be done for the load distribution between needle and 

trunnion, following the same assumptions. 
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Simplifying, 

 

tuijtmijtdij ppp −= 2              (4.26) 

 

Case 1 occurs when tdijtuij pp =  and iΛ  = 0 

Case 2 occurs when offset iΛ  is positive. Then, doing sum of moments with respect to 

point TD, 
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Simplifying, 
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Case 3 occurs when offset iΛ  is negative. Then, doing sum of moments with respect to 

point TU, 
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Simplifying, 
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Equations (4.26) and (4.28) can be solved simultaneously to obtain tuijp  and tdijp  

for Case 2, 
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When 0≤tdijp , the above solution is no longer valid since tdijp  cannot be 

negative.  Additionally, such condition is not desired during the operation of the joint 

since load would be concentrated on a very small area. Thus, making 0=tdijp  in Eq. 

(4.32) and solving for iΛ  it can be found the maximum offset allowed to have full needle 

support when Case 2 is present. 
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Combining Eqs. (4.1), (2.2) and (2.18) with Eq. (4.33), when iψ  = 0, += ΛΛΛ
cri  

and 0≈iΘ  and solving for joint angle, 
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The dimensions of the joint used for the experimental portion of this work are used 

to evaluate Eq. (4.34) and +Λθ
tcr

 = 19.47°. 

 



 89 

Similarly, Eqs. (4.26) and (4.30) can be solved simultaneously to obtain tuijp  and 

tdijp  for Case 3, 
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When 0≤tuijp  the above solution is no longer valid since tuijp  cannot be 

negative.  Additionally, similar to Case 2, such condition is not desired during the 

operation of the joint since the load would be concentrated on a very small area. Thus, 

making 0=tuijp  in Eq. (4.35) and solving for iΛ , it can be found that the maximum 

offset is allowed to have full needle support when Case 3 is present. 
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 Similar to Case 2, Eqs. (4.37), (4.1), (2.2) and (2.18), are combined for iψ  = π / 2, 

+= ΛΛΛ
cri  and 0≈iΘ . Then, it can be solved for the maximum joint angle with the full 

contact between needle and trunnion when the offset iΛ  is negative, 
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and 

 

( )−+−+= ΛΛΛΛΛ θθθθθ
bcrtcrbcrbcrcr

,,,min         (4.39) 

 

Evaluating Eq. (4.38) numerically, −Λθ
tcr

 = 28.84°. The lowest critical angle for 

the joint used in this work is +Λθ
tcr

 = 19.47° = Λθ
cr

. To illustrate this, loads per unit 

length tuijp  and tuijp  are plotted for ijp , which is assumed to be 1000N, 0=oΘ  and 

oθ  = 19.5°, as shown in Figure 4.7 and Figure 4.8. 
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Figure 4.7. Load per unit length at upper end of needle, at 19.5° 
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Figure 4.8. Load per unit length at lower end of needle, at 19.5° 

 

Figure 4.8 shows that the load at the lower end of the needle gets slightly below 

zero, verifying the formulation of the critical angles. Initial joint offset oΛ  may be 

obtained from the geometry of the joint, 
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Figure 4.9. Spider Geometry 

 

 

4.3 Normal load distribution on needles (radial direction) 

In most roller bearings, the outer race is fully supported along its perimeter. In a 

tripode joint the outer perimeter of the spherical rollers is supported at only one contact 

point in its matching ball bore. This difference in boundary conditions changes the load 

distribution among needles due to the flexibility of the spherical roller (outer race). Harris 

[18] studied load distributions in bearings loaded at two points, used in planetary gears, 

Filleti and Rumbarger [19] also studied the case of a bearing supported at two points, 

collecting experimental data to verify their theoretical results, Papadopoulos [20] studied 

the load distribution in a roller bearing by experimental methods and Zhao [21] by finite 

element methods. 
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This work will apply the method developed by Harris [18] to estimate the radial 

load distribution on a trunnion. The main advantage of this method is its compactness 

and the ability to be easily incorporated into the program written to calculate kinematic 

and quasi-static variables in previous sections. The main disadvantage of the method is 

the assumption of considering outer races (balls in our case) as “thin rings” to calculate 

deflections. This assumption makes the method inaccurate when dealing with balls that 

are “thick rings”. Ugural and Fenster [22] consider that for curved beams in which the 

depth of the member is small relative to the radius of curvature, strain energy due to the 

bending can be approximated by that of a straight beam. Then, the deflections in a “thin 

ring” can be calculated under this assumption. The ratio used by Ugural and Fenster is 

given by, 

 

4>
b

b

h

R
               (4.41) 

 

and the formulation in this section will apply only to joints with the balls that meet this 

condition. Before proceeding to describe the method used to calculate the load 

distribution on the trunnion, the properties of the area defined by the radial cross section 

of the ball will be determined (Figure 4.10). The small chamfers cut in the ball to avoid 

sharp corners will be neglected for the purposes of calculating areas and second 

moments of area. The specifications of the geometry in Figure 4.10 are the following, 
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Figure 4.10. Cross section of spherical roller 

 

Figure 4.11 shows schematically the loading on the spherical roller. Following the 

Harris’ approach, only one half of the ball is analyzed due to the symmetry condition. 

Superposition is used in conjunction with the method of influence coefficients to 

calculate the radial deflections of the ball. The influence coefficient method implies, 

 

vuvpuvp pC=∆              (4.53) 

 

where, uvp ∆  is the deflection at angle (position) uφ  due to the load vp  and uvpC  is the 

influence coefficient. Similarly, the deflections uq ∆  experienced by the ring at angle uφ  

due to the external load iq  applied to the ball can be obtained from Eq. (4.54). 
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iuquq qC=∆               (4.54) 

 

 

Figure 4.11. Schematic view of loads 

 

The influence coefficients published by Harris [18] that can be applied to the 

tripode problem are given by Eqs. (4.55) and (4.56). 

 

( )

( )
( )∑

∞

= 















−

−=

2
22

3

cos

1

cos2

m

u
v

bxxY

b
uvp m

m

m

IE

R
C φ

φ

π
        (4.55) 

( )
( )∑

∞

= 















−

=

2
22

3

cos

1

12

m

u
bxxY

b
uq m

m
IE

R
C φ

π
        (4.56) 

 

Using the principle of superposition, the radial deflection of the ring at angle uφ  

can be obtained from Eq. (4.57), 
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It is assumed that the center of the trunnion will remain in its original position after 

applying the load to the ball. Therefore, due to the contact deformations and clearance 

in the trunnion-needle-ball assembly, the center of the ball will displace a distance bδ  

as shown in Figure 4.11. Thus, the relative radial approach vδ  between ball and 

trunnion at angle vφ  can be obtained from Eq. (4.58), 
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For the roller compressed between raceways Palmgren [18] gives the following 

equation, 

 

rn
vpv kp υ=               (4.59) 

 

where pk  is a material constant defined for this work, based on Palgrems’s 

approach, using effective contact lengths at trunnion and ball, as, 
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9/841086.7
tpt ck ×=             (4.61) 

9/841086.7
bpb ck ×=             (4.62) 

 

Deformation vυ  is the difference between the relative radial approach uδ  and 

actual clearance between the trunnion and ball at angle uφ . Therefore, the load at the 

needle roller with index  v  can be expressed as, 
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The assumption is that the first roller position of the n needle rollers is right at the 

plane of symmetry of the trunnion. This needle roller is assigned the index v = 2. Thus, 

angle vφ  is defined as, 
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             (4.64) 

 

where oΓ  = 0 if the first roller is at the plane of symmetry. Otherwise, oΓ  = 0.5. 

Similarly,  
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The upper limit for both u and v is, 
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So far only the displacements and deformations have been defined. Equilibrium of 

forces must be satisfied in the problem. Therefore, sum of forces on the trunnion must 

equal zero. 
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where vΓ  = 0.5 for vφ  = 0. Otherwise, vΓ  = 1. Then, we have a set of Γ  equations 

that is obtained combining and simplifying Eqs. (4.53) through (4.67). This set of 

equations can be solved simultaneously for tδ  and 2δ  through Γδ  using a numerical 

method. Once the relative radial approaches have been determined the load at each 

trunnion can be obtained from Eq. (4.63). 
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4.4 Numerical examples of load distribution on trunnions 

The equations to calculate load distribution on the trunnion were programmed and 

incorporated to the computer program developed and presented in Sections 2 and 3. 

The dimensions of the tripode used to generate numerical values in the previous 

sections (2 and 3) are used in this section as well. The computer program developed 

allows the calculation of load distribution at any joint angle. To show the effect of 

applied torque on load distribution and number of loaded needles, the tripode joint is 

analyzed at a joint angle of 2± and at a rotational position of 0±. A perfect round trunnion 

is assumed and the load distribution is calculated for different levels of applied torque. 

Table 4.1 summarizes the loads, reported in Newtons, on each needle roller versus 

percentage of yield torque (first row).  

 

vφ  100% 75% 50% 25% 10% 

0° 7211 5302 3591 1810 763 

10° 6233 4673 3124 1586 673 

20° 4222 3189 2153 1112 471 

30° 2479 1890 1287 665 251 

40° 1298 990 658 303 35 

50° 571 408 215 8 0 

60° 168 51 0 0 0 

70° 0 0 0 0 0 

Table 4.1. Load distribution (N) at different proportions of yield torque 
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Figure 4.12 shows a graphical representation of the load distribution at 50% (solid 

line) and 25% (dashed line) of the nominal yield torque in the joint. The reader will 

notice that when a higher torque is applied more needles will be loaded. Ideally, a round 

trunnion is “round” but in reality most trunnions have some type of lobing or waviness 

occurred during the manufacturing processes. In center-less grinding processes the 

trunnions tend to be tri-lobal or penta-lobal. The small deviations from the basic circle 

that generate the lobes in the trunnion are in the order or microns and can only be 

checked with specialized equipment. In later sections actual measurements of parts will 

be shown. The lobing in the trunnion will cause needles that roll at the peaks of the 

undulations to be more heavily loaded than those that roll at the valleys.  

 

Figure 4.12. Load distribution at 25% and 50% of yield torque 

 

For a single harmonic causing lobing in the trunnion the function that defines the 

deviation from the basic circle can be written as, 
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( )vwov h φΩΩ cos=              (4.68) 

 

With more than one frequency, amplitude and phase that need to be considered to 

estimate the undulations in the trunnion, Eq. (4.68) can be expanded to Eq. (4.69) and 

be substituted in Eq. (4.63). 
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Figure 4.13 shows a comparison of load distribution at 50% of yield torque 

between a perfect circular trunnion (solid line) and a penta-lobed trunnion (dashed line), 

roundness error is in the order of 0.010mm. The shape of the penta-lobed trunnion 

(phantom line) has been exaggerated for clarity purposes. 

 

Figure 4.13. Load distribution at 50% of yield torque, perfect vs. lobed trunnion 
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It can be observed that even though the load in some of the needles is lower due 

to the pentagon shape the central needle will be more heavily loaded than those in the 

circular case. This difference in the load magnitude will increase the contact stresses 

and reduce the wear life of the part. The contact stresses and estimated fatigue life will 

be studied in subsequent sections of this work.  

 

The shape of the trunnion can also be made different from a perfect circle to have 

a better load distribution and/or to reduce the highest load in the distribution. “Elliptical-

like” shapes have been used by Harris [18] in roller bearings and Orain in tripode joints 

[15]. Such “elliptical” shapes may not match the mathematical definition of an ellipse but 

“elliptical” is a generic name that has been used in industry. 

 

Figure 4.14 shows a comparison at 50% of yield torque between a perfect circular 

trunnion (solid line) and a perfect elliptical trunnion (dashed line), where the difference 

between the semi-major axis and the semi-minor axis is 0.031mm. The minor axis is 

parallel to the spider axis. The radial deviations of the ellipse with respect to its 

minimum circumscribed circle are given by Eq. (4.70). It can be combined with Eq. 

(4.69) to form Eq. (4.71) and take into account the shape of the ellipse and its waviness 

due to manufacturing. Then, Eq. (4.71) can be substituted in Eq. (4.63) to calculate the 

load distribution on the trunnion. 
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      (4.71) 

 

Variable te  is the elliptical ratio of the trunnion, defined as the ratio of the major to 

the minor axis. More terms could be added to Eq. (4.71) and virtually any possible 

trunnion shape could be analyzed.  

 

Figure 4.14. Load distribution at 50% of yield torque, circular vs. elliptical trunnion 
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4.5 Making trunnion load distribution a function of joint angle 

After finding out how loads are distributed in a tripode joint it is necessary to relate 

them to the displacements of the internal components, caused by the rotation of the 

joint at angle, in order to estimate the fatigue cycles. It is assumed that the load profile 

on a trunnion, such as that shown in Figure 4.12, will change as a function of the normal 

load between ball and ball bore. The instantaneous position of the rollers may also 

affect the load distribution when they are not symmetrically positioned. However, the 

variation in load distribution profile due to non-symmetrical conditions is assumed to be 

small and will be neglected. The loads when the rollers are located at non-symmetrical 

positions will be obtained interpolating within the load distribution profile obtained from 

the symmetrical case. Observation of tripode joints tested in the Nexteer Automotive 

validation labs suggests wear tends to start at the intersection of the trunnion surface 

and spider plane, which is the region where a roller will see the highest possible loads 

and more fatigue cycles. The reader may refer to Figure 4.15 which shows an example 

of initial wear in a spider trunnion [23]. 

 

 

Figure 4.15. Example of initial wear in a trunnion 
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It is necessary to define the position of a roller with respect to the plane of 

symmetry of the load distribution. This position is defined by angle ijχ , which can be 

obtained from Eq. 4.72 and is shown in Figure 4.16.  

 

iijij εφχ −=               (4.72) 

 

where i is the trunnion index and j is the needle index 

 

Figure 4.16. Position of roller within load profile 
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Once ijχ  is known, the load acting on a roller at any position within the load profile 

may be calculated from Eqs. (4.73) and (4.74). Eq. (4.73) is an interpolation function 

that uses positions vφ  and loads vp , calculated from Eqs. (4.63) and (4.64), as data 

points. 

 

[ ]},{},...,,{{ionInterpolat ΓΓ=Ψ ppvv φφ          (4.73) 

 

where v = 2, 3, …, Γ  

 

[ ]ijijp χΨ=               (4.74) 
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Figure 4.17. Roller position with respect to symmetry plane of loading profile 
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The angle 11χ , obtained using Eq. (4.72), is plotted in Figure 4.17 at 23± 

(continuous line) and 6± (dashed line). The reader is asked to remember that the 

calculated critical angle in Section 2 was very close to 6±. That is why the peak-valley 

amplitude of 11χ  at 6± is very similar to the needle spacing 360± / n, where n = 36. 

 

Figure 4.18 shows the load profile at a joint angle of 6± and zero angular 

displacement ψ, when an input torque of 1059Nm is applied. Eqs. (4.73) and (4.74) 

were used to obtain the load profile. The type of interpolation chosen is a third order 

type. 

 

æ

æ

æ

æ

æ

æ

æ æ æ æ æ æ æ æ æ æ æ æ

0.5 1.0 1.5 2.0 2.5 3.0
c @radD

500

1000

1500

2000

2500

3000

3500

Pij@ND

 

Figure 4.18. Load profile at joint angle of 6± 
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5. STATE OF STRESS AT THE ROLLER-TRUNNION CONTACT 

 

 

5.1 Introduction 

This section deals with the state of stress at the roller-trunnion contact. The first 

introductory part of this section explains the state of stress using a Hertzian formulation 

for line contacts. In the second part, the contact stress problem is solved using a 

numerical technique based on the Boussinesq solution for point loads. The following 

assumptions are made: 

a) The yield limit of the material is not exceeded. In other words, all deformation 

occurs in the elastic range. 

b) Loading is perpendicular to the surface.  

 

The contact area dimensions are small compared to the radii of curvature of the 

roller and trunnion. In the third part of this section it is studied the effects of needle roller 

crowning and the stress distribution when the applied load is non-symmetrical. In the 

fourth part sub-surface stress calculations are described.  

 

In Section 4 it was stated that the contact region to show the first signs of wear is 

the contact between trunnion and needle rollers. Contact stresses between balls and 

needle rollers and pressure distribution between balls and housing ball bores are not 

studied in this work. 
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5.2 Hertizan formulation for line (cylindrical) contacts 

The Hertz solution to a general contact problem is not discussed here. The 

reader is referred to contact stress and elasticity books such as those written by Ugural 

[22] and Johnson [24]. 

 

A line contact exists, as its name clearly states, when the contact between two 

bodies is along a line and not at a single point. Line contact is an ideal condition where 

two bodies of cylindrical shape are in contact and have the same length. A schematic 

representation of a line contact is shown in Figure 5.1. The area of contact is a narrow 

rectangle of width hb2  and length hl . Pressure distribution is elliptical. The half width 

hb  is given by Eq. (5.1), the elliptical pressure distribution hσ  is given by Eq. (5.2) and 

the maximum pressure maxhσ  is given by Eq. (5.3) [18]. 
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In this work it is assumed that the Poisson’s ratio of steel is 0.3. Both needle roller and 

spider are made of steel. Therefore, Eq. (5.1) can be simplified to, 
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Figure 5.1. Ideal cylindrical contact 

 

Experimental evidence in roller bearings [18] suggests that surface fatigue is 

originated at points below the stressed surface. Experimental evidence shows that CV 

joints operating under normal conditions will fail due to sub-surface fatigue (also named 

“spalling”) [25]. Therefore, it is of interest in this work to know the state of stress in the 

contact region below the surface. Eqs. (5.5) through (5.11) define the sub-surface stress 

components [24], along the Z-axis, shown in Figure 5.1. 
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The stress components and the maximum principal shear are plotted and shown in 

Figure 5.2, where the continuous line represents principal shear, the small-dashed line 

represents hyσ , the medium-dashed line represents hxσ  and the large-dashed line 

represents hzσ . It is noted that the principal stress hyh σσ =1  changes to hxh σσ =1  at 

hbz 436.0= . The peak value of the maximum shear occurs at hbz 786.0= , with a value 

of max3.0 hσ . 
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Figure 5.2. Subsurface stresses along the plane of symmetry of the contact 

 

Hertz provided an analytical solution for the load-deflection relationship of a point 

contact but not for a line contact. Others have established load-deflection relationships 

based on some experiments. Teutsch and Sauer [26] compiled and compared most of 

the published load-deflection relationships for rollers in contact. The contact roller to 

trunnion in this work is equivalent to the contact between a roller and an inner race. 

Teutsch found that Palmgren’s relationship for a roller to inner race contact has 

deviated somewhat with respect to more modern and sophisticated relationships. The 

main advantage of Palmgren’s load-deflection relationship is its closed form and 

simplicity. It is described as Eq. (5.12). 

 

8.0

9.0
51084.3

t

ij
ij

c

p
−×=α             (5.12) 
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5.3 Non-Hertizan formulation for line (cylindrical) contacts 

Several authors, Conry and Seireg [27], Singh and Paul [28], Oh and Trachman 

[29] and Hartnett [30], have tried to solve Non-Hertzian contact problems using 

numerical techniques based on the Boussinesq solution for a concentrated load, applied 

normally to a homogeneous elastic space. Other authors, Harris [18] and Teutsch and 

Sauer [26], have tried to solve the pressure and force distribution in line contacts using 

slicing techniques. 

 

 The numerical solution published by Hartnett [30] has the advantage of being 

three dimensional. This solution divides the contact regions in rectangles and 

superposition can be used to calculate sub-surface stresses. Hartnett’s method was 

programmed and its convergence was verified in this work with a relatively simple 

problem: Contact of a sphere on a plane. The validity of Hartnett’s numerical solution to 

line contact problems has been verified experimentally by Hartnett and Kannel [31]. 

 

 The contact of two elastic bodies is shown in Figure 5.3. The origin of the 

coordinate system is located at the first point of contact. If two arbitrary points are 

brought into contact by the displacement α  of body 1 to body 2, the displacements 1v  

and 2v , and the initial separations 1z  and 2z  of the points inside the contact region, 

can be described by Eq. (5.13), and by Eq. (5.14) outside of the contact region. 

 

α=+++ 2121 zzvv              (5.13) 
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α≥+++ 2121 zzvv              (5.14) 

 

Figure 5.3. Two bodies in contact 

 

If the area of contact is divided in r rectangles and it is assumed that each 

rectangle has a uniform pressure ns , then, the sum of pressures times the area of the 

rectangular element equals the applied load ijp . This is expressed as Eq. (5.15), where 

the product 4ab is the area of a single rectangular element. 

 

ij

r

n

n psab =∑
=1

4               (5.15) 
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It is assumed that negative pressures may not occur on the contact surface. 

Therefore, 

 

0≥ns                (5.16) 

 

The pressure ns  on an element n will cause a deflection at the element n and a 

deflection at an element m in the contact region and vice versa. Then, using 

superposition, the total displacement at an element m is given by Eq. (5.17). 

 

mm

r

n

mnn zzfs 21

1

−−=∑
=

α             (5.17) 

 

and the influence coefficients mnf  are given by Eq. (5.18), which comes from integrating 

the Boussinesq solution for a normal point load.  
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where κ  is a material constant, given by Eq. (5.19), when the contacting bodies are 

made of the same material. 

 

( )
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Y

s

E

21
2

−
=               (5.19) 

 

Thus, the problem consists of solving the set of linear equations, given by Eq. 

(5.15) and Eq. (5.17), constrained by Eq. (5.16), for α  and ns . A combination of the 

Newton-Raphson and the Gauss-Seidel methods is used in this work to solve the set of 

equations. 

 

A sphere-plane contact was evaluated and compared to the exact solution to 

debug the code. The radius of the sphere is 10mm and the applied load is 100N. It was 
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assumed both contacting bodies are made of steel. The exact solutions for contact 

patch radius, maximum stress and displacement are [32]: 
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where, w is the applied load at the contact. Using Eq. (5.20) it is found that the radius of 

the contact patch is 0.1873mm. Therefore, a rectangular mesh of 0.4mm x 0.4mm was 

used. When it is not possible to obtain an initial approximation of the size of the contact 

patch, a coarse mesh can be used to get a rough estimate of the size of the contact 

area. Then, the mesh can be refined. Table 5.1 shows the convergence of the 

approximate solution as the number of elements is increased and compares to the 

exact solution. 
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Mesh maxballσ [MPa] ballα  [mm] 

3 x 3 1443.7 0.003431 

5 x 5 1367.4 0.003463 

7 x 7 1366.3 0.003486 

9 x 9 1366.5 0.003499 

11 x 11 1364.7 0.003500 

15 x 15 1364.4 0.003505 

41 x 41 1362.4 0.003505 

Exact 1362.3 0.003504 

Table 5.1. Convergence of maximum pressure and deflection 

 

The reader may observe that with a relatively small number of elements a good 

approximation may be obtained.  

 

Figure 5.4. Pressure distribution in a sphere-plane contact 
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Figure 5.4 shows the pressure distribution in the contact, calculated using a 41 x 

41 mesh. Once the program has been verified it can be proceeded to analyze the roller 

to trunnion contact. 

 

In Section 4 it was found that the load on a needle roller varies within one 

revolution of the tripode joint. It was also found that the applied load is not always 

symmetrical. This section deals with the contact problem only. Therefore, an arbitrary 

load and an arbitrary position of the load will be used to exemplify the pressure 

distribution in the contact. In a later section of this work, the stress distributions will be 

calculated for different positions of the tripode joint to estimate fatigue life. 

 

The peak load on the trunnion at 25% of the yield torque of the joint, from Table 

4.1 is selected arbitrarily. It is assumed an initial effective contact length tc  of 9.9mm, 

based on the geometry of the needle. The semi-width of the contact area, maximum 

contact pressure and deflection, per Hertz solution, may be obtained from Eq. (5.4), Eq. 

(5.3) and Eq. (5.12), respectively. Such values are, 

 

mmbh 0432.0=  

MPah 1.2694max =σ  

mmj 00524.0=α  
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 For the first numerical solution it was assumed no crowning on the needle and a 

sharp transition at the end of the contact length. The discontinuity caused by the sharp 

edge generates a stress concentration, which is captured by the numeric model. The 

reader will observe in Table 5.2 that the more refined the mesh the higher the stress at 

the edge of the contact. This makes sense since the stress at a discontinuity, assuming 

the material doesn’t yield, tends to infinite. The size of the grid was 0.1mm x 9.9mm.  

 

Mesh maxhσ [MPa] hcenterσ [MPa] α  [mm] 

9 x 11 2910.3 2623.1 0.006477 

13 x 13 2942.0 2605.9 0.006464 

21 x 21 3058.2 2604.5 0.006448 

41 x 41 3296.9 2597.7 0.006430 

Table 5.2. Convergence of maximum pressure and deflection 

 

The difference in the stress value with respect to the Hertzian formulation can be 

explained due to the stress concentrations at the edge. The difference in deflection can 

be explained due to the lack of crowning since Palgrem’s equation was experimentally 

developed for rollers with a specific type of crowning on a flat surface. Figure 5.5 shows 

the pressure distribution in the line contact for the 41 x 41 mesh. 
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Figure 5.5. Pressure distribution in a cylinder contact 

 

 

5.4 Non-Hertizan formulation for contact of rollers with crowning 

Needle rollers are typically made by grinding its diameter to a given size. 

Subsequently, a tumble polishing process is used to remove sharp edges. The polishing 

process causes crowning at the end of the needle rollers. Crowning is defined in this 

work as a convex deviation from a perfect cylindrical form. Figure 5.6 shows the 

dimensions of the needle roller considered and used in this work. Eq. (5.23) and Eq 

(5.24) are the mathematical representation of the crowning in such roller. 

 

Crowning starts at a distance of 2mm from the end of the needle. This distance will 

vary depending on the length and diameter of the needle roller.  
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Figure 5.6. Needle roller dimensions 

 

( )( )1exp002.0 −= yzcw      for 47237.1≤y    (5.23) 

( )22 46881.14.04067033.0 −−−= yzcw   for 47237.1>y    (5.24) 

 

where the origin of the reference frame is at the gage height of 2mm, as shown in 

Figure 5.6. It must be noted that crowning is symmetrical. The portion of the roller 

between the 2mm gage heights is assumed to be a perfect cylinder. Thus, if Eq. (5.23) 

and Eq. (5.24) are rewritten with respect to roller’s transversal plane of symmetry, 

crowning can be expressed as, 

 

0=cwz         for 405.3≤y    (5.25) 

( )( )1405.3exp002.0 −−= yzcw     for 87737.4405.3 ≤< y  (5.26) 

( )22 87381.44.04067033.0 −−−= yzcw  for 87737.4>y    (5.27) 
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Figure 5.7 shows a graphical representation of crowning, based on Eqs. (5.25) 

through (5.27), for the needle roller used in this work.  
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Figure 5.7. Crowning of 10.81mm needle roller 

 

The formerly mentioned equations are incorporated into the contact model and the 

pressure distribution is recalculated. Such distribution is shown in Figure 5.8a and 

Figure 5.8b. The reader will notice that there is still a slight “edge contact” effect. Such 

effect could be reduced or eliminated by introducing more crowning.  Table 5.3 shows 

the convergence of the solution as the mesh was refined. 
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Figure 5.8a. Pressure distribution of needle roller with crowning 

 

 

Figure 5.8b. Lateral view of pressure distribution of needle roller with crowning 
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Mesh maxhσ [MPa] hcenterσ [MPa] α  [mm] 

9 x 9 2980.5 2869.9 0.007492 

13 x 13 3035.2 2837.2 0.007346 

21 x 21 2993.7 2841.7 0.007384 

41 x 41 3083.9 2840.3 0.007379 

41 x 81 3066.1 2840.2 0.007379 

Table 5.3. Convergence of maximum pressure and deflection 

 

So far the assumption has been that the needle roller axis is parallel to the 

trunnion axis. This occurs only when there is no clearance in the trunnion-roller-ball 

assembly. Manufacturing processes have variation and interference is not desired in the 

design. Therefore, the trunnion-roller-ball assembly is designed with clearance. Such 

clearance allows “skewing” of the needle roller. When the roller skews the “edge 

contact” effect is eliminated since the ends of the needle are not in direct contact with 

the trunnion. Figure 5.9 shows a needle skewed with respect to the trunnion.  

 

Figure 5.9. View of needle skewing 
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The clearance at the ends of the needle due to the skewing can be modeled as 

additional crowning. Such equivalent crowning is given by Eq. (5.28) and Eq. (5.29). 
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where y  is the distance from the initial contact point. It may be noticed that the sign of y  

does not influence the value of the equivalent crowning. Skew angles of needle rollers 

in tripode joints are typically around 4º. Eq. (5.28) and Eq. (5.29) were added to the 

contact model and the pressure distribution was recalculated considering a skew angle 

of 4º. A mesh of 41 x 41 elements was used. Figure 5.10a and Figure 5.10b show the 

pressure distribution including skewing effect. 

 

Figure 5.10a. Pressure distribution of needle roller with crowning and skewing 
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Figure 5.10b. Lateral view of pressure distribution of needle roller with crowning and 

skewing 

 

It is clear that the “edge contact” effect is not present and pressure has a “barrel” 

type pressure distribution. On the other hand, given the symmetry conditions, the 

pressure at the center of the contact equals the maximum pressure. In practice the 

needle roller will see perfect alignment with the trunnion only twice per joint revolution 

(the reader may refer to Section 2 for details). Therefore, analysis of pressure 

distribution in subsequent portions of this work will assume a skew angle of 4º, unless 

otherwise indicated.  

 

Sometimes “undercuts” on the cylindrical surface of the trunnion are required due 

to the manufacturing constraints. An example of a undercut is shown in Figure 5.11. 

When this type of discontinuity is present in the cylindrical surface of the trunnion an 
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edge contact effect will take place. The edge contact may be minimized by having extra 

crowning in the needle. However, the additional crowning will concentrate the load more 

at the center, thus, causing a higher maximum stress. To run experiments, parts without 

undercut will be used to avoid adding an extra variable. 

 

Mesh maxhσ [MPa] hcenterσ [MPa] α  [mm] 

13 x 13 3233.8 3233.8 0.008857 

21 x 21 3233.3 3233.3 0.008863 

41 x 41 3233.3 3233.3 0.008868 

Table 5.4. Convergence of maximum pressure and deflection 

 

Figure 5.11. Undercut on trunnion surface 

 

Figure 5.12a and Figure 5.12b show the pressure distribution when a 2mm 

undercut is present and the needle has been skewed 4º. The maximum stress in the 

distribution is 3324MPa.  The edge effect will be more pronounced in the absence of 

needle skewing.  



 130 

 

Figure 5.12a. Pressure distribution of skewed needle roller with undercut on trunnion 

 

Figure 5.12b. Lateral view of pressure distribution of skewed needle roller with undercut 

on trunnion 

 

So far perfect symmetry has been assumed at the contact. When a equivalent 

concentrated load on the needle roller is not centered, the pressure distribution will 
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change. An example of an asymmetrical load distribution is shown in Figure 5.13. Other 

cases can be reviewed in Section 4.2. Rotation of the contact elements is not part of the 

model. Thus, the slope of the load distribution must be transformed into an equivalent 

slope of misalignment to model the asymmetry.  

 

The variables tuijp  and tdijp  represent the load per unit of length at the ends of 

the load distribution. If a unit length is assumed and the formerly mentioned variables 

substitute ijp  in Eq. (5.12) then Eq. (5.30) and Eq. (5.31) are obtained. 

 

Figure 5.13. Case of asymmetrical load, positive offset 
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9.051084.3
tuijuij p−×=α             (5.30) 

9.051084.3
duijdij p−×=α             (5.31) 

 

Now, the slope of the equivalent misalignment caused by the asymmetrical load 

distribution can be calculated along the effective contact length tc , yielding Eq. (5.32). 
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The slope is defined as positive when the equivalent concentrated load is above 

the plane of symmetry of the needle or there is a positive offset iΛ , as shown in Figure 

5.13. The additional equivalent crowning due the asymmetrical load can be estimated 

from Eq. (5.33)  

 

ijyz ξξ =               (5.33) 

 

The previous expression, combined with the expressions for crowning and 

equivalent crowning due to skewing can be combined and used to accurately describe 

the pressure distribution at the contact between needle and trunnion, at any position of 

the tripode joint. Thus, 

 

ξzzzz skcwt ++=             (5.34) 
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Some numeric examples, to illustrate the effect of an asymmetrical load 

distribution, are carried out for an arbitrary offset iΛ  of –1mm. The same concentrated 

load magnitude used for previous numeric examples is applied and the calculated 

pressure distribution assuming no skewing is shown if Figure 5.14a and Figure 5.14b. 

The maximum pressure in the distribution is 3420MPa. 

 

Figure 5.14a. Pressure distribution of needle roller with crowning and a load offset iΛ  of 

–1mm, no skewing 
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Figure 5.14b. Lateral view of pressure distribution of needle roller with crowning and a 

load offset iΛ  of –1mm, no skewing 

 

Figure 5.15a. Pressure distribution of needle roller with crowning and a load offset iΛ  of 

–1mm, skewing of 4º 
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Figure 5.15b. Lateral view of pressure distribution of needle roller with crowning and a 

load offset iΛ  of –1mm, skewing of 4º 

 

If a skewing of 4º is added, while keeping the same offset, a maximum pressure of 

3286MPa is calculated. The corresponding pressure distribution is shown in Figure 

5.15a and 5.15b.  

 

 

5.5 Sub-surface stress distribution 

Once the surface pressure in each one of the rectangular elements that compose 

the contact area is known, it can be proceeded to calculate the sub-surface stress 

distribution. The approach to calculate the stress distribution under the surface is 

superposition. The solution for stress components in a semi-infinite solid due to the 

uniform pressure over a rectangle is published as the appendix in Trachman’s [29] 
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work.  They were originally published by Love [33] and are shown in this work for 

reference purposes.  Consider the potential functions V and Χ for each element n. Then, 
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where, 

222 )()( zyxr +−+−= ηξ          (5.37) 

 

Then, the stress components are given by, 
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where, 
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and 
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Once the stress components are known, it is possible to calculate the principal 

stresses, which are the roots pσ  of the cubic equation, 

 

023 =+++ ΙΙΙΙΙΙ σσσσσσ ppp          (5.59) 

 

where, the stress invariants are, 

 

zyx σσσσ ++=Ι            (5.60) 

222
xzyzxyzxzyyx τττσσσσσσσ −−−++=ΙΙ       (5.61) 

2222 xzyyzxxyzxzyzxyzyx τστστστττσσσσ +++−−=ΙΙΙ     (5.62) 

 

and the maximum principal shear stress is, 
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=            (5.63) 

 

Eqs. (5.38) through (5.63) were programmed in addition to the computer program 

that calculates pressure distribution in a contact. Similar to the pressure distribution 

calculation, the code was debugged comparing the numeric solution to the exact 

solution of a sphere-plane contact. The radius of the sphere is 10mm and the applied 

load is 100N. It was assumed both contacting bodies are made of steel. 

 

From Eq. (5.20) is known that the radius balla  of the contact patch is 0.1873mm 

and from Eq. (5.21) is known that the maximum pressure in the contact is 1362.3MPa. 

According to the expressions published by Johnson [24], the maximum principal shear 

stress has a value of approximately max31.0 ballσ  at a depth of balla48.0 . Thus, 

maximum shear in the sphere-plane contact problem is 422.31MPa at a depth of 

0.89904mm. 

 

Figures 5.16a through 5.16d show the stress components and maximum shear as 

a function of the depth. Such figures were generated from the numeric solution of the 

sphere-plane contact problem using a 41x41 mesh. The maximum principal shear, 

calculated at a depth of 0.9mm using the numeric procedure, is 422.27MPa. 
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Figure 5.16a. Stress distribution along the depth of the contact, xσ  component 
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Figure 5.16b. Stress distribution along the depth of the contact, yσ  component 
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Figure 5.16c. Stress distribution along the depth of the contact, zσ  component 
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Figure 5.16d. Stress distribution along the depth of the contact, maxτ  

 

It must be noted that the previously described state of stress is at the element that 

matches the position of the applied concentrated load. Shear stress components are 



 143 

zero at the plane of symmetry. The numeric procedure allows calculation of the state of 

stress at any element within the mesh. This will prove extremely useful when dealing 

with needle rollers asymmetrically loaded. 

 

As a second verification of the program, it is calculated the sub-surface stress 

distribution for the contact problem of a crowned needle (no skewing), described in 

Table 5.3 and shown in Figure 5.8a and Figure 5.8b. This problem was chosen since it 

is a very good numerical approximation to a line contact without having the numeric 

instability caused by an edge contact. It is known that the pressure at the center of the 

needle roller is 2840MPa and the semi-width of the contact patch, at the plane of 

symmetry, is approximately 0.048mm. According to the Hertzian subsurface stress 

distribution shown in Figure 5.2, it is expected that at maximum shear stress of 

MPa8523.0 maxmax == sτ  will occur at a depth of 

( ) mm038.0048.0786.0786.0 === hbz . It is also expected that the stress components 

xσ  and yσ  will be equal at approximately ( ) mm021.0048.0436.0436.0 === hbz  . 

 

Figures 5.17a through 5.17c show the stress components and maximum shear as 

a function of the depth. Such figures were generated from the numeric solution in Table 

5.3 for a 41x41 mesh. 
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Figure 5.17a. Stress distribution along the depth of the contact, xσ  component 

represented with a solid line, yσ  component represented by a dashed line 
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Figure 5.17b. Stress distribution along the depth of the contact, zσ  component 
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Figure 5.17c. Stress distribution along the depth of the contact, maxτ  

 

From Figure 5.17a it can be verified, graphically, that the point where the stress 

components xσ  and yσ  are equal happens around 0.02mm, which is very close to the 

expected value of 0.021mm. From Figure 5.17c it can be obtained that the maximum 

shear is approximately 850MPa at depth of 0.035mm, not very different from the 

Hertzian calculation of 852MPa at 0.038mm. 

 

At this point it is possible to calculate the state of stress at any location of the 

needle-trunnion contact at any position of the joint, under any load conditions. The next 

section will deal with the different yield and fatigue theories that will be used to predict 

the wear performance of the tripode joint. 
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6. FATIGUE-LIFE THEORIES 

 

 

6.1 Introduction 

Studies on bearing life prediction started in the early twentieth century. The 

dominant model since then has been the Lundberg-Palmgren equation, which is the 

basis of the current ANSI/ABMA standards [34, 36]. Such standards can be easily 

applied for traditional bearings under simple load conditions but not to Tripode joints. 

Other authors such as Zaretsky [34, 35] and Ioannides and Harris [36, 37] have 

proposed alternative or expanded versions of the Lundberg-Palgrem equation. Such 

models are discussed in this section and a new model, specific to Tripode joints, will be 

proposed. 

 

 

6.2 Weibull Equation 

Weibull proposed a statistical approach to determine the strength of solids and 

observed that the dispersion in material strength for a homogeneous group of test 

specimens would follow the following relation, 
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where, S is the survival (i.e. completed load cycles) to the fracture strength wσ . Eq 

(6.1) can be rearranged to have the form of a straight line equation, and if 
















S

1
lnln  is 

used as the ordinate and ( )wσln  is used as the abscissa the slope of the line ε  can be 

defined as the Weibull slope, which is a measure of the dispersion of the data in a 

statistical distribution. The scatter in the data is inversely proportional to the Weibull 

slope, the lower the value of ε  the larger the scatter. 
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           (6.2) 

 

Weibull also proposed the idea of relating the probability of survival of a 

component to the stressed volume. The larger the stressed volume, the lower the 

strength or life of the component. This is mathematically expressed in Eq (6.3). 

 

dVf
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ln σ              (6.3) 

 

According to Zaretsky [34], Weibull proposed the following probability of survival 

equation to predict bearing life 

 

ετσ Nf c
crw =)(               (6.4) 

 

which if substituted in Eq (6.3) yields, 
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From Hertz theory V and crτ  can be expressed as a function of the maximum 

pressure in the contact maxhσ , and if a proportionality constant is used Eq (6.5) takes 

the form  
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where nh is reported to be 10.2 for a line contact, for ε  = 1.11 and ε/c  = 9.3 [38]. 

 

 

6.3 Lundberg-Palmgren Equation 

Lundberg and Palmgren applied Weibull analysis to the prediction of rolling-

element bearing life, including the depth to the maximum critical shear stress in a 

Hertzian contact. Then Eq (6.4), the probability of survival function, takes the form  
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which, if substituted in Eq (6.3), and assuming a Hertzian contact, can be expressed as, 
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where nh is reported to be 8.1 for a line contact, for ε  = 1.11, ε/c  = 9.3 and ϑ  = 2.33 

[38]. 

 

 

6.4 Ioannides-Harris Equation 

Ioannides and Harris introduced a fatigue-limiting stress to the Lundberg-Palmgren 

equation, based on reported endurance data of some bearing applications that 

demonstrated virtually infinite fatigue life. It is reported that such bearings were 

accurately manufactured from “clean” steel [37].  Then Eq (6.7), takes the form  
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Similarly, if replaced in Eq (6.3), 
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Ioannides and Harris use the same values of Lundberg-Palmgren for ε , c, and ϑ . 

However, the exponent n is a function of )( ucr ττ − . If uτ  equals 0, the Ioannides-Harris 

equation is equivalent to the Lundberg-Palmgren equation. 

 

 

6.5 Zaretsky Equation 

In the Weibull and Lundberg-Palmgren equations the critical shear stress exponent c 

and the Weibull slope ε  are related, making ε/c  the effective critical shear stress-life 

exponent, implying that the life of a bearing also depends on the scatter of the life data 

used to calculate the exponents. Zaretsky states that most stress-life exponents vary 

from 6 to 12 and appear to be independent of the scatter of the data [34]. Following this 

observation he modified Weibull’s probability of survival function making the exponent c 

independent of the Weibull slope ε . Such equation has the form, 

 

εετσ Nf c
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Similarly, if replaced in Eq (6.3), 
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Zaretsky assumes a value for the stress-exponent c = 9 and 
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ε

1
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The proportionality constant C1 in any of the previous fatigue-life equations 

accounts for several adjustment factors, which may include: reliability factors, material 

factors, geometry factors, lubrication factors and temperature factors. These adjustment 

factors vary depending on the bearing manufacturer and have been refined over time. 

There have also been efforts to standardize them and both Zaretsky and Harris 

recognize its importance given all the possible permutations in bearing applications [36, 

38]. 

 

 

6.6 Tripode Equation 

Lundberg and Palmgren assumed that once initiated, the time a crack takes to 

propagate to the surface and form a fatigue “spalled” area, similar to the “spalled” area 

shown in Figure 4.15, is a function of the depth to the critical shear stress [38]. This 

would imply that fatigue life in a bearing surface is crack propagation time dependent. 

However, Zaretsky categorizes the life of rolling elements as a “high-cycle fatigue 

problem” [34]. Zaretsky also supports the idea of crack propagation being an extremely 

small time fraction of the total running time of the bearing [38]. 

 

In the author’s experience, Tripode joints can operate for hundreds, sometimes 

thousands of hours, depending on the load conditions, without showing any signs of pits 

or spalling. Once the first pit shows on the surface it takes a few hours to get a large 
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spalled area, supporting the idea of crack propagation being a very small fraction of the 

total life of a Tripode joint. 

 

Following Zaretsky’s approach for bearings, it is proposed to decouple the life of a 

Tripode from crack propagation and the relation, Eq (6.14), to the depth of the maximum 

critical shear stress, used in Lundberg-Palmgren model and Ioannides-Harris models, is 

dispensed. 

 

εϑ /
crzL ∝                (6.14) 

 

Based on the author’s observation of the life behavior of Tripode joints, the 

following empirical model is proposed: 
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Where, effτ  is the effective shear stress, which depends on the static failure 

theory used. effl  is the effective contact length, which can be obtained from the non-

Hertzian contact analysis discussed in Section 5 and is dependent on the crowning of 

the needle roller and applied load. effφ  is the effective trunnion arch traveled by a 

needle roller during a joint revolution, which times the trunnion radius t/2 yields the 

effective arch-length traveled by the roller. Thus, rather than dealing with a stressed 
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volume the Tripode model deals with a projected area subject to contact stress. The 

constant C1 is an empirical life adjustment factor for different greases and surface 

textures generated by the manufacturing processes used to make the joint and the 

constant C2 accounts for the duplication of load cycles when the critical joint angle, 

discussed in Section 2, is exceeded. 
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Where the function Ceiling[x] is defined as the smallest integer greater than or equal to 

x. 

 

 

6.7 Testing and prototypes to validate the Tripode model 

Once a fatigue-life model has been proposed for the Tripode joint it is necessary to 

perform actual experiments to verify the validity of the model. The experiments were 

conducted in an industrial lab at Nexteer Automotive Headquarters. The test benches, 

an example shown in Figure 6.1, can simulate different speeds, torques and angles that 

a Constant Velocity Joint can experience in a vehicle.  
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Figure 6.1. CVJ wear test bench 

 

For the purpose of validating the model, considering and subject to time and 

budget constraints, three tests were performed at a fixed joint angle and constant 

power. In Section 2 it was found that the critical angle in the Tripode joint used for the 

experimental portion of this work is 6°. Testing at an angle higher than 6° allows to 

duplicate load cycles. On the other hand, 7° is an angle commonly used in industry to 

validate CVJ designs. Thus, a running angle of 7° was chosen. Table 6.1 summarizes 

the conditions of the three tests. 
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Test/Schedule 1 (used in parts 1 to 4) 

Step Torque Speed Time Angle 

01 272 Nm 1200 rpm 20 minutes 7deg 

02 -80 Nm 300 rpm 1 minutes 0-8deg @ 0.5Hz 

Power: 34.18 kW 

 

Test/Schedule 2 (used in parts 5 to 8) 

Step Torque Speed Time Angle 

01 466 Nm 700 rpm 20 minutes 7deg 

02 -80 Nm 300 rpm 1 minutes 0-8deg @ 0.5Hz 

Power: 34.16 kW 

 

Test/Schedule 3 (used in parts 9 to 12) 

Step Torque Speed Time Angle 

01 816 Nm 400 rpm 20 minutes 7deg 

02 -80 Nm 300 rpm 1 minutes 0-8deg @ 0.5Hz 

Power: 34.18 kW 
 

Table 6.1. Summary of wear tests conditions 

 

The steps with negative torque were introduced to avoid “grease migration” in the 

joint and keep functional lubrication conditions during the test. The tests schedules were 

repeated several times until spalling occured in at least one trunnion of one spider. 

Periodic inspections were performed to try to find the spalling in its initial stage. Before 

discussing the results of the tests it is noted that controlled prototype parts were made 

to perform the three tests, using production manufacturing processes. The purpose of 

making controlled prototypes was to try to eliminate possible sources of noise in the 

test, such as geometric variation from component to component. Some of the key 

characteristics of the prototype parts are listed: 

1. All parts were made from the same batch of material 

2. All parts were made using the same machine in a single lot 



 156 

3. At least four parts of the lot were carefully inspected using a Coordinate 

Measurement Machine (CMM) 

4. At least four parts were carefully inspected in the trunnion area for roundness. 

Surface finish was also inspected. 

5. All parts were visually checked for any possible defects (surface dents) or 

corrosion that could generate premature spalling. 

 

 

 

Figure 6.2. Example of roundness check 

 

Roundness in the trunnions, which is the most critical characteristic for fatigue-life 

in a trunnion, given the changes it produces in load distributions, was found to be in the 

order of two microns in the inspected parts. Figure 6.2 shows an example of a 
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roundness check. The reader is asked to refer to the appendices to see surface texture 

inspection and the effect of filtering in roundness inspection reports.  

 

 

6.8 Load and stress conditions per test schedule 

After knowing the geometrical characteristics of the prototype parts it is possible to 

calculate the displacements, loads and the state of stress in the contacts between the 

trunnion and the needle rollers. The following average dimensions were obtained from 

the prototype inspection. 

Housing, BCD     = 40.906mm 

Spider shaft length, b   = 300mm 

Ball outer diameter, mo   = 34.992mm 

Ball inner diameter, mi   = 24.994mm 

Ball to needle contact length, cb = 10.39mm  

Number of needles, n   = 36 

Needle roller diameter, d  = 1.9975mm 

Needle roller length, bneedle  = 10.81mm 

Trunnion diameter, t    = 20.975mm 

Axial clearance of needle, oΘ  = 0.452mm 

Height of shoulder, espider  = 13.921mm 

Spacer thickness, cspacer  = 1.05mm 

Applied torques, ϕt    = 272Nm, 466Nm, 816Nm 
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It is reported that there was part to part variation, as expected with any 

manufacturing process, but the variation was so small, with respect to typical tolerances 

for Tripode joints, that it can be neglected for the purpose of calculating loads and 

stresses. Using the dimensions of the components and the computer programs 

developed in previous sections, the kinematic and quasi-static behavior of the joint at 

different input torque levels can be known. 

 

From the kinematic analysis of Section 2 it is possible to know the maximum roller 

displacement on the trunnion within a revolution. Figure 6.3 shows such displacement at 

a joint angle of 7°. The peak to valley height for the exact solution of roller displacement 

(considering joint angle fluctuation due to orbiting motion) and the linearized solution 

are: effφ  = 10.76° and effφ  = 10.75°, respectively. 
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Figure 6.3. Needle displacement 
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Figure 6.4 shows the offset between the symmetry plane of the ball and the 

symmetry plane of the needle within a revolution. It can be observed that in this 

particular set of prototypes the amplitude of the offset variation is about 2% of its mean 

value. 
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Figure 6.4. Load offset 

 

Figure 6.5a shows the load variation for one of the torque levels corresponding to 

the test schedules. It can be appreciated that the amplitude of the force variation is 
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extremely small with respect to the mean force value. Something similar happens with 

the other two torque levels, which are plotted together in Figure 6.5b, where the solid 

line corresponds to an input torque of 272Nm, the mid-dashed line to an input torque of 

466Nm and the small-dashed line to a torque of 816Nm. 

 

The zero position for rotation is defined at the plane formed by the housing axis 

and the spider axle axis, as shown in Figure 6.6. The virtual load variation between a 

needle roller and the trunnion at the spider plane can be modeled within a joint 

revolution. The load variation is refered as virtual because an actual load at a specific 

point on the trunnion only exists when the needle roller is located on that specific point. 

Once the needle roller displaces, because of the joint rotation, the load at that specific 

point on the trunnion becomes zero until the needle passes through that point again.  
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Figure 6.5a. Variation of load on ball bore, housing plane at 272Nm 
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Figure 6.5b. Loads on ball bore, housing plane 

 

 

Figure 6.6. Plane formed by housing axis and spider axis, zero plane for rotation 

 

Hence, the plots of Figures 6.7a and 6.7b show load variation on the trunnion at 

the spider (symmetry) plane and were generated assuming a constant contact between 

the needle and the trunnion at such plane. The purpose of performing this virtual load 

evaluation was to identify the possible loads on the area of the trunnion that is most 

susceptible to fatigue. In Figure 6.7b the solid line corresponds to an input torque of 
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272Nm, the mid-dashed line to an input torque of 466Nm and the small-dashed line to a 

torque of 816Nm. 
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Figure 6.7a. Virtual load of needle to trunnion at spider plane, at 272Nm 
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Figure 6.7b. Virtual load of needle to trunnion at spider plane 
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The virtual needle to trunnion load was also calculated at 4° and 10° joint angle at 

the loads of 272Nm. The results are summarized in Table 6.2 and the maximum and 

minimum loads for different torque inputs are summarized in Table 6.3. 

 

oθ  effφ  P1max [N] P1min [N] P1mean [N] P1amp [N] P1amp/P1mean 

4° 6.70° 963.56 943.45 953.51 20.11 0.0211 

7° 10.75° 961.31 904.28 932.80 57.03 0.0611 

10° 16.83° 956.85 849.27 903.06 107.58 0.1191 

 

Table 6.2. Needle-trunnion load as a function of joint angle at 272Nm 

 

ϕt [Nm] 
effφ  P1max [N] P1min [N] P1mean [N] P1amp [N] P1amp/P1mean 

272 10.75° 961.31 904.28 932.80 57.03 0.0611 

466 10.75° 1601.03 1504.38 1552.70 96.65 0.0622 

816 10.75° 2771.80 2598.85 2685.33 173.80 0.0647 

 

Table 6.3. Needle-trunnion load as a function of applied torque 

 

The actual load between a needle roller and the trunnion at the spider plane, within 

a joint revolution, could be any value between P1max and P1min. Data in Table 6.2 

suggests that the probability of having actual lower loads at the spider plane is higher as 

the joint angle increases. Thus, just looking at this data, a higher joint angle would 

suggest a longer wear life, which is not what happens in reality. In the author’s 
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experience, the higher the joint angle the lower the life of a Tripode Joint. The higher the 

joint angle, the higher the area over which the needle roller is moving, thus increasing 

the probability of a subsurface crack forming. The term 
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 of the proposed 

model, Eq (6.15), accounts for this.  

 

On the other hand, significant changes in life occur anytime the critical angle is 

exceeded because the load cycles are duplicated. If the joint running angle is high 

enough to exceed two times the needle spacing, the load cycles are triplicated. In the 

prototype joints used for this work the cycle triplication occurs when effφ     = 20° at oθ  = 

11.86°. The proposed fatigue model characterizes this cycle multiplication in C2, Eq 

(6.16). 

 

It has been explained how the Tripode model captures the effects of joint angle. 

Now it needs to be described how the model will capture the effects of the applied 

torque and geometry, such as needle crowning and trunnion roundness, in the term 

c

eff









τ

1
.  

 

The reader will observe, from Table 6.2, that the maximum possible load at the 

spider plane is virtually insensitive to joint angle. P1max occurs at 0° and 180° of rotation. 

Referring to Figure 6.4 it can be observed that the maximum load offset occurs at 180°. 
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Thus, this rotational position is what will be used to calculate the state of stress at the 

contact. Using the equations of Section 4 and Section 5 it is possible to define the state 

of stress in the contact. Table 6.4 summarizes the inputs to calculate the non-Hertzian 

pressure distribution. 

 

ϕt [Nm] 210−×Λ  P1max [N] Ptm [N/mm] Ptu [N/mm] Ptd [N/mm] 
510−×ξ  

272 8.3556 961.31 97.10 102.02 92.18 2.173 

466 8.3556 1601.03 161.72 169.91 153.53 3.439 

816 8.3556 2771.80 279.98 294.16 265.80 5.635 

 

Table 6.4. Inputs to calculate non-Hertzian contacts 

 

The same approach of Section 5 was used to calculate the pressure distribution at 

the contact region on the trunnion. It was checked for convergence starting with a 

coarse mesh and making it finer until the maximum pressure and the deformation in the 

contact converged to five digits. The pressure distributions for the three different torque 

levels are shown in Figure 6.8, Figure 6.9 and Figure 6.10. 
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Figure 6.8. Pressure distribution, input torque of 272Nm 

   

Figure 6.9. Pressure distribution, input torque of 466Nm 

   

Figure 6.10. Pressure distribution, input torque of 816Nm 
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Table 6.5 summarizes some characteristics of the non-Hertzian pressure 

distribution, where s0 is the pressure at the origin of the local coordinate reference 

frame, smax is the maximum pressure found in the distribution, α is the relative radial 

displacement of the roller to the trunnion, n×m is the mesh and effl  is the length of the 

area of contact. It is noticed that the point where the maximum pressure occurs is at 

upper portion of the trunnion, for this specific set of prototypes. Thus, it is expected that 

spalling will be most likely to start at the upper portion of the contact. 

 

ϕt [Nm] s0 [MPa] smax [MPa] αααα [mm] n×m leff [mm] 

272 2135.5 2315.9 0.004311 21×41 8.87 

466 2688.0 2910.7 0.006652 27×41 9.39 

816 3435.0 3729.7 0.010544 27×41 9.82 

 

Table 6.5. Key characteristics of non-Hertzian contacts 

 

For reference purposes, the Hertzian solution is also tabulated, in Table 6.6, where 

maxhσ  is the maximum pressure in the contact, hb  is the semi-width of the contact 

area, zcrh is the depth at which maxhτ  is located, which is the maximum principal shear 

stress. From Section 5 it is known that the maximum principal shear occurs at 0.786 hb , 

with a value of 0.3 maxhσ . The reader may be able to compare the differences in 

pressure, from both solutions. Once the pressure distribution is known, the effective 

sub-surface shear stress can be calculated. 
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ϕt [Nm] 
maxhσ [MPa] bh [mm] zcr [mm] maxhτ  [MPa] 

272 1963.4 0.0315 0.0248 589.0 

466 2533.9 0.0406 0.0319 760.2 

816 3334.0 0.0535 0.0421 1000.2 

 

Table 6.6. Key characteristics of Hertzian contacts 

 

Two static failure theories for ductile materials will be considered: The Maximum 

Shear Stress Theory (Tresca), Eq (5.63), and the Maximum Distortion-Energy Theory 

(Von Mises-Hencky / Octahedral), Eq (6.17). 

 

( ) ( ) ( ) ( )222222 6 xzyzxyzxzyyxoct τττσσσσσστ +++−+−+−=     (6.17) 

 

 

Figure 6.11. Max Shear and Octahedral shear at center of contact 
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Figure 6.12. Max Shear and Octahedral shear at point of maximum pressure 

 

Figure 6.11 compares the maximum principal shear versus the octahedral shear 

stress at the center of the contact, while Figure 6.12 does the same thing at the point of 

maximum pressure, both for an input torque of 272Nm. The analysis is repeated for 

466Nm and 816Nm.  

 

ϕt [Nm] zmax_shear [mm] maxτ  [MPa] zoct [mm] octτ  [MPa] 

272 0.027 642.4 0.024 561.3 

466 0.034 809.1 0.030 706.6 

816 0.043 1035.1 0.039 903.6 

 

Table 6.7. Sub-surface Critical shear stresses at the center of the contact 
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The results for the maximum critical shear stresses maxτ and oτ , and the depth at 

which they occur are summarized in Table 6.7 and Table 6.8.  

 

ϕt [Nm] zmax_shear [mm] maxτ  [MPa] zoct [mm] octτ  [MPa] 

272 0.029 707.5 0.026 613.3 

466 0.036 888.7 0.033 770.9 

816 0.047 1138.3 0.042 988.0 

 

Table 6.8. Sub-surface Critical shear stresses at the point of maximum pressure 

 

Up to this point, the assumption of working in the elastic range of the materials 

used to make the prototypes has been made. Before continuing the discussion about 

the proposed tripode fatigue-life model, it needs to be reviewed if plasticity should be 

considered in this work.  

 

The characteristics of the materials used to make the tripode joints for the 

experimental portion of this work are listed below. 

  

Spider 

 Material: SCM-420H (similar to SAE 4118) 

 Heat treatment: Carburized, quenched and temper  

Surface Hardness: 58HRc MIN 
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Needle Roller 

Material: AISI 52100 

Surface Hardness: 64HRc MIN 

 

The minimum surface hardness of 58HRc on the trunnions of a tripode spider 

corresponds to a Vickers hardness of 653Hv, per ASTM E-140, for non-austenitic 

steels. The depth of the point where the maximum shear stresses occur is very close to 

the surface and for now it will be assumed that the hardness at the region where the 

maximum shear stress occur is 653Hv. 

 

Pavlina and Van Tyne [39] recently published linear functions that relate tensile 

strength and yield strength to hardness, in non-austenitic steels. Such functions are 

expressed as Eq (6.18) and Eq (6.19), respectively. 

 

HvTS 734.38.99 +−=            (6.18) 

HvYS 876.27.90 +−=            (6.19) 

 

The corresponding strength values to a hardness of 653Hv are TS = 2338.5MPa 

and YS = 1787.3MPa. Applying the Maximum Shear Stress Theory, Eq (6.20), and the 

Maximum Distortion-Energy Theory, Eq (6.21), the sub-surface critical stresses at the 

applied torques can be compared to the yield strength of the material. 
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Thus, evaluating Eq (6.20) and Eq (6.21) it can be know if plasticity will occur in 

the contacts due to the applied loads. Results are summarized in Table 6.9. 

 

ϕt [Nm] shearSFmax_  
octSF  

272 1.26 1.37 

466 1.01 1.09 

816 0.79 0.85 

 

Table 6.9. Ratio of yield shear strength to critical shear stress 

 

Pavlina and Van Tyne [39] reported that the standard error for Eq (6.18) and Eq 

(6.19) were 112MPa and 102MPa, respectively. Then, it is clear that plasticity will occur 

under a load of 816Nm and possibly at a load of 466Nm when the spider is made to its 

minimum hardness of 58HRc. 

 

The plastic behavior in contacts has been studied by different authors using Finite 

Element Analysis (FEA) [40] and attempts to solve the problem analytically have also 

been made [41]. Even though good correlation between FEA and analytical methods 
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has been reported there is not enough published information on the material constants 

used in the corresponding plasticity models for a wide range of materials, specifically, 

carburized steel SCM-420H or SAE 4118.  

 

The problem of elastic-plastic behavior in line contacts has also been studied 

using simpler approaches, such as that of Johnson, which is described and adopted in 

this work [24]. The study of elastic-plastic line contacts is based on the idea that in 

applications where rolling contact occurs and the elastic limit of the material is exceeded 

the first pass of a roller on a point will induce some plastic deformation and the 

corresponding residual stresses, when the second pass occurs the state of stress will 

be defined by the combined action of contact stresses and residual stresses. If the 

elastic limit is still exceeded more plastic deformation will take place and so on until the 

residual stresses have build up to the point where the applied load only causes elastic 

deformation. This process of cyclic deformation until the steady state is purely elastic is 

known as “shakedown”. Johnson’s approach is based on Melan’s theorem for 

shakedown (also known as static lower-bound theorem) which states: 

 

Shakedown occurs whenever a system of residual stress, that satisfies equilibrium 

requirements, acts in conjunction with applied loads in such a manner that the yield 

criterion is not violated. 

 

If the shakedown limit of a material is exceeded plastic flow will continue until 

failure occurs. Johnson’s method assumes an elastic cylinder rolling freely on an 
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elastic-perfectly-plastic half-space [24]. If the elastic limit is not exceeded the contact 

area and the contact pressure can be obtained by the methods described in Section 5, 

which assume an elastic cylinder rolling freely on an elastic half-space. The assumption 

of plane strain (zero strain in the axial direction) is necessary to simplify the problem. 

Figure 6.13 shows the coordinate reference frame used. The sub-index r is used to 

denote residual stress components. 

 

Then, the assumption of plane strain eliminates the residual shear stresses xyrτ  

and yzrτ  and makes the remaining components independent of y.  

 

Figure 6.13. Max Shear and Octahedral shear at point of maximum pressure 
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If it is assumed that the plastic deformation is steady and continuous then the 

surface of the half-space will remain flat and the residual stresses can be assumed to 

be independent of x. The surface is traction free, given the assumption of free rolling. 

Therefore, the residual stresses zrσ  and zxrτ  are also eliminated and the system of 

residual stresses reduces to Eq (6.22), 
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          (6.22) 

 

Thus, the principal stresses, due to the combination of contact and residual 

stresses are given by Eq (6.23), Eq (6.24) and Eq (6.25). 
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( ) ( ) 22
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zxzxrxzxrxp τσσσσσσσ +−+−++=       (6.24) 

( ) yrzxsp σσσνσ ++=3            (6.25) 

 

It is also known from Hooke’s law and from the plane strain assumption that  
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When yry σσ =  the steady state residual stress in the axial direction becomes, 

 

( )zxsyr σσνσ +=             (6.27) 

 

If the Maximum Shear (Tresca) criterion is used and if yrσ  is such that 3pσ  is the 

intermediate principal stress, the following expression must be satisfied 

 

( ) YSpp ≤− 21 σσ             (6.28) 

 

If Eq (6.28) is expressed in terms of the stress components it takes the form 

 

( )
44

1 2
22 YS
zxzxrx ≤+−+ τσσσ           (6.29) 

 

Expression (6.29) can not be satisfied if 
2

YS
zxr >τ . According to Johnson, zxrτ  

governs the shakedown limit [24]. When 
2

YS
zxr =τ  the residual steady state stress in 

the tangential direction becomes, 

 

xzxr σσσ −=              (6.30) 

 

When  
2

YS
zxr <τ  the residual steady state stress is defined by 
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22 4 zxxzxr YS τσσσ −+−=           (6.31) 

 

Where the stress components in the tangential (x) and radial (z) directions correspond 

to the state of stress at the depth of interest and the tangential location where xrσ  is 

maximized, which ensures shakedown. Table 6.10 shows the state of stress at the 

depth where the maximum principal elastic shear stress occurs, z = 0.047mm. The 

critical tangential locations are the plane of symmetry of the contact and at the point 

where zxrτ  is maximum. The residual stresses, are calculated using Eq (6.27) and Eq 

(6.31) 

 

Component x = 0.000mm x = 0.056mm 

xσ  –650.0MPa –821.9MPa 

zσ  –2926.5MPa –1434.7MPa 

xzτ  0MPa 877.8MPa 

xrσ  –489.2MPa –277.7MPa 

yrσ  –1073.0MPa –677.0MPa 

Table 6.10. Elastic stress and residual stress components at z = 0.047mm 

 

Figure 6.14 shows the variation of shear stress zxrτ  at the depth where the 

maximum elastic shear stress occurs. Then, superposing the residual stresses to the 

stress field the principal stresses are computed to 2.11391 −=pσ MPa, 
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5.29262 −=pσ MPa and 21463 −=pσ MPa. Hence, the assumption of 3pσ  being the 

intermediate principal stress is verified and the maximum principal shear stress at a 

depth of 0.047mm is maxτ = 893.7MPa. 

 

 

Figure 6.14. Shear stress zxrτ  at a depth of 0.047mm 

 

If the Maximum Distortion-Energy (Von Mises-Hencky / Octahedral) criterion is 

used, the following expression must be satisfied 

 

( ) ( ) ( ) 22
13

2
32

2
21 2YSpppppp ≤−+−+− σσσσσσ       (6.32) 

 

 Substituting Eq (6.23) through Eq (6.25) and Eq (6.27) into Eq (6.32), simplifying 

and solving for xrσ  it is obtained, 
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Similarly, the state of stress at the plane of symmetry and at the point where zxrτ  

is maximum is evaluated and summarized in Table 6.11. The depth where the 

octahedral shear is maximum, z = 0.042mm, is considered. The residual stresses are 

calculated using Eq (6.27) and Eq (6.33). 

 

Component x = 0.000mm x = 0.050mm 

xσ  –780.8MPa –870.6MPa 

zσ  –3046.9MPa –1684.4MPa 

xzτ  0MPa 899.4MPa 

xrσ  –226.0MPa +128.0MPa 

yrσ  –1148.3MPa –1277.5MPa 

Table 6.11. Elastic stress and residual stress components at z = 0.042mm 

 

Finally, superposing the residual stresses to the stress field the principal stresses 

are computed to 8.10061 −=pσ MPa, 9.30462 −=pσ MPa and 6.22963 −=pσ MPa. 

Hence, the octahedral shear stress at depth of 0.042mm is octτ = 842.5MPa. 
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It was indicated at the beginning of this Section that the fatigue life problem in 

Tripode joints is considered as a “high-cycle fatigue problem”. Therefore, the proposed 

model applies only when the joint is operating in the elastic region of the material or 

when shakedown occurs in the studied contacts, which is possible only if the square 

roots of Eq (6.31) and Eq (6.33) are real, under the assumption of an elastic-perfectly 

plastic material model. 

 

 

6.9 Test results 

Bearings are characterized by the L10 life, which is the life or number of cycles 

that can be completed by 90% of a population of bearings. The same L10 definition is 

adopted for tripode joints. Given there are twelve trunnions per test it was expected that 

one or two trunnions would show pits or spalling before the rest. Therefore, the life of a 

tripode on the conducted tests is defined as the number of cycles that ten out of twelve 

or eleven out of twelve trunnions can complete without presenting spalling. 

 

The tests were run per the schedules shown in Table 6.1. A conservative a priori 

life estimation was done and joints were inspected on regular intervals until pits or 

spalling were found in at least one trunnion. In two of the tests the spalled parts were 

replaced by new ones and the evaluation continued to verify the expected dispersion in 

life data. The test results are summarized in Table 6.12. The naming convention for the 

tested spiders during the rest of this work will consist of using a letter to indicate the test 

and the number the part had in the test (i.e. Part B-2).  
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Test / Torque Part 1 Part 2 Part 3 Part 4 

A – 272Nm 

Completed 

605hrs: 2mm
2
 of 

spalling and 2 

pits on one 

trunnion 

Completed 

605hrs: 1 pit on 

one trunnion 

Completed 

808hrs: Clean 

surface (test 

suspended) 

Completed 

808hrs: Clean 

surface (test 

suspended) 

B – 466Nm 

Completed 

246hrs: 5mm
2
 of 

spalling and 5 

pits on one 

trunnion 

Completed 

246hrs: 1 pit on 

one trunnion 

Completed 

120hrs: 56mm
2
 

of spalling on 

one trunnion 

Completed 

246hrs: Clean 

surface (test 

suspended) 

C – 816Nm 

Completed 

96hrs: Clean 

surface (test 

suspended) 

Completed 

96hrs: 26mm
2
 of 

spalling on one 

trunnion 

Completed 

96hrs: Clean 

surface (test 

suspended) 

Completed 

96hrs: Clean 

surface (test 

suspended) 

Table 6.12. Test results summary 

 

Pictures of the spalled and/or pitted surfaces are shown in Figures 6.15 through 

6.17. 

 

    

Figure 6.15. Parts A-1 and A-2 



 182 

 

    

Figure 6.16. Parts B-3 and B-1 

 

 

Figure 6.17. Part C-2 

 

It can be observed in the previous pictures that the location of the pits or spalling is 

in the upper portion of the trunnion. The exception would be Part B-3 where the exact 
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location of the point of spalling initiation can not be determined given the large area. 

Analysis using traditional Hertzian line contacts, uniform pressure along the length of 

contact, would have not been able to predict the region of the trunnion where the 

spalling was most likely to initiate. The non-Herztian contact analysis used in this work 

allows so. 

 

Part B-2 was checked under the confocal microscope. It was removed from test 

when only a small pit was present, indicating the spalling had just initiated. Figure 6.18a 

and Figure 6.18b show the scanned surface, which given the curvature of the trunnion 

was obtained scanning a clean portion of the surface and then scanning and subtracting 

the collected data from the region with the pit. 

 

Figure 6.18a. Part B-2 (units are microns) 
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Figure 6.18b. Part B-2 (units are microns) 

 

The depth of the pit has approximately the same value of the calculated depth 

where the critical shear stress occurs. This fact supports the assumption of the spalling 

being generated by a crack that starts under the surface at the region where the critical 

shear stress occurs. 

 

It is assumed in this work that the Weibull slope representing the scatter of the life 

data for tripode joints is the same Weibull slope present in bearings, which is ε  = 1.11 

[38]. Table 6.13 summarizes the actual life in cycles and the geometric variables that 
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are input into Eq (6.15) to do curve fitting, using least-squares, for the exponent c and 

for the constant 1C . 
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The trunnion diameter t and the constant 2C  used in Eq (6.15) are 20.975mm and 

0.5, respectively. The time under load in Table 6.13 was obtained by multiplying the 

time on test by a factor 20/21, which is based on the schedules from Table 6.1. A time 

of twenty minutes of load and one minute of cooling and grease distribution per every 

twenty one minutes of testing. 

 

Torque 

[Nm] 

Speed 

[rpm] 

Time on 

test [Hr] 

Time under 

Load [Hr] 

Life ××××106 

[cycles] 

effφ  effl   

[mm] 

272 1200 605 576 41.49 10.75° 8.87 

466 700 120 114 4.80 10.75° 9.39 

816 400 96 91 2.19 10.75° 9,82 

Table 6.13. Inputs to best-fit life equation 

 

Table 6.14 summarizes the effective shear stresses used in Eq (6.15) to do curve-

fitting, the fitted values of c and 1C  and the predicted life after the curve fitting. 
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c = 9.462 

1C  =1E30 

c = 9.146 

1C  = 3.42E28 

Life ××××106  

[cycles] 

Life ××××106  

[cycles] 

Life ××××106  

[cycles] Torque 

[Nm] 
maxτ  [MPa] octτ  [MPa] Actual maxτ  octτ  

272 707.5 613.3 41.49 41.32 41.49 

466 888.7 770.9 4.80 4.54 4.87 

816 893.7 842.5 2.19 4.13 2.07 

Table 6.14. Life prediction summary 

 

It can be observed from Table 6.14 that the values of the best-fit constant c are 

within the range of stress-life exponents reported for bearings, which is 8.4 to 12 [38]. 

The octahedral shear criterion seems to be more appropriate to predict the life of 

Tripode joints. Figure 6.19 compares the life predictions versus the actual life in a log-

log scale, where the circles represent the actual life, the squares represent the 

maximum principal shear criterion and the triangles represent the octahedral criterion. 

 

 

Figure 6.19. Actual versus theoretical life 
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Residual stresses were checked experimentally by X-Ray diffraction in one of the 

trunnions of Part C-4. An unloaded area was inspected at various depths to quantify the 

residual stresses produced by the grinding process used to manufacture the prototypes. 

Figure 6.20 shows the residual stress gradient, where the circles represent the stresses 

in the circumferential direction and the triangles represent the stresses in the axial 

direction. Residuals stresses were also checked at the surface and at a depth of 

0.042mm in the area where the maximum contact pressure was calculated to occur, 

after test. Squares in Figure 6.20 represent the steady state circumferential residual 

stress and diamonds represent the steady state axial residual stress. 

 

 

Figure 6.20. Residual stresses in Spider C-4 

 

The reader may refer to the Appendices to see more data relative to the residual 

stress analysis by X-Ray diffraction. The residual stresses experimentally determined 

were superposed to the calculated elastic stresses. New critical shear stresses were 
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calculated and the corresponding curve-fitting was repeated. Results are summarized in 

Table 6.15 

 

C = 9.345 

1C  =1.02E29 

c = 9.700 

1C  = 2.89E29 

Life ××××106  

[cycles] 

Life ××××106  

[cycles] 

Life ××××106  

[cycles] Torque 

[Nm] 
maxτ  [MPa] octτ  [MPa] Actual maxτ  octτ  

272 601.1 529.6 41.49 41.47 41.50 

466 747.7 664.6 4.80 5.13 4.36 

816 850.8 693.3 2.19 1.47 2.78 

Table 6.15. Life prediction summary, residual stresses included 

 

 

Figure 6.21. Actual versus theoretical life after superposing residual stresses 

 

Figure 6.21 compares the life predictions after including the experimentally 

determined residual stresses. The circles represent the actual life, the squares 
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represent the maximum principal shear criterion and the triangles represent the 

octahedral criterion. 

 

The life prediction using the Octahedral Shear criterion fits better actual life values 

than the prediction using the Maximum Shear criterion, where a better fit means a lower 

value of the sum of squared errors. The better fit using the Octahedral Shear criterion 

holds true when the residual stresses, caused by the manufacturing process used to 

make the trunnions, are neglected or included. 

 

A stress-life exponent of c = 9.7 was reported by Baughman [42] for rolling contact 

fatigue of bearings, which is similar to best-fit c value determined in this work, using the 

Octahedral shear criterion and including residual stresses. Then, Eq (6.15) can take the 

form of Eq (6.34), which is the expression that will be used in the remaining portion of 

this work. 
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Material analysis was performed in Part A-2, the actual chemical composition of 

the batch of material used to make the prototype spiders can be reviewed in the 

Appendices of this work. The average surface hardness before testing was measured to 

be 61.5HRc. After testing, Part A-2 was sectioned close to the generated pit and a 

hardness traverse check surface to core was performed, shown in Figure 6.22. 
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Hardness in the region of maximum shear was found to be 62HRc (743Hv), which 

supports the idea of an elastic contact for the tests at 272Nm and 466Nm. 
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Figure 6.22. Hardness gradient in trunnion 
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7. TRUNNION FORM OPTIMIZATION 

 

 

7.1 Introduction 

It has been studied In the previous sections the way loads are transmitted inside 

of the Tripode Joint (Section 3) after an input torque is applied, how those loads are 

distributed among needle rollers (Section 4), the state of stress in the contacts because 

of the loads (Section 5) and the relationship between the state of stress and the wear 

fatigue-life of the joint (Section 6). One of the most effective ways of improving the life of 

a Tripode Joint, while keeping the same materials, the same packaging and similar 

manufacturing processes is to improve the load distribution among needles to reduce 

the peak load on the most heavily loaded contact. The consequence of reducing the 

peak load will be a reduced stress. Therefore, an increment in the number of cycles a 

joint can survive before spalling. This Section deals with the optimization of the trunnion 

form to minimize the peak load at the contacts. 

 

 

7.2 Elliptical vs. Circular Trunnion 

It was mentioned in Section 4 that a trunnion can be made with an elliptical 

shape to have a better load distribution among the needle rollers. The elliptical form was 

defined based on radial deviations from the minimum circumscribed circle. Eq (4.70) 

describes such deviations, where et is the elliptical ratio, defined as the ratio of the 

major to the minor axis of the ellipse. 
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The author has tested joints made with elliptical trunnions and equivalent joints 

made with circular trunnions. In the author’s experience parts made with elliptical 

trunnions perform better than parts made with circular trunnions when tested on the 

same durability schedule [43], which supports the idea of lower stresses due to a better 

distribution of contact loads. For illustration purposes, Schedule 3 of Table 6.1 will be 

used to show the estimated life improvement when an elliptical trunnion is used, with 

respect to a perfect circular trunnion.  

 

Table 7.1 shows a comparison of the load distributions on the trunnion at an 

input torque of 816Nm and at a joint angle of 7°, while Table 7.2 shows a comparison of 

the input variables for Eq (6.34), which is used to calculate the joint life at different 

stress levels. 
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vφ  Circular 

[N] 

Elliptical 

[N] 

0° 2772 2632 

10° 2386 2257 

20° 1661 1589 

30° 991 1018 

40° 494 610 

50° 146 342 

60° 0 87 

70° 0 0 

80° 0 0 

Table 7.1. Load distribution, circular vs. elliptical trunnion (et = 1.003) 

 

The reader will notice in Table 7.1 that an extra needle carries load in the elliptical 

trunnion and the peak load goes down by 5%. Form errors and waviness will be ignored 

for the sake of illustrating the nominal differences between different trunnion 

geometries. Also, for the purpose of illustrating differences between trunnion profiles, it 

will be assumed that the trunnion is hard enough to neglect plastic deformation and only 

elastic contacts will be considered.  
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It can be observed in Table 7.2 that octahedral shear stress in the elliptical 

trunnion is lower than in the circular trunnion by 2.3% while there is an increment in 

predicted life of 24.4%, a significant improvement. 

 

Variable Circular Elliptical 

P1max [N] 2772 2632 

s0 [MPa] 3435.0 3355.9 

smax [MPa] 3729.7 3646.9 

αααα [mm] 0.010544 0.010095 

effφ  10.75° 10.75° 

effl  [mm] 9.82 9.82 

zoct [mm] 0.042 0.041 

octτ  [MPa] 988.0 965.6 

L10 ××××10
6
 

[cycles] 

0.090 0.112 

Table 7.2. Life comparison, circular vs. elliptical trunnion at 816Nm and 7° 

 

 

7.3 Optimized vs. Elliptical Trunnion 

The advantages of an elliptical trunnion over a circular trunnion are clear. Then, it 

is necessary to find out if there is another trunnion form that will distribute contact loads 

better than a perfect ellipse, an optimum shape. The computer program for the load 

model described in Section 4 was modified to make it compatible with commercially 



 195 

available optimization tools. Two tools were selected, the SOLVER function included in 

a commercial spreadsheet software (Tool A) and a specialized optimization software 

(Tool B) [44]. The optimization problem was set up the following way. 

 

Define a load on each needle roller as vp , where v = 1, 2, 3, … , n. The number of 

needle rollers is indicated by n. The angular location of the needle roller vφ  is 

established with respect to the plane of symmetry of the load distribution, where the 

maximum load maxvp  occurs when vφ  = 0° and v = 1. The form of the trunnion is 

defined by the radial deviations vΩ  from the trunnion base circle. 

 

 

Figure 7.1. Load distribution on a trunnion 
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The SOLVER function of Tool A can handle optimization of only one variable. 

Therefore, the objective function was to minimize the difference of loads with respect to 

the maximum load. 
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For n = 36. Subject to the trunnion having a symmetrical shape and to the constraints  

 

1max +≥≥ vvv ppp              (7.3) 

0

031.0

10

1

=

=

Ω

Ω
              (7.4) 

 

Changing the values of vΩ  for v = 2, …, 9. Constraint 031.01 =Ω mm defines the 

“elliptical gap”, which is the same gap of the ellipse used to calculate Table 7.1. The 

elliptical gap is defined as the radial deviation from the base circle of the trunnion at the 

spider plane.  

 

Tool B has the capability of doing multi-objective optimization. Therefore, two 

variables were targeted to be minimized: The difference of loads with respect to the 

maximum load and the maximum load. 
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Subject to the trunnion having a symmetrical shape and to the constraints  
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Figure 7.2. Pareto Front 
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A Pareto Front was generated for Eq (7.5), shown in Figure 7.2. The results of the 

two optimizations are shown and compared in Table 7.3. 

 

vφ  Elliptical 

[N] 

Elliptical 

vΩ  

[mm] 

Tool A 

[N] 

Tool A 

vΩ  

[mm] 

Tool B 

[N] 

Tool B 

vΩ  

[mm] 

0° 2632 0.0310 1714 0.0310 1702 0.0310 

10° 2257 0.0301 1714 0.0270 1698 0.0270 

20° 1589 0.0274 1714 0.0181 1689 0.0179 

30° 1018 0.0232 1714 0.0076 1650 0.0074 

40° 610 0.0182 1315 0 1448 -0.0015 

50° 342 0.0128 0 0.0082 0 0.0027 

60° 87 0.0077 0 0.0047 0 0.0077 

70° 0 0.0036 0 0.0044 0 0.0002 

80° 0 0.0009 0 0.0014 0 0.0000 

Table 7.3. Load distribution, circular vs. elliptical vs. optimized trunnion 

 

Even though less needle rollers are loaded in the optimized profile the load is 

more uniformly distributed and there is a significant reduction in the peak load with 

respect to the elliptical trunnion, 35.3% when the best optimized solution (Tool B) is 

considered. If the two optimum solutions are compared it is clear that the solution 
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obtained using Tool B features a lower peak load and a reduced difference between 

adjacent loads and the peak load, which were the optimization targets. Table 7.4 shows 

a comparison of the pressure, critical stress and predicted life between the circular, the 

elliptical and the best optimized trunnion profile. 

 

Variable Circular Elliptical Optimized 

P1max [N] 2772 2632 1702 

s0 [MPa] 3435.0 3355.9 2763.4 

smax [MPa] 3729.7 3646.9 3031.1 

αααα [mm] 0.010544 0.010095 0.007001 

effφ  10.75° 10.75° 10.75° 

effl  [mm] 9.82 9.82 9.54 

zoct [mm] 0.042 0.041 0.034 

octτ  [MPa] 988.0 965.6 802.8 

L10 ××××10
6
 

[cycles] 

0.090 0.112 0.690 

Table 7.4. Life comparison, different trunnion forms at 816Nm and 7° 

 

The advantages of an optimized trunnion over an elliptical trunnion are clear. 

Reduction in maximum pressure of 16.8% and an increment in predicted life of more 

than six times, at 816Nm. It must be noted that given the non-linearity of contact 

stresses, with respect to torque, the optimum trunnion profile would be different if a 

different input torque were used. 
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8. CONCLUSIONS 

 

 

The kinematics of a Tripode Joint has been studied in this work. A Tripode Joint is 

not a perfect constant velocity joint and the effective angular displacement of ball rollers 

changes as a function of joint angle. A higher joint angle means a higher deviation from 

the perfect constant-velocity behavior and an integral approach has to be followed to 

calculate the angular displacement of rollers. 

 

At joint angles where the Tripode Joint is tested and validated (i.e. 7°) the non-

constant velocity behavior causes very small changes in the loads that are transmitted 

between balls and ball bores, less than 0.1%. Such changes can be neglected for the 

purpose of calculating the loads that are transmitted to the needle rollers. 

 

The effective arch effφ  traveled by a needle roller on a trunnion can be calculated 

neglecting joint angle variation at joint angles where the Tripode Joint typically operates 

and kinematic equations, such as those used to calculate roller displacement, can be 

linearized. 

 

At typical functional angles, 7° and lower, the Tripode Joint can be considered a 

Constant Velocity Joint even though it exhibits small deviations from constant-velocity 

behavior. 
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The main contributor to Generated Axial Force (GAF) in a Tripode joint is the 

sliding friction between balls and ball bores. The rolling friction between trunnions, 

needle rollers and balls is very small and allows modeling of the contacts between the 

trunnion and the needle rollers as frictionless contacts. 

 

The state of stress in the contact between a needle roller and a trunnion can be 

approximated considering Hertzian line contacts. However, non-Hertzian contacts are a 

more complete solution. Non-Hertzian contact analysis, which can be performed 

meshing the contact area in small rectangles, assigning a load to each rectangle and 

applying superposition, allows calculation and understanding of the pressure distribution 

in the contact. Factors that may influence the pressure distribution in the contact 

between a trunnion and a needle roller, such as needle crowning, needle skewing, edge 

loading and asymmetrical loading, were considered in this work and its effects were 

individually studied. 

 

The area in the contact where maximum pressure was calculated to occur 

matched the area where trunnion pitting in tested parts initiated, verifying the 

advantages of non-Hertzian contact analysis over traditional line-Hertzian contacts. 

 

The pressure distribution on a contact causes sub-surface stresses. Two static 

failure theories for ductile materials were considered in this work to calculate the critical 

shear stress under the surface: The Maximum Shear Stress Theory and the Maximum 

Distortion-Energy Theory. The Maximum Shear Stress Theory predicts the critical shear 
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stress to be at a deeper point than the location predicted by the Maximum Distortion-

Energy Theory. 

 

Wear fatigue-life in a Tripode Joint is defined when spalling or pitting occurs on the 

surface of a trunnion due to repeated rolling contact. A pit always precedes a large 

spalled area. A pit forms due to a crack under the surface at the depth where the critical 

shear occurs. In this work it was found that the depth of a newly generated pit was in 

the same region where the critical shear stress was predicted to be, which validates the 

assumption of a pit initiating under the surface. 

 

Residual stresses were included as part of the contact stress analysis for life 

prediction. Theoretical residual stresses due to shakedown of the material were 

calculated considering an Elastic-Perfectly Plastic model and were found to be 

compressive. Residual stresses in the trunnion were measured using X-Ray diffraction 

techniques and found to be compressive after testing in the contact area, which 

confirms the existence of shakedown in the material. 

 

Theoretical residual stresses were directionally correct when compared to 

experimentally determined residual stresses and in a similar order of magnitude. The 

use of more sophisticated plasticity models would allow a better prediction of residual 

stresses. 
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Measured residual stresses were superposed to the calculated elastic state of 

stress. These stresses, in combination with the corresponding actual life of Tripode 

Joints obtained from testing, were used as data points to best-fit a stress-life exponent 

and a proportionality constant for the Tripode Equation proposed in this work. 

 

The critical stress values determined using the Maximum Distortion-Energy Theory 

provided a better fit than the values obtained using the Maximum Shear Stress Theory. 

Therefore, the Maximum Distortion-Energy Theory is preferred to predict wear fatigue-

life in Tripode Joints. 

 

The final form of the Tripode Equation proposed in this work is 
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Where c = 9.7, ε  = 1.11 and 29
1 1089.2 ×=C . The model can be used to predict wear 

life-fatigue in Tripode Joints.  

 

The value of the constant 1C  is specific to the type of grease and manufacturing 

processes used to make the Tripode Joints used in this work, which cover a wide range 



 204 

of automotive applications. A different grease or different manufacturing process would 

require the experimental determination of a new constant 1C .  

 

The best way to improve wear life-fatigue in a Tripode joint is to minimize the peak 

load at the contacts between the trunnion and the needle rollers, and at the same time 

minimize the load differences between adjacent needles. Optimizing for these two 

objective functions at the same time generated a Pareto front that converged to one 

point, which uncovered that the objective functions are not in contraposition. 

 

Elliptical trunnions distribute load among needle rollers better than circular 

trunnions, which has the advantage of better durability. 

 

An optimized trunnion shape can dramatically increase the wear life-fatigue in a 

Tripode Joint, when compared to perfectly round and perfectly elliptical trunnions. The 

improvement can be done without changing materials, processes and the size of the 

joint. 

 

The load analysis used in this work allows the incorporation of form errors and 

trunnion waviness. This allows the possibility of optimizing the trunnion shape including 

expected manufacturing variation. 

 

During regular operation in a vehicle, a Tripode joint will see different loads and a 

load history that will depend on the application (i.e. load history in city driving is different 
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from load history in freeway driving). The model developed in this work would allow to 

extend the optimization problem previously discussed to include load history, where the 

optimization of the trunnion is not done to minimize the contact loads for a specific 

torque but to minimize the size of the trunnion or to maximize the life of the joint under a 

series of different loads and the time the joint spends at each load. In other words, 

optimize the size and/or the life of a Tripode Joint for a specific load history. 

 

The results and models developed in this work can have an immediate and direct 

application in the auto-industry. 
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APPENDIX A 

SURFACE FINISH INSPECTION BEFORE AND AFTER TEST 

Ra = 0.18um 

 

Figure A.1. Surface texture before testing 

 

Ra = 0.09um 

 

Figure A.2. Surface texture after testing 
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APPENDIX B 

RESIDUAL STRESS ANALYSIS 

 

Residual Stress, [MPa] 

Depth, 
[mm] 

As      
Measured 

Corrected 
for Stress 
Gradient 

Corrected 
for Layer 
Removal 

Error,   
±[MPa] 

Peak 
Width, [º] 

      

1. Marked Location on Trunnion, Axial 

      

0.000 − 375.5 − 417.6 − 417.6 21.2 5.95 

0.025 −120.2 −124.5 −123.2 16.9 6.16 

0.032 −164.4 −140.0 −138.6 23.3 6.40 

0.042 −196.9 −188.3 −186.5 32.0 6.41 

0.055 −204.1 −201.7 −199.4 21.7 6.47 

      

2. Marked Location on Trunnion, Circumferential 

      

0.000 −128.1 −112.5 −112.5 21.3 5.85 

0.025 −236.1 −213.2 −212.8 23.1 6.27 

0.032 −295.4 −282.6 −282.0 23.7 6.23 

0.042 −279.7 −275.4 −274.5 23.7 6.22 

0.055 −319.2 −305.9 −304.7 24.0 6.56 

      

3. 90º from Original Location on Trunnion, Axial 

      

0.000 −1206.6 −1232.8 −1232.8 27.8 4.73 

0.042 −873.3 −900.4 −891.8 27.2 4.00 

      

4. 90º from Original Location on Trunnion, Circumferential 

      

0.000 −385.9 −367.2 −367.2 15.5 4.74 

0.042 −595.2 −576.7 −574.8 12.2 3.97 

      
 

Table B.1. Residual stresses 
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APPENDIX C 

MATERIAL ANALYSIS OF PROTOTYPE MATERIAL 

 

TEST RESULTS: 
CHEMISTRY 

Specification: JIS-G4052 SCM-420H 
Actual: JIS-G4052  SCM-420H 
 

Sample C Mn P S Si Ni Cr 

Spider 0.20 0.80 0.027 0.009 0.223 0.11 1.03 
        

Sample Al Cu Pb B Nb Zr Ti 

Spider 0.035 0.142 0.0000 0.0001 0.043 0.001 0.004 
        

Sample Mo V Ca     

Spider 0.16 0.010 0.00000     
Table C.1. Chemical composition 

 
HARDNESS  

Trunnion B was sectioned transversely adjacent to the pitting in order to determine 
the hardness profile. A microhardness traverse was performed from the surface to 
the core with the readings taken in HV500g and converted to HRC. 

 

Specification: *Actual: 

Finished trunnion surface hardness to be 58 HRC minimum 62 HRC 

Finished trunnion case depth to 50 HRC to be 0.8mm minimum 1.1mm 

As a reference: finished trunnion total case depth to be 1.0mm 
minimum 2.0mm 

Table C.2. Hardness 

 
 
  *Readings from taken microhardness traverse 
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APPENDIX D 

TRUNNION ROUNDNESS INSPECTION REPORTS AND EFFECTS OF FILTERING 

 

 

Figure D.1. Roundness with filter 0-15UPR 
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Figure D.2. Roundness with filter 0-50UPR 
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Figure D.3. Roundness with filter 0-150UPR 
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Figure D.4. Roundness with filter 0-500UPR 
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