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ABSTRACT

METRIC MULTIDIMENSIONAL SCALING AND COMMUNICATION:

THEORY AND IMPLEMENTATION

By

Kim Blaine Serota

This investigation attempts to examine the historical and methodol-

ogical roots of multidimensional scaling in a measurement-theoretical

framework and propose areas and methods for adoption in communication

studies. Specifically, this work discusses scaling rigor, dimensional-

ity, and isomorphism as criteria fOr the comparison of measurement tech-

niques. The various contributions to the evolution of multidimensional

scaling are examined with regard to these criteria and current problems

identified. The thesis introduces metric multidimensional scaling as a

response to these problems and argues for its application to longitudin-

al and aggregation situations.

Discussion of the relative conceptual measurement applications of

ordinal and ratio scaling is presented. Four levels of comparison are

generated from this discussion in conjunction with an examination of

unidimensionality and multidimensionality. These levels are contrasted

on the basis of isomorphism between data and numbering systems.

Using the scaling discussion as a framework for comparison, the his-

torical developments of mathematical transformation, factor analysis,

and multidimensional scaling are traced. Multidimensional scaling is

shown to draw on the mathematics of astronomy and the theory of psycho-

physics, relying heavily on the contributions of Pearson, Garnett, and

Hotelling and the seminal work of Richardson, Gulliksen, and Torgerson.



Kim Blaine Serota

Torgerson's model is contrasted with the later nonmetric work of Shepard

and others.

From these theoretical and historical foundations, metric multidim—

ensional scaling is discussed in depth. The problems of judgement unre-

liability, violations of linearity, and unknown dimensionality are shown

to be overcome by this methodological approach. Further, the use of this

technique to measure longitudinal, process variables and to examine con-

ceptual relationships as a function of communicative interaction is devel-

oped. The mathematical and theoretical components of the metric approach

are detailed utilizing examples drawn from on-going political communica-

tion research. Implications for further research are discussed.

The Galileo computer package which supplies the necessary software

to implement and facilitate the use of metric multidimensional scaling

is appended.
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Chapter l

Introduction

Powerful and compelling new techniques of data analysis have been

and.are being developed in the varied branches of social science; while

'taking many forms, they are intended to meet a common goal: to better

(explain, predict, and control the exigencies of human behavior. In

tine field of communication study it is the goal of the methodologist

1x) find techniques that provide both accuracy and parsimony for explor-

ifug the dynamic, transactional processes that comprise human interac-

tion). Among the most exciting, and potentially most valuable, of these

is tflie technique of metric multidimensional scaling.

It is the purpose of this thesis, to (a) examine, in general, the

histuorical development of multidimensional techniques, both theoretical-

LY eund mathematically, and (b) introduce Galileo, a metric multidimen—

siorual_scaling algorithm, and show its advantages over more well-known

teeihniques, particularly for longitudinal analysis of communication

PPOCesses .

Efiiégigpg Theory: A Conceptualization

It is the object of measurement to classify and compare observa-

ticnls in a meaningful way such that the representational measure and

itsi'transformations are indicative of those observations and their

Chihmges in reality. Our reality consists of constructs (such as, people,

attitudes, relationships, and beliefs). These constructs are referred to



by Torgerson (1958) as systems, the "things" which make up our conceptual

universe. However, it is not the system which we measure, rather the

properties of a system comprise the observable aspects of characteristics

of that system which are present in the empirical universe.

The act of measurement is one of assigning a numerical set to cor—

respond with the properties of a system. The rigor of this process is

expressed in the attempt to attain an isomorphism between properties

and the systems which they describe. As many texts indicate (e.g.,

Carnap, 1959; Coombs, 196u; McNemar, 1969; Blalock, 1972) we can describe

levels of scaling which express this degree of isomorphism, as it is

achieved by a particular measuring technique or device, as a function of

ordinality, linearity, and origin; the closer a scale conforms to these

criteria, the greater the likelihood it will achieve a one-to—one corres-

pondence between the properties of a system and the numbers used to

represent those properties.

Perhaps the most well—known expression of the relative isomorphism

of scaling levels can be seen in the organization of transformation

groups by Stevens (1951). These serve to reduce the arbitrariness of

selecting a numerical system to represent a property by the quality of

transformation which may be imposed upon that numerical system:

Ordinal scaling. If objects can be ordered only on the basis of
 

the relative position or magnitude of some property, they then lack the

distinctiveness desirable for achieving sophisticated mathematical trans-

formation. Since the numbers are assigned such that they are order-

preserving, the ordinal scale is said to determine relationships to with-

in a monotonic-increasing transformation (Figure 1a). Such "scales" are

the minimum expression of relationship between two or more variables



(excluding the notion of nominal scales which are not truly measures of

properties but rather categorical representations for the classification

of the systems themselves).

Ordinal Scaling with a natural origin. If, in addition to the

monotonic transformation described above, the scale has a unique point

of origin, the ordered relationship of two or more systems can be more

accurately specified. This allows us to indicate from the scale value

of zero that there is an absence of any amount of the property being

observed. Thus, according to Stevens' scheme, this type of scale can

only generate those transformations which leave the origin unchanged

(Figure lb).

Interval scaling. If the scale lacks an absolute point of origin
 

but the numerical differences reflect equal intervals between finite

amounts of a property, then the relationship between two or more systems

on the basis of that property can be specified exactly. However, this

does not yet describe a ratio scale since the absolute magnitude cannot

be expressed. As is indicated by Stevens, this does yield a scale that

is not affected by a transformation of the form:

y = ax + b,

where a is any positive real number and b is any real number. This

simply describes the basic form of a linear transformation. As an

example, the difference, or interval, of two units on the low end of a

Scale will be equal to the interval of two units on the high end of the

Scale, and the slope of a line defined by these units will remain con-

stant (Figure 1c).

Ratio scaling. A ratio scale is any scale which meets the criteria
 



for an interval scale, and in addition, satisfies the linear transfor—

mation such that b=0, or in other words, has a natural origin (Figure

1d). Such a scale has a unique quality such that any set of properties

may be expressed as a ratio of the magnitude of one to another, and the

absence of any magnitude of a property is represented by a value of zero.

Y Y

  
(a) Ordinal scale. (b) Ordinal scale

with natural origin.

J
~
<

‘
<
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(c) Interval scale. (d)

  
Ratio scale.

Figure 1. Examples of transformations for each of the four types of

scales satisfying the Stevens scheme. If the abscissa x is the linear

continuum of possible observations, the values on the ordinate y will

fulfill the requirements of transformation to the scale indicated.

(Adopted from Torgerson, 1958).



The most important issue of scaling is thus one of achieving an

isomorphic correspondence between the actual properties of systems and

the numerical structure used to represent those properties. It is ob-

vious that the more rigid the criteria for transforming a scale the

better that scale is able to represent the state of a system with re-

gard to any single property. Two major consequences of seeking isomor-

phism exist. First, the closer measurement of the properties of a sys-

tem comes to achieving one-to-one correspondence with the "reality" of

that system the more adequately we can describe the structure of the

system. Second, the selection of numerical representations that are

more highly defined (as are those used to underlie higher level scales)*

will allow us to perform more mathematically rigorous operations, upon

the number set, which are equivalent to operations which might be per-

formed upon the properties of the system under study.

Toward Isomorphism: Multidimensional Scaling_
 

Historically, the majority of measuring devices have sought simplic-

ity, at the expense of isomorphism, in the form of unitary scales. During

 

*It should be noted that with highly defined (linear) scales the

transformation process of subtraction will always yield a ratio scale of

change scores (Woelfel, personal discussion). When performed upon inter-

val and ratio scales this is consistent with our desire to generate

scales capable of measuring processional changes in attitudes as functions

of communicative behavior. It is also notable that this transformation

to ratio scaling is readily observable in, and probably derived from, the

physics of motion which uses the principle of relativity to deal with

constant changes occuring in the universe (Einstein, 1923; Hempel, 1952).

Further, this method of deriving ratio scales is not without foundation

in the behavioral sciences; the various unfolding techniques use dissimi-

larities as a second generation transformation to arrive at better quan—

tifiable measures (Coombs, 196”; Coombs and Kao, 195a, 1955).



the development of psychophysical measurement, it became apparent that

judgement responses could not always be arrayed on a single undimen—

sional scale (Thurstone, 1927; Richardson, 1938) and that the measure-

ment excess must be attributed either to error or multiple influences.

Klingberg (19u1) demonstrated that by interpreting the results as a

multidimensional configuration rather than as a unitary judgement factor

error was reduced considerably and that distinct bases (dimensions) for

judgements could be identified.

From these early presentations of multidimensional scaling the no—

tion of representing judgements of the relationships between stimulus—

objects as distances made it possible to conceive of conceptual struc-

ture as analogous to Euclidean real space. In this format, dimensions,

angles, and distances could be used to express data relationships more

directly and more accurately than by repreSenting the single largest

component of each interrelationship solely. A scale of this nature

would, additionally, be capable of measuring very accurately changes in

relationships which do not appear to occur on the single unitary factor.

Currently, the majority of behavior measurement techniques subsumed

under the rubric "multidimensional scaling" are static designs, struc—

turally oriented. They are neither parsimonious with the intent of

measuring "distance," failing to overcome difficulties in meeting the

assumptions of measuring physical distance, nor process—oriented, fail-

ing to provide a sound scale against which to measure change. It is

Precisely the static nature which many of these design have that Roger

Shepard describes, in the introduction to his major work on multidimen—

sional scaling (Shepard, Romney, Nerlove, 1972:l) as rationale for



these methods of analysis:

The unifying purpose that these techniques share, despite

their diversity, is the double one (a) of somehow getting hold

of whatever pattern or structure may otherwise lie hidden in a

matrix of empirical data and (b) of representing that structure

in a form that is much more accessible to the human eyen-namely,

as a geometrical model or picture. The objects under study

(whether these be stimuli, persons, or nations) are represented

by points in the spatial model in such a way that the significant

features of the data about these objects are revealed in the

geometrical relations among the points.

To find a methodological technique satisfactory to the process de«

mands of communication research, quantitatively more accurate than the

present techniques of communication research, and sufficiently elegant

to stand alone or easily enmesh with existing techniques requires that

the technique meet, or attempt to meet, the following criteria:

(a) it should be of the highest possible level of scaling,

utilizing wholly ratio scales with natural origins,

(b) it should be able to measurechanges in the relation-

ship of the variables being scaled, with precision,

(c) it should be able to clearly and simply represent

those relationships to the researcher while maintainn

ing a format readily transformable for less obvious

means of analysis,

(d) it should operate on the bases of theoretical and

mathematical assumptions which do not force the

loss of information through transformation, and

(e) it should achieve isomorphism between the properties

being measured and the characteristics of the system

used to describe those properties such that transforma.

tions and Operations performed upon the descriptive



system are equivalent to transformations and operations

which might be performed on the properties of the real

system being represented.

These are neither simple nor easily attainable criteria. The

non-metric or "Shepard-Kruskal" approach (Kruskal, l96ub), while not

meeting these requirements exactly, does come closer than any existing

technique in standard usage among communication researchers. Examin-

ing the foundations of the non-metric approach however yields a highly
 

practical scaling model fbr communication which does satisfy the cri-

teria: metric multidimensional scaling. Metric multidimensional scaling

is a technique for the construction of spatial representations of inter-

relationships from ratio judgement data. Judgements of dissimilarity

(distance) between concepts are arrayed to depict the structure of all

possible concepts, simultaneously, in a configuration analogous to Eucli—

dean real space. This allows us to examine and describe structure, repre—

sent change, and operate on the model in ways parallel to operations in

reality without distortion of our original data measurements.

The primary importance of multidimensional scaling (MDS) to commu—

nication research is that it can provide an analytic tool for measuring

and interpreting processes and change oriented hypotheses. It has been

suggested (Berlo, 1969; Smith, 1966; Dance, 1970; Mortensen, 1972; Miller

and Steinberg, 1974) that a major component of the concept of communica-

tion is that it is a dynamic, on-going process. As such, it is necessary

to seek ways to examine communication as a process rather than as a

series of discrete events. Metric multidimensional scaling, by reliance

on ratio scaling and the ability to generate a latent structure that is

analogous to Euclidean continuous space, allows us to manipulate

processes and observe change with a high degree of accuracy.



It will be useful to the understanding of the relationship of the

process variables found in communication to examine the differences that

accrue from the application of unidimensional and multidimensional scales

conjointly with the differences between the use of ordinal level and

interval (ratio) level scaling.

Unidimensionality Versus Multidimensionality_
 

The purpose of using unidimensional scaling is to measure single

attributes or prOperties of a system. The unidimensional scale achieves

correspondence by establishing a continuum of points on which the magni-

tude of the attribute is represented by a point in the continuum (Russell,

1938). The primary test for unidimensional continua is the order pro-

position of transitivity. Meeting Huntington's postulates is, thus, the

first necessary condition for identifying the existence of a single un—

derlying dimension in a set of measurements. Those postulates are

(Stevens, 1951:1M):

1. If a # b, then either a < b or b < a.

2. If a < b, then a # b.

3. If a < b, and b < c, then a < c.

However, a second condition must be met to sufficiently satisfy

the condition of unidimensionality. Given a set of points, P, the

selection of any three of those points, Pj’ P , and P]! where it is

k

known that Pk lies between Pj and P1’ must yield the equation:

djk + dkl = djl'

If any three points of the continuum fail to satisfy this equation,

(Thurstone, 1927) the dimensionality is of a higher order (or is
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imaginary) and we would posit two or more properties influencing the

measurement of the system.*

The limitation of a unidimensional scale is, by definition, its

ability to represent only one property or attribute. This limitation

is manifested in two ways: (a) if our purpose is to measure a uni-

dimensional attribute and our results fail to satisfy the distance

equation, then we must choose between the possible exPlanation that

measurement error exists or that multiple properties were measured; (b)

if our purpose is to measure all pr0perties of a system and identify

those which are salient to interpretation, then we must construct

numerous unidimensional scales, all of which face the first limitation,

and any of which may be inconsistent with the others such that they are

incomparable directly.

The primary advantage of constructing a metric multidimensional

scale is that it can overcome these problems by directly incorporating

 

*The concept of distance is introduced at this point as a criterion

for examining the rigor of scaling types. To satisfy this criterion we

should limit our discussion to levels of scaling which have a known dis-

tance function (e.g., interval and ratio scales). Since much of social

and psychological measurement is based upon ordinal "scales" and since

it is our purpose to examine the limitations of this, so-called, method

of scaling, it is of some utility to note that what we previously (p. 2)

referred to here as ordinal scales do not exist, as such. While the

Sroperty of order may exist for a set of magnitudes, ordering itself

oes not constitute measurement because it lacks the ability to be re-

presented spatially; it lacks a distance component. More correctly we

should refer to ordinal scales as ordinal relationships. We should dis-

tinguish, separately, ordinal scales which are infiactuality interval

scales which possess the quality of order while assuming that distances

exist; this distance is, however, unknown and no attempt has been made

to measure it. For a more lengthy philosophical discussion of this

principle and an underlying rationale, the reader may examine Descartes

(1685), Kant (1755), Newton (1686), Mach (1893), and others.
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them into the scale design. Since it is intended to measure many at-

tributes at once, the first problem of measuring unitary properties

becomes the purpose of multidimensional scaling. The second problem

does not arise because, by constructing a single scale, attributes

are treated as directly comparable.

For communication variables, or other process-oriented variables,

the problem of dimensionality is actually a problem of complexity; it

is obvious that the ability to compare many attributes simultaneously

increases our predictive or explanatory capabilities greatly. A rem

search design can be simplified considerably if changes in many vari-

ables can be measured with a single multidimensional instrument rather

than with many lesser scales.

A greater problem for communication research, which metric multi—

dimensional scaling will be shown to overcome, is the effect of utilizing

ordinal, distanceless, measures as opposed to interval/ratio measures.

Because the ordinal scale represents only the order of properties and

not their magnitude it can only reveal transpositions in order. It is

easily seen that much change can occur without disturbing the order of a

set of stimulus-objects; without being able to measure that change, how—

ever, comparison and prediction are impossible. Torgerson (1958:31)

underscores this view of measurement:

The interval and ratio scales are by far the most use«

ful measurement scales employed in science. As a matter of

fact, the term measurement is often restricted to these kinds

of scales, both in the ordinary use of the term and in the

more advanced discussions of the topic. (See, for example,
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Carnap, 1959, p. 9; Hempel, 1952, p. 58; and Campbell in

Ferguson, 1990, p. 3H7.) It might further be noted, that,

in discussion of the nature of measurement, the distinc-

tion between fUndamental and derived measurement is also

commonly made only in terms of interval and ratio scales.

An example, drawn from Myron Wish‘s "Tea-Tasting" experiment

(Carroll, 1972), should clarify this discussion. We may imagine

several different cups of tea, as stimuli to be judged on the basis of

first one and then many properties, and scaled using different levels

of sophistication.

In the first case, we can imagine four cups of tea which vary in

sweetness according to the amount of sugar present. If we present the

subjects with pairs of teacups and ask them to judge which cup is

sweeter we will arrive at an order list from least to most sweet such

as:

1. cup b

2. cup c

3. cup a

11». cup do

If we know that the stimuli are cup a = 2 teaspoons of sugar, cup b =

0 teaspoon, cup c = 1 teaspoon, and cup d = 3 teaspoons, then the result

shown above would be considered correct within a monotonic transformation.

However, we would not be able to recognize, in subsequent presentations

of the stimuli, whether or not changes in the sugar levels had actually

produced changes in judgements unless the order of the list was trans-

posed.

Again, imagine that we present these four stimulus-objects. However,
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this time we use an interval or ratio scaling technique such as dis-

similarity judgements (Woelfel, 1972) or an ordered metric (Coombs,

196u:80-u) so that values reported will be‘proportiOnal on a scale of
 

equal intervals with a real distance component. This information might

be represented:*

cup cup cup cup

b c a d

I l --------- I ------- ----------------
O u 2u 3u

where u represents a known but arbitrary unit of measurement.

A longitudinal aspect of the experiment becomes available to us

when the component of distance is added. As we have shown, unless the

order of the stimulus-objects becomes transposed when changes in the

system are introduced, the change can not be measured by an ordinal

technique. However, with our ability to observe 35323 differences in

distance along the scale from times, t to t2, longitudinal measurement

1

becomes a meaningful activity allowing us to add a class of process-

oriented variables to our experiments.

To represent this, suppose that we add one teaspoon of sugar to

cup c, one half teaspoon to cup a, and no sugar to either cup b or cup

d. Our scale (assuming the judgement values were proportional to actual

sweetness levels, an empirical question) would now appear like this:

cup cup cup cup

a dC

o
—
U
‘

 

*In addition to the representation of distance we are now able to

visualize the order relationship expressed in our earlier "measurement."
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If the original distance from cup b to cup c had been 10 scale units,

the judged change in sweetness would yield different results for the

two types of scales discussed. Obviously, a significant event with

respect to the overall structure of the stimulus-objects and the rela-

tionship of the changed stimuli has occurred; however, only the inter-

val scale takes into account enough information to explain that event,

or even report that the event had occurred (figure 2).

 

 

 

  

Interval Scale Ordinal Scale

2 :2_ ASweetness :_ f3 ASweetness

cup a 20 25 +5 3 3 No change

cup b 0 0 0 l 1 No change

cup c 10 20 +10 2 2 No change

cup d 30 30 0 H u No change

Figure 2. Changes in sweetness represented on two scales,

This example may now be expanded to the multidimensional case. We

ihave sought to represent the property of sweetness as a measure of the

difference between cups of tea, yet this difference might be portrayed

as well by measuring the properties of temperature, strength, color, or

age. Logically, if all of these and, potentially, other attributes can

be used as measures of the difference between stimuli then some combina-

tion of measures should increase the accuracy of description.

One way in which we might achieve greater accuracy would be to list

all the possible attributes and create a measuring instrument for each;

numerous problems are incurred with this approach however, not the least

of which is the fact that such a procedure requires that all attributes
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along which the teas may differ must be known to the investigator in

advance. A second method would be to measure the stimulus—objects by

a direct technique, such as having the subjects judge dissimilarities

without regard to any specified attribute. In this way, it is neces-

sary for the judgement to be made on the basis of those attributes which

are salient to the judge. This is the thrust of a multidimensional ap-

proach to scaling attributes.

The procedure for generating a multidimensional scale (which will

be discussed in more detail in a later chapter) entails the derivation

of a judgement of relationship for all possible pairs of stimulus-

objects and the transformation of the judgement matrix into a matrix

of loadings, or projections, on orthogonal axes of a real Euclidean

space.* From these projections we may identify the axes (or dimensions),

examine structure and, if the judgements are metric, use the scale to

observe change over time.**

 

*It may also entail projections in imaginary space. Hypotheses

about the imaginary component will not be dealt with in this work. For

a mathematical treatment of this problem, see Wilkinson (1961).

**0ther models exist for the interpretation of multidimensional data,

such as the "city-block" (Householder and Landahl, 19u5; Atteneave, 1950)

and hierarchical cluster analysis (Johnson, 1967), however both rely on

measures of distance and the "real-world" conception of Euclidean space

for their particular representations. As suCh, the Euclidean model

supplies both a simpler and more fundamental system for the examination

of concept relationships.
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Returning to the tea experiment, we may examine measurement

differences for the multidimensional case (Carroll, 1972):

Twenty-five hypothetical cups of tea were

described in terms of pairs of description words or

phrases. The first set of descriptions referred to

the temperature of the cup of tea. Five temperature

related words of phrases--ice cold, cold, lukewarm, hot,

steaming hot--were used. The second set of descriptions

specified the amount of sugar: no sugar, 1/2 teaspoon,

1 teaspoon, 2 teaspoons, u teaspoons. Subjects were

shown a standard size styrofoam cup, in which they were

to imagine tea of "moderate strength" with no cream or

lemon. All 25 possible combinations of the two sets

of descriptions were used to define the basic (verbally

described) stimuli. The 300 possible pairs of stimuli

were generated in a random order to form the basic

questionnaire. There were a total of 12 subjects, di-

vided randomly into two sets of subjects which respon-

ded to the items in opposite orders. Each of the 12

subjects was asked to give . . . a rating of dissimilarity

(called "degree of difference") of the pair on a scale

from 0 (for an indistinguishable pair) to 9 (for an

extremely dissimilar pair).
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The ordinal data from this procedure were then analyzed according

to one of the major multidimensional algorithms:*

INDSCAL (individual differences scaling) was applied to

the dissimilarities, producing the group stimulus space

shown in [Figure 3]. . . . Note that the basic lattice

structure embodied in the factorial design used to gen—

erate the stimuli is quite clearly in evidence (though

a bit distorted) in the stimulus space, and, furthermore,

that the "sides" of the lattice are very nicely parallel

to the two coordinate axes. These axes are exactly as

they came out of the analysis; no rotation whatsoever

has been done.

From this example, we can distinguish two levels of scaling rigor,

ordinal and interval, for the multidimensional measurement approach.

Ordinal, or nonmetric, multidimensional scales are generated by

transformations based on an "unknown distance function" (Shepard, 1962a).

That is, by using a fixed monotonic function based on identifiable

relationships in ordinal data such as those generated by dominance

measures (Coombs, 196n; Carroll, 1972) or profile measures

 

* INDSCAL, developed by Carroll and Chang (1970), is a multidimen-

sional scaling program for deriving the product matrix by the Eckart-

Young rank reduction algorithm (Eckart and Young, 1936). Additionally,

it generated weighting factors and a canonical decomposition of data

to produce a space which accounts for individual differences in report-

ing raw judgements. INDSCAL is limited by the normalization to unity

of both scalar products and solution matrices which eliminates the

original distances reported.
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TEMPERATURE

Figure 3. The unrotated two-dimensional solution (n=l2) of the Wish

data using INDSCAL on dissimilarities data. In this figure the coding:

0, 1/2, 1, 2, u refers to the number of teaspoons of sugar specified

and for temperature: IC = ice cold, C = cold, LW = lukewarm, H = hot,

and SH = steaming hot. (Adopted from Carroll, 1972.)
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(Shepard and Carroll, 1966) rather than actual distance estimates, a

configuration approximating the latent structure of the data can be

fOund. Metric multidimensional scales are generated directly from

unidimensional judgements made with interval or ratio scales. Meas-

ures for this type of scale are usually in the form of proxemities

data (Torgerson, 1951, 1952; Woelfel, 1972); however, other forms such

as frequency scores and individual differences may be found;*

The metric procedure essentially asks the subject to make judge-

ments about how each stimulus-object differs from all other stimulus-

objects. Since the attributes on which the stimuli are to be judged

are not specified, the individual is able to use those most important

for distinguishing each pair. This results in a dissimilarities matrix

 

*Some controversy exists as to which component of the technique,

the original data or the multidimensional computational algorithms,

constitutes the basis for discriminating metric and nonmetric scales.

Traditionally, the computation and transformation processes have been

used to judge the quality of the scale (Shepard, 1962a, 1962b; Kruskal,

196%, Guttman, 1968); those requiring an iterative procedure to adjust

discrepancies are considered nonmetric, those using a direct derivation

of the latent structure of a numerical set (such that differences bet-

ween numbers in the set are maintained within a linear transformation)

are considered metric. This assumes the ability to treat the data by

rules of order and transformation (Hempel, 1952) which apply to more

sophisticated numbering systems than we have actually utilized with our

original measurement procedure. On this basis it would seem more natu-

ral to distinguish multidimensional scaling'levels on the basis of data

gathered. Obviously, the computational criterion is then also met if

the appropriate transformation is applied to that data. A less rigid

transformation would yield a nonmetric solution for interval type data,

due to the standardization necessary to compute a nonmetric transforma-

tion, while the use of a metric algorithm for ordinal data would only

occur under strong theoretical scrutiny and with rigid restriction on

the approximation of interval numbers.
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in which all of the information about the data interrelationships is

present but much of it (i.e. the attributed used to make judgements)

is in a latent form. Generating the multidimensional scale, then, has

two functions: (a) it attempts to derive the most parsimonious de-

scription (i.e., the smallest set of numbers to represent all of the

information) and (b) it allows us to make explicit some of the informa-

tion that is latent in the original dissimilarities matrix.

From the tea experiment it can be seen that a similar result for

ordinal and interval data will be produced. Had the multidimensional

transformations been performed upon a dissimilarities matrix derived

from an interval scaling procedure, the result would have been a con-

figuration based upon reported distances between the concepts scaled

rather than a configuration based upon distances estimated from corre-

lational strength.

Figure 3 is a representation of the data in two dimensions; the

configuration closely resembles an array of the stimulus—objects on

the basis of actual physical properties. It is expected that the

metric judgement procedure described would have further increased

parsimony between the stimulus set and the final coordinate values.

In either case, the quality of the data representation is improved

to reflect the overall structure of the relationship rather than the

order and/or distance of any single dimension of the relationship.

However, the multidimensional ordinal configuration, like undimensional
 

ordering is not comparable over time. The structure is an artifact of

a monotonic transformation which provides only one of many possible

interpretations.
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The problem of representing change over time multidimensionally

is that it requires both angle and distance. Since most nonmetric

procedures rely on standardization of the data, they remove the dis-

tances reported and substitute correlations. Correlation between any

two concept values is rij; further, rij = cosaij, where a is the angle

between two vectors representing the concepts i and j. Thus, the

changes occurring over time may result in higher or lower correlations

which will be represented as changes in angle (direction); however,

changes in magnitude will not be represented at all.

Figure n represents the same data set at two different points in

time for which the magnitudes are changed. In both cases the angles

remain constant and the correlation matrix, R1 is:

1.0 1.0 0.0 —1.0 0.0

. 1.0 0.0 —1.0 0.0

R1 = - 1.0 0.0 —1.0 -

. 1.0 0.0

  434.0 . . . LL
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Figure u. A multidimensional configuration at two points in time

(magnitudes changed, correlations remain constant).

An interval configuration has both angle and magnitude which may

be compared directly to determine longitudinal differences. It is

then possible to introduce measures of change (such as velocity, accel-

aration, and displacement) and posit change agents in mathematical

terms (force, inertia, and momenta). It is the conceptual analogy to

motion that we will refer to as the behavioral characteristics of

process.
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Objectives of the Thesis
 

Torgerson seeks to remind us that science and measurement can be

conceived simply (l958:2):

Science can be thought of as consisting of theory on

the one hand and data (empirical evidence) on the other.

The interplay between the two makes science a going con-

cern. The theoretical side consists of constructs and

their relations to one another. The empirical side

consists of the basic observable data. Connecting the

two are rules of correspondence which serve the purpose

of defining or partially defining certain theoretical

constructs in terms of observable data.

It is the purpose of this thesis to examine this view of science,

and specifically, to apply the discussion of measurement toward the

development of a more rigorous application of the principle of iso—

morphism in science.

In the following chapters, the notion of high level scaling in the

behavioral sciences will be considered and an application to communica-

tion science developed. The thesis will make two main arguments:

1) that the complex and multi-faceted nature of communication phenomena

requires a multidimensional approach to measurement, and 2) that the

processual character of communication phenomena requires interval or

higher level scaling. Finally it will contend that these two require-

ments can be met by metric multidimensional scaling techniques. One

such system, Galileo, along with complete computer software, will be

presented as an example.



Chapter II

Historical Development of Multidimensional Scaling

The development of multidimensional scaling appears to be culmina-

ting in the form of a broad and powerful technique for measuring self-

conception and influences upon the self-conception on a micro level,

and cultural processes on a larger scale. It is a technique which

specifically for communication study, holds great potential for under-

standing the effects of communicative acts, and their subsumed compo-

nents, on cognitive aspects of the act. Historically, many attempts

have been made to achieve this goal, and these attempts have contrib-

uted directly, and indirectly, to the development of multidimensional

scaling.

It will be useful to a more complete understanding and apprecia-

tion of how MDS can provide such a powerful interpretation of data to

examine the development of the mathematical and theoretical components

involved. Further, it will be briefly placed into the context of the

more fundamental sciences from which it derives.

Pre-Psychophysical Influences on Multidimensional Scaling
 

Multidimensional scaling as a psychological measuring technique

can be attributed primarily to the work of Torgerson (1951, 1952, 1958).

It also draws heavily on the theoretical construction of Gulliksen

(19u6) and Thurstone (1927a), and the mathematic contributions of

Hotelling (1933), Young and Householder (1938), and Garnett (1919a).

However, it is useful to examine the more basic scientific roots of the

21+
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technique and place it into the perspective of science as a whole before

considering the more technical aspects of the multidimensional "model".

The mathematical history of multidimensional scaling is derived,

appropriately, from the mathematics of astronomy and specifically

celestial mechanics. Since MDS attempts to treat the self-concept or

culture as an analogy to Euclidean real space, the structure and genera-

tion of such space may be examined with regard to the context from which

it developed.

The notion of "space" was originally treated, philosophically, by

Plato, and developed conceptually by Aristotle, as the universe of ob-

jects and abstractions (intelligence) in which man functions. As a

pure scientific construct, Euclid, in the third century B.C., proposed

space as the context for objects in relationship to one another. To

express this, Euclid proposed the geometry, a formulation of mathemat—

ical rules to define physical relationships according to distance and

direction (angle).

The most cogent presentation of Euclid's geometry for deducing

relationships from information that is incomplete or not in its most

representative form, was its application to celestial description by

Aristarchus of Samos (310-230 B.C.). It was Aristarchus' contention

that the universe was heliocentric, and that despite the observable

motion of the sun and other bodies in the sky the earth's motion would

describe a circle around the sun. To argue his model, Aristarchus used

a viewpoint outside of this system, where he could "see" the earth and

the other known celestial bodies as comparable globes in space. He
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then intersected these bodies and their shadow cones with planes, drew

intersections as circles and triangles, and applied Euclid's rigid

methods described in the Elements to demonstrate the relative positions

and the most likely paths of movement. In addition, by treating the

problem as a geometric lemma, Aristarchus established that the hypothet-

ical structure of the spatial relationships could be derived from a

known subset of the interrelationships of the celestial bodies (which

would intuitively suggest a different solution).

The Greek views of science, particularly astronomy, mathematics,

and philosophy, dominated Western thought until the fifteenth century

and later. Among the first of the major challenges to this trend, it

was Descartes' notion of separating the abstract reality of the entel-

fishy from physical reality that provided much of the stimulus to change.

In his Principia PhiloSophiae (1685), Descartes stated, "I will explain
 

the results by their causes, and not the causes by their results."

With this he initiated a set of theories of space and forces of motion

and maintenance in space which made it possible to predict observable

phenomena.

It was this theorizing by Descartes which Newton was responding

to when he introduced the laws of motion and initiated the classical

mechanics (Pannekoek, 1961). Both Newton and Descartes, however, had

in common the notion of a Euclidean model as the reference system in

which to examine and describe the forces and effects that they postu-

lated.

From this point in scientific evolution, the disciplines of astro-

nomy and mathematics began to develop simultaneously and mutually, in
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the form of celestial mechanics (Hagihara, 1970). It was also at this

juncture that the science of the mind began to develop separately,

first in the form of philosophy, and later in the forms of psychology

and psychophysics.

To express his theories of mechanics, Newton simultaneously and

independently with Leibniz also invented the first forms of differen-

tial and integral calculus; these mathematical aspects were refined by

others to perpetuate the study of mechanics and developed to provide

working algorithms for manipulating spatial concepts. For the later

psychometric techniques of factor analysis and multidimensional scaling

this meant that the relationship of data expressed by points would be

interpretable by the mathematics of mechanics.

Theoretically, the notion of representing points in space was

formalized by Pierre Simon de Laplace who is credited with the founding

of celestial mechanics as a major function of astronomy. Laplace, with

Lagrange is responsible for the validation of Newtonian mechanics at

a point in time when the model was about to be abandoned (Pannekoek,

1961). In the late eighteenth century, they measured the accelaration

and retardation of planetary motion, explaining perturbations and ap-

parent inconsistencies of force as functions of distance and elliptical

motion. This action gave rise to the more extensive mathematical de-

velopments which followed in the nineteenth century.

During the nineteenth century, much of the mathematics of psychom-

etrics was developed in the context of astronomy. Following Laplace's

advances and publications (1796), numerous computational methods were

developed by Gauss, Jacobi, Bravias, and Seidel (Wilkinson, 1965;
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Jacobi, 1846; Harmon, 1967; Pannekoek, 1961) and refined by others

(notably astronomers and mathematicians such as Bessel, Encke, Olbers,

Cauchy, Hansen, Leverier, Poincare, and many others).

Several important contributions which affect the conception of

multidimensional scaling were presented by:

l. C. F. Gauss. In 1804 he originated the "method of least

squares" which, "by the condition that the sum total of the squares

of the remaining errors shall be a minimum, the 'most probable' value

of the unknown quantity is found (Pannekoek, 1961)." Geometrically

and statistically, this is interpreted to mean the sum of the squared

distances from the projections of points on a line when minimized

yields the line of best fit to the configuration of values. It is

this foundation upon which equations for factors and dimensions are

based.

2. C. G. J. Jacobi. The problems inherent in interpreting ma-

trices (Jacobi, 1846; Wilkinson, 1965) led to the development of the

diagonalization method for deriving the eigen roots. This not only

provided the technique for generating the latent structure for an un-

limited number of points in space; it also provided a rapid convergence

algorithm upon which many high speed computer routines are based.

3. A. L. Cauchy. In his work on determinants (Kowalewski, 1909),

Cauchy provides a proof of the reality of roots and the determination

of the number of underlying dimensions. This treatment of dimension—

ality, which is basically dealt with in discussion of quadratic sur—

faces in analytic geometry, influenced Hotelling (1933) in his develop-

ment of factor analytic procedures and the restriction of interpretations
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made from results of those procedures.

Near the end of the nineteenth century, pure mathematics and the

mathematics of celestial mechanics began to diverge. Computational

devices, in conjunction with improved technology for astronomical

measurement allowed the astronomer to develop theory and concentrate

less on improving and developing more accurate algorithms. Conversely,

mathematics ceased to be devoted exclusively to the development of

computational methods, and began to gain recognition as the language

of scientific theory. Figure 5 represents these developments graphical-

1y.

Early Factor Analysis
 

At the same time that mathematics began to diverge from its roots

in astronomy, psychology began to seek and develop more rigorous meth-

ods of measuring ability and behavior and expressing theory. Early

twentieth century psychologists such as Spearman and Thomson began to

draw on statistical science to express their theories probabilistically.

In 1901, Karl Pearson, a mathematician and statistician, published

the paper "0n Lines and Planes of Closest Fit to Systems of Points in

Space." In it he presents the method of principal axes as a technique

fOr deriving the line of best-fit through a system of points in two,

three, or n dimensions. This method was significant because it allowed

points to be represented by a vector from the origin of a coordinate

system to some point in the space defined by the coordinate system.

(Frequently the vector is represented only by its endpoint). Further,

this vector is a function of the configuration itself. It is obtained
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by minimization of the sum of squares of the perpendiculars, or pro-

jections (Figure 6) of a set of points representing any data configura-

tion.

projection

Figure 6. Line of least squares best-fit.

Earlier astronomical techniques allowed for the representation of

celestial points on an arbitrarily designated coordinate system derived

from Euclidean distances. By Pearson's technique, the endpoint of the

vector (the least squares line of best-fit) could be placed in a co-

ordinate system or the line itself could be designated as one axis of

the coordinate system. This was useful, statistically, when the purpose

of the representation was not to predict from one variable to another

but to observe the interrelationships of a number of variables. By this,

Pearson notes, "we observe §_and y and seek a unique functional rela-

tionship between them."

Utilizing this geometric representation of data, and the means,

standard deviations, and correlation coefficients used to generate it,
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Spearman (1904) initiated his theory of the general factor. With his

theory he posited that ability was correlated with intelligence and

that from the measurement of a set of abilities that a factor, or com-

ponent, common to all abilities could be identified.

To test his theory, Spearman developed the "criterion of hier-

archy" or method of tetrad differences. If for four tests, or all com-

binations of four tests, the intercorrelations could be accounted for

by a single source of variation (or factor) then the general factor was

identified for those tests. This was achieved when the coefficients

in any combination of two columns of the intercorrelation matrix were

found to be proportional; that is, the following equations were sat-

isfied:

/ /P r

r13 23 r14 24

r12/r32 Plu/rsu

r12/P42 = r13/ru3.

Spearman found that for a considerable number of the psychophysical

tests the intercorrelations satisfied the proportionality criterion and

could be accounted for by the general factor. Additionally, he postu-

lated that every test which satisfies the proportionality criterion

also contains a second factor that is specific to a given test and,

statistically, represents that portion of the variance that does not

correlate with the other tests. Thus by Spearman's theory, a per-

fectly reliable test would have two components, g (the general factor)

and s (the specific factor), such that g2 + s2 = 1.00. Fruchter (1954)
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Figure 7. The "two-factor theory" applied to six tests. The values of

the overlapping g factor are the correlations of each test with that

factor. The 8 factor is represented by the residuals (s2 = 1.0 - g2).

Table l. Coefficients for the six tests represented in Figure 7.

 

g * s1 s2 33 S4 s5 S6 h2

l .7 .71” .49

2 .5 .866 .25

3 .3 .954 .09

H .8 .600 .64

5 .4 .917 .16

6 .5 .866 .25   
suggested the schematic presentation of this "two-factor theory" shown

in Figure 7 and Table 1.

In a number of articles (Spearman, 1904, 1914a, 1914b, 1920, 1922,

1923; Krueger and Spearman, 1906; Hart and Spearman, 1912), the two

factor theory was considered, defined, and developed. Further statisti-

cal tests for the general factor, such as satisfaction of the equation:
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r - r r
ac ag cg

ac.g k k

38 CS

where k = 1.0 - r 2 and k = 1.0 - r 2, were proposed to strengthen

a8_ a8 cg cg

the argument for a two—factor theory. However, it became readily

apparent to Spearman that the two-factor theory was insufficient.

Spearman's adaptation of Pearson's (1901) method for deriving the

projections of points on a least squares line of best-fit involved de-

riving the communality, h2, such that an individual test loading on the

general factor, an’ was equal to he2, where e is the element of the

factor being computed. Given the criterion of proportionality, the

equation for the loading is:

2 2 2:(r'ejpek; j, k = 19 29.0.9 n; j: k # e; j < k)

a : h =
.

2(rjk; j, k = l, 2,..., n; j, k f e; j < k)

For example, the square of the general factor coefficient (loading) for

the first variable in a set of five would be:

2 r12"13 + r12r14 + r12115 + r13"19 I r13115 + r14r15

a10 = ' °
 

r23 + I24 I P25 + r34 + P35 + ”as

Harmon (1967) suggests the more convenient computational fOrm:

n 2 n

2 rej — Z rej2

a 2 = j:l j=l

80 n n
~—fi (e is fixed, j # e).

2 r. - Z r .

j<k=l jk j:l 6]
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However, this technique for deriving the general factor had severe

computational difficulties, the most significant of which was the inabil-

ity to derive more than one general factor. Early in the development of

the two-factor approach it was suggested that group factors might exist

(Krueger and Spearman, 1906) which would explain the "error" occurring

in the tetrad differences; however, theoretical development of this

proposition was not possible with the existing transformational algorithm.

A series of experiments and articles debating the general theory of

intelligence and the two-factor theory (Spearman, 1914a, 1916; Thomson,

1916, 1919a, 1920a, 1920b; Garnett, 1919a, 1919b; Garnett and Thomson,

1919) forced the development of more advanced mathematical theories of

factor analysis.

Thomson, using dice throws to randomly generate and group data, was

able to show that the general factor was obtainable by means other than

the criterion of hierarchy (proportionality). Spearman claimed that

Thomson's substitution of artificial data for theoretically grounded

results was "arbitrary, undefined, and extremely improbable by chance."

However, Garnett provided a stronger challenge by citing Bravais (1846)

to show that the normal correlational surface could be expressed as a

function of many small variables distributed normally to explain the

larger variable's value.*

Both of these challenges provided the impetus to develop methods for

deriving the "group" factors, or residuals, that would account for the

correlational component which the two-factor theory attributed to error.

The primary conception of the "group" factor was of an uncorrelated (with

 

*This is more recently a foundation for multiple regression (and

coincidentally, the limitations of multiple regression).
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the general factor) subset of loadings among the variables. Garnett

(1919b) further expanded this conception by proposing that any normal

variable, q, could be expressed by n coordinates mutually at right angles

in an n-space, such that:

e el+re €2+Pe e+...+r €-

1q1 2q1

ql = r

This equation is the basis for Garnett's "cosine law" which states

that the correlation between the vector q1 and the e coordinates (where

e denotes the independent elements) is equal to the cosine of the angle

between the vector and the coordinates. All e's are uncorrelated and may

be represented as orthogonal axes. Further, each coordinate, or indepen-

dent factor, e, contributes an amount, Peq2’ to the determination of the

vector, or dependent variable, q, by the equation:

r 2 + r 2 + r 2 + . . . + r 2 = 1.0.

191 e2q1 e3ql nql

Additionally, the cosine law states that the correlation between

any two observed variables, ql and q2 is expressed in the formula:

+ O 0 . + re re

nql nq2

r = r r + r r

q1‘12 e1‘11 elq2 ezq1 ezqz

which, in turn, is equal to the cosine of the angle between the two

vectors.

This equation provided the earliest conception of representing mul-

tiple vectors in an n-space to be found in psychology. It suggested that

this geometric interpretation of correlation could be solved by deriving

sequentially less of the variance by computing the partial correlation

for each variable on each orthogonal axis. The later ramifications for

multidimensional scaling were noted in Dodd's (1928) comment that this

was "a tool of possibly immense value for the quantitative analysis of-
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psychological data."

It was not until Hotelling (1933), with the guidance of T. L.

Kelley (1928, 1931), developed his method of principal components that

Garnett's cosine law (and his speculation about simultaneous derivation

of underlying factors) became a true expression of multiple factors. In

the interim, Spearman (1927) with Holzinger developed the bi-factor

theory.

The bi—factor theory (later Holzinger's bi—factor theory) was the

product of expressed belief that the residuals of the two-factor method,

in addition to being interpreted as specific factors and error, could be

used to compute the group factors. While Garnett (1919a) proposed that

the group factors could be extracted directly from the correlation ma—

trix, the Holzinger method (Harmon, 1967) suggested obtaining a residual

matrix, R, by the equation:

rjk = rjk - ajoak0 (j,k = 1,2,...,n)

and recomputing by the two-factor method with the general factor removed.

From this residual matrix, a common factor (represented by high loadings

for a subgooup of the variables) could be derived. A second residual ma-

trix, R2, could be computed from R1 by the same method, and a second com-

mon factor derived, and so on until all elements, r were reduced to

jk

zero. The principal assumption of the original two-factor theory was

preserved by this method; Spearman posited that the two-factor represen-

tation would hold if the elements of the first residual matrix, rjk, were

immediately reduced to zero.

An adaptation of Fruchter's (1954) presentation of this approach is

demonstrated schematically in Figure 8 and Table 2.
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Figure 8.

   
The bi-factor theory applied to six tests.

1 .6 .742

C1

2 .825 .4

.7 .714

The values of the

overlapping g factor are the correlation of each test with that factor.

The values of the overlapping group factors are the correlation of a

specific test with a common factor for a subset of the tests with the

general factor removed. The 3 factor is represented by the residuals.

 

Table 2. Coefficients for the six tests represented in Figure 8.

g c1 c2 s1 s2 s3 s4 55 86 h2

l .6 .3 .742 .45

2 .4 .4 .825 .32

3 .7 .714 .49

4 .5 .6 .625 .61

5 .6 .7 .387 .85

6 .3 .8 .520 .73   
While this approach was of interest to the traditional factor anal-

 
ysts, the quality of the solution, with regard to its isomorphic rela—

tionship with known properties of correlation, and the basic complexity

of the algorithm, was much less than could be achieved by the method

suggested by Garnett (1919a, 1919b).
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It is important, before discussing the actual development of multi-

dimensional scaling, to consider Garnett's work in greater depth. From

the cosine law, we find that by a linear transformation, two variables

(or concepts in MDS terms), qS and qt, can be shown to depend upon only

two independent variables from a set yi (i - 1,2,...,n).

The linear equation for a variable, qs, is:

qS = 11xl + 12x2 + . . . + 1nxn

where 13. (j = 1,2,...,n) is the value or loading on the j—th element of

the set of all possible dimensions, x. By the cosine law, this equation

can be replaced by the geometric formula:

qS = ylcos s + y231n 5'

With qt computed in a similar manner and in the same coordinate frame,

. In terms ofthe correlation, rst’ will be equal to the cosine, cos“St

measurement, this means that if we scale any subject along two axes, Oyl

and Oy2, at right angles to one another (two uncorrelated variables), and

plot the point P (P = yl,y2) corresponding to the subject, so that yl and

y2 are the projections of P on Oyl and Oy2, and if we draw a line through
 

the origin and P, the cosine of the angle between 0yl and this axis of qS

will be the correlation between qS and the test or scale represented by

Oyl.

If a second variable, qt, is also plotted as a function of y1 and

y2, it can then be correlated with qS as a function of the angle between

the two vectors. Garnett noted that this correlation "represents the

average deviation in qS (or qt) corresponding to a unit deviation in qt

(or qS)." This is represented graphically in figure 9.

Subsequently, three variables may be conceived of in terms of two

independent factors (orthogonal dimensions), four variables in three
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0y

 0y2
 

 
Figure 9. Projections of two variables on an independent coordinate

system. Correlation between the two is represented by cosmst.

dimensions, and so on. The condition that three quantities, ql, q2, and

q3, should be expressible in terms of two independent factors follows at

once from the theorem:

-1
cos r + cos-1r + cos_1 - 0

23 31 P12 '

or its correlary:

r 2 + r 2 + r 2 - 2 r r - 1

23 31 12 ' 1r23 31 12 ‘ '

Wolfle (1940), in his overview of the development of factor analysis,

provides a good summary of this conception:

It is convenient to think of the problem of factor analysis

geometrically (Thomson, 1939; Thurstone, 1935). The scores of a

number of individuals on two tests may be plotted in two dimensions.

The two coordinates of each point represent the scores made by one

individual on the two tests. Such a plot is commonly known as a

"scatter plot" or a "correlation plot." If three tests have been

given, it is possible, though physically more difficult, to plot the
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scores in three dimensions. Here each of the three coordinates of

any point represents one of the three test scores. If four or more

tests have been given, it is no longer possible actually to plot a

point representing all four scores of each individual, but it is

possible to treat the scores mathematically as if they had been so

plotted. Conceptually, it is possible to think of points plotted in

four or more dimensions by extending our ideas of three—dimensional

geometry into a larger number of dimensions.

After such a plot is made, actually in a space of three or

fewer dimensions or theoretically in a space of four or more, it is

sometimes found that the points occupy fewer dimensions than the

space in which they were originally plotted. In the simplest case,

points representing a perfect correlation will all lie on a line

even though they were plotted on a plane.

Wolfle continues:

Geometrically the problem of factor analysis is one of finding

the minimum number of dimensions in which the distribution of scores

can be accurately described. This new set of dimensions, or coor-

dinates, represents the factors. Before the factor analysis, the

location of each point could be stated in terms of a number of

coordinates, each of which represents a test; after the analysis,

the location of each point can be stated in terms of a new set of

coordinates, each of which represents a factor.

The techniques of factor analysis observed the greatest thrust of

development during the 1930's following the publication of theories by

Spearman (1927), Thurstone (1927), and Holzinger (1930). Spearman
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(1928, 1930, 1931, 1933, 1938) and Holzinger (1938a, 1938b, 1944, 1949)

continued to seek explanations in the general factor, with the purpose of

reproducing as much data with as simple an explanation as possible.

Tryon (1932a, 1932b, 1935, 1939a, 1939b, 1939c, 1957, 1958a, 1958b) and

later, Cattell (1944), Peatman (1947), and Johnson (1967) developed

alternative methods for dealing with the original raw data (and correla-

tion matrix) in the form of cluster analysis. Thurstone in numerous

experiments and publications (1931, 1933a, 1933b, 1934, 1935, 1936a,

1936b, 1937, 1938a, 1938b, 1945, 1947) emphasized the development of

methods for finding "meaningful psychological factors" by multiple factor

analysis and various rotation and translation schemes.

By far the most meaningful development in this later phase of the

evolution of factor analysis, as a foundation for multidimensional

scaling, was the introduction by Hotelling (1933, 1936) of the method of

principal components. This algorithm, based on Garnett's (1919a, 1919b)

cosine law, and incorporating work by Kelley (1935), and Thurstone (1933)

and later modified by Burt (1938), introduces the procedure by which

factors are derived in decreasing order of importance.

By this method, the first axis, or coordinate, is located so that it

accounts for the maximum possible variance in a distribution of scores

(Pearson's principal axis, 1901). The second axis is then placed ortho-

gonally to the first so that it accounts for the maximum fraction of the

remaining variance. A third axis is placed orthogonal to both the first

and second such that the greatest amount of the residual variance remain-

ing after the removal of the first two axes is accounted for. This

procedure is continued until all of the variance is accounted for and the

tests (variables, concepts) can be satisfactorily reproduced by the
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factor structure in the coordinate system thus generated; this will

produce, potentially, n-l or fewer factors, where n is the number of

variables in the configuration.

Mathematically, the procedure for arriving at these axes is already

described for the three-dimensional case in the work of the nineteenth

century mathematician and astronomer, Jacobi (1846). By deriving the

characteristic equation for the intercorrelation matrix (in multidimen-

sional scaling, the scalar products matrix will be substituted), through

expansion of the determinant, n eigenroots will be produced. These roots,

Aj (j = 1,2,...,n), when multiplied by an associated column vector, kj’

will yield the same product as the original matrix post-multiplied by kj.

These vectors, kj’ are the columns of a matrix, K, in which each element

kij (i = 1,2,...,n; j = 1,2,...,n—1) is the value or loading of the i-th

variable on the j-th axis of the coordinate system. The vector, A, con-

tains the values, Aj’ associated with the columns of K.

The derivation of the vector (Van de Geer, 1971), which it may be

seen is also the axis or underlying dimension being sought, is given by

the equation:

Ak - 1k l
l

0

01":

(A - AI)k 0.

Solution of the vector requires only the expansion of the determin-

ant. Practically, however, we are limited to solving matrices with the

rank of two, since the solution of a determinant is given by the polyno—

mial equation for that determinant, and the highest order directly

solvable polynomial has an order equal to two (by the quadratic equation).

Alternatively, many forms of iteration have been proposed and adopted to
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arrive at the factor solution; of these, the Jacobi, or diagonalization,

method described by Hotelling and the direct iteration methods (Wilkin—

son, 1965) are the most common.

Development of Multidimensional Scaling
 

The introduction and proliferation of multidimensional scaling is

generally attributed to Torgerson (1951, 1952, 1958); it is in his work

on psychophysics and scaling theory that MDS is first treated as a viable

approach to psychological measurement. However, it is possible to iden-

tify several major contributions which have fecused the development of

multidimensional scaling, both mathematically and theoretically.

The initiative for recognizing multidimensional scales as part of
 

measurement may be found in Thurstone's (1927) law of comparative judge-

ment (and probably in Weber's law and Fechner's law, to which the law of

comparative judgement pertains). In it Thurstone states that the judge-

ment task when applied by a method such as paired comparisons, triadic

comparisons, or tetrad differences may be expressed as a proportionality

and that the set of proportionalities of judgement may be laid out on a

unidimensional scale. If the proportionalities, treated as distances, do

not satisfy the criterion for linearity:

djk + dkl = dj1

then the scores are adjusted (on the assumption that inability to fit is

a function of measurement error) to unidimensionality by a procedure for

expanding and shrinking the relative values.

From this, Richardson (1938) extrapolated the notion that the error

might be attributable, not to the measurement, but to the judgement task

itself, as a function of multiple influences on judgement. He posited
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that if judgements involved several independent components the effect

of these components could be demonstrated by extending the linear repre-

sentation to a Spatial or hyperspatial representation.

At this same time Gulliksen, who had been working with problems of

factor analysis (1936) began working on development of a multiple dimen—

sion model to account for overlap in judgement data. Richardson at this

time also sought to develop a model for psychophysical measurement using

observed "distance" from which to generate a scale. It was in response

to Gulliksen and Richardson that Young and Householder (1938) invented

their classical algorithm and proof for the derivation of a configuration

from a matrix of interpoint distances.

The Young and Householder scheme relies on the notion that the post-

multiplication of a set of coordinates will reproduce the scalar products

of the original distance matrix:

Consider a set of n points, and let ai = l ... n-l, be the

vector from point n to point i. Let aij be the component of ai

along the j-th axis of an orthogonal coordinate system with origin

at point n and let A denote the matrix (aij)' The dimensionality

of the point set is equal to the rank of A and to the rank of

B = AA'. The elements of B are given by bij = ai ° aj. The

vector from point i to point j is vij = aj - ai, and by taking

the scalar product of each side with itself there results the

familiar 'cosine law':

dij2 = djn2 + din2 - 2ai ° aj,

where dij is the distance between points i and j. From this it

follows at once that

b . = (d. + d. - d.. )/2, (1)
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so that AA' is expressable in terms of the mutual distances only. Thus

(I) The dimensionality of a set of points with mutual dis-
 

 

tances d,j is equal to the’rank of the n-l square matrix B whose

elements are defined by (l).
 

(II) The dimensionality of a set of points with mutual dis-
 

tances dij is [two*] less than the rank of the n+1 square matrix F

J
 

given by (2).
 

F_- 2 2'_-
0 de . . dln 1

2 2
d21 0 . . . d2n 1

F = . . . . (2)

2 2
dnl dn2 . . . 0 1

L1 1 o o o l L  
(III) A necessary and sufficient condition for a set of num-
 

bers dij = dji to be the mutual distances of a real set of points
  

in Euclidean Space is that the matrix B whose elements are defined
 

by equation (1) be positive semi-definite; and in this case the set
 

of points is unique apart from a Euclidean transformation.
 

With these theorems, Gulliksen (1946), and later Torgerson (1951),

began to build a multidimensional technique whereby measurement of

 

*According to Klingberg (1941), the word "two" was inadvertantly

left out of the Young and Householder article. It is worthwhile to note

that after making this correction, Klingberg, himself, misuses the

theorem by indicating that a matrix with the rank seven, for example,

could have no more than five dimensions. He fails to observe that the

theorem is expressed in terms of a bordered matrix which has a rank of n,

plus 1. More fundamentally, his statement, which appears to have mislead

other early attempts at multidimensional analysis, violates the basic

Euclidean theorem that a set of n points will always define a space of

p:1_or fewer dimensions.
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interpoint distances could be made, and from these distances a spatial

configuration generated. The generation of the configuration could be

carried out simply by the factorization of the squared distance matrix

B, using any standard algorithm (specifically a principal components

routine, or if an Eckart-Young rank reduction was done, by one of the

earlier direct solutions).

The Gulliksen model (1946) presented multidimensional scaling of

paired comparison judgement data as an alternative to unidimensional

scales when the internal consistency check (Thurstone, 1927) for the law

of comparative judgements was not satisfied. Further, in defense of

multidimensional "scales,"* he reaffirmed the linear relationship of the

multidimensional configuration to the original judgement data and set

fOrth a procedure for intentionally carrying out multidimensional analy-
 

sis.

Torgerson's earliest model (1951), which subsumes the work of

Gulliksen, presents three salient aspects fOr an MDS procedure:

In the first step, a scale of comparative distances between all

pairs of stimuli is obtained. This scale is analogous to the scale

of stimuli obtained in the traditional paired comparison-type

methods. In this scale, however, instead of locating each stimulus

object on a given continuum, the distances between each pair of

Stimuli are located on a distance continuum. As in paired compari-

sons, the procedures for obtaining a scale of comparative distances

 

*Challenges had earlier been leveled against the use of multidimen-

sional scales in either physical or behavioral sciences by Campbell

(1920, 1928). It was his contention that they violated the extensive, or

additive, criterion for judging numerical representation systems.
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leave the true zero point undetermined. Hence, a comparative dis-

tance is not a distance in the usual sense of the term, but is a

distance minus an unknown constant. When the unknown constant is

obtained, the comparative distances can be converted into absolute

distances. In the third step, the dimensionality of the psychologi-

cal Space necessary to account for these absolute distances is

determined, and the projections of stimuli on axes of this Space are

obtained.

These three steps, as discussed by Torgerson, integrated the many

developments in factor analysis, comparative judgements, and multiple

dimension scaling, drawing upon the modern refinements of each. One

addition, based on Young and Householder's theorems, was the transform—

ation of the scalar products matrix by double centering so that the axes

would join at the centroid of the configuration. This increased the

interpretability of the dimensions, Speeded up convergence in the eigen

routine, and (as will be demonstrated with a later model, Galileo),

facilitated the translation of multiple measures fOr longitudinal analy-

sis. A summary of the exact procedures is presented in Torgerson (1952).

Several basic problems related to the intervality and the dimension-

ality of the scale lead to the development of the "nonmetric" type of

multidimensional scale prevalent in psychometrics today.

First, the notion that subjects could make reliable interval or

ratio judgements was not readily accepted. It is axiomatic that the

reliability of the judgement is inversely proportional to the difficulty

Of the judgement task. Since the model was attempting to describe

Eflgizé§p§1_differences in cognitive arrangement, or psychological dis-

tance, it was believed that the technique should be adapted to function
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with ordinal judgement data which simplify the subjects' task and in—

crease the reliability of the findings reported.

Second, the use of the "additive constant" approach was considered

suspect since its use with ratio scaling violates the assumption of

absolute magnitude and its use with interval scaling required separation

of systematic and random error to get the data to fit a Euclidean £331_

space.* Richardson (1938) made the assumption, which Torgerson defends,

that the data was fallible and represented a foreshortening of the

differences which when strictly interpreted would yield triangle inequal-

ities and add unnecessary dimensions. The nonmetric approach (Shepard,

1962a, 1962b; Kruskal, 1964a, 1964b) avoided the problem rather than

attempting to deal with it by (1) eliminating the distance component from

the procedure, (2) artificially generating a configuration in a Euclidean

real space of m dimensions (m is less than n and is determined from the

data) which could be adjusted to fit the dissimilarities relationship,

and (3) reporting the degree of monotonicity between the scale distance

and the reported dissimilarities (stress).

Third, the process of determing dimensionality was itself challenged

as contradictory to the goal of Simplicity. Shepard (1964a, 1972)

states that the purpose of multidimensionality in scaling should be to

produce an expression of interrelationship which is readily interpretable.

Techniques built upon this vieWpoint tended to emphasize rank reduction

at the price of isomorphism of the solution to the raw data, and

actually limit the interpretability by introducing approximations into

the analysis.

* Cf. chapter one, pp. 9-10, on the relationship between distance

measures and the dimensionality and characteristics of the Space in which

those distances are arrayed.
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This last point, on dimensionality, will be of particular importance

to the presentation of the Galileo technique. Shepard comments on the

nonmetric view of dimensionality (1972:2):

In most cases one seeks a representation of the lowest possible

dimensionality consistent with the data. Clearly, a lower-dimen-

sional representation is more parsimonious in that it represents

the same data by means of a smaller number of numerical parameters

(the spatial coordinates of the points). Moreover, to the extent

that fewer parameters are estimated from the same data, each is

generally based upon a larger subset of the data and, so, will have

greater statistical reliability. Finally, and perhaps most

significantly, a picture or model is much more accessible to human

visualization if it is confined to two or, at most, three spatial

dimensions.

On the other hand, one cannot reduce dimensionality arbitrarily

without running the risk of doing some violence to the data. A

representation of one or even two dimensions just may not be rich

enough (in total degrees of freedom) to accommodate the full com—

plexity of the relations in the given data. Still, it is a fact of

decisive practical significance that most applications of multi—

dimensional scaling have yielded interpretable and sometimes even

enlightening representations in no more than three and, indeed quite

often, in only two spatial dimensions.

Following the early metric work by Torgerson and others (Abelson,

1954; Gulliksen, 1954; Messick, 1954, 1956; Messick and Abelson, 1956),

considerable effort was put into the nonmetric approach. Put forth by
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the Bell Telephone Laboratories group (Shepard, 1962a, 1962b, 1966, 1972;

Kruskal, 1964a, 1964b, 1965, 1972; Carroll, 1968, 1969; Johnson, 1967;

Kruskal and Carroll, 1968; Shepard and Kruskal, 1964; and Carroll and

Chang, 1964a, 1964b, 1970), and others (Guttman, 1968; Lingoes, 1963,

1966, 1971; McGee, 1966, 1968; Young, 1968a, 1968b, 1968c, 1972; Coombs,

1964; Tucker, 1960, 1963, 1964; Tucker and Messick, 1963), the nonmetric

approach has produced a substantial set of techniques for the analysis

of individual ordinal Spaces. A review of this branch of MDS is presented

by Shepard, Romney, and Nerlove (1972, volume I) and Romney, Shepard, and

Nerlove, (1972, volume II).

In the next chapter, the problems suggested in this discussion and

the historical developments detailed here will be used as a framework

for discussing the reintroduction of metric multidimensional scaling as

a socio-metric technique. In it, I will present the mathematical and
 

theoretical considerations of Galileo, a completely metric approach

utilizing aggregate and longitudinal data.



Chapter III

Galileo: A Procedure for Metric Multidimensional Analysis

Chapters I and II enumerate criteria for methodological rigor and

suggest problems which have arisen in attempts to satisfy those criteria.

In chapter III, we will examine the Galileo model proposed by Woelfel

(1972, 1974a, 1974b), and the solutions, both mathematical and theoretical,

which it offers.

In summary, the criteria proposed in chapter I for an advanced

methodology are:

(a) it should be of the highest possible level of scaling,

(b) it Should be able to measure change,

(c) it should be parsimonious and yet complete,

(d) it Should not force the loss of information, and

(e) it should achieve isomorphism between reality and the numerical

representation of reality.

It will be argued from this explanation of the Galileo procedure

that this technique more closely satisfies these criteria than any

existing multidimensional scaling approach. Galileo couples the mathe—

matically pure approach developed by Torgerson (1958), the scaling

rigor demanded by Stevens (1951, 1959) and by Suppes and Zinnes (1963),

and the scientific principles expressed by Einstein (1961) for the pur-

pose of accurately measuring social psychological phenomena (conception,

culture, and communication).

Galileo procedures have three main aspects: (a) the collection of

linearly transformable data by an interval or ratio judgement technique,

(b) aggregation of the judgement data, and (c) computation of the Spatial

52
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configuration for the concepts, or stimulus-objects, in a multidimen-

sional coordinate system determined by the data.

A Method of Ratio Judgements
 

As we have dealt with factor analytic and multidimensional scaling

procedures in the previous chapters, the problems of development have

been identified as chiefly mathematical. However, the kind of data on

which we operate with these procedures is of central importance to the

hypotheses which we deal with and the interpretations that we might make

from such a technique.

The Galileo model is designed for the analysis of dissimilarities

data drawn, primarily, from paired judgements. The judgement task is one

9':of perceiving and identifying concepts , which itself is basically a

process of differentiation on the basis of dissimilarities for one or

more underlying attributes (Torgerson, 1958). For example, we might

distinguish two individuals on the basis of height or weight, and do so

in terms of a specific amount of each attribute. Therefore, when asked

which person is taller, we could respond appropriately and even indicate

ppw'pppp_taller one was over the other.

Most procedures for identifying perceived or conceptual relation-

ships may be viewed as some form of dissimilarities judgement by

utilizing a number of salient attributes against which to judge a par-

ticular stimulus-object; that object may be discriminated from all other

objects in the conceptual universe. In most cases this amounts to the

 

*The term "concept" refers to any perceived physical or psychologi-

cal object or abstraction. This is analogous to Torgerson's "system"

(cf. chapter I, pp.l-2).
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characterization of several stimuli in terms of having or not having

certain attributes.

For example, we might distinguish between two political candidates

by comparing them with regard to a number of categories. At the most

primitive level we may indicate that a particular category, or attribute,

applies (1) or does not apply (0) to the candidate:

Democrat Republican Liberal Honest Active Incumbent

Candidatel 1 0 1 1 1 0

Candidate2 0 l O 1 l 1

Obviously, a great deal of information about the difference between

the two candidates is lost in this representation; by categorization we

are limited to knowledge of the presence or absence of a condition, and

by prescribing the attributes we fail to account for all possible dis-

tinctions between the two. Even if we use unitary scales which tell us

ppg'ppph_of each attribute is present, our ability to discriminate is

limited by our ability to select concepts which we think will be impor-

tant to the individual making the judgement.

The purpose of this type of conception is to arrive at an aggregate

of the dissimilarities as an index of overall difference. However, we

might seek ways of obtaining greater isomorphism to the judgement process

without violating the parsimony of judging a small number of salient

attributes. One such method would be to ask the respondent to provide

the index of overall difference, directly (e.g., report, on a scale of

overall differences, how different two stimuli are).

Differences among concepts could then be represented by a continuous

scale of the magnitudes of dissimilarities, with a natural origin
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representing the condition of pairs being completely identical. These

scale values can be presented in a matrix of all possible combinations

fOr a set of concepts by the element, dij’ representing the distance

between the i-th and j-th elements:

(3. d d'-_
11 12 ° ° 1n

321 d22 . . . d2n

D = . .

dnl an? . . . dnn  
So far, we have dealt with the fundamental notion of dissimilariy,

or distance, not as a scale that is tied to any single attribute but

rather as a characteristic of all scales on which attributes may be

measured. This is seen most clearly in the physical sciences where space

is measured in terms of the three dimensions of height, width, and depth;

all three of these are expressions of distance (stated with regard to

direction). Psychological distance is, of course, represented in all of

the properties of a concept, which if they could be treated independently

(i.e., also by direction) could yield a structure similar to that found

in the physical world.

The problem becomes how to measure psychological distance. The

answer is suggested by Einstein (1961) who proposes that the unit of

measurement is wholly arbitrary, but that once it is chosen, it becomes

the standard for all measures which are to be compared. In physical

measurement we choose two points on a rigid body, construct according to

the rules of geometry a line segment 8 between the points, and compare

other line segments as ratios of the known line segment 8 to the unknown
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line segments. The numerical expression of the length of a measured

segment is given by the number of times S is applied.

If we accept that it is a cognitive judgement of a concept rather

than the concept itself with which we are dealing, then we may apply

Einstein's treatment of physical distances to psychological distances

also. By Specifying the distance between any two concepts as a standard,

we may compare the perceived distance between any other pair of concepts

as a ratio of the perception of the standard pair to the measured pair.

With the Galileo technique, this is accomplished by simply asking

a respondent the question:

"If x_and y are 2 units apart, how far apart are a_and p?"

This has the force of producing an unbounded ratio scale of non-

negative real numbers that may be considered continuous across its entire

range. Further, because the scale is viewed as continuous, and requires

ratio judgements, we have also eliminated the additive constant problem

raised by Torgerson. The Galileo technique assumes, from the rationale

provided by Einstein, that distances measured against an absolute

standard will need no adjustment of magnitude to be made to lie in

Euclidean space.

Aggregation
 

As we have shown, the technique for gathering the data meets the

general criteria for scaling rigor at a very high level. However, the

Problem arises that the reliability of the judgements is very low. Due

to tlm difficulty and complexity of the judgement task an individual mav

over or under estimate the distances thus introducing considerable error

into the paired judgement set. This was a problem that led Torgerson
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(1951) to the use of artificially constructed distances and Shepard,

Coombs, and others (Shepard, 1972) to the use of ordinal data and non-

metric algorithms.

Since, in communication, we are interested in the identification of

cognitive and behavioral regularities, it is advantageous to us to have

techniques whereby we may summarize the whole of many interactions, beha—

viors, and attitudes. This allows us an option which Galileo utilizes;

we may aggregate the date and arrive at a matrix of mean distances for

a sample of distance judgements.

We know, by the psychometric axiom that the reliability of any scale

is inversely proportional to the complexity of the judgement task used

to derive that scale. Hence, the judgements made in response to a

Galileo instrument will be of low reliability for the individual. We
 

also know that fer a series of measures, random error will be normally

distributed. Given these conditions, the central limit theorem and law

of large numbers indicates that the scores reported will be normally dis-

tributed about the sample mean and that the sample mean will converge

upon the true score for the population as the n grows large.

Aggregation has been considered a useful and desireable procedure

for conducting communication research (Rosenthal, 1973). In this con—

text, we may utilize it to overcome a problem (unreliability of judge—

ment) that has inhibited the development of precision in other applica—

tions of multidimensional scaling. The aggregation technique used with

MDS is straight—forward; we may take the individual distance matrices and

Compute a single mean distance matrix, D, by the formula:
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where d:.° is the ij—th element of the means matrix and the sample n is

variable across elements.

The utility of aggregation is shown by expansion of the previous

example in which political attributes were judged. In that example a

Single set of responses was used to evaluate the two candidates.

However, gathering multiple response sets allows the aggregation to be

performed; the arithmetic means can be computed and a new set of values

reported. The data for Candidate might appear as follows:

1

Democrat Republican Liberal Honest Active Incumbent

Subjectl 1 O l l 1 O

Subject2 1 0 0 0 O l

Subject3 1 0 l O l 1

Subject” 1 0 O 0 l 1

The aggregated values for the sample would then be:

Candidate1 1.00 0.00 0.50 0.25 0.75 0.75

These aggregate values have greater practicable meaning and provide

a more parsimonious representation than the original table of responses.

This also yields distinctions not apparent in the single response set;

the original values indicate only the perceived existence of an attribute

for the concept (in this example, the candidate) while the aggregate

values for attributes can be compared across concepts. Because the

attributes are dichotomous the concepts' differences can be represented

by the percentage of respondents in agreement on each of the attributes.
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The aggregated values are, therefore, representative of the population

as a whole.

Two changes occur with the shift from nominal judgement data to

data collected using higher levels of scaling. First, the values report-

ed for the judgements become more precise, thus increasing the rigor of

operations which may be perfbrmed upon the data. Second, the reliability

decreases; this produces a greater demand for the use of analytic

techniques which will compensate for unreliability. Thus, the introduc-

tion of aggregation facilitates the use of more rigorous analyses while

stabilizing the values and making them more representative of the popu—

lation of scores from which they were drawn.

The application of aggregation is often associated with and may

suggest interesting and complex applications to methods for inferring

from the population to the individual (Goodman, 1959; Boudon, 1963).

However, the greatest utility of the procedure is the representation of

socially or culturally grouped relational conceptions. Rather than

deriving the individual cognitive arrangement of concepts we may deal

with the group's cognitive structure (Woelfel, 1972; Barnett, 1972) as it

is represented by the aggregation of attribute scores for a set of

concepts. Stated more parsimoniously, the aggregate data matrix repre—

sents a subset of everything known by a population; if this knowledge
 

could be scaled by some exhaustive procedure it would provide a map of

the "culture" (Woelfel, 1972).

'Pransformation to the Spatial Manifold

By the procedures described for gathering judgement data and aggre-

gyation, Gailieo poses a theoretical alternative to the first and second
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major problems that diverted the evolution of multidimensional scaling

from the metric model to the Shepard-Kruskal methodological disjuncture:

scale adjustment and reliability. In this section, the algorithm for

generating a multidimensional scale from the matrix of dissimilarities

will be outlined, and the notion of isomorphism will be supplemented for

parsimony in the expression of dimensionality.

The Galileo procedure begins by gathering data of the form suggested

earlier in this chapter in the section on ratio judgements. For each

respondent, we will have a matrix of all possible paired judgements for

a list of concepts. These distance matrices will then be aggregated to

produce the matrix D from which the multidimensional solution will be

derived. For example, the following matrix has been generated for a set

of political concepts:

Nixon McGovern Prosperity Taxes Employment Me

Nixon 0.0 130.4 43.0 31.5 45.8 114.2

McGovern 130.4 0.0 37.6 38.7 26.3 39.2

Prosperity 43.0 37.6 0.0 56.4 14.1 34.9

Taxes 31.5 38.7 56.4 0.0 22.9 37.1

Employment 45.8 26.3 14.1 22.9 0.0 15.0

Me 114.2 39.2 34.9 37.1 15.0 0.0

The judgements for this matrix were made by a random sample of 116

respIondents drawn from the voter registration lists of Champaign county,

Illinois in June, 1972. The values represent the mean distances, or

dissimilarities, for the concepts as judged by the sample.

To obtain the multidimensional coordinate space in which to repre-

sent the concepts, the procedure, beyond the aggregation step’ is a
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fairly straight—forward variation on factor analytic techniques. As

shown above, the original data yields a concepts by concepts by persons

matrix which is then averaged for each cell over persons (cf. Tucker,

1964 for alternative procedures) to produce a concepts by concepts square

symmetric matrix, D, as described in the section on aggregation.

This matrix may then be transformed into a scalar products matrix,

B, which is normally computed:

B = 5"6 ,

or by the method from Young and Householder (1938):

_ _ 2 2 2
B - ( bjk ) - (dij + dik — djk )/2

(j,k = 1,2,...,n)

(j,k # i)

where the element, b. , is the scalar product of the vectors (i,j) and
jk

(i,k).

Galileo uses an adaptation of Young and Householder's method as

proposed by Torgerson, for "double—centering" the origin of the space at

the centroid of the distribution (configuration). This centroid scalar

products matrix is thus computed in a one-step procedure where the

m

elements of B are given by the equation:

 

n n n n

2 di.2 2 di' 2 2 di.2

g _ 1 (i=1 3 j:l 3 i=1 j=1 3 2

oo-—__—_ + —_—_— + 2 - do. )0

1] 2 n n n 1]

By Garnett's cosine law, these elements, gij’ represent the unstan-

dardized vector lengths (as opposed to the standardized form which would

be applied in a factor analysis) multiplied together with the cosine of

the angle between the vectors such that:

(\J o o

bij - pipjcosaij
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where pi and p3. are the vector lengths.

The scalar products matrix for the political data described above

would appear, by the Torgerson equation, as follows:

_-4529.4 —5042.7 1344.6 1748.9 876.7 3456:;—

-5042.7 2389.3 492.2 426.1 509.6 1225.5

1344.6 492.2 8.8 -1605.8 —434.2 194.5

1748.9 426.1 -l605.8 —39.4 -621.1 91.2

876.7 509.6 -434.2 —621.1 -678.4 347.4

  L_:53456.9 1225.5 194.5 91.2 347.4 1598;3d

This centroid scalar products matrix may now be transformed linear-

ly by any routine factorization to arrive at a matrix of coordinate

values for the set of concepts. The particular routine utilized in the

Galileo software (Galileo 2.3, CDC 6000 series FORTRAN) is a direct

iterative solution proposed by Van de Geer (1971) and suggested as a

slow but highly accurate alternative for the Jacobi—type eigen routine

(Wilkinson, 1965). This type of solution has the advantages of simul-

taneously deriving the root and the vector for any given axis and yield—

ing the Euclidean components of both real and imaginary space. The Van
 

de Geer technique has been further adapted to produce rapid convergence

during the iteration procedure. In addition, Galileo provides any

imaginary dimensions present in the data; this represents triangle in—

equalities present in most judgement data sets. A left-right reversal*

 

* Since the spatial configuration is derived from the interpoint

distances of the concepts, the valences for any dimension are arbitrary

and are independent of other dimensions. Thus, while consistency of sign

must be maintained among the loadings along a dimension, it does not

change the distances if all negative values are made positive and all

positive values are made negative. Further, the change of Sign on one

dimension will not affect the distance along other dimensions; proof for

this is derived from the Pythagorean theorem.
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of spatial position is also provided by Galileo, so that distances can

be minimized during translation and rotation for longitudinal compari-

sons.

The procedure, which is treated in depth by Van de Geer (1971), is

summarized here:

m

Matrix Bl’ the original centroid scalar products matrix, is multi-

plied by a vector of ones, v11, with the rank n to produce a second

vector, v12:

g _

1V11 ' v12°

This procedure 18 repeated to produce v13, v14"°" Vl,p+1’ such that

v1,p+1’ when d1v1ded by its largest value w111 be equal to le' There—

fore, when v pre-multiplied by the matrix is equal to a vector which

1P

divided by its largest scalar gives back le’ the routine has converged

on the unnormalized eigenvector (or axis).

After converging on the vector le’ the largest value in v1,p+l is

taken to be the root, and v1p is normalized to that root. This yields

the first coordinate axis of the spatial manifold, and may be interpreted

as the projections of the n concepts on that axis.

The normalized eigenvector, which we refer to as fl is then post—

multiplied by its transpose to yield an outer products matrix. The outer

products matrix (Veldman, 1967) is then subtracted from 81 (added, if the

root is negative and the associated vector is imaginary) to produce the

residual scalar products matrix, 82:

32 = 31 — flfl' .

’b

The entire procedure is repeated for the residual matrix, 82,

starting with v21, to arrive at v2p; the second axis, f2, is computed and
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the new residual matrix, 83, is separated from the previous one. The

procedure continues until all n roots and their associated vectors are

computed.

For the paired judgements on the six political concepts described

above, the coordinate solution contains three real and two imaginary

dimensions with the following loadings:

1 2 3 4* 5 6

Nixon 75.6 -.3 —.6 .2 -.2 34.5

McGovern —53.9 2.1 —16.3 —.2 -.O 28.1

Prosperity 5.1 -27.8 -3.3 .0 -6.8 —27.5

Taxes 9.4 28.4 -l.7 .0 -5.6 -30.2

Employment 1.7 -2.1 .7 .0 14.6 -21.8

Me -37.9 -.3 21.2 -.1 —2.0 16.8

A two dimensional representation of the concepts (which accounts for

94 percent of the distance in the configuration) is given in Figure 10.

This routine is made competitive with the various diagonalization

methods (principal components factorization), which provide optimum

speed for computing, but usually limit the solution to positive factors

and may terminate when an acceptable number of factors is reached. By

repeated pre—multiplication of the scalar products matrix to raise it to

its fifth power, Galileo substantially increases Speed of convergence

with the direct iterative method. This is of some consequence when it is

considered that most of the existing factorization methods were developed

 

* The values for this dimension are artificial and represent round—

ing error in the computer algorithm. Greater precision can be achieved

by reducing the tolerance level for comparison functions; however, the

increase in computation costs seems unwarranted.
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Two—dimensional representation of six political
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before high speed computers were introduced and required considerable

expenditures of time, effort, and money to perform the factor routines.

The representation of only a few factors in most MDS solutions, which

is argues for by Shepard and others on the grounds of parsimony, is more

likely an artifact of the earlier difficulties of deriving a full

solution matrix.

The Galileo solution achieves isomorphism with the distance judge-

ment data when all of the distance between points is accounted fbr in

m dimensions (n - 1 or less). Since interpretation of the full solution

is limited only by one's ability to read a table of coordinate values

and not by some artificial requirement that the solution fit a three-

dimensional (or less) graphic representation, there is no violence done

to the data. For this reason, the direct iterative approach used by

Galileo is recommended over other methods of factorization.

Longitudinal Data and Rotation
 

The final major advantage of the Galileo model over existing

techniques, both metric and nonmetric, is the incorporation of a temporal

component for longitudinal comparison. This makes the technique partic-

ularly advantageous for the analysis of communicative acts which are by

definition processual and thus produce continuously changing effects

rather than discrete outcomes.

This continuous change which characterizes process may be observed

by examination of the spatial model over a period of time. Since the

fundamental variable in all metric multidimensional analysis is distance,

and since motion is the description of alternative states or interrela-

tionships measured as differential quantities of distance, change may be
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conceived of as motions in the cognitive or cultural Space. Motion is

measured and expressed as velocity, a change in distance over a change in

time,

Additionally, the precision of describing change may be increased by the

expression of acceleration (the change in velocity over time) and the

change in acceleration.

Describing change in a process analysis assumes that measurements

are taken at successive intervals in time and compared to obtain measures

of difference. When using a nonmetric multidimensional procedure to make

these measurements, a problem of comparability occurs. The nonmetric a1—

gorithms yield static, monotonic configurations which cannot be suitably

compared with configurations generated at other points in time. The met-

ric configuration, however, may be viewed as the representation of a

changing set of relationships that have been frozen at a Single point in

time. To describe the changes which occur it is necessary to "unfreeze"

the configuration. Ideally, this would involve continually measuring the

set of relationships and plotting the trajectories of the concepts as

they move over time. In practice, this means measuring the concept dis-

tances at regular intervals of time and approximating the trajectories by

fitting curves which best represent their motions.

The Galileo technique extends traditional metric multidimensional

analysis by incorporating time through the use of translation and rota-

tion. Translation is facilitated in the computation of scalar products

where, for each configuration, the origin is set at the centroid of the

distribution. The centroid of one distribution may be considered to be
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superimposed upon the centroid of another distribution. The axes are

then rotated pairwise so that the distances between all concepts, on all

possible pairs of axes, are minimized by a Gaussian least squares (squared

distances of the projections from each other) best fit. This is given by

the fbrmula:

n m m-l

Min 2 2 Z 0

i=1 j=2 k=1

ijk(t) - Oijk(t—l) (j<k)’

where i is the subscript for concepts in the set of n concepts, j and k

are the dimensions being paired for comparison, and m is the rank or di-

mensionality of the space.

This procedure (in effect) reduces the representation from multiple

spaces at different points in time to a single space in which the trajec-

tories of motion are plotted. Figure 11 is an extension of the two di-

mensions represented in Figure 10 showing changes in the Six political

concepts across four points in time (June, 1972 to June, 1973).

The concept of motion implies change which may be described in terms

of velocity, acceleration, duration, and other variables drawn from phys—

ics and mechanics. In addition, derived explanatory variables such as

mass and force can be applied to motions in the cognitive space. In many

cases these formal connections of model and observable reality have cor—

relates in the behavioral sciences, and in communication particularly.

They may be found in the operationalization of constructs such as atti-

tude stability (balance) and cognitive consistency (Heider, 1946; Newcomb,

1963), rates of exposure (Klapper, 1960; Schramm, 1960), persuasive mes—

sages (Bettinghaus, 1973), and information processing (Shannon and Weaver,

1949). Applications of spatial variables in communication theory are
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discussed at length by Arundale (1971), Woelfel (1974c), and Woelfel and

Saltiel (1974).

In summary, the Galileo approach to multidimensional scaling adopts

Torgerson's theoretical foundation for metric spatial representations,

and through a matrix of ratio judgements, projects a continuous Euclidean

space. Using both real and imaginary components of the complex number

system (from the direct iterative solution) the distance between any two

concepts, treated as points, is accounted for and presented in the coor-

dinate solution. This solution, coupled with the rotation of Spaces to

a least squares best fit, allow us to postulate the principles of motion.

Analysis of motion provides a foundation for the interpretation of com-

municative acts and principles, and for the development of precise models

for explaining the cognitive and cultural aspects of communication beha—

vior.

Conclusion
 

In the behavioral sciences it is often argued that the nature of

humanity is such that the development of a complete and comprehensive gen-

eral theory of behavior is impossible. The most fundamental weakness,

leading to this conclusion, is the lack of adequate linkages between ob-

servable "reality" and models used to explain human behavior. It is my

contention that this is not a failure of theory but rather a failure, quan-

titatively, to produce results worth interpreting. Without useful re—

search. the behavioral sciences have been unable to produce the necessary

linkages from which to generate a substantial theory.

From a philosophical perspective, science may be perceived as having

two components which interact to produce the quality of predictive ability:
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theory and methodology. Theory provides us with a structure for explana-

tion while methodology provides the tools for comparing that explanation

with the reality which we are studying. It is a prevailing belief in the

behavioral sciences that theory must dictate the selection of methodology;

failure to confOrm to this belief dooms the theory to stagnate or be con-

sumed by the techniques used to test it.

This thesis has argued that methodology and theory may be treated as

independent components of scientific study. It has operated from the ba-

sic assumption that, while the two must necessarily be related to conduct

research, the origination of a methodology and the development of a theo-

ry are not de facto tied together. It is common, as in pure mathematics,
 

to develop a method or technique without consideration for some Specific

application. And it often occurs that the theories we develop go untested.

The failures of the behavioral sciences do not occur from developing

bad theory, and they are only partially related to the lack of adequate

methodologies. The most significant problem has been the use of weak and

inappropriate methods and research strategies which are incapable of eith—

er supporting or rejecting the hypotheses we are testing. The problem is

similar to that of trying to shovel snow with a tablespoon; even after

many attempts, very little is accomplished.

The historical presentation of developments leading to the use of a

technique such as the Galileo version of multidimensional scaling is an

attempt to induce awareness of methodological considerations in dealing

with the problem. We are not ignoring theory; rather we are dealing with

considerations of criteria and appropriateness for selection of methodolo—

gies.



.
E
n
fi
x
fi
l
i
m
s
s
a
a
fi
i
fl
e
‘

n.
l
,



72

Theory may dictate the need for certain methodologies; some of these
 

exist, while others need to be invented. In the case of communication re—

search, our existing methods have allowed us to delineate areas of study

without providing the concomitant data base necessary to turn hypotheses

into theory. The development of longitudinal metric multidimensional

scaling is one attempt to bridge this gap. Historically, it is part of

a long series of methodological advances which have come as responses to

the needs of different sciences. These advances have drawn on existing

techniques, adding, modifying, and rejecting parts. The evolution of mul-

tidimensional scaling has come through astronomy, mechanics, and psychol-

ogy; it is now receiving consideration for communication study. Until a

more appropriate technique which is able to satisfy rigorous requirements

is developed, Galileo provides a framework with which to deal with the

exigencies of human interaction and information systems. Its use in com—

munication should serve to improve our knowledge of human complexities.

When it fails to do this, or if some other technique proves more fruitful,

it should be replaced or altered so that our theories can advance unen—

cumbered by the tools we use to support or reject them.
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APPENDIX A

Table A-1. Coordinate values for six political concepts in a multidimen—

sional space (June, 1972).

Dimensions

1 2 3 4 5 6

Nixon 75.64 —.27 —.61 .21 -.15 34.54

McGovern —53.94 2.13 —16.31 -.15 —.02 28.13

Prosperity 5.10 -27.84 -3.25 .01 —6.81 -27.51

Taxes 9.45 28.44 -l.67 .02 -5.60 —30.15

Employment 1.61 -2.13 .68 .00 14.56 -2l.76

Me -37.87 -.33 21.17 —.10 —1.97 16.75

Eigenroots

10184.32 1593.44 728.82 .08 —293.93 ~4404.72

Table A—2. Coordinate values for six political concepts in a multidimen—

sional space (August, 1972).

Dimensions

1 2 3 4 5 6

Nixon 48.88 -6.33 -.88 -.83 .03 20.57

McGovern —37.81 —23.39 -2.04 .98 .03 16.59

Prosperity 3.90 7.90 —4.67 9.98 -.02 —12.33

Taxes 4.14 ~10.06 14.16 —l.23 -.O3 -l9.95

Employment —.76 1.18 -1l.08 —6.77 -.03 -l9.15

Me —18.34 30.69 4.53 —2.13 .02 14.27

Eigenroots

4189.40 1694.78 370.72 153.30 -.00 ~1819.48
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Table A—3- Coordinate values for six political concepts in a multidimen—

sional space (November, 1972).

 

 

Dimensions

1 2 3 4 5 6

Nixon 80.02 -1.98 —1.71 .08 -.11 35.28

McGovern -24.26 —8.05 21.30 -.02 1.79 5.74

Prosperity .80 —.37 —7.99 .00 9.17 —24.97

Taxes 15.67 -21.02 4.29 .01 —4.03 -30.07

Employment -8.25 -18.75 -7.59 -.00 -5.87 —23.24

Me -63.98 8.13 —8.29 —.06 —.93 37.27

Eigenroots

11401.74 929.04 665.54 .01 —139.09 —4735.83

Table A—4. Coordinate values for six political concepts in a multidimen-

sional Space (June, 1973).

Dimensions

1 2 3 4 5 6

Nixon 72.73 -11.03 .66 —.19 —.07 —27.75

McGovern -60.34 —24.90 3.60 .26 -.06 -24.76

Prosperity —2.55 14.22 —1.46 7.72 .02 8.34

Taxes 4.21 -l9.63 —12.58 —l.81 .09 35.37

Employment 4.20 7.71 17.68 -2.32 .06 24.79

Me -18.25 33.64 —7.89 —3.65 -.04 -l6.00

Eigenroots

9306.92 2520.98 549.10 81.85 —.02 -3574.91
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