IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII; w 3 1293 10414 4831 I LIBRARY .A Michfiffifafi mate Ur? 2% *3; ’4 MSU LIBRARIES “ RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. An.Experimental Study of Effects of Varying water Temperatures on Lumnite Concrete. A Thesis Submitted to The Faculty of Michigan State College of Agriculture and Applied Science 3? Re A. 313111611 Candidate for the Degree of Bachelor of Science in civil Engineering June 1925 THESIS 'I‘Il. III Introduction Lumnite Cement is made from limestone and bouxite, the latter material being high in alumina and taking the place of clay used in the manufacture of Portland Cement. The rapid hardening properties and high initial strength of Lumnite cement concrete are due to the presence of the greater amount of calcium aluminate, develOping at twentyufour hours a strength considerably greater than that of Port- land cement concrete at twenty-eight days. Various tests have been made on Lumnite cement concrete such as, chemical analysis, and standard Laboratory tests such as, fine- ess, Specific gravity, soundness and the setting time of the cement.‘ tension tests of cement mortar and strength comparisons with Port- land cement concrete. But at the time of this writing no such tests as the tension and compression of Lumnite cement concrete cured in varying water temperatures and the using of varying water temperatures in the gauging of the mortar have come to my notice. Some of the outstanding prcperties of this cement are the very high strength which it develcps in twenty-four hours and its prcperty of resisting or being less effected by freezing temper- atures before it has set than Portland cement concrete. The following data and curves are carried out on the basis of twenty-four hour tests using concrete of the following specifica- tions. Atlas Lumnite Cement. Size of Test Pieces: Cylinders: 3.33” I 6.5" : 8.73 sq. in. Briquettes: 1" square. thru the center. 1039335 Time of curing- 24 hours. Slump: 4 1/2" to 5" fineness Modules: Coarse Aggregate: 6.654 Fine Aggregate: 3.286 Mix: one (1) to five (5) One part cement ot five parts coarse and fine aggregate. The specimens were placed in moist air, changing the tempera- ture with each set of specimens to determine which temperature would give the greatest compressive strength. When this temperature was found we next made specimens varying the temperature of the mix- ing water and cured these in the moist air temperature which was previously found to be critical and observed the result. The same method was also carried out in using specimens cured in water of vavaricus temperatures, critical temperature was found and then the temperature of the mixing water was was varied. However in the tensions tests we found a seven day test was made by first curing specimens in moist air of seventy degrees Fahrenheit for the first twenty-four hours and then immersing them in water of the same temperature of seventy degrees for the balance of the seven days and noting the results. The experiments were conducted in the concrete laboratories of the Michigan State College by R. A. Truman in the Spring of Nineteen Hundred Twenty-five. x g‘\_.' ‘f if) . “#~** . _. 1.. 0.. . a- .o.» -‘-.. 9 ~ ".:‘|" '...r ~- ' ' ' "" ' O4eao‘ -A . - .. . e . ~ .' ‘.. . O ,-- 7 , . . . - O . o . . . a e A .. . .— ' . p-~.—.-.‘.te.p O I -_.- '"*——--V l - . -. I‘. I l C Y e . 7' e .« . . INQNLUVJHO o-.- . _ ~- «-fi-C“. .'«-ad -.+.-oo ‘ .o-H,‘. . ‘ L 4 a-‘ W. 7“."--‘~‘.“ «IO-q -— o. -W--- '-O- “I$‘~' Q. -‘-—.O.-1'-1l .-e 50- u—Q f-ro- v y . u . 9 3 i \ i __ - ~ ~ —.-.0 — 7‘ 0 - i . t I 7f, . . . . ‘ e —- O 79’ 0 v- t. . .. .._._._. 1 .~ -. -. o- . v—o , e e - .e - .9— . - ,.. o ~»<. _ - V .. -.. . vhf—99154 | “-6- ....-... aygfiw—V—c. . o-e- .1. ~$e.—0.H—"4 e . .-.. W'Vfi +H~ L , —‘—“ 0- “-0..." ; t X .‘ . . .+—n -e e—o-«r-eA -. .,{ 4-9. p-‘. ~ . O - .-.. ’PP+‘°4 -. -.. --, ...,_., -.+ {4-71 v-4 " C... -' "0- l1 L - e . o u. . 0“ IV ‘ ‘fi‘v ”+t +-e - *0 v :» . e .e. 7 : ' 1 . tr _—-*>fl‘-—-—--- L—w' - b *-~;i ' . e -.I I ~ I »- < e<~1 E ’I : ';.:: ; 1! "4 I“ ‘ ‘ ’ ‘ ‘ ’ I"““ .’:-:_‘ I »- . I ' . l i . i . . I. _ I i. ;:: . . .. . J . I ;. I . ‘ r s.— — - - -~—-<—.4 --_ . I ' - I I I . I . I ..I.. .. , I i ' E . I . . ’0‘ - ~— e—.—~——o_._ I we . ,, I . . ' -4— o 4—-. 0 ,. . . . I .. 9 , .. . . . N--.__.———o.. O . 4--- L r- 4 .4 e .— v - ; ... . o. . .I‘ . . '0 C‘ ".-O "L . -., NN ...4..._.. I L . . 4.4 . .' . . I . I i. .. . . - .-..41N .-.--—-—H.- 4—. No.9...L—p—4—o . I- 44.- I N. ._ . I .4 n. I N .-.._.4 v - -. y--- . ,.. _ -. ‘ .I . —- . . ......‘_.. ‘. ._.' .4. ~.<~ ..t .1. .- . ' -¢—+ .+ . . .4 ,. NNNi... 1.. _. a“ I '7. ;.7 '. g- I ' . .o..~,N. . W1. 7 . ‘:"’. I . - I 6 --~ I 2... . 4. ,.. ... N ’ I V 0 ;v -co'wa- I" IV IL: *. 1;.-. r ""6 .N4N - i I o. . e . I‘ eoo—o—eu."e.. . I V ;. p. O _ .-. ‘ - O .&.4 I, 4N4H« l .. ‘, e ova..-' -...44. N..-—-._-o- .‘ -.o— ~- ... . .... 4w. -—-—-IL-.—-e e—T—o 4* 4.-. 44. .7. ..,..I.N...4 ...._.I DEPARTh-“iNT OF MATriCAATICS Conclusions Taken from comparison of Curves on Cylinders cured in Moist Air and those cured in Water under Varying Temperatures. From the comparison of the two curves it is seen that the critical temperature is not the same in either curve. For the curve from which the cylinders were cured in moist air, the critical tem- perature was found to be sixty-five degrees Fahrenheit, while the critical temperature of the cylinders cured in water was ninety degrees Fahrenheit. It is readily seen that these two curves do not coincide but act cpposite to each other except when high tempera- tures are reached and then they both show low compressive strength. The strength is decreased due to the heat action going on in the cy- linder being high and that of the curing temperature also being high. Important Notes to Determined: What chemical action take place within the cylinders that changes the color of the concrete when they are cured in water vary- ing from a low temperature to a high temperature? The color at a low temperature being a light gray and changing to a dark brown color at a high temperature. This color is noted whether the cy- linders are cured in moist air or in water. At this point it is also important to note that the water has an important part in the compressive strength of the Lumnite cement .concrete. We noted the cylinders cured in moist air and those cured in water had different critical temperatures. From this it is seen that the water in which the cylinders are cured furnishes that water which is used up by the heat action going on within the cy- linders. This raises their critical temperatures which gives to them their highest compressive strength. 1:1 N .1 N. I fl N N I. IN .2N... J . - . - 4 . . N . a. N . . . . N ... N. N. . .. N N N N . N N N N ... N N1 . . N . 96 I -6 6 VIII ...-1 a I. e 6. 66o Y III I I 4 . - . II I 6 I. 9 u. I 6 6 .. l a Q» I o I o .. . N .. N N. N : _ . . h. .w. HUN N .. . _ N. N .. . N r . .. ... N . N. n . . . . . ... . .. . NI ... a... . _ H 2N.... .INII . a -.-...I N- . . . .. . . _ _ . . N8 . N. . .N. N N .. Nix“ N .N_.. N k . N N N. . .N . N. N “in. N N ......N N N . . N N 4 .4. H . ... .... N . ...I ..- N I -. ...l. . .I- .I -N . - - . II INII I r: I --..IIIltI -. ....-- hi!- I....-:. I. . I. . N .T _ NI . .er. r. N N7 _ N N g. N. _ . .... _ ...: -.N _. N. . .. 4 N _ .. g .. . w ..H N “63“..-. -._ . N .- .. ..... N... I N ... . . H.. N . N _ . n . _ N N: . . . .. . 26.44444464— . . _ . N .I.. IN... . ..-. .. I I ..Itl I o: .oWIII I- I- . . , .64 443. e44444>x _ W mxskkeskaWx skwwasKEum .0444sz . N. hxmht4444u .N Hi: .. IKcN _ . , N .. . I N .- -...--1 . .. . I. _ . . . ... .. . N... ..nSufiv... N N N . .. ....N. ..N . . . . . . . . N! - II . .. -N- o. N .- . .... N . . o s N - N 4. . ...... N . N M... . 1N . N .- . ... N cch V4 . . N 0 6.644 8.4%.. N beOQN. cchN ESQVN III )Iv‘ ‘. I 4.. .4 Cylinders Cured in Critical Temperature of AtmosPhere 65 degrees Fahrenheit- Temperature of Mixing Water Varying. Total Total 1:5 mix 45 degrees Fahrenheit-Mixing Water. 60 cylinders No.1" No.2 No.5 No.4 No.5 l§g;§ 6 crushing strength in pounds 21000 22800 21000 21500 82300 2mg. Total 129600 average: 21600 pounds per cylinder degrees Fahrenheit-Mixing Water cylinders No.1 No.2 No.3 No.4 No.5 No.6 6 crushing strength in pounds 27800 87400 23000 26900 23700 was Total 156400 average: 26067 pounds per cylinder 1 i I 75 degrees Fahrenheit-Mixing Water. cylinders crushing strength in pounds No.1 20600 No.2 19200 No.3 26000 No.4 21000 No.5 18800 Ell-.9. £29.99. Total 6 Total 131600 average: 21933 pounds per cylinder 90 degrees Fahrenheit-Mixing Water cylinders crushing strength in pounds No.1 16000 No.2 15800 No.3 15600 No.4 16000 No.5 15600 112:5). £13.09. Total 6 Total 94800 average: 15800 pounds per cylinder 105 degrccc Fahrenheit-Nixing Water cylinders crushing strength in pounds No.1 10400 No.2 10200 No.3 10400 No.4 10600 No.5 10000 M 1% Total 6 Total 62000 average: 10333 pounds per cylinder Total Total cylinders No.1 No.2 No.3 No.4 No.5 No.6 W 6 cylinders No.1 No.2 No.3 No.4 No.5 No.6 6 120 degrees Fahrenheit-Mixing Water crushing strength in pounds 9900 9600 9400 10000 9700 gggg Total 57900 average: 9633 pounds per cylinder average! 135 degrees Fahrenheit-Nixing Water crushing strength in pounds 7000 9400 9400 7200 9200 eggg Total 49600 8267 pounds per cylinder. Compression Tests Cured at Critical Temperature of Heist Air Mixing water at Various Temperatures. We must bear in mind that the following conclusions are based not on the curing temperature, but the temperature of the mixing is now varying and the cylinders are being cured in moist air whose temperature is sixty-five degrees Fahrenheit. This was found to be critical from the previous curve. Here again it is to be seen that the highest compressive strength is developed at a low temperature of mixing water. That temperature of mixing water at sixtyefive degrees was found to give a compressive strength of two thousand nine hundred eighty pounds per square inch. Again the same question arises, "What chemical reaction takes place within the cement concrete that gives a higher compressive strength at lower temperatures?"' Surely some important reaction takes place, for at this point it was noticed that the color of the Lumnite cement concrete was changed at different temperatures of curing and mixing water. At the lower temperatures, the color of the Lulnite cement concrete was a light gray and as the higher temperatures were reached the color changed to a light brown. Whether an excessive amount of iron is liberated or not, a chemical analysis would have to be carried on to determine just what unknown element this is that effects the strength of the concrete and if it would be possible to eliminate this, thus increasing the strength of the Lumnite cement concrete at higher temperatures. ".. q»'-1‘.1W1UY41n . --..oo—un’- ..- v—vv— V‘ fi V V V 'T” , ,1 , ,,_,j -9... . ..‘7 ' .-fa*....7~ ..r. U .+. 'M-"r‘ .-—vo@-o—o v—o om . _ . . . . .-.. ... ”a” .4 4?‘ -r1~- to”. O- . . l . ~ e o o... ‘ .o—o—o o- ...}... kov—b x , ..-.. ' . .- . -..7.... -.ooofie. ..-.Mal- 0H”. . ,_ . g . ..~ . on...- .- o. .o-ee .-H--...'. -v-o—4 __ g, . .-. .-- . ._-'__ -2 —— v -- --- -~ - ”...- o-o—o-«p-o— -—o-— v V . . - . - >e¢vo- -< - o .e< {+50-96 ... o ..-- . -.-roi..-c-.—¢av-evva . . 9-. l AlLll ‘ -- .. oh.~¢-—O-~c—1 ~-o—~---q—o- . . _ . . . 1;. -- .. ..... .. .-- .. - - .. ...“-.. in... ' 5 - e . 3 e z p - ~ -9 . ‘_ .. . ,. —- ..o ' , . , . d o -- ‘ .e . -15 ...- . —-. -- -- .....- .. ..A area—Q—eq o-o—o-f. . . , 9‘ - Q o o - . - o u“ o. - . - v» 0 ~ - -..-e Qve-o¢ 9A e H— ”M . . ' - c . . . .. .. -..~._»¢W*—e ~o _ _.—- ...—.5 _-.~ _.—7..—— . 9 1' fi ‘7 .... ... o~oeo§§fi+ T«' 0‘ ,- ... o—Q-QFWV vy—Q’.Q‘ T . - .to-ovgu-.H-4}.-—ou-o-Q-—o—o .- e . wefeyw Y" .... i D ...I a. O | b4..— P".—.H.h o --.._,...-4._. .. f O .0 u 0‘ 0: V‘J 60 e I . o .a . ”o-vjroo-oo-o-o-o-y-H 41 . ...- , - .-.y —.-—.-..-Q>o- ... .»~a.~.-ot ......i.. , , - .. .. -. . _. ...i.. ”:3 -o -— --— -——~-—d 1 -- ‘— ' 6 .- .9. ya .i. o¢~ , T o o o—o-fi» 0—94 ”0"9‘1 . - o ---. . 0—. . - ..-- - -.. ... ot-op—oo-u-o‘o». . . -.--o.H-4 I .-. . - eA. 0”... mp.“— ..-~-"p--.4 . 9... i»-. -» .--~o n- . >4 Hc-O-OvOo- cse< --. I .Ao—q -».— -.._. . row.. . . .. ...-.- .‘-.o..o.. ....o ..-< . _ -' pjoo‘ .1 - y—o-o-e . 'eo» 9.0 0—0-.. H- -40-0-1 . I 90‘ --. --.-e - - >o- no- -.—4...- —--ooo< ., mo—CI-O -o-4—.o-—oe-l ‘ t~~o'—v-vvo e--<- ...—..-... - ~-~v~-'—Y» — A . .. -....- ...-.‘M - - . -- - . -.--fl- .- . .-..... .l -.-...---...- ._ .-H.-- ..~~.- oo—e - .> ». . ...- e. - - --‘a-¢o e - - - . ... . .. o . . . -. ' . . .. . . . -. ,.. . . . I . v .. .«..¢- . . - I _ . .. - .-. 7 - . . . _. _ __ ._ ,-_- -.__ __ L. --- —7—--o--—-— -—4-—-—o—o—-P-wo4p—.— . , .- ... v. ..-. . . - ~. . . Q4 -- . . .- . --- 0 ... - .- < , . --' u ' .' . . . ...... o. ' - . . ...... - - .. .-. . .. ’ . . ‘ .-. . A 0 . O .- . . '- . ‘ .. , . . .... . . . i . -- .- ..- - 7 . ¢“ .... k“- —-l._......_.-_ ...-...“- .94 O n o e o A ‘ ....o e. . V- . --. 1 I . . . ... - . .. - . . . . l , » . . , i ‘7 -. o —9‘ - . . .- - . ..1 . .. - . . - . .. - - 1-- -.,.__.--..._--, 9) . - .. - . i . _ . ~ ~-. .—.1.. ‘7.- . .. eo—---- . .. , ..1. .. .. -i _ a q -~ . ~ -..- - 4 . 0e I "Y . - . . . . A. . ‘ ‘ e . ... -.<¢ . --v *0 ..—. 0 -oo-. p... . . L. -. ..l .. -. . p. - . '_ . r ..- .J _ ~ <.. o.v~o.-o .-s . . .. .-..c . . F. 4. .... -.4. . .- --.. -_- _._. -‘ -om.—4—....—..—o-o—o-o ... A Q l e _ - e s . 0 . . V I . .. e l ‘ a V n -'l t .. J o .. r..-‘ 0 ,. . .— -... . o .3 D. 90.. i. ..«I .. 0 ‘ ' 1 — ta 1 r e ....-. fl“- -..-—.‘—-c..—. A o o— -- I 9 ~o: ‘, . I . ~ . . 1 ... . N - - I . . Q. n . .. . .. . . i .4 , - . . .-.. . ,. - . 1 . . _. . . . : . .. .. . .. . ' -- .. g . I -t - .....-—4 -- . ~ o -—. ~e. .-~o{ .. o -4 .--. . - . . . . . . -... e _‘ ~11;- fi'fl . 0737.9 i . '.. ‘ . ‘ l ' 'l”.’., - -~- — -_— ~ -~ ~;~- . . —_~.: f . 9. -- -‘ . 'u . - . : . - - 9 . , g ‘ ._..-1 .3 " . ' .' t ‘ ’ . ' ‘ “ , . “E “.“”e"“"‘“? " ‘I “‘“t .- - __p _ .4“ l _,,_8.-§ * 0 i . .iAL . t) .- E kg: . fl?“ ' ’ " ‘ -.....Z' V k i b l 0 .k..—..-. f ma; (5 "72 (an; Irma _. q... i’ E rum? .1” \ -§ at _ i - ..me —-—.-. .-- .— 7...-§ 0: Cy, I ”Cd, - v n, . . 9‘. o .Ab-uw—qwbo» -..———-Qw l , e A u e v A a. ! . 3 "-- 7 7.1:. s w e- c m. ' . f § : a g e .3, 9 9° g 2 q . __ 1: “’ ° i g ' . - ‘ -s -91- in '3 {“3“ ‘4 3L . q .- .4- .. LMA 2H7} WWI‘Y) fib’)‘ (‘H ln'HH J ( NVQIHfiIW Cylinders Cured in Critical Temperature of Water- 90 degrees Fahrenheit- Temperature of Mixing Water Varying. 1:5 mix 45 degrees Fahrenheit-Mixing Water cylinders crushing strength in pounds No . 1 ' 16500 No.2 17800 No.3 18600 No.4 15900 No.5 16400 No.6 11892 Total 6 Total 103000 average: 17200 pounds per cylinder. 60 degrees Fahrenheit-Mixing Water. cylinders crushing strength in pounds. No.1 16600 No.2 15200 No.3 17800 No.4 16400 No.5 15400 9&2 12.9.9.9. Total 6 Total 99200 average: 16533 pounds per cylinder. Compression Tests Cured in Water of Critical Temperature Mixing Water varying. These conclusions are also based on the temperature of the mix- ing water varying, but the critical temperature of the curing water is now being used instead of moist air. This temperature was found to be ninety degrees Fahrenheit and gave the highest compressive strength. This curve also shows the highest compressive strength is de- ve10ped at a low temperature of mixing water. The strength decreases slowly from forty-five degrees to seventy degrees. From here up to ninety degrees it changes and decreases very rapidly. This curve follows what one would more naturally beleive the compressive strength to be, since it was seen that the Lumnite ce- ment concrete generated excessive heat. It can be seen from this curve, the low temperature of mixing wate off sets or retards the heat set up in the concrete and the element of which we spoke of before does not have a chance to hasten the chemical reaction and reduce the compressive strength. Thus the compressive strength is greater at the lower temperatures. From the curve it can be seen that the compressive strength of the concrete has decreased to less than half at the higher temperatures than at the lower tempera- tures. It is important to note here that the mixing water was ordinary tap water and the temperature at which we found the conrete to have its highest compressive strength can be easily obtained under or- flinnrv wnvkina nnnflitinnn- -~ ;\Lvn3H1YH JO INBWLUVJSO ‘ . . .....-.»- -......., ..-. .- _»>-~.-.-._--p” -- .-~-,‘—.— - - .. g i . .-.... .W— o“ -4“ “h “-.-...w -., v ~~—-¢ ...; -- s . a" "7"” '0‘..-‘ ~ .0- -”.-.oor ~-‘ - D-..- 0“ » .—-——&—. .i *9- W‘. A s-s—o‘snn‘l nuns “fill- ~-->r—QOO «awn e ... .— 0 ...—...q - e Briquettes Cured in Water- Temperature of Water Varying Standard Ottawa Sand. 1:3 mix. 45 degrees Fahrenheit-Water Briquettes Tension strength in pounds. No.1 420 N012 440 No.3 400 No.4 420 No.5 410 No.6 420 No.7 425 .9949. 4%.. Total 8 Total 3360 average: 420 pounds per Briquette. 55 degrees Fahrenheit-Water Briquettes Tension strength in pounds. No.1 400 No.2 650 No.3 475 No.4 450 No.5 460 No.6 490 No.7 450 M 9.19.. Total 8 Total 3750 average: 469 pounds per Briquette. 63 degrees Fahrenheit-Water Briquettes , Tension strength in pounds. No.1 470 No.2 480 No.3 500 No.4 470 No.5 490 No.6 470 No.7 460 99.49. 20.9.. Total 8 Total 3840 average: 480 pounds per Briquette. 70 degrees Fahrenheit-Water Briquette Tension strength in pounds. No.1 A 610 No.2 460 No.3 450 No.4 480 No.5 446 No.6 460 No.7 485 92:9. 2.29. Total 8 Total 3860 average: 483 pounds per Briquette 78 degrees Fahrenheit-Water Briquette Tension strength in pounds. No.1 430 No.2 450 No.3 460 No.4 420 No.5 410 No.6 470 No.7 435 92.9. 9.95.. Total 8 Total 3520 average: 440 pounds per Briquette. 85 degrees Fahrenheit-Water. Briquette Tension strength in pounds. No.1 375 No.2 380 No.3 385 No.4 390 No.5 360 No.6 395 No.7 350 9.9.9. 9.2.9.. Total 8 Total 3060 average: 382£5pounds per Briquette ‘95 degrees Fahrenheit-water Briquettes Tension strength in pounds No.1 330 No.2 340 No.3 350 No.4 320 No.5 360 No.6 310 No.7 - 315 9.9.9 999. Total 8 Total 2680 average: 335 pounds per Briquette. 105 degrees Fahrenheit-Water Briquettes Tension strength in mounds No.1 310 No.2 320 No.3 305 NO.4 315 No.5 320 No.6 295 No.7 325 99.9. 919. Total 8 Total 2500 average: 312.5 pounds per Briquette. 125 degrees Fahrenheit-Water. Briquettes Tension strength in pounds. No.1 175 No.2 190 No.3 145 No.4 150 No.5 180 No.6 170 No.7 160 99.9 99.9.. Total 8 Total 1305 average: 164 pounds per Briquette. Briquettes Cured in Water of Varying Temperatures. These specimens were cured in various temperatures of water. Here it can be seen the critical temperature of curing water to give the highest strength in tension to be seventy degrees Fahren- heit. This temperature is near normal temperature and easy to ob- tain under ordinary working conditions. It is seen from this curve the strength varies more regularily than in the curve showing briquettes cured in moist air. If we compare this curve with the curve of cylinders cured in water it can be seen they do not coincide as the curves taken from tests of specimens using Portland Cement Concrete. This an important point to note about Lumnite Cement Concrete. The high point in compression is a low point in tension and fice versa. However it can be seen that the two curves run to- gether more closely as the higher temperatures are reached. souvusulvw so mmwac ’ "’.o-. ---_... «. _.>?‘ "‘:°~~.. - ._‘._ -- -..-na'- -—— c U ‘ Q o .. .... .... -4 ... ’e 393110..) 1V8 {LICIDDRIDV NVDIHDIW Briquettes Cured in Moist Atmosphere- Temperature Varyin. Standard Ottawa Sand. 1:5 mix 60 degrees Fahrenheit-Atmosphere Briquettes Tension strength in pounds No.1 425 No.2 415 No.3 415 No.4 440 No.5 430 No.6 410 No.7 425 .999. 9.9.9. Total 8 Total 3390 average: 424 pounds per Briquette. 65 degrees Fahrenheit-Atmosphere Briquettes Tension strength in pounds No.1 350 No.2 370 No.3 410 No.4 440 No.5 370 No.6 390 No.7 335 92.9 999. Total 8 Total 3160 average: 395 pounds per Briquette. Briquettes Cured in Moist Air of Varying Temperatures. From the curve and the preceding data we observe the critical temperatures of curing sixty degrees and eighty-five degrees Fahren- heit. Note here that there are two temoeratures that give a max- imum tensile strength. Between the two points however, the tensile strength decreases, where one would think the tensile strength under normal conditions would be greater. In the comparison of this curve and the curve on cylinders cured in moist air it can be seen that the two curves do not coin- cide, that is the critical temperature in compression is not the critical temperature in tension but is opposite. This is not true of Portland cement concrete. Specimens of this cement coincide as to compression and tension at the same critical temperatures. The high point in Atlas Lumnite cement concrete in tension was found to be the lowest point in compression. However when the higher temperatures are reached the two curves are seen to coin- cide very closely. i-D'LVMVHLYW J” £N3V4LHY63CJ ,—vw—-v~ *— V— ° - v-~.-r—-‘=—¢-o«vvg ‘ . -..-9.? .a--.—OO-'. O. ~ ..A‘ --.-l “...-... *4 '. L‘.A9~{ ‘. - 9“. v r-9 ~- ova-o1 . . V v1 «or. o .4.— .—-..-‘.,o‘.o—-—-cool . .7 ' "‘: >-~ >-‘. .- -.~’ ’- -- 4 ~' -— ---- . . ..—~ so- 0 . - \.-y. .1..-. ’HQ‘ .’ ~-- ‘ ‘ hm.- cup” ~- m 4 l.- A ...r ov—o~ < .1 s. -_ 4.. c - -- o—~1 3' “..-.o—eo-a ‘ II” o - +0 .7 . .9. s- g ..o- —. fl .—o -o o- ...—4 A 1 “H o 090—- --...— «~0- -.-.." ..-4 ' - -0.» ..—--.-—.o—. . ”L -..-.qp- “.--... . ... - - - o ---- _ ...4- 1 .--—v ’9..- o- - v p»- -- -"1H’. -- - 9L ---..._.._. -. . ..-- --. - -1 .- .. - « ~ - . - -~ . v -- -- . n . ,,,. . ~ - ’-- D- - -_- .. “4-..--5. . " ‘ . - T‘.-f'1....4..'.. - ' . '. : J'Q; .-. l--.“ r. ‘1 4r w r-c-o’ w ' , _ -. -.4 ' .- - 9 . --.- ... ...— —'_- .- .—. 1 i.., - . . .- e -— ---~ r - -—\ »- -o -- - -.,_-_ .——. Our-..--“c—pow - t e .1 ._ » — e . D . . I — rh—a—e — - '1 >9.— --- 9 .1“ «4. -- -. , _- _- “~‘ “_ . c -Q . 0 ~ - - . -0 ‘ o a o o a 5109- """"“9-. b- - . - - .- . --...- y— ---> —- - ...—no—Q-w -- -1 --- o 9. -7. > o o—.- ‘-~o< p. -4 > v-- ‘4 9““‘1 "--W’flmm‘O-‘4 w.— -— —vo-—-OL—. s—b. -~ . -—O. 0-9—0 9 ~ f9<~-.A.J .- ....“ _ q 0 *, e --‘ .u ‘ a—qo>o.-~ .. c-gd ..- .4 a: o- ”h“- ... - u.-4 . - . - .... .. ‘ - 0‘ _ ' . v4 » - 4‘ , Q : -*.M«b~——~d~ "“ w- o- - . .- ' --— I V g — 0 ¢ Ofiw—v - - .-. -—-. - - ~~e ~ - H ‘ 'd "- 'i‘O-fr‘ e- .7 . . _ - -. 0 in- .- -.., 4 .. ¢ ...—.-1 .+..!. _ ..- ..- ._ ._ p JAOOJ ‘- 7. - $.1 _ -‘j. - 1.. .. - e tones. .- “‘ ‘—-O p . Q ..-. ‘ - . - g. H.- -- .—-?r.-_. . .-- . . . -r . ...-.I. O‘-"--J ""‘." ‘0‘“.-- ‘ -- .4 . - . .....1 o a. " " ‘ o . o - ‘- . , e 4 o . 0-59 ~04 I ——L‘ ————-— ...-.0 --.—o o-oo .. ... __’- .u ‘ '~ . ' _... to e "’ ‘ -- - < -. c . I .. . . v ‘ .-.-.... ~.. -g . ‘V” 0 O _ _ ' , . }‘ O-eo-e -- -_. -_._ 9.9- , , __ o . -- .. " :““ - 4--., He- —o.'o" ‘7- ~ ‘ 0‘ ‘ -'~O“-q .'*T' b .. 4,... r- . ,..._14 -~‘ . . e -. fl. ., . _ -‘ . ....; n .,’. q r; '-$.—< 'w u >‘ . a ".~”"' ‘<. -e ...-v' .-O-IH' ~~pIce~oodoe$ "‘ "‘ m.9-«- <1..- rg‘.f-.~f—4~- -Wtji‘la. q s » ;.voo v-‘r-I 3931103 awnn nanmun‘: mvmwmw w}: ,vb'o an INENLBVflO -.w-- --— v——~.—*—.——va-.—-.— 1 -.mm- -‘W ... . .. .. ..- e. . . ... .. V ‘ .. “I ~ 4‘ fi .V V V ... !.~ . .v .._ . . . ‘ ‘ - 9 «e 0... «-.x‘v,i “9': .V- 3"“Tqu ‘ o-' o .. , _ _ - ‘_ - —"‘ J “’ - H~. 'Y'z'" 944... -‘ - l - . . . " ' " vefivr *‘$H~ovuo ..fl 0‘ .‘4 c . . . ' '. ., 3 7 "' ’ "‘ *M‘x'9‘4-yr Ho't-firlofio~vr¢4 I . A a '—Q . . . ‘e.-..-.4-3 .‘..._5 .1.._‘_.- . ....“4 . , J - ' ' ' " -..m--. 1.. 6. .a .5-.. ,-..,,_ g ' 7‘ -. I "‘ 0“ "yOO- 0‘. -...-. ... ..yowg'n‘ ' ‘ "e o e , .4 . . o . . ..- _- ..- - -- . -L..._.- -. - 0 ~ q-- a 0.0— O. . -.. . . -- . . .-. .,.. ..z ' ' .11-.1 '72? y, . . 1 . . -. .» - ‘ -.. . . . . o ~r .. ~ - -1 ‘ ...v o -,‘s -- 0—- ‘ ._ .9 . ._ . u . 5 ..4 ‘ ' . . .. .- g'..‘._._...4 -~..y-..—. ”-_Owoaib ‘ _. .. ‘4 v". .-. - --- ..v. .... .-- . W- ... i . y . -.....1. H1-“ ...- o-.- . . . .- — . .—-— . .— ..-. ...r.- :A -o~-~.- -4 . J”mm ... - -- J I: y - _. o v . ~0—9. —¢—o——-v4> ~~--—1 - -.< ..— . o . ‘ . ,,_ .. .- - : ....-.z‘..-.-...:.f. .. l .s ‘ ’ t ‘ ' >0~- - ~' .. ‘C‘O‘lfi-‘O—OW-.' ‘ ~9—o44~-v~¢~- - ‘ ...... . ...- - 49-9...- ~ 4 » «-4 . —- ~0-‘4 -; .- — . . ---- . -..- ---..4-..‘._¥ O a s -. —-—~ no- 1 ...”.-. -....A. ..... . . . ' --.. . '~.~0194«”{ >0Fea.‘ e§p~.4--o HO—v -‘ ~‘ 4 .- ...... .-...--.o- ...-.~._.. .-. .. ¢.. .. <4... ”.....p- - v.0”: .-.-....o4n >o—o «ow :. o.—.-e ~ ew-O—— -»-‘-o-,.rg«q1-co-. .. -.9§OG»*—b'- . apr-O-J --—e¢- ~H§H~HJV‘-o~o~ o<~e .-.-4....Jq. «<7 < 'q’O-o '-‘—0649—4P'-0-0~¢o— --.. —Jo.-- .---‘ ... 4-. o . ~- . -... - " ‘. 3353: . -1:_. .17’;. ‘ "i: v i ' 1:", V l‘.~ 5 >~ - .-.——.- - - ... I -._. v I '0 v _ ----. ..-.L . ~ . 5.. no 00' . . -- . . 6e. .00» ' ' 409.Q-—-.-- - -.. Q.<49- o- , . .--. 1 . . s a -.‘ooogbo”-o¢ ‘ -“L ... —->..-.o _. — mo— — - 393F103 WVHFIL‘IF‘SIEODV NVSIHZ‘JIN Briquettes Seven Day Test Cured in atmosphere- 70 degrees Fahrenheit- first twenty- four hours- other six days cured in water temperature of 70 degrees Fahrenheit. Results are as follows: Ind of 24 hours. Briquettes Tension strength in pounds No.1 335 No.2 375 No.3 340 No.4 345 No.5 350 99.9 999. Total 6 Total 2090 average: 349 pounds per Briquette End of 48 hours Briquettes Tension strength in pounds No.1 450 No.2 440 No.3 500 No.4 450 No.5 470 9.9.9.. 99>. Total 6 Total 2760 average: 460 pounds per Briquette End of 72 hours. Briquettes Tension strength in pounds No.1 460 No.2 460 No.3 480 No.4 510 No.5 440 99.9 999. Total 6 Total 2820 average: 470 pounds per Briquette End of 96 hours Briquettes Tension strength in pounds No.1 420 No.2 440 No.3 445 No.4 430 No.5 420 99.9. 999. Total 6 Total 2585 average: 431 pounds per Briquette End of 120 hours Briquettes Tension strength in pounds No.1 405 No.2 405' No.3 430 No.4 400 No.5 405 9299 9.9.9. Total 6 Total 2440 End of 144 hours Briquettes Tension strength in pounds No.1 390 No.2 380 No.3 _ 400 No.4 410 No.5 390 99.9 9.99 Total 6 Total 2370 average: 395 pounds per Briquette End of 168 hours Briquettes Tension strength in pounds No.1 380 No.2 395 No.3 380 No.4 400 No.5 390 9.9.9. 9.9.9. Total 6 Total 2325 average: 388 pounds per Briquette. Summary Critical Temperature of Moist Air to give highest compression was found to be - 65 degrees Fahrenheit. Critical Temperature of Water to give the highest compression was found to be - 90 degrees Fahrenheit. Critical Temperature of Mixing Water, specimens cured in moist air of critical temperature, to give the highest compression was found to be - 60 degrees Fahrenheit. Critical Temperature of Mixing Water, specimens cured in water of critical temperature, to give highest compressive strength was found to be - 90 degrees Fahrenheit. Critical Temperature of Moist Air to give highest tensile strength was found to be - 60 degrees and 80 degrees Fahrenheit. Critical Temperature of curing water to give the highest tensile strength was found to be - 70 degrees Fahrenheit. The curves showing tension and compression of Atlas Lumnite Cement Concrete do not follow each other as do curves of tension and com- pression when Portland Cement Concrete is used. The color of the specimens changes from a light gray at low tempera- tures to a dark brown at high temperatures. The compressive strength of Lumnite Cement Concrete was low in these tests. Not only does the chemical reaction vary the strength of the concrete Summary (Con't) but the curing water will effect it also. The water retards the hydration and increases the strength. 3.x a \. uh CW“ - \ w. mu .\.\..\...\ WU_F03_0CF4C3>P GOP—IMO” . Jr . .~.’.:" )1! UM?)343M24 0-... 3)fi1n3>4_nu fl .U—P(zu IP