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ABSTRACT

DENIAL OF FIREWALLING: ATTACK AND DEFENSE

By

Joshua Hulst

Abstract

Firewalls are critical security devices handling all traffic in and out of a network.

When under heavy load of both malicious and legitimate traffic, firewalls may be

overloaded and start discarding or permitting packets without checking firewall rules,

which can cause huge revenue losses or security breaches. In this paper, we study

Denial of Firewalling attacks, where attackers use well-crafted traffic to effectively

overwhelm a firewall. We first investigate firewall implementation characteristics

that can be exploited for such attacks while treating the firewall as a black box. We

conducted our studies on a testbed with three popular firewall devices. Second, given

a remote firewall, we propose methods for attackers to infer the implementation of

the firewall. We develop firewall fingerprinting techniques based on firewall decisions

on a sequence of TCP packets with unusual flags and machine learning techniques

for inferring firewall implementation. Next, we present methods that attackers can

use to generate the traffic that can effectively overload an identified remote firewall.

We show that some firewalls can be easily overloaded by a small volume of carefully

crafted traffic. Finally, we discuss methods for defending against such attacks.
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CHAPTER 1

Introduction

1.1 Motivation

Firewalls serve as the first line of defense for most networks and have been widely

deployed on enterprise and Internet Service Provider (ISP) networks. Because a

firewall often guards the entrance to a network, the security and reliability of a

firewall is crucial to the security of a network, making firewalls a common target

for attacks. In addition to specially crafted attacks, firewalls often process large

amounts of legitimate or illegitimate traffic, including flash crowds and Denial of

Service (DoS) attacks. When a firewall is unable to handle the amount of traffic it

is asked to process, it can either drop or accept packets without processing them

through the ruleset [12, 20].

If a firewall drops legitimate traffic, services behind the firewall can become un-

reachable, causing downtime and network disconnection. The Yankee Group es-

timates that the revenue losses per hour of downtime for the industry of media,

banking, and brokerage are 1.2, 2.6, and 4.5 million dollars, respectively [18]. Fire-

wall products that allow illegitimate traffic expose the network it is protecting to

extra risk and allow attackers access to resources they should not be able to reach.

Our interest in this paper is to study ways of identifying and attacking firewalls.

We term this attack Denial of Firewalling in the sense that we work to overload the

firewall and force it to either drop legitimate traffic or allow illegitimate traffic. We
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investigate the firewall as a black box, assuming no knowledge of the internal algo-

rithms or methods used, and try to infer identifying characteristics of the black box.

These characteristics are first used to identify a firewall implementation using remote

measurement techniques. After identifying a firewall, we use the characteristics of

the implementation to propose attacks tailored for a specific firewall implementation

performed by generating network traffic. After proposing methods to fingerprint and

attack a firewall, we create methods to defend against identification.

1.2 Technical Challenges

The above objectives present significant technical difficulty. First, identifying firewall

characteristics remotely is difficult when treating the firewall as a black box. Firewall

implementations are often kept as trade secrets and can significantly vary between

different manufacturers. Secondly, there are relatively few methods for remotely mea-

suring firewall characteristics. Our threat model assumes no administrative access

to the firewall under attack, preventing some comprehensive measurements. Third,

even after identifying characteristics of a firewall, exploiting these characteristics

is difficult. Firewall manufacturers work to make secure firewalls and take every

precaution to eliminate attacks. Finally, preventing identification of firewalls is chal-

lenging. The characteristics we propose for identification are implementation details

which are not easily changed in the firewall. Our defense methods must obscure

identification while still maintaining performance and correctness.

1.3 Our Approach

For our study, we build a testbed consisting of three popular firewalls, two computers

hosting eight virtual machines for generating traffic to the firewalls, and one computer

for sending probe packets and measuring the firewall processing time of the probe

packets.

We work to address the above technical challenges as follows. We identify and
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measure two methods of firewall identification. The first is the packet processing

time associated with specific packets which we generate. The differences in the time

it takes for a firewall to process certain packets is shown to be a strong indicator

of implementation. Second, we show that different firewalls treat packet sequences

differently. We generate sequences of TCP packets with specific flags set and watch

how different firewalls treat the packets. After identifying the characteristics, we

create tests to gather packet processing times for different types of packets (i.e., TCP

and UDP), differing payload sizes, and different types of firewall implementations

such as stateful and stateless. We use the test data along with machine learning

techniques to form a method of identifying firewalls.

After identifying a firewall, we construct attacks specific to that firewall based

on the processing time required for specific packets. We then attack the firewall

and measure the effect it has on packet processing time of normal packets, CPU

load, and the amount of dropped legitimate traffic. Finally, we discuss methods of

deterring our proposed fingerprinting methods while maintaining firewall correctness

and performance.

1.4 Key Contributions

We made four key contributions in this paper. First, we identified firewall imple-

mentation characteristics that one can evaluate for black box firewalls. Second, we

proposed methods for inferring the black box implementation of a target remote

firewall. Third, we identified attack strategies for overloading an identified remote

firewall. Finally, we proposed fingerprinting defense mechanisms.

The organization of the rest of the paper is as follows. We provide background

information on firewalls in Chapter 2. In Chapter 3, we present an overview on

different steps of our study on DoF attacks and describe our testbed specifications.

Chapter 4 presents the results of our experiments for identifying firewall implemen-

tation characteristics. We then present methods for inferring the implementation of

a remote firewall in Chapter 5. We examine the effectiveness of our designed attacks
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on different firewalls in Chapter 6. In Chapter 7, we propose defense mechanisms to

protect firewalls from fingerprinting attacks. We give an overview on related work in

Chapter 8. We conclude our studies and present future work in Chapter 9.
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CHAPTER 2

Background

2.1 Firewall Policies

Firewall policies define rules for each incoming or outgoing packet specifying whether

to accept or discard. Each rule in the policy specifies a predicate over five different

fields: source and destination port, source and destination IP address, and IP pro-

tocol. Typically, firewall policies do not check the source port field. The rules in

a firewall policy may overlap and even conflict. To resolve conflicts, firewalls follow

the first-match semantic, i.e., the decision of the first rule that a packet matches is

the decision of the firewall for the packet. An example firewall policy is in Table 2.1.

Rule Src IP Dest IP Src Port Dest Port Protocol Action

r1 1.2.3.0/24 * * * TCP discard

r2 * 1.2.3.0/28 * 80 * accept

r3 * * * * * discard
Table 2.1. An example firewall policy

2.2 Caching and Statefulness

One method of increasing firewall performance is to cache rules or flows based on

temporal locality. Rule caching stores the four-tuple of source IP, destination IP,

destination port, and protocol type for which a firewall has performed a full lookup
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on its policy. The decision associated with each entry is stored in the cache. When

a firewall with rule caching receives a packet, it first checks whether the four-tuple

header of the packet is in its cache; if found, the decision for the packet can be made

without checking the packet against the main firewall rules; if not found, the firewall

checks the packet against its policy and then caches the four-tuple of the packet

with the decision. Flow caching stores the five-tuple, which includes the source port

field in addition to the four fields used in rule caching. The lookup process for flow

caching is similar to that for rule caching. The purpose of flow caching is to have a

fine-grained access control beyond firewall policies. For example, to protect against

SYN flooding attacks, some firewall products stop accepting new SYN packets with

new source ports when they see too many open flows from a specific source address

with different source ports.

Commercial firewalls often support both stateful or stateless modes. A stateful

firewall tracks TCP sessions in a state table by examining the TCP flags of incoming

TCP packets. This ensures that the packet in a TCP session follows the correct order

that includes a proper handshake and tear-down. The firewall drops any packet with

an illegitimate flag. After a correct handshake, an entry is made in the state table.

The packets that match the session entries bypass the firewall. Once a session goes

through the correct termination procedure, its table entry is removed.

2.3 Packet Classification Solutions

The process of checking a packet against a firewall policy is called packet classifi-

cation. Packet classification solutions fall into two main categories: software based

solutions and Ternary Content Addressable Memory (TCAM) based solutions. Soft-

ware based packet classification solutions include the simple sequential search algo-

rithm and other algorithms based on complex data structures (e.g.,, [6,16,17,22,24]).

The sequential search algorithm compares a packet with each rule in a firewall policy

sequentially until a match is found. Complex data-structure-based packet classi-

fication algorithms include Recursive Flow Classification (RFC) [16], Aggregated
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Bit-Vector [6], Tuple space [24], HiCut [17], and HyperCut [22], etc. For TCAM

based packet classification, firewall rules are stored in a special memory chip; for any

given packet, the hardware circuit of the chip compares the packet with every stored

rule in parallel and returns the decision of the first rule that matched the packet.

TCAM based packet classification is widely used in high performance routers and

firewalls because the lookup is done in constant time.
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CHAPTER 3

Overview

3.1 Roadmap

To study DoF attacks and defenses, we design a testbed with three popular firewalls

for conducting extensive experiments and performance measurements. Of the three

firewalls tested, two are software firewalls while the other is hardware based. A

software firewall is implemented fully in software and may reside on a multipurpose

machine as one of many services being provided. Typically, software firewalls are

highly configurable and offer more customization and services than their hardware

counterparts. Hardware firewalls are made specifically tailored for packet classifica-

tion. Generally, they are more limited in capabilities than software firewalls but are

usually very fast in classification as they are purpose built.

Our measurements are mostly based on probe packet processing time taken on

remote hosts before and after a firewall. In our initial experiment we study firewall

characteristics induced by their implementation. We examine firewall packet classifi-

cation algorithms to understand whether or not they use sequential search for packet

filtering. We then measure the sensitivity of firewall packet classification algorithms

to firewall background traffic load. We continue our studies by inspecting the firewall

caching techniques and specifying their caching effectiveness. We finalize our study

by looking at firewall processing time with respect to probe packet payload size to

understand if they have an impact on the firewall packet processing time (PPT).
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The second experiment is to determine if an attacker can infer the implementation

of a firewall remotely by sending probe packets through the firewall. The firewall

implementation inference process is studied from two perspectives. First, we try to

find a signature for each firewall based on the decision of a sequence of TCP packets

with an unusual set of flags. The results show that the three firewalls, especially if

they are in stateful mode, discard TCP packet sequences with unusual TCP flags.

As administrators rarely define policies on TCP flags, the obtained signature usually

has a close association with the firewall implementation. An attacker can use this

signature to infer firewall implementation remotely with high confidence. Second, as

a complementary method, we use PPT of a sequence of probe packets to train a clas-

sification model for each firewall and use it accordingly to infer the implementation

of a target firewall. Note that in the attacking scenario, the attacker needs to build

simple testbeds including all speculated firewall brands to acquire signatures and the

classification model. He then needs to (1) compromise a host inside the network, (2)

use security scanner tools such as nmap [9] to find the packets that can go through

the target firewall and reach the compromised host and (3) generate and send probe

packets to measure their PPT. An attacker can also obtain more information using

other monitoring tools (e.g., traceroute) to understand the number of hops and the

extra delay between the probe packet sender and receiver to create more accurate

models for firewall implementation inference.

The third experiment evaluates which attack is more effective for a given firewall.

We compare probe packet processing time when the firewall is under random DoF

attacks and some customized DoF attacks, which are designed based on the firewall’s

characteristics. The results indicate that some firewalls can be easily overloaded

while other firewalls are fairly resilient to customized DoF attacks. Note that as it

is not feasible to measure PPT for discarded packets in commercial firewalls, all the

measurements in this paper are based on accepted packets.

We finally propose some techniques to protect firewalls from DoF attacks by adding

some dummy rules for TCP flags or adding hybrid queuing mechanisms to randomize

the pattern of the probe PPT. Indeed, firewall vendors can also use these results and
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modify their implementation so that their products are more resilient against DoF

attacks.

Figure 3.1. The testbed (For interpretation of the references to color in this and all

other figures, the reader is referred to the electronic version of this thesis)

3.2 Measurement Environment

Figure 3.1 shows the testbed topology for our testing of three different firewalls.

Firewalls FW1 and FW2 are software firewalls running on a Linux machine with

SMP kernel 2.6. Each firewall has 2 quad-core Intel Xeon 2.66GHz CPUs and 16GB

of RAM. FW3 is a hardware firewall that runs on a routing engine board with a

850MHz processor, 1536MB DRAM, and 256MB compact flash. Each firewall is

configured with the same policy comprised of 375 rules. The first 374 rules are set to

accept traffic with the final rule discarding all traffic that is not specified previously.

The firewall policy is chosen from real-life firewall policies used in a university campus

network. The rules are defined over four packet header fields: source IP, destination

IP, destination port number, and protocol. As with most real-life firewall policies,

only a few rules overlap. Moreover, there is no rule hidden by another rule (i.e.,

there is no rule with lower index that completely covers a rule with higher index).

Furthermore, the firewalls are only configured for packet filtering; other services such

as VPN or NAT are disabled.
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In addition to the firewalls, the testbed has two machines, VM1 and VM2, running

VMWare ESX 3.5.0 on a similar machine with 2 quad-core Intel Xeon 2.66GHz

CPUs and 16GB of RAM. Each VMWare instance has four Linux virtual machines

connected to each other by virtual switches. These virtual switches are connected

directly (without an intermediary switch) to each firewall (FW1, FW2, and FW3).

The virtual machines on VM1 and VM2 are used to place background traffic load

on the firewalls by sending a substantial amount of packets to different interfaces of

the firewall. The traffic is generated by Mausezahn network traffic generators (aka

mz) [2], an open-source traffic generator. Using both VM1 and VM2, we are able

to sustain a traffic rate of up to 300Mbps. Based on the design of experiments and

attacks, the generated traffic can be accepted or discarded by the firewall to which

it is sent. To put maximum load on the firewalls, the generated traffic has no packet

payload. This maximizes the number of packets that a firewall needs to process. If

packets have payloads, firewall throughput will increase, but traffic packet rate (i.e.,

packets per second) will decrease. As mentioned, the virtual switches are directly

connected to the firewalls. This is to separate the generated traffic for each firewall

and make firewall experiments independent from each other.

The last portion of the testbed is the Probe Machine & Traffic Analyzer (PMTA):

a Linux machine with Dual Quad-core Intel Xeon 2.66GHz CPUs and 16GB of RAM.

We send probe packets by PMTA directly (i.e., no switch in between) to each firewall

using an open-source packet generator hping2 [1]. If the probe packets are accepted

by the target firewall they are routed back to PMTA through another interface (as it

is shown in Figure 3.1). In order to measure firewall packet processing time, we use

packet trace time-stamps. We use tcpdump [3] to dump packets with time-stamps

with microsecond resolution. For the software firewalls (FW1 and FW2), we can an-

alyze the packet traces and calculate the PPT based on the difference of packet trace

time-stamps of outgoing and incoming interfaces. However, the hardware firewall

(FW3) does not support tcpdump or any traffic monitoring (i.e., packet dumping)

feature. Therefore, since we cannot measure the packet processing locally on the fire-

walls, the probe packets are forwarded to PMTA and we calculate the time-stamp
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difference of the packet traces on PMTA. The time-stamp differences calculated on

PMTA comprise the firewall PPT plus probe packet round trip time (RTT) which

in turn reduces the accuracy of firewall PPT.
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CHAPTER 4

Firewall Characteristics

To study firewall characteristics, we first give an overview on the methodology basics

such as how the probe packets are sent and how the PPT is measured by PMTA.

We then show the results for different firewall features containing firewall packet

classification algorithms, firewall statefulness and caching, and packets protocol and

payload size impact.

4.1 Methodology Basics

The probe packets are sent by the PMTA in four modes as follows:

• TCP Fix: A sequence of TCP packets with the same packet header.

• TCP Vary: A sequence of TCP packets with the same packet header except

the source port which is chosen randomly for each probe packet.

• UDP Fix: A sequence of UDP packets with the same packet header.

• UDP Vary: A sequence of UDP packets with the same packet header except

the source port which is chosen randomly for each probe packet.

We conduct two sets of experiments with and without background traffic load

in the testbed. The first set of experiments are performed under no background

traffic load, i.e., the probe packets are the only packets that are transmitted in
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the testbed during the experiments. In contrast, the second set of experiments are

performed under background traffic load. In this case, all virtual machines send

dummy packets with no payload to the target firewall as the background traffic. The

header of dummy packets are chosen such that they will be discarded by the rule

configured in the firewall, i.e., these dummy packets never pass through the firewall.

The dummy packet rate varies from 870,000 packets to 1,875,000 packets per second.

Since packets have no payload, the dummy traffic varies from 250Mbps to 300Mbps.

Because the firewalls are installed on powerful machines, they are not under any type

of resource constraints in terms of CPU and memory when the firewalls are under

the background traffic load. This indicates that the experimental results for the

firewalls under the background traffic load may not be affected by hardware resource

constraints.

We use two methods for measuring PPT: (1) Local measurements are based on

packet traces collected from the incoming and outgoing interfaces of the firewall.

(2) Remote measurements are based on the packet traces collected from the PMTA’s

incoming and outgoing interfaces. The local measurements of PPT are more accurate

than the remote measurements of PPT, but they require (1) local access to the

firewalls and (2) the firewall interface must support packet analyzers which dump

packets passing through the firewall’s interfaces. In contrast to local, the remote

measurement of PPT includes the packet transmission time, reducing the accuracy.

Because FW3 does not support any packet analyzers, we use local measurement for

FW1 and FW2 as well as remote measurement for all three firewalls to compare

between FW1, FW2, and FW3.

4.2 Packet Classification Algorithm

Identifying the exact packet classification algorithm that the firewall uses is very

difficult if we treat the firewall as a black box. However, we can design experiments

to test (1) whether a firewall adopts a sequential search based algorithm for packet

classification, (2) whether the performance of a firewall is sensitive to its traffic load;
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and (3) how a firewall performs in terms of the PPT.

4.2.1 Using Sequential Search

To test if a firewall uses sequential search for packet classification, we generate a

sequence of probe packets where each packet matches exactly one of the rules in

the firewall policy. We then measure the PPT for the probe packets. If the PPT

increases linearly as we progress further down the rule list, it is likely that the

firewall uses a sequential-search-based approach for packet classification. If the PPT

exhibits a different change pattern or lack of change (i.e., remains flat), the packet

classification algorithm used by the firewall is not sequential-search-based and could

be any of other algorithms described in Section 2.3. We repeat this test 10 times

and compute the median value of the PPT. The median value is preferred over mean

value because it is less sensitive to outliers, which can be caused by the variability of

network congestion and interface packet buffering, especially when the firewalls are

under load. Figure 4.1 shows the median value of the PPT.

Figures 4.1 (a) and (b) show the median value of PPT measurements with and

without background traffic load for FW1. Using the remote measurement method,

we observe that the median PPT increases as the rule index increases when there is

no background traffic load. A similar increasing trend is also observed on median

PPT under background traffic load when the local measurement method is used.

The slopes for the regression lines for PPT of FW1 using remote measurement in

Figure 4.1(a) for with-load and no-load curves are 0.1176 and 0.1645, respectively.

Similarly, the corresponding slopes for curves in Figure 4.1(b) are 0.1411 and -0.0317,

respectively. This observation implies that FW1 is likely to use a sequential-search-

based packet classification algorithm. The very small negative slope of the median

PPT using local measurement under no background traffic load may indicate that

FW1 uses some type of rule pre-fetching or caching, yet as the slope is very small

the effect is not significant.

The results for FW2 (shown in Figures 4.1 (c) and (d)) suggest similar sequential-

search-based classification algorithms, especially when the firewall is under load. The
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Figure 4.1. The PPT for probe packets that match against a rule in the firewall policy
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slopes for regression lines for PPT curves with and without background traffic load

in Figure 4.1(c) are 0.1339 and 0.0208, respectively. Similarly, the corresponding

slopes for PPT curves in Figure 4.1(d) are 0.3809 and -0.0073, respectively. We

can also observe that FW1 and FW2 have considerably different transmission delays

especially when FW1 is under load by comparing the differences between graphs in

remote measurement (i.e., Figures 4.1(a) and (c)) with their corresponding ones in

local measurement (i.e., Figures 4.1(b) and (d)). Since the experiment environment

is the same for FW1 and FW2, it seems that such difference is due to the different

queuing implementation in FW1 and FW2, yet because we do not have access to

both firewalls’ source codes, it is difficult to ensure.

We have different observations on median PPT for FW3. The slopes for regression

lines for PPT curves for with and without background traffic load in Figure 4.1(e)

are 0.0033 and 0.0082, respectively. The fairly flat regression lines for FW3 implies

that FW3 likely uses some other techniques rather than sequential search based

algorithm for packet classification. As FW3 is a hardware firewall, we believe it uses

TCAM-based packet classification methods, which use parallel exhaustive search.

4.2.2 Sensitivity to Traffic Load

Using the same experimental settings, we also evaluated the sensitivity of firewall

performance to traffic load. We observe that, among all firewalls, FW1 is most

sensitive and FW3 is the least sensitive to the traffic load. Considering all remote

measurements shown in Figures 4.1 (a), (c), and (e), the median PPT when the

firewalls are under background traffic load is 4.6034, 2.7385, and 0.9874 times larger

than the median PPT when the firewalls are under no background traffic load for

FW1, FW2, and FW3, respectively.

We observe that the PPT curves for FW1 and FW2 have sharper slopes when the

firewalls are under traffic load. This implies that the packet classification mechanism,

including packet classification algorithm and possible caching scheme, depends on the

current traffic and load on the firewall.

We also find that the traffic load on the firewall has an impact on the variance
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and dispersion of the PPT of probe packets, which directly relate to the stability of

the firewall and firewall packet reordering. Figure 4.2 shows the standard deviation

(STD) of the PPT for probe packets. We observe in Figure 4.2(a) that on average

the STD of the PPT for FW2 is 52.4749 times larger than that for FW1 in local

measurements.

To show the relation between the STD of the PPT of probe packets in local and

remote measurement, let SL
i

and SR
i

denote the vector of PPTs obtained in local

and remote measurements for the i-th firewall, respectively. Let T denote the trans-

mission delay from PMTA to the firewall and from the firewall to PMTA. Therefore,

SR
i

= SL
i
+ T . The STD of the PPT for local measurement can be calculated from

the STD of the PPT for remote measurement as follows:

STD(SR
i
) = STD(SL

i
+ T ) =

√

STD(SL
i
)2 + STD(T )2 + COV (SL

i
, T )

As PPT and transmission time are independent, COV (SL
i
, T ) = 0. Also, STD of

transmission time can be represented by a constant vector c . Hence,

STD(SL
i
) =

√

STD(SR
i
)2 − c2

Note that the transmission time and its standard deviation can be different based

on the load on the firewalls and the way the firewalls handle queuing and packet

forwarding. With that in mind, Figure 4.2(b) shows the STD of the firewall PPT

calculated from the remote measurements. We observe that, on average the STD

of PPT on FW2 is 1.7910 and 33.3 times larger than those on FW1 and FW3,

respectively. In conclusion, the hardware firewall (FW3) shows less sensitivity to

the traffic load and seems to be more stable in terms of performance under different

network traffic loads.

4.2.3 Average PPT

In general, Figure 4.1 shows that FW3 yields the lowest PPT regardless of the

background traffic load on the firewall. The average PPTs without background
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traffic load on FW1, FW2, and FW3 are 151.7891, 77.5470, and 60.3360 microseconds

in the remote measurements (shown in Figures 4.1 (a), (c), and (e)), respectively.

Similarly, the corresponding figures with traffic load on FW1, FW2, and FW3 are

672.8522, 98.7970, and 57.8777 microseconds, respectively. However, in the local

measurements (shown in Figures 4.1 (b) and (d)), FW1 and FW2 have similar average

PPTs (50.3710 and 49.7796 microseconds, respectively) when there is no background

traffic load on the firewalls. On the other hand, when there is background traffic

load on the firewall, the average PPTs for FW1 and FW2 are 126.7352 and 92.8078

microseconds, respectively. This result again indicates the high sensitivity of FW1 to

the traffic load. Overall, FW3 outperforms FW1 and FW2 with the lowest average

and minimum STD of PPTs, and the least sensitivity to the traffic load.

4.3 Caching and Statefulness

As explained, modern firewalls often use different caching mechanisms for rule and

flow caching to reduce the performance overhead of packet classification. To identify

if a firewall uses caching and how effective the caching is, we define cache effectiveness

(C) as the ratio of the PPT for the first probe packet in a sequence of probe packets,

whose header is not in the cache table, to the median PPT of the rest of the probe

packets in the same sequence, whose headers are supposedly in the cache. If C > 1,

the firewall uses caching effectively. If C ≃ 1, the firewall either does not use caching,

or the caching that the firewall uses is not effective.

In our experiments, we measure the firewall’s C value as follows. For each exper-

iment we first send 10 probe packets and measure the PPT for each probe packet

and calculate C value accordingly. The C value reported in this paper is the median

C values for 10 repeated experiments. To determine the effectiveness of a firewall

caching in stateless and stateful modes, we conduct experiments using four types of

probe packet modes: TCP Fix, TCP Vary, UDP Fix, and UDP Vary. If the firewall

has effective caching in TCP Fix and UDP Fix probe packets, it means that the

firewall caches all 5 packet header fields in its cache table. i.e., it performs flow

19



caching. However, if a firewall has effective caching in TCP Vary and UDP vary

probe packets, it means the firewall caches only 4 packet header fields (excluding

source port) in its cache table. i.e., it performs rule caching.

Table 4.1 presents the C values calculated based on local and remote measurements

for experiments on three firewalls FW1, FW2 and FW3. In the local measurements,

the results show that FW1 performs very effective flow caching on UDP packets as

the cache effectivenesses for UDP Fix are significantly more than 1 (7.4931 < C <

16.75). However, FW1 flow caching on TCP packets is not as effective since the

cache effectivenesses for TCP Fix are variable around 2 (1.9038 < C < 2.3411).

In addition, the results imply that FW1 does not support rule caching because the

cache effectivenesses for UDP Vary and TCP Vary are around 1. However, there is

one exception case where the cache effectiveness for TCP Vary probe packets when

FW1 is under the background traffic load and configured in stateless mode is 3.2020.

This could be an indication of some caching mechanisms that are enabled when FW1

is under load.

For FW2, the caching effectivenesses for UDP Fix and TCP Fix experiments range

from 5.4214 to 9.8167, while the corresponding figures for UDP Vary and TCP Vary

experiments range from 2.8588 to 4.6833. Because the cache effectiveness values for

FW2 are much larger than 1 for all experiments, it seems that FW2 uses rule caching.

In addition, because the cache effectivenesses for UDP Fix and TCP Fix experiments

are larger than those for UDP Vary and TCP Vary experiments, seemingly the

FW2 uses separate flow caching and rule caching mechanisms. Comparing the cache

effectiveness results for FW1 and FW2, the flow caching mechanism on FW1 is more

effective on UDP packets, whereas the flow caching mechanism on FW2 is more

effective on TCP flows.

In the remote measurements, the transmission delay is much larger than the actual

PPT. Therefore, cache effectiveness calculated using the remote measurement are not

as expressive as local measurements. However, there is one exception where FW3

has a cache effectiveness of larger than 2 in UDP Fix probe packets when FW3 is

in the stateful mode. The result indicates that FW3 performs flow caching in this
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typical case. In addition, we find a unique feature on FW3. When FW3 is in stateful

mode, once PMTA sends the first TCP SYN packet, FW3 does not accept any other

TCP packet with the same packet header for a while until it receives a TCP ACK

packet from the packet destination. Thus, calculating C for TCP Fix for FW3 in

stateful mode is not applicable.

Another observation that we can make from the results is that in most of the cases,

the cache effectivenesses when a firewall does not have background traffic load are

slightly higher than those when a firewall has background traffic load. One possible

explanation is that when a firewall is under load, the cache table has a large number

of entries. This results in longer search time (and PPT) for the rest of the probe

packets. This makes the cache less effective compared to no-load experiments, where

the firewall’s cache table has a small number of entries.

4.4 Impact of Packet Protocol and Payload Size

Firewalls usually perform queuing management techniques to improve their PPT.

Such techniques can be made to be aware of the protocol and payload size of packets.

In order to evaluate the impact of packet protocol and payload size, we configure all

three firewalls in the stateless mode and repeat the same set of experiments while

varying the packet payload size. Figure 4.3 shows the median PPT results for packet

payload size of 0, 500, 1000, 1400 bytes.

We have three main observations from the results. First, Figures 4.3(a), (b), (d)

and (e) show that software firewalls FW1 and FW2 have different PPT in TCP

Fix, TCP Vary, UDP Fix, and UDP Vary experiments. We observe that the PPTs

are smaller in TCP Fix and UDP Fix probe packets than those in TCP Vary and

UDP Vary probe packets. This can be a result of effective flow caching on FW1 and

FW2. More specifically, this observation on FW2 seems to indicate that flow caching

is more effective than rule caching on FW2. Note that the above observations are

made regardless of the packet payload size. However, Figures 4.3(c) and (f) shows

that FW3 has the same PPT for all of the TCP Fix, TCP Vary, UDP Fix, and
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UDP Vary packets. This indicates that FW3 has the same rule caching mechanism

for all TCP and UDP packets (when it is in stateless mode). Second, the results in

Figures 4.3(a), (b), (d) and (e) indicate that the packet payload size does not impact

the PPT on FW1 and FW2. However, Figures 4.3 (c) and (f) show that the PPT

increases linearly with regression slope of 0.1945± 0.0014 as the packet payload size

increases. Finally, we observe from Figure 4.3 that the impact of packet protocol

and payload size on PPT is independent from whether the firewall has background

traffic load.
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Figure 4.2. The STD of the PPT for probe packets that match against a rule in the firewall policy
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Local Measurement

Stateful Stateless Stateful Stateless

UDP Fix UDP Vary UDP Fix UDP Vary TCP Fix TCP Vary TCP Fix TCP Vary

FW1
no load 10.4000 1.0315 16.7500 1.1943 1.9038 0.8723 2.3043 0.8000

with load 7.4931 0.9690 10.7955 0.9725 2.3411 0.9050 2.2195 3.2020

FW2
no load 8.2333 4.9444 8.6000 4.9500 9.8167 4.6833 8.2727 4.5424

with load 5.4214 4.4446 5.9857 4.0451 8.0074 2.8588 9.0727 3.7576

Remote Measurement

Stateful Stateless Stateful Stateless

UDP Fix UDP Vary UDP Fix UDP Vary TCP Fix TCP Vary TCP Fix TCP Vary

FW1
no load 1.7246 0.9455 1.6800 0.9334 1.3957 0.9692 1.4286 0.9870

with load 0.9999 1.1088 1.2151 1.0010 1.2243 0.9883 1.1185 1.1378

FW2
no load 1.0103 0.9393 0.9825 0.9576 1.1181 0.9240 0.9560 0.8733

with load 0.9938 0.9141 1.3036 0.8373 1.1909 0.5466 1.0971 0.9068

FW3
no load 2.3172 0.9442 0.8090 0.8148 – 0.9756 0.7975 0.8062

with load 2.1525 0.9318 0.8692 0.8354 – 0.9841 0.7725 0.8540
Table 4.1. Cache effectiveness based on local and remote measurements
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Figure 4.3. The remote PPT for probe packets with different packet payload sizes
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CHAPTER 5

Firewall Inference

The first step toward defeating an opponent is to know them – the same principle

applies when it comes to attacking a firewall. If attackers can successfully infer the

type (e.g., vendor/version) and the characteristics (e.g., statefulness) of the target

firewalls, they can potentially render a much more effective attack. In this chapter,

we examine the feasibility and effectiveness of firewall implementation inference using

probe packets.

Our approach is motivated by the wide range of so-called operating system (OS)

fingerprinting [7, 14, 25] techniques. The idea is that different Operating Systems

respond to non-conforming protocol (such as TCP, HTTP) interactions differently.

By tracking the error-handling responses, one may uniquely identify the OS of the

target host. In our case, we study the decision of firewalls for sequences of TCP probe

packets with varying TCP header flags – the decision of the firewall is limited to a

binary sequence of whether the corresponding packet is accepted or discarded by the

firewall. To distinguish the firewall’s accept/discard decision due to its configured

policy, we force all probe packets in the same sequence to share the same source IP,

destination IP and destination port. This ensures that these probe packets hit the

same firewall rule in the typical firewall settings. However, in some uncommon cases,

certain types of firewalls support policies that are based on TCP flags in addition to

the other common TCP header information. This makes our binary sequence decision

unreliable. Hence, we further supplement the decision binary sequence with the PPT
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of the probe packets and use them to infer the target firewall implementation. Note

that in the remainder of the paper, all PPTs are measured remotely.

To extract the firewall behavior fingerprints and construct classifiers, we first estab-

lish a controlled environment, which includes various candidate firewalls of interest,

devices outside the firewall that can be used to launch probe packets and devices

behind the firewall that can be used to receive the probe packets and measure the

delays. The testbed network shown in Figure 3.1 is an example of such a set up. The

signatures and classifiers identified herein can then be applied in the “battlefield”.

We next describe in detail the methodology we applied for firewall implementation

inference and present the result for the three firewalls in our testbed. While our

testbed is limited to the three different firewalls available to us, we believe that our

methodology is more generally applicable for fingerprinting other firewalls in the

market.

5.1 Firewall inference using TCP Probe Packets

As there are eight different TCP flags defined in a TCP header, one can construct

28 different combinations in each probe packet. This can be further compounded by

the permutations of different probe packet sequences. In our limited testbed case,

we find that it is sufficient to use two consecutive probe packets to distinguish the

behavior of different firewalls (and different modes – stateful and stateless). We show

the results when we enable the TCP SYN flag along with one other TCP flag in each

of the two packets. Table 5.1 and Table 5.2 present the results for the stateful and

the stateless firewalls, respectively. For the ease of presentation, we condense the

information in the table such that the columns represent the different TCP flags

enabled in the first probe packet (besides the TCP SYN flag) and the rows represent

the different TCP flags enabled in the second probe packet (besides SYN flag). In

each cell, there are three indicators representing the firewall decision from the firewall

FW1, FW2 and FW3 respectively. Indicator “*” means that both probe packets are

accepted by the firewall and successfully received at the receiving device behind the
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firewall; indicator “-” means that one or both probe packets are discarded, or more

strictly speaking, missed by the receiver.

URG FIN RST PSH ACK ECE CWR

URG **- **- -*- **- -*- **- **-

FIN **- -*- **- **- **- **- **-

RST -*- **- **- **- -*- -*- -*-

PSH **- **- **- **- -*- -*- ***

ACK -*- **- -*- -*- -*- -*- -*-

ECE **- **- -*- -*- -*- **- ***

CWR **- **- -*- *** -*- *** **-
Table 5.1. Stateful Firewall

URG FIN RST PSH ACK ECE CWR

URG *** *** -** *** *** *** ***

FIN *** -** *** *** -** *** ***

RST -** *** *** -** *** *** ***

PSH *** *** -** *** *** *** ***

ACK *** -** *** *** -** *** ***

ECE *** *** *** *** *** *** ***

CWR *** *** *** *** *** *** ***
Table 5.2. Stateless Firewalls

The result in Table 5.1 and 5.2 demonstrates that tracking the firewalls’ feedback

to well-crafted TCP probe packets can be effective in obtaining valuable information

to distinguish different firewalls. Unlike FW1 and FW3 that filter out some probe

packets, for the stateful and stateless setting of FW2, both probe packets have passed

through the firewall in all 98 cases. While our example uses certain combinations of

TCP flags, other combinations can prove useful for other firewall types and settings.

We next demonstrate that one can use supplement information from the PPTs to

distinguish these cases.
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5.2 Firewall inference using Packet Processing

Time

Although firewall fingerprinting using a sequence of TCP packets is a determinis-

tic method used to infer firewall implementation, firewall rules on TCP flags can

change the default decision of the firewall and cause misidentification of the fire-

wall implementation. Thus, we propose an alternate method to use implementation

characteristics including PPT and firewall cache effectiveness to infer firewall imple-

mentation and its statefulness. In this method, we build a classification model for

each firewall and for their statefulness modes based on their median PPT, STD of

the PPTs, and cache effectiveness. We then use this classification model to infer

firewall implementation.

To build a classification model and analyze its accuracy, we first create a dataset

containing 3,600 data points. For each data point, we send 11 consecutive probe

packets in four different modes (TCP Fix, TCP Vary, UDP fix and UDP vary)

with and without payload (total of 8 times). Each data point is represented by

x = 〈x1, · · · , x24〉 that has 24 features where x3i−2 is the median of the PPTs, x3i−1

is the STD of the PPTs, and x3i is the cache effectiveness for the 11 probe packets.

The data points are collected when the firewalls are under three different load levels:

no load, medium load, and full load. We also use three sets of labels: the labels for

the firewall type (Y1 ={‘FW1’,‘FW2’,‘FW3’}), the labels for the firewall stateful-

ness (Y2 ={’stateful’, ’stateless’}), and the labels for firewall type and statefulness

(Y3 ={‘FW1-SF’,‘FW2-SF’,‘FW3-SF’,‘FW1-SL’,‘FW2-SL’,‘FW3-SL’}).

For the classification, we use multi-class Support Vector Machines (SVMs) with

Radial Basis Function (RBF) kernel with parameters, (γ=0.01, C=500). Note that

the value for RBF kernel parameters have been chosen by model selection algorithms

that we used to maximize the classification accuracy. We conduct classification

separately for each set of labels, under two conditions (1) if the attacker somehow

knows the firewall load and (2) if the attacker does not know the firewall load when

he tries to infer firewall implementation and its statefulness.
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The classification problem under the first condition is a classic one, where the data

point is x with an additional feature of firewall load level, denoted by z. However, the

classification problem under the second condition is not as straightforward. When

we train the classifier we know the firewall load level, but when we use it for testing

we do not know the load level. To solve this problem, we first formulize the problem

as follows:

P (Y |x) =
∑

z

P (Y, z|x) (5.1)

=
∑

z

P (Y |z,x)P (z|x) (5.2)

Formula 5.2 indicates that we need two probabilistic classifiers: the first one is to

speculate the firewall load level (z) given test data point (x), and the second classifier

is to predict the firewall label, given the test data point and the speculated load level.

Using the probabilistic classifiers, we first calculate the probability of each label for

a given data point and then choose the label with the highest probability as the final

label of the data point. For the probabilistic classifier, we use multi-class libsvm with

probability estimates [26].

Before classification, we use feature selection to maximize classification accuracy

rates. By using feature selection, we not only alleviate the curse of dimensionality,

but also find the most important and distinctive features in our feature set. Thus, we

use the Sequential Forward Searching (SFS) algorithm [23] for feature selection for

each set of labels. The results indicate that: (1) To infer the firewall implementation,

we only need 6 features that contain the median of PPTs for probe packets in TCP

Fix and TCP Vary modes with payload, and cache effectiveness for all probe modes

with payload. (2) To infer the statefulness, we need 16 features that contain all probe

packets with payload features as well as cache effectiveness of probe packets with no

payload features. (3) To infer the firewall implementation and statefulness, we need

7 features that contain the cache effectiveness for all probe test modes with payload,

median of PPTs for probe packets in TCP Fix and UDP Vary modes with payload,

and cache effectiveness for probe packets in UDP Vary mode with no payload. Note
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that when using different methods of classification, the important features may be

different. However, our results show that the most distinctive features are the cache

effectiveness for the probe packets with payload which clearly complies with Figure

4.3.

Y1: Firewall Type - Known Load

Accuracy Misclassification

Total 94.56% FW1 FW2 FW3

FW1 100% - 12.13% 0.54%

FW2 84.36% 0% - 0.35%

FW3 99.11% 0% 3.51% -

Y1: Firewall Type - Unknown Load

Accuracy Misclassification

Total 94.61% FW1 FW2 FW3

FW1 100% - 12.41% 0.63%

FW2 84.58% 0% - 0.30%

FW3 99% 0% 3.01% -
Table 5.3. Accuracy and Misclassification for Firewall Type Labels

The accuracy results for the classification under two conditions for each set of

labels are reported in Tables 5.3, 5.4, and 5.5. The results are the mean of 10

cross-validation accuracy and misclassification results for the dataset.

The results in Table 5.3 indicate that we can predict the firewall implementation

with 94.56% and 94.61% accuracy for known load and unknown load, respectively.

The results also show that while the accuracy of predicting FW1 is 100%, the accu-

racy of predicting FW2 is 84.36% (and 84.58% for unknown load) because in 12.13%

(and 12.41% for unknown load) of the time it is misclassified by FW1. The closeness

of the accuracy rates for known load and unknown load assumptions shows that the

firewall load level plays an insignificant role in classification. Note that if we use

other classification methods or other set of firewalls, the firewall load level can be an

important factor in classification. Thus, it should not be overlooked.

The results in Table 5.4 show that we can predict the statefulness of the firewall

with 85.79% and 85.72% of accuracy for known load and unknown load, respectively.

Surprisingly, the accuracy rate is very good knowing that the statefulness of a firewall

has a trivial impact on the PPT.
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Y2: Statefulness - Known Load

Accuracy Misclassification

Total 85.79% Text Binary

Stateful 89.49% - 17.76%

Stateless 82.24% 10.51% -

Y2: Statefulness - Unknown Load

Accuracy Misclassification

Total 85.72% Stateful Stateless

Stateful 89.60% - 18.01%

Stateless 81.99% 10.40% -
Table 5.4. Accuracy and Misclassification for Statefulness Labels

Y3: Firewall Type and Statefulness - Known Load

Accuracy Misclassification

Total 74.04% FW1-SF FW2-SF FW3-SF FW1-SL FW2-SL FW3-SL

FW1-SF 69.39% - 2.17% 0.92% 20.55% 5.19% 0%

FW2-SF 59.68% 0% - 1.62% 15.02% 44.54% 1.87%

FW3-SF 97.48% 0% 0% - 0% 0% 0%

FW1-SL 79.03% 30.61% 6.77% 1.60% - 7.82% 0%

FW2-SL 41.30% 0% 28.16% 0% 0.42% - 0%

FW3-SL 98.13% 0% 3.22% 0% 0 % 1.16% -

Y3: Firewall Type and Statefulness - Unknown Load

Accuracy Misclassification

Total 74.06% FW1-SF FW2-SF FW3-SF FW1-SL FW2-SL FW3-SL

FW1-SF 69.39% - 2.32% 0.92% 20.62% 5.27% 0%

FW2-SF 59.53% 0% - 0% 0% 44.31% 1.96%

FW3-SF 97.39% 0% 0% - 0% 0% 0%

FW1-SL 78.95% 30.61% 6.77% 1.69% - 7.82% 0%

FW2-SL 41.76% 0% 28.35% 0% 0.42% - 0%

FW3-SL 98.04% 0% 3.03% 0% 0% 0.84% -
Table 5.5. Accuracy and Misclassification for Firewall Type and Statefulness Labels

The results in Table 5.5 show that we can predict the type of a firewall and its

statefulness with 74.04% and 74.06% of accuracy for known load and unknown load,

respectively, which is relatively good as we have six classes and random classification

accuracy rate is 16.67%. As show in Table 5.3, FW1 is classified with high accuracy,

while FW2 is classified with relatively low accuracy. Inferring FW3, on the other

hand, can be done with very good accuracy. The misclassification rates also suggest

that both stateful FW1 and FW2 are misclassified as stateless FW1 and FW2 with

high probability of 30.61%.
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If we use a different set of firewalls we may have different results for accuracy and

misclassification rates. However, the results for this set of firewalls indicate that

an attacker can effectively use these two methods to predict a network firewall and

design attacks accordingly to either seriously impact performance or exploit possible

vulnerabilities. Nevertheless, in practice, the accuracy results will be lower because

of the impact of the transmission delay induced by other middleboxes along the probe

path. Yet, the attacker can obtain the number of routers in the probe path (using

tools such as traceroute) and build a similar testbed for learning to reduce such

impact.
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CHAPTER 6

Firewall Attack Design

In order to effectively attack firewalls, we first use firewall characteristic measure-

ments (conducted earlier in section 4) to design effective customized attacks on the

firewall. We then examine the effectiveness of the customized attacks by comparing

the firewall performance under the customized attacks with the firewall performance

under blind attacks.

The experimental methodology herein is to create an attack scenario and monitor

the firewall performance on legitimate traffic. In our testbed setup, we drive attacks

from all machines in VM1 and VM2 and send (legitimate) probe packets from the

PMTA machine. We use the PPT observed by the probe as the performance indica-

tor metric. We also use the CPU utilization on the firewall device as a measure of

the firewall “stress” level. In our testbed, this CPU utilization information is avail-

able from FW1 and FW2, obtained through Simple Network Management Protocol

(SNMP). FW3 does not provide access to this information.

In a blind attack, VM1 and VM2 send random UDP and TCP packets with no

payload, which are mostly discarded by the firewall. In contrast, the customized

attack packets are chosen to be accepted by the firewall. The attack packets are

generated in TCP Vary and UDP Vary modes. Figure 6.1 and Figure 6.2 show the

packet processing time for 500 probe packets sent with one second interval when the

firewalls are under blind attack, UDP Vary attack and TCP Vary attack. Note that

in Figure 6.1 the customized attack packets have no payload, while in Figure 6.2
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Figure 6.1. The PPT of probe packets when the firewall is under attack with packet with no payload
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they have packet payload.

Figure 6.1(a) and 6.1(d) show the probe PPTs for FW1 when it is in the stateless

and stateful modes, respectively. The results indicate that the TCP and UDP Vary

attacks are more successful than blind attack, whereas UDP Vary and TCP Vary

almost have the same effect on FW1. The average PPT for probe packets when

FW1 is in stateless mode under UDP and TCP Vary attacks are 686.10 and 673.86

microseconds, which are 1.68 and 1.65 times larger than when it is under blind

attack. However, TCP and UDP Vary attacks impose up to 2.08 and 2.06 times

more load than the blind attack, meaning that the firewall needs more than twice

the processing power to handle the attack. The average PPT results are almost the

same when the firewall is in the stateful mode. However, the firewall load has 21.36%

increase when it is in the stateful mode. Hence, if the attacker knows an accepted

rule, the attack on that rule will be much more effective. Note that for firewalls like

FW1 which use sequential search for packet processing, if an attacker finds a rule

with a higher rule index in the firewall policy, it can increase the effectiveness of

the attack. However, this depends highly on the size of the firewall policy and the

firewall caching algorithm [21].

Figure 6.1(b) and 6.1(e) show the probes PPT for FW2 when it is in the stateless

and stateful modes, respectively. First, the results indicate that the average PPT

of probe packets when the firewall is under blind attack is 1.82 times more than

when the firewall is under UDP attack. Second, the average PPT of probe packets

when the firewall is under TCP Vary attack is 22.4 and 25.77 times more than when

the firewall is under blind attack for the stateless and stateful modes, respectively.

Moreover, when the firewall is under TCP Vary attack 36.20% and 34.40% of the

probe packets are discarded before reaching the destination (i.e., packet loss) when

the firewall is in the stateless and stateful modes, respectively. However, looking

at the average load of the firewall, there is only 0.14 increase for TCP Vary attack

compared to a blind attack. This can somehow imply that the caching table is

flooded by new flows, which reduces the performance of the system tremendously,

while the system has enough resources to forward attack packets with small PPT.
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Figure 6.2. The PPT of probe packets when the firewall is under attack with packets with payload
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Thus, amongst all of the attacks, the TCP Vary attack is quite effective on FW2,

and FW2 is quite resilient against UDP Vary attack.

Figure 6.1(c) and 6.1(f) show the probes PPT for FW3 when it is in the stateless

and stateful modes, respectively. The results indicate that none of attacks has con-

siderable impact on the firewall. More specifically, when the firewall is in the stateless

mode, the average PPT is 66, 67 and 67 microseconds for blind, UDP and TCP Vary

attacks. When the firewall is in the stateful mode, the average PPT increases by 6

times to 401, 397 and 397 microseconds. Unlike the other two firewalls it seems that

the generated attacks on FW3 do not have much impact on the firewall performance.

It is also notable that although it seems that FW3 have the least fluctuation around

the mean value, there are some spikes for TCP and UDP Vary attacks whose value is

9 times larger than the mean value when firewall is in the stateless mode. Such spikes

can be seen on Figure 6.1(e) for stateful results as well as spikes for blind attacks.

The standard deviation of PPT for blind attacks when FW3 is in the stateful mode

is 11.5 times more than when FW3 is in the stateless mode.

Figure 6.2 shows the impact of attack traffic on probe packets when attack traffic

has payload. In this figure, the UDP and TCP Vary with payload PPT results for

each probe packet are calculated as the mean of the PPT for the probe packet with

three different payload sizes: 500B, 1000B, and 1400B. Figure 6.2(a) and 6.2(d) show

the packet payload size on attack traffic have almost no effect on FW1. However,

Figure 6.2(b) and 6.2(e) show the packet payload on attack traffic increases the STD

of PPT on probe packets sent to FW2 by 2.38 times for the UDP Vary test when the

firewall is in the stateful mode and decreases the STD of PPT by 1.61 times for the

TCP Vary tests in all the firewall modes. Similarly, Figure 6.2(c) and 6.2(f) show

that the packet payload on attack traffic does not have any impact on average PPT

of probe packets sent to the FW3. However, the STD of PPT of probe packets is

decreased by 1.88 and 1.72 times when the firewall is in the stateless mode for TCP

and UDP Vary attack, respectively. Similarly, when FW3 is in the stateful mode, the

STD of PPT of probe packets is decreased by 2.17 and 2.67 times when the firewall

is in the stateless mode for TCP and UDP Vary attack, respectively. Therefore, to
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attack these firewalls effectively, packets with no payload are preferred. On the other

hand, this implies that the main focus of an administrator who is working to detect

and stop such attacks should be on attack packets that have no payload as they can

have an impact on the stability of the firewall.
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CHAPTER 7

Proposed Defense Mechanisms

Our proposed fingerprinting algorithm is largely based on the identifying the distri-

bution of the PPT of a particular firewall. To defend against such fingerprinting, a

firewall’s PPT must be altered to hide the particular implementation. In this section,

we present two methods for obscuring the PPT of a given firewall.

7.1 Adding delay to packets

The most straightforward way to alter PPT is to add a delay to packets, but there are

significant consequences of performing this. If we were to add a constant delay to all

packets traversing a firewall, the distribution would be shifted, but not significantly

altered.

Our goal in this method is to make every firewall in our testbed look similar when

it comes to PPT. We do this by taking the firewall with the highest mean PPT and

use that as a base for the rest of the firewalls. Since delay can only be additive

(a negative delay is impossible to implement), we can only increase the PPT of a

firewall.

To find an appropriate distribution for the delay, we first find the mean PPT and

variance for each firewall system. After finding the defining characteristics for each

one, we take the highest mean distribution and find additive distributions for each

firewall to make the new distribution appear as close as possible to the baseline
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firewall.

An additional drawback to adding random delay is that it may cause packet re-

ordering within a flow. We propose two methods to counteract this. The first is

that we keep the variance of the delay distribution relatively small. This reduces the

chance that Packet 1 arrives first and is assigned a very high delay while Packet 2 is

assigned a very low delay and is thus forwarded before Packet 1. Further, we suggest

per flow delays. If Packet 2 is scheduled to be forwarded before Packet 1, Packet 2

is held until Packet 1 is forwarded and then is immediately sent. Since the variance

of the delay distribution is low, this will happen often and when it does the delay of

Packet 2 will be minimal.

We implement this delay using the Traffic Controls built into the Linux kernel

which allows for added delay in multiple ways.

The most significant drawback of adding a random amount of delay as discussed

in the previous section is the unnecessary delay and congestion that can be caused

by network delays. To combat that, a more complex system is presented in the next

section.

7.2 Run Parallel Firewalls

An alternate method to changing the distribution of the PPT is to run two different

firewalls in parallel. Some professional firewalls provide parallel features but in most

instances both firewalls are the same type, therefore running the same algorithms,

yielding the same PPT distribution. Our proposal combines two different firewall

implementations into a single logical unit as seen from outside of the network. A load

balancer sits in front of both firewalls, randomly choosing which firewall a particular

packet will be sent to.

This method presents several advantages over adding delay. First, the network gets

many of the benefits of parallel firewalls, such as improved response time and higher

network throughput. Second, by having separate firewalls in parallel, vulnerabilities

become harder to exploit. An attacker cannot control which firewall a packet is sent
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through, creating more uncertainty in any attack.

Our proposed parallel firewall load balancer is simple to implement in stateless

firewall configurations as it does not matter which packet goes through which firewall

but in stateful firewalls, a truly random assignment could cause complications. For

instance, if different portions of the TCP handshake go through different firewalls,

neither will accept the connection as being truly setup and will block all further

communication.

To circumvent this, we propose a flow-aware load balancer. The first packet of

a flow is pinned to a particular firewall and all further packets from that flow are

routed through the original firewall. This allows each firewall to maintain a valid

state table while still adding variability into the process. Our solution uses features

of iptables to perform the load balancing, but in a real network a more complete

implementation may be required, allowing the load balancer to make decisions based

on load levels of each firewall.

Both methods described require testing to determine performance implications as

well as the effectiveness against our proposed attacks. Implementing parallel firewalls

provides many other benefits in addition to the defense against DoF attacks and

has been implemented in industry. Firewall administrators may wish to investigate

adding randomized delays on the firewalls themselves in the future.
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CHAPTER 8

Related Work

In [21], Saleh et al. proposes a method of attack on firewalls that perform sequential

search. The basic idea is to send packets that match the last rule in a firewall.

However, it is extremely difficult, if not impossible, for an attacker to find the packets

that match the last rule in a firewall without knowing the policy and implementation

of the firewall. Furthermore, our results actually show that attack traffic consisting

of accepted packets is more effective than attack traffic consisting of the packets

discarded by the last rule.

Work has also been done on firewall performance evaluation [8, 13, 15, 19]. Lyu

and Lau measured the performance of a firewall under seven different policies, where

each policy is for one security level [19]. In a similar vein, Funke et al. evaluated

the firewall performance (mostly firewall throughput) under policies with differing

number of rules [13]. They also show that more rules do not necessarily imply poorer

firewall performance.

There are some industrial reports on comparing commercial firewalls in terms of

performance under different circumstances. Bosen in [8] compared Secure Comput-

ing Sidewinder [5] with Checkpoint’s NGX [10] and reported better throughput for

Sidewinder when high-level of protection including packet and protocol inspection is

required. Tolly Group, one of the independent test labs that performs extensive tests

on different IT devices from different vendors, compared independent Checkpoint

Firewall (VPN-1 Pro), PIX Firewall 535 [11], and NetScreen-500 [4]. The report in-
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dicated that the Checkpoint Firewall outperforms the other two firewalls in most of

the tests run [15].
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CHAPTER 9

Conclusion

In this paper, we present methods for finding the firewall characteristics that are

introduced by firewall implementations. Such characteristics can be exploited by at-

tackers to identify black box firewalls with high accuracy and launch effective attacks

on firewalls. We show two methods for inferring firewall implementation using these

characteristics. The first method is based on the firewall decision on a sequence of

TCP packets with unusual flags, which could be used as a firewall fingerprint for iden-

tification. The second method is based on machine learning techniques. We further

study the impact of different attacks on different firewalls and show that different

firewalls are vulnerable to different attacks. Finally, we propose defense techniques

to prevent attackers from inferring the implementation of a firewall. Some defense

mechanisms can be applied to all firewalls and some have to be customized based

on firewall implementation. Such mechanisms are designed to increase the chance

of incorrect firewall implementation inference by concealing firewall TCP flag finger-

prints and obscuring the pattern in probe PPT. To evaluate the effectiveness of these

defense mechanisms and measure their impact on firewall performance, extensive ex-

periments must be conducted with an expanded testbed.
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