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ABSTRACT

LIFE MODEL FOR ROLLING CONTACT, APPLIED TO THE OPTIMIZATION OF A
TRIPODE CONSTANT VELOCITY JOINT

By

Eduardo R. Mondragon-Parra

A Constant Velocity Joint (CVJ) is a mechanical device capable of transmitting
torque and motion between two rotating shafts that are misaligned. Most front wheel
drive vehicles have torque and motion transmitted to the driven wheels through a set of
inboard CVJ’s (transmission side) and a set of outboard CVJ’s (wheel side). One of the
most common types of inboard joints is the Tripode Joint, which is composed of a
housing, a spider and three sets of roller assemblies that connect the spider to the
housing and allow for stroking motion and rotation of the joint at an angle. Wear fatigue-
life in a Tripode Joint is defined by how many rotation cycles a Joint can complete
before experiencing spalling or flaking of the internal surfaces subject to contact forces.
Similarities and differences between a Tripode Joint and roller bearings are discussed.
Internal contacts are treated as non-Hertzian and the state of stress is determined
based on the kinematics of the joint, the geometry of the interacting components and

the way internal forces are distributed when a torque is applied.

A rolling contact wear fatigue-life model for Tripode Joints, that relates the critical
shear stress in the contacts to the number of cycles a joint can perform before spalling,
is proposed and compared to actual test data. Residual stresses were considered to

obtain the stress-life exponent of the Tripode equation.



Optimization of the geometric form of the contact surfaces in the spider is
performed, aimed to minimize the peak contact load and to minimize the load
differences between adjacent needle rollers. Reduction of the peak contact load allows
an increment in durability of the Tripode Joint. The optimized profile in the contact
surfaces of the spider is compared against traditional geometric forms, such as perfect

circular and elliptical. The proposed model has a direct application in the auto-industry.
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Para Carolina, mi hija amada.

(To Carolina, my beloved daughter)

“... Of making many books there is no end, and much study wearies the body. Now all
has been heard; here is the conclusion of the matter: Fear God and keep his
commandments, for this is the whole duty of man.”

Ecclesiastes 12:12-13
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X*-Y*-Z*= mobile spider offset reference frame

X, Y, 2 =  coordinates of spider center with respect to housing reference frame

Xj-Y;-Z; = coordinates of spherical roller centers with respect to fixed
reference frame X-Y-Z

X;'-Y;'-0 =  coordinates of spherical roller centers with respect to spider

reference frame, X'-Y'-2'

X;*-Y;*-0= coordinates of spherical roller centers with respect to spider
offset reference frame, X*-Y*-2Z*

X* = X'+ey

Y = Y'+ey
X,.H- YI.H-Z,.H= Housing, secondary mobile reference frame

X,.S- Y,.S-ZI.S= Spider, secondary mobile reference frame

XIS,X,H =  Vectors that define orientation of spider and housing rays

a, B0 =  direction angles of spider axis, with respect to fixed reference
frame

Kj,Aj,uj =  direction angles of spider rays, with respect to housing mobile
reference frame, X,.H- Y,.H-Z,.H

Uj-®;-V; = trunnion local reference frame, cylindrical coordinate system

7 = joint angle, angle between spider and housing axes

6, =  joint angle, angle between spider and housing axes, when ¢ =0

Ocr = critical joint angle

6 4 = critical joint angle to assumption of linear load distribution
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Pjj = Needle roller angular position, with respect to trunnion local
reference frame U, -®; -V

0; = angle between spider ray and housing plane X,.H YIH measured

on plane formed by vectors XI.S and Zf"

Ej =  angle between vectors Y,.S and YI.H

n; = angular displacement of contact point between spherical roller
and ball bore, with respect to trunnion local reference frame

@ = angular displacement of housing shaft (input angle)
7% = angular displacement of spider (output angle)

V1 = Yo-27/3=y3+27/3

o4 =  @-27/3=¢3+27/3

i =  Trunnionindex, 1,2, 3

J = Needle rollerindex, 1,2, 3, ... ,n

& = Angular displacement of O*O’ with respectto X*

pjj =  concentrated normal force from needle jto trunnion i
pi =  force normal to trunnion axis, on spider plane
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ty = input torque
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Ch
Chu

Chd

Chuo
Chdo

Ptmij
Pbmij
Ptuij
Ptdij
Pbuij
Pbdij
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Cspacer
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initial effective upper contact length of needle on ball
initial effective lower contact length of needle on ball

mean load per unit of length on trunnion
mean load per unit of length on ball
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load per unit of length on trunnion at point TD
load per unit of length on ball at point BU
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height of spider shoulder from spider axis
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bneedie =  total needle length
Ry =  radius to the centroid of the radial cross section of the ball

hy =  distance from the centroid of the cross section of the ball to the
extreme fiber on the concave side

Cohw =  ball height (lateral face to lateral face distance)
ap =  semi-arch of ball width
YbA =  radius to intersection point of circular and rectangular segments

of the radial cross section of the ball

Vi = radius to centroid of circular segment

Ypo = radius to centroid of rectangular segment

api =  area of circular segment of ball cross section

apo =  area of rectangular segment of ball cross section

ap =  area of ball radial cross section

Ip1x =  second moment of area of circular segment of ball cross section
Ipo =  second moment of area of rectangular segment of ball cross section
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Py = angular position on inner diameter of ball when ¢;; =0

oy = angular position of needle roller vwhen ¢;1 =0

u = auxiliary needle spacing index, 2, 3,4, ..., n

% = auxiliary needle roller index, 2, 3, 4, ..., n

pC.y = influence coefficient for ring (ball) deflection due to a roller load

qC, = influence coefficient for ring (ball) deflection due applied load q;
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Zi

radial displacement of ball center with respect to trunnion center
relative radial approach of ball to trunnion at angle ¢,
combined radial deformation of ball, for needle roller at angle ¢,

radial deviation of actual trunnion surface with respect to trunnion
basic circle at angle ¢,

radial distance to trunnion surface at angle ¢,

modulus of elasticity of steel = 207GPa

material constant for contact between needle and trunnion
material constant for contact between needle and ball

combined material constant for needle contacts

radial load transmitted by needle roller v, when ¢;; =0
order of dominant harmonica causing distortion on trunnion
profile or roundness tolerance of trunnion

constant for elastic properties roller bearings = 10/9

radial deflection of ball at angle ¢, due to a load p,

radial deflection of ball at angle ¢, due to a load g;

constant that takes its value based on position of first roller

upper limit to index v

0.5 for ¢, = 0. Otherwise, 7, =1

angle between the plane passing thru the center of trunnion /and
the center of roller j, and plane X'-Y"
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Oh =
Ohmax =
O hx =
Chy =

Ohz =

Th =
Thmax =
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TxysTyz:Txz
01,011,011
Op1:9p2:9p3
O pt = Opmax
Op3 = Opmin

Tmax =
Ey =

Vs =

roller to trunnion continuous load profile function
semi-width of rectangular contact element (for section 5 only)
semi-length of rectangular contact element (for section 5 only)

semi-width of line contact area, perpendicular to contact line
length of line contact area, parallel to contact line, Hertz

surface pressure in a cylindrical contact, Hertz

maximum surface pressure in a cylindrical contact, Hertz
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modulus of elasticity, for steel = 207GPa

Poisson’s ratio, for steel = 0.3
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K = material constant

X-Y-Z = reference frame at the contact region (for section 5 only)
X,y 2 =  coordinates of a point in the contact region (for section 5 only)
aji =  displacement of roller j with respect to trunnion i, caused by deformation
V1,Vo =  displacements of points in or near the contact area,
parallel to the direction of the applied force to the contact
21,2 = initial separation of points in or near the contact area,
parallel to the direction of the applied force to the contact
Zow = crowning, deviation from nominal cylinder along its axis
Zgk = equivalent crowning cause by needle skewing
zg = equivalent crowning due to asymmetrical load distribution
Zs =  total equivalent crowning
lsk = radial clearance caused by needle skewing
Sn = uniform pressure on element n
n,m = dummy variables, 1,2,3, ..., r
r = number of rectangles in the mesh used to calculate contact area
fmn = influence coefficients
4 =  skewing angle of needle roller with respect to trunnion
f,-j =  slope of equivalent contact deformation on needle j of trunnion i
due to slope of asymmetric load distribution
£ =  Weibull slope or Weibull modulus
U = Exponent, experimentally obtained
c =  critical shear-stress life exponent
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Ow =  fracture strength of a specimen

Owp =  characteristic fracture strength of a specimen
S =  specimen survival to fracture strength o,

4 =  stressed volume in a specimen

N = number of cycles to fracture

L = life of a component, in cycles

Ter = critical shear stress

To = maximum octahedral shear stress

Ty = Fatigue limit

Ci =  constants,fori=1,2,3, ...

Zer =  depth of critical shear stress

Ny = life exponent for Hertzian contacts

leff =  effective, non-Hertzian contact length

Poff =  effective angular displacement of a needle roller within a

revolution at a given joint angle

Teff =  effective shear stress (varies depending on the
static failure theory used)

YS = uni-axial yield strength

TS = uni-axial tensile strength

Hv =  Vickers Hardness

HRc =  Rockwell-C Hardness

SF = Ratio of shear yield strength to critical shear stress
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1. INTRODUCTION

1.1 Background

This work focuses on the wear life prediction of the Tripode (TP) type Constant
Velocity Joint (CVJ). Internally, the TP CVJ is composed of rolling elements which
function similar to those of roller bearings. Rolling bearing technology, as we know it
today, began to develop in the nineteenth century. In 1881, H. Hertz published his
contact stress analysis beginning the analytical study of bearings. The first paper
discussing life bearing prediction was published in 1924 by A. Palmgren [1]. Bearing
technology, contact stress and life prediction theories continued to develop in the

second half of the twentieth century and are still developing.

A Constant Velocity Joint (CVJ) is a mechanical device capable of transmitting
torque and motion between two rotating shafts that are not aligned. One of the first
applications of constant velocity joints in the U.S. auto industry was in the 1960’s, in the
halfshafts of front wheel drive vehicles [2]. A halfshaft is an assembly of two constant
velocity joints and an axle bar. Its purpose is to transmit motion and torque from the
transmission to the powered wheels of a vehicle. One of the most common halfshaft
configurations includes a fixed center constant velocity joint and a stroking constant
velocity joint. Such configuration allows the halfshaft to articulate and change its length
as a result of steering and suspension motions in a vehicle, as shown schematically in

Figures 1.1aand 1.1b
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Figure 1.1a. Steering motion (schematic aerial view)
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Figure 1.1b. Suspension motion (schematic front view)



Even though constant velocity joints have been around for almost one hundred
years little has been done to develop specific analytical models to predict its wear life.
It's the purpose of this work to develop a wear life model for a specific type of constant

velocity joint, the Tripode joint.

1.2 Fixed center constant velocity joints

The first predecessor of the constant velocity joint was the Universal Joint or
Cardan Joint, named after Geronimo Cardano who was the first to describe it in the mid
sixteenth century [3]. The Universal joint allows transmission of torque and motion
between two shafts that are not aligned but with variation of torque and speed. A

schematic view of the Universal Joint is shown in Figure 1.2.

Figure 1.2. Universal Joint

Almost 100 years later Robert Hooke had the idea of combining two universal
joints to eliminate the non-uniformity, which was the first mechanism with true constant

velocity properties [3].



Figure 1.3. Double Hooke Joint

One of the first ball-type constant velocity joints, as we know it today, was
patented by Alfred Rzeppa in 1934 [4]. This joint is composed on an inner race member,
an outer race member, balls connecting the two races and a cage to keep the balls in
the constant velocity plane. The constant velocity transmission is achieved by keeping
the balls on a bisecting plane, which is the same principle that is used to transmit

constant velocity using bevel gears.

CV PLANE
/

OUTPUT

Figure 1.4. Fixed Center CVJ



1.3 Stroking constant velocity joints

There are several types of stroking or plunging constant velocity joints. They can
be classified in ball-type joints and tripode-type joints. The first type uses the same
principle of the bisecting plane to transmit constant velocity. The two most common
types of ball-type stroking joints are the cross groove joint (CGJ) and the double offset

joint (DOJ) [2].

Figure 1.5. CGJ (left) and DOJ (right)

The tripode-type joints are not perfect constant velocity joints but they approximate
constant velocity at the typical operating angles in a vehicle, and can be considered a
constant velocity joint for practical purposes. Section 2 of this work explains in detail the

kinematics of the tripode joint and explains why it is a quasi-constant velocity joint.
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Figure 1.6. Tripode Joint

1.4 Rolling Bearings and Tripode Joints

A tripode joint is composed of a spider assembly and a housing. The spider
assembly is composed of a spider and three sets of rollers that rotate and slide along
the trunnions of the spider. Some of the characteristics that make the roller sets in a

tripode joint different from a typical roller bearing are the following:



LITTLE OR NO AXIAL MOTION
ROLLER FULLY SUPPORTED

JF ﬂ\é

Figure 1.7. Axial motion and support in Roller Bearing and Tripode Joint

. In most roller bearing applications the race members remain axially static or
quasi-static with respect to themselves. In a tripode joint the outer member of the

roller set, named roller or ball, moves axially with respect to the inner member,

BEARING

AXIAL MOTION

)

TRIPODE

named trunnion. This is shown schematically in Figure 1.7.

. In most roller bearing applications the needle rollers connecting the races are
fully supported. In a tripode joint the needle rollers are not fully supported all the

time. As shown in Figure 1.7.

. In most roller bearing applications the outer race is fully supported. In a tripode

joint the outer member of the roller set is supported at only one point. This is

shown schematically in Figure 1.8.
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Figure 1.8. Outer member support in Roller Bearing and Tripode Joint

4. In most roller bearing applications possible misalignment is constant, making
easier to predict load distributions. In a tripode, equivalent misalignment in the
roller set continuously changes within a revolution and is a function of the joint
angle, making it necessary to predict instantaneous load distributions. This is

shown schematically in Figure 1.9 and will be covered in detail in Section 4.

Figure 1.9. Variation of load distribution in a tripode joint



5. In most roller bearing applications the race members are round. In a tripode joint
the trunnion may have non-round shapes, which changes the load distribution in
the needle rollers. A circular and a non-circular shape are shown schematically in
Figure 1.10. The non-circular shape has been exaggerated for visualization

purposes.

BEARING TRIPODE

Figure 1.10. Inner member shape in Roller Bearing and Tripode Joint

For the reasons formerly mentioned, traditional approaches to estimate the life of the
roller set in a tripode joint, such as the ISO-ANSI/AFBMA standards, can not be
employed. A new specific analytical model, with experimental verification, to predict the

life of tripode joints is necessary.



1.5 Benefits of a life model

Traditionally, a semi-empiric approach has been used by some CVJ manufacturers
to estimate the life of a tripode joint, resulting in joints that may be over-designed or
under-designed. By knowing the kinematics of the joint, the internal load conditions, the
generated stress fields in the contacts and its relationship to wear life, optimized joints

can be developed, resulting in packaging, mass and cost reductions.

Another benefit of developing a valid analytic model is that in a family of products
only one size needs to be tested and validated. Larger and smaller sizes can be
developed with a bigger level of confidence, reducing the development time and cost of

the project.

1.6 Joint Size and Packaging

The size of a tripode joint is typically defined by the torque capacity of the largest
axle bar that can be plugged into the spider. “Yield Torque” is a common term used by
CVJ manufacturers and refers to the maximum torque an axle bar or splined interface
can transmit before having plastic deformation. The joint used for the experimental
portion of this work is a “21-size” joint. The yield torque of the largest axle bar that can

be used in combination with the joint is around 2100Nm.

The “packaging” of the joint is another common term used by CVJ manufacturers

and is used to refer to the maximum swing diameter of the joint.
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1.7 Project description

The sequence of steps taken in this project is as follows:

1.

2.

Description of the architecture of the tripode joint

Study of the kinematics of the tripode joint

. Study of the forces at the internal contacts of the tripode joint

. Calculation of the stress field resulting from the forces at the contacts

Use of the state of stress to predict wear life using fatigue theories

Experimentation, analysis and correlation of results

. Optimization of the roller assemblies to maximize life and/or minimize

packaging.

The experimental portion of this work was conducted at an industrial facility that

has specialized test machines for halfshafts, proprietary to the CVJ manufacturer

sponsoring this work. Details of the testing performed such as speed, torque, angle and

test time, and inspection results of tested parts will be discussed in Section 7.
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2. KINEMATIC ANALYSIS OF A STROKING TRIPODE JOINT

2.1 Introduction

The tripode joint has been around for almost a hundred years [2]. However,
many investigations have not been published. Most of them are related to motion
analysis, kinematic structure and properties [5-10], dynamic effects such as Generated
Axial Force (GAF) [11-14] and general design guidelines [2, 3, 15-16]. The purpose of
this section is not to propose a totally new kinematic approach to analyze the tripode
joint but to use, improve and expand what is currently available, knowing its limitations
and related assumptions, in order to define internal displacements, which will be
subsequently used to predict internal forces and the state of stress at the contacts

within the joint.

Figure 2.1. Exploded view of tripode joint
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This work treats the tripode joint as a single universal joint. Therefore, the joint

angle and the respective positions of the input and output shafts are chosen arbitrarily.

As shown in Figure 2.1, the joint is composed of:

A housing (1) with three straight parallel and equally spaced ball bores (grooves
or slots).

A spider (2) whose three trunnions (legs) lie on the same plane, are equally
spaced and converge to the same point.

Three spherical rollers (3) which can rotate and slide on the trunnions thanks to
the interaction with the needle rollers (4). This interaction can be simplified to a
cylindrical pair for purposes of kinematic analysis. The interaction between
spherical balls and housing ball bores can be simplified to a sphere-groove
kinematic pair.

A set of rings (6) and roller retainers (5) whose main function is to keep all
components in place. Their kinematic and dynamic effects can be neglected
since they are not mobile parts and its mass is very small compared to the mass
of other components formerly mentioned.

Optional spacer rings (7) which can be used to eliminate edge contact on the
needle rollers at the base of the trunnion. Its kinematic and dynamic effects can

also be neglected.
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2.2 Assumptions
Individual components are considered as rigid bodies. Geometrical errors (i.e.
spacing errors) and clearances are neglected during the kinematic and quasi-static

analysis since they are very small compared to the displacements and joint dimensions.

2.3 Definitions

The reference frames used in this section are shown in Figure 2.2, Figure 2.3
and Figure 2.4. The housing is typically connected to the transmission output in a
vehicle and its only motion is rotational about its axis. Thus, a fixed reference frame X-
Y-Z is chosen on the housing side, where plane X-Y is the housing plane and Zis the
housing axis. The spider rotates together with the housing and at the same time it can
displace and change its orientation with respect to the housing due to suspension and
steering motion in a vehicle. Thus, two moving frames are chosen on the spider side.
The first one, denoted by X'-Y'-Z' has its origin at the spider center O’ and Z' is the
spider axis. Plane X'-Y' is the spider plane. Y' is oriented parallel to the common
perpendicular of the Z and Z' axes. The second moving frame, X*-Y*-Z2*, has its
axes, X*, Y* and Z* parallel to axes X', Y' and Z', respectively. Origin O* is the
intersection of the spider plane and the housing axis. X* and Y * lie on the spider

plane. The following terms are defined:

Housing plane: An arbitrary plane normal to the housing axis, Z (Figure 2.2).
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BCD: Ball Circle Diameter, the diameter of the circle on the housing plane passing
through the intersections of ball bore centerlines and housing plane (Figure 2.2). This is
a main joint parameter and will be constantly referenced.

BCR: Ball Circle Radius, defined in this work as variable a. It is half of the BCD

Ball bore plane: A plane that passes through the housing axis and a ball bore centerline
or ball bore axis (Figure 2.2).

Housing rays: Equally spaced (each 120° apart), represent the intersection between
housing plane and ball bore planes. The three rays intersect at the housing axis (Figure
2.2).

Spider rays: The centerline or axis of each trunnion (leg) of the spider, equally spaced
(each 120° apart) (Figure 2.3).

Spider center. The common intersection of the three spider rays (Figure 2.3).

Spider plane: The plane that passes through the three spider rays (Figure 2.3).

Spider axis: Axis perpendicular to the spider plane passing through the spider center
(Figure 2.3).

Spherical roller (ball) center. The center point of each of the three spherical rollers

(Figure 2.3).
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Figure 2.3. Spider Reference Frame
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The eccentricity e shown in Figure 2.4 is defined as the distance from O*to O.
The rotation of the spider shaft (output) is defined as y and the rotation of the housing
shaft (input) is defined as ¢. The joint angle @is defined as the angle between the spider
and housing axes. Due to the small variations between input and output angular

displacements, which are inherent to the kinematic structure of the joint, the tripode joint

is in fact a non-constant velocity joint.

lp—y|#0 (2.1)

Spider Plane

/
e

Housing Plane

Figure 2.4. Fixed and mobile coordinate frames
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Neither ¢ nor w are constants, the derivatives of Eq. (2.1) with respect to time
clearly indicate that the variations between input and output displacements translate into
the variations between input and output angular velocities. Such variation has little
influence in the displacements of the spherical rollers during normal operation
conditions in most commercial applications (typically, joint angle is below 25deg). This
problem has been treated in detail by Akbil and Lee [7-8] and by Mariot and K’Nevez [9]
and will be discussed in the following subsections. Both investigations lead to the same

equations of motion.

2.4 Spherical roller positions
When the tripode joint is angulated an eccentricity e of the spider center with
respect to the housing axis is generated since the pivoting point is not the center of the

spider (Figure 2.3 and Figure 2.4). The magnitude of such eccentricity, O*O’, is [2, 5, 7,

9].
_a(1-cosd) (2.2)
2 cosé
This eccentricity when projected on the X*and Y*axes has the components
e, = ecos(r—¢) (2.3)
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e, =esin(z-¢) (2.4)

where ¢ is the angular displacement of O*O’ with respect to X *. Because of the

symmetry of the tripode joint, the orientation of O*O’ with respect to X * will repeat
three times per revolution. The expression relating rotation of the spider and angular

displacement of the eccentricity vector O*O’is [4],

$=3y -z (2.5)
Then, Egs. (2.3) and (2.4) can be rewritten as a function of spider rotation
a(1-coso)
=—— cos3 2.6
X" 2 cosé v (26)
__a(1=cosb) 4, (2.7)

When the joint rotates, the eccentricity previously described causes an orbiting

motion of the spider. Position of the spider center with respect to the fixed reference

frame is [7],
x = e(sin3y sin(¢—w)—cos @cos 3w cos(p—w)) (2.8)
y = e(-sin3w cos(¢—w)—cos@cos 3y sin(p—y)) (2.9)
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and the position of the center of the spherical rollers with respect to the fixed reference

frame is given by [7]

Z; =(a/2)2cosy; +(1-cos8)cos3y)tand + z (2.10)

z=b(cosb, —cosh)+c, (2.11)

fori= 1, 2, 3, where “Z” is the position of O’ with respect to the fixed reference frame in

the Z-direction, ¢, is the initial stroke position of the spider (axial position) and 6, is the

joint angle when ¢ = 0. These initial conditions correspond to the stroke-angle position
of the joint, a function of the suspension and steering motions in an automobile. It is
assumed in this work that the tripode joint will be coupled to a fixed-center type constant
velocity (C/V) joint, through the spider shaft. A fixed-center C/V joint can be simplified as
a spherical joint. The case when two tripode joints are coupled has been studied by by

Mariot and K’Nevez [9] and will not be considered here.
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Figure 2.5. Coordinates and orientation of spider shaft

The position of the end of the shaft that is coupled to the spherical joint can be
identified as point P(h,g,k). The length of spider shaft or distance from the spider center
to the spherical joint center is defined as distance b. At the same time the orientation of
the shaft can be defined by three direction angles, «, £, 6, with respect to the fixed

coordinate system X-Y-Z (Figure 2.5). Then, the direction cosines of Z' (spider axis) are

cosa=(h-x)/b (2.12)
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cosf=(g-y)/b (2.13)

cos@=(k-2z)/b (2.14)

If g, h and b are treated as independent variables, kK may be obtained by simple
trigonometry. Egs. (2.12), (2.13) and (2.14) can be combined with Egs. (2.8) and (2.9),

which is simplified to get

h? + g2 = (bsin@ + ecos#cos3y)? + (esin3y)? (2.15)
Then, Eqg. (2.2) can be substituted into Eq. (2.15) and solved numerically for 6. An

important expression that relates the input and output angular displacements, derived

by Akbil and Lee [7-8], is

tan(¢p—w)=cos B/cosa (2.16)
Eq. (2.16) can be solved for ¢, numerically, by substituting Egs. (2.12), (2.13),

(2.8) and (2.9) and using the value of & obtained from solving Eq. (2.15). The radial

position of the ball centers, with respect to the spider center is given by [4, 6]

. _g((1+cos€) N 2(1-cos )
"2l cos# cosé

00321//,-)=3+ e(1+2cos2y;) (2.17)

fori=1,2 3
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Therefore, the displacement of the spherical roller center is

f; = e(1+2cos2y;) (2.18)

fori=1,2 3

2.5 Numerical examples of spherical roller positions and displacements

It is interesting to note that Egs. (2.17) and (2.18) indicate that spherical roller
positions depend only on joint angle (orientation of spider shaft), BCD and rotational
displacement of the joint. The reader is reminded that variable a is defined as half of the
BCD. A computer program was written to perform calculations. The code was debugged
by verifying the outputs with the numerical results of the examples published by Akbil
and Lee [8]. Graphics and numerical values in this and subsequent sections were
obtained using the characteristics of the actual tripode joint design that will be used to
do the experimental portion of this work, unless otherwise indicated. The joint

characteristics are:

Nominal BCD = 40.8mm
Shaft length = 300mm
Maximum functional angle = 23°
Trunnion diameter = 20.97mm
Needle roller diameter = 1.9975mm
Number of needles (n) = 36
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Spherical roller outer diameter =  34.942mm

Figure 2.6 describes the fluctuation of joint angle in a revolution, when the joint is

operating at a nominal joint angle 6, of 23°, and was obtained solving Eq. (2.15). The

coordinates of the center of the spherical joint were obtained using Egs. (2.19) and

(2.20).
h=-bsiné, —2(1—00500) (2.19)
k=+b%-g?%-h? (2.20)

Figure 2.6. Fluctuation of joint angle in a revolution
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Figure 2.7. Deviation from nominal angle in a revolution

Figure 2.7 was obtained from Eq. (2.21), which represents the angle variation with

respect to the nominal joint angle.

AO=60-6, (2.21)

Figure 2.8 represents the spider orbiting path and was obtained by generating a

parametric plot of e, versus ey where yis the parameter. The dashed line represents

the orbiting path neglecting joint angle fluctuation (¥ = ¢), while the solid line represents
the orbiting path including joint angle fluctuation A& . Orbiting path on spider plane is a

circle.
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Figure 2.8. Orbiting path of spider on spider plane

Figure 2.9 was obtained from solving simultaneously Egs. (2.2) and (2.15). If joint
angle fluctuation A8 was ignored the function plotted in Figure 2.9 would be a straight

horizontal line.
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Figure 2.9. Fluctuation of eccentricity within a revolution
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Figure 2.10. Difference between input and output angular displacements

Figure 2.10 is obtained solving Eq. (2.16). It shows the difference between input

and output angular displacements caused by joint angle fluctuation A@. From Figure
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2.10 it can be observed that the joint behaves as a true C/V joint at six specific positions

within a revolution. Such positions are y=nz/3, wheren=0, 1, 2, ..., .

Figure 2.11. Orbiting path of spider on housing plane

Figure 2.11 represents the spider orbiting path on the housing plane. It was

obtained generating a parametric plot of x versus y where y is the parameter. The
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dashed line represents the orbiting path neglecting joint angle fluctuation (= ¢), while
the solid line represents the orbiting path including joint angle fluctuation A&. Orbiting

path on housing plane is an ellipse.

Z [mm]

Y [rad]

Figure 2.12. Variations of the axial displacement of the spider center

Figure 2.12 describes the movement of the spider center along axis Z, when the

joint is operating at a nominal joint angle 6, of 23°. It was obtained solving Eq. (2.11).

Similarly, Figure 2.13 was obtained solving Eq. (2.10).
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Figure 2.13. Displacement of the spherical roller center along ball bore axis
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Figure 2.14. Radial position of the spherical roller center, from spider center
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Figure 2.14 represents the radial position of ball center with respect to the spider
center. It was obtained solving Eq. (2.17). The position at zero joint angle would be half

of the BCD, a = 20.4mm.

I.... L PR SRS S e S SRR d
1 ) 3 4 5 ¥ lrad

Figure 2.15. Radial displacement of the spherical roller center, along trunnion axis

Figure 2.15 represents the displacement of the ball center along the trunnion with
respect to its “zero” position, which is defined then r; = a. It was obtained solving Eq.

(2.18).

2.6 Needle roller positions and displacements
There is no published work about needle roller positions and displacements within

a tripot joint. Motion of spherical rollers (balls) causes rolling and sliding motion of
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needle rollers on contacting trunnions. A cylindrical coordinate system U;-®;-V;,
whose origin is O’, can be defined for each trunnion, i = 1, 2, 3. Axis V; is a spider ray
and @; is measured positive from the spider plane around V; in a CCW direction, as
shown in Figure 2.16. Variable Dij» also shown in Figure 2.16, defines the angular
position of each needle roller, labeled j= 1, 2, 3, ..., n. It is assumed that needles are

uniformly spaced around the trunnion and clearance between them is neglected. On the

other hand, interference is not allowed by design.

Needle =1

Figure 2.16. Trunnion, local cylindrical coordinate system
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A secondary housing reference frame, X,H-YI.H-Z,H, and a secondary spider

reference frame, XI.S- Y,.S-Z,.S, which rotate together with the joint are also defined. Axis

Z,.H is always parallel to axis Z and axis Z,.S is always parallel to axis Z' (Figure 2.17).

Figure 2.17. Secondary-rotating coordinate systems

To define the angular position of a needle on a trunnion, it is necessary to know
the amount of rolling of the spherical roller (ball) due to translation of its center along
ball bore axis. If the rolling axes of spherical rollers were parallel to housing rays, there
would be pure rolling motion, no sliding. On the other hand, if they were perpendicular
there would be pure sliding, no rolling at all. In a tripode joint, spider rays are the rolling

axes of spherical rollers and they are neither parallel, with the exception of few specific
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positions, nor perpendicular to housing rays. Ball rolling is a function of trunnion axis

inclination, relative to the housing plane, measured on an auxiliary plane formed by

vectors X;9 and Zf’ since ball rolling can only occur around axis XIS and ball
translation along ball bore can only occur on Zf" direction. The orientation of the
trunnion axis X;S is defined by the direction angles «j, 4;, &;, measured from Xf", YI.H

and Zf’,

respectively. Trunnion axis inclination with respect to plane X,H-Y,.H is
identified by angle J; and is measured on auxiliary plane X,.S-Z,.H, as previously

indicated.

To calculate the angles formerly mentioned the orientation matrix developed by
K’Nevez, Mariot and Diaby [10] (obtained using different reference frames) is modified
such that orientation can be described with respect to the reference frames used in this
work. Modification consisted of adding a z/ 2 phase to the input and output angular

displacements. After some algebraic and trigonometric manipulation the matrix that

defines orientation of the spider reference frame X,.S-Y,.S-ZI.S with respect to the

housing reference frame X,.H-YI.H-Z,.H can be written as,

COS@CosSpCcosy +sSingsiny  cosfcos@siny —cosy sing cosesing
"A =| cosfsinpcosy —cosgsiny cos@singsiny +cospcosy  sindsing
—cosy sing —sin@siny cosé

where y =y; and ¢=¢; ;fori=1,2, 3 (2.22)
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To calculate the direction angles of spider rays the dot products between unit

vector XIS and unit vectors Xf’, YI.H, Zﬁ, are obtained

, , T
cosdcosg;cosy; +sing; siny;

XIS =| cosdcos ¢; Siny; —cosy; sing; (2.23)
cos ¢, siné
X" =[ o 0] (2.24)
Y=o 1 0] (2.25)
H_
z'=[0 o 1 (2.26)
COS kj =COSHCOS @; COSy; +Sing; Siny; (2.27)
COS A; =Cc0s@cosg; siny; —cosy; sing; (2.28)
COS i =COS @; Sin@ (2.29)

Using simple trigonometry, angle §; may be related to the complementary angle of y;.

CO0So;j = 1—(cos;z,-)2 (2.30)

5,-=7z/2—,u,- (2.31)

Even though Egs. (2.30) and (2.31) are equivalent, only Eq. (2.31) can indicate on
which side of the housing plane (positive or negative ZI.H) the trunnion is located (Figure

2.18 and Figure 2.19).
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Figure 2.18. Angle ¢, per Eq. (2.30)
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Figure 2.19. Angle o, per Eq. (2.31)
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When the spherical roller is tilted only a fraction of the distance traveled along the
housing ball bore will cause rolling (Figure 2.20). More tilting means less rolling. In the
case of constant inclination, the arch length displaced at the outer diameter of the
spherical roller can be obtained from Eq. (2.32), which is valid only if there is contact, all

the time, between spherical roller and housing ball bore.

Sj = Z;j COS 0 (2.32)

HOUSING PLANE X-S
-/fds/

Figure 2.20. Partial rolling of ball due to tilting
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However, in a tripode joint, angle J; is not constant (Figure 2.19) during the whole
Z; displacement. Therefore, a differential approach has to be followed and Eq. (2.32)

can be rewritten as Eq. (2.33). If Egs. (2.29) and (2.30) are substituted into Eq. (2.33)

then Eq. (2.34) is obtained.

ds; = dZ;cosd (2.33)

ds; = dZi\/1—(COS¢,' cos¢9)2 (2.34)

Variable Z; is a function of angular displacement y; and joint angle 6. Let’s
consider a simple case for the sake of clarity. Assume that the initial position of the
spider in Figure 2.20 is the position where the origin of the spider reference frame
coincides with the origin of the housing reference frame. This can only happen when

joint angle @is zero. Then, without rotating the joint (y; = ¢; =0) change joint angle 6
from 0to 6, (if ¢; =0, then J§; =86,). When the spherical roller starts to displace, tilting
angle will be very small and its effect in ball rolling could be discarded but as joint angle
gets closer to 4, tilting will impact ball rolling. If the actual ball rolling wants to be known

Eq. (2.34) has to be integrated from zero joint angle to actual joint angle, for a given

rotational (angular) displacement y; of the spider. Differential dZ; can be obtained from

Egs. (2.10) and (2.11).

0Z; 0Z; 0Z;
dZ; =—~Lde Ldy; +—Ld6 2.35
i=73a +aWi Vi 36, o) ( )
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Where dy; =0, since dZ; will be evaluated for a specific displacement ;. Thus, Eq.

(2.34) becomes

Si . _ (0Wifo_max)( dZ; _ >
0 as; _.[o (w\/h(cosq), cosé) jde

) 57 (2.36)
O0__max _, _ ) ) 2
+ Io (800 \/1 (cosgjcosf(y;.6,)) Jdeo
and the partial differentials contained in Eq. (2.36) are,
92 _ 13(2008 w; +(1-cos@)cos3y;)sec? @
0 2
1 (2.37)
+ bsin0+§a0033w,- sinftané
Z; .
=-bsing 2.38
26, ° (2.38)

Eqg. (2.36) can be evaluated numerically to calculate s;. Displacement s; follows
the same trend that Z;, as expected (Figure 2.13 and Figure 2.21). On the other hand,
the difference between Z; and s; is maximum at the points where angle & is maximum,
and zero (Figure 2.22) where ¢; is zero, which is the condition when the spherical roller

doesn’t displace along the ball bore.
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s1 [mm]

Figure 2.21. Actual arch displaced at ball outer diameter

Z1-s1 [mm]
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Figure 2.22. Difference in arch displacement without and with ball tilting effect

Before proceeding to calculate angles ¢jj, there is an additional component that

must be taken into account due to the change of orientation of the spider axis within a
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revolution. Let’s consider another simple case. When angular displacement y; =x/2
the spherical roller will not move along the ball bore. However, there will be an angle
between the plane that passes through ¢;; =0 and a plane parallel to the housing plane
that passes through the point of contact between ball and ball bore (Figure 2.23).

Needle j = 1 is the needle that is located at ¢;1 when joint angle 6= 0 (Figure 2.16).

Figure 2.23. Graphical representation of angle

The angle formerly mentioned will be named ¢; and can be obtained from

calculating the angle between vectors YI.S and YI.H. Thus, the dot product of such

vectors is

Ccos¢gj =C0s@sing; siny; +Ccosy; COS @; (2.39)
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Evaluating &; numerically, through one revolution, can be observed that only

positive angles are obtained (Figure 2.24). Even though this is mathematically correct, it
represents a disadvantage. Position of needles on the trunnion depends not only on the

magnitude of angle ¢;. Let’s consider needle j =1. Position ¢;; of this needle on the
trunnion will be a positive number when y;=7/2 and negative number when

v =3x/2, even though magnitude of ¢; is the same at both y; positions (Figure 2.23).

€ [deg]

20}
15f

10f

Figure 2.24. Angle &, per expression (2.39)

To overcome such problem a SIGN function, which depends on y;, can be used.

Angle ¢; is redefined as angle ¢';, which is phase corrected (Figure 2.25).

£'; = sign(siny; )- arccos(cos @sing; siny; +cosy,; cos ;) (2.40)
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20}

10f

...6..¢[rad]

Figure 2.25. Angle €', per expression (2.40)

Then, after considering the effects of ball tilting and the change in spider

orientation, the angular displacement of the contact point between spherical roller (ball)

and ball bore, with respect to the local trunnion reference frame, is defined as 7, .

ni=&€i—S; (2.41)

The second term of Eq. (2.41) comes from dividing the arch length displaced, s;,

calculated from Eq. (2.36), by the outer radius of the spherical roller. Eq. (2.41) can also

be evaluated numerically and plotted (Figure 2.26).
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n1 [deg]

Y [rad]

Figure 2.26. Angle n, per expression (2.41)

Relative angular motion between spherical rollers and trunnions will result in
needle angular displacements. It is convenient to establish a relationship between the
angular displacement of the ball and the angular displacement of the needles, with
respect to the local trunnion cylindrical coordinate system U,-®;-V; (Figure 2.16).
Assuming contact and no sliding between trunnion, needle rollers and spherical roller
(ball), consider the case where a needle roller displaces from position (B-C) to position
(B-C’) as a result of an angular displacement 7, of the ball, from point (A) to point (A).
Since no needle sliding around the trunnion was assumed, it can be said (based on
kinematic principles of relative motion) that the arch-length of segment (C-C’) equals

arch-length of segment (B™-D) (Figure 2.27).
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Figure 2.27. Angular displacements and positions in trunnion-rollers set

Diametrical clearance in the trunnion-rollers set can be neglected (as stated in the
beginning of this section) for kinematic analysis purposes. Clearance is three to four
orders of magnitude smaller than the trunnion diameter. This makes the inner diameter
of the ball similar to the trunnion diameter plus two times the needle roller diameter.

Thus, the following identities can be generated when initial needle position is zero,

m; = t+2d (2.42)
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t t
§¢ij = [§+ dj(ﬂi —@jj) (2.43)

Isolating position ¢; from Eq. (2.43) and adding a term to take into account the initial

conditions of needles that are not in a zero position it is obtained,

, 2y
gj=| 2— i +(j-1) (2.44)
+ n
forj=1,2,3,...,n

Evaluating Eq. (2.44), numerically, and plotting for the case i =7 and j = 1,

¢11 [deg]
20(

10:

-10:

Y [rad]

Figure 2.28. Angular position of needle j = 1, per expression (2.44)
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It must be noted that when j = 1, position and displacement are equal in

magnitude. Therefore, ¢;1 will be used to refer to needle displacement as well.

2.7 Critical joint angle

Critical joint angle is an important design parameter. In a tripode joint, it is defined
as the joint angle that causes a total needle displacement equal to the angular spacing
between needles. In other words, critical joint angle is when fatigue cycles duplicate due
to more than one needle passing over the same trunnion area in a joint revolution.
Given the complexity of the equations derived in previous sub-sections, it is difficult to
obtain a closed form solution for critical angle. Such problem can be tackled
numerically, using a numeric method that iterates joint angle until total needle

displacement equals needle spacing.
2701 N=61(60:¥ i hmax | |91 (60, ¥i Jin| = 0 (2.45)
A computer program was developed to solve Eq. (2.45) for 6,. The calculated

critical angle of the joint used for the experimental portion of this work, whose main

characteristics were previously described, is 6., = 5.965°
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2.8 Critical joint angle, when ball tilting is neglected and y = ¢

In most commercial applications, joints will spend most of its life running between
3° and 5°. In some applications, continuous running angles may be as high as 11° but
that is uncommon. Tripode joints are designed to have a critical angle in the range of 5°
to 9°, typically. It was discussed in previous sub-sections the joint angle variation due to
the small variations in input and output displacements. Such joint angle variation
reduces as the nominal joint angle decreases. Figure 2.29 compares the deviation from
nominal angle, in a revolution, at two different nominal angles. The solid line represents
a nominal angle of 23°, maximum deviation is 0.342° or 1.49%. The dashed line

represents a nominal angle of 6°, maximum deviation is 0.022° or 0.37%.

A0 [deg]

Y [rad]

.1....2...3....4 : >

Figure 2.29. Deviation from nominal angle in a revolution at 8, = 23°, 6°
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Figure 2.30 shows the maximum proportional deviation from nominal angle as a
function of nominal angle. It can be observed that the behavior is almost linear and that
even at angles as high as 15° the relative error is still less than 1%. Of course the
maximum deviation will be different for different joint dimensions but magnitude will be
of the same order. In this work a relative error of joint angle variation of less than 1% will
be considered acceptable when predicting critical angle. Therefore, it can be assumed

that y; = ¢;, and consequently 6 =6,, for the purpose of calculating critical joint angle.

Af/6o

0.015

0.010

0.005

_.....|....|....|....|....|00de
5 10 15 20 25 (deg]

Figure 2.30. Maximum proportional deviation from nominal angle vs. 6,

Given the assumption of equal input and output displacements, many of the
equations used to calculate needle roller displacement can be simplified. Let’s start by

defining ¢;1 * as needle displacement and 7; * as angular ball displacement, when

Vi=9;.
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"= N ni " (2.46)

Similarly, &';* and s; * are defined when v, = ¢;,

(2.47)

It was mentioned in the previous section that the effect of ball tilting at low joint

angles could be neglected.

Figure 2.31 shows the difference between Z; and s;, in a revolution, for a joint
angle of 6°, while Figure 2.32 shows the relative error, with respect to s;, of assuming
s; = Z;. The absolute error in arch length displaced is in the order of microns, while the
relative error is less than 0.2%, including joint angle variation (y; # ¢; ). If joint angle

variation is ignored, the relative error becomes 0.37%, at 6° (Figure 2.33).
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Figure 2.31. Difference in arch displacement without and with ball tilting, at 6°

(Z1-s1)/s1
0.0015f
0.0010

0.0005 f
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Figure 2.32. Relative error of ignoring ball tilting, at 6°

Figure 2.33 shows the maximum relative error caused by ignoring ball tilting and

ignoring joint angle fluctuation. It can be observed that the behavior is highly non-linear
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at large angles. However, at low angles the error is in the order of 1% or lower. Such

error will be considered acceptable in this work and it will be assumed that Z; = s; for

the purpose of calculating critical joint angle.

(Z1-s1)/s1

0.10

0.08

0.06

0.04

0.02}
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Figure 2.33. Relative error of arch-length displacement, ignoring tilting, vs. 6,

Once the two main assumptions for a simplified formulation of critical angle have
been established, Egs. (2.10), (2.40), (2.46) and (2.47) can be reduced and
reformulated. Another secondary assumption, nevertheless important, is that initial

stroke ¢, =0 . Therefore,

sji*=Z* = (ZJ(ZCOS w; +(1-cos@)cos3y;)tané, (2.48)

€';* = sign(siny;)- arccos(\/1 —sin? 6, -sin® y; j (2.49)
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n;* = sign(sin t//,)-arccos(\/1 —sin? 0o sin? l//,')

- (2.50)
—m—[EJ(Z cosy; +(1—cos@,)cos(3y;))tanéd,
(o]
i+ d
> = i—d (sign(siny;)- arccos(\/1 —sin? 6o .sin? 1//,-)
(2.51)

~ 2 (2cosy; +(1-cos 8, )cos(3y;))tan 6,)
m o
(0]

Eq. (2.45) represents the simplified formulation for needle roller displacement,
which is valid only at low joint angles, as previously described. Figure 2.34 shows a

comparison between ¢;; and ¢;;* at 23° joint angle. The solid line represents the

needle roller displacement including joint angle fluctuation and ball tilting effect. The

dashed line represents the simplified version.

Eqg. (2.45) can be rewritten as Eq. (2.52) and solved numerically for 6,, using the

same joint parameters.
2721 n =61 * (00, ¥i x|~ |91 * (00 Wi Jin| = 0 (2.52)

Then, the resulting critical angle is 6, *=5.981°
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Figure 2.34. Needle roller displacement, complete vs. simplified solution

Relative error of 6., *, with respect to 6., , is calculated and is found to be equal

to 0.27%. It was mentioned before that this difference will change from joint to joint but
the order of magnitude will be the same. Therefore, Egs. (2.51) and (2.52) will be
considered as fairly good approximations to calculate critical angle. To finalize this
section, it will be made reference to an expression, formerly used by a C/V joint
manufacturer [14], to calculate critical angle in tripode joints. Such expression was

developed considering only one position of y; which was y = 0.

6. '=arctan 27 Mo(t+d) (2.53)
n bed-m;
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Evaluating Eq. (2.53) with previously used joint parameters, it is found that the

critical angle predicted by this expression is 6,' = 7.83°. This represents a

considerable difference with respect to the exact and the approximate solutions derived
in this work. The source of this difference, as previously explained, is the fact that Eq.

(2.53) was derived without considering full joint rotation, which makes it incomplete.
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3. QUASI-STATIC ANALYSIS OF A STROKING TRIPODE JOINT

3.1 Introduction

This section deals with the way internal forces are distributed in a tripode joint.
Forces can be dynamic or static and be influenced by the friction in the system. Many
authors [2-3, 11-15] have dealt with this problem from different perspectives. Small
variations between input and output angular displacements may cause non constant
velocity (CV) behavior in a tripode joint. Such variations were discussed in Section 2.
The reader may refer back to Eq. (2.1) and Figure 2.10. The first major assumption in
this section will be to neglect the small variations between input and output angular
displacements, as well as the joint angle fluctuation caused by them (Figures 2.6 and
2.7), and consider the tripode joint as a true constant velocity (CV) joint. Urbinati and
Pennestri [11] performed a complete dynamic analysis of the tripode joint. They
concluded that in steady state or constant input velocity the effect of joint angle
fluctuation (source of the deviation from constant velocity) on reaction forces inside the

joint can be neglected.

The second major assumption made in this section is relative to inertial forces. In
most commercial applications tripode joints operate at relatively low speeds. Mariot,
K’Nevez and Barbedette [12] verified in their work that for a constant input velocity,

dynamical effects are negligible versus static effects.
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The third major assumption is relative to rolling and sliding friction between
spherical roller and needle rollers on the trunnion. Sliding between spherical roller and
needle rollers occurs when the spherical roller displaces along the trunnion. Serveto,
Mariot and Diaby [13] modeled analytically and numerically (ADAMS model) the
Generated Axial Force (GAF) in tripode joints. GAF is the main generator of shudder
and vibrations in the joint and is a function of internal forces. They concluded that
friction between spherical roller and needle rollers on the trunnion, when the joint is
lubricated, has little influence in GAF and its effect can be neglected. Lee [14] in his
doctoral dissertation measured the sliding friction force between spherical rollers and
needles and found the average to be very close to zero, within a joint revolution, under

quasi-static conditions.

Published studies on GAF [12-14] identify the friction between spherical roller
and ball track as the dominant element in the disturbances generated by the joint.
Friction forces at this contact are also larger than friction forces between spherical roller,
needle rollers and trunnion, by one order of magnitude, even in the absence of

lubricant.

3.2 Normal forces at spider trunnions
Input torque is applied to the tripode at the housing axis. This torque is
transmitted through three loads to the spider. Loads on the spider generate torque at

the spider axis, equal in magnitude to the input torque. If sliding and rolling friction

57



between spherical rollers and trunnions are ignored, it can be assumed that the forces
that generate torque in the spider axis are all located on the spider plane X'-Y', pass
through the center of the spherical roller and are perpendicular to the trunnion axes

(Figure 3.1).

Neglecting inertial effects the analysis can be simplified to a simple static
analysis. Thus, the three equations that define the sum of forces and moments in the

spider plane are:

Py cosy + po cos(y +27/3)+ ps cos(y +4x/3)=0 (3.1)
p1 siny + py sin(y +27/3)+ pg sin(y +47/3)=0 (3.2)
pifi + paro + p3rg =ty (3.3)

Solving Egs. (3.1), (3.2) and (3.3) simultaneously,

t

v
= = =p=—"r 3.4
Pi=Po=pP3=p PR, ( )

Let’s remember that r; can be obtained from Egs. (2.2) and (2.14),

_a(l-cosd)

e=———+ (2.2)
2 coséd
a( (1+cosf) 2(1-cosé)
i =— + cos2y; |=a+ell+2cos22y; 2.14
i 2( cos 0 R Vi ( ‘/f/) ( )
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fori=1,2 3

Then, the sum of r{, r», and r3 can be expressed as,

3 1
n+ro+r3=3@+e)=—a 1+ 3.5
123()2(0030) (3.9)
Therefore,
2 t
P1=P2 =pP3 =p=2—~>"—— (3.6)
o aes)
ai+
cosé

3.3 Normal forces at ball bores

Forces q; are defined to be perpendicular to ball bore axes. Forces p; are
components of forces q; when projected on the spider plane. Wagner [2] derived
expressions to estimate forces g, as a function of torque through graphical methods, for

only two phase angles of the joint (= 0 and w = z/ 2). Orain [15] derived expressions
for a full revolution of the joint, which yield numerical values similar to those obtained
from Wagner’s expressions at v = 0, w = #/ 2 and mirror positions. Lee [14] measured

values of g; and p; in a joint lubricated with grease under quasi-static conditions and
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found them to be very close, where p; behaves like a constant within a revolution and

g; has little fluctuation, following a trend similar to that predicted by Orain [15].

w|N
S|

O
w

Figure 3.1. Forces on spider plane

Experimental data, computer simulations (ADAMS) and analytical formulations
presented by Mariot, Serveto and Diaby [13] for GAF show that the influence of
rotational speed in GAF can be neglected, within the normal operation range in most
commercial applications. GAF is a function of friction and internal loads. The formerly

mentioned authors simplified the analysis at low joint angles by making g; = p; to

develop GAF expressions. The equations used in this work to calculate GAF are
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equivalent to expressions derived by Lee [14], Wagner [2] and Mariot, Serveto and

Diaby [13].
3

GAF =) w; (3.7)
i=1

w; = ipq; sind; sign(sin&; sinw; )+ u,q; sign(siny;) (3.8)

where angle J§; can be obtained from Egs. (2.31) and (2.29), derived in the previous

section,
5,-=7z/2—,u,- (2.31)
COS i =COS @; Sin@ (2.29)

After a break-in period, friction in the joint is assumed to be constant. Therefore,
peak GAF will be proportional to the normal load applied on the ball bore, where the

constants of proportionality are the friction coefficients.

This being said, equations for g; can be developed making sure quasi-static

equilibrium of forces is maintained.

(Q1+Qqz+Q3la=t,=1, (3.9)
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The input torque and the distance between housing axis and ball bore axes are
constants. Therefore, the sum of normal forces acting on housing ball bores is an
invariant. In the position shown in Figure 3.2 the normal force on the ball bore has the

same direction of the normal force on the trunnion. In other words, q; = p; at y; = 0.

Figure 3.2. Rotating coordinate systems and joint orientation when y; = 0

When the joint has rotated 90° and 270°, the relationship between g; and p; can

be represented graphically as shown in Figure 3.3.
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Figure 3.3. Graphical representation of angle € and forces q; and p;

It will be noticed that p; has the same direction that YI.S and g; has the same

direction that YI.H. Therefore, the angle € between p; and q; is equivalent to angle ¢;,

from Eq. (2.39), for i = 1.
Cos¢gj =C0s@sing; siny; +Ccosy, COS @; (2.33)
Since p;is a projection of g;its relationship can be expressed as

g; = pj /COSE; (3.10)
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3.4 Numerical examples and GAF experimental results

Following the process developed in the previous section, a computer program was
written to perform calculations. The code was debugged verifying the outputs with the
numerical results of examples published by Wagner [2] and Orain [15]. Graphics and
numerical values in this section were obtained using the characteristics the tripode joint

used to do the experimental portion of this work. The joint characteristics and torque

applied are:
Nominal BCD = 40.8mm
Shaft length = 300mm

Maximum functional angle

23° (design limit)

Trunnion diameter = 20.97mm

Needle roller diameter = 1.9975mm

Number of needles (n) = 36

Spherical roller outer diameter =  34.942mm

Input torque = 2118Nm (design limit)

Figure 3.4 compares the magnitude of force p; assuming a constant joint angle
(dashed line) and including joint angle variation (solid line). It can be observed that the
frequency is the same as joint angle variation calculated in section two. The maximum
and minimum values in a revolution, at the design limits of the joint, are: pymax =
33,175.3N and pymin = 33,131.2N. The magnitude of the variation, with respect to the
maximum value of p; is 0.13%. This small variation justifies the assumption of

neglecting joint angle fluctuation, as indicated at the beginning of the section.
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Figure 3.4. Magnitude of py with (solid line) and without joint angle variation

Similarly, g4 is calculated and plotted in Figure 3.4 with and without joint angle

variation effects. The maximum and minimum values for each case are,

Q1max (constant joint angle) = 36,040.4N
J1min (constant joint angle) = 33,175.3N
Q1max (joint angle variation) = 36,062.9N

Q1min (Joint angle variation) = 33,175.3N
The relative error associated with ignoring joint angle variation to calculate the

maximum value of gy is 0.06%, at extreme joint conditions. This verifies the assumption

of neglecting joint angle variation and considering the tripode joint as a CV joint through

65



the rest of this work. The reader will also notice that the amplitude of g4 is small with

respect to its medium value, even at maximum joint angle of 23° (Figure 3.5). It must be

considered that at lower joint angles the amplitude to mean value ratio will reduce.

amplitude _ (36062-33175)N/2 _ . .-
mean _value (36,062+33175)N/2

B S —— PP M PP PP P rad
1 2 3 4 5 6  lrad]

Figure 3.5. Magnitude of g4 with (solid line) and without joint angle variation

GAF was measured in joints that have the geometric characteristics of the joint
simulated in this section. The same greases that Lee [5] used in his experiments are

used in this work. Table 3.1 summarizes the main characteristics of the greases.

A total of sixteen tripode joints were tested. Only the average of peak GAF values
(third order components) are reported in this work and compared against the theoretical

calculations using Egs. (3.7) and (3.8). The full set of measurements can be found in
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referenced Nexteer Automotive Test Activities [17]. Such experiments were performed
in a machine specifically designed and created to measure GAF in CV joints. Details of
the machine are not disclosed in this work since they are proprietary to Nexteer

Automotive.

Figures 3.6 and 3.7 show the graphs corresponding to Egs. (3.8) and (3.7). Load

used to generate such figures was 600Nm, at 7.5°, using grease A, with u, = 0.04 and

My =0.001. For grease B uy =0.08 and u, = 0.001. The coefficients of friction used in

this work are slightly lower than coefficients of friction reported by Lee [14]. Hardware
used by Lee to do his experiments was made by manufacturing processes less
accurate than the processes used to make the hardware used for the experimental

portion of this work.

Properties Grease A Grease B
Type PU (polyurea) PU (polyurea)
Performance Low Friction High Durability
NLGI grade 2 2

Base oil Mineral / synthetic Mineral
Viscosity @ 100°C n (mPa-s) 12 12
Representative additives Organo-molybdenum Solid EP*
Color Green Blue

Table 3.1. Properties of CVJ greases. (*) stands for “Extreme Pressure”
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Figure 3.6. Tangential force wq, at 600Nm, 7.5°, grease A

Figures 3.8 and 3.9 compare theoretical calculations against experimental values,
for two levels of torque, two different greases and a set of joint angles that range from

2.5°to 17°.
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Figure 3.7. Generated axial force, at 600Nm, 7.5°, grease A
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It can be observed that theoretical calculations do not match experimental data
perfectly but clearly follow the same trend. The purpose of this work is not to develop an
accurate GAF model, which could be achieved by defining coefficients of friction as
functions of torque and joint angle instead of constants. Such approach was already

used by Lee [5] and is outside of the scope of this work.

GAF, Tripode @ 300Nm, 200rpm
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Figure 3.8. Generated axial force, at 300N, experimental vs. theoretical values

The purpose of comparing theoretical GAF calculations against real experimental

data is to justify the validity of the assumptions described at the beginning of this section
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to calculate normal loads on trunnions. Such loads will be the basis to estimate load
distribution at the contacts between needle rollers and trunnion and determine the state

of stress, in the next sections.

GAF, Tripode @ 600Nm, 200rpm
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Figure 3.9. Generated axial force, at 600N, experimental vs. theoretical values

70



4. LOAD DISTRIBUTION ON A TRUNNION

4.1 Introduction

This section deals with the way contact forces are distributed on trunnions of a
tripode joint. Three areas in the joint where mating surfaces are subjected to contact
forces are:

a) Contact between spherical roller and ball bore in the housing

b) Contact between needle rollers and spherical roller (ball)

c) Contact between needle rollers and trunnion

Typically, the contact region to present the first signs of wear is the contact area
between trunnion and needle rollers. Countless validation tests of different sizes of
joints throughout the past 30 years at Nexteer Automotive support the statement. This is
the reason to consider that the wear life of a tripode joint will be defined by the wear
performance of trunnion surface. It is possible for needles to wear first. However, this

condition occurs rarely in tripode joints.

Methods used to analyze roller bearings will be employed to study load
distribution in spider trunnions. The following assumptions are made:
a) Needle rollers and trunnions are made of steel, similar elastic properties and

homogeneous material.
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b) Unless otherwise indicated, it is assumed in this section that plastic
deformation doesn’t occur at the contacts.
c) Unless otherwise indicated, residual stresses are assumed to be zero in this

section.

4.2 Normal load distribution on needles (axial direction)

The forces transmitted from housing to spider are shown to be normal to the
trunnion axis in Section 3. The spherical roller rotates and slides with respect to the
trunnion. The spider assembly can be treated as a set of three roller bearings, where
the trunnions function as inner races, the needles are equivalent to simple cylindrical

rollers and the spherical rollers or balls function as outer races, one per roller bearing.

In traditional roller bearings the rollers are fully supported in both inner and outer
races. This is not the case in a tripode joint, where needles are not fully supported on
the sphericall roller with axial relative motion between them. Three main load cases are
identified, as shown schematically in Figures 4.1, 4.2a and 4.2b. It must be noted that,
for the sake of clarity, the sketches represent only one needle and the concentrated

force pj; is the equivalent concentrated force acting on that particular needle and not

the total force acting between spherical roller and ball bore.
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Figure 4.1. Case 1: Spherical roller fully supported, no offset

Figure 4.1 depicts Case 1, which is the ideal case. The equator of the spherical
roller is aligned with the transversal plane of symmetry of the needles. Since there is no
offset between such planes, the load transmitted by the needles can be considered
uniformly distributed along the effective contact length. Figure 2.14 was presented to
show radial position of the spherical roller center from the spider center, measured
along the trunnion axis. Case 1 will occur at one radial position. Typically, this position

will be r; = a. The reader is reminded that a = BCD/ 2. Solving Eq. (2.17) for rj = a, it is

found that Case 1 will occur four times per joint revolution.
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Figure 4.2a. Case 2: Positive offset (A)

Figure 4.2b. Case 3: Negative offset (—A)
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Figure 4.2a and Figure 4.2b depict Case 2 and Case 3, respectively, which occur
twice per revolution. Case 2 represents the condition where the ball spends more time
in a joint revolution. Offset A; is a direct function of ball axial displacement. Therefore, it

can be expressed as,

Aj = Ag +f; = Ay +e(1+2c0s2y) (4.1)

fori=1,2 3

where A, is the offset at zero degree joint angle. In other words, A, is an initial
condition. The ends of the needle rollers have the clearance ©,, with respect to roller

retainer and ring spacer, which allows some additional axial motion of the needles with
respect to the trunnion. This motion is very small if compared to the length of the needle
but not very small if compared to the ball displacement at low angles. It will be assumed
that the coefficient of friction between needle and ball is larger than the coefficient of
friction between needle and trunnion. Therefore, the needle will displace together with
the ball while there is clearance between the top end of the needle and the roller
retainer in one direction, and the low end of the needle and the ring spacer in the
opposite direction. Once the clearance becomes zero, the needle will stop displacing

and the ball will continue its motion. This is shown graphically in Figure 4.3.
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Figure 4.3. Clearance between needle, roller-retainer and spacer ring

Such displacement can be considered as a lash that allows the needles to oscillate
to the same frequency of the ball axial displacement, twice per revolution. Thus, the

following piecewise function is defined to take into account needle axial displacement,

3e>—2;0<y;<=; r<y; <3?7[
@i:_%; fl._39+&<_&
2 2 2
@,-=f,-—3e+%; f,—3e+&_—&
2 2 2
O . :
Be>?, —Syi<m,—<y;<2x
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o,
O =—2+g;
i S

8,-=f,-+e—%+g;

c=0,-4e;

fori=1,2 3

f,-+e—@° > %
2 2
f,+e——osﬂ
2

4e< @, <be

(4.2)

Using the same joint characteristics employed in Section 2 and Section 3,

Expression (4.2) is plotted for two different joint angles, 6° and 23°, for a nominal value

O, = 0.452mm.

®1 [mm]

0.15}
0.10}
0.05}

0.00 }

Figure 4.4a. Needle axial displacement at 6° joint angle
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Figure 4.4a shows that the loaded needles follow the same axial motion of the ball.

Amplitude of the motion is less than the clearance @,. Therefore, it is expected that

the motion of the needles will not be limited by lack of the clearance. On the other hand,
Figure 4.4b shows the truncation of the amplitude of axial motion of needles beyond the

clearance @,. This clearly indicates that the needle displacement will be limited by the

contact between roller retainer and spacer ring during a revolution.

®1 [mm]

0.2'5\ _\ _

0.1}

0.0}

-0.1}

ol

" 2....3. . 5.

i

...6l..¢[rad]

Figure 4.4b. Needle axial displacement at 23° joint angle
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..6|..¢[rad]

Figure 4.5. Offset between ball equator and needles symmetry plane

Then, Eq. (4.1) can be re-written by adding a term for needle motion, resulting in

Eq. (4.3). Itis plotted in Figure 4.5, for A, =—-0.206mm.

Aj =Ag +1; =0 = Ay +e(1+2cos2y;)-6; (4.3)

fori=1,2 3
Once the offset between ball and needles has been defined, the analysis can

continue to estimate load distribution on needles. Average loads per unit of length in ball

and trunnion, are respectively,

pi
i=0 4.4
Pbmij ch (4.4)
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Crowning of needle rollers used in tripode joints is very small and its effect will be

neglected in this section. Effective contact length between needle and trunnion ¢; is a
constant, while the effective contact length between needle and ball ¢ is a function of

offset A; and is defined by Eq. (4.6) through Eq. (4.8). The relationship is plotted in

Figure 4.6,

Cb = Cbu + Chd (4.6)
Cbu = Chuo % —(cpyo +4;)=0

Chu =%— i %_(Cbuo +4;)<0 (4.7)
Chd = Chdo % —(Cpgo —A;)=0

Chba :%"‘Ai %—(deo - 4;)<0 (4.8)
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Figure 4.6. Effective contact length between needle roller and ball, at 23°

Orain’s [15] assumption of linear load distribution will be considered in this section
and moments trying to rotate the ball in any direction perpendicular to trunnion axis will
be neglected. Therefore, the equivalent concentrated force applied on the ball will be
collinear with the equivalent concentrated reacting force on the trunnion. Under these
conditions, the following relationship can be established for the load distribution

between needle and ball,

Pbuij + Pbdij
Cp —2

] = PbmijCb = Pjj (4.9)

Simplifying,

Pbdij = 2Pbmij — Pbuij (4.10)
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The following paragraphs will describe the load distribution at the contact between

needle roller and ball for the three cases previously identified.

Case 1 occurs when ppjj = Ppgijj - If the ball is symmetric, ¢, = Cpyo + Cpgo -

Case 2 occurs when offset A; is positive. Then, summing the moments with respect to

point BD,
Cp ( )Cb 2
PijCbdo ~ PbdijCb| - |~ \Pbuij = Pbdij |7 | 5 Cb =0 (4.11)
Simplifying,
2 2
PiChdo — PbuiiCp  PbdiiCp -0 (4.12)

3 6

Case 3 occurs when offset 4; is negative. Then, doing sum of moments with respect to

point BU,

(gcbjzo (4.13)

Cp ( )Cb
~ PiiCbuo t PbuijCb| = |+ \Pbdij — Pbuij |~ 3

2 2

Simplifying,
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2 2
P Pol% g (4.14)

—PiiCbuo

Equations (4.10) and (4.12) can be solved simultaneously to obtain py,; and

Ppdij for Case 2,

6jiCha
Pbuij = # = 2Pbmij (4.15)
p
6PjjChal
Pbdij = 4Pbmij —00—20 (4.16)

b

When pgj <0, the above solution is no longer valid since ppg; can not be

negative. Additionally, such condition is not desired during the operation of the joint

since the load would be concentrated on a very small area. Thus, making ppgjj =0 in
Eqg. (4.16) and solving for ¢, it can be found the minimum contact length required for

ball support when Case 2 is present.

I3Pijcbdo 3
Chmin = | —2 "2 =" 417
bmin 2Pbmij 2 bdo ( )

Using Egs. (4.6), (4.7) and (4.8), the effective contact length between needle and

ball for Case 2 can be expressed as,
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Cp=—L—A; +Cpyo (4.18)

From Egs. (4.1), (2.2) and (2.18), it is known that A; is a function of joint angle and
reaches its maximum value when phase angle y; equals zero or z. The formerly
mentioned equations are combined with Eqgs. (4.17) and (4.18), where c¢p = Cpmin and
®; =0. Such conditions are equivalent to assume the needle does not displace axially

(which is the worst possible condition). Then, it can be solved for the maximum joint

angle where the full contact between needle and spherical roller exists, when offset A;

is positive,

3a
3a—-2A, —Cpgo + Ct

COSO, A+ = (4.19)

The dimensions of the joint used for the experimental portion of this work are used

to evaluate Eq. (4.19) and Hbcr/H = 23.56°.

Similarly, Egs. (4.10) and (4.14) can be solved simultaneously to obtain Ppuij and

Prij for Case 3,

6 2 o
Pbuij = —2(— PijCbuo + 5 Cbpbmijj (4.20)
)
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6 2 o
Pbdij = 2Pbmij —0—2(— PjjCbuo +§Cbpbmijj (4.21)
b

When ppyji <0, the above solution is no longer valid since pp,; cannot be

negative. Additionally, similar to Case 2, such condition is not desired during the
operation of the joint since load would be concentrated on a very small area. Thus,

making ppyjj =0 in EQ. (4.20) and solving for ¢, it can be found the minimum contact

length required for ball support when Case 3 is present.

ISPIijuo 3
bmin 2pb i 2 buo ( )

If the ball is symmetrical, cp,o =Cpgo, and Eq. (4.17) equals Eq. (4.22). Using

Egs. (4.6), (4.7) and (4.8), the effective contact length between needle and ball for Case

3, can be expressed as,
Ct

Cp =?+A,- + Chuo (4.23)
Similar to Case 2, Egs. (4.22), (4.23), (4.1), (2.2) and (2.18) are combined for y; =

7l 2, Cp=Cpmin and O; =0. Then, it can be solved for the maximum joint angle, where

full contact between needle and spherical roller exists, when offset A; is negative,
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a

cosé _= 4.24
bor®™ T a4 2/, — Cpyo + Ct (4.24)

Evaluating Eq. (4.24) numerically, ebcr/“ =35.77°.

Load distribution at the contact between needle and ball has been obtained, as
well as the joint angles where the assumption of linear load distribution stops being
valid. Now the analysis will be done for the load distribution between needle and

trunnion, following the same assumptions.

Ptuij + Pidij
ct (#} = PmiCt = Pj (4.25)
Simplifying,
Ptdij = 2Ptmij — Ptuij (4.26)

Case 1 occurs when pyjj = pygjj and A; =0

Case 2 occurs when offset A; is positive. Then, doing sum of moments with respect to

point TD,

Ct Ct Ct(2_ )_
piji (? + Aij — Piaij Ct (?j - (Ptuij ~ Prdij )? (5 Ctj =0 (4.27)
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Simplifying,

2 2
Ct PtuijC¢  PtdijCy
jl 5t A |- - =0 4.28
P ”(2 ’j 3 6 (4.28)

Case 3 occurs when offset 4; is negative. Then, doing sum of moments with respect to

point TU,

(o (o) ci (2
—Pjj (?t — 4 j + Ptuij Ct (éj + (ptdij = Ptuij )?t (5 Ctj =0 (4.29)
Simplifying,
2 2
Ct PwijC+  PtdijCt
—Pj| % A | F + =0 4.30
P ”(2 ’J 6 3 (4.30)

Equations (4.26) and (4.28) can be solved simultaneously to obtain Ptuij and Pdij

for Case 2,

6pjj (¢
Ptuij =C—2j(?t+/1ij—2ptmij (4.31)
t
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Ptdij = 4Ptmij —0—2”(?’#/1,} (4.32)
t

When pyy; <0, the above solution is no longer valid since pq; cannot be

negative. Additionally, such condition is not desired during the operation of the joint

since load would be concentrated on a very small area. Thus, making pg; =0 in Eq.

(4.32) and solving for A; it can be found the maximum offset allowed to have full needle

support when Case 2 is present.

2
2pimiiC
_ “PmiC e _ Cr (4.33)

Combining Egs. (4.1), (2.2) and (2.18) with Eq. (4.33), when y; =0, A; :AcrAJr

and @; =0 and solving for joint angle,

3a

CoSO 44 = (4.34)

3a-24,+t
3

The dimensions of the joint used for the experimental portion of this work are used

to evaluate Eq. (4.34) and Htcr/H =19.47°.
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Similarly, Egs. (4.26) and (4.30) can be solved simultaneously to obtain Ptujj and

Pyqij for Case 3,

6 c 2
Ptuij :_2(_ pij(?t_/lij"‘gctzptmij) (4.35)
Ct
6 c 2
Ptaij = 2Ptmij ——2[— pjj (?t —A/j +§Ct2ptmijj (4.36)
(o

t

When py,;; <0 the above solution is no longer valid since py,; cannot be

negative. Additionally, similar to Case 2, such condition is not desired during the
operation of the joint since the load would be concentrated on a very small area. Thus,

making py,;j =0 in Eq. (4.35) and solving for A;, it can be found that the maximum

offset is allowed to have full needle support when Case 3 is present.

2Pyt C2
A 4 :_MJrﬁ:_ﬁ (4.37)
or 3p; 2 6

Similar to Case 2, Egs. (4.37), (4.1), (2.2) and (2.18), are combined for y; = 7/ 2,

Aj = AcrA+ and @; =0. Then, it can be solved for the maximum joint angle with the full

contact between needle and trunnion when the offset A; is negative,
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cosf,  ,_ =2 (4.38)
r c
a+2A4,+ 3

and

‘9cr/1 - mm(‘gbcr/“r ’HbcrA_ "9t‘crAJr ’ebcrA_ ) (4.39)

Evaluating Eq. (4.38) numerically, HtcrA_ = 28.84°. The lowest critical angle for
the joint used in this work is etcr/” =19.47° = HcrA . To illustrate this, loads per unit

length py,;; and py,;; are plotted for p;, which is assumed to be 1000N, &, =0 and

6, = 19.5° as shown in Figure 4.7 and Figure 4.8.

ptu [N/mm]
200

150]

100]

M R d
p Y [rad]

Figure 4.7. Load per unit length at upper end of needle, at 19.5°
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ptd [N/mm)]
150

100}

50}

Figure 4.8. Load per unit length at lower end of needle, at 19.5°

Figure 4.8 shows that the load at the lower end of the needle gets slightly below

zero, verifying the formulation of the critical angles. Initial joint offset A, may be

obtained from the geometry of the joint,

O, b
Ag=a- (espider + Cspacer +7O +%d/ej (4.40)
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Figure 4.9. Spider Geometry

4.3 Normal load distribution on needles (radial direction)

In most roller bearings, the outer race is fully supported along its perimeter. In a
tripode joint the outer perimeter of the spherical rollers is supported at only one contact
point in its matching ball bore. This difference in boundary conditions changes the load
distribution among needles due to the flexibility of the spherical roller (outer race). Harris
[18] studied load distributions in bearings loaded at two points, used in planetary gears,
Filleti and Rumbarger [19] also studied the case of a bearing supported at two points,
collecting experimental data to verify their theoretical results, Papadopoulos [20] studied
the load distribution in a roller bearing by experimental methods and Zhao [21] by finite

element methods.
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This work will apply the method developed by Harris [18] to estimate the radial
load distribution on a trunnion. The main advantage of this method is its compactness
and the ability to be easily incorporated into the program written to calculate kinematic
and quasi-static variables in previous sections. The main disadvantage of the method is
the assumption of considering outer races (balls in our case) as “thin rings” to calculate
deflections. This assumption makes the method inaccurate when dealing with balls that
are “thick rings”. Ugural and Fenster [22] consider that for curved beams in which the
depth of the member is small relative to the radius of curvature, strain energy due to the
bending can be approximated by that of a straight beam. Then, the deflections in a “thin
ring” can be calculated under this assumption. The ratio used by Ugural and Fenster is

given by,

“b sy (4.41)

and the formulation in this section will apply only to joints with the balls that meet this
condition. Before proceeding to describe the method used to calculate the load
distribution on the trunnion, the properties of the area defined by the radial cross section
of the ball will be determined (Figure 4.10). The small chamfers cut in the ball to avoid
sharp corners will be neglected for the purposes of calculating areas and second

moments of area. The specifications of the geometry in Figure 4.10 are the following,
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Figure 4.10. Cross section of spherical roller

Figure 4.11 shows schematically the loading on the spherical roller. Following the
Harris’ approach, only one half of the ball is analyzed due to the symmetry condition.
Superposition is used in conjunction with the method of influence coefficients to

calculate the radial deflections of the ball. The influence coefficient method implies,

py Qu=pCuvPy (4.53)

where, py Au is the deflection at angle (position) ¢, due to the load p, and pC,, is the
influence coefficient. Similarly, the deflections q4y experienced by the ring at angle ¢,

due to the external load g; applied to the ball can be obtained from Eq. (4.54).
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04u=qCudi (4.54)

Figure 4.11. Schematic view of loads

The influence coefficients published by Harris [18] that can be applied to the

tripode problem are given by Egs. (4.55) and (4.56).

2R
pCuv = ——b COS( cos (m¢,) (4.55)
TEy Ipxx oo ( _1)2
2R3 e
C, = b cos(me¢ (4.56)
b B )

Using the principle of superposition, the radial deflection of the ring at angle ¢,

can be obtained from Eq. (4.57),
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Ay=q4y + Z py u=qCuqi + Z pCuvPy (4.57)
v v

It is assumed that the center of the trunnion will remain in its original position after
applying the load to the ball. Therefore, due to the contact deformations and clearance

in the trunnion-needle-ball assembly, the center of the ball will displace a distance dy,
as shown in Figure 4.11. Thus, the relative radial approach &, between ball and

trunnion at angle ¢, can be obtained from Eq. (4.58),

8, = 6pcos(gy )+un +Z py Au =%p+q Cuai +Z pCuv Py (4.58)
v v

For the roller compressed between raceways Palmgren [18] gives the following

equation,
py = kva”f (4.59)

where k, is a material constant defined for this work, based on Palgrems’s

approach, using effective contact lengths at trunnion and ball, as,

nr

K, = 1 (4.60)

P ke VP (17 k)
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kpt =7.86x10%¢c8/9 (4.61)

kpp =7.86x104c3/9 (4.62)

Deformation v, is the difference between the relative radial approach J,, and
actual clearance between the trunnion and ball at angle ¢,,. Therefore, the load at the

needle roller with index v can be expressed as,

nr
pvzkp(éu —%(m,-—Zd—t)—Q,,j ; (5u—%(m,-—2d—t)—.(2vj>0
p, =0; [5U—%(m,-—2d—t)—gvjso (4.63)
The assumption is that the first roller position of the n needle rollers is right at the

plane of symmetry of the trunnion. This needle roller is assigned the index v = 2. Thus,

angle ¢, is defined as,

'y =277[(v—2+F0) (4.64)

where I, =0 if the first roller is at the plane of symmetry. Otherwise, I, = 0.5.

Similarly,
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n
==
n

¢, =—(v-2+1},) (4.65)

The upper limit for both v and vis,
n
= FIoor(§+2—Foj (4.66)

So far only the displacements and deformations have been defined. Equilibrium of
forces must be satisfied in the problem. Therefore, sum of forces on the trunnion must

equal zero.

I
Z I, py cosg, )= (4.67)

where I, = 0.5 for ¢, = 0. Otherwise, 7, = 1. Then, we have a set of " equations

that is obtained combining and simplifying Egs. (4.53) through (4.67). This set of

equations can be solved simultaneously for §; and 0> through &, using a numerical

method. Once the relative radial approaches have been determined the load at each

trunnion can be obtained from Eq. (4.63).
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4.4 Numerical examples of load distribution on trunnions

The equations to calculate load distribution on the trunnion were programmed and
incorporated to the computer program developed and presented in Sections 2 and 3.
The dimensions of the tripode used to generate numerical values in the previous
sections (2 and 3) are used in this section as well. The computer program developed
allows the calculation of load distribution at any joint angle. To show the effect of
applied torque on load distribution and number of loaded needles, the tripode joint is
analyzed at a joint angle of 2° and at a rotational position of 0°. A perfect round trunnion
is assumed and the load distribution is calculated for different levels of applied torque.
Table 4.1 summarizes the loads, reported in Newtons, on each needle roller versus

percentage of yield torque (first row).

Py 100% 75% 50% 25% 10%
0° 7211 5302 3591 1810 763
10° 6233 4673 3124 1586 673
20° 4222 3189 2153 1112 471
30° 2479 1890 1287 665 251
40° 1298 990 658 303 35
50° 571 408 215 8 0
60° 168 o1 0 0 0
70° 0 0 0 0 0

Table 4.1. Load distribution (N) at different proportions of yield torque
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Figure 4.12 shows a graphical representation of the load distribution at 50% (solid
line) and 25% (dashed line) of the nominal yield torque in the joint. The reader will
notice that when a higher torque is applied more needles will be loaded. Ideally, a round
trunnion is “round” but in reality most trunnions have some type of lobing or waviness
occurred during the manufacturing processes. In center-less grinding processes the
trunnions tend to be tri-lobal or penta-lobal. The small deviations from the basic circle
that generate the lobes in the trunnion are in the order or microns and can only be
checked with specialized equipment. In later sections actual measurements of parts will
be shown. The lobing in the trunnion will cause needles that roll at the peaks of the

undulations to be more heavily loaded than those that roll at the valleys.

25% vyield
00053 S 50% yield

A X
by T
,: 9 — ‘é‘ \ Py-max
s &
yv‘ ‘€I.I :

O 669/"/‘

™ L\,
L X 1.1‘1"' /‘./‘

Figure 4.12. Load distribution at 25% and 50% of yield torque

For a single harmonic causing lobing in the trunnion the function that defines the

deviation from the basic circle can be written as,
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2, = 2,cos(h,d,) (4.68)

With more than one frequency, amplitude and phase that need to be considered to
estimate the undulations in the trunnion, Eq. (4.68) can be expanded to Eq. (4.69) and

be substituted in Eq. (4.63).

2, = i(gw Cos(hw¢v ))+ i(gw Sir‘(hw(bv )) (4.69)

Figure 4.13 shows a comparison of load distribution at 50% of yield torque
between a perfect circular trunnion (solid line) and a penta-lobed trunnion (dashed line),
roundness error is in the order of 0.010mm. The shape of the penta-lobed trunnion

(phantom line) has been exaggerated for clarity purposes.
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Figure 4.13. Load distribution at 50% of yield torque, perfect vs. lobed trunnion
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It can be observed that even though the load in some of the needles is lower due
to the pentagon shape the central needle will be more heavily loaded than those in the
circular case. This difference in the load magnitude will increase the contact stresses
and reduce the wear life of the part. The contact stresses and estimated fatigue life will

be studied in subsequent sections of this work.

The shape of the trunnion can also be made different from a perfect circle to have
a better load distribution and/or to reduce the highest load in the distribution. “Elliptical-
like” shapes have been used by Harris [18] in roller bearings and Orain in tripode joints
[15]. Such “elliptical” shapes may not match the mathematical definition of an ellipse but

“elliptical” is a generic name that has been used in industry.

Figure 4.14 shows a comparison at 50% of yield torque between a perfect circular
trunnion (solid line) and a perfect elliptical trunnion (dashed line), where the difference
between the semi-major axis and the semi-minor axis is 0.031mm. The minor axis is
parallel to the spider axis. The radial deviations of the ellipse with respect to its
minimum circumscribed circle are given by Eq. (4.70). It can be combined with Eq.
(4.69) to form Eq. (4.71) and take into account the shape of the ellipse and its waviness
due to manufacturing. Then, Eq. (4.71) can be substituted in Eq. (4.63) to calculate the

load distribution on the trunnion.
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t /4 2 1 . /4 2
QV:_E 1- cos(¢v+5j +—23|n(¢v+zj (4.70)

(4.71)

Variable e; is the elliptical ratio of the trunnion, defined as the ratio of the major to
the minor axis. More terms could be added to Eq. (4.71) and virtually any possible

trunnion shape could be analyzed.

elliptical
<Y ¥ 7 e
“:’,.A.AQ ‘:a k’\v" round
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Figure 4.14. Load distribution at 50% of yield torque, circular vs. elliptical trunnion
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4.5 Making trunnion load distribution a function of joint angle

After finding out how loads are distributed in a tripode joint it is necessary to relate
them to the displacements of the internal components, caused by the rotation of the
joint at angle, in order to estimate the fatigue cycles. It is assumed that the load profile
on a trunnion, such as that shown in Figure 4.12, will change as a function of the normal
load between ball and ball bore. The instantaneous position of the rollers may also
affect the load distribution when they are not symmetrically positioned. However, the
variation in load distribution profile due to non-symmetrical conditions is assumed to be
small and will be neglected. The loads when the rollers are located at non-symmetrical
positions will be obtained interpolating within the load distribution profile obtained from
the symmetrical case. Observation of tripode joints tested in the Nexteer Automotive
validation labs suggests wear tends to start at the intersection of the trunnion surface
and spider plane, which is the region where a roller will see the highest possible loads
and more fatigue cycles. The reader may refer to Figure 4.15 which shows an example

of initial wear in a spider trunnion [23].

Figure 4.15. Example of initial wear in a trunnion
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It is necessary to define the position of a roller with respect to the plane of

symmetry of the load distribution. This position is defined by angle y;;, which can be

obtained from Eq. 4.72 and is shown in Figure 4.16.

Xij = 0jj — i (4.72)

where iis the trunnion index and j is the needle index

Figure 4.16. Position of roller within load profile
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Once g is known, the load acting on a roller at any position within the load profile

may be calculated from Eqgs. (4.73) and (4.74). Eq. (4.73) is an interpolation function

that uses positions ¢, and loads p, . calculated from Eqgs. (4.63) and (4.64), as data

points.

¥ = Interpolation[{{@, , py },-.-.{¢r» pr}] (4.73)

wherev=2,3, ..., I"

pj ="¥lxil (4.74)

X ldeg]
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1 2 3 4 5 s Vlrad

Figure 4.17. Roller position with respect to symmetry plane of loading profile
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The angle xq11, obtained using Eq. (4.72), is plotted in Figure 4.17 at 23°
(continuous line) and 6° (dashed line). The reader is asked to remember that the
calculated critical angle in Section 2 was very close to 6°. That is why the peak-valley

amplitude of yq1 at 6° is very similar to the needle spacing 360° / n, where n = 36.

Figure 4.18 shows the load profile at a joint angle of 6° and zero angular
displacement y, when an input torque of 1059Nm is applied. Eqgs. (4.73) and (4.74)
were used to obtain the load profile. The type of interpolation chosen is a third order

type.

s a2 a2 01 a2 a2 a2 3 d
Y T A T TR (e

Figure 4.18. Load profile at joint angle of 6°
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5. STATE OF STRESS AT THE ROLLER-TRUNNION CONTACT

5.1 Introduction

This section deals with the state of stress at the roller-trunnion contact. The first
introductory part of this section explains the state of stress using a Hertzian formulation
for line contacts. In the second part, the contact stress problem is solved using a
numerical technique based on the Boussinesq solution for point loads. The following
assumptions are made:

a) The yield limit of the material is not exceeded. In other words, all deformation

occurs in the elastic range.

b) Loading is perpendicular to the surface.

The contact area dimensions are small compared to the radii of curvature of the
roller and trunnion. In the third part of this section it is studied the effects of needle roller
crowning and the stress distribution when the applied load is non-symmetrical. In the

fourth part sub-surface stress calculations are described.

In Section 4 it was stated that the contact region to show the first signs of wear is
the contact between trunnion and needle rollers. Contact stresses between balls and
needle rollers and pressure distribution between balls and housing ball bores are not

studied in this work.
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5.2 Hertizan formulation for line (cylindrical) contacts
The Hertz solution to a general contact problem is not discussed here. The
reader is referred to contact stress and elasticity books such as those written by Ugural

[22] and Johnson [24].

A line contact exists, as its name clearly states, when the contact between two
bodies is along a line and not at a single point. Line contact is an ideal condition where
two bodies of cylindrical shape are in contact and have the same length. A schematic
representation of a line contact is shown in Figure 5.1. The area of contact is a narrow

rectangle of width 2b, and length /5. Pressure distribution is elliptical. The half width
by is given by Eq. (5.1), the elliptical pressure distribution o, is given by Eq. (5.2) and

the maximum pressure opmax IS given by Eq. (5.3) [18].

b, = | 4P -v2)Ey, +l1-v2)Ey 5.1
Ih7 1/d+1/t
2
2 ;
op=—PI_ 1 [ X (5.2)
bh/hﬂ' bh
O hmax :Wflyjﬂ' (5.3)

In this work it is assumed that the Poisson’s ratio of steel is 0.3. Both needle roller and

spider are made of steel. Therefore, Eq. (5.1) can be simplified to,
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Pi_at (5.4)

bp =1.522267

IhEY ad+t

Figure 5.1. Ideal cylindrical contact

Experimental evidence in roller bearings [18] suggests that surface fatigue is
originated at points below the stressed surface. Experimental evidence shows that CV
joints operating under normal conditions will fail due to sub-surface fatigue (also named
“spalling”) [25]. Therefore, it is of interest in this work to know the state of stress in the
contact region below the surface. Egs. (5.5) through (5.11) define the sub-surface stress

components [24], along the Z-axis, shown in Figure 5.1.
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Ohx = ~0hmax - 2% bZJ (5.5)

2
z z

Ohy = 2VSO'hmaX{ 1+(b—hJ - E (56)

(o}
Ohy = _LXZ (5.7)

1+(Zj

bn

Om =O0hy 0<z<0.436bp (5.8)
On =Ohx zZ> 0.436bh (5.9)
Opn3 =0Oh7 (510)
h :Lzam (5.11)

The stress components and the maximum principal shear are plotted and shown in
Figure 5.2, where the continuous line represents principal shear, the small-dashed line

represents oy, , the medium-dashed line represents o,y and the large-dashed line
represents op, . It is noted that the principal stress oy = oy, changes to oy =opy at

z=0.436by,. The peak value of the maximum shear occurs at z=0.786b, with a value
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Figure 5.2. Subsurface stresses along the plane of symmetry of the contact

Hertz provided an analytical solution for the load-deflection relationship of a point
contact but not for a line contact. Others have established load-deflection relationships
based on some experiments. Teutsch and Sauer [26] compiled and compared most of
the published load-deflection relationships for rollers in contact. The contact roller to
trunnion in this work is equivalent to the contact between a roller and an inner race.
Teutsch found that Palmgren’s relationship for a roller to inner race contact has
deviated somewhat with respect to more modern and sophisticated relationships. The
main advantage of Palmgren’s load-deflection relationship is its closed form and

simplicity. It is described as Eq. (5.12).

0.9

_a8ax10-5 i (5.12)
O(U =0. X 00.8 .
t
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5.3 Non-Hertizan formulation for line (cylindrical) contacts

Several authors, Conry and Seireg [27], Singh and Paul [28], Oh and Trachman
[29] and Hartnett [30], have tried to solve Non-Hertzian contact problems using
numerical techniques based on the Boussinesq solution for a concentrated load, applied
normally to a homogeneous elastic space. Other authors, Harris [18] and Teutsch and
Sauer [26], have tried to solve the pressure and force distribution in line contacts using

slicing techniques.

The numerical solution published by Hartnett [30] has the advantage of being
three dimensional. This solution divides the contact regions in rectangles and
superposition can be used to calculate sub-surface stresses. Hartnett’'s method was
programmed and its convergence was verified in this work with a relatively simple
problem: Contact of a sphere on a plane. The validity of Hartnett’s numerical solution to

line contact problems has been verified experimentally by Hartnett and Kannel [31].

The contact of two elastic bodies is shown in Figure 5.3. The origin of the
coordinate system is located at the first point of contact. If two arbitrary points are

brought into contact by the displacement « of body 1 to body 2, the displacements v4
and v», and the initial separations z; and z, of the points inside the contact region,

can be described by Eq. (5.13), and by Eq. (5.14) outside of the contact region.

Vi+Vo+Z4+ 20 = (5.13)
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Vi+Vo+2i+20 2 (5.14)

Figure 5.3. Two bodies in contact

If the area of contact is divided in r rectangles and it is assumed that each

rectangle has a uniform pressure s, , then, the sum of pressures times the area of the

rectangular element equals the applied load pj;. This is expressed as Eq. (5.15), where

the product 4ab is the area of a single rectangular element.

,
4aby s, = pj (5.15)

n=1
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It is assumed that negative pressures may not occur on the contact surface.

Therefore,

S, >0 (5.16)

The pressure s, on an element n will cause a deflection at the element n and a

deflection at an element m in the contact region and vice versa. Then, using

superposition, the total displacement at an element m s given by Eq. (5.17).

r

anfmn =0—=Z1m —22m (5.17)
n=1

and the influence coefficients f,, are given by Eq. (5.18), which comes from integrating

the Boussinesq solution for a normal point load.
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(y—a)+\/(Y—a)2 +(X+b)2
(s o) ool +aP + (e b |
(x=)+(y +a)° +(x—bP (5.18)
(x—b)In (y_a)+\/(y—a)2+(x_b)2 )
(Y+a)+\/(y+a)2+(x_b)2
(x=b)+(y—aP +(x—b)
(y-a)in
(x+b)++(y—a)? +(x+ b

where x is a material constant, given by Eq. (5.19), when the contacting bodies are

made of the same material.

Kzzﬁ—vg) (5.19)

Thus, the problem consists of solving the set of linear equations, given by Eq.

(5.15) and Eq. (5.17), constrained by Eqg. (5.16), for & and s,. A combination of the

Newton-Raphson and the Gauss-Seidel methods is used in this work to solve the set of

equations.

A sphere-plane contact was evaluated and compared to the exact solution to

debug the code. The radius of the sphere is 10mm and the applied load is 100N. It was
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assumed both contacting bodies are made of steel. The exact solutions for contact

patch radius, maximum stress and displacement are [32]:

1
apall = 0-881(22_%? (5.20)
1
E$W 3
Opalimax =0-616 41y (5.21)
a
1
2 )3
gy =1.55( —5— (5.22)
2Ey pall

where, w is the applied load at the contact. Using Eq. (5.20) it is found that the radius of
the contact patch is 0.1873mm. Therefore, a rectangular mesh of 0.4mm x 0.4mm was
used. When it is not possible to obtain an initial approximation of the size of the contact
patch, a coarse mesh can be used to get a rough estimate of the size of the contact
area. Then, the mesh can be refined. Table 5.1 shows the convergence of the
approximate solution as the number of elements is increased and compares to the

exact solution.
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Mesh | oy max [MPa] | @pgy [Mmm]
3x3 1443.7 0.003431
5x5 1367.4 0.003463
7x7 1366.3 0.003486
9x9 1366.5 0.003499
11 x 11 1364.7 0.003500
15x 15 1364.4 0.003505
41 x 41 1362.4 0.003505
Exact 1362.3 0.003504

Table 5.1. Convergence of maximum pressure and deflection

The reader may observe that with a relatively small number of elements a good

approximation may be obtained.

Figure 5.4. Pressure distribution in a sphere-plane contact
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Figure 5.4 shows the pressure distribution in the contact, calculated using a 41 x
41 mesh. Once the program has been verified it can be proceeded to analyze the roller

to trunnion contact.

In Section 4 it was found that the load on a needle roller varies within one
revolution of the tripode joint. It was also found that the applied load is not always
symmetrical. This section deals with the contact problem only. Therefore, an arbitrary
load and an arbitrary position of the load will be used to exemplify the pressure
distribution in the contact. In a later section of this work, the stress distributions will be

calculated for different positions of the tripode joint to estimate fatigue life.

The peak load on the trunnion at 25% of the yield torque of the joint, from Table

4.1 is selected arbitrarily. It is assumed an initial effective contact length ¢; of 9.9mm,

based on the geometry of the needle. The semi-width of the contact area, maximum
contact pressure and deflection, per Hertz solution, may be obtained from Eq. (5.4), Eq.

(5.3) and Eq. (5.12), respectively. Such values are,

bp =0.0432mm
Chmax = 2694.1MPa

aj= 0.00524mm
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For the first numerical solution it was assumed no crowning on the needle and a
sharp transition at the end of the contact length. The discontinuity caused by the sharp
edge generates a stress concentration, which is captured by the numeric model. The
reader will observe in Table 5.2 that the more refined the mesh the higher the stress at
the edge of the contact. This makes sense since the stress at a discontinuity, assuming

the material doesn’t yield, tends to infinite. The size of the grid was 0.1mm x 9.9mm.

Mesh | o4ax[MPal | phcenter IMPa] | @ [mm]

9x 11 2910.3 2623.1 0.006477
13x 13 2942.0 2605.9 0.006464
21 x 21 3058.2 2604.5 0.006448
41 x 41 3296.9 2597.7 0.006430

Table 5.2. Convergence of maximum pressure and deflection

The difference in the stress value with respect to the Hertzian formulation can be
explained due to the stress concentrations at the edge. The difference in deflection can
be explained due to the lack of crowning since Palgrem’s equation was experimentally
developed for rollers with a specific type of crowning on a flat surface. Figure 5.5 shows

the pressure distribution in the line contact for the 41 x 41 mesh.
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Figure 5.5. Pressure distribution in a cylinder contact

5.4 Non-Hertizan formulation for contact of rollers with crowning

Needle rollers are typically made by grinding its diameter to a given size.
Subsequently, a tumble polishing process is used to remove sharp edges. The polishing
process causes crowning at the end of the needle rollers. Crowning is defined in this
work as a convex deviation from a perfect cylindrical form. Figure 5.6 shows the
dimensions of the needle roller considered and used in this work. Eq. (5.23) and Eq

(5.24) are the mathematical representation of the crowning in such roller.

Crowning starts at a distance of 2mm from the end of the needle. This distance will

vary depending on the length and diameter of the needle roller.
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Figure 5.6. Needle roller dimensions
Zew = 0.002(exp(y)-1) for y<1.47237 (5.23)
Zey = 0.4067033 - Jo.42 —(y-1.46881)° for y>1.47237 (5.24)

where the origin of the reference frame is at the gage height of 2mm, as shown in
Figure 5.6. It must be noted that crowning is symmetrical. The portion of the roller
between the 2mm gage heights is assumed to be a perfect cylinder. Thus, if Eq. (5.23)
and Eq. (5.24) are rewritten with respect to roller's transversal plane of symmetry,

crowning can be expressed as,

Zeyw =0 for |y|<3.405 (5.25)
Zow =0.002(exp(y| - 3.405)-1) for 3.405<|y|<4.87737 (5.26)
Zey = 0.4067033 —\/0.42 ~(y|-4.87381%  for |y|>4.87737 (5.27)
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Figure 5.7 shows a graphical representation of crowning, based on Egs. (5.25)

through (5.27), for the needle roller used in this work.
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Figure 5.7. Crowning of 10.81mm needle roller

The formerly mentioned equations are incorporated into the contact model and the
pressure distribution is recalculated. Such distribution is shown in Figure 5.8a and
Figure 5.8b. The reader will notice that there is still a slight “edge contact” effect. Such
effect could be reduced or eliminated by introducing more crowning. Table 5.3 shows

the convergence of the solution as the mesh was refined.
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Figure 5.8a. Pressure distribution of needle roller with crowning
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Figure 5.8b. Lateral view of pressure distribution of needle roller with crowning
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Mesh | omax [MPa] | O heenter MPa] | @ [mm]

9x9 2980.5 2869.9 0.007492
13x13 3035.2 2837.2 0.007346
21 x 21 2993.7 2841.7 0.007384
41 x 41 3083.9 2840.3 0.007379
41 x 81 3066.1 2840.2 0.007379

Table 5.3. Convergence of maximum pressure and deflection

So far the assumption has been that the needle roller axis is parallel to the
trunnion axis. This occurs only when there is no clearance in the trunnion-roller-ball
assembly. Manufacturing processes have variation and interference is not desired in the
design. Therefore, the trunnion-roller-ball assembly is designed with clearance. Such
clearance allows “skewing” of the needle roller. When the roller skews the “edge
contact” effect is eliminated since the ends of the needle are not in direct contact with

the trunnion. Figure 5.9 shows a needle skewed with respect to the trunnion.

IC

Figure 5.9. View of needle skewing
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The clearance at the ends of the needle due to the skewing can be modeled as

additional crowning. Such equivalent crowning is given by Eq. (5.28) and Eq. (5.29).

2
o J(ggj - (tan(c)? -( 42 (529
Zg = Cos| arctan ytan(¢) Ik (5.29)

7+7
2 2

where y is the distance from the initial contact point. It may be noticed that the sign of y
does not influence the value of the equivalent crowning. Skew angles of needle rollers
in tripode joints are typically around 4°. Eq. (5.28) and Eq. (5.29) were added to the
contact model and the pressure distribution was recalculated considering a skew angle
of 4°. A mesh of 41 x 41 elements was used. Figure 5.10a and Figure 5.10b show the

pressure distribution including skewing effect.

Figure 5.10a. Pressure distribution of needle roller with crowning and skewing
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Figure 5.10b. Lateral view of pressure distribution of needle roller with crowning and

Skewing

It is clear that the “edge contact” effect is not present and pressure has a “barrel”
type pressure distribution. On the other hand, given the symmetry conditions, the
pressure at the center of the contact equals the maximum pressure. In practice the
needle roller will see perfect alignment with the trunnion only twice per joint revolution
(the reader may refer to Section 2 for details). Therefore, analysis of pressure
distribution in subsequent portions of this work will assume a skew angle of 4°, unless

otherwise indicated.

Sometimes “undercuts” on the cylindrical surface of the trunnion are required due
to the manufacturing constraints. An example of a undercut is shown in Figure 5.11.

When this type of discontinuity is present in the cylindrical surface of the trunnion an

128



edge contact effect will take place. The edge contact may be minimized by having extra
crowning in the needle. However, the additional crowning will concentrate the load more
at the center, thus, causing a higher maximum stress. To run experiments, parts without

undercut will be used to avoid adding an exira variable.

Mesh | 64max[MPa] | Opeenter [MPa] | @ [mm]

13 x13 3233.8 3233.8 0.008857
21 x 21 3233.3 3233.3 0.008863
41 x 41 3233.3 3233.3 0.008868

Table 5.4. Convergence of maximum pressure and deflection

UNDERCUT,
.

Figure 5.11. Undercut on trunnion surface

Figure 5.12a and Figure 5.12b show the pressure distribution when a 2mm
undercut is present and the needle has been skewed 4°. The maximum stress in the
distribution is 3324MPa. The edge effect will be more pronounced in the absence of

needle skewing.
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Figure 5.12a. Pressure distribution of skewed needle roller with undercut on trunnion
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Figure 5.12b. Lateral view of pressure distribution of skewed needle roller with undercut

on trunnion

So far perfect symmetry has been assumed at the contact. When a equivalent

concentrated load on the needle roller is not centered, the pressure distribution will
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change. An example of an asymmetrical load distribution is shown in Figure 5.13. Other
cases can be reviewed in Section 4.2. Rotation of the contact elements is not part of the
model. Thus, the slope of the load distribution must be transformed into an equivalent

slope of misalignment to model the asymmetry.

The variables py,j; and pyyj; represent the load per unit of length at the ends of

the load distribution. If a unit length is assumed and the formerly mentioned variables

substitute pj; in Eq. (5.12) then Eq. (5.30) and Eq. (5.31) are obtained.

ptdij

()
S

Figure 5.13. Case of asymmetrical load, positive offset
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-5 ,.0.9
ayjj =3.84x10 Pruij (5.30)

o =3.84x107° p 0 (5.31)

Now, the slope of the equivalent misalignment caused by the asymmetrical load

distribution can be calculated along the effective contact length ¢;, yielding Eq. (5.32).

o o po.g - PO'9

— B 7 )

g =—0 U _3.84x1075 "o
Ct Ct

(5.32)

The slope is defined as positive when the equivalent concentrated load is above
the plane of symmetry of the needle or there is a positive offset A;, as shown in Figure
5.13. The additional equivalent crowning due the asymmetrical load can be estimated

from Eq. (5.33)

Zg = Y5jj (5.33)

The previous expression, combined with the expressions for crowning and
equivalent crowning due to skewing can be combined and used to accurately describe
the pressure distribution at the contact between needle and trunnion, at any position of

the tripode joint. Thus,

Zy =Zow + Zgk +2¢ (5.34)
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Some numeric examples, to illustrate the effect of an asymmetrical load
distribution, are carried out for an arbitrary offset A; of —1mm. The same concentrated
load magnitude used for previous numeric examples is applied and the calculated

pressure distribution assuming no skewing is shown if Figure 5.14a and Figure 5.14b.

The maximum pressure in the distribution is 3420MPa.

Figure 5.14a. Pressure distribution of needle roller with crowning and a load offset A; of

—1mm, no skewing
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Figure 5.14b. Lateral view of pressure distribution of needle roller with crowning and a

load offset A; of —1mm, no skewing

Figure 5.15a. Pressure distribution of needle roller with crowning and a load offset A; of

—1mm, skewing of 4°
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Figure 5.15b. Lateral view of pressure distribution of needle roller with crowning and a

load offset A; of —1mm, skewing of 4°

If a skewing of 4° is added, while keeping the same offset, a maximum pressure of
3286MPa is calculated. The corresponding pressure distribution is shown in Figure

5.15a and 5.15b.

5.5 Sub-surface stress distribution

Once the surface pressure in each one of the rectangular elements that compose
the contact area is known, it can be proceeded to calculate the sub-surface stress
distribution. The approach to calculate the stress distribution under the surface is
superposition. The solution for stress components in a semi-infinite solid due to the

uniform pressure over a rectangle is published as the appendix in Trachman’s [29]
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work. They were originally published by Love [33] and are shown in this work for

reference purposes. Consider the potential functions V and X for each element n. Then,

V= jA | w (5.35)
X = jA j s, log(z+ r)dédn (5.36)
where,

r=(x=&2 +(y-n)? + 22 (5.37)

Then, the stress components are given by,

2 2
Ox 1 2V8_V_(1_2V)8_X_28_V (5.38)
2r 0z ox2 x>
2 2
oy =] 2w (oo _,0Y (5.39)
1(av _a2%v
0,=—oI| 425~ (5.40)
2z 0z 372
1 _9%Vv
=——2Z 5.41
yz 2w dyoz ( )
1 _9%v
__1 5.42
Xz 27z28xaz ( )
1 %X 0%V
=——|(1-2 z 5.43
xy 2r ( Y 8x8y+ oxoy ( )
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where,

v (b-xNa-y)
Frl —sn[Zx—arccos[\/(b_ x)2 L2 \/(a— y)z 4 2 ]

(b-x)a+y)
Jb-x? + 22 \(a+y)? + 22

(b+x)a-y)
\/(b+ x)? +z2\/(a—y)2 + 22

(b+x)a+y) }

Yo+ x)? + 22 \(a+ y)? + 22

—— =5 {arctan( J + arctan( Q arctan( oz((ab_—yx))]

—arctan Za+ + arctan( j + arctan(a Y j (5.45)
a4(b X) b+ x

)

=S, {arctan( J + arctan(a N ;j arctan( OZ((Z __);/))J
_ arctan( z(b- e ;)] + arctan( yj + arctan(gi ;J (5.46)
_ arctﬁ{%} - arctan( 0523( fa++x}2)ﬂ

92X ~ (Z+0{1)(Z+053)
oy on Iog{(er ay)z+ay )}

—arccos

(5.44)

—arccos

—arccos

b+ x

(5.47)
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oq = \/(x— b2 +(y - a)? + 22 (5.54)

ap =+(x+ b +(y - a)? + 22 (5.55)
ag = \/(x+ b)? +(y +a)? + 2 (5.56)
g =(x=bP +(y+a)? + 2 (5.57)

—% <arctané < and O0<arccosé<rm (5.58)

NN

Once the stress components are known, it is possible to calculate the principal

stresses, which are the roots o, of the cubic equation,

O-g+616,[2)+o-ﬂdp+o-ln =0 (559)

where, the stress invariants are,

01 =0x+0y+0; (5.60)
_ 2 2 2 5.61
= ~2 2 2 2 5.62

Ol =—0x0y0; —2TxyTy;Txz +0;Txy +OxTy; + 0Tz (5.62)

and the maximum principal shear stress is,
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Op| —0p3
Tmax = ———F= (5.63)

Egs. (5.38) through (5.63) were programmed in addition to the computer program
that calculates pressure distribution in a contact. Similar to the pressure distribution
calculation, the code was debugged comparing the numeric solution to the exact
solution of a sphere-plane contact. The radius of the sphere is 10mm and the applied

load is 100N. It was assumed both contacting bodies are made of steel.

From Eq. (5.20) is known that the radius ap,; of the contact patch is 0.1873mm

and from Eq. (5.21) is known that the maximum pressure in the contact is 1362.3MPa.
According to the expressions published by Johnson [24], the maximum principal shear

stress has a value of approximately 0.310p5max at a depth of 0.48ap,,. Thus,

maximum shear in the sphere-plane contact problem is 422.31MPa at a depth of

0.89904mm.

Figures 5.16a through 5.16d show the stress components and maximum shear as
a function of the depth. Such figures were generated from the numeric solution of the
sphere-plane contact problem using a 41x41 mesh. The maximum principal shear,

calculated at a depth of 0.9mm using the numeric procedure, is 422.27MPa.
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Figure 5.16a. Stress distribution along the depth of the contact, o, component
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Figure 5.16b. Stress distribution along the depth of the contact, o, component
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Figure 5.16c. Stress distribution along the depth of the contact, o, component
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Figure 5.16d. Stress distribution along the depth of the contact, Ty ax

It must be noted that the previously described state of stress is at the element that

matches the position of the applied concentrated load. Shear stress components are
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zero at the plane of symmetry. The numeric procedure allows calculation of the state of
stress at any element within the mesh. This will prove extremely useful when dealing

with needle rollers asymmetrically loaded.

As a second verification of the program, it is calculated the sub-surface stress
distribution for the contact problem of a crowned needle (no skewing), described in
Table 5.3 and shown in Figure 5.8a and Figure 5.8b. This problem was chosen since it
is a very good numerical approximation to a line contact without having the numeric
instability caused by an edge contact. It is known that the pressure at the center of the
needle roller is 2840MPa and the semi-width of the contact patch, at the plane of
symmetry, is approximately 0.048mm. According to the Hertzian subsurface stress
distribution shown in Figure 5.2, it is expected that at maximum shear stress of

Tmax = 0.3Smax = 852MPa will occur at a depth of
z=0.786by, = 0.786(0.048) = 0.038mm. It is also expected that the stress components

o, and o, will be equal at approximately z=0.436b;, = 0.436(0.048) = 0.021mm .
X y h

Figures 5.17a through 5.17c show the stress components and maximum shear as
a function of the depth. Such figures were generated from the numeric solution in Table

5.3 for a 41x41 mesh.
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Figure 5.17a. Stress distribution along the depth of the contact, o, component

represented with a solid line, o, component represented by a dashed line
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Figure 5.17b. Stress distribution along the depth of the contact, o, component
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Figure 5.17c. Stress distribution along the depth of the contact, Ty

From Figure 5.17a it can be verified, graphically, that the point where the stress

components o, and o, are equal happens around 0.02mm, which is very close to the

expected value of 0.021mm. From Figure 5.17c it can be obtained that the maximum
shear is approximately 850MPa at depth of 0.035mm, not very different from the

Hertzian calculation of 852MPa at 0.038mm.

At this point it is possible to calculate the state of stress at any location of the
needle-trunnion contact at any position of the joint, under any load conditions. The next
section will deal with the different yield and fatigue theories that will be used to predict

the wear performance of the tripode joint.
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6. FATIGUE-LIFE THEORIES

6.1 Introduction

Studies on bearing life prediction started in the early twentieth century. The
dominant model since then has been the Lundberg-Palmgren equation, which is the
basis of the current ANSI/ABMA standards [34, 36]. Such standards can be easily
applied for traditional bearings under simple load conditions but not to Tripode joints.
Other authors such as Zaretsky [34, 35] and loannides and Harris [36, 37] have
proposed alternative or expanded versions of the Lundberg-Palgrem equation. Such
models are discussed in this section and a new model, specific to Tripode joints, will be

proposed.

6.2 Weibull Equation
Weibull proposed a statistical approach to determine the strength of solids and
observed that the dispersion in material strength for a homogeneous group of test

specimens would follow the following relation,

s
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where, S is the survival (i.e. completed load cycles) to the fracture strength o, . Eq
(6.1) can be rearranged to have the form of a straight line equation, and if In(ln(éD is

used as the ordinate and In(c,,) is used as the abscissa the slope of the line £ can be

defined as the Weibull slope, which is a measure of the dispersion of the data in a
statistical distribution. The scatter in the data is inversely proportional to the Weibull

slope, the lower the value of ¢ the larger the scatter.
In In(l = eln(oy,) - In(oy,z) (6.2)
S

Weibull also proposed the idea of relating the probability of survival of a
component to the stressed volume. The larger the stressed volume, the lower the

strength or life of the component. This is mathematically expressed in Eq (6.3).

According to Zaretsky [34], Weibull proposed the following probability of survival

equation to predict bearing life
f(on) =15 NE (6.4)

which if substituted in Eq (6.3) yields,
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cle 1/¢e
N o (Lj (lj (6.5)
Tor 4

From Hertz theory V and 7, can be expressed as a function of the maximum
pressure in the contact opmax, and if a proportionality constant is used Eq (6.5) takes

the form

cle 1/¢e
L=, (LJ [lj - (6.6)
Tor 4 Nh

O-hmax

where ny, is reported to be 10.2 for a line contact, for € =1.11 and ¢/ = 9.3 [38].

6.3 Lundberg-Palmgren Equation
Lundberg and Palmgren applied Weibull analysis to the prediction of rolling-
element bearing life, including the depth to the maximum critical shear stress in a

Hertzian contact. Then Eq (6.4), the probability of survival function, takes the form

(o] £
flow) = Tc’zl,y (6.7)

Zer

which, if substituted in Eq (6.3), and assuming a Hertzian contact, can be expressed as,
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where ny is reported to be 8.1 for a line contact, for € = 1.11, ¢/¢ =9.3 and ¢ = 2.33

[38].

6.4 loannides-Harris Equation

loannides and Harris introduced a fatigue-limiting stress to the Lundberg-Palmgren
equation, based on reported endurance data of some bearing applications that
demonstrated virtually infinite fatigue life. It is reported that such bearings were

accurately manufactured from “clean” steel [37]. Then Eq (6.7), takes the form

f(ow) =M (6.9)

Zer

Similarly, if replaced in Eq (6.3),

1 cle ” 1/ e o 1
L:C{ —r] (Vj Zor " hleg) (6-10)
u

Ghmax
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loannides and Harris use the same values of Lundberg-Palmgren for &, ¢, and o.

However, the exponent nis a function of (7, —7,). If 7, equals 0, the loannides-Harris

equation is equivalent to the Lundberg-Palmgren equation.

6.5 Zaretsky Equation

In the Weibull and Lundberg-Palmgren equations the critical shear stress exponent ¢
and the Weibull slope ¢ are related, making c/¢ the effective critical shear stress-life
exponent, implying that the life of a bearing also depends on the scatter of the life data
used to calculate the exponents. Zaretsky states that most stress-life exponents vary
from 6 to 12 and appear to be independent of the scatter of the data [34]. Following this
observation he modified Weibull's probability of survival function making the exponent ¢

independent of the Weibull slope . Such equation has the form,

f(on)=1SENE (6.11)

Similarly, if replaced in Eq (6.3),

c 1/ e
L:C{LJ Gj o n; (6.12)

Zaretsky assumes a value for the stress-exponent ¢ = 9 and
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nh:c+l (6.13)
£

The proportionality constant C; in any of the previous fatigue-life equations
accounts for several adjustment factors, which may include: reliability factors, material
factors, geometry factors, lubrication factors and temperature factors. These adjustment
factors vary depending on the bearing manufacturer and have been refined over time.
There have also been efforts to standardize them and both Zaretsky and Harris
recognize its importance given all the possible permutations in bearing applications [36,

38].

6.6 Tripode Equation

Lundberg and Palmgren assumed that once initiated, the time a crack takes to
propagate to the surface and form a fatigue “spalled” area, similar to the “spalled” area
shown in Figure 4.15, is a function of the depth to the critical shear stress [38]. This
would imply that fatigue life in a bearing surface is crack propagation time dependent.
However, Zaretsky categorizes the life of rolling elements as a “high-cycle fatigue
problem” [34]. Zaretsky also supports the idea of crack propagation being an extremely

small time fraction of the total running time of the bearing [38].

In the author’s experience, Tripode joints can operate for hundreds, sometimes
thousands of hours, depending on the load conditions, without showing any signs of pits

or spalling. Once the first pit shows on the surface it takes a few hours to get a large
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spalled area, supporting the idea of crack propagation being a very small fraction of the

total life of a Tripode joint.

Following Zaretsky’s approach for bearings, it is proposed to decouple the life of a
Tripode from crack propagation and the relation, Eq (6.14), to the depth of the maximum
critical shear stress, used in Lundberg-Palmgren model and loannides-Harris models, is

dispensed.
Lo 20/ € (6.14)

Based on the author's observation of the life behavior of Tripode joints, the

following empirical model is proposed:

1/ ¢

1 1
L=C1CQ(T ﬁ} (6.15)
e

Where, 7o is the effective shear stress, which depends on the static failure
theory used. /4 is the effective contact length, which can be obtained from the non-

Hertzian contact analysis discussed in Section 5 and is dependent on the crowning of

the needle roller and applied load. ¢, is the effective trunnion arch traveled by a

needle roller during a joint revolution, which times the trunnion radius /2 yields the

effective arch-length traveled by the roller. Thus, rather than dealing with a stressed
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volume the Tripode model deals with a projected area subject to contact stress. The
constant C; is an empirical life adjustment factor for different greases and surface
textures generated by the manufacturing processes used to make the joint and the
constant C. accounts for the duplication of load cycles when the critical joint angle,

discussed in Section 2, is exceeded.

-
oo Peff j
C, =| Ceiling| —="— 6.16
2 ( Q( Sy (6.16)
Where the function Ceiling[x] is defined as the smallest integer greater than or equal to

X.

6.7 Testing and prototypes to validate the Tripode model

Once a fatigue-life model has been proposed for the Tripode joint it is necessary to
perform actual experiments to verify the validity of the model. The experiments were
conducted in an industrial lab at Nexteer Automotive Headquarters. The test benches,
an example shown in Figure 6.1, can simulate different speeds, torques and angles that

a Constant Velocity Joint can experience in a vehicle.

153



Figure 6.1. CVJ wear test bench

For the purpose of validating the model, considering and subject to time and
budget constraints, three tests were performed at a fixed joint angle and constant
power. In Section 2 it was found that the critical angle in the Tripode joint used for the
experimental portion of this work is 6°. Testing at an angle higher than 6° allows to
duplicate load cycles. On the other hand, 7° is an angle commonly used in industry to
validate CVJ designs. Thus, a running angle of 7° was chosen. Table 6.1 summarizes

the conditions of the three tests.
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Test/Schedule 1 (used in parts 1 to 4)
Step | Torque | Speed Time Angle
01 272 Nm | 1200 rpm | 20 minutes 7deg
02 -80 Nm | 300 rpm | 1 minutes | 0-8deg @ 0.5Hz
Power: 34.18 kW

Test/Schedule 2 (used in parts 5 to 8)
Step | Torque | Speed Time Angle
01 466 Nm | 700 rpm | 20 minutes 7deg
02 -80 Nm | 300 rpm | 1 minutes | 0-8deg @ 0.5Hz
Power: 34.16 kW

Test/Schedule 3 (used in parts 9 to 12)
Step | Torque | Speed Time Angle
01 816 Nm | 400 rpm | 20 minutes 7deg
02 -80 Nm | 300 rpm | 1 minutes | 0-8deg @ 0.5Hz
Power: 34.18 kW

Table 6.1. Summary of wear tests conditions

The steps with negative torque were introduced to avoid “grease migration” in the
joint and keep functional lubrication conditions during the test. The tests schedules were
repeated several times until spalling occured in at least one trunnion of one spider.
Periodic inspections were performed to try to find the spalling in its initial stage. Before
discussing the results of the tests it is noted that controlled prototype parts were made
to perform the three tests, using production manufacturing processes. The purpose of
making controlled prototypes was to try to eliminate possible sources of noise in the
test, such as geometric variation from component to component. Some of the key
characteristics of the prototype parts are listed:

1. All parts were made from the same batch of material

2. All parts were made using the same machine in a single lot
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3. At least four parts of the lot were carefully inspected using a Coordinate
Measurement Machine (CMM)

4. At least four parts were carefully inspected in the trunnion area for roundness.
Surface finish was also inspected.

5. All parts were visually checked for any possible defects (surface dents) or

corrosion that could generate premature spalling.

2707 Filter:
Roundness: 1.53um Gauss 0-150UPR

Figure 6.2. Example of roundness check

Roundness in the trunnions, which is the most critical characteristic for fatigue-life

in a trunnion, given the changes it produces in load distributions, was found to be in the

order of two microns in the inspected parts. Figure 6.2 shows an example of a
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roundness check. The reader is asked to refer to the appendices to see surface texture

inspection and the effect of filtering in roundness inspection reports.

6.8 Load and stress conditions per test schedule

After knowing the geometrical characteristics of the prototype parts it is possible to
calculate the displacements, loads and the state of stress in the contacts between the
trunnion and the needle rollers. The following average dimensions were obtained from

the prototype inspection.

Housing, BCD = 40.906mm
Spider shaft length, b = 300mm
Ball outer diameter, m, = 34.992mm
Ball inner diameter, m; = 24.994mm
Ball to needle contact length, ¢, = 10.39mm
Number of needles, n = 36

Needle roller diameter, d = 1.9975mm
Needle roller length, bpeedre = 10.81mm
Trunnion diameter, ¢ = 20.975mm
Axial clearance of needle, ®, =  0.452mm
Height of shoulder, espiger = 13.921mm
Spacer thickness, Cspacer = 1.05mm
Applied torques, t(p = 272Nm, 466Nm, 816Nm
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It is reported that there was part to part variation, as expected with any
manufacturing process, but the variation was so small, with respect to typical tolerances
for Tripode joints, that it can be neglected for the purpose of calculating loads and
stresses. Using the dimensions of the components and the computer programs
developed in previous sections, the kinematic and quasi-static behavior of the joint at

different input torque levels can be known.

From the kinematic analysis of Section 2 it is possible to know the maximum roller
displacement on the trunnion within a revolution. Figure 6.3 shows such displacement at
a joint angle of 7°. The peak to valley height for the exact solution of roller displacement
(considering joint angle fluctuation due to orbiting motion) and the linearized solution

are: ¢go = 10.76° and @ = 10.75°, respectively.

#11 [deg]

Figure 6.3. Needle displacement
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Figure 6.4 shows the offset between the symmetry plane of the ball and the
symmetry plane of the needle within a revolution. It can be observed that in this
particular set of prototypes the amplitude of the offset variation is about 2% of its mean

value.

0.0825}

0.0820}

Figure 6.4. Load offset

Figure 6.5a shows the load variation for one of the torque levels corresponding to

the test schedules. It can be appreciated that the amplitude of the force variation is
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extremely small with respect to the mean force value. Something similar happens with
the other two torque levels, which are plotted together in Figure 6.5b, where the solid
line corresponds to an input torque of 272Nm, the mid-dashed line to an input torque of

466Nm and the small-dashed line to a torque of 816Nm.

The zero position for rotation is defined at the plane formed by the housing axis
and the spider axle axis, as shown in Figure 6.6. The virtual load variation between a
needle roller and the trunnion at the spider plane can be modeled within a joint
revolution. The load variation is refered as virtual because an actual load at a specific
point on the trunnion only exists when the needle roller is located on that specific point.
Once the needle roller displaces, because of the joint rotation, the load at that specific

point on the trunnion becomes zero until the needle passes through that point again.

ql
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4425
4420
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Figure 6.5a. Variation of load on ball bore, housing plane at 272Nm
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Figure 6.5b. Loads on ball bore, housing plane

.

Figure 6.6. Plane formed by housing axis and spider axis, zero plane for rotation

Hence, the plots of Figures 6.7a and 6.7b show load variation on the trunnion at
the spider (symmetry) plane and were generated assuming a constant contact between
the needle and the trunnion at such plane. The purpose of performing this virtual load
evaluation was to identify the possible loads on the area of the trunnion that is most

susceptible to fatigue. In Figure 6.7b the solid line corresponds to an input torque of
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272Nm, the mid-dashed line to an input torque of 466Nm and the small-dashed line to a

torque of 816Nm.
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Figure 6.7a. Virtual load of needle to trunnion at spider plane, at 272Nm
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Figure 6.7b. Virtual load of needle to trunnion at spider plane
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The virtual needle to trunnion load was also calculated at 4° and 10° joint angle at
the loads of 272Nm. The results are summarized in Table 6.2 and the maximum and

minimum loads for different torque inputs are summarized in Table 6.3.

% P off Pimax [N] | Pimin [N] Pimean [N] P1amp [N] P1amp/P1mean

4° | 6.70° | 963.56 943.45 953.51 20.11 0.0211
7° 110.75° | 961.31 904.28 932.80 57.03 0.0611
10° | 16.83° | 956.85 849.27 903.06 107.58 0.1191

Table 6.2. Needle-trunnion load as a function of joint angle at 272Nm

272 10.75° | 961.31 904.28 932.80 57.03 0.0611
466 10.75° | 1601.03 | 1504.38 1552.70 96.65 0.0622
816 10.75° | 2771.80 | 2598.85 2685.33 173.80 0.0647

Table 6.3. Needle-trunnion load as a function of applied torque

The actual load between a needle roller and the trunnion at the spider plane, within
a joint revolution, could be any value between Pimac and Pimin. Data in Table 6.2
suggests that the probability of having actual lower loads at the spider plane is higher as
the joint angle increases. Thus, just looking at this data, a higher joint angle would

suggest a longer wear life, which is not what happens in reality. In the author’s
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experience, the higher the joint angle the lower the life of a Tripode Joint. The higher the
joint angle, the higher the area over which the needle roller is moving, thus increasing
1/¢

the probability of a subsurface crack forming. The term of the proposed

t

lotf Dot >

model, Eq (6.15), accounts for this.

On the other hand, significant changes in life occur anytime the critical angle is
exceeded because the load cycles are duplicated. If the joint running angle is high
enough to exceed two times the needle spacing, the load cycles are triplicated. In the

prototype joints used for this work the cycle triplication occurs when ¢, = 20° at 6, =

11.86°. The proposed fatigue model characterizes this cycle multiplication in Co, Eq

(6.16).

It has been explained how the Tripode model captures the effects of joint angle.
Now it needs to be described how the model will capture the effects of the applied

torque and geometry, such as needle crowning and trunnion roundness, in the term
Teff

The reader will observe, from Table 6.2, that the maximum possible load at the
spider plane is virtually insensitive to joint angle. Pimax 0Ccurs at 0° and 180° of rotation.

Referring to Figure 6.4 it can be observed that the maximum load offset occurs at 180°.
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Thus, this rotational position is what will be used to calculate the state of stress at the
contact. Using the equations of Section 4 and Section 5 it is possible to define the state
of stress in the contact. Table 6.4 summarizes the inputs to calculate the non-Hertzian

pressure distribution.

toINM] | Ax102 | PymaxIN] | Pom[Nmm] | Pp[Nmm] | Prg[Nimm] | £x107°
272 8.3556 961.31 97.10 102.02 92.18 2.173
466 8.3556 1601.03 161.72 169.91 153.53 3.439
816 8.3556 2771.80 279.98 294.16 265.80 5.635

Table 6.4. Inputs to calculate non-Hertzian contacts

The same approach of Section 5 was used to calculate the pressure distribution at
the contact region on the trunnion. It was checked for convergence starting with a
coarse mesh and making it finer until the maximum pressure and the deformation in the
contact converged to five digits. The pressure distributions for the three different torque

levels are shown in Figure 6.8, Figure 6.9 and Figure 6.10.
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Figure 6.8. Pressure distribution, input torque of 272Nm
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Figure 6.10. Pressure distribution, input torque of 816 Nm
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Table 6.5 summarizes some characteristics of the non-Hertzian pressure
distribution, where sy is the pressure at the origin of the local coordinate reference
frame, smax is the maximum pressure found in the distribution, « is the relative radial
displacement of the roller to the trunnion, nxm is the mesh and /¢ is the length of the
area of contact. It is noticed that the point where the maximum pressure occurs is at

upper portion of the trunnion, for this specific set of prototypes. Thus, it is expected that

spalling will be most likely to start at the upper portion of the contact.

lpINm] | sp[MPa] | Smax[MPa] | c[mm] nxXm | log [mm]
272 | 21355 | 23159 | 0.004311 | 21x41 8.87
466 | 2688.0 | 2910.7 | 0.006652 | 27x41 9.39
816 | 34350 | 3729.7 | 0.010544 | 27x41 9.82

Table 6.5. Key characteristics of non-Hertzian contacts

For reference purposes, the Hertzian solution is also tabulated, in Table 6.6, where

Ohmax IS the maximum pressure in the contact, by, is the semi-width of the contact
area, zqm is the depth at which 7max IS located, which is the maximum principal shear
stress. From Section 5 it is known that the maximum principal shear occurs at 0.786 by,
with a value of 0.30pmax- The reader may be able to compare the differences in

pressure, from both solutions. Once the pressure distribution is known, the effective

sub-surface shear stress can be calculated.
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lopINmM]l | &gy [MPa] bp[mm] | Ze[mm] | Thmax [MPa]

272 1963.4 0.0315 0.0248 589.0
466 2533.9 0.0406 0.0319 760.2
816 3334.0 0.0535 0.0421 1000.2

Table 6.6. Key characteristics of Hertzian contacts

Two static failure theories for ductile materials will be considered: The Maximum
Shear Stress Theory (Tresca), Eq (5.63), and the Maximum Distortion-Energy Theory

(Von Mises-Hencky / Octahedral), Eq (6.17).

Toct = \/(O'X — O'y)z + (O'y — 02)2 + (O'X — 02)2 + 6(1')20, + T}Z,Z + 7)2(2) (6.17)
Tax
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Figure 6.11. Max Shear and Octahedral shear at center of contact
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Figure 6.12. Max Shear and Octahedral shear at point of maximum pressure

Figure 6.11 compares the maximum principal shear versus the octahedral shear
stress at the center of the contact, while Figure 6.12 does the same thing at the point of

maximum pressure, both for an input torque of 272Nm. The analysis is repeated for

466Nm and 816Nm.

F

lpINM] | Zpox shear [MM] | Tmax [MPa] Zoot [mm] Toct [MPa]
272 0.027 642.4 0.024 561.3
466 0.034 809.1 0.030 706.6
816 0.043 1035.1 0.039 903.6

Table 6.7. Sub-surface Critical shear stresses at the center of the contact
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The results for the maximum critical shear stresses 7,5 and 7,, and the depth at

which they occur are summarized in Table 6.7 and Table 6.8.

tpINMI | Zoy shear [mm] |  7max [MPa] Zoct [mm] Toct [MPa]
272 0.029 707.5 0.026 613.3
466 0.036 888.7 0.033 770.9
816 0.047 1138.3 0.042 988.0

Table 6.8. Sub-surface Critical shear stresses at the point of maximum pressure

Up to this point, the assumption of working in the elastic range of the materials
used to make the prototypes has been made. Before continuing the discussion about
the proposed tripode fatigue-life model, it needs to be reviewed if plasticity should be

considered in this work.

The characteristics of the materials used to make the tripode joints for the

experimental portion of this work are listed below.

Spider
Material: SCM-420H (similar to SAE 4118)
Heat treatment: Carburized, quenched and temper

Surface Hardness: 58HRc MIN
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Needle Roller
Material: AISI 52100

Surface Hardness: 64HRc MIN

The minimum surface hardness of 58HRc on the trunnions of a tripode spider
corresponds to a Vickers hardness of 653Hv, per ASTM E-140, for non-austenitic
steels. The depth of the point where the maximum shear stresses occur is very close to
the surface and for now it will be assumed that the hardness at the region where the

maximum shear stress occur is 653Hv.

Pavlina and Van Tyne [39] recently published linear functions that relate tensile
strength and yield strength to hardness, in non-austenitic steels. Such functions are

expressed as Eq (6.18) and Eq (6.19), respectively.

TS =-99.8 +3.734Hv (6.18)

YS =-90.7 + 2.876 Hv (6.19)

The corresponding strength values to a hardness of 653Hv are TS = 2338.5MPa
and YS = 1787.3MPa. Applying the Maximum Shear Stress Theory, Eq (6.20), and the
Maximum Distortion-Energy Theory, Eq (6.21), the sub-surface critical stresses at the

applied torques can be compared to the yield strength of the material.
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YS

SFmax_shear = (6.20)
max
J2ys
SF,e = —3 (6.21)
Toct

Thus, evaluating Eq (6.20) and Eq (6.21) it can be know if plasticity will occur in

the contacts due to the applied loads. Results are summarized in Table 6.9.

t,, [Nm] SFmax_shear SFoct
272 1.26 1.37
466 1.01 1.09
816 0.79 0.85

Table 6.9. Ratio of yield shear strength to critical shear stress

Pavlina and Van Tyne [39] reported that the standard error for Eq (6.18) and Eq
(6.19) were 112MPa and 102MPa, respectively. Then, it is clear that plasticity will occur
under a load of 816Nm and possibly at a load of 466Nm when the spider is made to its

minimum hardness of 58HRc.

The plastic behavior in contacts has been studied by different authors using Finite
Element Analysis (FEA) [40] and attempts to solve the problem analytically have also

been made [41]. Even though good correlation between FEA and analytical methods
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has been reported there is not enough published information on the material constants
used in the corresponding plasticity models for a wide range of materials, specifically,

carburized steel SCM-420H or SAE 4118.

The problem of elastic-plastic behavior in line contacts has also been studied
using simpler approaches, such as that of Johnson, which is described and adopted in
this work [24]. The study of elastic-plastic line contacts is based on the idea that in
applications where rolling contact occurs and the elastic limit of the material is exceeded
the first pass of a roller on a point will induce some plastic deformation and the
corresponding residual stresses, when the second pass occurs the state of stress will
be defined by the combined action of contact stresses and residual stresses. If the
elastic limit is still exceeded more plastic deformation will take place and so on until the
residual stresses have build up to the point where the applied load only causes elastic
deformation. This process of cyclic deformation until the steady state is purely elastic is
known as “shakedown”. Johnson’s approach is based on Melan’s theorem for

shakedown (also known as static lower-bound theorem) which states:

Shakedown occurs whenever a system of residual stress, that satisfies equilibrium

requirements, acts in conjunction with applied loads in such a manner that the yield

criterion is not violated.

If the shakedown limit of a material is exceeded plastic flow will continue until

failure occurs. Johnson’s method assumes an elastic cylinder rolling freely on an
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elastic-perfectly-plastic half-space [24]. If the elastic limit is not exceeded the contact
area and the contact pressure can be obtained by the methods described in Section 5,
which assume an elastic cylinder rolling freely on an elastic half-space. The assumption
of plane strain (zero strain in the axial direction) is necessary to simplify the problem.
Figure 6.13 shows the coordinate reference frame used. The sub-index r is used to

denote residual stress components.

Then, the assumption of plane strain eliminates the residual shear stresses 7,

and 7, and makes the remaining components independent of y.

Pij

Figure 6.13. Max Shear and Octahedral shear at point of maximum pressure
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If it is assumed that the plastic deformation is steady and continuous then the
surface of the half-space will remain flat and the residual stresses can be assumed to
be independent of x. The surface is traction free, given the assumption of free rolling.

Therefore, the residual stresses o, and 7,,, are also eliminated and the system of

residual stresses reduces to Eq (6.22),

oxr =1(2)
Oyr = a9(2) (6.22)

Ozt =Txyr =Tyzr =Tz =0

Thus, the principal stresses, due to the combination of contact and residual

stresses are given by Eq (6.23), Eq (6.24) and Eq (6.25).

1 1
O pi =§(GX + Oy + 0'2)+§\/(0'X +0y — 0, ) +472, (6.23)
1 1\/ 2 2
O p2 =E(O'X+O'X,-+O'Z)—E (Cx+0,y —0,) +415, (6.24)
0p3 :Vs(dx"'o'z)"'dyr (6.25)

It is also known from Hooke’s law and from the plane strain assumption that

£y =—(O'y—VS(GX+Gz))=0 (6.26)
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When o, =0, the steady state residual stress in the axial direction becomes,

oy =vslox+0;) (6.27)

If the Maximum Shear (Tresca) criterion is used and if o, is such that o3 is the

intermediate principal stress, the following expression must be satisfied

(op1—0p2)<YS (6.28)

If Eq (6.28) is expressed in terms of the stress components it takes the form

YSs?2
2412 <

1
Z(O'x +0x —07) (6.29)

Expression (6.29) can not be satisfied if 7, >Y?S. According to Johnson, 7,

governs the shakedown limit [24]. When 7, :Y?S the residual steady state stress in

the tangential direction becomes,

Oxr =05 —0y (6.30)

When 7, < Y?S the residual steady state stress is defined by
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O xr =O'Z—GX+\/Y52 —4T§X (6.31)

Where the stress components in the tangential (x) and radial (z) directions correspond
to the state of stress at the depth of interest and the tangential location where oy, is
maximized, which ensures shakedown. Table 6.10 shows the state of stress at the
depth where the maximum principal elastic shear stress occurs, z = 0.047mm. The
critical tangential locations are the plane of symmetry of the contact and at the point
where 7,,, is maximum. The residual stresses, are calculated using Eq (6.27) and Eq

(6.31)

Component | x =0.000mm | x =0.056mm
Oy —650.0MPa —821.9MPa
o, —2926.5MPa | —1434.7MPa
Ty OMPa 877.8MPa
Oyr —489.2MPa —277.7MPa
Oyr -1073.0MPa | —-677.0MPa

Table 6.10. Elastic stress and residual stress components at z = 0.047mm

Figure 6.14 shows the variation of shear stress 7,,, at the depth where the
maximum elastic shear stress occurs. Then, superposing the residual stresses to the

stress field the principal stresses are computed to oy =-1139.2MPa,

177



Op2 =—2926.5MPa and o,3 =-2146MPa. Hence, the assumption of o,3 being the

intermediate principal stress is verified and the maximum principal shear stress at a

depth of 0.047mm is 7 = 893.7MPa.

—-0.06 -0.04 -0.02 0.02 0.04 0.06

Figure 6.14. Shear stress t,,, at a depth of 0.047mm

If the Maximum Distortion-Energy (Von Mises-Hencky / Octahedral) criterion is

used, the following expression must be satisfied

(Gp1—Gp2)2+(6p2—6p3)2+(6p3—Gp1)2SZYSZ (6.32)

Substituting Eq (6.23) through Eq (6.25) and Eq (6.27) into Eq (6.32), simplifying

and solving for oy, it is obtained,
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Oyr = %(62 —20,(1-v)+2vo,)
(6.33)

+oA4YS2-3lo2(1-2v ) ~avli-2v)o 0, + e +120%

Similarly, the state of stress at the plane of symmetry and at the point where 7,,,

is maximum is evaluated and summarized in Table 6.11. The depth where the

octahedral shear is maximum, z = 0.042mm, is considered. The residual stresses are

calculated using Eq (6.27) and Eq (6.33).

Component | x =0.000mm | x =0.050mm
Oy —780.8MPa —870.6MPa
o, -3046.9MPa | —-1684.4MPa
Tyz OMPa 899.4MPa
O ur —226.0MPa | +128.0MPa
Oyr -1148.3MPa | —-1277.5MPa

Table 6.11. Elastic stress and residual stress components at z = 0.042mm

Finally, superposing the residual stresses to the stress field the principal stresses

are computed to o, =-1006.8 MPa, opr =-3046.9MPa and op3 =-2296.6 MPa.

Hence, the octahedral shear stress at depth of 0.042mm is 7,,; = 842.5MPa.
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It was indicated at the beginning of this Section that the fatigue life problem in
Tripode joints is considered as a “high-cycle fatigue problem”. Therefore, the proposed
model applies only when the joint is operating in the elastic region of the material or
when shakedown occurs in the studied contacts, which is possible only if the square
roots of Eq (6.31) and Eq (6.33) are real, under the assumption of an elastic-perfectly

plastic material model.

6.9 Test results

Bearings are characterized by the L1710 life, which is the life or number of cycles
that can be completed by 90% of a population of bearings. The same L1710 definition is
adopted for tripode joints. Given there are twelve trunnions per test it was expected that
one or two trunnions would show pits or spalling before the rest. Therefore, the life of a
tripode on the conducted tests is defined as the number of cycles that ten out of twelve

or eleven out of twelve trunnions can complete without presenting spalling.

The tests were run per the schedules shown in Table 6.1. A conservative a priori
life estimation was done and joints were inspected on regular intervals until pits or
spalling were found in at least one trunnion. In two of the tests the spalled parts were
replaced by new ones and the evaluation continued to verify the expected dispersion in
life data. The test results are summarized in Table 6.12. The naming convention for the
tested spiders during the rest of this work will consist of using a letter to indicate the test

and the number the part had in the test (i.e. Part B-2).
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Test / Torque Part 1 Part 2 Part 3 Part 4
Completed Completed Completed Completed
605hrs: 2mm?2 of | 605hrs: 1 pit on | 808hrs:  Clean | 808hrs:  Clean

A - 272Nm spaling and 2 | One trunnion surface (test | surface (test
pits on one suspended) suspended)
trunnion
Completed Completed Completed Completed
246hrs: 5mm?2 of | 246hrs: 1 pit on | 120hrs: 56mm?< | 246hrs:  Clean

B — 466Nm spaling and 5 | One trunnion of spaling on surface (test
pits on  one one trunnion suspended)
trunnion
Completed Completed Completed Completed

C — 816Nm 96hrs: Clean | 96hrs: 26mm? of | 96hrs: Clean | 96hrs: Clean
surface (test spalling on one surface (test | surface (test
suspended) trunnion suspended) suspended)

Pictures of the spalled and/or pitted surfaces are shown in Figures 6.15 through

6.17.

Table 6.12. Test results summary

Figure 6.15. Parts A-1 and A-2
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Figure 6.16. Parts B-3 and B-1

Figure 6.17. Part C-2

It can be observed in the previous pictures that the location of the pits or spalling is

in the upper portion of the trunnion. The exception would be Part B-3 where the exact
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location of the point of spalling initiation can not be determined given the large area.
Analysis using traditional Hertzian line contacts, uniform pressure along the length of
contact, would have not been able to predict the region of the trunnion where the
spalling was most likely to initiate. The non-Herztian contact analysis used in this work

allows so.

Part B-2 was checked under the confocal microscope. It was removed from test
when only a small pit was present, indicating the spalling had just initiated. Figure 6.18a
and Figure 6.18b show the scanned surface, which given the curvature of the trunnion
was obtained scanning a clean portion of the surface and then scanning and subtracting

the collected data from the region with the pit.
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Figure 6.18a. Part B-2 (units are microns)
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0 0

Figure 6.18b. Part B-2 (units are microns)

The depth of the pit has approximately the same value of the calculated depth
where the critical shear stress occurs. This fact supports the assumption of the spalling
being generated by a crack that starts under the surface at the region where the critical

shear stress occurs.

It is assumed in this work that the Weibull slope representing the scatter of the life
data for tripode joints is the same Weibull slope present in bearings, which is ¢ = 1.11

[38]. Table 6.13 summarizes the actual life in cycles and the geometric variables that
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are input into Eq (6.15) to do curve fitting, using least-squares, for the exponent ¢ and

for the constant C;.

1/¢e

C
L=c102[ 1 j L (6.15)

The trunnion diameter t and the constant C, used in Eq (6.15) are 20.975mm and

0.5, respectively. The time under load in Table 6.13 was obtained by multiplying the
time on test by a factor 20/21, which is based on the schedules from Table 6.1. A time
of twenty minutes of load and one minute of cooling and grease distribution per every

twenty one minutes of testing.

Torque | Speed | Time on | Time under | Life x10° & off  off
[Nm] [rpm] test [Hr] Load [Hr] [cycles] [mm]
272 1200 605 576 41.49 10.75° | 8.87
466 700 120 114 4.80 10.75° | 9.39
816 400 96 91 219 10.75° | 9,82

Table 6.13. Inputs to best-fit life equation

Table 6.14 summarizes the effective shear stresses used in Eq (6.15) to do curve-

fitting, the fitted values of c and C; and the predicted life after the curve fitting.
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c=9.462 c=9.146 Life x10° | Life x10® | Life x10°
Torque | ¢ _1E30 | C;=3.42E28 | [cycles] | [cycles] | [cycles]
[Nm]
Tmax [MPa] Toct [MPa] Actual Tmax Toct
272 707.5 613.3 41.49 41.32 41.49
466 888.7 770.9 4.80 4.54 4.87
816 893.7 842.5 2.19 413 2.07

It can be observed from Table 6.14 that the values of the best-fit constant ¢ are
within the range of stress-life exponents reported for bearings, which is 8.4 to 12 [38].
The octahedral shear criterion seems to be more appropriate to predict the life of
Tripode joints. Figure 6.19 compares the life predictions versus the actual life in a log-

log scale, where the circles represent the actual life, the squares represent the

Table 6.14. Life prediction summary

maximum principal shear criterion and the triangles represent the octahedral criterion.
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Figure 6.19. Actual versus theoretical life
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Residual stresses were checked experimentally by X-Ray diffraction in one of the
trunnions of Part C-4. An unloaded area was inspected at various depths to quantify the
residual stresses produced by the grinding process used to manufacture the prototypes.
Figure 6.20 shows the residual stress gradient, where the circles represent the stresses
in the circumferential direction and the triangles represent the stresses in the axial
direction. Residuals stresses were also checked at the surface and at a depth of
0.042mm in the area where the maximum contact pressure was calculated to occur,
after test. Squares in Figure 6.20 represent the steady state circumferential residual

stress and diamonds represent the steady state axial residual stress.

stress [WV[Pa]
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Figure 6.20. Residual stresses in Spider C-4

The reader may refer to the Appendices to see more data relative to the residual
stress analysis by X-Ray diffraction. The residual stresses experimentally determined

were superposed to the calculated elastic stresses. New critical shear stresses were
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calculated and the corresponding curve-fitting was repeated. Results are summarized in

Table 6.15
C=9.345 c=9.700 Life x10® | Life x10® | Life x10°®
Torque | ¢ _1.02E29 | C; =2.89E29 | [cycles] | [cycles] | [cycles]
[Nm]
Tmax [MPa] Toct [MPa] Actual Tmax Toct
272 601.1 529.6 41.49 41.47 41.50
466 747.7 664.6 4.80 5.13 4.36
816 850.8 693.3 2.19 1.47 2.78

Table 6.15. Life prediction summary, residual stresses included

Torque [Nm]
0 OA

—
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500 «

300
‘? Life [Cycles]

1x10°2%x10° 5x10°1x107 2x10° 5x107 1x10°

Figure 6.21. Actual versus theoretical life after superposing residual stresses

Figure 6.21 compares the life predictions after including the experimentally

determined residual stresses. The circles represent the actual life, the squares
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represent the maximum principal shear criterion and the triangles represent the

octahedral criterion.

The life prediction using the Octahedral Shear criterion fits better actual life values
than the prediction using the Maximum Shear criterion, where a better fit means a lower
value of the sum of squared errors. The better fit using the Octahedral Shear criterion
holds true when the residual stresses, caused by the manufacturing process used to

make the trunnions, are neglected or included.

A stress-life exponent of ¢ = 9.7 was reported by Baughman [42] for rolling contact
fatigue of bearings, which is similar to best-fit ¢ value determined in this work, using the
Octahedral shear criterion and including residual stresses. Then, Eq (6.15) can take the
form of Eq (6.34), which is the expression that will be used in the remaining portion of

this work.

0.9

1 9.7 1
L=2.89><102902( ] (6.34)

T t
eff lotf Petr >

Material analysis was performed in Part A-2, the actual chemical composition of
the batch of material used to make the prototype spiders can be reviewed in the
Appendices of this work. The average surface hardness before testing was measured to
be 61.5HRc. After testing, Part A-2 was sectioned close to the generated pit and a

hardness traverse check surface to core was performed, shown in Figure 6.22.
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Hardness in the region of maximum shear was found to be 62HRc (743Hv), which

supports the idea of an elastic contact for the tests at 272Nm and 466Nm.
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Figure 6.22. Hardness gradient in trunnion
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7. TRUNNION FORM OPTIMIZATION

7.1 Introduction

It has been studied In the previous sections the way loads are transmitted inside
of the Tripode Joint (Section 3) after an input torque is applied, how those loads are
distributed among needle rollers (Section 4), the state of stress in the contacts because
of the loads (Section 5) and the relationship between the state of stress and the wear
fatigue-life of the joint (Section 6). One of the most effective ways of improving the life of
a Tripode Joint, while keeping the same materials, the same packaging and similar
manufacturing processes is to improve the load distribution among needles to reduce
the peak load on the most heavily loaded contact. The consequence of reducing the
peak load will be a reduced stress. Therefore, an increment in the number of cycles a
joint can survive before spalling. This Section deals with the optimization of the trunnion

form to minimize the peak load at the contacts.

7.2 Elliptical vs. Circular Trunnion
It was mentioned in Section 4 that a trunnion can be made with an elliptical
shape to have a better load distribution among the needle rollers. The elliptical form was

defined based on radial deviations from the minimum circumscribed circle. Eq (4.70)
describes such deviations, where ¢; is the elliptical ratio, defined as the ratio of the

major to the minor axis of the ellipse.
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t AR 7))
QV:_E 1- cos(¢v+5j +—23|n(¢v+5j (4.70)

&

The author has tested joints made with elliptical trunnions and equivalent joints
made with circular trunnions. In the author’s experience parts made with elliptical
trunnions perform better than parts made with circular trunnions when tested on the
same durability schedule [43], which supports the idea of lower stresses due to a better
distribution of contact loads. For illustration purposes, Schedule 3 of Table 6.1 will be
used to show the estimated life improvement when an elliptical trunnion is used, with

respect to a perfect circular trunnion.

Table 7.1 shows a comparison of the load distributions on the trunnion at an
input torque of 816Nm and at a joint angle of 7°, while Table 7.2 shows a comparison of
the input variables for Eq (6.34), which is used to calculate the joint life at different

stress levels.

0.9

1 9.7 1
L=2.89x10%°C (6.34)
2 Teff t

lotf Dot >
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Py Circular Elliptical
[N] [N]
0° 2772 2632
10° 2386 2257
20° 1661 1589
30° 991 1018
40° 494 610
50° 146 342
60° 0 87
70° 0 0
80° 0 0

Table 7.1. Load distribution, circular vs. elliptical trunnion (e; = 1.003)

The reader will notice in Table 7.1 that an extra needle carries load in the elliptical
trunnion and the peak load goes down by 5%. Form errors and waviness will be ignored
for the sake of illustrating the nominal differences between different trunnion
geometries. Also, for the purpose of illustrating differences between trunnion profiles, it
will be assumed that the trunnion is hard enough to neglect plastic deformation and only

elastic contacts will be considered.
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It can be observed in Table 7.2 that octahedral shear stress in the elliptical
trunnion is lower than in the circular trunnion by 2.3% while there is an increment in

predicted life of 24.4%, a significant improvement.

Variable Circular Elliptical
P1max [N] 2772 2632
So [MPa] 3435.0 3355.9
Smax [MPa] 3729.7 3646.9
a[mm] 0.010544 | 0.010095

P off 10.75° 10.75°
lefr [Mmm] 9.82 9.82
Zoct [mm] 0.042 0.041
Toct [MPa] 988.0 965.6
L10 x10° 0.090 0.112
[cycles]

Table 7.2. Life comparison, circular vs. elliptical trunnion at 816Nm and 7°

7.3 Optimized vs. Elliptical Trunnion

The advantages of an elliptical trunnion over a circular trunnion are clear. Then, it
is necessary to find out if there is another trunnion form that will distribute contact loads
better than a perfect ellipse, an optimum shape. The computer program for the load

model described in Section 4 was modified to make it compatible with commercially
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available optimization tools. Two tools were selected, the SOLVER function included in
a commercial spreadsheet software (Tool A) and a specialized optimization software

(Tool B) [44]. The optimization problem was set up the following way.

Define a load on each needle roller as p,, where v=1, 2,3, ..., n. The number of
needle rollers is indicated by n. The angular location of the needle roller ¢, is
established with respect to the plane of symmetry of the load distribution, where the

maximum load p,max Occurs when ¢, = 0° and v = 1. The form of the trunnion is

defined by the radial deviations £2,, from the trunnion base circle.
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Figure 7.1. Load distribution on a trunnion
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The SOLVER function of Tool A can handle optimization of only one variable.
Therefore, the objective function was to minimize the difference of loads with respect to

the maximum load.

. (n
|nt(4+1j
min Z (pvmax_pv)2 (7.1)
v=2

For n = 36. Subject to the trunnion having a symmetrical shape and to the constraints

Pvmax Z Py 2 Py+1 (7.3)
02, =0.031

1 (7.4)
210 =0

Changing the values of @, forv =2, ..., 9. Constraint 24 =0.031mm defines the

“elliptical gap”, which is the same gap of the ellipse used to calculate Table 7.1. The
elliptical gap is defined as the radial deviation from the base circle of the trunnion at the

spider plane.

Tool B has the capability of doing multi-objective optimization. Therefore, two

variables were targeted to be minimized: The difference of loads with respect to the

maximum load and the maximum load.
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int(n+1j
4

min Z (pvmax_pv)2 ;- min(py max) (7.5)
v=2

Subiject to the trunnion having a symmetrical shape and to the constraints

Py —Py+120 (7.6)
02, =0.031
Q1 =0 (7.4)

Pareto Front

8E7

6E7

Sum(d)

4E7

2E7
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Pvmax

Figure 7.2. Pareto Front
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A Pareto Front was generated for Eq (7.5), shown in Figure 7.2. The results of the

two optimizations are shown and compared in Table 7.3.

¢, | Elliptical | Elliptical | Tool A Tool A Tool B Tool B
[N] 2, [N] Qy [N] Qy
[mm] [mm] [mm]
0° 2632 0.0310 1714 0.0310 1702 0.0310
10° 2257 0.0301 1714 0.0270 1698 0.0270
20° 1589 0.0274 1714 0.0181 1689 0.0179
30° 1018 0.0232 1714 0.0076 1650 0.0074
40° 610 0.0182 1315 0 1448 -0.0015
50° 342 0.0128 0 0.0082 0 0.0027
60° 87 0.0077 0 0.0047 0 0.0077
70° 0 0.0036 0 0.0044 0 0.0002
80° 0 0.0009 0 0.0014 0 0.0000

Table 7.3. Load distribution, circular vs. elliptical vs. optimized trunnion

Even though less needle rollers are loaded in the optimized profile the load is
more uniformly distributed and there is a significant reduction in the peak load with
respect to the elliptical trunnion, 35.3% when the best optimized solution (Tool B) is

considered. If the two optimum solutions are compared it is clear that the solution
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obtained using Tool B features a lower peak load and a reduced difference between
adjacent loads and the peak load, which were the optimization targets. Table 7.4 shows
a comparison of the pressure, critical stress and predicted life between the circular, the

elliptical and the best optimized trunnion profile.

Variable Circular Elliptical | Optimized
P1max [N] 2772 2632 1702
So [MPa] 3435.0 3355.9 2763.4
Smax [MPa] 3729.7 3646.9 3031.1
o [mm] 0.010544 0.010095 0.007001

P off 10.75° 10.75° 10.75°
l et [MmM] 9.82 9.82 9.54
Zoct [mm] 0.042 0.041 0.034
Toct [MPa] 988.0 965.6 802.8
L10 x10° 0.090 0.112 0.690
[cycles]

Table 7.4. Life comparison, different trunnion forms at 816Nm and 7°

The advantages of an optimized trunnion over an elliptical trunnion are clear.
Reduction in maximum pressure of 16.8% and an increment in predicted life of more
than six times, at 816Nm. It must be noted that given the non-linearity of contact
stresses, with respect to torque, the optimum trunnion profile would be different if a

different input torque were used.
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8. CONCLUSIONS

The kinematics of a Tripode Joint has been studied in this work. A Tripode Joint is
not a perfect constant velocity joint and the effective angular displacement of ball rollers
changes as a function of joint angle. A higher joint angle means a higher deviation from
the perfect constant-velocity behavior and an integral approach has to be followed to

calculate the angular displacement of rollers.

At joint angles where the Tripode Joint is tested and validated (i.e. 7°) the non-
constant velocity behavior causes very small changes in the loads that are transmitted
between balls and ball bores, less than 0.1%. Such changes can be neglected for the

purpose of calculating the loads that are transmitted to the needle rollers.

The effective arch ¢4 traveled by a needle roller on a trunnion can be calculated

neglecting joint angle variation at joint angles where the Tripode Joint typically operates
and kinematic equations, such as those used to calculate roller displacement, can be

linearized.

At typical functional angles, 7° and lower, the Tripode Joint can be considered a

Constant Velocity Joint even though it exhibits small deviations from constant-velocity

behavior.
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The main contributor to Generated Axial Force (GAF) in a Tripode joint is the
sliding friction between balls and ball bores. The rolling friction between trunnions,
needle rollers and balls is very small and allows modeling of the contacts between the

trunnion and the needle rollers as frictionless contacts.

The state of stress in the contact between a needle roller and a trunnion can be
approximated considering Hertzian line contacts. However, non-Hertzian contacts are a
more complete solution. Non-Hertzian contact analysis, which can be performed
meshing the contact area in small rectangles, assigning a load to each rectangle and
applying superposition, allows calculation and understanding of the pressure distribution
in the contact. Factors that may influence the pressure distribution in the contact
between a trunnion and a needle roller, such as needle crowning, needle skewing, edge
loading and asymmetrical loading, were considered in this work and its effects were

individually studied.

The area in the contact where maximum pressure was calculated to occur
matched the area where trunnion pitting in tested parts initiated, verifying the

advantages of non-Hertzian contact analysis over traditional line-Hertzian contacts.

The pressure distribution on a contact causes sub-surface stresses. Two static
failure theories for ductile materials were considered in this work to calculate the critical
shear stress under the surface: The Maximum Shear Stress Theory and the Maximum

Distortion-Energy Theory. The Maximum Shear Stress Theory predicts the critical shear
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stress to be at a deeper point than the location predicted by the Maximum Distortion-

Energy Theory.

Wear fatigue-life in a Tripode Joint is defined when spalling or pitting occurs on the
surface of a trunnion due to repeated rolling contact. A pit always precedes a large
spalled area. A pit forms due to a crack under the surface at the depth where the critical
shear occurs. In this work it was found that the depth of a newly generated pit was in
the same region where the critical shear stress was predicted to be, which validates the

assumption of a pit initiating under the surface.

Residual stresses were included as part of the contact stress analysis for life
prediction. Theoretical residual stresses due to shakedown of the material were
calculated considering an Elastic-Perfectly Plastic model and were found to be
compressive. Residual stresses in the trunnion were measured using X-Ray diffraction
techniques and found to be compressive after testing in the contact area, which

confirms the existence of shakedown in the material.

Theoretical residual stresses were directionally correct when compared to
experimentally determined residual stresses and in a similar order of magnitude. The
use of more sophisticated plasticity models would allow a better prediction of residual

stresses.
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Measured residual stresses were superposed to the calculated elastic state of
stress. These stresses, in combination with the corresponding actual life of Tripode
Joints obtained from testing, were used as data points to best-fit a stress-life exponent

and a proportionality constant for the Tripode Equation proposed in this work.

The critical stress values determined using the Maximum Distortion-Energy Theory

provided a better fit than the values obtained using the Maximum Shear Stress Theory.

Therefore, the Maximum Distortion-Energy Theory is preferred to predict wear fatigue-

life in Tripode Joints.

The final form of the Tripode Equation proposed in this work is

1/ ¢

Cc
1 1
L:C102(T ffJ J
e

/ o
off Peff 5

p -1
_{ ceili eff
Co (Ce/ /ng( vy ’7D

Where ¢c=9.7, € =1.11 and C; =2.89x102%. The model can be used to predict wear

life-fatigue in Tripode Joints.

The value of the constant C; is specific to the type of grease and manufacturing

processes used to make the Tripode Joints used in this work, which cover a wide range
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of automotive applications. A different grease or different manufacturing process would

require the experimental determination of a new constant C;.

The best way to improve wear life-fatigue in a Tripode joint is to minimize the peak
load at the contacts between the trunnion and the needle rollers, and at the same time
minimize the load differences between adjacent needles. Optimizing for these two
objective functions at the same time generated a Pareto front that converged to one

point, which uncovered that the objective functions are not in contraposition.

Elliptical trunnions distribute load among needle rollers better than circular

trunnions, which has the advantage of better durability.

An optimized trunnion shape can dramatically increase the wear life-fatigue in a
Tripode Joint, when compared to perfectly round and perfectly elliptical trunnions. The
improvement can be done without changing materials, processes and the size of the

joint.

The load analysis used in this work allows the incorporation of form errors and

trunnion waviness. This allows the possibility of optimizing the trunnion shape including

expected manufacturing variation.

During regular operation in a vehicle, a Tripode joint will see different loads and a

load history that will depend on the application (i.e. load history in city driving is different
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from load history in freeway driving). The model developed in this work would allow to
extend the optimization problem previously discussed to include load history, where the
optimization of the trunnion is not done to minimize the contact loads for a specific
torque but to minimize the size of the trunnion or to maximize the life of the joint under a
series of different loads and the time the joint spends at each load. In other words,

optimize the size and/or the life of a Tripode Joint for a specific load history.

The results and models developed in this work can have an immediate and direct

application in the auto-industry.
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APPENDIX A

SURFACE FINISH INSPECTION BEFORE AND AFTER TEST

Ra = 0.18um
(um) Roughness Curve
1.0 |
0.5 VRN j\ U A
| [ | ] | |
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|
-1.0 |
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Figure A.1. Surface texture before testing
Ra = 0.09um
(um) Roughness Curve
1.0
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Figure A.2. Surface texture after testing
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APPENDIX B

RESIDUAL STRESS ANALYSIS

Residual Stress, [MPa]
Depth, Error, Peak
[mm] Corrected Corrected +[MPa] Width, [7]

As
for Stress  for Layer
Measured Gradient Removal

1. Marked Location on Trunnion, Axial

0.000 -375.5 -417.6 -417.6 21.2 5.95
0.025 -120.2 -124.5 -123.2 16.9 6.16
0.032 -164.4 -140.0 -138.6 23.3 6.40
0.042 -196.9 -188.3 -186.5 32.0 6.41
0.055 -204.1 -201.7 -199.4 21.7 6.47

2. Marked Location on Trunnion, Circumferential

0.000 -128.1 -112.5 -112.5 21.3 5.85
0.025 -236.1 -213.2 -212.8 23.1 6.27
0.032 -295.4 -282.6 -282.0 23.7 6.23
0.042 -279.7 -275.4 -274.5 23.7 6.22
0.055 -319.2 -305.9 -304.7 24.0 6.56

3. 902 from Original Location on Trunnion, Axial

0.000 -1206.6 -1232.8 -1232.8 27.8 4.73
0.042 -873.3 -900.4 -891.8 27.2 4.00

4. 902 from Original Location on Trunnion, Circumferential

0.000 -385.9 -367.2 -367.2 15.5 4.74
0.042 -595.2 -576.7 -574.8 12.2 3.97

Table B.1. Residual stresses
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APPENDIX C

MATERIAL ANALYSIS OF PROTOTYPE MATERIAL

TEST RESULTS:
CHEMISTRY
Specification: JIS-G4052 SCM-420H
Actual: JIS-G4052 SCM-420H

Sample C Mn P S Si Ni Cr
Spider  0.20 0.80 0.027 0.009 0.223 0.11 1.03

Sample Al Cu Pb B Nb Zr Ti
Spider 0.035 0.142 0.0000 0.0001 0.043 0.001 0.004

Sample Mo Vv Ca

Spider 0.16  0.010 0.00000
Table C.1. Chemical composition

HARDNESS

Trunnion B was sectioned transversely adjacent to the pitting in order to determine
the hardness profile. A microhardness traverse was performed from the surface to
the core with the readings taken in HV500g and converted to HRC.

Specification:

*Actual:

Finished trunnion surface hardness to be 58 HRC minimum

62 HRC

Finished trunnion case depth to 50 HRC to be 0.8mm minimum 1.1mm

minimum

As a reference: finished trunnion total case depth to be 1.0mm

2.0mm

Table C.2. Hardness

*Readings from taken microhardness traverse
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APPENDIX D

TRUNNION ROUNDNESS INSPECTION REPORTS AND EFFECTS OF FILTERING

Mahr Federal Inc. Date:1/4/10 Time:4:20 PM
] art No: Operator:

Measurement Mode: Roundness
90.0° Grad. Size 0.10um

1

i
|
|
i

-

-

. W

270.0¢
EASUREMENT RESULTS: ‘counmous: ~.
oundness (1): 0.83 ym (OD) |Filter; Gauss 0-15 UPR

Figure D.1. Roundness with filter 0-15UPR
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Tahr Federal Inc. Date:1/4/10 Time:4:19 PM
art No: Operator:

Measurement Mode:Roundness
90.0° Grad. Size 0.10um

270.0°

MEASUREMENT RESULTS: | CONDITIONS:
oundness (1): 1.28 pm (OD)* |Filter: Gauss 0-50 UPR

Figure D.2. Roundness with filter 0-50UPR
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Mahr Federal Inc. Date:1/4/10 Time:4:18 PM
Part No: Operator:

Measurement Mode:Roundness
90.0° Grad. Size 0.10um

E 3

0.0°

EASUREMENT RESULTS: ' CONDITIONS:
oundness (1): 1.53 pm (OD)* ‘Filter; Gauss 0-150 UPR

Figure D.3. Roundness with filter 0-150UPR
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dMahr Federal Inc. Date:1/4/10 Time:4:19 PM
Part No: Operator:

Measurement Mode:Roundness
90.0° Grad. Size 0.10um

EASUREMENT RESULTS: ‘counmous:
Roundness (1): 2.20 pm (OD)* | Filter: Gauss 0-500 UPR

Figure D.4. Roundness with filter 0-500UPR
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