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ABSTRACT

NEAR-FIELD IMAGING VIA INVERSE SCATTERING

By

Junshan Lin

Near-field optics is an emerging research topic in the past few decades, mostly moti-

vated by applications in the near-field microscopy in an effort to break the diffraction

limit. In the far-field imaging, only the propagating wave components with spatial

frequency below the wavenumber are available, and it is well-known that the reso-

lution of the image is approximately λ/2 (diffraction limit) [17, 51, 53]. In the near

field, however, the bandwidth of the spatial frequency may be expanded by taking ac-

count of the evanescent (exponentially decayed) waves. Nowadays there exist various

configurations for the near-field microscopies, see for example [51]. However, it is rec-

ognized that the images obtained from the near-field microscopies are problematic by

visualizing the object in an analogical way [18, 47]. Therefore, the inverse scattering

theory is applied to understand how the structure of the scattering object is encoded

in the measured scattered field. When single scattering (or Born approximation)

is assumed, the studies are complete for the near-field scanning optical microscopy

(NSOM) and the total internal reflection microscopy (TIRT) within the framework

of the inverse scattering theory [19, 20, 57].

In this thesis, we focus on one specific problem where the imaging target is a

ground plane with some local disturbance. The data is collected in the near-field

regime with a distance above the surface displacement that is smaller than the wave-

length. In the recent paper [29], a linearized model has been introduced for the

nonlinear inverse scattering problem by the single scattering assumption. The au-

thors also proposed a broadband imaging strategy for denoising and improving the

resolution of the image. In the thesis, we investigate the more general case by con-

sidering the full scattering model, for which the linearized model in [29] is no longer



valid. By the analysis of the scattered field, it is confirmed that the evanescent wave

modes which are not accessible in the far-field regime become significant in the near

field. Evanescent wave modes make it possible to break the diffraction limit. It is

shown that such exponentially decayed modes of the scattered wave contain the high

spatial frequency information (fine features) of the profile. We formulate explicitly the

connection between the evanescent wave modes and the high frequency components

of the surface displacement, and present a new numerical scheme to reconstruct the

surface displacement from the boundary measurements. By extracting the informa-

tion carried by the evanescent modes effectively, it is shown that the resolution of the

reconstructed image is significantly improved in the near field. Numerical examples

show that images with a resolution of λ/10 are obtained.

To overcome the ill-posedness and the presence of local minima associated with

this nonlinear imaging problem, we propose to use multiple frequency data to image

the profile of the surface displacement in the second part of the thesis. The main

idea is to march from the lowest wavenumber to the highest wavenumber. At the

fixed wavenumber, by an analysis of the domain derivative for the forward scattering

map, a vector field is chosen such that the defined cost functional decreases. The

reconstructed profile evolves with the chosen vector field at the fixed wavenumber

and the evolution process continues until it reaches the highest wavenumber. The

proposed reconstructed scheme is able to capture the main feature of the profile at

low frequency and recover the fine details at higher frequency. In particular, for a

multiple scale profile, it resolves the fine scale with sufficiently high frequency.
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Chapter 1

Introduction

1.1 Near-field Optics

Near-field optics is the study of the evanescent wave fields and their interactions with

matter on a sub-wavelength scale. Usually the evanescent fields are localized to the

optical source region or the surface of the scattering object, and the study of the near-

field optics is mostly concerned with the localized region within one wavelength. The

modern interests on the topic was mainly motivated by its applications in near-field

imaging microscopies. We refer the reader to [51, 62] and the references therein for

detailed discussions.

The study of the near-field optics has its origin in an effort to break the diffraction

limit imposed by the far-field imaging. In far-field optics, the cut-off of the spatial

spectrum is very strict: only the propagating wave components with spatial frequency

below the wavenumber can be used. The loss of higher spatial frequencies leads to

the diffraction limit, which is also known as the Rayleigh resolution limit. At the

end of the nineteenth century, Abbe and Rayleigh [1, 53] derived a criterion for this

limit. The minimum distance ∆x between two point sources at which they can still
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Figure 1.1: Evanescent wave. For interpretation of the references to color in this and
all other figures, the reader is referred to the electronic version of this thesis.

be unambiguously distinguished as two separate sources reads as

∆x = 0.61λ/NA,

where NA is the numerical aperture, and the best possible NA for optical glasses

is roughly 1.5. Therefore, the spatial resolution for a far-field optical microscopy is

approximately λ
2 . In near-field optics, however, the bandwidth of spatial frequency

is expanded by taking account of the evanescent waves.

The evanescent waves can be described by plane waves of the form ei(k·x−ωt),

where at least one component of the wave vector k describing the direction of prop-

agation is imaginary. They play a central role in near-field optics. In the spatial

direction defined by the imaginary component of k, the wave no longer propagates,

but decays exponentially. Figure 1.1 is the plot of an evanescent wave that propagates

in the xy plane, but decays exponentially in the z direction.

In fact, the total internal reflection at the surface of a dielectric medium generates
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such an evanescent wave. Let us consider a plane wave impinging on a flat surface

between two media characterized by the refraction index n1 and n2 respectively and

n1 > n2. By the boundary conditions on the interface, the wave vectors k1 and k2

in the two media take the form of

k1 = (kx, ky, kz1), |k1| =
n1ω

c
,

k2 = (kx, ky, kz2), |k2| =
n2ω

c
.

Here c is the speed the light in the vacuum. If the incident angle θi is the larger than

the critical angle θc = arcsin
n2
n1

, then kz2 becomes imaginary, and the exponential

decay constant is |k2|
√

(
n1
n2

)2 sin2 θi − 1.

The evanescent waves are always restricted to the surfaces of imaging objects,

thus the study of the optical interactions on a subwavelength scale becomes very

significant. This usually complicates the analysis as well as the computation — the

price we have to pay for the inclusion of evanescent waves to obtain images with

better spatial resolution.

1.2 Near-field Imaging Microscopy

The central idea of near-field microscopies is to retain the spatial frequencies associ-

ated with evanescent waves, thereby increasing the bandwidth of spatial frequencies.

In principle, arbitrary resolution can be achieved provided the bandwidth is infinite.

However, this is at the expense of strong coupling between the source and the imaging

object. Here we briefly summarize several existing near-field imaging modalities, and

refer to the monograph [51] and [30, 25, 26, 54] for references. The list is of course

by no means to be complete.

Near-field scanning optical microscopy (NSOM) [51, 25, 30] applies the excitation
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beam emanating from a tiny aperture (e.g., pointed optical fiber) or a tiny metal

tip. The electric field distribution changes significantly as the aperture size becomes

smaller. In particular, when the aperture size is below the wavelength, the z compo-

nent of the wave vector becomes imaginary. The strong localization of such evanescent

waves yields the subwavelength resolution that can be achieved in near-field scanning

optical microscopy.

The scanning tunneling optical microscope (STOM) [26], also called the phonon

scanning tunneling microscope (PSTM) [54] uses far-field illumination and near-field

detection. To illuminate the sample, a laser beam undergoes total internal reflection

at the surface of the sample support. A bare tapered glass fiber is dipped into this

evanescent field to locally couple some of the light into the probe where it is converted

into propagating modes that are guided towards a detector.

There are other imaging modalities such as the near-field illumination and near-

field detection configuration which makes use of near-field interactions for both exci-

tation and detection, and the energy-transfer microscopy where the near-field interac-

tion between probe and sample is achieved through dipole-dipole coupling. There are

new methods being developed continuously. Apparently large diversity of methods

are usually categorized according to their specific illumination and detection condi-

tions, and in practice, it is usually desirable to have different specialized modalities

combined together to give more efficient imaging.

1.3 Near-field Imaging via Inverse Scattering

In an optical microscopy, the object is usually visualized in an analogical way with

little or no numerical treatment. Therefore, the images of the scattering object is usu-

ally problematic [18, 47]. There is an alternative type of near-field imaging technique

which relies entirely on a numerical inversion procedure to reconstruct the sample
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from the data of the scattered field, i.e., to solve the inverse scattering problem.

In [15], M. Bertero, P. Boccacci and M. Piana discussed the concept of resolution

for the inverse diffraction problems that arise in the acoustic holography. They showed

that the super-resolution is possible due to the information conveyed by evanescent

waves in near-field.

P. Carney and J. Schotland also studied the inverse scattering problem for the

near-field microscopy and three-dimensional total internal reflection microscopy (TIRM).

They also showed subwavelength spatial resolution [19, 20]. Their framework on the

near-field imaging is all based on the weak-scattering approximation (or Born approx-

imation).

More recently, A. Sentenac et al carried out the whole nonlinear inversion process

for the total internal reflection microscopy [5, 6]. Unfortunately, in optics the highest

refractive index available for the prism function in TIRM is close to two, which limits

the spatial frequency of illuminating field. In order to increase the spatial frequencies

of the illuminating field beyond that reachable with a prism, they proposed to deposit

the sample on an optimized grating [21]. This is the so called grating-assisted optical

diffraction tomography.

The starting point of this thesis is also based on the idea of imaging by ap-

plying the inverse scattering theory. We study the inverse diffraction problem for

an unbounded obstacle which is a ground plane with some local disturbance. New

numerical schemes are developed to reconstruct the surface displacement from the

boundary measurements.

In Chapter 2, we briefly summarize the mathematical theories of inverse problems,

which serves as the building blocks for the study of the inverse scattering problem.

Chapter 3 is devoted to the analysis the scattered field in near-field regime, and

the design a numerical method that makes use of the evanescent modes effectively to

improve the resolution of the near-field image. Most of Chapter 3 comes from [10].

5



In Chapter 4, we use multiple frequency data to image the profile of the surface

displacement. A stable and accurate reconstruction method is presented and inves-

tigated with numerical simulations. In particular, for a multiple scale profile, the

proposed method resolves the fine scales with sufficiently high frequency information.

Chapter 4 is mostly extracted from [11].
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Chapter 2

Mathematical Theory of Inverse

Problem

In this chapter, we briefly summarize the mathematical theories for the inverse prob-

lems, with focus on the linear compact operators in Hilbert spaces. It is intended as

an introduction to the basic ideas on the ill-posed problems and regularization meth-

ods for their solutions. We refer to the monographs [31, 43, 24, 37] and references

therein for detailed discussions.

2.1 Concepts of Ill-Posed Problem

In his lecture published in [38], Hadamard claims that a mathematical model for

a physical problem has to be properly posed or well-posed in the sense that it has

following properties:

• There exists a solution of the problem (existence).

• There exists at most one solution of the problem (uniqueness).

• The solution depends continuously on the data (stability).

7



If any of the above three criteria is violated, the problem is called ill-posed. In practice,

the instability is one of the primary interest in the study of ill-posed problems. The

violations of stability always creates serious numerical problems: an infinitesimal noise

in the measurement will give rise to large errors in the solution. No mathematical trick

can make an inherently unstable problem stable. A remedy is to use the regularization

methods. But all that a regularization method can do is to recover partial information

of the solution as stable as possible.

Consider the operator equation

Kx = y, (2.1)

where K is an operator between Hilbert spaces X and Y . The typical example of

an ill-posed problem is when K is a compact operator, since the inverse K−1 is

unbounded. We will base our exposition on (2.1) in the following sections.

2.2 Singular Value Decomposition for Linear Com-

pact Operators

A better way to understand the structure of linear compact operator K (X → Y )

is from the spectral theory. For an self-adjoint operator K, all of its eigenvalues are

real. Moreover, K has at least one but at most a countable number of eigenvalues

with 0 as the only possible accumulation point.

Assume that the sequences {λn}∞n=1 of the nonzero eigenvalues is ordered such

that

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · ·

8



Let xn be a sequence of corresponding orthonormal eigenvectors. Then for x ∈ X,

Kx =
∞∑

n=1

λn(x, xn)xn.

For a proof of this spectral decomposition for self adjoint operators, see for example

[45].

The spectral theorem for compact self-adjoint operators has an extension to nonself-

adjoint operators. If K : X → Y is a linear compact operator, then its adjoint op-

erator K∗ : Y → X is also compact. We call the nonnegative square roots of the

eigenvalues for the self-adjoint compact operator K∗K the singular values.

Theorem 2.2.1. (Singular Value Decomposition) Let K : X → Y be a linear compact

operator, K∗ : Y → X be its adjoint operator, and µ1 ≥ µ2 ≥ µ3 · · · > 0 be ordered

sequences of the positive singular values of K. Then there exist orthonormal systems

{xn}∞n=1 ⊂ X and {yn}∞n=1 ⊂ Y with the following properties:

Kxn = µnyn and K∗yn = µnxn for all n ∈ N.

The system (µn, xn, yn) is called a singular system for K. For each x ∈ X, there

exists a singular value decompostion

x = x0 +
∞∑

n=1

(x, xn)xn

for some x0 ∈ Ker(K) and

Kx =
∞∑

n=1

µn(x, xn)yn.

The following theorem expresses the solution to the equation Kx = y in terms of

the singular system.

9



Theorem 2.2.2. (Picard) Let K : X → Y be a linear compact operator with the

singular system (µn, xn, yn). The solution to

Kx = y

is solvable if and only if f ∈ (Ker(K∗))⊥ and

∞∑

n=1

1

µ2
n
|(y, yn)|2 < ∞.

In this case

x =
∞∑

n=1

1

µn
(y, yn)xn.

Picard’s theorem demonstrate the ill-posed nature of the equation Kx = y. If we

perturb the right hand side by δy, the perturbation of the solution x can be made

arbitrarily large due to the fact that the singular values tend to zero.

2.3 Regularization Methods for Linear Problems

Since the inverse of the operator K is not bounded, one remedy is to use the reg-

ularization methods. A regularization strategy is a family of linear and bounded

operators

Rα : Y → X, α > 0

such that

lim
α→0

RαKx = x for all x ∈ X.

Let yδ be the measured data (with error) with
∥∥∥y − yδ

∥∥∥ ≤ δ, then

xα,δ := Rαyδ

10



is an approximation of the solution of (2.1). The error
∥∥∥x− xδ

∥∥∥ can be split into two

parts:

δ ‖Rα‖ and ‖RαKx− x‖ ,

where the first term described the error in the data multiplied by ‖Rα‖ and the

second term denotes the approximation error
∥∥∥(Rα −K−1)y

∥∥∥. The art of choose

the regularization parameter α will always be to find the right compromise between

accuracy and stability.

A convenient way to construct admissible regularization strategies is given by

filtering singular value systems. The idea of using filters has a long history and is

very convenient for theoretical purposes [36, 58]. Let (µn, xn, yn) be a singular system

for K. The regularization strategies is constructed by damping the factors 1/µn.

Theorem 2.3.1. (Regularization by damping [43]) Let K : X → Y be a linear

compact operator with singular system (µn, xn, yn).

q : (0,∞)× (0, ‖K‖) → R

is a function with the following properties:

• |q(α, µ)| ≤ 1 for all α > 0 and 0 < µ < ‖K‖.

• For each α > 0 there exists c(α) such that

|q(α, µ)| ≤ c(α)µ and 0 < µ ≤ ‖K‖ .

• limα→0 q(α, µ) = 1 for each 0 < µ < ‖K‖.

Then the operator Rα : Y → X, defined by

x = Rαy =
∞∑

n=1

q(α, µn)

µn
(y, yn)xn

11



is a regularization strategy with ‖Rα‖ ≤ c(α). The function q is called a regularizing

filter for K.

There are various choices of the function q that satisfies the above properties.

Typically, we list three filter functions as follows:

(1) q is defined by

q(α, µ) =





1, µ2 ≥ α,

0, µ2 < α.

This choice of q is also known as the spectral cutoff.

(2) q(α, µ) = µ2/(α + µ2). This choice of the filter function q is equivalent to the

Tikhonov regularization strategy [59, 60]. The Tikhonov regularization tries to

minimize the functional

Jα(x) := ‖Kx− y‖+ α ‖x‖ ,

and the minimum xα of the Tikhonov functional is the unique solution of the

normal equation

αxα + K∗Kxα = K∗y.

It is clear that the solution xα can be written in the form xα = Rαy with

Rα := (αI + K∗K)−1K∗ =
∞∑

n=1

µn

α + µ2
n

(·, yn)xn.

(3) q(α, µ) = 1 − (1 − aµ2)1/α. This choice of the filter function q leads to the

so-called Landweber iteration method [16, 35, 48]. The iteration scheme is the

steepest descent algorithm for the quadratic functional x → ‖Kx− y‖2, where

12



xm is computed recursively by

xm = xm−1 − aK∗(Kxm−1 − y), m = 1, 2, · · ·

The resulting regularized operator has the form

Rm := a
∑

j=0

(I − aK∗K)jK∗ =
∞∑

n=1

1− (1− aµ2)m

µn
(·, yn)xn.

There are many other regularization strategies for the solution of the linear ill-

posed problems, for example, the conjugate gradient method [27], the regularization

by discretization [14, 45], etc.

One important issue for the regularization strategy is the choice of the regular-

ization parameter α such that the accuracy and stability are balanced. In practice,

usually the posteriori parameter choice rules are applied. One of the most widely used

strategies is the so-called discrepancy principle due to Morozov [49]. We also refer

to [31, 43] for the discussions of other posteriori rules to choose the regularization

parameter.

2.4 Regularization Methods for Nonlinear Prob-

lems

Let F be a nonlinear operator between Hilbert spaces X and Y , and we want to solve

F (x) = y. (2.2)

The regularization theory for the nonlinear ill-posed problem (2.2) is by far not so

well developed as in the linear case.
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As in the linear case, the Tikhonov regularization minimizes the functional

‖F (x)− y‖+ α ‖x‖ . (2.3)

The minimization problem (2.3) admits a solution, though the solution may not be

unique in general. Moreover, the Tikhonov regularization strategy is stable in the

sense of continuous dependence of the solution on the data y [31, 55]. If y in (2.3)

is replaced by the perturbed data yδ, then the corresponding solution xα,δ of (2.3)

converges to the minimum norm solution of (2.2) for general nonlinear problems when

δ → 0[55]. The rates of convergence are presented in [32, 50].

The nonlinear Landweber iteration to the nonlinear ill-posed problem updates the

solution along the steepest descent direction of the functional ‖F (x)− y‖:

xm = xm−1 − aF ′(xm−1)∗(F (xm−1)− y), m = 1, 2, · · ·

For nonlinear problems, the iteration will not have a global convergence property.

However, under suitable condition on the nonlinear operator F with an appropriate

stopping rule, the convergence is obtained in [39].

There are also Newton’s type methods for solving (2.2). The main idea is to

repeatedly linearize the nonlinear operator equation by solving

F ′(xm−1)(x− xm−1) = y − F (xm−1).

Usually F ′(xm−1) is compact, and regularization strategy is applied when solving

the linearized problem. We refer to [31] for detailed discussions.
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Chapter 3

Near-field Imaging of the Surface

Displacement on an Infinite

Ground Plane

3.1 Forward and Inverse Scattering Problems

Consider the scattering of the time harmonic electromagnetic wave that impinges on

an unbounded obstacle. The boundary of the obstacle is assumed to be a perturbation

Figure 3.1: Setup of the problem.
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of the x1x3 plane. It is also assumed that the surface displacement is invariant along

the x3 direction, and is local with respect to x1. We further restrict the study to

the TM polarization or E-parallel case, i.e., the electric field E = (0, 0, u(x1, x2)).

Consequently, the Maxwell equations are reduced to the two dimensional Helmholtz

equation.

Before introducing the forward scattering model, we describe the geometry of the

obstacle shown in Figure 3.1. Let γ ⊂ R be bounded, open, and ∂γ be the boundary

of γ. Denote the closure of γ as γ. The ground plane Γ0 := R\γ, and the local surface

displacement is represented by Γ := {x = (x1, x2) | x1 ∈ γ, x2 = f(x1)}, where the

function f is defined on γ:

f(x1) > 0 for x1 ∈ γ, f(x1) = 0 for x1 ∈ ∂γ.

By requiring f > 0 on γ, the surface displacement is directed upward. Clearly, ∂D :=

Γ∪Γ0 is the boundary of the whole unbounded obstacle on which the electromagnetic

wave impinges. The domain above ∂D is denoted as D (⊂ R2).

The incident wave field ui = eikq·x is a plane wave that propagates along the

direction q = (sin θ, − cos θ)T , where θ is the incident angle and k = ω
c is the

wavenumber. Here ω is the angular frequency, and c is the speed of the wave prop-

agating in the vacuum. Let λ = 2π
k

denote the wavelength. If the obstacle is a flat

perfect conductor, then the reflected field ur = −eikq′·x produced by the flat surface

is a plane wave propagating along the direction q′ = (sin θ, cos θ)T . In general, the

total field ut from the scattering by Γ∪ Γ0 consists of three parts: the incident wave

ui, the reflected wave ur, and the scattered field. The scattered field u satisfies the

Helmholtz equation

∆u + k2u = 0 in D. (3.1)

Assuming that the obstacle is a perfect conductor, the total field vanishes on the
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boundary. Hence

u = −(ui + ur) on ∂D. (3.2)

It is easily seen that u = 0 on Γ0. Moreover, the scattered field satisfies the Sommer-

field radiation condition:

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, r = |x| . (3.3)

The forward scattering problem (4.1)-(4.3) admits a unique solution u ∈ C2(D) ∩
C(D̄) if ∂D is C2 and boundary data u|∂D is continuous [61]. Clearly here the plane

wave ui, ur ∈ C∞(R2). It is worth mentioning that there are many results on related

scattering problems in the literature. The well-posedness of the scattering problem

for an obstacle with locally downward surface displacement (f(x1) < 0 for x1 ∈ γ)

was studied in [3, 4]. There are also general studies on the scattering by a non-local

perturbed half plane. See for example [64] and the references therein.

In our framework for the inverse scattering problem, data is collected on the

line x2 = d above the surface displacement with a distance that is smaller than

the wavelength λ (near-field regime). To be more precise, it is required that 0 <

d−maxx1∈γ̄ f(x1) < λ. The inverse problem is to reconstruct f from the scattered

field u(·, d) collected on the line x2 = d. Our work is originally motivated by the

recent paper [29], in which a linearized model has been introduced for the nonlinear

inverse scattering problem by the single scattering assumption. The authors also

proposed a broadband imaging strategy for denoising and improving the resolution

of the image. However, this linearized model is valid only if
f
λ
¿ 1 and the modulus

of its derivative
∣∣∣f ′

∣∣∣ ¿ 1 simultaneously. Here we investigate the more general case

by considering the full scattering model, for which the linearized model in [29] is no

longer valid. For the reconstruction of the star-like local disturbance from the far

field pattern of the scattered field, we refer to [46].
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This imaging problem shares many of the well-known difficulties with other in-

verse boundary value problems, particularly nonlinearity and ill-posedness. However,

by collecting data in the near-field regime, the evanescent wave modes which are not

accessible in the far-field regime (d − max f À λ) become significant. This crucial

fact may be confirmed by the analysis of the scattered field in Section 3.2. Evanes-

cent wave modes make it possible to break the diffraction limit. It is shown that

such exponentially decayed modes of the scattered wave contain exactly the high spa-

tial frequency information (fine features) of the profile f . Our study is to analyze

the scattered field carefully, and design a numerical method that makes use of the

evanescent modes effectively, thus to improve the resolution of the image. Numerical

examples confirm that a resolution of λ/10 is obtained in the near field.

3.2 Analysis of the Scattered Wave

3.2.1 Layer Potential and Boundary Integral Equations

Introduce Green’s function

G(x, y) := Φ(x, y)− Φ(xr, y),

where Φ(x, y) =
i

4
H

(1)
0 (k|x − y|) is the fundamental solution for the Helmholtz

equation in R2 and xr is the reflection of x by the x1 axis, i.e., xr = (x1,−x2).

Denote Γ = Γ ∪ ∂γ, Γr := { (x1,−x2) | x ∈ Γ }, Γ ∪ Γr = Γ ∪ Γr ∪ ∂γ, and

Dr := { (x1,−x2) | x ∈ D }. For a function ψ ∈ C(Γ), we define the single layer

potential:

u(x) =

∫

Γ
G(x, y)ψ(y)dsy, x ∈ R2\Γ ∪ Γr.

The following lemma is concerned with the limit of the normal derivative of the single
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layer potential, when it is extended from above and below the boundary Γ. The limit

for the case when Γ is the smooth boundary of a bounded obstacle is well known

[23, 24]. Here Γ is not a closed curve. For completeness, the proof of the lemma is

provided.

Lemma 3.2.1. Assume that Γ is C2. For the single layer potential with continuous

density ψ, the following holds:

(
∂u

∂ν

)

±
(x) =

∫

Γ

∂G(x, y)

∂νx
ψ(y)dsy ∓ 1

2
ψ(x), x ∈ Γ,

where ν is the unit normal directed into D,

(
∂u

∂ν

)

±
(x) := limh→0+ν(x) · ∇u(x ±

hν(x)).

Proof. For x ∈ Γ, ε > 0, denote Γx,ε := { y ∈ Γ, |y − x| < ε }. We first show that

lim
ε→0

lim
h→0+

∫

Γx,ε

∂Φ(x + hνx, y)

∂νx
dsy = −1

2
.

Let ∂Ω (the boundary of some bounded connected domain Ω) be a C2 closed curve

such that Γ ⊂ ∂Ω. Moreover, for x ∈ Γ, the unit outward normal of x on ∂Ω coincides

with νx. Let ψ ≡ 1 on ∂Ω , from the classical results in [23, 24],

(
∂u

∂ν

)

+
(x) =

∫

∂Ω

∂Φ(x, y)

∂νx
dsy − 1

2
, x ∈ Γ. (3.4)

On the other hand, for any small fixed number ε > 0,

lim
h→0+

∫

∂Ω

∂Φ(x + hνx, y)

∂νx
dsy = lim

h→0+

[∫

∂Ω\Γx,ε
+

∫

Γx,ε

]
∂Φ(x + hνx, y)

∂νx
dsy

=

∫

∂Ω\Γx,ε

∂Φ(x, y)

∂νx
dsy + lim

h→0+

∫

Γx,ε

∂Φ(x, y)

∂νx
dsy.
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Now letting ε → 0, we get

lim
h→0+

∫

∂Ω

∂Φ(x + hνx, y)

∂νx
dsy =

∫

∂Ω

∂Φ(x, y)

∂νx
dsy + lim

ε→0
lim

h→0+

∫

Γx,ε

∂Φ(x, y)

∂νx
dsy.

(3.5)

From (3.4), (3.5), we have

lim
ε→0

lim
h→0+

∫

Γx,ε

∂Φ(x + hνx, y)

∂νx
dsy = −1

2
. (3.6)

. For the integral on Γ, for any fixed small number ε > 0,

lim
h→0+

∫

Γ

∂Φ(x + hνx, y)

∂νx
ψ(y)dsy

= lim
h→0+

∫

Γ\Γx,ε

∂Φ(x + hνx, y)

∂νx
ψ(y)dsy + lim

h→0+

∫

Γx,ε

∂Φ(x + hνx, y)

∂νx
dsyψ(x)

+ lim
h→0+

∫

Γx,ε

∂Φ(x + hνx, y)

∂νx
(ψ(y)− ψ(x))dsy

=

∫

Γ\Γx,ε

∂Φ(x, y)

∂νx
ψ(y)dsy + lim

h→0+

∫

Γx,ε

∂Φ(x + hνx, y)

∂νx
dsyψ(x)

+ lim
h→0+

∫

Γx,ε

∂Φ(x + hνx, y)

∂νx
(ψ(y)− ψ(x))dsy.

On the other hand, there exists some constant M that

∣∣∣∣∣
∫

Γx,ε

∂Φ(x + hνx, y)

∂νx
dsy

∣∣∣∣∣ ≤ M

and

|ψ(y)− ψ(x)| → 0, as ε → 0 for y ∈ Γx,ε.

Therefore, by letting ε → 0 and noting (3.6), we obtain

lim
h→0+

∫

Γ

∂Φ(x + hνx, y)

∂νx
ψ(y)dsy =

∫

Γ

∂Φ(x, y)

∂νx
ψ(y)− 1

2
ψ(x).

20



For x ∈ Γ,

lim
h→0+

∫

Γ

∂Φ(xr + hνx, y)

∂νx
ψ(y)dsy =

∫

Γ

∂Φ(xr, y)

∂νx
ψ(y).

By combining the above, we have

(
∂u

∂ν

)

+
(x) =

∫

Γ

∂G(x, y)

∂νx
ψ(y)dsy − 1

2
ψ(x), x ∈ Γ.

The proof for

(
∂u

∂ν

)

−
can be carried out in the same fashion.

The following representation result may serve as a starting point for the analysis

of the scattered field.

Lemma 3.2.2. If ∂D is C3, then there exists ψ ∈ C(Γ) such that the solution to

(4.1)-(4.3) can be expressed as the single layer potential

u(x) =

∫

Γ
G(x, y)ψ(y)dsy x ∈ D. (3.7)

Proof. Let u be the solution of (4.1)-(4.3). Note u = 0 on Γ0, by Green’s theorem

and the radiation condition, the scattered field takes the following form

u(x) =

∫

Γ

∂G(x, y)

∂νy
u(y)−G(x, y)

∂u(y)

∂νy
dsy, x ∈ D. (3.8)

Denote the domain bounded by Γ ∪ Γr as D̃. Let u0 := ui+ur. Then u0 ∈ C∞(R2)

satisfies the Helmholtz equation in D̃. By Green’s theorem, we have

(∫

Γ
+

∫

Γr

)(
∂Φ(x, y)

∂νy
u0(y)− Φ(x, y)

∂u0(y)

∂νy

)
dsy = 0, x ∈ D, (3.9)
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where νy is the unit normal directed to D for y ∈ Γ, νy is the unit normal directed

to Dr for y ∈ Γr.

By noting that u0(y) = −u0(yr), and
∂u0(y)

∂νy
= −∂u0(yr)

∂νyr
for y ∈ Γ, we get

∫

Γr

∂Φ(x, y)

∂νy
u0(y)dsy =

∫

Γ

∂Φ(xr, y)

∂νy
(−u0(y))dsy,

∫

Γr
Φ(x, y)

∂u0(y)

∂νy
dsy =

∫

Γ
Φ(xr, y)(−∂u0(y)

∂νy
)dsy. (3.10)

Substituting (3.10) into (3.9) yields

∫

Γ

∂G(x, y)

∂νy
u0(y)−G(x, y)

∂u0(y)

∂νy
dsy = 0, x ∈ D. (3.11)

A combination of (3.8) and (3.11) leads to

u(x) =

∫

Γ

∂G(x, y)

∂νy
(u + u0)(y)−G(x, y)

(
∂u

∂νy
+

∂u0
∂νy

)
(y)dsy,

= −
∫

Γ
G(x, y)

(
∂u

∂νy
+

∂u0
∂νy

)
(y)dsy. x ∈ D.

Let ψ = −
(

∂u

∂νy
+

∂u0
∂νy

)
. ψ ∈ C(Γ) follows by the standard regularization theory

for second-order elliptic equations and the Sobolev imbedding theorems [34]. The

proof is now complete.

Introduce the integral operator K : C(Γ) → C(Γ),

(Kψ)(x) :=

∫

Γ
G(x, y)ψ(y)dsy, x ∈ Γ. (3.12)

Denote g = −(ui +ur)|
Γ

. Then the existence of the solution to the integral equation

Kψ = g follows from Lemma 3.2.2. Note that since the single layer potential can

be continuously extended to Γ, the density function ψ defined in Lemma 3.2.2 is a
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solution of the integral equation Kψ = g. Regarding the uniqueness, we have the

following result.

Proposition 3.2.3. If ∂D is C3, then Kψ = g is uniquely solvable if k2 is not the

eigenvalue of −∆ in D̃ for the Dirichlet problem. Here D̃ is the domain bounded by

Γ ∪ Γr.

Proof. If Kψ = 0 for some ψ ∈ C(Γ), then the single layer potential

u(x) =

∫

Γ
G(x, y)ψ(y)dsy

solves the exterior problem





∆u1 + k2u1 = 0 in D,

u1 = 0 on ∂D,

limr→∞
√

r

(
∂u1
∂r

− iku1

)
= 0

(3.13)

and the interior problem





∆u2 + k2u2 = 0 in D̃,

u2 = 0 on Γ ∪ Γr.
(3.14)

If k2 is not the eigenvalue of −∆ in D̃ for the Dirichlet problem, then (3.13) and

(3.14) attains a unique solution respectively. Hence
∂u1
∂v

− ∂u2
∂v

= 0. By the jump

condition in Lemma 3.2.1 we have −ψ =
∂u1
∂v

− ∂u2
∂v

= 0 on Γ. Note that ψ ∈ C(Γ),

thus ψ ≡ 0 on Γ.

3.2.2 Scattered Wave in Near-field Regime

Now we are ready to examine the scattered field in the near-field regime. We point

out that the exponentially decayed (evanescent) wave modes which are localized to
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the surface the local disturbance are significant in the near field, and formulate ex-

plicitly the connection between the evanescent wave modes and the high frequency

components for the profile of the local disturbance.

For convenience, the Green’s function G(x, y) and the fundamental solution Φ(x, y)

are written with an explicit dependence on the first variable:

G(x, y) = G̃(x1 − y1; x2, y2) := Φ̃(x1 − y1, x2 − y2)− Φ̃(x1 − y1, x2 + y2) ,

where Φ̃(x1, x2) =
i

4
H

(1)
0 (k

√
x2
1 + x2

2).

For the free space fundamental solution Φ̃(x1−y1, x2−y2), we have the following

plane wave decomposition:

Φ̃(x1 − y1, x2 − y2) =
i

4π

∫

R
1

k2(κ)
ei(x1−y1)·κeik2(κ)|x2−y2|dκ, (3.15)

where

k2(κ) =





√
k2 − |κ|2 |κ| < k (propagating modes),

i

√
|κ|2 − k2 |κ| > k (evanescent modes).

(3.16)

The decomposition may be viewed as the sum of the plane waves that consist of

propagating and evanescent modes. It is clear that all the wave modes propagate along

the x1 direction. Along the x2 direction, when the magnitude of the spatial frequency

|κ| is below k, the wave mode also propagates; otherwise, it decays exponentially along

the x2 direction and is denoted as the evanescent mode.

A similar plane wave decomposition holds for G̃(x1 − y1; x2, y2) evaluated at

x2 = d:

G̃(x1 − y1; d, y2) =
i

4π

∫

R
1

k2(κ)
ei(x1−y1)·κ (

eik2(κ)|d−y2| − eik2(κ)|d+y2|
)

dκ.

(3.17)

Thus for the scattered field at x = (x1, d), by noting the single layer potential (3.7),
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some simple calculations yield

u(x1, d) =
i

4π

∫

R

∫

γ

1

k2(κ)
ei(x1−y1)·κ (

eik2(κ)|d−f(y1)| − eik2(κ)|d+f(y1)|)

ψ(y1, f(y1)) J dy1dκ,

where J =

√
1 +

∣∣f ′
∣∣2. This implies that the measured scattered field u on the line

x2 = d can also be viewed as the superposition of the propagating and evanescent

wave modes. It is important to note that the evanescent modes with spatial fre-

quency beyond the wavenumber k decay exponentially along the x2 direction, and

are localized to the surface of the obstacle within one wavelength. Therefore, in the

far-field regime, such evanescent modes carried by the scattered field are lost. How-

ever, in the near-field regime, the evanescent modes are significant, and the measured

scattered field carries more information for the profile of the local disturbance to be

reconstructed.

On the other hand, following from the Taylor expansion of G̃(x1 − y1; d, y2) at

y2 = 0, the scattered field can also be expanded as

u(x1, d) =

∫

γ
[G̃(x1 − y1; d, 0) +

∂G̃(x1 − y1; d, 0)

∂y2
f(y1) +

∂2G̃(x1 − y1; d, 0)

∂y2
2

(f(y1))2

+O(f3)] ψ(y1, f(y1)) J dy1 .

where

(a) G̃(x1 − y1; d, 0) =
∂2G̃(x1 − y1; d, 0)

∂y2
2

= 0 by the symmetry property of G̃;

(b) for the high order term, by a direct calculation, asymptotically

O(f3) = O

(
(
f

λ
)2

)
∂G(x1 − y1; d, 0)

∂y2
f .

We assume that

(
f

λ

)2
¿ 1, and denote ϕ = ψ

√
1 +

∣∣f ′
∣∣2. Then the scattered
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field is simplified as

u(x1, d) ≈
∫

γ

∂G̃(x1 − y1; d, 0)

∂y2
f(y1)ϕ(y1)dy1

=

∫

R
∂G̃(x1 − y1; d, 0)

∂y2
f(y1)ϕ(y1)dy1. (3.18)

The equality holds since the surface displacement is supported on γ. Here we implic-

itly extend the definition of f and ϕ to R by setting f as 0 for x1 ∈ R \ γ. On the

other hand, from (3.17) a simple calculation yields

∂G̃(x1 − y1; d, 0)

∂y2
=

1

2π

∫

R
ei(x1−y1)·κeik2(κ)d dκ.

Therefore, by taking the Fourier transform of (3.18), we arrive at

û(κ, d) ≈ eik2(κ)d(̂fϕ)(κ), κ ∈ R , (3.19)

where ·̂ denotes the Fourier transform.

Remark 2.1. The expression (3.19) formulates explicitly the connection between

the evanescent wave modes and the high frequency components of the profile f . It

indicates that a high spatial frequency mode of the scattered field û(κ, d) carries high

spatial frequency information (fine features) of f to be reconstructed.

Remark 2.2. If
f
λ
¿ 1 and the modulus of its derivative

∣∣∣f ′
∣∣∣ ¿ 1, then (3.19) is

reduced automatically to the linear model discussed in [29].

Now we distinguish the far-field and the near-field cases based on (3.19). When

the spatial frequency |κ| > k, eik2(κ)d decreases exponentially with respect to the

distance d and its value vanishes when d exceeds one wavelength (see Figure 2). Thus

in the far-field regime (d À λ), û(κ, d) ≈ 0 for |κ| > k, i.e., the high spatial frequency

information of f is lost in the far-field measurement. In the context of imaging, this
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Figure 3.2: eik2(κ)d for d ∈ (0, 1.5λ) when the spatial frequency κ = 1.2k and 1.5k
respectively .

implies that it is impossible to recover f with very high resolution when any noise is

present. However, in the near-field regime with d < λ, eik2(κ)d is not close to 0 and

the exponentially decayed modes are still significant in the scattered field. Therefore,

the higher spatial frequency components of f can still be retrieved by inverting the

evanescent modes of the scattered field.

3.3 Near-field Imaging

3.3.1 Inversion Method

Assume that the measurement u(·, d) is polluted with some additive noise n(x1),

which takes the following form

n(x1) = σ · rand(x1) · u(x1, d).
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σ is the noise level, and rand(x1) is a uniformly distributed random variable in [−1, 1]

for each x1 ∈ R. Moreover, rand(x1) is mutually independent for different values of

x1.

Based on the previous analysis, we present a reconstruction method. From (3.19),

we introduce the pseudo-inverse operator Id as follows:

Id(κ) =





e−ik2(κ)d |κ| ≤ kc,

0 |κ| > kc ,
(3.20)

where Id(κ) is a cut-off regularized operator, and kc is a regularization parameter.

In the far-field case, as we discuss in the previous section, only the propagating

modes can be used for imaging if noise is present, thus the cutoff frequency kc = k.

In the near-field regime, the bandwidth of the spatial frequency is expanded beyond

the wavenumber k by taking account of the evanescent waves. Note that e−ik2(κ)d

is an exponentially increasing function with respect to |κ| when |κ| > k. Hence, the

noise may be exponentially amplified for large |κ|. For fixed distance d, the cutoff

frequency kc depends on the noise level (or signal-to-noise ratio). Here, following [29],

we choose kc in such a way that

eik2(kc)d = e
−

√
k2
c−k2 d

= σ. (3.21)

That is, the spatial frequency with the transfer function eik2(κ)d below the noise

level σ is cut off. More explicitly,

kc =


k2 +

(
log 1

σ
d

)2



1/2

. (3.22)

In view of (3.21) or (3.22), the pseudo-inverse (3.20) offers a regularization strategy
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Figure 3.3: kc/k versus the distance varying from λ/10 to λ.

for the inverse problem. We plot the function kc/k for various distance d in Figure 3

at 5% noise level. It is easily seen that at the fixed noise level, the cutoff frequency

kc À k when d < λ, i.e., the bandwidth of the spatial frequency in the near field

is much larger than in the far field. This guarantees better resolution for the final

reconstruction in the near-field regime, since the higher spatial frequency components

of f are recovered.

Denote

ĥ(κ) = Id(κ)û(κ, d). (3.23)

To compute h, the FFT may be applied to compute the inverse Fourier transform,

where h is an approximation of fϕ. To reconstruct f from h, we need to take into

account of the boundary data on Γ, which turns out to be a (well-posed) nonlinear

problem.

We next introduce some notations for representing the surface displacement f .

Denote by C0,1(γ) the set of Lipschitz continuous functions on γ. Introduce the

Banach space C
0,1
0 (γ) := {f | f ∈ C0,1(γ), f = 0 on ∂γ} with the usual norm
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‖f‖0,1 = ‖f‖∞ + supx1,y1∈γ,x1 6=y1

|f(x1)− f(y1)|
|x1 − y1|

.

For a fixed small number δ, we define

γδ := {x1 ∈ γ | dist(x1, ∂γ) < δ}.

For x1 ∈ γδ, let xb ∈ ∂γ such that
∣∣x1 − xb

∣∣ = dist(x1, ∂γ). Assume that

{ x0
1, x1

1, x2
1 · · ·xN

1 } is a set of grid points defined on γ. We represent f by a piecewise

linear function, where

f is linear on [x
j−1
1 , x

j
1] for j = 1, 2, · · · , N , and is continuous on γ globally.

Moreover, it is strictly greater than 0 for the interior grid points x1
1, x2

1 · · ·x
N−1
1 ,

and is 0 on the boundary x0
1, xN

1 . We denote the set of all such functions by P1. It

is clear that P1 is a subset of C̃
0,1
0 (γ), which is defined as follows:

C̃
0,1
0 (γ) := {f ∈ C

0,1
0 (γ) | f(x1) > 0 for x1 ∈ γ; ∃ ε, δ > 0, s.t. f(x1) ≥

ε
∣∣x1 − xb

∣∣ for x1 ∈ γδ}.

For fixed grid points { x0
1, x1

1, x2
1 · · ·xN

1 }, δ = min{
∣∣∣x1

1 − x0
1

∣∣∣ ,
∣∣∣xN

1 − xN−1
1

∣∣∣},

ε = min{ f(x1
1)∣∣∣x1

1−x0
1

∣∣∣
,

f(xN−1
1 )∣∣∣xN

1 −xN−1
1

∣∣∣
}. On the other hand, C̃

0,1
0 (γ) is an open subset of

C
0,1
0 (γ).

We rewrite the integral operator (3.12) on γ by introducing the operator K̃f

defined as

(K̃fϕ)(x1) :=

∫

γ
G(x1 − y1; f(x1), f(y1))ϕ(y1)dy1, x1 ∈ γ, (3.24)

where ϕ = ψ

√
1 +

∣∣f ′
∣∣2. The kernel of the integral operator K̃f has explicit depen-

dence on f . Here we adopt the subscript for K̃f to emphasize its dependence on f .

Similarly, define g̃f (x1) := g(x1, f(x1)), where g = −(ui + ur)|
Γ

is the boundary

data.
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A natural way of separating f from h computed in (3.23) is to minimize the

functional

min
f∈P1

(∥∥∥K̃fϕ− g̃f

∥∥∥
L2(γ)

+ ‖fϕ− h‖
L2(γ)

)
. (3.25)

However, this minimization problem is difficult to solve in practice, since f and ϕ are

both unknowns. One alternative is to solve

min
f∈P1

‖fϕ− h‖
L2(γ)

subject to K̃fϕ = g̃f .

It should be pointed out that in general ϕ is not Fréchet differentiable with respect

to f since the operator K̃f is compact. Therefore, existing numerical methods such

as Newton’s method can not be applied directly.

We introduce a new function h0 such that h0 is Lipschitz continuous on γ̄, more-

over

h0(x1) =





h(x1) x1 ∈ γ\γδ, for sufficiently small δ;

0 x1 ∈ ∂γ.
(3.26)

By choosing a small δ (usually the length of two neighboring grid points), ‖h0 − h‖
L2(γ)

is small. In practice, h0 may be chosen as the following piecewise linear function:

h0(x
j
1) =





h(x
j
1) j = 1, 2, · · · , N − 1;

0 j = 0, N.

Now we match the data on the boundary by solving the minimization problem with

a constraint:

min
f∈P1

∥∥∥K̃fϕ− g̃f

∥∥∥
L2(γ)

where ϕ ∈ C(γ) satisfies fϕ = h0. (3.27)

Remark 3.1. The minimization problem (3.27) is a special case of (3.25). By letting

fϕ = h0, (3.25) becomes
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min
∥∥∥K̃fϕ− g̃f

∥∥∥
L2(γ)

+ ‖h0 − h‖
L2(γ)

,

and ‖h0 − h‖
L2(γ)

is small by the definition of h0.

Remark 3.2. For f ∈ P1 ⊂ C̃
0,1
0 (γ), the function ϕ ∈ C(γ) that satisfies fϕ = h0

is well and uniquely defined. Moreover

‖ϕ‖∞ ≤ (
1

minx1∈γ\γδ
f(x1)

+ 1/ε) ‖h0‖0,1 .

The problem (3.27) can be solved by Newton’s method. Since (
f
λ

)2 ¿ 1, the

iteration is expected to converge fast to the real solution, which is confirmed by

our numerical examples. To linearize the problem, we require the mapping F (f) :=

K̃fϕ− g̃f be Fréchet differentiable with respect to f ∈ P1.

3.3.2 Fréchet Differentiability of the Nonlinear Operator

Here and thereafter, M and M̃ stand for some generic positive constants, whose values

may vary from step to step but should be clear from the contexts. Let L(C(γ), C(γ))

be the set of all bounded linear operators that map the functional space C(γ) to itself.

Lemma 3.3.1. If f ∈ C̃
0,1
0 (γ) ⊂ C

0,1
0 (γ), then the mapping f → K̃f is Fréchet

differentiable from C
0,1
0 (γ) to L(C(γ), C(γ)). Moreover, the Fréchet derivative is the

linear mapping δf → (K̃f )′(δf ) for δf ∈ C
0,1
0 (γ), where (K̃f )′(δf ) ∈ L(C(γ), C(γ))

is defined as

[(K̃f )′(δf )]ϕ(x1) =

∫

γ

[∂Φ̃(x1 − y1, f(x1)− f(y1))

∂x2
(δf (x1)− δf (y1))

−∂Φ̃(x1 − y1, f(x1) + f(y1))

∂x2
(δf (x1) + δf (y1))

]
ϕ(y1)dy1

for ϕ ∈ C(γ).
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Proof. It is clear that the mapping δf → (K̃f )′(δf ) is linear.

Step1: the mapping δf → (K̃f )′(δf ) is bounded.

Denote

r1 =
√

(x1 − y1)2 + (f(x1)− f(y1))2, r2 =
√

(x1 − y1)2 + (f(x1) + f(y1))2.

We first estimate the first part:

∣∣∣∣∣
∂Φ̃(x1 − y1, f(x1)− f(y1))

∂x2

∣∣∣∣∣ =

∣∣∣∣∣
ik

4

(
H

(1)
0 (kr1)

)′ f(x1)− f(y1)

r1

∣∣∣∣∣

≤ k

4

∣∣∣∣∣
(

H
(1)
0 (kr1)

)′∣∣∣∣∣ .

For a small fixed constant τ0, if |y1 − x1| ≥ τ0 (away from the singularity), then

∣∣∣∣∣
(

H
(1)
0 (kr1)

)′∣∣∣∣∣ ≤ M̃ .

It follows that

∣∣∣∣∣
∫

γ\{|y1−x1|<τ0}
∂Φ̃(x1 − y1, f(x1)− f(y1))

∂x2
(δf (x1)− δf (y1))ϕ(y1)dy1

∣∣∣∣∣
≤ M

∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ .

On the other hand, if |y1 − x1| < τ0,

∣∣∣∣∣
(

H
(1)
0 (kr1)

)′∣∣∣∣∣ ∼ O(
1

r1
) for τ0 sufficiently

small. We have

∣∣∣∣∣
∫

{|y1−x1|<τ0}
∂Φ̃(x1 − y1, f(x1)− f(y1))

∂x2
(δf (x1)− δf (y1))ϕ(y1)dy1

∣∣∣∣∣

≤
∫

{|y1−x1|<τ0}
M

r1
|x1 − y1| dy1

∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ ≤ M
∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ .
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For the second part,

∫

γ

∂Φ̃(x1 − y1, f(x1) + f(y1))

∂x2
(δf (x1) + δf (y1))ϕ(y1)dy1

=

∫

γ

∂Φ̃(x1 − y1, f(x1) + f(y1))

∂x2
[δf (y1)− δf (x1)]ϕ(y1)dy1

+2

∫

γ

∂Φ̃(x1 − y1, f(x1) + f(y1))

∂x2
ϕ(y1)dy1δf (x1)

=: A1 +A2

From the estimate of the first term, the following inequality also holds:

|A1| ≤ M
∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ .

For x1 ∈ γ\γδ
2
,

|A2| ≤ Mδ

∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ , where Mδ =
k

2
min

x1∈γ\γδ
2

∣∣∣∣∣
(

H
(1)
0 (kf(x1))

)′∣∣∣∣∣ .

For x1 ∈ γδ
2
,

|A2| ≤ k

2

(∫

γ\[x1−δ/2,x1+δ/2]
+

∫

[x1−δ/2,x1+δ/2]

)∣∣∣∣∣
(

H
(1)
0 (kr2)

)′∣∣∣∣∣ dy1

∣∣∣δf (x1)
∣∣∣ ‖ϕ‖∞

≤ M̃

∣∣∣∣∣
(

H
(1)
0 (

kδ

2

)′∣∣∣∣∣
∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞

+M̃

∫ x1+δ/2

x1−δ/2

1√
(y1 − x1)2 + f(x1)2

dy1

∣∣∣δf (x1)
∣∣∣ ‖ϕ‖∞

≤ M̃




∣∣∣∣∣
(

H
(1)
0 (

kδ

2
)

)′∣∣∣∣∣ + ln 2− ln(1− δ√
δ2 + (ε/2)2

∣∣x1 − xb
∣∣2

)
∣∣x1 − xb

∣∣
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≤ M̃




∣∣∣∣∣
(

H
(1)
0 (

kδ

2
)

)′∣∣∣∣∣ + ln 2− ln(1− δ√
δ2 + (ε/2)2

∣∣x1 − xb
∣∣2

)
∣∣x1 − xb

∣∣



∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ .

The last inequality follows from the fact that there exists an ε such that f(x1) ≥
ε
∣∣x1 − xb

∣∣ for x1 ∈ γδ, and
∣∣∣δf (x1)

∣∣∣ ≤
∥∥∥δf

∥∥∥
0,1

∣∣x1 − xb
∣∣.

Therefore

|A2| ≤ M(ε, δ)
∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ ,

where

M(ε, δ) = M̃

∣∣∣∣∣
(

(H
(1)
0 (

kδ

2
)

)′∣∣∣∣∣ + M̃ ln 2

−M̃ inf
x1∈γδ/2


ln(1− δ√

δ2 + (ε/2)2
∣∣x1 − xb

∣∣2
)
∣∣x1 − xb

∣∣



is a positive constant.

Therefore ∥∥∥[(K̃f )′(δf )]ϕ
∥∥∥∞ ≤ M(ε, δ, f)

∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞

for any ϕ ∈ C(γ), i.e.,

∥∥∥(K̃f )′(δf )
∥∥∥L(C(γ),C(γ))

≤ M(ε, δ, f)
∥∥∥δf

∥∥∥
0,1

.
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Step2: An estimate of the remainder term K̃f+δf − K̃f − (K̃f )′(δf ).

For any ϕ ∈ C(γ), by Taylor’s formula,

[K̃f+δf − K̃f − (K̃f )′(δf )]ϕ(x1)

=

∫

γ

∫ 1

0

∂2Φ̃(x1 − y1, f(x1)− f(y1) + t(δf (x1)− δf (y1)) )

∂x2
2

dt

[δf (x1)− δf (y1)]2ϕ(y1)dy1

−
∫

γ

∫ 1

0

∂2Φ̃(x1 − y1, f(x1) + f(y1) + t(δf (x1) + δf (y1)) )

∂x2
2

dt

[δf (x1) + δf (y1)]2ϕ(y1)dy1

= B1 + B2.

By a similar argument as in Step 1, we can estimate B1. Assume that
∥∥∥δf

∥∥∥
0,1

is sufficiently small. For a fixed small constant τ0, if |y1 − x1| ≥ τ0 (away from

singularity), then

∫

γ\{|y1−x1|<τ0}

∫ 1

0

∣∣∣∣∣∣
∂2Φ̃(x1 − y1, f(x1)− f(y1) + t(δf (x1)− δf (y1)) )

∂x2
2

∣∣∣∣∣∣
dt

[δf (x1)− δf (y1)]2 |ϕ(y1)| dy1 ≤ M
∥∥∥δf

∥∥∥2

0,1
‖ϕ‖∞ .

If |y1 − x1| < τ0,

∣∣∣∣∣
∂2Φ̃

∂x2
2

∣∣∣∣∣ ∼ O(
1

r21

) for τ0 sufficiently small. Thus

∫

{|y1−x1|<τ0}

∫ 1

0

∣∣∣∣∣∣
∂2Φ̃(x1 − y1, f(x1)− f(y1) + t(δf (x1)− δf (y1)) )

∂x2
2

∣∣∣∣∣∣
dt

[δf (x1)− δf (y1)]2 |ϕ(y1)| dy1 ≤
∫

{|y1−x1|<τ0}
M

r21

|x1 − y1|2 dy1

∥∥∥δf

∥∥∥2

0,1
‖ϕ‖∞

≤ M
∥∥∥δf

∥∥∥2

0,1
‖ϕ‖∞ .

36



Next, the term B2 can also be split into two parts B1
2 and B2

2:

B1
2 =

∫

γ

∫ 1

0

∂2Φ̃(x1 − y1, f(x1) + f(y1) + t(δf (x1) + δf (y1)) )

∂x2
2

dt

[δf (x1)− δf (y1)]2ϕ(y1)dy1

and

B2
2 = 4

∫

γ

∫ 1

0

∂2Φ̃(x1 − y1, f(x1) + f(y1) + t(δf (x1) + δf (y1)) )

∂x2
2

dt

[δf (x1)δf (y1)]ϕ(y1)dy1.

It suffices to estimate B2
2.

For x1 ∈ γ\γδ
2
,

∣∣∣B2
2

∣∣∣ ≤ Mδ

∥∥∥δf

∥∥∥2

0,1
‖ϕ‖∞ ,

where

Mδ = min
x1∈γ\γδ

2

k2

∣∣∣∣∣
(

H
(1)
0 (

2k

f(x1)
)

)′′∣∣∣∣∣ +
2k

f(x1)

∣∣∣∣∣
(

H
(1)
0 (

2k

f(x1)
)

)′∣∣∣∣∣

if
∥∥∥δf

∥∥∥
0,1

is sufficiently small.

For x1 ∈ γδ
2
,

∣∣∣B2
2

∣∣∣ ≤
(∫

γ\[x1−δ/2,x1+δ/2]
+

∫

[x1−δ/2,x1+δ/2]

)(∫ 1

0

∣∣∣∣∣
∂2Φ̃

∂x2
2

∣∣∣∣∣ dt

)
dy1

∣∣∣δf (x1)
∣∣∣
∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞

37



≤ M̃δ

∥∥∥δf

∥∥∥2

0,1
‖ϕ‖∞ + M̃

∫ x1+δ/2

x1−δ/2

1

(y1 − x1)2 + (ε/2)2
∣∣x1 − xb

∣∣2dy1

∣∣∣δf (x1)
∣∣∣
∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞

≤ M̃δ

∥∥∥δf

∥∥∥2

0,1
‖ϕ‖∞ +

M̃

ε/2
∣∣x1 − xb

∣∣
∣∣∣δf (x1)

∣∣∣
∥∥∥δf

∥∥∥
0,1

‖ϕ‖∞ .

≤ M(ε, δ)
∥∥∥δf

∥∥∥2

0,1
‖ϕ‖∞ .

Therefore

∥∥∥K̃f+δf − K̃f − (K̃f )′(δf )
∥∥∥L(C(γ),C(γ))

= O(
∥∥∥δf

∥∥∥2

0,1
) ,

for sufficiently small
∥∥∥δf

∥∥∥
0,1

, which completes the proof.

Let h0 ∈ C
0,1
0 (γ̄) be defined as in (3.26). For f ∈ P1 ⊂ C̃

0,1
0 (γ), let ϕ ∈ C(γ)

satisfy fϕ = h0. The following lemma concerns the Fréchet derivative of the mapping

f → ϕ ( C
0,1
0 (γ) → C(γ) ).

Lemma 3.3.2. If f ∈ C̃
0,1
0 (γ) ⊂ C

0,1
0 (γ), then the mapping f → ϕ defined as the

above is Fréchet differentiable from C
0,1
0 (γ) to C(γ). Moreover, its Fréchet derivative

is the linear mapping δf → ϕ′ for δf ∈ C
0,1
0 (γ), where ϕ′ ∈ C(γ) and

ϕ′(x1) = −ϕ(x1)

f(x1)
δf(x1) for x1 ∈ γ.

Proof. It is easy to show that

∣∣∣ϕ′(x1)
∣∣∣ ≤ (Mδ +

1

ε
) ‖ϕ‖∞

∥∥∥δf

∥∥∥
0,1

for x1 ∈ γ ,

where Mδ = minx1∈γ\γδ

1

f(x1)
is a constant. Therefore

∥∥∥ϕ′
∥∥∥∞ ≤ (Mδ +

1

ε
) ‖ϕ‖∞

∥∥∥δf

∥∥∥
0,1

and the mapping δf → ϕ′ is bounded from C
0,1
0 (γ) → C(γ).
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For a perturbation of f with δf ∈ C
0,1
0 (γ), a perturbation of ϕ satisfies

(ϕ + δϕ)(f + δf ) = h0.

If
∥∥∥δf

∥∥∥
0,1

is sufficiently small, for x1 ∈ γ, the following estimate for the high order

term holds:

∣∣∣(ϕ + δϕ)(x1)− ϕ(x1)− ϕ′(x1)
∣∣∣

=
1∣∣∣(f(x1) + δf (x1))f(x1)

∣∣∣
|ϕ(x1)|

∣∣∣δf (x1)
∣∣∣

≤ 1

2
(M2

δ +
1

ε2
) ‖ϕ‖∞

∥∥∥δf

∥∥∥2

0,1
.

Thus

∥∥∥(ϕ + δϕ)− ϕ− ϕ′
∥∥∥∞ = O(

∥∥∥δf

∥∥∥2

0,1
),

for sufficiently small
∥∥∥δf

∥∥∥
0,1

.

By Taylor’s expansion, it is easily seen that the mapping f → g̃f (:= g(x1, f(x1)) )

is also Fréchet differentiable from C
0,1
0 (γ) to C(γ). We denote its Fréchet derivative

as the mapping δf → g̃′f . Combining Lemma 3.3.1 and Lemma 3.3.2 and using the

product rule, we have the following theorem:

Theorem 3.3.3. If f ∈ C̃
0,1
0 (γ) ⊂ C

0,1
0 (γ), F (f) := K̃fϕ − g̃f is Fréchet dif-

ferentiable from C
0,1
0 (γ) to C(γ). Moreover, the Fréchet derivative maps δf to

DF (δf) = [(K̃)′f (δf )]ϕ + K̃f (ϕ′)− g̃′f .

3.4 Numerical Examples

First, let us consider the solution of the forward scattering problem. By Proposition

3.2.3, if k2 is not an eigenvalue of −∆ in D̃, to solve the forward scattering problem

(4.1)-(4.3) efficiently in our numerical simulation, we can firstly solve the integral
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Figure 3.4: Real part (left) and the imaginary part (right) of the scattered field.

equation Kψ = g and substitute ψ into (3.7). If k2 is an eigenvalue, then the forward

scattering problem can be solved by introducing the artificial boundary (e.g. half

circle) and solving the problem in a bounded domain. Since our focus is on inverse

problem, without loss of generality, we assume that k2 is not an eigenvalue in our

numerical examples.

In the following examples, an incident wave ui = eikq·x/1002 with normal inci-

dent direction impinges on the obstacle. The wavenumber k = 100, λ ≈ 6.28 cm,

q = (0,−1)T . In all the figures, the plots are rescaled with respect to the wavelength

λ.

Example 4.1. The real surface displacement is represented by two bumps, each

one with the size of order λ. The two bumps are close to each other, and separated

with distance λ/10. The scattered field in the region [−3λ, 3λ] × [0, 3λ] is plotted

in Figure 3.4. Data are collected above the obstacle with distance d = λ/5 (near-

field). We also assume that 5% noise is added to the simulation data. It follows from
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Figure 3.5: Near-field (top) and far-field (bottom) images. The solid line represents
the real image, and the dotted line is the reconstruction.
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Figure 3.6: Relative error with respect to Newton iterations.

41



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

x/λ

y
/λ

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

x/λ

y
/λ

 

 

Figure 3.7: Near-field (left) and far-field (right) images. The solid line represents the
real image, and the dotted line is the reconstruction.
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Figure 3.8: Real profile, the distance between neighboring bumps is λ/10.
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Figure 3.9: Comparison of the reconstruction (dotted line) with the real profile (solid
line) for the near-field case.

(3.22) that kc ≈ 2.6k. The near-field image fn and the real image f are plotted in

Figure 3.5 (left). Though two bumps are close to each other (λ/10), they are clear

distinguishable. Therefore, super-resolution is achieved with near-field measurements.

To confirm the convergence of Newton’s method for solving the minimization problem

(3.27), the relative error is shown with respect to the iteration number in Figure 3.6.

Here the relative error is defined as

(∑N
j=0

∣∣∣f(x
j
1)− fn(x

j
1)

∣∣∣
2
)1/2

(∑N
j=0 f(x

j
1)2

)1/2
.

The reconstruction converges fast, which leads to the real surface displacement after

the first 20 iterations.

To compare with the far-field image, we collect the data again with d = 5λ and 5%

noise. It is obvious that kc = k in the far-field case. The image fn is shown in Figure

3.5 (right). It is clear that the two bumps can not be distinguished, which is due to

the fact that the high spatial frequency information of the surface displacement is lost.

Example 4.2 We consider a non-smooth profile in this example. Two bumps are

separated with distance λ/10. The measurement is polluted with 5% noise. Figure

3.7 is the reconstructed near-field and far-field images when d = λ/5 and 5λ respec-
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tively. Super-resolution is also achieved via near-field imaging. On the other hand, it

is also observed that the accuracy of the reconstruction is deteriorated when data is

collected at far field.

Example 4.3 The real surface displacement is a long periodic structure (see Figure

3.8). Each period is a bump with size of order λ, and two neighboring bumps are

separated with distance λ/10. The measurement distance d again is λ/5, where 5%

noise is added to the simulation data. We compare the near-field image and the real

image in Figure 3.9. The periodic structure is also accurately reconstructed with

super-resolution.

3.5 Discussions

The proposed numerical method in the near-field regime, which recovers high spatial

frequency modes of the surface displacement by taking account of the evanescent

modes, yields super-resolution for the reconstructed image.

Numerically, the Newton iteration for the minimization problem (3.27) converges

fast to the real solution. However, no rigorous theoretical convergence analysis is

presently available. Another issue is denoising in the near-field regime. Noise will

be exponentially amplified in near-field regime. The cutoff wavenumber kc, which is

the critical parameter for the resolution of the reconstructed image, strongly depends

on the noise level. A denosing technique based on the broadband signal has recently

been proposed in [29] for the linearized model. For the nonlinear imaging, the problem

becomes much more challenging and is completely open.

To reconstruct more general local surface displacement (without assumption (
f
λ

)2 ¿
1), we propose to use multiple frequency data. This is discussed fully in the next

Chapter.
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Chapter 4

Imaging with Multiple Frequency

Data

4.1 Introduction

4.1.1 Problem Formulations

We consider the very general case without specific restriction on the surface displace-

ment in this Chapter. Figure 4.1 is the schematic setup of the scattering problem and

data collection. As in Chapter 3, we let x = (x1, x2), and f(x1) be a function defined

on the real line R with compact support γ. The curve ∂D := { x | x1 ∈ R, x2 =

f(x1) } represents the boundary of the whole obstacle on which the electromagnetic

wave impinges, and the domain above ∂D is denoted as D.

Let R be some positive constant such that γ ⊂⊂ (−R,R) and Γ := { x | x1 ∈
(−R,R), x2 = f(x1) } represent the local disturbance. Let BR be a disk with radius

R centered at origin. ∂B+
R := ∂BR ∩ D is the half circle above the ground plane,

where ∂BR is the boundary of the disk BR. Without loss of generality, we assume

that Γ lies below ∂B+
R ( see Figure 4.1). We also denote the domain bounded by
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Figure 4.1: Problem geometry.

∂B+
R ∪ Γ as DR.

The mathematical model for the forward scattering problem is the same as in

Chapter 3. The total field u satisfies the Helmholtz equation

∆u + k2u = 0 in D. (4.1)

and vanishes on the boundary:

u = 0 on ∂D. (4.2)

In addition, at infinity the scattered field us satisfies the Sommerfeld radiation con-

dition:

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x| . (4.3)

Now we are ready to present the inverse scattering problem. The total field u is

collected on the half circle ∂B+
R , and the measurements are assumed to be available

for a set of wavenumbers { kj | j = 1, 2, · · · ,M ; kj < kj+1}. The inverse problem

is to reconstruct the local disturbance Γ from the measured multiple frequency data

on ∂B+
R .
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4.1.2 Why Multiple Frequency Data

In the presence of noise, the resolution of the reconstructed image is usually limited

by the operating frequency of the electromagnetic wave. When the height of the

displacement is small compared to the wavelength, it is already observed in Chapter

3 that a high spatial frequency mode of the scattered wave contains exactly the

high spatial frequency information (fine features) of the profile. Theoretical studies

also reveal that higher frequency information may yield increased stability (less ill-

posedness).

In fact, in our recent paper on a multiple frequency inverse source problem for

the Helmholtz equation [12], it is proved that a Hölder type stability estimate may

be obtained with sufficiently high wavenumber. In [40], Isakov also proved increased

stability for reconstructing the Schrödinger potential from the Dirichlet-to-Neumann

map with higher wavenumber. On the other hand, when only single frequency data

is available, classical regularized iterative optimization methods such as Newton’s

method ( see for example [31] ) applied to the inverse scattering problem usually fail

to compute the global minimizer. Multiple frequency data overcomes the difficulty of

reaching some local minimum. In [7, 8, 9, 22], a stable recursive linearization method

is developed for the inverse medium scattering problem with multiple frequency data.

The method applies the Born approximation at the lowest frequency to obtain the

initial guess of the medium, and sequentially updates at higher frequency until the

dominant modes of the medium are essentially recovered. The convergence of the

recursive linearization method has been analyzed recently in [13].

4.2 Analysis of the Forward Scattering Problem

4.2.1 Notations
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We begin with some standard notations that will be used throughout this Chapter.

Let

H1(DR) := { u | u ∈ L2(DR), ∂ju ∈ L2(DR) }

be the standard Sobolev space equipped with the norm

‖u‖1,DR
= ‖u‖0,DR

+ |u|1,DR
,

where

‖u‖20,DR
=

∫

DR
|u(x)|2 dx, |u|21,DR

=
2∑

j=1

∫

DR

∣∣∣∂ju
∣∣∣2 dx.

Let (r, θ) represent the polar coordinates. Define the Sobolev space H1/2(∂BR) as

H1/2(∂BR) := { ϕ ∈ L2(∂BR) |
∞∑

n=0

√
1 + n2

( ∣∣ϕs
n
∣∣2 +

∣∣ϕc
n
∣∣2

)
< +∞ },

where ϕs
n and ϕc

n are the Fourier coefficients of the function ϕ on the circle ∂BR:

ϕs
n =

1

π

∫ π

−π
ϕ(θ) sin(nθ)dθ (n ≥ 0),

ϕc
0 =

1

2π

∫ π

−π
ϕ(θ)dθ, ϕc

n =
1

π

∫ π

−π
ϕ(θ) cos(nθ)dθ (n ≥ 1).

For a function ϕ defined on the half circle ∂B+
R , it is extended to ∂BR by odd

reflection:

ϕ̃(θ) =





ϕ(θ) θ ∈ (0, π),

−ϕ(−θ) θ ∈ (−π, 0).

Define

H̃1/2(∂B+
R) := { ϕ ∈ H1/2(∂B+

R) | ϕ̃ ∈
H1/2(∂BR), where ϕ̃ is the odd extension of ϕ }.
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Let

ϕn =
2

π

∫ π

0
ϕ(θ) sin(nθ)dθ.

Clearly ϕ̃s
n = ϕn and ϕ̃c

n = 0. Hence

H̃1/2(∂B+
R) = { ϕ ∈ H1/2(∂B+

R) |
∞∑

n=1

√
1 + n2 |ϕn|2 < +∞ },

with the norm

‖ϕ‖H̃1/2(∂B+
R)

=



∞∑

n=1

√
1 + n2 |ϕn|2




1/2

.

4.2.2 Dirichlet-to-Neumann Map

We reformulate the forward scattering model (4.1) - (4.3) in the bounded domain

DR by introducing the Dirichlet-to-Neumann map on ∂B+
R . A similar Dirichlet-to-

Neumann map is also introduced in [63] for the scattering from an overfilled cavity.

In fact, the idea of using pseudo-differential operators to reduce the infinite domain

to a bounded domain has been applied to various wave simulation problems. See for

example [3, 4, 33].

Let ϕ(θ) = us|
∂B+

R
. From (4.1) - (4.3), it follows that the scattered filed us

satisfies 



∆us + k2us = 0 in D\BR,

us = ϕ on ∂B+
R,

us = 0 on Γ0,

limr→∞
√

r

(
∂us

∂r
− ikus

)
= 0, r = |x| .

The solution of the scattering problem takes the form

us(r, θ) =
∞∑

n=1

2

πH
(1)
n (kR)

∫ π

0
ϕ(θ) sin(nθ)dθ H

(1)
n (kr) sin(nθ),
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where H
(1)
n is the first kind Hankel function of order n. Let ν be the unit normal on

∂B+
R directed into the infinite domain D. Then the normal derivative on ∂B+

R can

be written as

∂us

∂r
(R, θ) =

2k

π

∞∑

n=1

(H
(1)
n )′(kR)

H
(1)
n (kR)

∫ π

0
ϕ(θ) sin(nθ)dθ sin(nθ).

Define the Dirichlet-to-Neumann map T ( ϕ → ∂us

∂r
) as

(T ϕ)(θ) =
2k

π

∞∑

n=1

(H
(1)
n )′(kR)

H
(1)
n (kR)

∫ π

0
ϕ(θ) sin(nθ)dθ sin(nθ). (4.4)

Lemma 4.2.1. The Dirichlet-to-Neumann map T is bounded from H̃1/2(∂B+
R) to

its dual space
(
H̃1/2(∂B+

R)
)′

.

Proof. For any ϕ, ψ ∈ H̃1/2(∂B+
R), let cn =

(H
(1)
n )′(kR)

H
(1)
n (kR)

. Then

< T ϕ, ψ >=

∫

∂B+
R

T ϕ ψ̄ ds = kR

∫ π

0

∞∑

n=1

cnϕn sin(nθ)ψ̄ dθ =
kπR

2

∞∑

n=1

cnϕnψ̄n.

Here,

ϕn =
2

π

∫ π

0
ϕ(θ) sin(nθ)dθ and ψn =

2

π

∫ π

0
ψ(θ) sin(nθ)dθ.

From the recurrence relation of Hankel functions [2],

cn =
(H

(1)
n )′(kR)

H
(1)
n (kR)

=
−H

(1)
n+1(kR) + n

kR
H

(1)
n (kR)

H
(1)
n (kR)

=
−H

(1)
n+1(kR)

H
(1)
n (kR)

+
n

kR
,

Thus |cn| ≤ 1 +
n

kR
≤ c

√
1 + n2 for some positive constant c.
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Now

|< T ϕ, ψ >| ≤ ckπR

2

∞∑

n=1

√
1 + n2

∣∣ϕnψ̄n
∣∣

≤ ckπR

2



∞∑

n=1

√
1 + n2 |ϕn|2




1/2 

∞∑

n=1

√
1 + n2 |ψn|2




1/2

,

i.e.,

|< T ϕ, ψ >| ≤ ckπR

2
‖ϕ‖H̃1/2 ‖ψ‖H̃1/2 .

The proof is now complete.

4.2.3 Well-posedness of the Forward Scattering Problem in

Bounded Domain

The normal derivative of the total field is given by

∂u

∂ν
=

∂us

∂ν
+

∂ui

∂ν
+

∂ur

∂ν
= T (u)− T (ui + ur) +

∂ui

∂ν
+

∂ur

∂ν
.

Denote g =
∂ui

∂ν
+

∂ur

∂ν
− T (ui + ur), then the total field satisfies the following

boundary value problem:





∆u + k2u = 0 in DR,

u = 0 on Γ,

∂u

∂ν
= T (u) + g on ∂B+

R.

(4.5)

Next, we address the well-posedness of the scattering problem (4.5), which also

provides the basis for the analysis of the domain derivative of the forward scattering

map in the next section.

Define a subspace of H1(DR)
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H̃1
0(DR) := { u ∈ H1(DR) | u = 0 on Γ, u|

∂B+
R
∈ H̃1/2(∂B+

R) }.

By introducing the bilinear form

a(u,w) =

∫

DR

∇u · ∇w̄ − k2uw̄ dx− < T u,w >

for u, w ∈ H̃1
0(DR), then u ∈ H̃1

0(DR) is a weak solution of the boundary value

problem (4.5) if

a(u,w) = < g, w > for all w ∈ H̃1
0(DR). (4.6)

Theorem 4.2.2. The variational problem (4.6) attains a unique solution. Moreover,

‖u‖1,DR
≤ C ‖g‖(

H̃1/2(∂B+
R)

)′ for some positive constant C.

Proof. First we prove a G̊arding type inequality. It is easy to show that

< T u, u >=
kπR

2

∞∑

n=1

cn |un|2 , (4.7)

where

cn =
(H

(1)
n )′(kR)

H
(1)
n (kR)

, and un =
2

π

∫ π

0
u(θ) sin(nθ)dθ.

Note that H
(1)
n = Jn + i Yn, where Jn and Yn are the first and second kind

Bessel functions respectively, and the modulus of the Hankel function is a decreasing

function [2], then

<cn =
Jn(kR)J ′n(kR) + Yn(kR)Y ′n(kR)

J2
n(kR) + Y 2

n (kR)
=

1

2

(J2
n)′(kR) + (Y 2

n )′(kR)

J2
n(kR) + Y 2

n (kR)
< 0. (4.8)

Here < denotes the real part of a function.

From (4.7) and (4.8) it follows that <(< T u, u >) < 0. Consequently

<a(u, u) ≥ ‖u‖21,DR
− c̃ ‖u‖20,DR
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for some positive constant c̃.

To prove the existence of a weak solution, from the Fredholm alternative we only

need to prove the uniqueness. If a(u,w) = 0 for any w ∈ H̃1
0(DR), then the imaginary

part of a(u, u)

= a(u, u) = −= < T u, u >= −kπR

2

∞∑

n=1

=cn |un|2 = 0.

By the Wronskian formula [2],

=cn =
Jn(kR)Y ′n(kR)− Yn(kR)J ′n(kR)

J2
n(kR) + Y 2

n (kR)
=

2

kπR

1

J2
n(kR) + Y 2

n (kR)
> 0.

Hence un = 0 for all n. Note that u ∈ H̃1
0(DR), therefore u = 0 on ∂B+

R , and

T u = 0 by definition. On the other hand, g = 0 implies that
∂u

∂ν
= T u = 0 on ∂B+

R .

Now u ≡ 0 in DR follows from the unique continuation result [41].

The continuous dependence of the solution on g follows from the Lax-Milgram

lemma and the Fredholm alternative.

4.3 Domain Derivative of the Forward Scattering

Map

The theory of shape sensitivity analysis has been studied extensively for various shape

optimization problems. We refer the reader to [52, 56] for detailed discussions and

references. For the inverse scattering problem, Kirsch rigorously derived the domain

derivative of the far-field operator for a C2 bounded obstacle in [44]. In this section,

we derive the domain derivative of the operator that maps Γ to the measurement

u|
∂B+

R
(Theorem 4.3.1).
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Define the forward mapping M : Γ → u|
∂B+

R
. It maps the local surface displace-

ment to the measurement on the half circle ∂B+
R . The vector field V (x) is defined on

Γ. It is assumed that V (x) ∈ C2
0(Γ;R2), i.e., twice continuously differentiable with

compact support suppV ⊂⊂ Γ. For a given vector field V (x), denote

Γδ = {x + δ · V (x) | x ∈ Γ, V (x) ∈ C2
0(Γ;R2) }

as the perturbation of Γ with V (x). Now the domain derivative of the forward map-

ping M with respect to the direction V (x) is defined as

M′(Γ) := lim
δ→0

M(Γδ)−M(Γ)

δ
. (4.9)

Theorem 4.3.1. Let u be the solution to (4.1)-(4.3). If Γ is C2, V ∈ C2
0(Γ;R2),

then the domain derivative M′(Γ) exists. Moreover, M′(Γ) = u′|
∂B+

R
, where u′

solves 



∆u′ + k2u′ = 0 in DR,

u′ = −(V · ν)
∂u

∂ν
on Γ,

∂u′
∂ν

= T (u′) on ∂B+
R.

(4.10)

Here ν is the unit normal on Γ directed into the infinite domain D.

Proof. Let δ be a small real number. The scattered field uδ produced by the

scattering from the perturbed profile Γδ satisfies the boundary value problem





∆uδ + k2uδ = 0 in Dδ
R,

uδ = 0 on Γδ,

∂uδ

∂ν
= T (uδ) + g on ∂B+

R,

where Dδ
R is the domain bounded by Γδ and ∂B+

R . The weak solution of this bound-
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ary value problem uδ ∈ H̃1
0(Dδ

R) satisfies

aδ(uδ, wδ) = < g, wδ > for all wδ ∈ H̃1
0(Dδ

R), (4.11)

where

aδ(uδ, wδ) =

∫

Dδ
R

∇uδ · ∇wδ − k2uδwδ dx− < T uδ, wδ > . (4.12)

We extend the definition of V ∈ C2
0(Γ;R2) to the closure of the bounded domain

DR, which is denoted by DR, such that V (x) is C2 for x ∈ DR and V (x) = [0, 0]T

if |x| > R−α for some small positive constant α. Define the mapping Ψ(y) by letting

x = Ψ(y) = y + δV (y) for y ∈ DR.

Clearly, Ψ is a C2 mapping from DR → Dδ
R. Denote the inverse map of Ψ(y) as

Φ(x), which maps Dδ
R → DR.

Let ũδ(y) = uδ(Ψ(y)), w̃δ(y) = wδ(Ψ(y)). It follows that
∂uδ

∂xi
=

∑2
m=1

∂ũδ

∂ym

∂Φm
∂xi

,

where Φm is the mth component of Φ. Therefore, the bilinear form (4.12) can be

written as

aδ(uδ, wδ) =

∫

DR




2∑

m,n=1

bmn
∂ũδ

∂ym

∂w̃δ

∂yn
− k2ũδw̃δ


 J dy− < T ũδ, w̃δ > .

Here, bmn =
∑2

i=1
∂Φm
∂xi

∂Φ̄n
∂xi

, the Jacobian J = det DΨ.

Define a new bilinear form ãδ(ũδ, w) by letting

ãδ(ũδ, w) =

∫

DR




2∑

m,n=1

bmn
∂ũδ

∂ym

∂w̄

∂yn
− k2ũδw̄


 J dy− < T ũδ, w >
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for ũδ, w ∈ H̃1
0(DR). Then the variational problem (4.11) is equivalent to finding

ũδ ∈ H̃1
0(DR) such that

ãδ(ũδ, w) = < g, w > for all w ∈ H̃1
0(DR). (4.13)

From (4.6) and (4.13), it is easily seen that ũδ − u satisfies

a(ũδ − u,w) = −(ãδ(ũδ, w)− a(ũδ, w)). (4.14)

On the right hand side,

ãδ(ũδ, w)− a(ũδ, w) =

∫

DR




2∑

m,n=1

bmn
∂ũδ

∂ym

∂w̄

∂yn
− k2ũδw̄


 J dy

−
∫

DR
∇ũδ · ∇w̄ − k2ũδw̄ dy. (4.15)

The coefficient matrix (bmn) and the Jacobian J can be further written as

J = 1 + δ∇ · V + O(δ2),

(bm,n)J = I − δ(b̃mn) + O(δ2), (4.16)

where I is the 2× 2 identity matrix and the matrix

(b̃mn) = ∇V + (∇V )T − (∇ · V )I. (4.17)

Therefore, from (4.14) - (4.17) and the continuous dependence of ũδ − u on the right

hand side, it follows that

∥∥∥ũδ − u
∥∥∥
1,DR

→ 0 as δ → 0.
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Now

a(
ũδ − u

δ
, w) = −1

δ
(ãδ(ũδ, w)− a(ũδ, w))

=

∫

DR

2∑

m,n=1

b̃mn
∂ũδ

∂ym

∂w̄

∂yn
+ k2(∇ · V )ũδw̄ dy + O(δ).

Since
∥∥∥ũδ − u

∥∥∥
1,DR

→ 0 as δ → 0,

a(
ũδ − u

δ
, w) →

∫

DR

2∑

m,n=1

b̃mn
∂u

∂ym

∂w̄

∂yn
+ k2(∇ · V )uw̄ dy as δ → 0.

Hence the limit limδ→0
ũδ − u

δ
exists, which we denote as u0.

Clearly, u0 is the solution to the following variational problem:

a(u0, w) =

∫

DR

2∑

m,n=1

b̃mn
∂u

∂ym

∂w̄

∂yn
+ k2(∇ · V )uw̄ dy (4.18)

for any w ∈ H̃1
0(DR). By the assumption that Γ is C2, the scattered field u ∈

C2(D)∩C(D̄) [61]. Apply the formula (4.17), then for any w ∈ H̃1
0(DR)∩H2(DR),

2∑

m,n=1

b̃mn
∂u

∂ym

∂w̄

∂yn

= ∇uT (∇V + (∇V )T − (∇ · V )I)∇w̄

= [∇(V · ∇w̄) · ∇u− (∇(∇w̄)V ) · ∇u] + [∇(V · ∇u) · ∇w̄

−(∇(∇u)V ) · ∇w̄]−∇uT (∇ · V )I∇w̄

= ∇(V · ∇w̄) · ∇u +∇(V · ∇u) · ∇w̄ −∇ · [(∇u · ∇w̄)V ].
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By the Green’s formula and noting that V = 0 on ∂B+
R , (4.18) can be reduced to

a(u0, w) =

∫

DR

−(V · ∇w̄)∆u +∇(V · ∇u) · ∇w̄ + k2(∇ · V )uw̄ dy

−
∫

Γ
(V · ∇w̄)

∂u

∂ν
− (∇u · ∇w̄)(V · ν)dsy.

On the other hand, u = w = 0 on Γ, we have (V · ∇w̄)
∂u

∂ν
− (∇u · ∇w̄)(V · ν) = 0 on

Γ. Therefore,

a(u0, w) =

∫

DR

k2u(V · ∇w̄) +∇(V · ∇u) · ∇w̄ + k2(∇ · V )uw̄ dy

=

∫

DR
∇(V · ∇u) · ∇w̄ − k2(V · ∇u)w̄ dy +

∫

DR
k2∇ · (uw̄V ) dy,

where
∫
DR

k2∇ · (uw̄V ) dy = 0 by the Divergence theorem. We finally obtain

a(u0, w) =

∫

DR
∇(V ·∇u) ·∇w̄−k2(V ·∇u)w̄ dy for any w ∈ H̃1

0(DR)∩H2(DR).

(4.19)

It is easy to check that u0 defined above is the weak solution of the following

boundary value problem





∆u0 + k2u0 = (∆ + k2)(V · ∇u) in DR,

u0 = 0 on Γ,

∂u0
∂ν

= T (u0) on ∂B+
R,

Let u′ = u0 − V · ∇u, then u′ solves (4.10). Further, note that V = 0 on ∂B+
R ,

therefore

u′ = u0 = lim
δ→0

ũδ − u

δ
= M′(Γ) on ∂B+

R.

The proof is now complete.
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4.4 Imaging with Multiple Frequency Data

4.4.1 Descent Direction for the Cost Functional

For a fixed wavenumber k, denote um as the measurement collected on ∂B+
R . For a

given curve Γ, define the cost functional

F (Γ) :=
1

2

∥∥M(Γ)− um∥∥2
L2(∂B+

R)
.

A descent direction on Γ is a vector field V such that the cost functional decreases,

i.e., F (Γδ) < F (Γ) if δ ∈ (0, t0] for some small positive constant t0. We also call

this descent direction V descent velocity. The perturbation of Γ may be viewed as an

evolution process of assigning each point x on Γ a descent velocity V (x) and moving

Γ with the velocity V (x) in a small artificial time interval [0, t0]. The characterization

of a descent velocity for the cost functional F (Γt) is established in the next theorem.

Theorem 4.4.1. Let Γ be C2, ν be the unit normal on Γ directed into the infinite

domain D. u is the solution to the forward scattering problem (4.1)-(4.3), and u∗ is

the solution of the following boundary value problem:





∆u∗ + k2u∗ = 0 in DR,

u∗ = 0 on Γ,

∂u∗
∂ν

= T ∗(u∗) + u− um on ∂B+
R.

(4.20)

where T ∗ is the adjoint operator of T . If V ∈ C2
0(Γ;R2), and satisfies

−
∫

Γ
(V · ν) · <

[
∂u

∂ν

∂u∗
∂ν

]
ds < 0, (4.21)

then
dF (Γt)

dt

∣∣∣∣
t=0

< 0 . Here < denotes the real part of a function.
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Proof. Clearly, u also solves the boundary value problem (4.5). Let u′ and u∗ be

the solution of (4.10) and (4.20), respectively. By the Green’s formula,

∫

∂B+
R

∂u∗
∂ν

u′ − u∗∂u′
∂ν

ds =

∫

Γ

∂u∗
∂ν

u′ − u∗∂u′
∂ν

ds. (4.22)

Using the boundary conditions in (4.10) and (4.20), the identity (4.22) is reduced to

∫

∂B+
R

T ∗(u∗)u′ds+

∫

∂B+
R

(u−um)u′ds−
∫

∂B+
R

u∗T (u′)ds = −
∫

Γ
(V ·ν)

∂u∗
∂ν

∂u

∂ν
ds.

Since T ∗ is the adjoint operator of T , we have

∫

∂B+
R

(u− um)u′ds = −
∫

Γ
(V · ν)

∂u∗
∂ν

∂u

∂ν
ds.

Therefore by Theorem 4.3.1,

dF (Γt)

dt

∣∣∣∣
t=0

= <
{∫

∂B+
R

(u− um)u′ds

}
= −

∫

Γ
(V · ν) · <

[
∂u

∂ν

∂u∗
∂ν

]
ds.

The assertion of the theorem holds.

From (4.21), it is easily seen that in practice there are many possible choices for

the descent direction V defined on Γ. In our case, since the local surface displacement

is represented by the function f , we let V = [0, v]T , where v ∈ C2
0(Γ) is a compactly

supported function on Γ satisfying the inequality

−
∫

Γ
(v · ν2) · <

[
∂u

∂ν

∂u∗
∂ν

]
ds < 0. (4.23)

Here ν2 is the second component of the unit normal ν. In particular, if v · ν2 =

<
[

∂u

∂ν

∂u∗
∂ν

]
, then V is the steepest descent direction for the cost functional F (Γt).
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However, <
[

∂u

∂ν

∂u∗
∂ν

]
may not be a smooth and compactly supported function on

Γ. Therefore, we need to modify its definition to make it smooth and compactly

supported. This can be accomplished by the cubic spline interpolation [28]. We

denote the new smooth, compactly supported function as vs. The choice of the

smooth version vs of v is a regularization procedure in the regularization theory for

ill-posed problems.

4.4.2 Reconstruction Scheme

Suppose that multiple frequency measurements { um
kj
| j = 1, 2, · · · ,M } on the half

circle ∂B+
R are available for a set of wavenumbers { kj | j = 1, 2, · · · ,M }, where

kj > ki if j > i. Starting from the flat surface as our initial guess, the proposed

reconstruction method marches from k1 to kM . At the fixed wavenumber k = kj ,

by the cubic spline interpolation, a smooth version of the descent vector field V is

defined, where V = [0, v]T and v satisfies (4.23). The reconstructed profile evolves

with the chosen descent velocity at the fixed wavenumber. This evolution process

continues until k = kM .

Let Γrec be the reconstruction, Drec is the domain above the curve Γrec ∪ Γ0.

Drec
R := Drec ∩ BR is the domain bounded by Γrec and ∂B+

R . The reconstruction

method with multiple frequency data is proposed as follows:

(1) (Initialization)

Let k = k1, initially set Γrec = { (x1, x2) | x1 ∈ (−R,R), x2 = 0 } (flat

surface).

(2) (Update the reconstruction by marching along the wavenumbers)

FOR j = 1, 2, 3, · · · ,M

Let k = kj ,
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FOR n = 1, 2, 3, · · · , N (Evolution process at fixed wavenumber k):

Choose the descent direction Vn = [0, vn] s.t. vn ∈ C2
0(Γ) and

−
∫

Γ
(vn · ν2) · <

[
∂u

∂ν

∂u∗
∂ν

]
ds < 0, where





∆u + k2u = 0 in Drec
R ,

u = 0 on Γrec,

∂u

∂ν
= T (u) + g on ∂B+

R.





∆u∗ + k2u∗ = 0 in Drec
R ,

u∗ = 0 on Γrec,

∂u∗
∂ν

= T ∗(u∗) + u− um
k on ∂B+

R.

Update: Γrec ←− Γrec + αnVn, αn is the step length.

END

END

Remark 5.1 The lowest wavenumber k1 has to be small to guarantee that the main

features of the profile are captured. Based on the numerical investigation, one ba-

sic rule to follow is 1/k1 ≥ R, i.e., the wavelength λ1 corresponding to the lowest

wavenumber k1 is at least comparable to R. The restriction may be due to the reason

that the reconstruction with the measurement um
k1

usually captures the feature of order

λ1, which needs to be sufficiently large in order that the main feature of the profile

(of order R) is recovered in our approach. Without loss of generality, it is assumed

that R = 1 and k1 = 1. On the other hand, 1/kM has to be smaller than the scale of

the fine features of the profile such that the small details of the target are accurately

reconstructed as well.

Remark 5.2 Theorem 4.4.1 does not require that Γ be parameterized by some func-

tion f . In fact the assertion of the theorem is valid for any C2 local disturbance Γ.

Therefore, our proposed method can be modified to deal with more general cases. The

corresponding descent direction may be chosen to be parallel to ν such that V = v · ν
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and v = <
[

∂u

∂ν

∂u∗
∂ν

]
. The evolution process of Γ with the descent velocity V can be

simulated by the level set method.

At low wavenumbers, the reconstruction captures the main features of the local

disturbance (low frequency modes). It also serves as the starting point for the recon-

struction at the next higher wavenumber, where the evolution process continues to

recover the fine features of the local disturbance (high frequency modes). Ideally, the

smaller the increment kj+1−kj is, the better reconstruction image would be. In fact,

the increment parameter kj+1 − kj depends on the scale feature of the real profile.

If kj+1−kj is too large, the reconstruction procedure may fail to recover the Fourier

modes of the real profile between kj and kj+1. From numerical simulations discussed

in the next section, kj+1 − kj = 2 is sufficient to obtain accurate reconstruction.

It is also worth pointing out that the reconstruction with only the single highest

wavenumber k = kM will not yield a satisfactory image, as the convergence to the

global minimizer of the cost functional strongly relies on the initial guess. In practice,

a good initial guess is hard to choose without a priori information of the imaging

target. This may be confirmed by numerical simulations presented in the next section.

However, the reconstruction with multiple frequency data overcomes the difficulty

of reaching some local minimum. Staring from the flat surface as an initial guess,

the reconstructed image captures the large scale features of the profile at a lower

wavenumber kj , which serves as the initial guess for the reconstruction at a higher

wavenumber kj+1.
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4.5 Numerical Examples

4.5.1 Numerical approximation of the forward scattering prob-

lem

We need to calculate only
∂u

∂ν
and

∂u∗
∂ν

on Γrec to define a descent direction at a fixed

wavenumber, the solution u and u∗ in the interior domain need not be calculated.

Hence the boundary integral equation method may be applied to solve the forward

problem, which is fast and reduces the complexity of the computation by solving a

much smaller linear system compared to the finite element method. In particular, the

boundary integral equation method can handle the high wavenumber problem.

Let Φ(x, y) =
i

4
H

(1)
0 (k |x− y|) be the fundamental solution for the Helmholtz

equation in R2. The solution u to (4.5) satisfies the following system of integral

equations:

1

2
u(x)+

∫

Γrec

∂u(y)

∂νy
Φ(x, y)dsy −

∫

∂B+
R

(T u)(y)Φ(x, y)dsy

+

∫

∂B+
R

∂Φ(x, y)

∂νy
u(y)dsy =

∫

∂B+
R

g(y)Φ(x, y)dsy x ∈ ∂B+
R,

∫

Γrec

∂u(y)

∂νy
Φ(x, y)dsy−

∫

∂B+
R

(T u)(y)Φ(x, y)dsy +

∫

∂B+
R

∂Φ(x, y)

∂νy
u(y)dsy

=

∫

∂B+
R

g(y)Φ(x, y)dsy x ∈ Γrec.
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Similarly, we calculate
∂u∗
∂ν

on ∂B+
R by solving the system

1

2
u∗(x)+

∫

Γrec

∂u∗(y)

∂νy
Φ(x, y)dsy −

∫

∂B+
R

(T ∗u∗)(y)Φ(x, y)dsy

+

∫

∂B+
R

∂Φ(x, y)

∂νy
u∗(y)dsy =

∫

∂B+
R

(u(y)− um(y))Φ(x, y)dsy x ∈ ∂B+
R,

∫

Γrec

∂u∗(y)

∂νy
Φ(x, y)dsy−

∫

∂B+
R

(T ∗u∗)(y)Φ(x, y)dsy +

∫

∂B+
R

∂Φ(x, y)

∂νy
u∗(y)dsy

=

∫

∂B+
R

(u(y)− um(y))Φ(x, y)dsy x ∈ Γrec.

4.5.2 Imaging of the local surface displacement

Several numerical examples are presented to illustrate the efficiency of the proposed

method. Example 1 considers a smooth upward profile (f ≥ 0), the convergence

of the reconstruction is highlighted. We also compare the reconstruction with the

image when only the single highest wavenumber is used. In Example 2, we remove

the restriction that f ≥ 0. The surface displacement is represented by a general

smooth function f , where Γ+ := { (x1, f) | x1 ∈ (−R,R), f(x1) > 0 } and

Γ− := { (x1, f) | x1 ∈ (−R,R), f(x1) < 0 } are both nonempty sets. Example

3 discusses the reconstruction for the piecewise linear (nonsmooth) local surface dis-

placement. In the last example, the reconstruction of a multiscale profile is presented.

In all simulations, we use noisy data by adding 5% additive noise to the measurements.

Example 1. Smooth upward profile
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f(x1) =





0.2 + 0.2 cos(4πx1 + π) x1 ∈ [−0.5, 0),

0.1 + 0.1 cos(4πx1 + π) x1 ∈ [0, 0.5],

0 elsewhere.

The boundary of the whole obstacle is C1 (Figure 4.2 left). An incident wave ui =

eikd·x with normal incident direction impinges on the obstacle. The wavenumbers

k1 = 1 and kM = 20. The reconstruction fn when k = 16 and the real profile f are

plotted in Figure 4.2 (right). It is observed that the reconstruction is accurate even

though noise is present in measurements. To test the convergence of the proposed

method, the relative error with respect to the wavenumber is shown in Figure 4.3.

Here the relative error is defined as

(∫ R−R |f(x1)− fn(x1)|2 dx1

)1/2

(∫ R−R |f(x1)|2 dx1

)1/2
.

It is clear that the relative error decreases until the main Fourier modes of f are

recovered. Figure 4.4 illustrates the reconstructions for various wavenumbers. At low

wavenumbers, the reconstruction captures the main features of the real profile, while

the fine features of the profile is recovered as the evolution process continues.

Next is the case when only the single highest frequency measurement is used.

Figure 4.5 (left) presents the relative residual

∥∥∥∥M(Γrec)− um
kM

∥∥∥∥
L2(∂B+

R)∥∥∥∥um
kM

∥∥∥∥
L2(∂B+

R)

for the

evolution process at k = kM when only the single frequency is applied. It is clear that

the reconstruction reaches some local minimum of the cost functional. The residual

decreases and stagnates around 0.2 after 40 iterations. The corresponding image is

shown in Figure 5 (right, dash line), which deviates greatly from the real profile. As

pointed out previously, in this case the convergence to the global minimizer of the
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Figure 4.2: Top: real profile. Bottom: reconstruction (dash line) at k = 16 compared
with the real curve (solid line).

cost functional strongly relies on the initial guess, which is hard to choose without

a priori information of the imaging target. Multiple frequency data overcomes the

difficulty, since the reconstruction at each lower frequency serves as the initial guess

for the reconstruction at the higher frequency.

Example 2. General smooth profile

In this example, the surface displacement is represented by a general smooth function

f = f1 + f2 (solid line in Figure 4.6), where

f1(x1) =





0.2(cos(5π2 x1)− 1) + 0.05(1 + cos(5π2 x1 + π)) x1 ∈ [−4
5 , 0),

0.2(cos(5π2 x1)− 1) x1 ∈ [0, 4
5],

0 elsewhere
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Figure 4.3: Relative error with respect to the wavenumber.

and

f2(x1) =





exp

(
1

(54x1)2 − 1

)
|x1| <

4

5
,

0 elsewhere.

Here Γ+ := { (x1, f) | x1 ∈ (−R,R), f(x1) > 0 } and Γ− := { (x1, f) | x1 ∈
(−R,R), f(x1) < 0 } are both nonempty sets. We set kM = 30, and the final

reconstruction with 5% noise in measurements is plotted in Figure 4.6 (dash line).

Figure 4.7 shows the relative error for various wavenumbers.

The proposed reconstruction method with multiple frequency data again gives a

stable and accurate reconstruction of the general profile. However, compared with

the profile considered in Example 1, the convergence rate decreases when the non-

negativity or non-positivity assumption is removed from the imaging target. (see

Figure 4.3 and Figure 4.7).
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Figure 4.4: Evolution of the reconstruction at k = 1, 5, 8, 10, 12, 16 (dash line, left to
right, top to bottom).
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Figure 4.5: Top: relative residual with respect to the iteration number at k = kM
when only single frequency data is used. Bottom: reconstruction (dash line) with
single frequency only.
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Figure 4.6: Reconstruction (dash line) at k = 30 compared with the real curve (solid
line).

Example 3. Piecewise linear profile

The previous examples assume some regularity on the local surface displacement.

Next we consider a piecewise linear profile (the solid line in Figure 4.8). By using

our method, the reconstruction fn captures the position and height of bumps (where

f > 0) accurately when kM = 16 (the dash line in Figure 4.8). The corner of the pro-

file is also approximated with reasonable accuracy by the C2 smooth reconstructed

function. It will be interesting to develop a regularization strategy to approximate

the corner with some non-smooth function, which will be investigated in our future

work.

Example 4. Multiscale profile

The multiscale profile is represented by

f(x1) =





0.13 + 0.1 cos(
8π

5
x1 + π) + 0.03 cos(16πx1 + π) x1 ∈ [−3

4
,
1

2
],

0 elsewhere.

It consists of two scales. The macroscale feature of the profile is represented by the
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Figure 4.7: Relative error with respect to the wavenumber.
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Figure 4.8: Reconstruction (dash line) at k = 16 compared with the real curve (solid
line).
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Figure 4.9: Reconstruction at k = 10, 20, 33, 40 (dash line, top to bottom) compared
with the real curve (solid line).
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function 0.13 + 0.1 cos(
8π

5
x1 + π) ; while the microscale is represented by function

0.03 cos(16πx1 + π) with period
1

8
. The reconstruction captures the macroscale fea-

tures when k = 10 (Figure 4.9, top left). To recover the fine details of the profile with

the period
1

8
, k needs to be sufficiently high. Here, microscale features are captured

when k = 40 (Figure 4.9, bottom right). The whole local disturbance is accurately

reconstructed with noisy data. On the other hand, it is observed that the resolution

of the reconstruction does not improve much from k = 10 to k = 33. This is due

to the fact that other than the macroscale feature, no scale length of the profile is

comparable with the corresponding wavelength for k ∈ (10, 33).
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Chapter 5

Conclusion

This thesis is the initial endeavor in the whole picture of the near-field imaging. We

focus on one specific problem, where the local surface displacement on an infinite

ground plane is the imaging target. The main contribution is the explicit formulation

of the connection between the evanescent wave modes and the high frequency com-

ponents of the surface displacement, and a new numerical scheme to reconstruct the

surface displacement that extracts the information carried by the evanescent modes

effectively. Numerical examples show that images with a resolution of λ/10 are ob-

tained. For the general local surface displacement, a reconstruction scheme with

multiple frequency data is proposed that captures the main (large scale) features at

low frequencies and recovers the fine details at high frequencies.

Numerical evidences confirm that the resolution in the near-field regime can be

significantly improved. However, theoretical study on the uniqueness and the sta-

bility estimates remain open. In particular, the stability estimate which is able to

incorporates explicitly the dependence on the distance d would help to understand

the ill-posedness of the inverse scattering problem better in the near field.

There are also many related imaging problems that arise in biological and nano-

sciences. For example, the imaging of the human cancer cell in the near-field regime,

75



which turns out to be an inverse medium scattering problem. Though the evanescent

wave modes carried by the scattered field is available in the near-field measurement,

the relation between such evanescent wave modes and the high frequency components

of the medium is completely open. Such relation is the key to design efficient numerical

algorithms that make full use of the evanescent waves at hand.

On the other hand, when multiple frequency data is available, one theoretically

challenging problem is to investigate the stability for the inverse scattering problem.

It is believed that a Hölder type stability estimate can be obtained with sufficiently

large band of frequencies.
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