A METHODOLOGY FOR DETERMINING ENERGY REQUIREMENTS ON MICHIGAN FARMS USING FARM RECORDS

> Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY FREDERICK WILLIAM HALL 1975

ABSTRACT

A METHODOLOGY FOR DETERMINING ENERGY REQUIREMENTS ON MICHIGAN FARMS USING FARM RECORDS

by

Frederick William Hall

A methodology using farm records was developed to collect energy use data from the major types of Michigan farms. Records used in the study were the Michigan Telfarm Records from which a limited sample were selected for the pilot study. From the comparison of fertilizer inputs provided by the records, Nitrogen was found to be the largest single input across all farms. The gallons of fuel consumed per acre for all farm uses were greater than expected. By enlarging the sample of farms selected and utilizing current monthly records, it is believed that an accurate determination of energy requirements for Michigan farms can be made.

lajor

Approved Department Chairman

A METHODOLOGY FOR DETERMINING ENERGY REQUIREMENTS ON MICHIGAN FARMS USING FARM RECORDS

ЪУ

Frederick William Hall

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Agricultural Engineering

To Linda, who worked as hard on this study as I did, and Tony, who unknowingly left his imprint here, also.

ACKNOWLEDGMENTS

My most sincere appreciation goes to Professor Robert L. Maddex who helped me with my graduate program and provided guidence in making this study. His experience and counsel were of great personal benefit to me.

I also would like to thank Dr. Fred Bakker-Arkema and Dr. John Gill for their help and advise on this study. Their personal interest in my work has provided me with much encouragement.

My thanks to Bill Dexter who helped with the details of the Telfarm record keeping system and to all of the farmers who gave of their time and participated in the study. I hope that this study will eventually be of great help to them.

And finally, my appreciation to everyone in the Agricultural Engineering Department who have been an inspiration to me and a pleasure to work with.

iii

TABLE OF CONTENTS

I	Page
troduction	. 1
ojectives	. 4
The Basic Unit. The Basic Unit. Parameters for the Model. Parameters for the Model. Michigan Farm Types Michigan Farm Sizes Michigan Farm Sizes Parameters Technological Factors Parameters Data Collection Parameters Statistical Considerations Parameters	5 5 6 6 7 7
plementation of Methodology	.11
Sults	.26 .28
mmary and Recommendations	•34
pendix A	
pendix B	
pendix C	
bliography	

LIST OF TABLES

Table	Page
1	Farm No. 1
2	Farm No. 2
3	Farm No. 3
4	Farm No. 4
5	Farm No. 5
6	Farm No. 6,
7	Farm No. 7
8	Farm No. 8
9	Farm No. 9,
10	Farm No. 10
11	Farm No. 11
12	Farm No. 12
13	Kilocalories of the Major Inputs by Farm
14	Fuel Inputs to Agricultural Production
15	Inputs for Drying
B.1	Farm No. 1
B.2	Farm No. 2
B.3	Farm No. 3
в.4	Farm No. 4
B.5	Farm No. 5
в.6	Farm No. 6

Table

Page

B.7	Farm No.	7.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.49
в.8	Farm No.	8.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.51
B.9	Farm No.	9.	•	•	•	•	•	•	•	•	•	•	,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•52
B.10	Farm No.	10.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•53
B.11	Farm No.	11.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•55
B.12	Farm No.	12.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.56
C.1	Table of	Outp	out	-1	Inp	rut	; 1	la]	lue	88	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•58
C.2	Analysis	of 1	Var	i٤	anc	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•59

LIST OF ABBREVIATIONS

Amt.	amount
Amt. Prod.	amount produced
B.I.	beginning inventory
btu	British Thermal Unit
bu	bushel
Cal.	Large calorie
cwt	hundred weight
E.I.	ending inventory
Edible Prod.	edible product
ft ³	cubic foot
gal	gallons
g	gram
hrs	hours
kcal	kilo calorie
kg	kilogram
kw hrs	kilowatt hours
lbs	pounds
Ptshp	partnership
Pur	purchased
MCF	1000 cubic feet
Т	ton
wt	weight

INTRODUCTION

The relationship between agricultural production and energy consumption has received much attention in the past few years. Even before fuel supplies became scarce, numerous studies were done to determine the power requirements for various farming operations. Those studies established an estimate of the power required and were based on approximations of actual farming conditions. The farmer used this information to help plan the size of equipment needed.

With the increasing awareness of a shortage in fuel supplies, various states have examined their agricultural industries to determine the amounts of energy required. The California Department of Food and Agriculture and the University of California at Dayis have reported an estimate of the energy required to produce and distribute a ton of product.¹ The estimates were then multiplied by the tons of products produced in 1972 to determine the annual energy requirement.

The National Science Foundation sponsored a project to determine the quantity of energy necessary to grow, process, transport, wholesale, retail, refrigerate and cook food in the United States for the year 1963.²

¹Cervinka, V., W. J. Chancellor, R. J. Coffelt, R. G. Curley, J. B. Dobie. <u>Energy Requirements for Agriculture in California</u>. (Davis, California, California Department of Food and Agriculture, University of California, January 1974).

²Hirst, Eric. <u>Energy Use for Food in the U.S.</u> (Oak Ridge, Tennessee, Oak Ridge National Laboratory, October 1973).

Energy input-output tables were used to assign energy values to the dollar flows reported by the Bureau of Economic Analysis for food expenditures.

These studies have certainly contributed to an understanding of the energy situation. However, most figures recorded are estimates, or are based on theoretical conditions. Very little data exists on how much energy farms actually consume. Several recent computer simulations of farming operations have indicated the need for an accurate data base of energy consumption.³ The report of the National Science Foundation program states, "the coefficients for the agricultural and trade sectors... are not well documented."⁴

At the present time, Michigan's agricultural industry has very little data on energy consumption. The energy requirements for agricultural production on a state-wide basis would help in planning fuel allocations. Even more important, the energy consumption for specific farming operations would help the farmer plan better use of his energy resources. Likewise, knowledge of the total requirements for handling a specific material or producing a product should lead to more efficient use of energy. Energy consumption in relation to farm size is also important as present indications are that farm size will increase.⁵

³Hughes, Harold. <u>Energy Consumption in Beef Cattle Feedlots as</u> <u>Affected by Size and Technology</u>. (Ph.D. Thesis, Michigan State University, East Lansing, Michigan, 1972).

Misener, Gerry, Interviewed by Frederick Hall (Michigan State University, East Lansing, Michigan, July 1974).

⁴Hirst, <u>op. cit.</u>, p. 28.

⁵Michigan State University Agricultural Experiment Station and Cooperative Extension Service, <u>Highlights and Summary of Project '80 & 5</u>. Research Report 180, (East Lansing, Michigan, February 1973).

This author is concerned that Michigan energy data for agricultural production are limited. The necessity of using energy efficiently is apparent now. Plans and policies are now being established that will affect Michigan's agriculture in the years to come. It is hoped that this study will contribute to the implementation of good planning.

OBJECTIVES

The objective of this study includes the following major goals.

- 1. The design and development of a methodology to collect energy use data from the major types of Michigan agricultural farms. Energy use data are to include all forms of non-renewable energy employed, the technology and management practices involved in utilizing the energy and the amounts of products produced.
- 2. The implementation of a pilot study to test the feasibility of the methodology.
- 3. A report of the results of the pilot study.
- 4. The establishment of an estimate of the variability among farms and types of farming.
- 5. The comparison of the results of the pilot study with other values established for energy consumption.
- 6. Recommendations for utilizing this methodology in further studies.

METHODOLOGY

The Basic Unit

The basic unit of the agricultural production system is the individual farm. The first combination of resources is selected at this level. Resources include land, water, equipment, animals, chemicals and nonrenewable energies such as fuels and electricity. The production process is controlled through various management practices and technologies which consume energy. The products represent the output of the combination of the resources, labor, and management.

Parameters for the Model

A factor which influences the amount of energy consumed is the type of farm studied. A livestock farm is utilizing its resources in a different manner than a cash grain operation.

Within the type of farm, the size of the operation is expected to have an effect. Hughes has predicted an optimum size of beef operations with respect to electrical energy efficiency.⁶ The effect on other types of operations is not documented.

The technology and management practices used are also expected to have an effect. Hughes predicted a solid waste handling system is more efficient than liquid wastes with respect to fossil fuels. Likewise, an all silage ration will require less electrical and fossil energy than a

⁶ Hughes, <u>op. cit.</u>, p. 117.

mixed corn and silage ration.⁷

The above information specifies a basic energy model of agricultural production with emphasis on type and size of farm as well as the technology involved. The next step is to consider Michigan's agricultural production. Michigan Farm Types

Michigan's agricultural production can be divided into four major types of farms. The first will include Dairy enterprizes which received 28.4% of Michigan's 1971 cash receipts to agriculture. Livestock is the second type, where cattle and calves received 13.5% of the 1971 cash receipts, and Fruits and Vegetables received 10% of the cash receipts for the same year. Cash Crops representing the fourth type, include corn, wheat, beans and sugar beets. They received 24% of Michigan's cash receipts for 1971.

Michigan Farm Sizes

As was mentioned before, the size of operation within each type of farm is expected to have an effect on energy consumption. Specialists of agricultural production in Michigan were consulted for advise on the representative sizes of farms. The farms are classified into large, medium and small sizes in the manners specified below.

Dairy enterprizes in Michigan divide into sizes based on the number of milking cows per man. The small operation, or one-man, is thirty to forty head. The medium size is a two-man operation, or 100 head plus or minus twenty. The large operation would be 200 head or more.

Livestock enterprizes will vary depending on the type of animals. For beef, the small operation is up to 150 head on feed. This size of

⁷<u>Ibid.</u>, pp. 117-118.

operation will probably also be receiving income from crop sales. The medium size, one-man operation, will range from 200 to 500 head, and the large operation will have 800 to 1,000 head on feed. For swine, the small farm will have twenty to thirty sows, the medium size will have sixty to seventy sows and the large enterprize will have more than 100 sows.

The size of operation in Cash Crops is decided solely on the amount of actual land under production. The small size is less than 400 acres. Medium range is 400 to 800 acres, and over 800 acres is considered large.

Fruits and Vegetables are evaluated on a similar basis. Less than 100 acres is a small operation. Two hundred acres is the medium size, and the large operation is 400 acres.

Technological Factors

The technology incorporated in the farming operations must be considered also. The size of operation may dictate the technology used in some cases, however specific comparisons of machinery management should be made between operations of the same size and type. As an example of this comparison, one might contrast the energy requirements between utilizing a stanchion barn verses a milking parlor in a Dairy operation. Another example would examine the energy consumption between beef enterprizes using tower silos as compared to those using horizontal silos. A contrast could also be made between the use of heavy silage verses a heavy grain feeding program. Data Collection

To implement the model the following information must be collected.
1. The gallons of gasoline and/or diesel fuel used in each operation.
2. The gallons of propane or cubic feet of natural gas used in drying or heating.

3. The kilowatt hours of electricity used for operations.

- 4. The hours of labor for all individuals involved in the operation.
- 5. The pounds of chemicals used in crop production.

6. The pounds of fertilizers used in crop production.

- 7. The pounds of other products brought to the farm unit and consumed such as feed suppliments.
- 8. The pounds of products produced.
- 9. The pounds of products stored and used on the farm.
- 10. The gallons of water used.

There are various other operations that will consume energy on the farm, but will not readily appear in products flowing into or out of the total operation. In separating the energy uses in the operations, the following data must be collected.

- 1. The pounds of manure used and the amount of land on which it is spread.
- 2. The horsepower sizes of both electrical and fossil fuel equipment used in the operations,
- 3. The pounds of products processed on the farm,

To demonstrate how the data collected can give rise to energy equivalents, an example is given as follows:

Suppose it is decided to determine the energy required to cool the milk on the farm. The pounds of milk produced per day (X) is multiplied by the number of BTU's per pound (Y) to be removed from the milk. This gives the total BTU's to be removed per day from the milk. The capacity of the cooler (w) is expressed in BTU's per unit of time. Dividing the total BTU's by the capacity gives the time (t) required to cool the milk per day. The coefficient of performance (u) of the cooler is the ratio of the useful refrigeration to the work supplied. Dividing the time required to cool the milk by the coefficient of performance for the cooler gives the actual time (t') the cooler must work. This time, multiplied by the horsepower (h) of the motor operating the cooler, provides a result which can be converted to the watts of electricity needed. The efficiency of the motor must also be considered in determining the actual energy consumed.

In summary: XY = Total BTU's removed/day from milk, XY/w = t, time required to cool milk/day, t/u = t', actual time cooler must work, and $t'h \rightarrow$ watts of electricity required

Statistical Considerations

It is important to recognize the advantages of statistical methods when conducting a study for possible projections onto a larger scale. A "completely randomized design" should be considered first, for this study because the effects of all variables are uncertain. However, some variables such as size and type of farm are suspected of being directly related to energy consumption. This implies that a "cross-classification" of data for statistical analysis would make the most efficient use of the farms selected. The cross-classified plan has the advantage of maintaining the precision of estimated "main" effects of factors, while indicating possible interactions between factors.

Type and size can be considered to have fixed effects because the classes of both are deliberatly chosen for study. Type of farm, factor A, in this study, is divided into four classes. As mentioned before, they are Dairy, Livestock, Fruits and Vegetables, and Cash Crops. Size of farm, factor B, comprizes three classes, small, medium, and large. A

linear model for this design can be written as follows:

$$Y_{ijk} = u + A_i + B_j + (AB)_{ij} + E_{(ij)k}$$
 (i=1,2-4, j=1,2,3, k=1,2,...r)

 Y_{ijk} is the observed energy use on the kth farm belonging to the ith class of A and the jth class of B. The "mean" or average effect of the farms sampled is represented by u. A_i and B_j represent the average effects of the ith type farm and the jth size farm, respectively. $(AB)_{ij}$ is the effect of the interaction of type and size, and $E_{(ij)k}$ is the random effect of all unspecified variables peculiar to the kth farm of that type and size. The number of farms at each combination of A and B is designated by r. The mathematics involved are much easier if all combinations of A and B have the same number of farms.

If specific technologies or management practices are to be compared, then a "mixed classification" design should be used. This design is similar to the cross-classified design, but it allows a third variable to be studied within the type or size, when classes of technologies differ from type to type or by size of farm.

IMPLEMENTATION OF METHODOLOGY

After the basic model was completed, it was decided to implement a pilot study to test the feasibility of the data collection procedures. The Telfarm system, a farm accounting program, was selected as a source of possible cooperating farmers for the study. Two benefits were realized from utilizing this source. First, the farmers participating in Telfarm have experience in keeping accurate records and second, most of the individuals have been known to be cooperative with the University in past research studies. A possible disadvantage is that this select group of farmers may not be typical in their ability to make efficient use of energy.

Because time and funds were limiting factors to the study, the farms in Ingham, Eaton and Clinton counties were the only ones considered. This limited the types of farming operations to three; Dairy, Livestock, and Cash Grain. More than fifty percent of the Telfarm cooperators in the Tri-County area are classified as Specialized Southern Dairy. This provided a large number of farms to select from in the Dairy Industry. Two of the farms chosen, were in the small-size classification, two, in the medium-size, and one in the large classification.

All of the beef and swine operations in the Telfarm system for the Tri-County area were considered because of the limited number. Three farms agreed to participate in the study. Two of the operations were medium-sized beef feeders and the third was a large hog enterprize.

In the Cash Grain operations, one farm was in the small-size group, two, in the medium-size, and one in the large. The limited number of cash grain farmers with Telfarm again affected the sample size.

The study was based on the 1973 records because the 1974 records were not as yet complete. The Telfarm records were examined for the required data and included such information as crop acreages, yields, products sold, animals sold, rations fed to livestock on the farm, animal weight produced, inventories of stored feed and equipment, and the hours of labor. Additional information such as gallons of fuel used was not available in the records at the time this study was conducted. This was gathered directly from the farmers.

A visit to each farm was arranged and management practices were recorded. These included items such as the tillage operations used, the amounts and types of fertilizer and chemicals used, types of harvesting methods, and the destinations and mode of transportation of produce. Twelve farms in all, participated in the study and each visit lasted about two hours in length.

RESULTS

The collected data were organized and each input to the farming operations was converted to its energy equivalent. Each of the products leaving the farm was also converted to its energy equivalent. The output-input ratio could then be determined. The results are presented in the tables which follow. There is a brief narrative description of each farm after the set of tables and the remainder of the original data collected is found in Appendix B. TABLE 1.

FARM NO, 1

INPUT			Energy Eq	wivalents #
Fuel: Gasoline	gallons 2744	liters 10386	kcal 8.57x10 ⁷	btu 3.40x10 ⁸
Electricity	16000 kv	v hrs	1.38x10 ⁷	5.46x10 ⁷
Fertilizers and Chemicals: Nitrogen Phosphorous Potassium Herbicides	tons 5.06 3.35 3.38 0.10	kg 4590 3039 3066 90.7	8.08x107 9.69x106 6.75x106 2.20x10	3.21x107 3.85x107 2.68x106 8.71x10
Labor	2982 hi	rs	4.08x10 ⁵	1.62x10 ⁶
Total for Input			1.99x10 ⁸	
OUTPUT				
Crops: Corn-shelled (bu) Wheat (bu) Beans (cwt)	bu/cwt 2827 578 289	kg 71810 15731 13109	2.50x10 ⁸ 5.19x107 4.46x10 ⁷	1.05x10 ⁹ 2.08x108 1.77x10
Dairy: Amt. Prod. Animal Sales 196 cwt Milk Sales 3078 cwt		e Prod. 3535 kg 139618 kg	9.41x10 ⁶ 9.08x10 ⁷	3.73x10 ⁷ 3.43x10 ⁸
Total for Output			4.47x10 ⁸	

OUTPUT-INPUT RATIO

2.24

* Conversion factors are given in Appendix A 2.24

TABLE 2.

FARM NO, 2

INPUT			Energy Eq	wivalents *
Fuel: Gasoline	gallons 2860	liters 10825	kcal 8.95x10 ⁷	btu 3.55x10 ⁸
Electricity	27628 kw	hrs	2.37x10 ⁷	9.42x10 ⁷
Fertilizers and Chemicals; Nitrogen Phosphorous Potassium Herbicides	tons 1.85 1.84 4.54 0.08	kg 1669 1669 4119 76.2	2.94x107 5.32x106 9.06x106 1.84x10	1.17x10 ⁸ 2.11x107 3.60x107 7.32x10
Labor	3574 hr	8	<u>4.90x10⁵</u>	1.95x10 ⁶
Total for Input			1.59x10 ⁸	

OUTPUT

Crops: Corn-shelled Wheat		bu 1600 507	kg 40643 13798	1.41x10 ⁸ 4.55x10 ⁷	5.93x10 ⁸ 1.82x10
Dairy: Animal Sales Milk Sales Total for Output	Amt. Prod. 210 cwt 3878 cwt		Prod. 3788 kg 175906 kg	1.01x107 <u>1.14x108</u> 3.11x10 ⁸	4.00x107 4.32x10

OUTPUT-INPUT RATIO

1.95

.

TABLE 3.

TARM NO. 3

INPUT			Energy Eq	* uivalents
Fuel: Diesel Gasoline Propane	gallons 2423 5500 2595	liters 9171 20817 9822	kcal 7 8.54x108 1.72x107 6.02x107	btu 8 3.39x108 6.82x108 2.39x10
Electricity: Lights, Feeding Hot Water	60781 kv 12815 kv		5.22x107 1.10x107	2.07x10 4.37x10
Fertilizers and Chemicals: Nitrogen Phosphorous Potassium Herbicides	tons 25.01 6.48 10.68 0.77	kg 22689 5879 9689 694	3.99x107 1.88x107 2.13x107 1.68x107	1.58x109 7.44x107 8.46x107 6.66x107
Labor Total for Input	6000 hi	rs	<u>3.27x10°</u> 8.40x10 ⁸	1.30x10'

OUTPUT

Crops: Corn-shelled Wheat		ъи 8500 400	kg 215914 10886	8 7.51x10 3.59x10	2.98x10 ⁹ 1.43x10
Dai ry: Animal Sales Milk Sales	Amt. Prod. 630 cwt 9131 cwt	Edible 25055 lbs	Prod. 11365 kg 414166 kg	3.02x10 ⁷ 2.69x10 ⁸	1.20x10 ⁸ 1.06x10 ⁹
Total for Output				1.09x10 ⁹	

OUTPUT-INPUT RATIO

1.29

TABLE 4.

FARM NO. 4

INPUT			Energy Ec	uivalents #
Fuel: Diesel Gasoline	gallons 1516 2380	liters 5738 9008	kcal 5.34x107 7.43x10	btu 8 2.12x108 2.95x10
Electricity	27424 kw	hrs	2.36x10 ⁷	9.35x10 ⁷
Fertilizers and Chemicals: Nitrogen Phosphorous Potassium Herbicides Labor Total for Input	tons 11.33 6.88 19.21 0.40 8510 hr	kg 10279 6242 17427 359 s	1.81×10^{8} 1.99×107 3.83×107 8.69×10 1.17×10 ⁶ 4.00×10 ⁸	
OUTPUT				
Crops; Corn-shelled Wheat	bu 3430 1400	kg 87127 38102	3.03x108 1.26x10	1.27x10 ⁹ 5.03x10
Dairy: Amt. Prod. Animal Sales 616 cwt Milk Sales 10873 cwt Total for Output		Prod. 11112 kg 493199 kg		1.17x10 ⁸ 1.14x10 ⁹

OUTPUT-INPUT RATIO

1.95

TABLE 5.

FARM NO. 5

INPUT

Energy Equivalents

Fuel: Diesel Gasoline Propane	gallons 4830 3714 2180	liters 18282 14057 8251	kcal 8 1.70x108 1.16x107 5.04x10	btu 8 6.76x108 4.60x108 2.00x10
Electricity	63517 kv	v hrs	5.47x10 ⁷	2.17x10 ⁸
Fertilizers and Chemicals; Nitrogen Phosphorous Potassium Herbicides	tons 23.31 12.66 43.96 0.46	kg 211 47 11485 39881 416	3.72x10 ⁸ 3.66x107 8.77x107 1.01x10 ⁷	1.48x108 1.45x108 3.48x107 4.00x107
Labor	13399 hi	rs	1.84x10 ⁶	7.29x10 ⁶
Total for Input			8.99x10 ⁸	

OUTPUT

Crops: Corn-shelled		ъц 4600	kg 116847	4.07x10 ⁸	1.70x10 ⁹
Dai ry: Animal Sales Milk Sales	Amt. Prod. 1252 cwt 18227 cwt	Edible 49792 lbs	Prod. 22586 kg 826777 kg	6.01x10 ⁷ 5.37x10	2.38x10 ⁸ 1.02x10 ⁹
Total for Output				1.00x10 ⁹	

OUTPUT-INPUT RATIO

1.12

TABLE 6.

FARM NO. 6

INPUT			Energy E	quivalents #
Fuel: Diesel Gasoline	gallo 184 355		kcal 7 6.52x108 1.11x10	btu 8 2.59x108 4.40x10
Electricity: Feeding Lights and Wate		5 kw hrs 0 kw hrs	2.14x10 ⁶ 1.12x107	8.51x10 ⁶ 4.43x10 ⁷
Fertilizers and Ch Nitrogen Phosphorous Potassium Herbicides	8.3 5.1	2 7548 8 4699 7 14579	8 1.33x107 1.50x107 3.21x107 1.41x10	5.27x107 5.95x108 1.27x107 5.58x10
Labor	632	3 hrs	8.67x10 ⁶	3.44x10 ⁷
Total for Input			3.92x10 ⁸	
OUTPUT				
Crops: Corn-shelled Wheat	bu 538 165	6 136813		1.99x10 ⁹ 5.95x10 ⁸
Cattle:	Amt. Prod. Ed	ible Prod.	7	8

Animal Sales	1004 cwt	49206 lbs	22320 kg	7.83×10^7	3.11x10 ⁸
Total for Output				7.03x10 ⁸	

OUTPUT-INPUT RATIO

1.79

TABLE 7.

FARM NO. 7

INPUT			Energy Eq	uivalents #
Fuel: Diesel Gasoline	gallons 3519 5913	liters 13318 22381	kcal 8 1.24x108 1.85x10	btu 8 4.93x108 7.33x10
Electricity	9600 kv	v hrs	8.25x10 ⁶	3.27x10 ⁷
Fertilizers and Chemicals: Nitrogen Phosphorous Potassium Herbicides Labor	tons 4.57 15.51 27.62 0.39 8261 hr	354	7.30x107 4.49x107 5.51x107 8.56x10 ⁶ <u>1.13x10⁶</u> 8	2.90x108 1.78x108 2.19x107 3.40x107 4.50x10 ⁶
Total for Input			5.00x10 [°]	
OUTPUT				
Crops: Corn-shelled Wheat Soybeans	bu 10981 3600 1927	kg 278935 97978 54193	9.71x108 3.23x108 2.18x10	4.07x109 1.29x108 8.65x10
Cattle: Amt. Prod.	Edible	e Prod.	1 76-108	6 07-108

Animal Sales	2250 cwt	110273 lbs 50020 kg	1.76x10 ⁸	6.97x10 ⁸
Total for Output			1.69x10 ⁹	

OUTPUT-INPUT RATIO

3.38

* Conversion factors are given in Appendix A

5.5

FARM NO. 8

TNDIM	
THEFT	

INPUT Energy Equivalents						
Fuel:	gallons	liters	kcal 6	btu "		
Diesel	250	946	8.82×10^{6}	3.50×10^{7}		
Gasoline	3163	11972	9.88×10^{7}	$3.92 \times 10^{\circ}$		
Gasoline (custom hauling) 317	1201	9.91×10^{0}	3.93×10^{7}		
Gasoline (hauling hogs)	2850	10787	8.90x10	$3.53 \times 10^{\circ}$		
Propane (drying)	11755	44493	$2.72 \times 10^{\circ}$	1.08x108		
Propane (heating)	3000	11355	6.96x10	2.76x10 ⁰		
Electricity	136800 k	w hrs	1.17x10 ⁸	4.66x10 ⁸		
Fertilizers and Chemicals:	tons	kg	8	8		
Nitrogen	9.67	8773	1.54×10^{8}	6.11x107		
Phosphorous	4.42	4010	1.28×10^{6} 8.82 \ 10^{7}	5.08×10^{7}		
Potassium	4.42	4010	8.82×10^{0}	3.50×10^{7}		
Herbicides	0.84	758	1.83x10'	7.27x10'		
Labor	5827 h	rs	<u>7.99x10⁵</u>	3.17x10 ⁶		
Total for Input			8.60x10 ⁸			
OUTPUT						
Crops:	bu	kg		. 0		
Corn-shelled	5609	142478	4.96x10 ⁸	2.08×10^{9}		

Corn-shelled Wheat	5609 557	142478 15159	4.96x107 5.00x107	2.08x10 ⁹ 2.00x10 ⁸
Swine: Amt. Proc Animal Sales 6407 cw	d. Edible t 402242 lbs	Prod. 182457	kg <u>9.36x10⁸</u>	3.71x10 ⁹
Total for Output			1.46x10 ⁹	

OUTPUT-INPUT RATIO

1.70

TABLE 9.

.

FARM NO. 9

INPUT			Energy Eq	uivalents *
Fuel: Diesel Gasoline Propane	gallons 1772 2712 2790	liters 6707 10265 10560	kcal 7 6.25x107 8.47x107 6.48x10	btu 8 2.48x108 3.36x108 2.57x10
Electricity	14000 kw	hrs	1.20x10 ⁷	4.76x10 ⁷
Fertilizers and Chemicals: Nitrogen Phosphorous Potassium Herbicides Labor Total for Input	tons 15.22 5.60 15.60 0.75 2796 hr	678	2.43×10^{8} 1.62×10^{7} 3.11×10^{7} 1.64×10^{7} 3.84×10^{5} 5.31×10^{8}	
OUTPUT Crops: Corn-shelled Wheat Total for Output	bu 15345 836	kg 389788 22753	1.36x109 <u>7.51x107</u> 1.44x10 ⁹	5.69x10 ⁹ 3.00x10 ⁸
OUTPUT-INPUT RATIO			2.70	

TABLE 10.

FARM NO. 10

INPUT

Energy Equivalents

Fuel: Diesel Gasoline Propane	gallons 3018 1996 2925	liters 11423 7555 11071	kcal 1.07x10 6.22x10 6.78x10	btu 4.23x108 2.46x108 2.69x10
Electricity	11400 kv	v hrs	9.79x10 ⁶	3.89x10 ⁷
Fertilizers Nitrogen Phosphorous Potassium Herbicides	tons 9.98 8.74 8.74 0.73	kg 9054 7929 7929 665	1.59x10 ⁸ 2.53x107 1.74x107 1.61x10	6.32x10 ⁸ 9.35x107 6.92x107 6.38x107
Labor	3428 hi	rs	4.70x10 ⁵	1.87x10 ⁶
Total for Input			4.65x10 ⁸	

OUTPUT

Crops: Corn-shelled Oats		Amt. 7554 bu 1190 bu	kg 191884 17273	6.68x10 ⁸ 5.87x107	2.80x10 ⁹ 2.33x10 ⁸ 2.40x10 ₈
Hay Navy Beans Other Beans		29 T 576 cwt 798 cwt	26309 26124 36197	6.05x107 8.88x107 1.23x108 2.48x10	$3.52 \times 10^{\circ}_{8}$ $4.88 \times 10^{\circ}_{9}$
Soybeans		2186 bu	61477	2.48x10	9.83x10 ⁰
Cattle: Animal Sales	Amt. Prod. 85 cwt	Edible 3380 lbs		4.08x10 ⁶	1.62x10 ⁷
Total for Output				1.25 x1 0 ⁹	

OUTPUT-INPUT RATIO

2.69

TABLE 11.

FARM NO. 11

INPUT			Energy Eq	uivalents *
Fuel: Diesel Diesel (custom work) Gasoline Gasoline (custom work)	gallons 6106 205 1700 182	liters 23111 775 6435 687	kcal 2.15x106 7.22x107 5.31x106 5.67x10	btu 8.55x107 2.87x107 2.11x108 2.11x107 2.25x107
Electricity	-		-	-
Fertilizers and Chemicals: Nitrogen Phosphorous Potassium Herbicides	tons 17.75 11.75 15.83 0.51	kg 16103 10660 14361 459	2.83x107 3.40x107 3.16x107 1.11x10	1.05x108 1.35x108 1.25x107 4.41x10
Labor	49 46 hi	rs	6.78x10 ⁵	2.69x10 ⁶
Total for Input			6.41x10 ⁸	
OUTPUT				
Crops:	bu/cwt	kg	0	0

Corn-shelled	(bu)	26800	680763	2.39x10 ⁹	9.40x10 ⁹
Wheat	(bu)	6755	183844	6.07x10 ⁸	2.41x109
Navy Beans	(cwt)	898	40733	1.38x10	5.50x10
Total for Output				3.12x10 ⁹	

OUTPUT-INPUT RATIO

4.87

24

FARM NO. 12

25

INPUT

Energy Equivalents

Fuel: Diesel Gasoline Propane Nat. Gas	gallons 15326 6824 475 5700 M	liters 58009 25829 1998 CF	kcal 8 5.41x108 2.13x107 1.10x109 1.53x10	btu 2.15x108 8.46x107 4.37x109 6.08x10
Electricity	115000 kw hrs		9.88x10 ⁷	3.92x10 ⁸
Fertilizers and Chemicals: Nitrogen Phosphorous Potassium Herbicides	tons 106.56 105.40 168.23 10.45	kg 96671 95619 152618 9477	1.70x108 3.05x108 3.36x108 2.29x10	6.95x109 1.21x109 1.33x108 9.10x10
Labor	21580 hrs		2.96x10 ⁶	1.17x10 ⁷
Total for Input			4.97x10 ⁹	

OUTPUT

Crops:	Amt.	kg	10	10
Corn-shelled	179697 bu	4564591	$1.59 \times 10^{10}_{8}$ $6.96 \times 10^{8}_{8}$	6.30×10^{10} 2.76 $\times 10^{9}$
-silage	1000 T	907200	6.96x108	2.76x109
Oats	7246 bu	1051 77	$3.58 \times 10^{\circ}$	$1,42 \times 10^{9}$
Hay	45 T	40824	9.39x10g	$3.73 \times 10^{\circ}$
Wheat	8772 bu	238739	7.88x108	3.13×10^{9}
Navy Beans	1891 cwt	85776	2.92x108	1.16x109
Soybeans	7087 bu	199309	8.03x10 ⁰	1.16x10 ⁹ 3.19x10 ⁹
Total for Output			1.89x10 ¹⁰	

OUTPUT-INPUT RATIO

3.81

Farm Descriptions

Farm No. 1: This farm was a one-man dairy operation with a milking herd of 27 cows.^{*} He used a switch barn for milking. Silage was stored in a tower silo and comprized about half of the roughage fed. There were 140 acres of cropland. Solid wastes were handled by scraper and spread on 16 acres of wheat. There were nine acres of pasture. Crops were hauled by truck six miles to the elevator and animals were hauled nine miles to market.

Farm No. 2: This farm was a 1.2 man dairy operation with a milking herd of 29 cows. The barn was used as a switch barn, and had an electric gutter cleaner. Cropland totaled 130 acres with eight acres of pasture. Crops were hauled by wagon to an elevator 1.5 miles away. Animals were picked up at the farm.

Farm No. 3: This farm was a two-man dairy operation with a milking herd of 73 cows. The barn was also a switch barn with an electric gutter cleaner. Four hundred tons of silage were stored in tower silos and 900 tons in a bunker silo. Nine thousand bushels of high moisture corn were also blown into storage. In 1973, 10,500 bushels of corn were dried. A seperate calf barn was heated and had automatic feeding, watering and nursettes. Cropland totaled 390 acres.

Farm No. 4: This farm was a 2.84 man dairy operation with a 94 cow milking herd. The barn was used as a switch barn with a mechanical feed bunk and forage wagon outside. One thousand tons of silage were stored in a bunker silo and 600 tons in a tower silo. Two hundred and fifty tons of haylage and 150 tons of dry hay were stored. Cropland totaled 343

Telfarm records 3000 hours of labor as one man-year.

acres with 74 acres of pasture.

Farm No. 5: This was a 4.5 man dairy operation with a 133 cow milking herd. It had a double four herringbone parlor and used wagon feeding. Nine hundred tons of silage were stored in tower silos and 1500 tons were stored in bunker silos. Haylage totaled 335 tons. Seven thousand bushels of corn were dried in 1973. Solid wastes were handled by a scraper. Cropland totaled 549 acres.

Farm No. 6: This was a 2.1 man beef operation using mechanical feeders. The average number head on feed was 260. The amount of silage fed was 318 tons, hay, 119 tons, and corn, 136 bushels. Cropland totaled 208 acres with 20 acres of pasture. Cattle were hauled 27 miles to market.

Farm No. 7: This farm was a 2.75 man beef operation using wagon feeding. The average number head on feed was 599. The silage fed was 1600 tons, hay, 105 tons, and corn, 7800 bushels. Cropland totaled 492 acres. Shelled corn was hauled four miles to an elevator and cattle were hauled twelve miles to the market.

Farm No. 8: This was a 1.94 man swine operation which produced 2500 head. All feeding was automatic. The nursery and farrowing house was maintained at 75°F. Forty-six thousand bushels of corn were dried in 1973. Total miles for hauling animals to market was 7500. Cropland totaled 175 acres and it was all custom harvested.

Farm No. 9: This was a 275 acre cash grain operation. It had a portable dryer and a 5000 bushel storage capacity. Corn yield was 75 bushels per acre. Ten thousand bushels of corn were dried in 1973.

Farm No. 10: This was a 377 acre cash grain operation with 15 head of dairy stock also being fed. Crop yields were 92 bushels per acre for corn, 70 bushels per acre for oats, 2 tons per acre for hay, 11 hundred

weight per acre for navy beans, 12 bushels per acre for other beans and 23 bushels per acre for soy beans. In 1973, 7500 bushels of corn were dried.

Farm No. 11: This was a 508 acre cash grain operation. None of the products were processed or stored on the farm. Crop yields were 105 bushels per acre for corn, 45 bushels per acre for wheat, and 7.2 hundred weight per acre for navy beans. Custom work included harvesting 150 acres of corn, 80 acres of beans and 30 acres of wheat in 1973.

Farm No. 12: This was a 2539 acre cash grain operation. Some of the corn handled was seed corn. Crop yields were lll bushels per acre for corn, 65 bushels per acre for oats, 3 tons per acre for hay, 52 bushels per acre for wheat, 12 hundred weight per acre for navy beans and 29 bushels per acre for soy beans. One hundred and seventy-nine bushels of corn were dried and 100,000 bushels of custom drying was done in 1973. Discussion of the Results

Since this study is concerned with energy consumption in agricultural production, an analysis of the inputs is essential. Several parameters should be considered to determine their influence in energy requirements. The largest inputs for all farms are presented in the table below. Together, these inputs make-up 80.3% of the total inputs for all twelve farms.

TABLE 13. Kilocalories of the Major Inputs by Farm

Farm No.	gasoline	diesel	propane	nitrogen	nat. gas
1	8.57x10 ⁷	-	-	8.08x10 ⁷	-
2	8.95x10 ⁷	-	-	2.94x10 ⁷	-
3	1.72x10 ⁸	8.54x10 ⁷	6.02x10 ⁷	3 .99x10⁸	-

28

Farm No.	gasoline	diesel	propane	nitrogen	nat. gas
4	7.43x10 ⁷	5.34x10 ⁷	-	1.81x10 ⁸	-
5	1.16x10 ⁸	1.70x10 ⁸	5.04x10 ⁷	3.72x10 ⁸	-
6	1.11x10 ⁸	6.52x10 ⁷	-	1.33x10 ⁸	-
7	1.85x10 ⁸	1.24x10 ⁸	-	7.30x10 ⁷	-
8	1.98x10 ⁸	8.82x10 ⁶	2.72x10 ⁸	1.54x10 ⁸	-
9	8.47x10 ⁷	6.25x10 ⁷	6.48x10 ⁷	2.43x10 ⁸	-
10	6.22x10 ⁷	1.07 x10⁸	6.78x10 ⁷	1.59x10 ⁸	-
11	5.88x10 ⁷	2.22x10 ⁸	-	2.83x10 ⁸	-
12	<u>2.13x10⁸</u>	5.41x10 ⁸	<u>1.10x10⁷</u>	<u>1.70x10⁹</u>	<u>1.53x10⁹</u>
Totals	1.45x10 ⁹	1.44x10 ⁹	5.26x10 ⁸	3.81x10 ⁹	1.53x10 ⁹

The total for all inputs was 10.9×10^9 kcal. It is significant to note that the total for nitrogen over all farms is 35% of all the inputs considered. Also, the input for drying with natural gas on farm twelve was 14% of the total.

To further analyze the inputs, some additional parameters were examined. These include the gallons of fuel used per acre, the machinery investment to crops per gallon of fuel, the machinery expense per gallon of fuel, and the bushels dried per gallon of fuel.

TABLE 14. Fuel Inputs to Agricultural Production

Farm No.	fuel gal/acre	<u>M. I. to crop</u> gal of fuel	mach. expense gal of fuel
1	19.60	\$3.16	\$3.20
2	22.00	2.09	2.56
3	20.32	-	-

Farm No.	fuel gal/acre	<u>M, I. to crop</u> gal of fuel	mach. expense gal of fuel
4	11.36	5.46	4.90
5	15.56	4.76	2.96
6	25.96	4.89	3.29
7	19.17	4.59	2.81
8	37.60	4.65	4.04
9	16.31	3.92	1.95
10	13.30	3.91	2.33
11	16.13	4.40	2.27
12	8.54	5.62	<u>3.90</u>
Average	. 18.82	\$4.31	\$3.11

The gallons of fuel used per acre were determined by dividing the gallons reported in the study by the total tillable acres for each farm. The second column is the machinery investment attributed to crops divided by the gallons of fuel used. The third column is the machinery expense (operating costs plus interest on investment) divided by the gallons of fuel.

The gallons of fuel used per tillable acre on these farms included all fuel for farm use. Thus, in the case of farm number 8, the gasoline used for hauling pigs to market was included. If that fuel is left out, the figure drops to 21.31 gallons per acre.

The machinery investment to crops per gallon of fuel indicates that all farms have similar cropping equipment investments regardless of size. In particular, the livestock farms 6, 7, and 8 are very similar. The cash grain operation of 9, 10, 11, and 12 also show little deviation in investment patterns. The values for farm number three are missing because there was no financial analysis available for that farm.

The machinery expense per gallon of fuel shows the smallest deviation across all farms. These are only a few of the parameters that might be examined to determine fuel input relationships.

The propane inputs for drying corn were compared across all farms. The bushels dried per gallon of fuel is presented in Table 15. The farm using natural gas for drying is also shown with the units being cubic feet of gas per bushel.

TABLE 15. Inputs for Drying

Farm No.	bu/gal	kcal/bu
3	4.05	5740
5	3.21	7200
8	3.91	5910
9	3.58	6480
10	2.56	9040
12	20.43 cu ft/1	5480 u

Farm number 10 was also using propane to heat a shop and it was impossible to seperate the usage. The average kilocalories per bushel for the remaining five farms is 6162.

A statistical analysis of variance was done on the output-input ratios and the computations and discussion are found in Appendix C. Due to the small sample size, no significant differences were found between types of farms. At least 15 farms of each type should be examined to determine if significant differences do exist. Conclusions

It is important to remember that the pilot study imployed only a small sample of farms. With this in mind some conclusions can be presented.

First of all, the methodology is a relatively uncomplicated process for determining the energy requirements for agricultural production. The present Telfarm system has the capability of recording all the energy inputs and printing them out on various records, provided the farmers supply the information.

Second, the methodology uses actual energy consumption patterns verses estimated efficiencies. The figures prepared in other studies appear to be substantiated by the pilot study. For example, the cash grain operations had an average output-input ratio of 3.54. Pimentel et al. reported an estimated ratio of 2.52 for corn production.⁸ Also, the indirect energy inputs such as fertilizers and chemicals, are generally larger than the direct energy inputs. Hirst estimated that of the total energy consumed in agricultural production, ⁴⁴% was consumed directly on the farm.⁹ The remaining 56% was consumed in other sectors to produce indirect energy inputs for the farm.

Third, the calculated gallons of fuel per tillable acre is relatively large. A range of 8 to 12 gallons per acre is the generally accepted figure for fuel consumption. Some possible explainations for this difference could be that the 8 to 12 gallon figure does not include

32

⁸Pimentel, D., W. R. Lynn, W. K. MacReynolds, M. T. Hewes, S. Rush. <u>Workshop on Research Methodologies for Studies of Energy, Food, Man and</u> <u>Environment, Phase 1</u>. (Ithaca, New York, Cornell University, 1974).

Hirst, op. cit., p. 15.

idling time, breakdowns, interruptions by weather or time of day, or inefficient use of fuel by the operator.

Fourth, the drying operations are relatively efficient. Patterson reports efficient dryers should dry about 3.29 to 4.63 bushels of corn at 30% moisture per gallon of propane.¹⁰ The average of the four operations in this study was 3.69 bushels per gallon,

¹⁰Patterson, R. J., R. L. Maddex, <u>Effective Energy Utilization in</u> <u>Grain Drying</u>. (East Lansing, Michigan, Agricultural Engineering Information Series #292, Michigan State University, 1974).

SUMMARY AND RECOMMENDATIONS

Summary

This study has developed a methodology using farm records to collect energy use data from the major types of Michigan agricultural farms. A pilot study was conducted to test the method and the results compare favorably with other studies. Nitrogen was found to be the largest single input across all farms and the gallons of fuel consumed per acre were greater than had been expected. Other parameters were examined to determine their influence on energy requirements, yet no single factor was found having a definitive relationship with the total amount of energy consumed. Due to the small number of farms, no significant differences in the output-input ratios between types of farms were discovered. Recommendations

- It is recommended that the gallons of fuel per acre be examined further with additional farms. This pilot study indicates a possible inefficient use of fuel or that previous estimates are inaccurate.
- It is recommended that additional studies include at least
 15 farms per group to aid in any statistical analysis desired.
- 3. To develope possible predictive parameters, it is also recommended that a "multiple-regression" analysis be considered.
- 4. It would be helpful for future studies if all Telfarm cooperators were requested to include in their monthly reports

34

the amounts of fuel purchased, pounds of fertilizers and chemicals purchased, and the kilowatt hours of electricity used, as some cooperators already do.

5. It is recommended that a combination of both records studies and visits with the individual farmers be retained. This would provide the most accurate information and variations in operating procedures which may aid in explaning farm energy use differences. APPENDICES

APPENDIX A

APPENDIX A

CONVERSION FACTORS

Energy Equivalents Produce:¹¹ Cal/100 g (Edible Portion) 65 Milk 348 Corn 340 Oats Rye 334 330 Wheat 340 Beans Soybeans 403 351 Beef 266 Dairy 513 Pork Fuels:¹² Btu/gal 140000 Diesel 124000 Gasoline 92000 Propane 1067.5 Btu/ft³ Natural Gas Fertilizers and Chemicals: 13 kcal/kg 17600 Nitrogen Phosphorous 3190 Potassium 2200 24200 Herbicides Forage Equivalents: 14 kcal/ton (Gross Energy) 2.09x10⁶ 6.96x10⁵ Hay Silage

¹¹Watt, B. K. and M. L. Merrill. <u>Composition of Foods</u>. (USDA Agricultural Handbook No. 8, 1963).

¹²Cervinka, <u>op. cit.</u>
¹³Pimentel, <u>op. cit.</u>
¹⁴Based on replacement equivalence for corn in rations.

Energy Equivalents
21770 kcal/40 hr wk

% Dressing of % Bone in

				16
Live	Weight	to	Edible	Portions: ¹⁶

	live wt.	carcass
Beef	58	15.5
Dairy	48.5	18
Pork	74.74	16

Standard Conversions:

Labor¹⁵

l kw hr	=	3409.52 Btu's
l kcal	=	3.9683 Btu's
1 1b	=	.4536 kg
l ton	Ξ	907.2 kg
l gal	Ξ	3.785 liters
l hectare	=	2.471 acres

¹⁵Pimentel, <u>op. cit.</u>

16 Introduction to Liyestock Production. H. H. Cole, ed., (W. A. Freeman & Co., 1962).

Pecot, Rebecca K., C. M. Jaeger, and B. K. Watt. <u>Proximate Compo-</u> <u>sition of Beef from Carcass to Cooked Meat.</u> (Home Economics Research Report No. 31, ARS, USDA, 1965). APPENDIX B

APPENDIX B

38

TABLE B.1.

FARM NO. 1

Crop Production:

op itoudooton								
-		Acre	Prod	Fed	B.I.	E.I.	Pur	Sales
Corn-shelled	(bu)	42	3800	831	4300	3900	761	2827
-silage	(ton)	16	160	120	85	85		
Hay	(ton)	36	126	129	54	50		
Pasture	(ton)	9	18	18				
Wheat	(bu)	16	578		735	578		1500
Beans	(cwt)	21	289		192	289		200
	•	140						

Cropping Practices:

Corn	Wheat	Beans	Hay
Plow - 4 - 16"	Disc - twice	Plow	Int. 430 Baler
Disc - twice	Plant	Disc - twice	
Piant- 4-38"	Gleaner - K	Plant	
Picker-sheller 2 row		Gleaner - K	
Chopper			

Fertilizer:

Corn		b he	eat	Beans		
Amt. 170 1b/A 150 1b/A 150 1b/A	type 18-46-0 NH ₃ Potash	A mt. 250 lb/A	type 8-32-16	A mt. 250 lb/A	ty pe 17-17-17	

Chemicals:

Corn		Beans				
	type		type			
∠ ⊥b/A	Atrizine	2 qt/A	Eptam			

Electric Motors:

5 HP Silo Unloader 1 HP Compressor

HP Pump HP Cooler

Tractors:

Int. 706 - 67 HP Int. 560 - 62 HP Int. H

Dairy:				
•		B.I.	E.I.	Sales
Milking Head	27	40 HD	30 HD	26 HD
Calves Born	22			

•

TABLE B.2.

FARM NO. 2

Crop Production:

•						
	Acre	Prod	Fed	B.I.	E.I.	Sales
(bu)	46	3184	1490	2800	3000	1600
(ton)	9	130	97			
(ton)	52	107	89	70	50	
(ton)	8	24	24			
(bu)	15	507				507
• •	130	•				•
	(bu) (ton) (ton) (ton)	Acre (bu) 46 (ton) 9 (ton) 52 (ton) 8 (bu) 15	Acre Prod (bu) 46 3184 (ton) 9 130 (ton) 52 107 (ton) 8 24 (bu) 15 507	Acre Prod Fed (bu) 46 3184 1490 (ton) 9 130 97 (ton) 52 107 89 (ton) 8 24 24 (bu) 15 507 507	Acre Prod Fed B.I. (bu) 46 3184 1490 2800 (ton) 9 130 97 (ton) 52 107 89 70 (ton) 8 24 24 (bu) 15 507 507	Acre Prod Fed B.I. E.I. (bu) 46 3184 1490 2800 3000 (ton) 9 130 97 97 (ton) 52 107 89 70 50 (ton) 8 24 24 14 (bu) 15 507 507 50

Cropping Practices: (Corn)

Lift Harrow Plow - 3-16" Planter - 4-32"

Fertilizer:

Amt.	type
10 tons	16-16-16
3960 lbs	12-12-12
9000 lbs	Potash

Chemicals:

Tractors:

JD 2510 - 54 JD 630 - 44 Case 40		3 HP 1 HP	Gutter Cleaner Compressor Pump Cooler
Dairy:	B.I.	E. I.	Sales
Milking Head Calves Born	55 HD	60 HD	18 HD

Electric Motors:

TABLE B.3.

FARM NO. 3

Crop Production:

ob monacciou	•				
		Acre	Prod	Fed	Sales
Corn-shelled	(bu)	270	17000		8500
-silage	(ton)		1300	800	
Hay	(ton)	70	100	50	
Oats	(bu)	20	800	-	
Wheat	(bu)	30	500		400
		<u> 30</u> 390			•

Cropping Practices: (Corn)

Plow - 6-18" Disc Harrow Planter - 6-30" Picker-Sheller 3 row Chopper - 3 row PTO Blower - 400 T

Fertilizer:

<u>Amt.</u> 165 lb/A 200 lb/A	<u>m</u> type NH ₃ 6-24 ² 24	<u>Wheat</u> Amt. 250 lb/A	type	<u>Oats</u> Amt. 250 lb/A	type	<u>Hay</u> Amt. 200 lb/A	type Potash
Chemicals:	(Corn)					
Amt. 1½ 1b/A 2 pt/A 2 pt/A	type Atrizine Bladex Lasso						
Tractors:					El	ectric Mot	ors:
Gas - 70 60 Diesel -	HP				3 HP 5 HP	Silo Unl Silo Unl Milker Gutter C	oader

3 HP Conveyor $1\frac{1}{2}$ HP Conveyor

Electric Motors (Cont.)

3 HP Auger 3 HP Auger 5 $-\frac{3}{4}$ HP Misc.

Dairy:

Milking Head 73 Calves Born 72 E.I. 18 Bred Heifers 15 Open Heifers Sales 45 Calves 27 Cows TABLE B.4.

FARM NO. 4

Crop Production:

		Acre	Prod	Fed	B.I.	E.I.	Pur
Corn-shelled	(bu)	60	6030	2616	5000	6030	16
-silage	(ton)	84	1680	874	1280	1455	
Hay	(ton)	97	487.5	494	100	60	
Pasture	(ton)	74	294	306			12.5
Wheat	(bu)	28	1400			2933	
		<u>28</u> 343					

Cropping Practices: (Corn)

Plow - 6-18" Drag - twice Disc Cultipacker Planter - 4 row 36" Gleaner 10-W NH 2 row Chopper

Fertilizer:

<u>Cor</u> Amt. 175 lb/A 200 lb/A 200 lb/A	type NH 5-40-5	<u>Whea</u> Amt. 400 lb/A	type 5-20-20	<u>A</u> mt. 300 lb/A	ty pe 0-0-60
Chemicals: Amt. l ¹ 2 lb/A 2 qt/A	(Corn) type Atrizine Lasso				
Tractors:				Electric	Motors:
Gas - 75 45 Diesel -	HP			15 호 HP	Total

Dairy:

		B.I.	E.I.	Sales
Milking Head	94	1 85 HD	188 HD	53 HD
Calves Born	75			

TABLE B.5.

FARM NO. 5

	Acre	Prod	Fed	B.I.	E.I.	Sales
Corn-shelled (bu)	180	15852	7648	17465	13500	4602
-silage (ton)	187	2431	1691	1379	1470	
Hay (ton)	114	335	350	391	250	
Wheat (bu)				1000		1014
Rye (bu)	6	180	180			
Summer Fallow	<u>62</u> 549					
	549					

Cropping Practices: (Corn)

Plow - 5-16" Cultimulcher Planter - 4 row 40" Cultivate Picker-sheller - 2 row Chopper

Fertiilzer:

Corn		Hay	
Amt. 100 1b/A 150 1b/A 275 1b/A	type NH3 18-46-0 Potash	Amt. 400 lb/A	type Potash
Chemicals:	(Corn)		

Tractors:

Gas - 40 HP 40 HP 17 HP Diesel - 115 HP 2 - 95 HP 40 HP

2¹/A Atrel 80-W

Electric Motors:

2 -	7 <u></u> HP	Silo Unloader
	5 HP	Silo Unloader
	2 HP	Conveyor
		Conveyor Wagon Loader
	🔒 HP	Protein Conveyor
	l HP	Old Milker
2 -	l HP	Corn Bin
	l HP	Soy Bean Bin
	3 HP	Nell

	Electric	Motors (Cont.)
	Ì HP l HP	Cooler Cooler Vacuum Milker Agitation Grain Auger Fan Furnace Vent Fans
D T	D T	Se lea

Dairy:

		B.I.	E.I.	Sales
Milking Head	133	297 HD	352 HD	57 HD
Calves Born	121			

TABLE B.6.

FARM NO. 6

Crop Production:

top rroduction	•						
-		Acre	Prod	Fed	B.I.	E.I.	Sales
Corn-shelled	(bu)	83	6640	136	9000	8500	53 8 6
	(ton)	45	450	318	600	450	
Hay	(ton)	30	150	119	30	50	
Pasture	(ton)	20	40	40			
Nheat	(bu)	<u>30</u> 208	1800		1000		1654
		208					

Cropping Practices:

Corn Plow - 5-16", 7-16" Disc Drag Planter - 4 row 36" Chopper - 2 row Corn Head - 2 row Wagon Transport Silo-H.M. Storage Grinder Auger Feed Bunk

Plow Cultipack

Nheat

Drag - 2 or 3 Drill Gleaner Combine Straw Chop

Fertilizer:

<u>Corn</u> Amt. type 100 lb/A NH ₃ 300 lb/A Potash 200 lb/A 9-32-6	<u>Wheat</u> Amt. type 300 lb/A 6-24-24	<u>Hay</u> Amt. type 300 lb/A 5-0-60
Chemicals:		
Amt. type 2 lb/A Atrizine 2 lb/A Lasso		
Tractors:		Electric Motors:
Gas - 40 HP 60 HP 60 HP		3 HP Silo Unloader 2 - 5 HP Silo Unloader 2 - 5 HP Forage Auger

Tractors (Cont.)	Electri	c Motors (Cont.)
Gas - 60 HP - Combine 40 HP - Windrower Diesel - 130 HP 97 HP 40 HP	1 HP 1 HP 7 t HP 3 HP 4 HP	Supplement Supplement Grinder Auger Pump
Beef: (cwt) Sales Average Head on Feed 260 2628	B.I. Pur 1975 1238	E.I. Prod 1589 1004

FARM NO. 7

Crop Production:

rop Production	:						
-		Acre	Prod	Fed	B.I.	E.I.	S ales
Corn-shelled	(bu)	201	20100	7815	34800	20300	10981
-silage	(ton)	139	2333	1592	3500	2800	
Hay	(ton)	30	105	105			
Nheat	(bu)	75	3600				1618
Soybeans	(bu)	<u> 47 </u>	1927			1125	750
		492					

Cropping Practices:

Corn	Wheat	Beans
Plow - 7-16"	Plow	Plow
Cultimulcher	Roller Harrow	Roller Harrow
Planter - 6 row 30"	Drill	Disc
Combine - 4 row Corn HD Chopper	13' Header	Plant

Fertilizer:

Corn	Wheat	Soybeans
Amt. type 300 lb/A 7-23-3 200 lb/A 0-0-60	Amt. type 300 lb/A 6-24-24	Amt. type 200 lb/A 7-23-3 200 lb/A 0-0-60

Chemicals:

Coi	m	Soybe	ans
	type Atrizine	A mt. 2 1b/ A	

Tractors:

Gas - 60 HP Hydromatic		Silo Unloader
130 HP Combine	T Hb	Forage Auger
Diesel - 130 HP	🟅 HP	Grain Auger
130 HP	🚽 HP	Load Mill
90 H P		Nagon Loader
	J HP	Nater
	🛃 HP	Supplement

Electric Motors:

Beef:

•

	(cwt)	Sales	B.I.	E.I.	Pur	Prod
Average Head on Feed	599	4864	3726	2388	1276	2250

TABLE B.8.

FARM NO. 8

Crop Production: Corn-shelled (bu) Pasture (ton) Wheat (bu)	Acre 155 10 <u>10</u> 175	Prod 13640 20 557	Fed 8903 20	B.I. 40769 580		Pur 28619	Sales 5609 1090
Cropping Practices:	(Corr	n)					
Plow Rotovator Spray							
Fertilizer: (Corn)							
Amt. type 9.7 tons NH ₃ 10.0 tons 13 <u>3</u> 26-26 7.0 tons 6-26-26							
Chemicals:							
Amt. type 65 gal Atrex 4-L 95 gal Lasso 150 lbs Atrex 80-W 400 lbs Aldrin	i						
Tractors:					Electric	Motors	s:
Gas - 92 HP 1855 Ol 25 HP 66 Oliv Diesel - 43.5 HP 88	ver	r			97 1 HP	Total	
Swine: Produced 2500 HD	(c	wt) B.I. 2222		E.I. 2831	Sales 5798	Pr od 6407	

TABLE B.9.

FARM NO. 9

Crop Production:

op Production:		Acre	Prod	B.I.	E.I.	Sales
Corn-shelled () Wheat	bu) bu)	250 <u>25</u> 275	18075 750	6750	12000	10095 836

Cropping Practices:

Corn	Wheat
Plow - 5 - 16"	Plow
Cultimulcher	Drag
Planter - 4 row 38"	Drill
Picker-sheller 2 row	

Fertilizer:

Corn		Wheat				
Amt.		Amt.	type			
100 lb/A		200 lb/A	6-24-24			
100 1b/A	0-0-60					
125 1b/A	NH ₃					

Chemicals:

Amt.	type		
1] 1b/A	A trizine		
2 qt/A	Lasso		
$2 \overline{1b}/A$	Atrizine	(60	acres)

Tractors:

Gas - 35 HP Diesel - 100 HP 50 HP 35 HP Electric Motors:

7	HP	Dryer
5	HP	Auger
2	UD	Augon

3 HP Auger

TABLE B.10.

FARM NO. 10

Crop Production	:							
		Acre	Prod	Fed	B.I.	E.I.	Sales	Ptshp*
Corn-shelled	(bu)	93	7555	209	9100	6600	8651	615
-silage (ton)	18	120	180	110	130		
Oats	(bu)	17	1190	5		19		
Hay (ton)	18	36	7	15	40		
Navybeans (cwt)	60	576		-	·		848
Other Beans (cwt)	72	798					849
Soybeans	(bu)	99	2186		337	1700		513
•	•••	377						

Cropping Practices:

Plow Drag Plant

Fertilizer:

Corn		<u>0at</u>	8	Beans		
Amt. 100 1b/A 300 1b/A		Amt. 200 1b/A		A mt. 250 lb/A		

Chemicals:

Corn		Soybea	ans	Beans		
Amt. 2 1 1b/A 2 1 1b/A	type Atrex Bladex	Amt. 2 1b/A		A mt. 2 qt/A 1 pt/A		

Electric Motors:

3 HP Silo Unloader

HP Bale Elevator

Tractors:

Gas - 80 HP 1750 Oliver Diesel - 100 HP 1855 Oliver 50 HP 65 Massey 50 HP D17 Allis-Chalmers 50 HP 300 Massey Combine

	(cwt) B.I.	E.I.	Sales
Average Head on Feed 15	67	96	55

TABLE B.11.

FARM NO. 11

Crop Production:

op Production:	Acre	Prod	B.I.	E.I.	Sales	Ptshp
Corn-shelled (bu) Wheat (bu) Navybeans (cwt)	255 128 <u>125</u>	26775 6775 8 98	20000	25295 200	16662 4198 24 8	2535 758 86
•	508					

Cropping Practices:

Corn	Nheat	Beans
Plow - 5 - 16"	Disc	Plow
Planter -4 row 30^{m}	Drill	Disc & Drag
		Drag - twice

Fertilizer:

Corn		<u>Nhea</u>	Wheat		
	type NH ₃ 5-20-10 0-0-60	Amt. 300 lb/A	type 6-24-24		

Chemicals:

Corn		Beans		
Amt. 2 1 1b/A	type Atrizine	Amt. l] pt/A l] pt/A	type Eptam Treflan	

Tractors:

Gas - 40	HP	Comb	oine	In	t.	403
Diesel -	105	HP				
	90	HP				
	90	HP				
	70	HP				
	83	HP	MFSI	0	Cor	nbine

TABLE B.12

FARM NO. 12

Crop Production:

op riouucor					
-		Acre	Prod	Pur	Sales
Corn-shelle	ed (bu)	1664	179697	7124	182386
-silage		69	1000		1000
Oats	(bu)	135	8775		7246
Hay	(ton)	15	45		4
Wheat	(bu)	185	8772		21267
Navybeans	(cwt)	159	1891		1891
Soybeans	(bu)	_312	7087		3024
-		2539			

Cropping Practices:

Corn	Beans	Wheat
Fall Plow	Spray-Disc	Spray-Disc
Cultivate	Cultimulcher	Drill
Level	Plant	
Plant		
Spray		

Fertilizer:

Corn		<u>Corn</u> <u>Beans</u>		Whe	at
Amt.	type	Amt.	type	Amt.	
100 lb/A	NH ₂	200 1Ъ/А	6-24-12	300 lb/A	6-24-24
200 lb/A	6-24-12			-	
$200 \ 1b/A$					
100 1b /A	0-60-0				

Chemicals:

	Corn			Beans		Nhe	at
Amt. 1 1b/A 2 1b/A 1 gal/A 3 ¹ / ₂ 1b/A 1 1b/A 12 1b/A	type Atrizin Atrizin Oil Bladex Fearidan Diazon	Acre 500 800 500 100 800 600	Amt. 1 pt/A 2 qt/A 1 pt/A	type 2-4D Eptam Treflan	Acre 300 225 225	Amt. 1 2 1b/A 2 qt/A	type Lorax Lasso
Tractors:						Electric	Motors:

Gas -	67 HP 41 HP		5 - 7늘 HP 10 HP
	150 HP	Ag. Gator	5 – 5 HP

Tractors (Cont.) Gas - 90 HP Combine 30 HP Clark Loader Diesel - 151 HP 135 HP 140 HP 150 HP 125 HP Hydrostatic 120 HP Combine

Electric Motors (Cont.)

- 7<u></u> HP
- 20 HP Seed Mill
- 3 HP

APPENDIX C

APPENDIX C

STATISTICAL MODEL FOR PILOT STUDY

Since the pilot study was limited to a small number of farms, a one-way analysis of variance was used with the farms grouped by type of operation. Considering the type of farm to be a fixed variable, the model for this design is:

$$Y_{ij} = \mu + \tau_i + E_{(i)j}$$
 i=1,2,3

where Y_{ij} is the observed effect of the jth farm on the ith type of farming, μ is the overall "mean" effect, τ_i is the effect between types of farms and $E_{(i)j}$ is the effect of the individual farm. The computations are presented below. One represents the dairy type, 2 is the livestock type, and 3 is the cash grain type.

TABLE C,1.

Table of Output-Input Values

<u>i=1</u>	<u>i=2</u>	<u>i=3</u>
2.24 1.95 1.29 1.95 <u>1.12</u>	1.79 3.38 1.70	2.70 2.69 4.87 3.81
y _i . = 8.55	6.87	14.07
$r_i = 5$	3	4
y ₁ = 1.71	2.29	3.52
$\sum_{j=1}^{r} y_{ij} ^2 = 15.54$	17.52	52 .7 6
$y_1 \cdot \frac{2}{r_1} = \frac{14.26}{r_1}$	15.73	49.49
$r_{\Sigma_{ij}}^{r} - y_{i}^{2} - y_{i}^{2} - y_{i}^{2}$	1.79	3.27

y.. = 29.49
y..²/n = 72.47 (A) n=12

$$y_{ij}^{2} = 85.82$$
 (B)
 $y_{i}.^{2}/r_{i} = \underline{79.48}$ (C)
 $6.34 = SS_{E}$

(B) - (A) = SS_y = 13.35 Total
(C) - (A) = SS_T = 7.01 Trt.
MS_T = (SS_T/(t-1)) = 3.51
MS_E = (SS_E/
$$\nu_E$$
) = .70

The data can now be put in an analysis of variance table,

TABLE C.2. Analysis of Variance

Source d.f. SS MS (E)MS Trt. (among groups) 2 7.01 3.51 $\sigma^2 + \frac{t}{i=1}r_i\tau_i^2/(t-1)$ Exp. Error (within groups) 9 6.34 .70 σ^2

To test the hypothesis that $\tau_i=0$, the appropriate test statistic is:

$$f = MS_{T} = \frac{3.51}{.7} = 5.01$$

$$f_{0.05,2,9} = 4.26$$

$$f_{0.01,2,9} = 8.02$$

Since the sample size is so small, it would be unwise to accept the hypothesis at the 95% confidence level.

When using this method of analysis of variance, the assumption is made that the variance is homogeneous from group to group. This assumption can be tested by using the test statistic:

$$f_{max} = (s_{max}^2 / s_{min}^2) = 1.09/.23 = 4.74$$

This value is far less than the value for f_{max} at α =.05 with three degrees of freedom in the numerator and denominator, of 27.5. It indicates that the assumption is acceptable.

A pilot study such as this can be of benefit to other studies that follow by providing an estimate of the variability of the groups. The estimate can be used to determine the minimum number of farms in each group needed, to observe significant differences between groups. For example, if this study were to be conducted again, the following computations will give the number of farms required in each type of farming to detect significant differences between the types.

The average observation of each type of farming can be used to specify an array of values to be detected. The y_i from the computations provides the following array, {1.71, 2.29, 3.52}. The "mean" of this array, μ , is 2.76. Therefore the τ_i 's are {-1.05, -.47, .76}. These are differences that are to be detected. The formula,

$$\phi = r/t \frac{t}{i = 1} (\tau_{di}/\hat{\sigma})^2$$

will be used to determine the number of farms which is represented by r, t is the number of types, and can be estimated from the expected mean square for error from the pilot study.

$$\hat{\sigma} = \sqrt{.70} = .84$$

 $(\tau_{di}/\hat{\sigma}) = (-1.25, -0.56, 0.90)$
 $\phi = \sqrt{r/3} (2.68) = \sqrt{.39 r}$

Using $v_1=2$, $v_2=t(r-1)$ and standard statistical tables, the value for r can be determined by inspection. If it is desired to detect a difference with 95% confidence (a= .05) with a power of 95% (β = .05), the number of farms in each type of farming should be 15.

BIBLIOGRAPHY

BIBLIOGRAPHY

- Cervinka, V., W. J. Chancellor, R. J. Coffett, R. G. Curley, J. B. Dobie. <u>Energy Requirements for Agriculture in California</u>. Davis, California, California Department of Food and Agriculture, University of California, January 1974.
- Hirst, Eric. <u>Energy Use for Food in the U.S.</u> Oak Ridge, Tennessee, Oak Ridge National Laboratory, October 1973.
- Hughes, Harold. <u>Energy Consumption in Beef Cattle Feedlots as Affected</u> <u>by Size and Technology.</u> Ph.D. Thesis, Michigan State University, East Lansing, Michigan, 1972.
- Introduction to Livestock Production. H. H. Cole, ed., W. A. Freeman and Co., 1962.
- Michigan State University Agricultural Experiment Station and Cooperative Extension Service. <u>Highlights and Summary of Project '80 & 5.</u> Research Report 180, East Lansing, Michigan, February 1973.
- Misener, Gerry. Interviewed by Frederick Hall. Michigan State University, East Lansing, Michigan, July 1974.
- Patterson, R. J., R. L. Maddex, <u>Effective Energy Utilization in Grain</u> <u>Drying.</u> East Lansing, Michigan, Agricultural Engineering Information Series #292, Michigan State University, 1974.
- Pecot, Rebecca K., C. M. Jaeger, and B. K. Watt. <u>Proximate Composition of</u> <u>Beef from Carcass to Cooked Meat.</u> Home Economics Research Report No. 31, ARS, USDA, 1965.
- Pimentel, D., W. R. Lynn, W. K. MacReynolds, M. T. Hewes, S. Rush. <u>Work-shop on Research Methodologies for Studies of Energy, Food, Man and Environment, Phase 1.</u> Ithaca, New York, Cornell University, 1974.
- Watt, B. K. and M. L. Merrill. <u>Composition of Foods</u>. USDA Agricultural Handbook No. 8, 1963.

GENERAL REFERENCES

- Dexter, W. A., Extension Specialist, Department of Agricultural Economics, Michigan State University. Interviewed by Frederick Hall, East Lansing, Michigan, July 1974.
- Energy Consulting Service, Consumers Power Company. Interviewed by Frederick Hall, Lansing, Michigan, January 1975.
- Gill, John L. Introduction and Review of Basic Statistical Principles and Procedures. East Lansing, Michigan, Unpublished Handbook for a statistics sequence, 1974.
- Huber, John T., Professor, Department of Dairy Science, Michigan State University. Interviewed by Frederick Hall, East Lansing, Michigan, January 1975.
- Maddex, Robert L. <u>Materials Handling Systems and Farmstead Layouts</u>. East Lansing, Michigan, Unpublished Handbook, October 1966.
- <u>Mechanical Engineers' Handbook.</u> L. S. Marks, ed., McGraw-Hill Book Company, 1951.
- <u>Michigan Agricultural Statistics, 1972.</u> Michigan Department of Agriculture, Lansing, Michigan, July 1973.
- Price, James F., Associate Professor, Department of Food Science and Human Nutrition, Michigan State University. Interviewed by Frederick Hall, East Lansing, Michigan, January 1975.

63

