 NTHOCLA OW BRIMARY Phopuction IN AN ARTHECTAL STMEAM

Thesis for the Degrae of M. S.
MCHIGAN STATE UNNLESTY
Robert Mitche! Srokes
1960

31293104024017

?

by

Robert Mitchell Stokes

AN ABSTRACT

Submitted to the College of Agriculture of Michigen State University of Agriculture and Applied Science in partial fulfillment of tive requirements for the derree of

MASTER OF SCIERCE

Department of Fishories arid Wildlife

1960

Approved:
5

ABSTRACI

The effects of growth-limitine ritrogen concontrations upon lotic primary production wore studicd under the controlled environment of an artificial strean. Ihe stroam Wator contained an oxcess of all major nutrionts axcopt nitrogen. Effects of variablo wator volocity (riffle and pool arcas) and light intensity wore also examined. Three successive additions of this element (1 $\mathrm{ng} \mathrm{I}^{-1}$ cach) brought about the establishment of an attached algal commaity followed by increased levels of phytopicment, organic ritrogen, and total dry weicht. The concentration of all major rutrients which were moasured decreasod with growth of foriphyton. The reduction of each new surply of nitrocon was inversoly prorortional to 2. riso in cellular chlorophyll. Aftor nitrato reduction the cinlorophyll content decreased.

Correlation coefficients indicated thot he relationship of pigment concentration to total dry woight and pić ment to organic ${ }^{N}$ were ingh. The cellular nitrogen conte.t approxirated two percent on a dry weight basis.

The production of organic matter (measured as total dry woight), phytopicmert, and orcanic nitrojon was sisnificantly difforont botween riffle and pool aroas. Early in the rroject pool values wore higher than riffle values. Later the converse of this situation occurrec. Similar
\square

正
Pars
Pars 20
fluctuations occurred in the percent of cellular nitrocen. Pis difference between areas could have been produced by tiree factors: variable incident radiation, variable water velocity, and competition.

The ircident radiation on pool and rifflo surfaces approxiratod daylight. This radiation along with liniting ritrogen concertration accounted for a prinary production of 250.2 and 201.4 me dry wt m^{2} day ${ }^{-1}$ in the riffle and pool respoctively. In diminishine lizint intersities phytopiement production decreased, but oven in itis aroa production increased with nitrogon additions.

THE EFFECTS OF LINITING CUICEATRAIIUNS OF
 IIITROGEN ON PRIHARY PRODUCTION
 IN AN ARTIFICIAL STREAPI

by

Robert Fitchell Stohes

A THESIS

Submitted to the College of Acriculture of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Departmert of Fisheries and Wildlife

ACLINOWLEDGMENTS

The author wishes to extend appreciation and gratitade to Dr. Robort C. Ball for his guidance and recommendations throughout tris study. He is also indebted to Dr. Phillip J. Clark for advice on statistical procedure; Mr. Phillip Halicki for aid in the identification of algae; Mrs. Mar; Wacasey for flanc photometric analysis; the graduate students of the Fisheries and Wildife Department for many helpful suffestions ard discussions; and to his wife Carole for her constart encouragement and hours spont typing this thesis.

This study was conducted under a graduate researoh assistantship fron tho National Institete of Flealth.
THESS

TABLE OF CONTEIVS

Fage
INIRODUCIION 1
MEMFODS
Equirmont 3
Nutrient liodium 10
Wator Chomistry 13
Periplyton Aisalysis. 15
Light 21
RESULIS
Species Composition. 23
Weiter Cnemistry 25
Ferifhyton Analysis. 42
Light 67
Nitrogen Fixation 74
SUNILARY. 76
jucs

LIST OF TADLES

TABLE Faje

1. Concentration of Major Salts ($8^{l^{-1}}$),Major Elenerits (Mg 1-1), and Micro-elements in Nutrient Medium B Contain-ing A_{5} Microelements Stock SolutionIncluding Modifications11
2. Wator Gemistry. 26
3. Nitrocen and Fhoswhorus Determinations in Milliorrams per Liter 32
4. Fotassium, Sodium, and Silica Ion Con- centrations and Correctod Total Reduc- tion of Each in Milligrams por Liter. 36
5. Riffle Phyotorigrent Absorbancy fer Unit Areo After Two Weeks Exposure 43
6. Pool Phytopicment Absorbancy per Unit Area After Two Wecks Exposure 44
7. Analysis of Variance of Riffle and Pool Areas for Four Feriods of Shinclo Exposure 47
8. Mean Fhytopigment Absorbancy Units and Milligrams Organic ijitrosen por Foriod. 48
G. Milligrans of Organic litrozen per Unit Area During a Two Week Exposure Foriod in the Pool froa 51
9. Milligrans of Organic Iitrogen por Unit Area Durina a iwo Wook Exposure Period in the Riffle Area. 52
il. Phytopigment per Unit Dry Weight per Ünit Arca After Two Weeks of Exposure 59
10. Fercent Cellular Nitrogen per Unit Area After Two Weeks Exposure at the Begin- nings and Ends of Periods 2, 3, and 4 62
11. Artificial Stream Primar才 Froduction. 66

LISH OF TABLES (Cort.)

TABLE Face
14. Mean Absorbancy Units (AAXIO ${ }^{3}$) of Phyto- picmert per Unit Area. After Exposure to Foir Poriods of litrocen at Decreasine Intensitics of Light Encrey ($\mathrm{E}-\mathrm{cal} \mathrm{cm}^{-2} \mathrm{~min}$) 72
位

[^0]tes
\square \square

[^1]\square

\begin{abstract}

\begin{abstract}

Abstract

\begin{abstract}

Abstract

\square 0 \cdot \square \qquad \qquad

\end{abstract}

Figure Fage

1. Fhotograph of Artificial Strean. 4
2. Diagran of Artificial Strean 5
3. Diagrains of Substrate Arrangement in Artificial Stream anci Dates Sampled by Each Shingle Set. 16
4. Correction Graph for Adjusting lieasured Phytopizment Absorbancy Values to Units Related to Corcentration 19
5. Correction ज̂raph for Convertine Expo- sure Motor Readints to Gram-calorics per Square Centimeter per Minute 22
6. Alalinity and pH in Artificial Stream Neter 27
7. Specific Corductance of Artificicl Strean Water 30
8. Total Phosphorus in Artificial Strean Watcr 33
9. Potassium, Sodium, and Silica Ion Con- centrations of the Artificial Stresin 37
10. Total Available Nitrocen and Ammonia Nitrogen in the Artificial Strean 39
ll. Mean Phytopigment Absorbancy Units per Unit Area After Two Weoks Exposure. Arrows Indicate Bi-weekly Nitrogen Additions 4.5
11. Mean Phytopiement Absorbancy Units por Period 49
12. Niean Organic Nitrogen per Unit Arca After 'Two Weeks Exposure. Arrows Indi- cate Bi-weelsly Nitrogen Additions 53
13. Mean Milligrams of Organic Nitrogen per Period 54
LISI OF FIGURES (Cont.)
Figure Fase
14. Regression Lines Expressing the Re- lationship Between Phytofigment Absorb- ancy Units and Milligrams of Organic Nitrozen for Riffle and Pool Zones 57
15. Rezression Expressing the Relationship of Phytopicment Absorbancy and Milli- grams of Total Dry Weicht for All Arti- ficial Stream Communitics 60
16. Percent of Cellular litrozen at the Beginnings and Ends of Feriods 2, 3, and 4. 64
17. Primary Production of Riffle Area in Grams per Square Meter After lwo wecks Exposure to Periods 2, 3, 4, aid 5 68
18. Primary Production of Pool Area in Grams per Square Meter After Two Weers Expo- sure to Feriods 2, 3, 4, and 5 69
19. Meai Phyopignent Absorbancy units per Unit Area at Docreasinc Irtensities of Licint Eiersy for Periods 2, 3, 4 , and 5 73

INTRODUCTION

In rocont yoars the rapid exansion of the human population hes croutod many problons which ofroct our strous. One of the mojor prohloms rasuliz fron a need for increased sport ad food fish production wilc paradoxiculy an incrasse of rollution is unfavorably alterire ary of the presont onviroments.

Many limolocists havo loo:cd to prinam production, which hes direct berrive on basic strean ecoiogit, for the arswor to this porplexity. Frinary production is the pete at which oremic metter is form bu tutosmatsic ad
 terisls (Ody 1553, Ruttron 1:53). If tino efficioncy of this prosose cen bo incressod ane on ap? iod in a practical ard sucusurul manrer, a broador boco wold be providod for the production of consurns such so fish. Variction in prinary production rates and the cormosition of tie periphiton comaty mey ilso provice e veref method of detecting sub-latel and chronso pollution.

Keoping those problons in nind, an arifificinj stoom wes constructed in wich commities of periphytor could be from under controllod environmental conditions. The prescnt study included irvestigatiors of community growth patterns uider liniting concentrations of nitrojen with

Hacs
variations of linht irtensity end current. All other physical and chenical conditions were held constant.

Althouch there have beer numorous studies on tho subjects of primery production, photosyntiesis, and nutrient metibolism ix both natural waters ard leboratory vossel cultures, few have incorporatid the use of an artificisl stream. Odum and Hoskin (1957) studied the metabolism of alcal commitios under artificial strear conditions ir a recirculating epporatus which consistei primarily of cloar plastic tubi.g. Several othor projects employing artificial streans aro now beirg cordiacted throughout the country which indicatcs this approach is now receivine corsidoratior.

This study was undertaren to determine the effects of limiting concentrations of nitrogen upon the growth patterns and composition of an artificial stream algal community under variable light intensity and current.

Equipment

The recirculating mechanism employed for this project was designed with the following requirements in mind: simple, sturdy, light-weight construction; ample stream bottom for extensive sampling procedures; elimination of contamination; high degree of flexibility; an area for efficient bacterial decomposition; maintainence of desired fluid temperature; source of controlled light; and economy. This apparatus is illustrated in figures 1 and 2.

An aluminum trough 24 feet X 14 inches X 10 inches formed the stream bed. This length was a product of joining six sections each 4 feet in length. These were held together by small c-clamps. Flexibility of section construction allowed an 8 inch variation in depth at each junction. Pools or variations in gradient might then be formed as desired. Contamination from the aluminum was prevented by lining the stream with 4 mil , clear polyethyle ene sheets.

The trough was supported by a $\frac{1}{4}$ inch steel frame of channeling and bent pieces under each joint. Adjustments for the desired depth were located upon the steel structure. Coarse adjustment of 1 inch or more was made by
\square
\square
.

Firume 1. Tho oriph of
 Firume 1. Tho oreph of

HEES

```
JUES
```

Ficure 2. Dinuram of Artificisil Stroan

\%HES
moving the horizontal cross beams supporting the stream joint. Fine adjustments, consisting of two adjacent bolts vertically movable within a 1.5 inch range, were located on each cross beam. Metal plates were welded to each bolt head for stream support.

Water was pumped into the stream from a reservoir located beneath the trough by a Model 259.481 Homart sump pump. The plumbing into the stream consisted of 1.5 inch polyethylene pipe containing a valve which regulated the flow.

A centrifugal pump best suited the requirements for recirculating a relatively high volume of 50 gallons per minute under low pressure and a 5 foot head. Any pump, classified as "noncontaminating" and meeting the requirements above, would have been expensive and difficult to obtain. The inexpensive sump pump used met all requirements except contamination, and this was reduced by using a bronze intake. A constant pump discharge was possible by adjustment of the inlet valve and maintainence of a relatively even water depth in the reservoir.

Originally a wooden baffle had been constructed to decrease turbulence of inflowing water. Since there might have been a possible release of harmful resins from the wood, this baffle was replaced by one of plexi-glass construction.

The stream outlet included a 1.5 inch sink fitting and
drain connected to 1.75 inch polyethylene tubing. Maximum filtering surface was obtained by entering this stream outlet into the bottom of a 10 gallon milk can filter. Upon entrance the solution upwelled through rocks, coarse gravel, and aquarium sand separated by layers of fiberglass. The liquid then spilled over the can lip into the reservoir return. This return consisted of galvanized eaves trough lined and covered with polyethylene. This filter was so designed because maximum drop from outlet to the reservoir was only 9 inches, and a trickle type might provide insufficient filtering depth.

The first operation of the filter proved ineffective in that the force of upwelling water was so great that amounts of sand from the filter were carried into the reservoir. This problem was finally solved by placing two layers of fiber glass screen over the filtering material surface. Stiff wire was used to hold the screen edges solidly against the can sides.

The inner surface of the filter was painted with Krylon plastic paint to prevent rust and iron contamination. Black paint was used to insure that all parts had received paint. This inert paint was highly insoluble in water and remained intact during the entire experiment. All filtering materials were soaked overnight in one percent hydrochloric acid solution and rinsed before use.

The reservoir was a 3 feet X 3 feet X 14 inches wooden

J!ES!S
box lined and covered with clear polyethylene sheeting. It had a capacity of 298 liters which was in excess of the circulating fluid.

Before each operation all polyethylene pipes were cleaned of all mineral and algal deposits by circulating a dilute formalin - HCl solution for a period of 24 hours. To control the corrosive action of HCl upon the brass pump intake the pH of the cleaning solution was kept within a range of 6 to 7.

The polyethylene sheoting seems to be the most versatile component of the stream. It was used to line the stream bed, reservoir, and return. Only the brass pump intake and valve could contribute heavy metal contamination. Also the lined parts need not be watertight. When an experiment has terminated, the polyethylene can be easily removed, discarded, and the system relined.

During preliminary operations of the stream it was noted that large amounts of water were being lost via evaporation. Since plans had been made to circulate distilled water, this loss, amounting to 38 liters per day, was important because the demand exceeded the water supply. The polyethylene covering of exposed surfaces reduced the loss to 4 liters per day. Excessive amounts of air contamination also were eliminated by this covering.

A cooler, containing a movable cooling unit of stainless steel coils, was designed and constructed by the

Thes
college for wide range temperature control. The cooling unit was immersed into the reservoir and only used in this project to hold temperatures constant at $70^{\circ} \pm 2^{\circ} \mathrm{F}$. The 40 variability was due to the fact that the temperature control of the cooler operated within a $2.5^{\circ} \mathrm{F}$ range. Reservoir temperatures were recorded upon a Taylor Recording Thermometer.

Illumination for the stream was provided by a rack of nine 100 watt incandescent bulbs, each with a 14 inch shade reflector suspended 14 inches above the stream bottom. Although a great deal of heat was created by the incandescent bulbs, it was considered unimportant in this system proVided with circulation and a cooler. To reduce the number of variables constant illumination was maintained.

The artificial stream was set up for experimentation in the following manner. It was adjusted to contain an 8 feet X 14 inches pool with a maximum depth of 6 inches. This pool was preceded by a riffle aroa 12 feet $X 14$ inches X one inch. The pump was valved to deliver a flow of 25 gallons per minute. This produced a velocity of approximately 1 foot per second in the riffle. The velocity in the pool was not measured with acceptable accuracy. Velocity was measured by a Micro Gurly Current Meter. The total stream fall from origin to outfall was set at 1 inch per 24 feet. This is the equivalent of a stream with a gradient of 18 feet per mile. This represents a fast-flowing
stream.

Nutrient Medium

A nutrient medium B with A_{5} microelements was selected from several media employed by Kratz and Meyer (1955) in the culturing of blue-green algae (Table l). Such a medium (plus initial elimination of nitrogen) with various minor modifications would insure the presence of excessive amounts of all major elements necessary for culture of algae except nitrogen. This view must be taken although excessive quantities might themselves be limiting to algal production.

The following modifications of medium B were made. Nitrogen sources, both KNO_{3} and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, were removed. Calcium nitrate was then added to the stream at regular two week intervals. A total of three additions were made with each addition introducing one milligram per liter of nitrogen.

Silica, not included in the orginal medium, was added in the form of silica gel. Since the entrance and growth of any organism was of interest in this project, the silica inclusion provided a possible basis for establishment of diatom communities.

Ethylene diamine tetra-acetic acid (EDTA) was substituted for sodium citrate. Either of these chelating agents can be used to form soluble complexes with various insoluble,

TABLE I
COIVEITRATIOI:S OF MAJOR SALPS (E I- I^{-1}, HiJOR

 II:ULUDIEG HODIFICATIUE:S*

Salt	Concentration ${ }^{\text { }}$	Ion	Concentration
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	0.250	Mg	$24 \cdot 3$
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	1.000	K	287.0
$\mathrm{Na}_{2} \mathrm{CO}_{3}$	0.700	IVa	$303.8+3$
$\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	0.004	Si	63.6
$\mathrm{Na}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}{ }^{*}$	0.350	Fe	0.4
EDTA*	0.050	F	228.0
Microelements $\mathrm{A}_{5}{ }^{2}$	1.0 ml	CO_{3}	395.2
- - - - -	- - -	SO_{4}	98.2

1
Concentration in 1 Iiter distilled water
\hat{c} Stock solution micronutrients (g I-1):

$$
\begin{array}{ll}
\mathrm{H}_{3} \mathrm{BO}_{3}-2-2.86 & \left(\mathrm{NH}_{4}\right)_{6} \mathrm{MO}_{7} \mathrm{O}_{24} \cdot 4_{4} \mathrm{Fi} 20-0.18 \% \\
\mathrm{NrCl}_{2} \cdot \mathrm{CH}_{2} \mathrm{O}-1.81 & \text { CuSO}-2-0.05 \% \\
\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}-0.22 & \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{OH}_{2} \mathrm{O}---0.49 \%
\end{array}
$$

3 Sodim from sodiur silicate not accounted for
thus unavailable, nutrients and maintain a precipitate-free alkaline medium (Kratz and Meyer 1955).

The micronutrient modifications included the substitutions. of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MO}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ for $85 \% \mathrm{MoO}_{3}$ as a source of molybdenum, and anhydrous CuSO_{4} for $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. The A_{5} micronutrients were also supplemented with cobelt nitrate.

Calcium initially was absent from the medium except as an impurity by the exclusion of calcium ritrate; but each addition of the nitrate salt introduced elemental calcium in a moleculer concentration higher than that of the ritrogen, i.e. $25 \mathrm{mgra}^{-1} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ contained 4.2 and $3.0 \mathrm{mg-r}$ of calcium end nitrogen respectively. In general, calcium is required in minor emounts by organisms. Most nutrient media contain only traces except when the nitrogen source is calcium nitrate; a faw such as that used by Warburg and Burk (1950) contain none. Bold (1942) reports that calcium is unnecessary for certain algae such as Chlorella. Allison, Hoover, and Morris (1937) found calcium to be essential for nitrogen-fixation by Nostoc musorum but unimportant for growth. Media with higher magnesium content often reduces any requiremont (Chu 1942). Still others found any limiting concentration to be fer below that of nitrogen (Gerloff, Fitzgerald, Skoog 1950, Kratz and Meyer 1955).

All nutrients were placed into the stream channel source as a solution or suspension. This prevented settling out in the reservior and facilitated solution of undissolved.
salts.

Water Chemistry

A sampling procren set up for this project included analysis of alaalinity, FH , anc conductivity at weekly intervals and analysis of total available aitrogen, amonia. nitrogen, and total phosphorus at two-day irtervals. Total avoileble nitrocen was also dotemisod imediajely before and one hour after each addition of celciom nitrate. All samples were collected from tin pool zove of the strem. alkalinity

Phenolphthalcin and wethyl orame elasinity were deterrined by titration rethods describuin inelch (1c48). Results were expressed in rilligrans per liter of calcium carbonate.
pH
Hydrogen ion concentration was determined on a Becliman Model H pH meter.
conductivity
Eloctricol rosistance was measumod vith an Industrial Instmment Compary Model RC-7 portable conductivity meter. All readines were corrected to $18^{\circ} \mathrm{C}$ and expressed in units of specific corductance as micromohs per centineter

(Industrial Instrunonts Oporating Manual).

hardness

Values of hardness in milligrams per liter were
obtained by the versonate method (Catalog No. 4, Hach Chemical Company). Determinations were made only before EDTA had been added to the stream as EDTA was the titrant used in the versonate nethod.
silice.
Three determinations of silica were made: at the beginning, middle, and end of the experiment. A gravimetric method taken from the Chemical Laboratory Manual of the American Cast Iron Pipe Company, Birmingham, Alabama, was employed. Results were expressed in milligrams per liter. sodium and potassium

Concentrations of these cations in inilligrams per liter were deter ined fron samples removed for silica determinations. Values were obtained from a Perkin-Elmer Flame Photometer.
total phosphorus
Values of total phosphorus were resolved by a colorimetric method described by King (1932). A Beckman Model B Spectrophotometer at wavelength 860 mu was used in the procedure. Resilts were obtained in milligrans per liter. total available nitrogen

Total available nitrogen included all inorganic forms except atmospheric nitrogen. Detemninations were made by using the reduction method described in Standard Methods for the Examination of Water, Sewage, and Industrial Wastes (APHA, AWWA, FSIWA, 1955). These determinations were made
immediately after collecting the sample to prevent loss of amonia. All results are expressed in inilligrams per liter. ammonia nitrogen

Ammonia nitrogen in milligrams per liter was measured by the distillation method described in "Standard Methods" (APHA, AWWA, FSIWA, 1955). Determinations were begun on April 25.

Periphyton Analysis

sampling procedure

Artificial plexi-glass substrates 7 mn tinick with an exposed area of $150 \mathrm{~cm}^{2}$ were employed to sample the cormunity of periphyton. These plates were held stationary in the stream by plastic coated wire racis.

A totel of 54 shingles received use in this project (Fig. 3a). The riffle and pool arcas each contained 24, and the remaining 6 were placed into an unlichted zone preceding the riffle. The 24 shingles per area were subdivided into 8 sets of 3 shingles eack, 7 of which were incorporated into a l2-day overlap sampling system with one set remaining to be used as an extra.

The l2-day sampling system was devised to obtain an approach to the measurement of instantaneous primary production. To help visualize tinis procedure figure 3 b is provided with the 5 twowweek nitrogen periods labled. Each of the 7 shingle sets was exposed to two weeks of stream

Figure 3. Diagrais of Substrate Arreremont in Artificial Strear (c) ard Dates Sampled by Each Siningle Set (b)

conditions, but overlapped in a manner which allowed each set to sample two days longer than the preceding set.

Before the first addition of nitrogen on April 12, two weeks were required to set up the operation; sot one being added 13 days before adding nitroêen; set two 11 days before; ... set seven one day before. Therefore, set one was removed after one day of cxposure to nitrogen, set two after three days, ... and set seven after 13 days. Tris process was kept in motion throushout the project by ronoval and replacement of the designated set of shingles every two days from both riffle and pool zones. All light shingles wre collected afer exposure to periods 2 throuch 5.

After the substrato set had been removed fron the stream, shinales I and II wre analyzed for phytopigment concontration and oreanic riftrozen content. Each shingle was divicled laterally with organic aitrogen and chlorophyll being detemined from the upstream and downstream halves respectively. Shingle III was reservod as an extra. phytopigment

The growth on the entire surface including bottom and sides wes removed to obtain maximum material in periods of low production. This material was scraped and washod with 95 percent ethanol into 250 ml beakers. Remaining shirigle halves were stored in the freozer. Complete chlorophyll extraction was insured by soaking the material for a period exceeding 24 hours in complete darkness. Tests indicate
that samples can be stored in this manner for as long as 30 days without a loss of phytopigment due to decomposition (Brehmer, PhD Thesis). Alchol was used as a solvent in preference to acetone since the latter dissolves plexiglass.

After soaking, the samples were filtered through glass wool, and the extract volume wes adjusted to 50 ml by dilution or evaporation. Phytopigment concentration was determined in a Klett-Summerson colorimeter using a 640-700 mu red filter.

Brehmer and Grzenda (in press) have shown that the absorbancy ($640-700 \mathrm{mu}$) of 95 percent ethanol piement extracts is not linerally related to the concentration except at low values. Hence, they have provided a graph (Fig. 4) for converting the moasured absorbancy into the theoreticsl absorbancy which follows thi Lambert-Bcer Law. The necessary corrections wore mado by locating moasurod absorbency on the ordinate anci following this value to a point of iaterception on the experimental line. A vertical extension of this point will intercept the Lambert-Beer line, and the absorbancy unit directly opposite this intercept represents the corrected absorbancy roading. The wint of adjusted absorbancy is termed (AA) and is multiplied by 10^{3} to avoid use of the decimel.

Shingles in the area of diminished light were measured only for their chlorophyll content. For conparison purposes

```
Figure 4. Correction Graph for Adjusting Mossured Finytopigucnt Absurdincy Valuos to liits Related to Concentration
```


half of each shingle was analyzed.
orgenic nitrogen
The remaining shingle halves, which had beon frozen after chlorophyll determinations, were rmoved, thawed, scraped, end the aufwuchs was washod into 250 ml beekors with distilled water. Each wos analyzed by tie sai-micro Kjeldahl procedure describod in "Standind Metiocis" (APHA, AWWA, FSIWA 1955). Results are expressed in milligrams organic nitrogen per $75 \mathrm{~cm}^{2}$ (erea of half shingle). total dry weight

An estinate of the totel dry weight of periphyton which accumilated within two wee's was obtained by renovirg the growth from a $37.5 \mathrm{~cm}^{2}$ section of shingle III. These determinations were made after completion of the project and only certain shingles were available at that time.

The chlorophyll was oxtracted upon renoval as described in the section on Phytopigment, except that fooch crucibles were used to collect the algal residuc. This was necessary for woicit anclysis. The residue was dried ovornight ir an oven at $55^{\circ} \mathrm{C}$ then placed into a dessicator to cool. Successive weight measurements wre conducted upoa an analytical balance until a constsnt weight of $\pm .5 \mathrm{mg}$ was reached.

The total dry woight values will tend to underostimate the actual valucs sincc chlorophyll and lipids were removed with the filtratc.

Light

Measurements of light intensity wore obtained by using a PR-I Generel Electric Exposure Meter. Tnis instmmont was calibrated by direct comperison with an Eppley pyrheliometer reintained at the Michigan Hydrologic Roscarch Station on tho Michican Stato Univorsity campus. Tie calibration was conducted on a clear surner aftornoon from 1:00 PM until suindown. Light metor readings were taken at 15 minute intervals.

The intensities recorded by the pyrheliometer were converted to crom-calories por square centireter per mirute by dividing the direct reesurement which was recorded in millivolts by a constart, l.7l. A straicht line relationship wes obtainod by plotting the exposure metor readings against gm-cal $\mathrm{cn}^{-2} \mathrm{~min}^{-1}$ on semi-log scole. Tire line of best fit was adjustod by eye and extrapolatod to give ail estimate of the cnerey received ai lower light intensities. Two lines are indiceted which represent the adjustmert of the exposure to road at kigh end low licint intensities.

Figure 5. Correction Graph for Sonvortius Exposire Meter Readings to Gramcalorios por Square Contineter por Minute

Exposure Meter Readings

RESULTS

Species Composition

The first attempt to establish an algal community in the artificial stream was successful using tap water enriched with small amounts of we.ter from both the Red Cedar River and the fish tanizs in the laboratory. A few stones from tho Red Cedar, well encrusted witin aufwuchs, were introduced to seed the sustem. Diatoms wore the doninant organism in this meterial with Navicula and Gomphonema as the major species.

The stream was in continuous operation two weeks before new growth appeared on the seed rocks and stream bottom. This growth, primarily Chroococcus, first appeared in the pool.

During the third week a conmercial fertilizer rated 17-17-17 ($\mathrm{NH}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}-\mathrm{K}$) was added to the reservoir. Within three days a dense algal bloom of Chlorella and Navicula had begun. Navicula seemed to dominate the riffle area while Chlorella was more abundant in the pool. This phase of the project indicated that a reproducing algal commuity could be establishod under atypical lotic conditions.

On March 28 the quantitative experimental program described in "Methods" was begun. Seed material scraped from Red Codar River stones was added on March 29.

The first green cells appeared in the pool on April 15, three days after the first addition of nitrogen. No growth was noted in period 1. The pioneer comminity was essentialIy composed of diatoms although represertatives of green and blue-green algae were present.

From April 15 to 25 unidentified unicellular blue-greens and diatoms dominated the pool area while a lesser population of diatoms existed in the riffle. The diatom Navicula was most abundent. Filaments of Stigeoclonium and Ulothrix also entered both zones about April 19 and remained until early May.

After April 25 a major commurity change took place as colonies of Anabaena oscillarioides (identified by Dr. Francis Drouet) appeared. Thereafter this species of blue-green algae completely dominated the hebitat, and eventually it formed a spongy mat of cells about one-fourth of an incil thick. By June 6 the mat had bogun to broals loose from the strerm bottom. This was most likely due to death of the cells adjacent to the bottom and formation of gas bubbles under the material. Moreover, the community appeared to be senile; but production, described in later sections, was still great and was visually evident by the repopulation of areas left bare after sloughing.

Initially it semed that Anabaena succession had elninated other organisms, but careful examination found a large community of Navicula living within the blue-green mat.

Other species of algae such as Stichococcus bacillaris and Schizochalamys delicatula were minor constituients of the community for a short time after April 25. About June 12 filaments of Stigeoclonium again entered the area at the pool head.

Throughout most of the experiment there was little evidence of an invertebrate community. However, toward the snd a population of midges was begining to develop.

Water Chemistry

alkalinity

Weekly deteminations indicated that high levels of both phenolphthalein and methyl orange alkalinities were maintained throughout the experirent (Fi天. 6). Initial high values were expected since the proportions of monobasic potassium phosphate and sodium carbonated used buffered medium B in the alkaline range (iratz and Meyer 1955).

It was also calculated thet approximately $400 \mathrm{mgsin}^{-1}$ of carbonate ion would exist in the system upon complete solution of sodium carbonate (Table l). Conversion of this ion to bicarbonate would be enhanced by exposure of carbonate ion to carbon dioxide in the air resulting from the turbulent conditions and shallow depths of this stream.

With the accrual of algal cells the concentrations of $440 \mathrm{mg} \mathrm{I}^{-1}$ bicarbonate ion and $96 \mathrm{mglil}^{-1}$ monocarbonate ion wore reduced to lows of 257 and $50 \mathrm{mg} \mathrm{I}^{-1}$, respectively. A gradual

TABLE 2
WATER OUIISTRY

Date	pH	Aľalin Fhtr.	$\begin{aligned} & \text { Y (ming 1) } \\ & \text { M. O. } \end{aligned}$	Resistance (oirns)	Conductivity (micromios)
4-6	3.4	75	375	1150	1610
4-8	8.4	96	1,40	- -	- -
4-16	8.1	80	336	1300	1425
$4-23$	3.5	80	370	1320	1403
4-29	8.7	75	368	1380	1342
5-6	8.7	77	366	1200	11:47
5-5	8.9	68	290	1630	2136
5-17	3.9	72	261	1670	1109
5-22	8.9	66	257	1950	950
5-29	3.7	56	264	2000	c,26
6-6	8.8	58	278	19,50	950
6-12	8.6	50	290	- -	- - -

Figire 6. Al'alinity and pii in Artificiol Strow? Wotor

rise in bicarbonate which occurred after May 23 plus continued monocarbonate reduction might indicate that the latter was being converted to the former by presence of increased carbon dioxide from organic decomposition. pH

The hydrogen ion concentration increased from a value of 8.4 at the beginning of the project to 8.9 , which remained for some time after the third addition of nitrogen. A decronse again occurred towerd the project terminetion (Fig. 6).

The slight fluctuation in pH seemed to follow production levels and possible ritrate assimilation. On May 29 production droped i: both riffle and pool aress after a general increase prior to this date (Fig. 1l). A production rise again occurred after this date to correspond with pH rise. In certain vessel cultures the assinilation of nitrate by growing cells was accomparied by an increase in pH (Rodhe 1948, Kratz and Meyer 1955).

It is evident from figure 6 that pH was inversely related to the bicarbonate alkalinity. This effect could be a product of many factors since alikalinity results from the solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and pH results from solution of both buffer salts plus the presence of sodium silicate which was not included in the medium used by Kratz and Meyer. Sodium silicate and sodium carbonate are often combined to maintain an alkaline bufforing capacity (Gerloff, Fitzgerald,

Skoog 1950).
The pH and alkalinity, no doubt, have played an important role in determining the presence of Anabaena and Navicula. Using a modified Chu 10 modium Gerloff, Fitzgerald, and Skoog (1952) noted optinum growth of Microsystis aeruginosa wes at pH 10. Cells of Arabaona variabilis experienced maximum crowth at pH 6.9 to 9.0 (Kratz and Meyer le55). Bold (1942) cites Gietler as findira it necossary to grow Navicula on agar of pH 9 in order to secure formetion of anxospores. conductivity

Values of specific conductance, flotted in figue 7, implied that a constant decrease in total ionized constituents in the water took place. As expocted, diminution followed aufuchs incrosse. It is interosting to rote thet conductivity variations followed closely to those of bicarbonate alkalinity.

The alterations in alkalinity, pH , conductivity, and other specific ion concentrations wore in fart due to an irreparable leak which developed at the filter lip on or about May 4. Tise exact lete it beçan was unknown but was estimated from obsorvations of standing weter uncer the filter. Corrections for this loss were niede by collecting and measuring the liquid from the lea's for a period of throe weeks. The determined average leakece rate indicated thet approximately 38 liters of solution would have bcen

Figure 7. Siecific Vordictanco of Artificial Stream Watcr

soymods!W
lost in 20 days-a length of time known to exceed the actual days of leakage.
hardness
Calcium hardness (EDTA) was determined on April 8 to confirm the fact that alkalinity was not due to calcium carbonate. Results indicated that calciam was present in amounts too small to be detected. On April 13 total hardness (EDTA) was measured twice and found to be $08 \mathrm{mg}^{-1}$. Since the total herdnoss is lower than the alialinity, it appered that most hardnoss was due to maernesiun carbonate. The calcium hardness wes recheckod on April 13, but wesults remained negative.
total phosphorus
The phosphorus levels were extremely hich throughout the experiment, rangins from 100 to $170 \mathrm{rng}^{-1}$, with only one exception thich occurred on April 15 (FiE. 8). An even grecter concentration of phosphorus would have occurred if complote solutjon of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ had taken flace (Table l). Therefors, the Eradual riso from the minimal to mexinal concentration from April 11 to 21 probably was due to increased disintegration ad mixing of the undissolved salt.

After April 21 it appearod thet plant production began gradually to reduce the phosphate level to a low on Me.j 25. Throughout this reduction severel pulses of increase were observed. These pulses mifith stem from liquification of undissolved phosphate salt or regeneration and recycling of

TABLE 3

IVITROGEM AND PiOSPEORUS DERERIIAPIUNS
If MILLIGRAMS PER LITER

Date	Total Available Nitrogen	Anmonia	Total Phosphorus
4-10	.043	- - -	- - -
4-12	. 1330%	- -	100
	- 340°	- - -	- - -
4-13	. 310	- - -	120
4-15	. 370	- -	60
4-17	. 570	- - -	140
4-19	. 260	- - -	160
4-21	. 015	- - -	170
4-23	. 090	- - -	16!
$4-25$. 040	. 000	150
4-26	. 080%	- - -	---
4-27	. 420	. .000	150
4-29	. 085	. 000	170
5-1	. 090	. 000	150
5-3	. 140	. 015	140
5-5	. 330	. 060	100
5-6	.090	-. - -	- - -
5-7	. 105	. 025	120
5-9	.150	.005	120
5-10	$.210^{*}$	- - -	- - -
5-11	. .180	-. .025	120
5-13	. 120	. 010	130
5-15	. 120	. 120	120
5-17	. 150	. 000	125
5-19	. 160	. 020	118
5-21	. 110	. 015	142
5-23	. 105	. 000	110
5-25	. 150	. 000	100
5-27	. 100	. 050	104
5-29	. 140	. 000	100
5-31	. 175	. 000	120
6-2	. 110	.000	122
6-4	.105	. 085	126
6-6	.070	. 000	120
6-8	. 300	. 090	130
6-10	. 185	. 030	136
6-12	. 110	. 080	126
6-14	. 110	. 060	124

* Sample taken imediately before nitrogen addition

O Sample taken one hour after nitrogen addition

Figure 8. Total Phosphorus in Artificial Stream Water

snaydsoud $+2+!7$ ard sumad $6!11!W$
this nutrient in the plant material.
Total phosphorus levels becan to rise again ofter May 25. This seemed to coincide with the slonghine of large alcil fragments from the aged mat. If bacterial decomposition took place in the filter, phosphorus in organic form would be recirculated throuch the system.

Losses of phosphorus duc to leakacis wore estimated to be approximetely $16 \mathrm{mgli}^{-1}$.

As was mentioned earlier, certain elements in the artificial strocin might bo detrimental to growth as a result of their carmous concontrations. Phosphorus is one such element; and since it plays a vital rolc in plant nutrition, the large stream supply moeds consideretion. Chu (1942) noted that strong phosphorus concentrations inhibited growth of certain diators and creen algae, but it varied with the species. Later he found less inhibition when nitratem nitrogen was used as a ritrocen supply (Chu 1943). Osterlind (1947) mentions that use of phosphate buffers ir. high concontretions are often injurious to algac. In direct conflict with these findings Kratz and Mejer (1955) varied $\mathrm{K}_{2} \mathrm{HPO}_{4}$ from .25 to $1.5 \mathrm{~g}^{-1}$ without effect on growth of Anabaena, Anacystis, and Nostoc. Other nutrient media used by Ketchum, Lillicis, and Redfield (1949); Warburg and Burk (1950); aid Harris (1941) to grow many algal species also contained phosphate in similar or even higher amounts than those occurring in the artificial strean. Views on this
subject conflict, but it seems much depends on tolerance ranges of the particular algae species and the phosphate corentretion ranee with which one works.

silica

The deplotion of silica was of interest since the ubiquitous diatoms remained throughout this study. Data from three determinations (Table 4) indicated that only about one half of the added silica gel went into solution (Table 1). Inis provided an initial concentration of $34 \mathrm{mg} \mathrm{I}^{-1}$, which according to Krauss (1858) is about optirnum for dense cultures of Navicula. Certain freens and diatoms exhibit an optimum growth in nutrient solutions contairing $30 \mathrm{mj} \mathrm{I}^{-1}$ of silicon dioxide (Chu 1,42).

The concentration of silica was reducod $6 \mathrm{mG} I^{-1}$ during the experimental period, although leakage accourted for about two-thirds of this loss. Moreover, the probeble solum tion of salts, yct undissolved, complicated the picture. potassium and sodium

The relative concentrations of $58.7 \mathrm{mg} \mathrm{K} \mathrm{I}^{-1}$ and $4: .8$ $\mathrm{mg} \mathrm{Na} \mathrm{I}^{-1}$ gave evidence that monobasic fotassivm phosphate was more soluble than sodium carbonate at the beginning of the experiment (Table 4). In table 1 it should bo noted that complete solvtion of the two salts would insure a high pHi. In vicw of this, pH should lave been mech lower than it actually was. The actual high pH volue wes rooably a roduct of sodium silicate.

TABLE 4

PORASSIUI, SODIUM, AND SILICA ION CONCENTRATIUAS AKi CORRECTED HOTAL REDUC'IION OF EACH IN MILLIGRANS PER LITER

Date	Fotassium	Sodium	Silica
$4-6$	58.3	45.0	$-\ldots-$
$4-6$	53.8	44.5	34.0
$5-5$	35.0	35.8	32.0
$6-16$	31.3	25.0	20.0
Concentration Reduction	27.2	49.8	6.0
Leakage Loss Corrected Reduction	4.75	14.9	4.3

Figure G. Potassivin, Sodium, and Silica Ion Concentrations of the Artificial Stream

As plant growth incroised both rotassium and sodium wore siçificantly reduced (Fic. 9). Whe: compared to silica tineir rospective losses du to loalage were minor. The totel corrocted reduction of potassium wis the lerest, but anslysis indicetod thot sodium depletion wos zeletively graater when tha commanity was dominet d by Acbaona oscillerioidzs. Potessium ion is fomd almost wiverscilly as the principle inorganic cation of cells, whereas the sodiun ion is know to be dispensable for nost plants with the exception of blue-graen algae (Friton and Simands 1959). It is necessary to point out that few conclusions can be drawn aboit these ionic reductions whon quantitios of undissolved salts in the system provided e contiruous so:rec for nutrient replenisiment.
total availablo nitrogen
The corcentrutions of total availoble aitro on in the artificiel stroan are illustio tod ia ficrolo. Successive calcium aitreto edditions, och jutroduciue 1 mg I^{-1} of nitrogon, causcd an immodiate rise in the totol available nitrogoin. Those hich initial levels wore siçaficastly roduced by the Erowing algal commaity. Tno algel mroduction poa's ir fiçuro ll followed each inftial foas of inorganic nitrocon. It also sinold be roted that the fall of initial levels was more raild as tho stadins crop doveloped. A total of nine days pascod vefore the April 12 nitrocen supply foll to trice amounts (Arril 2l), whereas the

Figure 10. Total Availablo iitroect and Ammonia Nitrogen in the Artificial Stream

period 4 supplement on May 10 dropped from $.9 \mathrm{mg} \mathrm{l}^{-1}$ to $.18 \mathrm{mg} \mathrm{l}^{-1}$ in one day. A strict two day sampline would have missed this riso and fall.

After the :ew suplics of ritrogon hed been derlated th: "normal" stroam concentration ronainod in the vicinity of $.1 \mathrm{mE} \mathrm{I}^{-1}$. In periods 4 and 5 this is varticularly roticable. Meny autiors working on the subject of nitrogen as a limiting factor and usiag reay variotios of alya fourd that the lower limit of this eloment for optimum growth occurs well above the velue of $.1 \mathrm{mg} \mathrm{l}^{-1}$ (Gorloff, Fitzicirald, and S:roog 1950; Rodhe 1s48; Chu 1:43). Morcover, Brohner (PhD thesis) hes irtorpreted nitrocen to be the limiting factor of tho Red Coder Rivor where men velues of inorganic nitrocen are. $7 \mathrm{mg} \mathrm{I}^{-1}$ ebove the samege outfall. Riloy ($19 / 40$) also indiceted thet the plankton of Lirsley Foud becomos dominated by diatons and blu-green al ae in the swar months whon the aitrato ranees betwon 01 and. 04 me I^{-1}. These populations cml concentrations compare sonewhet to those of the artificial strom. In co junction with low levels of nitrogen the presence of Anabaona adiatoms in the artificicl stroan gives furtier ovide:ce thet nitmocen was the linitine; factor.

It was aoted arrlier thet the salts of the nutrient medIum did not dissolve completely. Calciurn nitrate wis no cxceptio: to tho riln. Lese than 35 percent of tho feriod 2 addition wont into solution; and when algal erowth bogan to
affect a roduction on April 17, only 55 percent had been dissolved. Sinco these undissolvod solts right always be present, the nutriont could be irmedietely assinilated upon rolease into solution. The solution of undissolved salts plus oreanic breal:dow, nitrogen fixation, and roleaso from living plents micht also accoust for the fact thit sone nitrogen was prosont at all tines in the stream.
free ammonia
Free armonia determinations wae begu: after some growth had accumuletod in hopos that pulsos of this product would be indicative of organic decompositior by hotcrotrophic bacteria. The values renged bet:reen .12 and 0 milligrans per litor for the ontire poriod (Fi乞. 10), and it apreared there nisht be a towency for the concentration to rise toward the end of the cxporiment. Plant metorial was brecking loos: a.d being washed i.to tino filtor i.t this time.

Foriphyton Analysis

phytopigment

Relativo rats of primary roduction were obtained by comparisoi of the phytopigment corcentration prelr shingle. The mean phytorignent wits are plottod versus time in figure ll.

The first detecteble sinjigle growth occurred six days after the first nitrogen had been c.dded. No grovtin ws noted is period 1. In viow of these fects the istroduction of nitrocen becano a rechanism for trigetrine tro roproduction of cells which had lain dormant for alinost threo wools.

Figures 11 and 12 illustrate that successive additions of calciwn nitrate brought about an increase in the relative production ratcs i: all lighted areas of the artificial stroan. Within poriods 2, 3, and 4 pignent concentration dropped after the assinilation of now nitrute (Fiê. 10). This drop might be an actual decrease of pimmont. Yertsch aid Vaccaro (1958) report thit iitrogen deficiency produces a decresse in chlorophyll which may be ettribetod to the decomposition of the pignent proteia complex.

Anothor possible resson for reduction of chlorofhyll might merely be a result of the physical condition of the shimgle. For exmplo, the surface of a two-ween substrato removed on April lis could heve been altored by the onvironment to accept adnorins cells. Cells throwhout the stream at this timo would bo cntering a period of repid division,
TABLE 5
RIFFLE PHYTUPIGMENT ABSURBANCY PEK UNIT AREA ($75 \mathrm{CM}^{2}$)

TABLE 5
AFTER TWO WEEKS EXPOSURE
TABLE 6
POOL PHYTOPIGaENT ABLOKBGNCY PER UNIT AREA AF'IER TWU WEEKS EXPUSUKE

Date	AAXIO ${ }^{3}$	Mean	Var.	Sta. Dev.	Date	Aaxlo ${ }^{3}$	Mean	Var.	Sta. Dev.	Date	AAXIO ${ }^{3}$	Mean	Var.	Sta. Dev.	
$\begin{aligned} & 4-10 \\ & 4-12 \end{aligned}$	0	2	8	2.8	5-1	91	112	1040	32.2	5-23	251368	310	6844	82.7	
	4					132									
	0				5-3	65				5-25	418				
	0	0	0	u	5-5	85	75	200	14.1	5-27	274328	30410368		101.8	
4-13	28					124									
	32	30	8	2.8		102	113	242	15.6		247	331	18	4.2	
4-15	12				5-7	261				5-24					
4-17	12	12	0	0	5-9	245 289	253	128	11.3	5-31	245	240	2	1.4	
	2	12	200	14.1		261	275	392	19.8		283	285	4	2.0	
4-19	202 176	189	338	18.4	5-11	354 364	364	0	0	6-2	274 376	325	5202	72.1	
4-21	96	189	33	18.4	5-13	427	364			6-4	277	325	5202		
	116	106	200	14.1		406	417	220	14.8		392	355	6572	81.1	
1-23	82				5-15	372				6-6	344				
	100	91	162	12.7		360	366	72	8.5		348	346	8	2.8	
4-25	70	72	8	2.8	5-17	496 475	486	220	14.8	6×8	372 412	442	800	28.3	
4-27	245				5-19	412				6-10	396				
	367	306	7442	86.3		403	408	40	6.3		356	376	800	28.3	
4-29	226	23	364	19.1	5-21	46	460	50	7.1	6-12	249 237	243	72	8.5	

Figure 1l. Mean Phytopignont Absorbaxicy Units por Unit Area After Two Neeks Exposure. Arrows Indicate Bi-wcekly Nitrocion Additions

thus reducing the available nitrogen contoi.t. At this time the shinglos which were to be renoved on April 25 were not conditioned for growth and only becamo coiditionod duririó the reduced nitrogen concentrations, tincrefore lowering the cumulative cell production to that date.

A two-way analysis of the variance wes used to analyze the variability of phytopignent concentrations betweon riffle and pool zones (location) and betwoon periods 2, 3, 4, and 5. The "F" values obtained from this tost show that there was a significant differcoce bowoun locationg botween proiods, and the interaction botveen locaion aud poriods at the one porcont lovol (Table 7). Tho relative rroduction differoneos betwcen tho rifilo and pool zonos can be narrowod to one of throe factors or the intoractions betucow thom sinco other variables are assmed constent. These three factors wore variations in water velocity, variable light intonsity stri:ine tho strean bottom, ad compeition effects. Although all lights wro placed equidistant from the bottom, the variations in licht intensity are mentionod bccausc light wavs must pass through ifferent depths of water.

The effects of competition soem very pleusible whon considering the differences between locations and botween nitrogen periode. Briefly, seed material settlos out in the pool and bogirs to grow. Rinflo areas las iin cell esteblishme:t due to the rhysical effects of the current.

TABLE 7

AIALYSIS OF VARIAIOE OF RIFFLE AND FOOL AREAS FOR FOUR PERIODS OF SHIINGLE EXFOSURE

Phytopignent				
Variation	Sum of Squares	Degrees of Freedom	Iean Square	" F "
Within	257,135	48	5,357	- - -
Cells	1,696,478	- -	- - -	- -
Location	46,633	1	46,633	3.705
Feriod	1,538,863	3	51,288	9.574
Interaction	110,982	3	36,994	6.906
Total	1,953,613	- -	- - -	- -
Organic Nitrogen				
Variation	Sum of Squares	Degrees of Freedom	Mean Square	$" \mathrm{~F}{ }^{\prime \prime}$
Within	5.5140	48	.1149	- - -
Cells	11.5851	- -	- - -	- -
Location	0.6343	1	.6343	5.521
Period	9.7683	3	3.2561	28.335
Interaction	1.1825	3	- 3942	3.431
Total	17.0091	- -	- - -	- - -

TABLE 8

MEAN PMYYOPIGMEIN ABSORBANCY UNIRS AND MILLIGRAMS ORGANIC NITROGEN PER PERIOD

| Period | Mean
 Fhytopigment | | Organic Nitrogen |
| :---: | :---: | :---: | :---: | :---: |

Finall I2. Moci Fiytopigment husorbancy Units per Feriod

Figure 11 shows that growth began carlier in the pool; and the histogram in figure 12, which contains period averages, illustrates thet erowth was greater in the pool duri:is initial colonization.

Evontually the riffle srowth becane equal to and exceeded thet of the pool because this arca hed the first opportunity to extract nutrients coming from the rescrvoir. It is also interesting to note that pool piement concentration peans precodod posis in the riffle until the miade of period 3 (Fi:. 11).

The stimdard doviations of two hytopiment sampes renoved on the seme dete arc listed i: tables 5 and 6 along with means ard variances. Figment variabili'y betweon these adjacent sinmlos micht be a rosult of sloughig alcel cells at cortain times, highly variable growth on the shingle bottoms, and initial colonial fronth of Anabscna. Sinislc larce Anabaena. colonios wore notod o: one of the two April 27 pool and May 3 riffle samples. It should be mentioned that variable growth on the siningle bottoms might havo been a product of uppor surface shadive and/or adhercinco of cells which wore tom loose from the strem mat.
organic nitrosen
The mean values of oreanic aitrocin in milligrams per half shinfle (each exposed two wocks) are plotted versus the time exposcd in figure 13. In conjunction with rigment production an increase in organic nitroen followed each
TABLE 9

MILLIGRAMS OF ORGANIC NITROGEN PER UNIT AREA AFTER A TWO WEEK EXPUSURE PERIUD IN THE POUL AREA														
Date	ling N	Moan	Var.	Sta. Dov.	Date.	Mg N	Moan	Var.	Sta. Dev.	Date	Mg N	Moan	Vax.	Sta. Dev.
4-10	. 016				5-1	.105 .158	.14	. 0014	. 0374	5-23	.543 .289	. 42	. 0300	. 1732
4-12	.016				5-3	. 210				5-25	. 945			
4-13	.016	- -	- -	- -		.280 .245	. 25	. 0013	. 0424		. 777	. 87	. 0141	.1187
	.016	- -	- -	- -		. 228	.24	. 0001	. 0118		. 560	. 53	. 0021	. 0458
4-15	. 016				5-7	. 455				5-29	- 508			
	. 016	-	-	-		. 263	. 36	.0184	. 1356		- 560	. 54	. 0014	.0374
4-17	-016	. 02	0	0	5-9	. 560	. 59	. 0020	.1407	5-31	1.155 1.138	1.27	. 0001	. 0118
4-19	. 240				5-11	. 655				6-2	. 263			
		- 2	0	0		. 545	. 60	. 0061	. 0781		1.698	. 98	1.030	1.063
4-21	. 035	.04	0	0	5-13	.753 .1438	. 60	. 0496	. 2227	6-4	.262 .385	. 33	. 0086	. 0927
4-23	. 252	. 04	0	0	5-15	i.803		. 04	-2227	6-6	- 315	-33	. 0086	. 0927
4-23	. 350	. 30	. 0048	. 0693		. 805	1.13	.4980	. 7057		. 840	. 58	. 1380	- 3715
4-25	.193				5-17	. 998		0444	2107	6-8	$.980$			
-27	. $26 \stackrel{3}{3}$.19	0	0	5-19	.700 .749	. 85	. 0444	-2107	6-10	2.503	1.79	1.160	1.077
4-27	. 298	. 28	. 0006	. 0247	5-19	- 593	. 67	. 0122	. 1105		- 525	. 56	. 0018	.0424
4-29	.333 .280	. 31	. 0014	.0374	5-21	$\underline{.686}$. 93	.1100	- 3317					

TABLE 10

milligkains of organic nithogen per unit area after A TWO WEek EXPUSURE PERIUD IN THE RIFFLE AREA														
Date	Mg N	Mean	Var.	Sta. Dev.	Date	Mg N	Mean	Var.	Sta. Dev.	Date	Mg N	Mean	Var.	Sta. Dev.
	.016	- -	- -	- -		-	.18	- -	- -		- 427	.47	. 0033	.0574
4-13 .016 5-5 .368 5-27 .455														
4-15 .016 5-7 .158 5-29 .455 . 5 ,													. 0098	. 0990
4	. 016	-	- -	- -		- 350	. 26	. 0184	. 1356		1.715	1.09	. 8438	. 9186
4-17-016 5-9 .998 5-31 1.372														
4-19.016 5-11 . 508 6-2 .735														
	-	. 02	-	-		1.383	.95	. 3828	. 6189		1.967	1.86	. 0269	.1540
4-21.025 5-13.578 6-4 2.200														
								. 0173	.1315		1.100 2.741	1.05	. 6050	$.777^{8}$
4-2.3	.053	. 05	0	0		. 777	1.49	. 9950	.9975		1.488	2.12	.7863	.8867
4-25 .016 5-17 .665 6-8 .612														
4-27-105 5-19 1.925 6-10 2.415	105	. 02	- -	- -		1.260	-97	.1770	. 4207		2.258	1.44	1.3514	1.1620
	.105 .105	. 11	0	0	5-19	1.425 .851	1.39	.5778	.7601	0-10	2.415 1.768	2.10	. 2093	.4574

Figure 23. Vean Oreanc litrocen rer unit Area fifter lwo weeks Exposure. Arrows I dicite Bi-wockly iitrogen Addit三ons

Figure lle Mean Millierems of Orgaide

calcium nitrate eddition. Enormous fluctuations were also noted in reriods 4 and 5 .

Figure 14, which consists of values averaged for periods 1, 2, 3, and 4, illustrates the most profound increment of organic nitrogen, which occured after period 2. The averages of periods 4 and 5 indicate that cellular nitrogen content may have reached a leveling off point, but this is only an assumption as enormous fluctuations occurred in these latter periods (Fig. 13). Tho point of change, just discussed, rouchly corresponds to the entronce of Anabaena which later dominated the awfuchs cormunity.

A two-way analysis of the variance irdicated that there were significant differences betweon the location acans end between the interaction of location and periods at the 5 percent lovol (railo 7). Means between nitrocen periods are significant ot the one porcont level. Tho levels of significanco sow the the differences butwee: periods wre greater than differonces betwcen locations. The five percont livel for location also indicotes thet differences between mean velues of orecric nitrogen were not as great as those between mean phytopigneat units in the riffle and fool areas. As with pigment the differonce in riffle and fool aroas was probebly a prodiact of curront, lizht, and compotition. Note thet the trond again follows that of phytopigmont in that the carly concontrotions of oryeric nitrogen, hi hest in the pool, wro oventually oveptaken
and succociod by a hiner conontr tion in the rifflo.
The dirfonosen iz iterogor poriods, mich resultod
from an increaso of mern orgonic nomon concortrations per period, apreurs to be a rroduct of itrute aditions, althougin sow increase could have occurred fron nitrozen fixetio: by Anooran.
within a proticulor two-shinglo somic tio vericioility was ofton auto large (Tables 9 sima 10). The sumb fectors thet wro rosporsible for vorisuiliむ, vithin cklonopiajl sampos ere boliovod to bo larg:ly Liownon, the verianility doss not Eom lemeo anown to destroy the value of this srocvare sirce the incrusses and decreases in armag poriod values of orsunc aitronom and phytopigront are closoly relintod. mhtoriment-oramic mitroen rolationshin

A linom \because Onession wus usod to detomino tho piyto iga ment concentraion-organic nitrocon rolatjorship (Fie. 15). Tris rogession is given bj the formilo:

$$
\hat{Y}=a+b X
$$

Whare Y is the predicted value of organc initrocen; X is the inown phytoricment concontration; b is tho slope of the regression li.c; ard a is the Y intorcept. The slope is foud by the ccuation:

$$
b=\frac{\Sigma X Y-\frac{(\Sigma X)(\Sigma Y)}{\Sigma X}-\frac{(\Sigma X)^{2}}{\tilde{n}}}{\Sigma X^{n}}
$$

and the Y intercert is calculated bir the formic:

Figuro 15 . Regression Lires Expressing the Relationship Betwoen Fhytopicme.t Absorbancy Units and Millisreins of Ornanic iistrogon for Riffle ard Fool Zores

$$
a=\frac{\Sigma Y-b \Sigma X}{n}
$$

In the riffle and pool zones $Y=-.089+.0027 X$ and $Y=$ $-.023+.00215 X$, respectively. Although not determined, the variance of points about the recression appoared to be large.

The coefficient of correlation between phytorigment and organic nitrogen is given by the formula:

$$
\left.r=\frac{\Sigma X Y-\frac{(\Sigma X)(\Sigma Y)}{n}}{\left[\left(\Sigma X^{2}-\left(\frac{(\Sigma X)^{2}}{n}\right)\left(\Sigma Y^{2}-\frac{(\Sigma Y)^{2}}{n}\right)\right.\right.}\right]
$$

The calculated correlation coefficients for riffle and pool regions cre . 73 and .63 respectively.

It can be seen that a fainly good corrolation wos obtaincd, which rrobably was due to each variable's relationship to cellular weight. The higher correlation in the riffle indicates that for a given unit of chlorophyll the riffle community contains slightly more organic nitrogen. This might mean that introgen pumped from the resorvoir first becorics available to the riffle crea. total dry weicht--pigment relationship

The results of total dry weight--pignent analysis are listed in table ll. The relationship of these data is expressed by a linear regression of $Y=3.47$ - .0719X (Fig. 16). Most of these data came from the Anabaona community. Only the lowest points on the slope wore reprosen-

TABLE 11
PHYTOPIGHENT' FER UNIT DRY WEIGHT PER UNIT AREA AFTER TWO WEEKS OF EXPOSURE

Date	$\begin{aligned} & \text { Riffle } \\ & \text { AAXIO? } \end{aligned}$	$\begin{gathered} \text { Pool } \\ \text { AAXIO } 3 \end{gathered}$	Riffle mg. dry wt.	Pool mg. dry wt.
4-13	12	12	0.3	0.8
4-21	56	68	5.6	22.8
4-23	32	64	9.2	21.6
4-29	200	132	18.4	12.4
5-3	238	164	29.0	21.8
5-9	252	352	37.8	27.6
5-11	- -	510	- - -	79.0
5-17	554	510	41.2	40.4
5-23	584	205	35.6	21.6
5-25	584	486	46.6	43.6
5-31	- -	674	- - -	52.4
6-6	1112	478	92.8	37.4
6-8	$4: 4$	646	30.6	47.0

Figuc ló. Regression Expressine the Relationslisp of Fhytopicment Absorbaic and Milligrams of Total Ury Woight for All Artificial Strean Uommities

tative of the diatom-green algae pioneers sirce erowth was slight during their presence. The calculation of scparate slopes did not seem justifiable.

The coefficient of corrolation wes calculatod to be . 8%. A lower corrclation of .616 between orsenic woicht and chlorophyll wrs civen by Riley (1940). Howevor, irı cortain Red Cedar River diatom commaitios Poters (M. S.) found that a comon correlation of \cdot © 3 occurred usirs orgaric woight versus etianol pignont xtracts. If it is assumed that total dry woight minus ethanol soluble compownds apiroaches Poter's orsanic wei. hts which wre corrected for the loss of soluble compounds, then the correlation coefficiont for blue-groon algee is slightly less than that for diatoms. Riley (19,40) indicotes that portial correlations are slightIy lower for the blue-greons.

In viow of the statomonts above, it is still intoresting to note that two such diverso c̈roups of al gae with different picmont characteristics are so closely comparable. Tins might in port be why deviations of all points from the cormon calculatod slope gave no treid to justify computation of separado slopes.
orgenic nitrogon--total dry weicht rolationship
The relatiorship between oreanic nitrocen and total dry weitht is expressed as percent orcanic nitroen (Table 12). Only two shineles were analyzed per period in question. Of the two shingles one wes removed near the beginning

TABLE 12
PERCENi CELLULAR NITROGEN PER UNIT AitirA AFIER TWO WREKS EXFOSURE AT TRE Biainivings Aivi Eind OF PERIODS 2, 3, AND 4

Date	Pool			Riffle		
	ME IV	$\mathrm{Mg}_{\text {Wt }} \operatorname{Dry}$	$\% \mathrm{~N}$	Mg N	$\mathrm{Nit}_{\mathrm{Wt}} \mathrm{Dry}$	\% N
4-13	trace	0.8	trace	trace	0.8	trace
4-23	. 30	21.6	1.4	. 05	9.2	0.6
$4-29$	- 31	12.4	2.5	. 12	IS. 4	0.8
$5-9$. 50	27.6	2.1	. 76	37.8	2.1
5-17	. 85	40.4	2.1	. 97	41.2	2.4
5-23	. 42	21.6	2.0	1.75	35.6	$4 \cdot 9$

and one near the end of the poriod. This analysis was only conducted to obtain further insicht into the nitrocen metabolism within feriods of nitrogen addition. Data for periods 2, 3, and 4 are illustrated in ficure 17.

It is evident that the cellular nitrogen content remained below 2.5 rercent rost of tin time. Only on May 23 ir the riffle eroa wes this volue exceoded. Fo:Sg (1,44) states that nitrogen fixirg blee-greor al cee contain a rather high organic aitrogen cortent rear 7 or 8 porcont. Gerloff and Skoog (1954) have pointed out that an intornal concontration of nitrocon above four percent in cells of Microcystis is luxury consumption, whereas growth below this anount is proportional to the supyly of the element.

The organc aitrogen in the pool zone increasod wil the bogimine of ririod 3. Theroartor a slight drof in the level occirred. In tho rifflc area the percent of aitrogen rose consistertly throwhout the experinent. This rise micht be accountod for by the proximity of the riffle to the incomine nitrogen from the reservoir influent, with the riffle commaty deplotine most of the atro en in solvition before it roaches the pool. This explanation would account for the stabilization or drof of porcont or, anic ritrogen in the pool after feriod 2. However, since Anabacna dominated the stream commuilty from the middle of period 3 until the end of the project, aitrocen fixation nay in pert be responsible for incresscs within poriods 3 aid 4. It is

Firgure 17. Fercont of Cellular litrogon at the Befimin"s aid E:ds of Feriods 2, 3, aid 4

intoresting to rote thet the percont nitrocer relationship between pool end riffle comparos closely to min period organic nitrogen and phtoriget velues (Fizures 12 ond 14). stream primary production

Up to this time only relalive ratis of prinery production have been montioned. The calculation of absolvte rates troctine data from all somples would be difficult if not impossible since there was considerable overlap of shingle exposure. It was nocessary to use only one set which was removed and ropluced et two wosin intervals for the absolute estimate. Tiis roup chosen, set l of both riffle and pool, samyled each nitrogen period in entirety and thus rpposonts the accum:lation of algae during that period. Thes valys should givo a close appoximation to actal primay production sinco consumors wre not otod to exist in the alcill mat ustil shortly before the experineat terminated. All chlororhyll valus were converted to total dry weicht by emplofing the rogression in figure le. Results of calculations are listed in table 13.

An incroase in absolite production por poriod followed the cumulativc additions of nitrotc with a mean daily production based on 8 weets of 250.2 and 201.4 milligrans dry weight per square meter rer day for riffle and pool respectively. The hicher riffle production wos die to a greatly accelerated rate during poriods 4 and 5 (Figures 18 and 19). This more tha: rade up for aicher pool rates in the
TABLE 13

Riffle Production

\footnotetext{
Pool Production

Period	Date	Cumulative mg 1 Nitrogen	AA X 10^{3} $75 \mathrm{~cm}^{-2} 2 \mathrm{wks}^{-2}$	$\begin{gathered} \text { mg dry wt } \\ 75^{\mathrm{cm}} \mathrm{~cm}^{-2} \text { w } \mathrm{ks}^{-1} \end{gathered}$	$\begin{aligned} & \operatorname{mg}_{\mathbb{m}^{-2}}{ }_{2} \text { dry wks } w t^{-1} \end{aligned}$	mg dry wt $\mathrm{m}^{-2} 2$ wks-1
2345	4-11 to 4-25	1	72	7.8	1,040.0	74.3
	4-25 to 5-9	2	275	23.0	3,066.7	219.1
	$5-9$ to 5-23	3	310	25.5	3,400.0	242.9
	5-23 to 6-6	3	346	28.3	3,773.3	269.5
	Total milligrams $75 \mathrm{~cm}^{-2} 8$ weeks ${ }^{-1}$ - -84.6 Total milligrams $\mathrm{m}^{-2} 8$ weoks-1. $11,280.0$ Mean milligrams $\mathrm{m}^{-2} \mathrm{day}^{-1}$. 201.4					

preceding roriods 2 and 3. Those calculations serm to substantiate ecrlier assuaptiors b: cod lpon rolative retes. When comrarod to other works, the artificial strom is reletively urroductive with ratos appoxincting those of sterile sirines and ocearic veiors. Odum (1956) statos that cross prodnotior of ten Florida sprins diring July and August raneed betweon 600 and 59,000 $\mathrm{mg} \mathrm{m} \mathrm{m}^{-2}$ day ${ }^{-1}$. He also quotes Riley in saying oceainc wars rane botween 170 and $1,600 \mathrm{mG} \mathrm{m}^{-2}$ day ${ }^{-1}$. Althowin production wis low, the standing crop become cuite high, formine a thicir spongy mat of cells wich oventually bega: to broak loose froin the strecm bottom. This atyical situation was probably due to lack of ofrasing consumors. In sumary it sooms that lack of nitrogen has significantly docreased the overall production of the ertificial strom with sucoessive nitrato additions determining the atieimont of hichor production ratese It is intoresting to note the pool production rates for poriods 2, 3, and 4 wre closely frouped, whereas those of the riffle were mor widely separated. Tnis misht indicate thet e stoadr-stare commity wos momly roiched jn the pool.

Light

A continuous influx of cnergy was supplied to the artificiel stream community by incandoscent lomps. To review, all lightod cubstratos wowe 36 centimeters from

Fi弓ure 18. Frimary Production of Rifflc Area in Grons por Squaro lictor Aftor i'wo weeks Exfosure to Poriods 2, 3, 4, and 5

Figure IS. Frimary Iroduction or Pool Area in Grais por Scicore lietor Aftor lwo woeis Exposure to Periods 2, 3, 4, a:d 5

Weeks
and directly benerin the lams iv order to obtain equal and naximal perpedicular radietion. Howevor, the equal conditions wre only appoximatod since licht hed to pess through a renator depth of wator is the pool.

The averaco moximun radient enorey stri:in the pool s: rfoce wain neareed st $1.0 \pm .05 \mathrm{~cm}_{\mathrm{m}} \mathrm{mal} \mathrm{cm}^{-2} \mathrm{~min}^{-1}$. In the rifflc region the eney strikre was approximated et . 63 grical $\mathrm{cm}^{-2} \mathrm{~min}^{-1}$. The highor pool valua stoms firom the fact that the joil surface was closest to the light sourco since lichits follored the cortom of the sirean boton. An acturl value of enorgy reaching the bottom could not be obtained due to the position of the exposure meter window.

In nature the total radiction at tho water surface (temporate zonos) seldom oxcoods 1.5 grical crinimint and only abovt halis is used in wotosynthosis (Ednondson 1056). Except for qality of liget the anory enteriag the artificial stream compered closely to natural sunlint. This assumption cen b: mado since tio oxpusurc meter wes culibrated directly from a pyrholiometor whin is ochelly sorsitivo to all wavalgerths (Strickland lg58). Princilicim (1950) indicates that in compurison to luminsceat tuoos, incendescent illumination has a spectral omeation that is oore in conformiter to tho absorption of gal pignents.

In view of the quantity of constont energy supplicd to the artificial systom, Photosynthetic inlibition could have affected the cormunity composition as a whole. Rythrr (1956) worine with marin phytoplaniton Groups fowd thet frowth
of tine Group Miloronite was insibited berore thet of diatons by increasine light. Moyor mi Bun (1940) roport that at ligh intresities of 12,000 foot-candes (rounly 2 em-cal cm^{-2} :in $^{-1}$) comilete inhibition of Chlorelle occurred. Further studies state that mixed populations of nerime phytoplanton beome luisited at aboit .5 gm-cul cmanin-1 (Stricilad 1550). Moreover, floatiag forms of blue-groen alcae arpur to hovo their mariny photosythetic rate rear the water surfoce (Davis 105 rerorted by Vorduin). Phorefory i^{t} conors that licht intonsities in tho artificial stroan could bo excledince such algae as Cinlorowyta, but foriting diatons and bluo-groon forms to flourish.

The effects of reduced light intersitios wore stadied by comparing the chlorophyll contont of illwated shincles witil those in tho unlighted arse frocedins the riffln. As cxpectod, a docrerse i: lïnt intensity siGnificartly reducod the primory produ:tion (Fig. 20). Edmondson (1956) foud little or no correlation botwen light inconc and rate of photosynthesis in surface wetors duo to surface inlibition of erowth and rance of sampaiton inteasity for photosynthesis, but at six reters or more a correlation of the two variables beceno evident. The low st light intersity to which shiacles wre expos das $3.4 \times 10^{-3} \mathrm{~cm}-\mathrm{cal} \mathrm{cm}-2$ min^{-1}. This value correspoids to the componsation intensity of mayy alcol forms which centors around $3 \times 10^{-3} \mathrm{gm}-\mathrm{cal} \mathrm{cm}^{-2}$ min ${ }^{-1}$ (Strickland 1958).

TABLE 14

MEAN ABSORBAIGCY USITS (AAX10 ${ }^{3}$) OF PHYTOFIGMENT PER U.IP ARTA AFPG EXFOSURE TO FOUR PERIODS OF NITROGEN AT DECREASING INTENSITIES

OF LIGit Eideriy ($\mathrm{g}-\mathrm{cal} \mathrm{cm}^{-2} \mathrm{~min}^{-1}$)

Shingle Funber	Energy	Period 2	Poriod 3	Period Al	.6300

Figure 20. Nean Fretopicmont Absorbancy Units por Unit Ara at Decreasiag Intorsitios of Light esergy for Feriods $2,3,4$, and 5

It can also be soen thet factors othor than light affected roduction in the minhtod zone. Tho succossive additions of atrojen in general appecred to irecrosso phytom pigment production here as in fully lightsd areas. The change is perticularly noticcabl: from period 2 to the other periods. However, at erercies delow . 011 cm-cal cm^{-2} min-1 this effect is not well defined.

IVitrogen Fixation

Throunout this facer refere ces have beon wado to the possibilitios of nitrogen fixation being partially responsible for increased period produrion. Therefore, it secms uscful to suarcrize both pros aid cons of this occurance.

First of all Anabaena oscillarioides dominatod the arificial strean during the latter two-thirds of the iroject. Seven species of Alabsona have beer wown to fix nitrocen (Foge 1947); howevor, A. oscillarioides was not listed.

The ortificiel strem medie was condecive to fixation since the nitrofon concentration never oxcocded $1 \mathrm{~m} \mathrm{~m}_{\dot{j}} \mathrm{I}^{-!}$. Fogg (1942) reports thet fixation occurs in A. cylindrica if the concentration falls below $4 \mathrm{mg} \mathrm{I}^{-1}$. It was noted that Anabacna aprocrod in the artificial stroam at tine end of period 2 whon the concontration was vory low. This cemus often exists in wators of low inorganic ritrogen content (Riley 1940; Ednondson, Andorson, and Fatterson 1056; Hutchiason 1s44; and Pearsall 1932), but fow autiors have
concluded that fixetion was occurrine. This éonus may bo hichly tolerart of cortcin enviromental conditions rogerdless of fixetion tandeacios. It is almost wiversally accoptod that blue-green alcae profor alkaline media (Buld 1942) aud strore licht intensitics (Davis 1955). Due to a variety of fignonts in the cell a high photosintinetic efficiency is produced (Strickland 1958).

In direct opposition to tho occurreace of biological fixation is the fact that the artificial strecn Anabaena cells containod a low porcont of aitrocen. Nitrocer fixers have a hicl cellular nitrogen content (Gerloff and Skoog 1954). Orily in the riffle durine poriods 3 and 4 did on increase in organic nitro en trke place while inorennic levels were low, but this incrocse could bo oxplained by the rifflo proxinity to ritrocon in the miluont. The low rate of primery roduction throughout this experinnt indicates that substantial aramats of nitrocen fixation could not have occurred.

1. A community of algal cells established itself and grew in an artificial strian with controlled water temperatures of $70^{\circ} \pm 20 \mathrm{~F}$, continuous illumiration, constant flow, excess of all major nutrients except nitroen, and prosonce of trace elements. Conditions that wore voried included nitrogen coitcit, wetcr velocity sad incident stroam bottom radiation.
2. The first adiition of ritrogea to tho stream, which containod only traces of this olomont, tricisored urow of a pioncer commity which was prodominately dietoms. During the socond addi ion poriod this commity was roplaced by one of blue-croon algul doniance, which reneined until the exporiment torrinated.
3. Three successive supplements of calcium nitrote (l mes l- $^{-1}$ each) clevatod period production of phytorigment, organic nitrocen, and total dry wight. All increasos were due to nitrate edditions and possibly nitrozen fixation, but there is little evidence to support the latter theory.
4. Tine assinilation of nitrocen after each addition resulted in a rise of cellular chlorophyll and a fall of inorganc nitrogen, wiich usually lovolod off at a concentration nees . $1 \mathrm{~m}-\mathrm{I}^{-1}$. Followia: this reduction chloropmil cortent decreasod.
5. A significant difference in production, phytopignent content, ard orgenic aitrosen occurrod betwoen riffle and pool aras. Pool and riffle values wre respectivoly highor at the be:ining and end of the project. Mins difference can be attributod to one or more of thos: fectors: variable incident radintion, variations in curract, or competition.
6. A good rolationship wes axproseod bowoen total dry woight rad ricmont for a commity of nixod alen groups. Also the comrelation betwoen phytopignst and organic nitrogon was fairly good for both roul iad rifflc ireas. Correlations in the pool wore sliantly lower.
?. The "normal" orgenic :iteozen of cellular meterial approximetod two perco.t with one excoption. Tris oxeeption might be a product of nitrozn fixation.
7. Total radiation strikine tho pool and riffle surfaces was moasured at $1.0 \pm .05$ to .53 gm-cal cm-2min-1 respectively. This accomitod for a prinary production of 250.2 m dry woight m-2day-l in the riffle and 201.4 in the pool.
©. Shingles placed in diminishing light intensities showed a definitc docrase in phytopigment rroduction. Even under these conditions production increased with nitrosen additions.
8. During the exporiment initially high concontrations of
allalinity, conductivity, total phoshorus, silica, sodim, ard rotassium droued as timo profressed. The variation in PH w: slicht due to a complex buffering systen. Reductions appuar to be prinerily from cellular erowth altionh otrer factors arc partiolly resuinsill?. An instantaneous concentra'ion of an ion i: we smam is equal to tine solution of the intial cidition, orsano docomosition, and rolease from livine colls minus ylant acoinlation, louaco, uiad mdissolved solus.

LITERAIURE CIAED

Allison, F. E., S. R. Hoover and H. J. Morisis. 1937. Physiolofical studics with tho nitrofen-fixing algae Nostoc muscorum. Bot. Gaz., 98: 433-463.

AFEiA, AUWA, FISWA. 1955. Standard methods for the examination of wator, sewase, and industrial waste. loth Ed. Javerly Press Inc., Baltimore. 522pp.

Bold, H. L. 1942. The cultivation of algae. Bot. Rev., 8: 69-138.

Brehmer, M. I. 1957. A study of nutrient accrual, uptake, and regereration in a warm water strean. Fh. D. thesis, lichigan State Univorsity.

Chu, S. F. 1942. The influence of tine mineral composition of the medium or the growth of planktonic algae. Part I. Methods and culture media. Jour. Ecol., 30: 284-325.

- 1943. The influerce of the mineral composition of the medium on the growth of planktonic algae. Fart II. The influence of the concentration of inorganic nitrozen and phosphate fhosphorus. Jour. Ecol., 31: 109-148.

Davis, C. C. 1955. The marine and fresh wotor flankton. Michigan State Univorsity Press, East Lansing. 562pp.

Edrondson, w. T. lc56. The rolation of rhotosyrthesis by Fhytoylanitor to liçht in lekes. Ecolocy, 37: lóm 174 .

Ednondson, W. T., G. C. Anderson and D. R. Fattorson. 1956. Artificial eutrophication of La':c Nashirgton. Ifrnol. Occanogr., 1: 47-53.

Fogé, G. E. 1942. Studics on nitroger fixation by bluecreen algac. I. Hitroccr fixation by Anabaena

1944. Growth and heterocyst production in Anabaera cylindrica Lemn. Hew Finytol., 43: 10́4.
1947. Studies on nitroger fixation by blue-green algae. Endcavor., 6: 172-175.

Fruton, J. J. and S. Simonds. 1959. Geaerel Eiochenistry. 2nd Ed. Joln Wiloy ard Sons Inc., New Yorl. IOT7pp.

Gerloff, $\mathcal{G} . \mathrm{U}$, and F. Shoog. 1554. Cell contents of nitroger and phosphorus as a measuro of thoir availibility for growth of Microcystis aeruginosa. Ecol., 35: 348-353.

Gerloff, G. C., G. F. FitzGerald and F. Shoog. 1950. The isolation, purification, cnd mitricat requiromonts of blue-Green algac. Civerlos F. Viettorire Foundation, Dayton, Ohic. pp27-44.

- 1952. The rireral rutrition of Microcystis aeruginosa. Aner. Jour. 3ot.., 35:26-32.

Herris, T. M. 144l. liote on ine culture of frosh water algac. liew Frytol., 40: 157-150.

Eutchinson, G.E. 1944. Limnolocical strdies in Conn. VII. A critical examination of the supposed relationship between piytoplankton poriodicity and chonical chanees ir lake water. Ecology, 25: 3-26.

Kitchum, D. H., L. Lillick and Redficld. 1849. The Erowth and optimm yields of unicellular algee in mass cultures. Jour. Cell. Comp. Pinysiol., 33: 267-280.
ining, Earl J. 1932. Tine colorimetric determination of piosphorus. Bioclrem. Jour., 2ó: 292-297.

Iratz, A. A. and Jack Meyer. 1955. Liutrition and growth of several blue-green algac. Aner. Jour. Bot., 42(3): 282-287.

Krauss, R. iw. 1958. Physiology of the fresh water algae. Ann. Rev. Plant Pliysiol., 9: 207-244.

Meyer, Jacir aisd G. O. Bun. 1940. Studios of phytosynthesis. Some effects of light of higin intensity on Chlorella. Jour. Gen. Fhysiol., 24: 45-6́7.

Odum, E. P. 1953. Fhindamentals of ecolofy. W. Z. Sundors Co., Philadelpiia. 384pp.

Odun, H. T. 1956. Primary production in flowing wators. Limnol. Oceanogr., I: 102-117.

Odum, H. T. and C. M. Hoskin. 1957. Metabolism of a laboratory stream microcosm. Inst. Mar. Sci., 4(2).

Ostorlind, S. 1947. Growth of 2 plawtoric oron cleac et varions c rbonic acid ance ardrogol-ion concontrations. liaturo, 15t: 1çỹ2vo.

Poters, J. \quad. ISF9. Ar evaluation of tio use of cartificial substrates for dotoruining rimary production in flowine water. M. S. thesis, Michican State University.

Fearsal, W. I. l:32. Frtoplankton in E-Misin la'es. Jour. Ecol., 20: 241-262.

Pringshoim, E. G. 1950. Tiee soil-wator culture techinique for growing alrac. Smosiux cr cultrring of aleac. Cherles F. Nettering Foundation, Dauton, Ohio. pplo.26.

Riley, G. A. Ic, Limologiesl stulios in Somocticut. III. Nino plankton of Linsly Foid. Ecol. Moinogr., 10: 275-306.

Rodine, W. ISif3. Einviromental roqureinents of fresh water planton almae. Experimental studiss ir the ecology of phetoplanintor. Sjubloae Botariceac Upsaliens:s, 10: 1-1!

Ruttner, Franz. I953. Fumamentais of limolone (Translated by D. G. Frey and F. E. Fry), Univ. of Toronto Press. 24čp.

Rythor, J. i. 1956. The measurowert of primary production. Limmol. Oceanour., 1: T2-03!.

Stric'lard, J. D. H. 1C58. Solar radiation poretrating the oceari. A review of the requircmants, data and methods of measurement, with particular reference to Fhotosmathetic productivity. Jour. Fish. Res. Bd. Caneda, 15(3): 453-1.93.

Warburg, 0. and B. Bure. 1950. The maximun officiency of photosynthesis. Arch. Biochen. Biophy., 25: 410-443.

Welcis, P. S. 1Gi4. Limological methods. McGraw-Hill Co., Iiow Yor's, Toronto, London. 301 pp .

Yentsch, O. S. ard R, F. Vaccaro. 1953. Finytoplankton nitrocen in oceans. Limiol. Oceanofr., 3:443-454.
$42643: 348$

[^0]:

[^1]:

