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ABSTRACT 

 

HOW A SUPPRESSOR VARIABLE AFFECTS THE ESTIMATION OF CAUSAL 

EFFECT: EXAMPLES OF CLASSICAL AND RECIPROCAL SUPPRESSIONS 

 

By 

Yun-Jia Lo 

 

In educational research, a randomized controlled trial is the best design to 

eliminate potential selection bias in a sample to support valid causal inferences, but it is 

not always possible in educational research because of financial, ethical, and logistical 

constraints. One alternative solution is use of the propensity score (PS) methods. 

However, the bias and variance of the estimated causal effect can depend strongly on 

which covariates are included in the PS model of assignment to treatment. This study uses 

two simulated examples to understand how inclusion or exclusion of a classical or 

reciprocal suppressor, improving the R2 in the regression model, affect the estimations of 

causal effect by using regression, PS as a covariate, PS weighting, and PS matching 

methods. An additional condition of adding different covariates, P’s, is also tested in all 

methods where P’s explain the variance of outcome in different levels to approximate 

unconfoundedness. Findings indicate that both classical and reciprocal suppressors 

increase the predictive power of the treatment effects and influence the estimations of the 

treatment effects regardless in regression or PS methods without controlling any P. 

Although the impacts of the suppressors vary by different types of models applied, the 

strong-enough covariates, P’s, can eliminate the impact of suppressors in all models. With 

the stronger P’s applied, the estimates of standard error only decline by using the 



regression models, but are quite consistent in the example of classical suppression and 

slightly increase in the example of reciprocal suppressions by using the PS models. 
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Chapter 1 

INTRODUCTION 

 

 In educational research, many questions depend on understanding the causal 

effects of programs or policies based on the Rubin Causal Model (Rubin, 1974). 

Although a randomized controlled trial (RCT) is the best design to eliminate potential 

selection bias in the sample in order to allow for valid causal inferences to be made, RCT 

design is not always possible in educational research because of financial, ethical, and 

logistical issues. One alternative method that can be used to approximate randomized 

assignment and to overcome potential selection bias is the propensity score (PS) method. 

The definitions of causal effect and causal inference are in Appendix B. 

Propensity Score methods were introduced by Rosenbaum and Rubin (1983a) and 

have become one of the standard techniques for controlling confounding in non-

experimental studies. The PS is defined as the probability of receiving a treatment. 

However, in empirical studies, the true PS’s are always difficult or impossible to obtain. 

It is always given by an estimated probability of receiving a treatment by using a logistic 

regression model, controlling for a set of observed variables. PS methods adjust the 

known PS’s in the models to reduce selection bias and to estimate causal effects. In 

observational studies, there may be a wide range of variables in the data that are related 

to the dependent variable, the treatment indicator, or both of them; all of which can be 

possible covariates to estimate PS’s (see Appendix B for the definition of covariate). 

However, the bias and variance of the estimated causal effect can depend strongly on 

which covariates are included in the PS model. Therefore, it is important to understand 

how inclusion or exclusion of certain covariates in the PS model affects the estimation of 
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causal effect.   

 Though Rosenbaum and Rubin (1983b) suggest selecting covariates that are 

independent of the treatment indicator in the PS model so that covariates cannot lead to 

biases, recent researches suggest selecting all variables regardless of whether they are 

independent of the treatment indicator or not, providing they are related to the dependent 

variable (Brookhart et al., 2006; Rubin & Thomas, 1996). Later works of Rubin (1997) 

and Perkins, Tu, Underhill, Zhou, and Murray (2000) demonstrate that including 

variables that are strongly related to the treatment indicator but unrelated to the 

dependent variable can decrease the efficiency of an estimated causal effect, but if such a 

variable had even a weak effect on the dependent variable, the bias resulting from its 

exclusion would dominate any loss of efficiency for a reasonable-sized study (see 

Appendix B for the definition of efficiency). However, we do not know whether this 

strategy can also be applied to decide whether a suppressor variable should be included in 

a PS model as a covariate, especially when it may not reduce, but promote, the bias for 

estimating the treatment effect. 

A suppressor variable is a predictor that improves the total correlation coefficient 

square (R2) by directly predicting some of the variance in the dependent variable and by 

indirectly removing the variance of one or more of the other predictor variables while 

including it in the regression model. Although suppressor variables sometimes tend to 

appear useless as separate predictors to dependent variables and sometimes their pure 

impacts are hard to interpret in the regression model, they may in fact change the 

prediction values of other variables by suppressing them, completely altering research 

results and improving the prediction of dependent variable. Therefore, suppressor 
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variables are actually advantageous to be included in the regression models (Lancaster, 

1999) to approach the statistically significant results. For example, Oden and his 

colleagues (2000) tried to illustrate the long-term benefits associated with the Head Start 

Program, a national foremost federally funded provider of educational services to young 

children in poverty since 1965. In the studies before theirs, few benefits were found 

statistically significant. However, in their study, they found that the Head Start group was 

slightly lower in Social Economic Status (SES) than the non-Head Start comparison 

group. After adjusting SES in the analysis, the direction and pattern of results suggests 

possible long-term benefits, such as girls who had attended Head Start were significantly 

more likely to graduate high school or earn a GED and significantly less likely to have 

been arrested than those in the non-Head Start comparison group. In this case, SES was 

suppressing the effect of the Head Start program to improve the prediction of the results 

and provided the rationale and theoretical explanation for the findings. Based on this 

finding, including the suppressor variable (SES) derived more accurate estimations of the 

treatment effects. However, not all the effects of suppressor variables can be interpreted 

appropriately with theoretical supports in all the studies. When including suppressor 

variables in the models without the supportive rationales and theories, it is less likely that 

accurate estimations can be generated because the selection bias may not be removed, but 

be promoted, by suppressor variables. Although researchers had demonstrated how the 

suppressors variables affect the estimations in the regression models, no research directly 

addresses how suppressor variables affect the estimations of causal effects when using the 

PS methods. 

 In this dissertation, examples of classical and reciprocal suppression are 
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constructed to demonstrate how the classical suppressor and the reciprocal suppressor 

suppressing on the treatment indicators affect the estimations of causal effects as one of 

covariates in the PS models separately. Classical suppression is the most specialized 

definition of suppression and reciprocal suppression is the most general one. I am using 

classical suppression because applying the rule of selecting covariates in the PS model, 

people should exclude a classical suppressor variable in the PS analysis which is 

uncorrelated or slightly correlated to the dependent variable. However, it indeed increases 

the predictive validity in the regression model and including it in the regression models 

has been suggested in some studies. By using the example of classical suppression, the 

difference of estimating the treatment effect between the regression models and the PS 

models can be easily detected. Reciprocal suppression cases are provided because they 

are more likely to occur in practical educational research settings and show how one 

suppressor suppresses the other. This example will apply a general concept of how a 

suppressor affects the estimations of causal effect by using PS methods. More 

specifically, an example with an opposite sign of the estimated coefficient of the 

treatment indicator compared to its correlation with the dependent variable after 

including the reciprocal suppressor variable is provided. For both classical and reciprocal 

suppressors, the predictive validity of treatment indicator increases while including them 

in the regression models. To approach these goals, this study provides examples of 

classical and reciprocal suppressions by using an evolutionary algorithm to simulate 10 

data sets for each example. The examples have to satisfy the corresponding constraints 

aptly. The purpose of simulations is not to generalize to the population of suppressions, 

but to create specific cases of suppression. As a result, in the processes of simulations, I 
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select only the simulated data sets which fit the given constraints precisely as given in the 

examples. In each data set, 1,000 subjects are generated.  

Moreover, to test whether the unconfoundedness assumption is fulfilled at 

different levels and how that affects the estimates of the treatment effect, a set of 

covariates, P’s, are derived from the residuals of simple linear regressions with the 

treatment indicator as the only predictor for each data set. Different covariates, P’s, are 

effective to remove the selection bias by explaining variance in the outcome at different 

levels. With the P more correlated with the outcome, the unconfoundedness is more likely 

to be fulfilled.  

This dissertation addresses whether the predictive validity of a treatment indicator 

increases by using the PS methods including PS as a covariate, PS weighting, and PS 

matching models as well as in the regression models while including the suppressor 

variable as a covariate. I am also interested in how the estimations of the treatment effect 

differ among the PS and regression models and whether different types of suppressions 

will lead to different results. Moreover, this study addresses how the estimations of the 

treatment effects vary in the models while controlling different covariates, P’s, which are 

assumed to remove the selection bias in different levels effectively. 

This dissertation is not only doing model comparisons to see how the estimations of 

the causal effects differ by using PS as a covariate, PS weighting, and PS matching 

methods and how the inferences differ in regression and PS models with different sets of 

covariates, but is more importantly trying to generate a guideline of how to approach a 

more accurate estimation of the causal effect when a suppressor variable is involved in 

the estimating process.  
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Chapter 2 

THEORETICAL FRAMEWORK 

 

Theoretical Approach for Causal Effect 

In causal studies, the main question of interest is what would have happened if an 

individual exposed to one treatment condition had been exposed to a different one. As 

Rubin (1974) defined, a causal effect is the difference between what would have 

happened to the individual in one treatment group and what would have happened if he or 

she had instead been exposed to the control group. However, although the definition 

provides a clear theoretical formulation of what a causal effect is, it cannot be tested 

empirically because we cannot observe what happened to an individual in the treatment 

condition and in the control condition at the same time. This is referred to as the 

fundamental problem of causal inference analysis (Holland, 1986). 

Holland (1986) identified two general approaches to solving this problem based on 

Rubin’s model: the scientific solution and the statistical solution. In the scientific 

solution, two assumptions are made. The first is temporal stability, an assumption that the 

constancy of the response stays stable over time. The second is causal transience, which 

means that the effect of a prior treatment is transient and does not affect what happens to 

an individual in a later treatment. Based on these two assumptions, for example, one can 

be in the control group at time one and in the treatment group at time two. The causal 

effect can be the difference between the outcome of an individual in time one and the 

outcome of him or her in time two. However, it is difficult to keep these two assumptions 

when implementing a scientific solution in educational studies. For example, to test the 

effects of two different curricula on students’ achievement, it is hard to assume that the 
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effect of one curriculum at time one does not affect that of the other curriculum at time 

two. Also, the development of maturity over time may violate the assumption of temporal 

stability. 

In the statistical solution, a weaker assumption of unit homogeneity is made to solve 

these issues. The unit homogeneity assumption implies that if the units have identical 

values in all relative respects, then people can expect they will also have identical values 

in the outcome value. As a result, when an individual in a treatment group has the same 

values in all relative respects as the other one in a control group, the causal effect can be 

the difference between the outcomes in the treatment group and in the control group. 

However, in the empirical studies, whether the unit homogeneity assumption is achieved 

or not is more difficult to define. A weaker assumption, unconfoundedness, is the most 

widely used assumption for different methods for estimating causal effects in 

observational studies, which is introduced by Rosenbaum and Rubin (1983b). This 

assumption requires that there are no unobserved respects associated both with the 

treatment and the outcome after being conditional on observed covariates. As a result, 

while designing the studies to test causal effects, researchers need to collect all possible 

variables in order to make the unconfoundedness assumption more likely to be fulfilled. 

 

Randomized Experimental Design and Quasi-Experimental Design 

Randomized experimental design is based on randomized controlled trial (RCT). 

RCT provides the most reliable form of scientific evidence because it reduces sample 

bias, especially with large sample size. Under RCT, units are randomly assigned to either 

control or treatment groups. This implies that subgroups are non-confounding and that no 
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interaction and consistency correspond to homogeneity. As a result, the unit homogeneity 

assumption can be achieved. This kind of research design ensures that the control and 

treatment groups are statistically equivalent for a population of individuals, especially in 

a large sample. The estimated treatment effect is the average difference of outcomes 

between treatment and control groups. However, randomized controlled trials are not 

feasible in some educational settings. First, the cost of RCT is more expensive as well as 

other large sample designs. Second, the ethical and logistical issues are hard to overcome 

especially in educational situations. Those limitations drive researchers to use quasi-

experimental designs.  

Quasi-experimental designs are used when the random assignment is impossible or 

impractical. Under quasi-experimental design, control and treatment groups may be not 

statistically equivalent because of selection bias and non-confounding. As a result, the 

unit homogeneity assumption is violated and therefore the estimate of causal effect is 

biased and misleading. In order to strengthen the unit homogeneity assumption and to 

achieve the unconfoundedness assumption, a set of variables, especially those related to 

the outcome variables, needs to be collected and controlled as the covariates in the 

statistical methods to estimate the unbiased causal effects which have no difference from 

the true effects theoretically. A number of approaches can be used to strengthen the unit 

homogeneity assumption under quasi-experimental designs. PS methods are becoming 

one of the popular standard techniques to deal with the disadvantage of quasi-

experimental designs by adopting the unconfoundedness assumption. Three types of PS 

methods: PS as a covariate, PS weighting, and PS matching, are explained and applied in 

this dissertation. 
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Estimating Causal Effects Using Propensity Score Methods 

 PS analysis was first introduced by Rosenbaum and Rubin (1983a). The PS is 

often unobserved but can be estimated by the predicted probability of receiving a 

treatment for an individual conditional on all the observed covariates. The PS for an 

individual, defined as the conditional probability of being treated on the given covariates, 

has been used to reduce bias in observational studies. In theory, individuals with similar 

PS’s in the treatment group can be compared to those in the control group. The idea is 

that people with similar PS’s are likely to have the similar characteristics and motivation 

in a treatment condition. Moreover, researchers can assume that they are more likely to 

behave in a similar way under the same conditions. Generally, the actual PS’s are not 

known in social science studies. When the PS’s are unknown, the estimated PS’s can be 

computed by using logistic regression when there are two treatment conditions (i.e., 

treatment vs. control). A logistic regression model is used with a large number of 

covariates as predictors and a treatment indicator with values of zero or one as the 

dependent variable. The predicted values from the logistic regression model are the PS’s 

for individuals. There is an important assumption under the PS analysis, 

unconfoundedness, which requires that after conditioning on observed covariates there 

are no unobserved variables that are associated both with the treatment assignment and 

with the dependent variable. Meaning, with the same value of PS, covariates are 

independent of the treatment indicator, and thus an unbiased estimation of the treatment 

effect can be obtained. To estimate the treatment effects on the dependent variables, 

different types of methods such as PS as a covariate, PS weighting, and PS matching 

incorporating the estimated PS’s can be applied and are introduced in following sections. 
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 PS as a covariate. There are several different methods of using PS’s to estimate 

treatment effects. The first method introduced here, PS as a covariance, directly uses the 

PS’s as a covariate which is the only covariate in the regression model with a treatment 

indicator (Heckman & Robb, 1986). With the continuous dependent variable, the 

estimated coefficient of the treatment indicator is simply the average of the differences in 

predicted values of dependent variable for the treatment and control groups. That is the 

impact of the treatment effect. When the dependent values of treatment and control 

groups are parallel, using PS as a covariate can reduce the bias of the estimation of the 

treatment effect (Roseman, 1994). Another way to apply the PS’s in the regression model 

as a covariate is not only controlling the PS’s as the covariate but also a subset of the 

covariates used to estimate the PS’s in the regression model. This method may allow the 

diagnostic checks on the fit of the model to be more reliable than using all the covariates 

in the model.    

There are some limitations of using this method. If the dependent values of 

treatment and control groups are nonlinear or nonparallel, the treatment effects could be 

estimated incorrectly (Rubin, 1979). Moreover, although this method can be simply used, 

it is not much more efficient than a multiple regression model adjusting for all observed 

covariates. This means the estimations of the treatment effects by using PS covariance 

adjustment model and by using a multiple regression model should be the same whenever 

the same sample covariance matrix is used for both the covariance adjustment and the 

discriminant analysis (Rosenbaum & Rubin, 1983b). Thus, comparing the estimated 

treatment effects of PS as a covariate models to the estimated treatment effects of 

multiple regression models with and without a suppressor variable should contrarily 
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provide precise information to detect the influence of a suppressor variable.   

Because of the addressed limitations, researchers sometimes use this method as an 

additional adjustment under a randomized experimental design. Morrow and her 

colleagues (2010) tried to evaluate the Starting Early Starting Smart (SESS) national 

initiative to integrate behavioral health services into the pediatric health care setting for 

families with young children. They utilized longitudinal data collected from five pediatric 

care sites. In their study, although families were randomly assigned to either the SESS 

program or a standard care comparison group, 10 of 34 baseline variables were not 

equivalent between the SESS intervention and comparison groups including child gender, 

child race, primary language, household size, family substance use history, family mental 

health history, family criminal justice history, caregiver psychological distress BSI total 

score, total family service utilization, and perceived service barriers. To adjust group 

nonequivalence, these l0 variables were used in a logistic regression model to predict the 

PS for each child for being in the SESS program. In their primary outcome analyses, they 

retained the PS as a covariate. Their results demonstrated the success of the SESS 

program in coordinating and improving access to behavioral health services for high-risk 

caregivers within the pediatric health care setting on the behavioral health care needs of 

families with young children. 

 

 PS weighting. The PS weighting method uses the PS’s to generate the sampling 

weights and are then applied in the causal model (Lunceford & Davidian, 2004; Rubins, 

1997, 2001). Two different types of weights can be generated from the PS’s, depending 

on whether an average treatment (ATE) or the average treatment effect for the treated 
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(ATT) is desired. For estimating ATE, weights are defined as 
1

𝑃𝑆̂
 for the treatment group 

(Z = 1) and as 
1

1−𝑃𝑆̂
 for the control group (Z = 0) where 𝑃𝑆̂ are the estimated PS’s. For 

estimating ATT, weights are defined as 1 for the treatment group and as 
𝑃𝑆̂

1−𝑃𝑆̂
 for the 

control group. After weighting, individuals who are more likely to receive the treatment 

condition statistically but are in the control group in reality, and those who are more 

likely to be in the control group statistically, yet receive the treatment condition instead 

gain more weights in the analysis. Through weighting, the sample can be more 

representative of the population of interest. This method may increase the sample size 

efficiently and creates a pseudo-population, but can be solved by using standardized 

weights instead. Also, for individuals with PS’s close to zero or one, the weights can be 

large. As a result, the estimations of the treatment effects are easily influenced by those 

individuals with high variance (Rubin, 2001; Kang & Schafer, 2007; Schafer & Kang, 

2008), which may lead to the biased estimations. Two possible solutions for this problem 

are to improve the specification of propensity score models, and to diminish the values of 

those extreme weights (Potter, 1993; Scharfstein, Rotnitzky, & Robins, 1999). 

 Frank and his colleagues (2008) used the PS weighting method to test the effect of 

the National Board for Professional Teaching Standards (NBPTS) certification on the 

number of colleagues a teacher helps with instructional matters. Data was collected from 

the teachers in 47 elementary schools in two states. In their study, propensity scores were 

estimated by a logistic regression model with multiple covariates related to NBPTS 

certification on whether the teacher became NBPTS-certified or not. Then, weights for 
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estimating ATE and ATT were both conducted for the individuals. After applying the 

weights generated from the PS’s in the sample, there were no statistically significant 

differences between NBPTS-certified teachers and non-NBPTS-certified teachers on the 

covariates. This finding indicated that the PS weighting method achieved balance for the 

groups of NBPTS-certified and non-NBPTS-certified teachers. By using PS weighting 

for the outcome analyses, they found that NBPTS-certified teachers helped more 

colleagues than non-NBPTS-certified teachers with instructional matters significantly for 

both ATE and ATT models.  

 

 PS matching. The PS matching method matches individuals in the treatment 

group to those in the control group on their PS’s as closely as possible to be a pair. A new 

sample of pairs is created to obtain approximately similar probabilities of being assigned 

to the treatment group to reduce the selection bias. The overall treatment effect is 

estimated as the average of the differences in outcomes within all pairs. Using matching, 

people need to decide what the acceptable number of matches is, because not all 

individuals can be matched on similar PS’s, and thus some individuals may be lost so that 

sample size and power may also reduce. An optimal matching algorithm often takes more 

time than a greedy matching one. Variance can be decreasing by a larger sample size, 

however, matching individuals on distinct PS’s increases bias. Therefore, balancing bias 

and variance is an important concern in the PS matching method. Fortunately, different 

matching schemes have been widely studied in theory and practice (Abadie & Imbens, 

2006; Gu & Rosenbaum, 1993; Rosenbaum, 1989, 1995, 2002; Rosenbaum & Rubin, 

1985) to solve this problem. Different matching methods can be used in different settings 
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to balance bias and variance. Two types of matching methods, greedy matching and 

optimal matching, are often used. For greedy matching, it matches the pairs with the 

closet PS’s and since the decisions of matching pairs have made, they will not change 

again. For optimal matching, through the algorithm, the decisions of matching pairs will 

be reconsidered in the later matching processes and be revised to achieve optimal 

matching. Rosenbaum and Rubin (1985) addressed that nearest neighbor available 

matching on the estimated propensity score under the greedy matching method is the 

easiest technique in terms of computational considerations.  In this study, nearest 

neighbor matching method is applied. Moreover, nearest neighbor matching within a 

caliper method is also used to overcome the problem of inaccurate matching when the 

absolute difference of PS’s is too large to avoid bias. 

 Henry, Gordon, and Rickman (2006) addressed a study to compare the quality and 

outcomes of two early education policies, federal Head Start programs and state-

subsidized prekindergarten programs, by using PS matching techniques. They matched 4-

year-old participants of the Head Start program in Georgia to those who were eligible for 

Head Start but who attended the state prekindergarten program in Georgia by their PS’s. 

The multiple covariates were used to convert propensity scores by using a logit model 

including the characteristics related to the child (e.g., sex, race, age), their family (e.g., 

parent’s education, marital status), their school (e.g., sex, race of class) and their county 

of residence (e.g., race, income distributions). After matching, there were no statistical 

differences between the two groups at the beginning of their preschool year on their 

abilities of oral and written language, letter-word and applied problems. But by the 

beginning of kindergarten the children attending the state prekindergarten program posted 
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higher developmental outcomes.     

     

Definitions and Types of Suppressions 

 Three types of suppressions, classical suppression, negative suppression, and 

reciprocal suppression, are introduced in this study. Classical suppression is the strictest 

definition of suppression and reciprocal suppression is the most general one, which can 

imply negative suppression. 

 

 Classical suppression. The concept of suppression is important but elusive. This 

phenomenon was first introduced by Horst (1941), who defined a suppressor variable as a 

predictor that has zero or near-zero correlation (bivariate correlation) with the dependent 

variable while paradoxically still contributing predictive validity in the regression model. 

It infers that a suppressor variable (1) is uncorrelated or slightly correlated to the 

dependent variable, (2) is correlated to the other predictors (which it suppresses), and (3) 

increases R2, the variance of dependent variable explained. This was labeled as “classical 

suppression” which is also named as “traditional suppression” by Conger (1974).  

In practice, variables seldom have a zero or near-zero correlation with the 

dependent variable. Therefore, variables which have very small correlations with the 

dependent variable can also be considered as classical suppressor variables (Cohen & 

Cohen, 1975).  Generally, the usefulness of a given predictor can be detected by testing 

the impact of that predictor on explaining the variance in the dependent variable. 

However, the problem of suppressor variables is that the pure impact of the predictor on 

the dependent variable cannot be revealed by its correlation but by its estimated 
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coefficient in the regression model while including the suppressor variables. If people 

select covariates in the regression model by only considering whether the variables have 

some correlations with the dependent variable, classical suppressor variables can be 

disregarded easily. Without including suppressor variables, the overall predictive validity 

can be underestimated.   

 An example of classical suppression in empirical study was provided by Martz 

(2003). In that study, paid-work experience was noted as a suppressor variable, including 

several psychological and demographic independent variables, predicting employment 

among community college students with disabilities. Although correlation of paid-work 

experience with employment was not significant, when including paid-work experience 

in the model with other independent variables, the R2 increased by three times comparing 

to the model excluding paid-work experience. Paid-work experience acted as a 

suppressor variable so that more variance was explained by other independent variables. 

Figure 1 is a Venn diagram which graphically illustrates the operation of a classical 

suppression case. 

 

 Classical suppressor variable vs. instrumental variable. Although a classical 

suppressor variable shares similar characteristics with an instrumental variable, such as it 

is uncorrelated or slightly correlated with the outcome variable and it is correlated with 

the other predictor in the model, people can still distinguish them by the basic definitions 

and rationale. The purpose of using an instrumental variable is to solve the problem of an 

endogenous predictor, which means that the predictor is correlated with the error in the 

regression model or correlated with some unobserved confounding variables, also known 
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as omitted variables. Including an instrumental variable in the model can remove the bias 

caused from the endogenous variables correlated with residuals of the model and omitted 

variables, the unobserved variables which the outcome is conditional on (see Appendix 

B). Based on the definition, an instrumental variable should be uncorrelated with the 

error of the regression model with the endogenous variable as a predictor. However, the 

purpose of including a classical suppressor variable is not defined to remove the bias. A 

classical suppressor variable is not necessary to be uncorrelated with the error in the 

regression model. A main criterion to define a variable as a suppressor is that the 

predictive validity (R2) can be increased when a suppressor is included in the model 

which is not necessary to be obtained with an instrumental variable. As a result, when a 

classical suppressor variable can remove the bias for the endogenous variables or omitted 

variables, it can be a special case of instrumental variable; when an instrumental variable 

can increase the predictive validity, it can be a special case of classical suppressor.   
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Figure 1. Classical Suppression 

Y is the dependent variable, X is the suppressor variable, and Z is the predictor variable 

suppressed by X. 𝑟𝑦𝑥 is the bivariate correlation between Y and X, 𝑟𝑧𝑥 is the bivariate 

correlation between Z and X, and 𝑟𝑦𝑧 is the bivariate correlation between Y and Z. 𝛽𝑥 is 

the standardized coefficient of X in the regression model with both X and Z as predictors. 
  

R2 is variance explained in the regression model with both X and Z as predictors and Y as 

the outcome. For interpretation of the references to color in this and all other figures, the 

reader is referred to the electronic version of this dissertation. 

 

 

Negative suppression. The issue of suppression was not widely recognized until 

a more general definition of a suppressor variable was provided by Lubin (1957) and 

Darlington (1968). Darlington defined suppression as occurring when all predictor 

variables have positive pairwise correlations with each other and with the dependent 

variable, but the suppressor variable receives a negative estimated coefficient in the 

regression model. This condition was extended to include the situation in which the 

correlation between some of the predictor variables was negative (Conger, 1974). This 

kind of suppression was labeled as “negative suppression” by Conger (1974) and also 

named as “net suppression” by Cohen and Cohen (1975), when not only the sign of its 
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correlation with the dependent variable differs from that of the estimated coefficient, but 

predictive power increases in the regression model through removing of irrelevant 

variance in other predictor variables. Therefore, a negative suppressor variable is a 

predictor that (1) has a positive correlation with the dependent variable, (2) is correlated 

with the other predictor no matter whether it is positive- or negative-correlated, (3) has a 

negative estimated coefficient in the regression model, and (4) still increases R2 the 

variance of the dependent variable explained. However, the problem of a negative 

suppressor variable is that the effect of it can be critical to note and interpret because of 

the inconsistency between its signs of correlation and coefficient.   

Walker (2003) found that the variable for level of education attained acted as a 

negative suppressor variable predicting administrators’ salaries at both public and private 

institutions with other independent variables. In this case, level of education attained had 

a small but positive correlation with administrators’ salaries; however, including it in the 

multiple regression model, its coefficient not only became statistically significant but was 

also negative. The explained variance of administrators’ salaries was also increased 

significantly in the model with level of education attained compared to the model without 

it. Figure 2 is a Venn diagram which graphically illustrates the operation of a negative 

suppression case. 
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Figure 2. Negative Suppression 

Y is the dependent variable, X is the suppressor variable, and Z is the predictor variable 

suppressed by X. 𝑟𝑦𝑥 is the bivariate correlation between Y and X, 𝑟𝑧𝑥 is the bivariate 

correlation between Z and X, and 𝑟𝑦𝑧 is the bivariate correlation between Y and Z. 𝛽𝑥 

and 𝛽𝑧 are the standardized coefficients of X and Z respectively in the regression model 

with both X and Z as predictors. R2 is variance explained in the regression model with 

both X and Z as predictors and Y as the outcome. 

 

 

 Reciprocal suppression. It is commonly known that the values of the estimated 

coefficients of predictor variables in the regression model can vary when other variables 

are included. With the addition of a new predictor variable, the estimated coefficients of 

the originally existing variables may all change and some of them may change 

significantly. Therefore, a suppressor variable is not uniquely defined by its own 

estimated coefficient but rather generically through its impact on the coefficients given to 

all the other predictor variables (Conger, 1974), especially to the treatment indicator in 

this study. By considering context idea and subsuming all previous typologies, an even 
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more general definition of a suppressor was defined, reciprocal suppression (Cohen and 

Cohen, 1975; Conger, 1974; Lutz, 1983). Reciprocal suppression occurs when the two 

predictor variables mutually suppress irrelevant variance in each other (Lutz, 1983). Their 

real effects on the dependent variable are suppressing by each other and can be larger or 

possibly of opposite sign compared to their correlations with the dependent variable. 

Under this definition, any variable in the regression model can be both a predictor and a 

suppressor (Lord & Novick, 1974). The reciprocal suppression can be detected when the 

R2 in the regression model with the two predictor variables is larger than the sum of their 

squared correlations with the dependent variable (Matthews & Martin, 1992). The 

correlation of a reciprocal suppressor variable with a suppressed variable may be high 

and even statistically significant. Although two independent variables may be highly 

correlated and the estimated coefficients may also change dramatically under both a 

reciprocal suppression condition and a multicollinearity condition in a regression model, 

the predictive validity in the model with multicollinearity may not increase as it may with 

reciprocal suppression. Also, theoretically, multicollinearity happens when two predictors 

measure the same thing but this is not why suppression happens. 

 Paulhus, Robins, Trzesniewski, and Tracy (2004) found an example of reciprocal 

suppression. In the study, researchers used the variables of shame and guilt to predict 

aggression of undergraduate students. Although both variables of shame and guilt had 

positive correlations with aggression, the effect of shame on aggression increased and 

became negative while including guilt in the regression model. R2 also increased 

dramatically when guilt was added in the model. Figure 3 is a Venn diagram that 

graphically illustrates the operation of a reciprocal suppression case. 
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Figure 3. Reciprocal Suppression 

Y is the dependent variable, X is the suppressor variable, and Z is the predictor variable 

suppressed by X. 𝑟𝑦𝑥 is the bivariate correlation between Y and X, 𝑟𝑧𝑥 is the bivariate 

correlation between Z and X, and 𝑟𝑦𝑧 is the bivariate correlation between Y and Z. 𝛽𝑥 

and 𝛽𝑧 are the standardized coefficients of X and Z respectively in the regression model 

with both X and Z as predictors. R2 is variance explained in the regression model with 

both X and Z as predictors and Y as the outcome. 

 

 

 Reciprocal suppressor variable vs. mediator variable. In causal study, a mediator 

variable is used to explain the mediational effect underlying a causal relationship between 

an independent variable and a dependent variable. Rather than a direct causal relationship 

between the independent variable and the dependent variable, a mediator variable is 

caused by the independent variable and then causes the dependent variable in turn to 

explore the underlying mechanism or process. In a mediation model, the estimated causal 

effect between the independent variable and the dependent variable is dispersed through 

the pathway of the mediator variable. Much like the mediator variable, although a 

 
 

 

|𝑟𝑦𝑥| > 0 

|𝑟𝑧𝑥| > 0 

|𝛽𝑥| > |𝑟𝑦𝑥| 

X 

|𝑟𝑦𝑧| > 0 

|𝛽𝑧| > |𝑟𝑦𝑧| 

Z 

Y 

 

𝑅2 > 𝑟𝑦𝑧
2 +𝑟𝑦𝑥

2  



23 

 

reciprocal suppressor variable may be related with both independent variable and 

dependent variable, it is not necessary to have causal relationships with them. A 

reciprocal suppressor is not defined to explore the underlying relationship between the 

dependent variable and the independent variable. Moreover, the inclusion of a mediator 

variable always conducts a smaller estimated causal effect in the mediation model than 

the directly causal effect between the independent variable and dependent variable 

without the mediator variable. Unlike the mediational effect caused by the mediator 

variable, which may decrease the predictive validity of the independent variable on the 

dependent variable, the reciprocal suppressor increases the predictive validity.  
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Chapter 3 

METHODS 

 

Data Simulation 

In this study, two examples, classical suppression and reciprocal suppression, are 

provided through simulations. The goal of the simulations is to provide the specific cases 

of the suppressions but not to simulate the population of the suppressions to give general 

inference. As a result, particular constraints are used to conduct the examples. In each 

example, 10 simulated data sets are selected through simulations only when they satisfy 

the constraints precisely. Because the data sets of the examples do not have to represent 

the population of classical or reciprocal suppressions but just to show specific cases of 

them, 10 precise data sets for each example are adequate to explain how the estimations 

of causal effects be affected by suppressions. In each data set, 1,000 subjects are 

simulated. The outcome Y, treatment indicator Z, and suppressor X are generated where 

500 subjects have Z = 1 for the treatment group and the other 500 subjects have Z = 0 for 

the control group. The data sets for the example of classical suppression have to satisfy 

the following conditions as well as the research interests:  

 The correlation of the outcome Y and the treatment indicator Z, 𝑟𝑦𝑧, is not 

statistically significant.  

 The correlation of Y and suppressor X, 𝑟𝑦𝑥, is close to zero.  

 The R2 in the regression model while including both Z and X as predictors is 

larger than the sum of their squared correlations with Y.  

 Five covariates are randomly selected.  
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The value of R2 can be computed by the sum of the products of each predictor’s 

standardized coefficient and it’s correlation with Y. (𝑅2 = |𝛽𝑧| × 𝑟𝑦𝑧 + |𝛽𝑥| ×

𝑟𝑦𝑥  > 𝑟𝑦𝑧
2 + 𝑟𝑦𝑥

2
). Only when Z and X are independent with each other does       

𝑅2 =  𝑟𝑦𝑧
2 + 𝑟𝑦𝑥

2
. The specific constraints are set in the simulation program for 

classical suppression through a correlation matrix of Y, Z, and X as: 

 Y Z X 

Y --   

Z .030 --  

X -.050 .600  -- 

 

and by the unstandardized regression coefficients as: 

𝑌 = 𝐵0 + 𝐵1𝑍 + 𝜀, where 𝐵1 = 2 

𝑌 = 𝐵0 + 𝐵1𝑍 + 𝐵2𝑋 + 𝜀, where 𝐵1 = 7 and 𝐵2 = 2 

The values of 7 and 2 were chosen for 𝐵1’s such that the results of simulations can 

satisfy all the conditions above and those coefficients are statistically significant in 

regression models.  

The data sets for the example of reciprocal suppression have to satisfy the 

following conditions as well as the research interests, which are:  

 The absolute value of correlation of Y and Z is not zero (|𝑟𝑦𝑧| > 0).  

 The correlation of Z and X,  𝑟𝑧𝑥 is statistically significant.  

 The correlation of Y and X,  𝑟𝑦𝑥 is statistically significant. 
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 The R2 in the regression model while including both Z and X as predictors 

is larger than the sum of their squared correlations with Y  

(𝑅2 > 𝑟𝑦𝑥
2 + 𝑟𝑦𝑧

2
).  

 The beta coefficient of regressing Z on Y is significant with an opposite 

sign to its correlation while including X in the model 

 Five covariates are randomly selected. 

The specific constraints are set in the simulation program for reciprocal suppression 

through the correlation matrix of Y, Z and X which is: 

 Y Z X 

Y --   

Z .200 --  

X .600 .700  -- 

 

and by the unstandardized regression coefficients defined as: 

𝑌 = 𝐵0 + 𝐵1𝑍 + 𝜀, where 𝐵1 = 2 

𝑌 = 𝐵0 + 𝐵1𝑍 + 𝐵2𝑋 + 𝜀, where 𝐵1 = −4 and 𝐵2 = 2 

The values of -4 and 2 were chosen for 𝐵1’s such that the results of simulations can 

satisfy all the conditions above and both coefficients are statistically significant in 

regression models. Under the definition of reciprocal suppression, both Z and X can be 

suppressor variables. In this case, X and Z suppress each other. Z can be note as negative 

suppressor where the correlation between Z and Y is positive but the coefficient of Z on Y 

is negative after controlling X in the regression model. 

A versatile method, evolutionary algorithm, was adopted to simulate the data sets. 

For each data set, Y, Z, and X are generated according to the aforementioned constraints 
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based on which example they belong to. The simulations try to have the minimum 

deviations from desired conditions. The evolution algorithm, a relatively new member of 

the algorithms for solving nonlinear optimization problems, can potentially offer 

approximate solutions very efficiently (Eiben & Smith, 2007). As its name implies, the 

evolution algorithm is inspired by the Darwinian theory of evolution: in nature a 

population of organisms within some environment with limited resources, competing 

with each other for those resources, causes natural selection. This in turn causes a rise in 

the fitness of the population. The evolution algorithm is designed to mimic the evolution 

process and apply it to optimization problems. Nature's seemingly endless creativity in 

designing complex life forms to fit virtually every imaginable environment through 

nothing but the simple process of evolution is often cited as the evidence for the potential 

effectiveness of the evolutionary algorithm. 

   In this particular implementation, the population can be considered as a set of 

500 triplets of the form (Y, Z, X) where Y and X are random real number vectors from 0 

to 100 and Z is a vector of 0 or 1. Each triple can be considered as a data set with 

variables of X, Z, and Y. The population evolves over time in discrete generations with 

each generation being generated from the previous generation in two stages: variation and 

selection. In the variation stage, for an individual, each entry of X and Y is perturbed by 

adding a randomly selected real number to it. This random number is selected based on a 

Gaussian distribution with a mean of 0 and certain prescribed standard deviation. Entries 

of Z, however, remain fixed with exactly 500 entries of 0 and 500 entries of 1. The 

collection of perturbed individuals together with existing individuals are called the 

children of the current generation. 1,000 children are produced at first, and 500 of them 
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are selected as the next generation based on the algorithm in the next selection stage. In 

the selection stage, the fitness of each individual (Y, Z, X) is evaluated. The fitness which 

is defined to be how well Y, Z, and X satisfy the constraints addressed above in each 

example is the sum of the squared of differences of simulated values and corresponding 

constraints. The child with a smaller value of the fitness means that the parameters of that 

child are closer to the set constraints. The next generation is selected from the children. 

The probability that a child is selected to be a part of the next generation is proportional 

to its fitness. In the implementation, the fitness of children is ranked first and the best fit 

child is given the rank of zero. The survival probability for each child is calculated by 

using its rank as the power of the defined survival probability, .95. A real number 

between zero and one is randomly selected from a uniform distribution as an index to 

decide whether a child survives or not. When the index is less than or equal to a child’s 

survival probability, that child survives and remains in the population. The selection 

process starts with the child with the highest fitness. When the total number of selected 

children reaches 500, the algorithm stops and the new generation has been created. If less 

than 500 children survive, the absent individuals were created by cloning the child with 

rank zero. Each iteration represents the procession from one generation to the next. 

Throughout this process, the children with better fitness have a higher chance of being 

included in the next generation.  

Based upon my experimentations, setting a smaller number of populations 

requires less iteration time for each generation than a larger number; however, the fitness 

would not have substantial improvement after several hundred iterations. Even with an 

extremely large number of iterations, the fitness would not be good enough. Therefore, 



29 

 

the population is set with a larger number in the simulation so that fewer iterations are 

required to conduct the data set with a good enough fitness. For the classical suppression, 

about 9,000 iterations are run and take about 10 hours for each completed simulation. For 

the reciprocal suppression, about 5,000 iterations are run and take about 6 hours for each 

completed simulation. Only the best child with the smallest value of the fitness is selected 

as one of the conducted data sets. The processes are repeated until 10 data sets are 

conducted for each example of classical and reciprocal suppressions. Although repeating 

the processes takes much more time, it secures that all the selected data sets are precise 

enough to the constraints. A manual step is used during the processes. The population was 

discarded manually if the fitness did not have substantial improvement after the first 

1,000 iterations. This is done because that the first randomly selected generation may not 

be appropriate to create the desired example. Based on my failure experiments, if the 

fitness did not improve substantially after the first 1,000 iterations, no matter how many 

iterations were run, the fitness would not be good enough to represent the example of the 

suppression. The program is written in Python programing language version 2.7 (see 

Appendix A). Five covariates are randomly selected for each example.  

 

Testing the Validity of Simulated Data Sets 

 To test the validity of simulated examples of classical and reciprocal suppressions, 

first, the correlations of treatment indicator Z and suppressor X with outcome Y and the 

R2 of regressing Z and X on Y are estimated for each simulated data set to see whether 

each data set satisfies the condition of 𝑅2 > 𝑟𝑦𝑥
2 + 𝑟𝑦𝑧

2
. In the example of classical 

suppression, 𝑟𝑦𝑧 should be not statistically significant and 𝑟𝑦𝑥 should be close to zero. 
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The correlations, 𝑟𝑦𝑧  and 𝑟𝑦𝑥, should both be positively significant in the example of 

reciprocal suppression. Second, to detect whether X suppresses Z validly, two regression 

models are run. Model 1 regresses only Z on Y and Model 2 regresses both Z and X on Y 

 

                                              𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀                                                   (1) 

                                𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝜀                                           (2)             

 

For each simulated data set in the example of classical suppression, the estimated 

treatment effect 𝛽1 should be non-significant in Model 1 but statistically significant in 

Model 2. In the example of reciprocal suppression 𝛽1 should be positively statistically 

significant in Model 1 but negatively statistically significant in Model 2. All simulated 

data sets should satisfy the aforementioned conditions for each example. 

 

Estimating the Causal Effect by Regression and PS Analyses 

    In this study, the causal effect of treatment indicator Z is estimated by regression 

models and PS methods including PS as a covariate, PS weighting, and PS matching 

models for both examples of classical and reciprocal suppressions.  

 Based on the rule of selecting variables in the PS model, all variables that are 

correlated with the dependent variable should be included in the model to estimate a 

causal effect. In some causal inference analyses, including a predictor such as pre-test 

scores or other related test scores as a confounding variable to estimate the intervention 

effect on post-test scores is a key method to eliminate confoundedness. Also, some 

variables that have certain relationships with the outcome and have been proved in 
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previous studies need to be included in the models to address the unconfoundedness 

assumptions. In order to determine whether the estimations of the treatment effect differ 

when the unconfoundedness is fulfilled at different levels, different covariate, P’s, 

correlated with the dependent variable in different degrees are generated. These variables, 

P’s, are computed by applying a non-linear function 𝑃 = 𝑅 + 𝐶 × sin (𝑅) where R is 

composed by the standardized residuals of a simple regression model with Z on Y and 

where C is a constant. Here, R is a fixed vector based on the regression model that 

indicates the unexplained variance of Y after controlling Z. The reason I use the residuals 

from the simple regression model with the only predictor Z to derive P is because the 

estimate from this model is defined as the true treatment effect in this study. Based on the 

function, as C becomes smaller, the correlation between P and R becomes larger. Figure 4 

illustrates the relationships between P and R with different values of C. In this study, 10 

different levels of covariates P’s, P1 to P10 are generated for each selected data set from 

simulations. Including P, which is highly correlated with R in the models, implies that a 

large portion of variance of Y can be explained by P after controlling Z. Under this 

condition, the unconfoundedness assumption is approximately fulfilled, and then the 

estimated coefficient of Z should be unbiased and close to the true treatment effect that I 

defined based on the theory. Moreover, how the estimations of treatment effect differ in 

multiple regression models and the models of PS methods with and without the 

suppressor variable when the unconfoundedness assumption is fulfilled in different levels 

can be tested. By comparing the models with different levels of P’s, the impact of the 

unconfoundedness assumption violation on the estimations of the treatment effects can be 

addressed.
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Figure 4. Graphs of function 𝑃 = 𝑅 + 𝐶 × sin (𝑅). The vertical axis represents P and the horizontal axis represents R.
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Regression. To test the estimate of the treatment effect by the regression method, 

Model 3 regresses Z and covariates Vi on Y. 

 

            𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝜀,           𝑖 = 1, 2, 3, … , 5                         (3) 

 

To test the estimate of the treatment effect conditional on X by the regression method, 

Model 4 regresses Z, X, and Vi on Y. 

  

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝜷′𝟐+𝒊𝑉𝑖 + 𝜀,          𝑖 = 1, 2, 3, … , 5               (4)    

 

To test how covariates, P’s, affect the estimations without suppressor X in regression, the 

following models are analyzed. 

 

      𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃1 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.1)                 

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃2 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.2)  

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃3 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.3)  

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃4 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.4)  

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃5 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.5)  

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃6 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.6)  

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃7 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.7)     

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃8 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.8)     

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃9 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (3.9)     

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃10 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5         (3.10)     
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P1 to P10 can be abbreviated as Pj where j = 1, 2, 3, ….., 10. I will use the abbreviated 

notation for other equations as:  

 

         𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀,      𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5     (3.j)  

 

To test how covariates, P’s, affect the estimations with suppressor X in regression, the 

following models are analyzed. 

                

𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝜷′𝟐+𝒊𝑉𝑖 + 𝛽8𝑃𝑗 + 𝜀,   𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5      (4.j)  

 

PS methods. Because the true PS’s are unknown, logistic regression models are 

used to estimate the PS’s with the binary treatment indicator Z (Z = 1 or 0) as the 

dependent variable. The PS’s are the predicted probabilities of receiving the treatment 

(Z=1) of models. In this study, different PS’s are estimated by using a different set of 

independent variables in the models to see how the estimated treatment effects change 

under different settings. To estimate the PS, PS_C, with only covariates Vi as predictors, 

Model 5 is used. 

 

               

log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝜷′𝒊𝑉𝑖 + 𝜀,     𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5        (5) 

 

To estimate the PS, PS_CX, with suppressor X and covariates Vi as predictors, Model 6 

is used. 
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            Log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽1𝑋 + 𝜷′

𝟏+𝒊
𝑉𝑖 + 𝜀, 

                                                    𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5               (6) 

 

To estimate the PS’s, PS_CPj, with covariates Vi and covariate Pj as predictors, Model 5.1 

to 5.10 are used.  

 

 Log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝜷′

𝒊
𝑉𝑖 + 𝛽6𝑃𝑗 + 𝜀,  

                                                    𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (5.j) 

 

To estimate the PS’s, PS_CXPj, with suppressor X, covariates Vi and covariate Pj as 

predictors, Model 6.1 to 6.10 are used. 

 

         Log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽1𝑋 + 𝜷′

𝟏+𝒊
𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀,       

                                                    𝑖 = 1, 2, 3, 4 𝑎𝑛𝑑 5            (6.j) 

 

To estimate the treatment effect by using PS methods, the PS_C, PS_CX, PS_CPj and 

PS_CXPj are used in PS as a covariate adjustment, PS weighting and PS matching 

models. 
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PS as a covariate. To estimate the treatment effect by using covariate adjustment 

methods, PS is directly used as a covariate which is the only covariate in the regression 

model of treatment indicator Z on outcome Y. Model 7 is used to estimate the treatment 

effect of Z by controlling PS_C which is conditional on covariates Vi only. 

 

                               𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶 + 𝜀                                        (7)  

 

Model 8 is used to estimate the treatment effect of Z by controlling PS_CX which is 

conditional on covariates Vi and suppressor X. 

 

                                    𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋 + 𝜀                                        (8) 

 

Model 7.1 to Model 7.10 are used to estimate the treatment effect of Z by controlling 

PS_CPj where j is from 1 to 10, which is conditional on covariates Vi and covariate Pj. 

 

                           𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑃𝑗 + 𝜀                                      (7.j)  

 

Model 8.1 to Model 8.10 are used to estimate the treatment effect of Z with PS_CXPj 

which is conditional on suppressor X, covariates Vi, and covariate Pj where j varies from 

1 to 10. 

 

                         𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋𝑃𝑗 + 𝜀                                     (8.j)  
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PS Weighting. The PS weighting method uses PS’s to generate sampling weights 

and applying weights to estimate the treatment effect by regressing only treatment 

indicator Z on Y. Two different types of weights are used under PS weighting methods, 

depending on whether the average treatment (ATE) or the average treatment effect for the 

treated (ATT) is desired. ATE is the average difference in expected Y between the 

treatment and control groups. It is defined as 𝐴𝑇𝐸 = 𝐸(𝑌1𝑖|𝑍 = 1) − 𝐸(𝑌0𝑖|𝑍 =

0) where 𝑌1𝑖|𝑍 = 1 is the value of outcome Y for individual i in the treatment group if 

the individual was treated and 𝑌0𝑖|𝑍 = 0 is the value of outcome Y for individual i in 

the control group if the individual was not treated. ATT is defined as 𝐴𝑇𝑇 =

𝐸(𝑌1𝑖|𝑍 = 1) − 𝐸(𝑌0𝑖|𝑍 = 1) where 𝑌0𝑖|𝑍 = 0 is the value of outcome Y for 

individual i in the treatment group if the individual was not treated. The term 𝑌0𝑖|𝑍 = 0 

cannot be observed, only estimated. For estimating ATE, weights are defined as 
1

𝑃𝑆̂
 for 

the treatment group (Z = 1) and as 
1

1−𝑃𝑆̂
 for the control group (Z=0) where 𝑃𝑆̂ are the 

estimated PS’s. For estimating ATT, weights are defined as 1 for the treatment group and 

as 
𝑃𝑆̂

1−𝑃𝑆̂
 for the control group. In this study, both ATE and ATT are estimated; therefore, 

for each generated PS, two types of weights are computed.   

 To solve the problem of extremely large weights which may easily influence the 

estimation of the treatment effect, weight trimming is applied. Lee, Lessler and Stuart 

(2011) suggested trimming the weights at the 95
th

 percentile to improve the estimations 
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when the logistic regression models when PS’s are estimated with the scenario of mild 

non-additivity and non-linearity. In this study, the models to estimate the treatment effect 

with weight trimming at the 95
th

 percentile are used and the models without weight 

trimming are also analyzed. Model 9 is used to estimate both ATE and ATT by using 

different weights generated by each PS with and without weight trimming. 

 

          𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀                                                   (9) 

 

 

PS matching. The PS matching method matches treated to control individuals based 

on the estimated PS. Based on the setting for the simulated data sets, there are equal 

individuals in the control and treatment groups so that all the individuals are matched into 

500 pairs.  

There are various matching methods and the most common matching algorithm is 

the greedy matching. Two types of greedy matching methods are applied here, nearest 

neighbor matching and nearest neighbor matching within a caliper. The nearest neighbor 

matching method matches an individual in the treatment group to that in the control 

group if the absolute difference of PS’s between a treated individual and a control 

individual is the smallest among all possible pairs. This method provides one-to-one 

complete matching but would be inaccurate when the absolute difference of PS’s is too 

large. The nearest neighbor matching within a caliper method matches the individuals by 

the nearest neighbor matching method first and then removes the pairs if their absolute 

difference of PS’s falls outside a set caliper ε. This method can overcome the problem of 
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inaccurate matching when the absolute difference of PS’s is too large. The size of the 

caliper is typically set as 𝜀 ≤  .25𝜎𝑃𝑆, where 𝜎𝑃𝑆 is the standard deviation of the PS 

(Rubin, 1985). In this study, 𝜀 ≤  .25𝜎𝑃𝑆 is applied. ATT’s are estimated after 

applying these two matching methods separately for each PS by Model 10:   

 

            𝜏𝑡̂ =
1

𝑛𝑡
∑ {𝑌𝑘|𝑍 = 1 − 𝑌𝑘̂|𝑍 = 0}𝑛𝑡

𝑘=1                             (10)  

 

where 𝜏𝑡̂  is the estimated ATT, 𝑛𝑡
 is the number of pairs after matching, 𝑌𝑘|𝑍 = 1 is 

the outcome value for the individual who is in the treatment group in pair k and 𝑌𝑘̂|𝑍 =

0 is the estimated outcome value for the individual who is in the treatment group in pair 

k if he was not treated. 

 All the models are applied for all the simulated data sets that are examples of 

classical and reciprocal suppressions. The statistical tests are performed by using STATA 

version 11 (StataCorp, Texas). 
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Chapter 4 

EXAMPLE of CLASSICAL SUPPRESSION 

 

Data 

 For the example of classical suppression, 10 simulated data sets with outcome Y, 

treatment indicator Z, suppressor X, and covariates Vi are generated with 1,000 subjects 

for each. In each data set, the number of subjects in the treatment group (Z = 1) and in the 

control group (Z = 0) is equal to 500. In the example of classical suppression, the 

correlation 𝑟𝑦𝑧 is small and not statistically significant, and the correlation 𝑟𝑦𝑥 is close to 

zero. The value of R2 in Model 2 which regresses Z and X on Y is larger than the sum of 

𝑟𝑦𝑧
2

 and 𝑟𝑦𝑥
2

.   

 

Testing validity of simulation data sets. The correlations, 𝑟𝑦𝑧  and 𝑟𝑦𝑥, and the 

values of R2 from Model 1 and Model 2 are reported in Table 1 for each simulated data 

set. Based on the results, both 𝑟𝑦𝑧 and 𝑟𝑦𝑥 are close to zero and non-significant, and the 

values of R2 in Model 2 is larger than the sum of 𝑟𝑦𝑧
2

 and 𝑟𝑦𝑥
2

 for each simulated data 

set. The estimated treatment effects are all positive but not significant in Model 1 where 

only Z regresses on Y. In Model 2 with the added X, the estimated treatment effects are 

still positive but now significant. These results indicate that X increases the predictive 

validity of Z and all data sets satisfy the conditions established for classical suppression. 
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Table 1 

Classical Suppression Data Results 

   Model 1 Model 2 

 𝑟𝑦𝑧 𝑟𝑦𝑥 B1 R2 
B1 R2 

Simulated Data 1 .033 -.058 2.011 .001 6.997*** .011 

Simulated Data 2 .032 -.057 2.011 .001 6.997*** .011 

Simulated Data 3 .033 -.058 2.011 .001 6.997*** .012 

Simulated Data 4 .032 -.056 2.011 .001 6.997*** .011 

Simulated Data 5 .034 -.059 2.011 .001 6.997*** .012 

Simulated Data 6 .033 -.059 2.011 .001 6.997*** .011 

Simulated Data 7 .033 -.058 2.011 .001 6.997*** .011 

Simulated Data 8 .034 -.058 2.011 .001 6.997*** .012 

Simulated Data 9 .033 -.058 2.011 .001 6.997*** .011 

Simulated Data 10 .033 -.059 2.011 .001 6.997*** .012 

Note: B1 is the coefficient for treatment indicator Z. Model 1is 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀 

and Model 2 is 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝜀. *p < .05. ** p < .01. *** p < .001. 

 

Table 2 reports the means and standard deviations (SD) of correlations for Y, Z, and X 

from 10 data sets where 𝑟𝑦𝑧 is .033, 𝑟𝑦𝑥 is -.058, and 𝑟𝑧𝑥 is .628. The standard 

deviations in Table 2 are quite small, less than or equal to .002, providing evidence that 

all simulated data sets satisfy the given constraints precisely. 

 

Table 2 

Correlation Table for Simulated Variables – Classical Suppression Example 

 

Outcome(Y) 

Mean (SD) 

Treatment(Z) 

Mean (SD) 

Suppressor(X) 

Mean (SD) 

Outcome(Y) --   

Treatment(Z) .033 (.001) --  

Suppressor(X) -.058 (.001) .628 (.002) -- 

Note: The values are calculated by 10 simulated data sets. 

 

Covariates, P’s, are generated by using the non-linear function 𝑃 = 𝑅 + 𝐶 × sin (𝑅) 

where R is the standardized residuals from Model 1 and where C is a constant. Ten P’s 

are generated with different values of C. Table 3 reports the means and standard 

deviations of correlations of 10 P’s and simulated variables Y, Z, and X from 10 data sets. 
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The results indicate that the correlations between P’s and Y increase monotonically from 

P1 (.139) to P10 (.973) at an approximate rate of .10. The correlations between P’s and Z 

are close to zero and slightly decrease from P1 (-.008) to P10 (-.002). The correlations 

between P’s and X are negative and they slightly decrease at an approximate rate of .005 

from P1 (-.022) to P10 (-.079). The covariate P has a stronger effect on Y when its 

correlation with Y is larger. Since the P’s are generated from the unexplained residuals, 

with a stronger P, the unconfoundedness assumption is more likely to be fulfilled. In this 

case, the correlation of P10 and Y is .973 which is extremely high. As a result, by 

controlling P10 in the regression model, the unconfoundedness assumption can be 

approximately fulfilled. 

 

Table 3 

Correlation Table for Simulated Variables and P’s – Classical Suppression Example 

 Simulated Variables 

 Outcome(Y) 

Mean (SD) 

Treatment(Z) 

Mean (SD) 

Suppressor(X) 

Mean (SD) 

P’s    

 P1 .139 (.043) -.008 (.025) -.022 (.026) 

 P2 .241 (.040) -.008 (.024) -.030 (.025) 

 P3 .340 (.037) -.008 (.024) -.037 (.024) 

 P4 .443 (.033) -.008 (.022) -.045 (.023) 

 P5 .546 (.027) -.007 (.021) -.052 (.022) 

 P6 .648 (.021) -.007 (.019) -.060 (.020) 

 P7 .730 (.016) -.006 (.017) -.065 (.018) 

 P8 .819 (.010) -.005 (.014) -.071 (.015) 

 P9 .906 (.005) -.004 (.011) -.076 (.011) 

 P10 .973 (.001) -.002 (.006) -.079 (.006) 

Note: The values are calculated by 10 simulated data sets. 
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Regression Models 

In regression models, the estimated coefficients of treatment indicator Z are the 

estimated treatment effects. Table 4 reports unstandardized coefficients B, standard errors 

of the coefficient SE(B) and standardized coefficients β of Z. The values in Table 4 are 

the means and standard deviations of estimates from 10 data sets. The standardized 

treatment effect in Model 3 is .032 and that increases dramatically to .114 after adding 

suppressor X in Model 4. Also, the treatment effect is non-significant in Model 3, but 

becomes significant in Model 4. This indicates that the suppressor influences the 

estimation of the treatment effect and increases the predictive validity significantly of the 

treatment indicator.  

Considering Model 3.1 to Model 3.10, the estimated treatment effects are quite 

consistent no matter which levels of P’s are controlled. However, for the models with the 

stronger P’s, the estimates of standard error become smaller. As a result, the treatment 

effects become more significant when the stronger P’s are controlled. For Model 3.10 

with the strongest covariate, P10, which explained most variance of the outcome after 

controlling the treatment indicator, the unconfoundedness assumption can possibly be 

fulfilled. This is because P10 is generated to be highly correlated to the residuals of  

Model 1 and the outcome. When the unconfoundedness assumption is fulfilled, the true 

treatment effect can be estimated. In Model 3.10 with P10, the estimated standardized 

treatment effect of .035 can be considered as the approximately true treatment effect and 

it is not that different from the estimated treatment effect of .032 in Model 3. The 

estimated treatment effect of .114 with the added suppressor in Model 4 is much larger 
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than the approximately true treatment effect in Model 3.10.  

By comparing the results from Model 4.1 to Model 4.10, the estimates of the 

treatment effect and the standard error become smaller with the stronger P’s included in 

the models. The estimated treatment effect is .112 with the estimated standard error 2.456 

in Model 4.1 and the corresponding values in Model 4.10 are .038 and 0.563, 

respectively. Examining Model 4 and Model 4.1, the difference of the estimated the 

treatment effect is only .002, which means by adding the least strong covariate P1, the 

estimates of the treatment effect do not change significantly. It demonstrates that the 

suppressor still has a strong impact on the estimation of the treatment effect when only 

the weakest covariate, P1, is controlled. However, the stronger P’s included in the model, 

the smaller the impact of the suppressor. In Model 4.10, the estimated treatment effect 

decreases to .038 which is quite close to the value in Model 3.10, conveying the 

approximate true treatment effect of .035 without being conditional on the suppressor. It 

provides evidence that the influence of the suppressor on the treatment indicator becomes 

smaller with a stronger covariate P controlled. The effect of the suppressor can be 

eliminated by controlling the strong-enough covariate P. As shown in Model 3.1 to Model 

3.10, with stronger P’s, the estimates of the standard error become smaller and the 

estimated effects become more significant. This is also true in Model 4.1 to Model 4.10. 

These findings providing evidence that the stronger covariates, P’s, can not only 

eliminate the impact of the suppressor, but can improve the precision of the estimates of 

the treatment effect.
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Table 4 

The Estimated Treatment Effects of Regression Models– Classical Suppression Example 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

p < .05 

Regression 

        Without Suppressor 

Model 3      1.975 (0.097) 1.938 (0.042) .032 (0.002) 0/10 

Model 3.1          P1 2.039 (0.177) 1.919 (0.041) .033 (0.003) 0/10 

Model 3.2          P2 2.086 (0.312) 1.881 (0.043) .034 (0.006) 0/10 

Model 3.3          P3 2.130 (0.441) 1.822 (0.044) .035 (0.008) 0/10 

Model 3.4          P4 2.172 (0.561) 1.737 (0.044) .036 (0.010) 0/10 

Model 3.5          P5 2.207 (0.656) 1.624 (0.043) .036 (0.011) 0/10 

Model 3.6          P6 2.232 (0.718) 1.475 (0.040) .037 (0.011) 2/10 

Model 3.7          P7 2.241 (0.731) 1.324 (0.035) .037 (0.012) 3/10 

Model 3.8          P8 2.235 (0.694) 1.111 (0.028) .037 (0.011) 6/10 

Model 3.9          P9 2.199 (0.569) 0.816 (0.017) .036 (0.010) 7/10 

Model 3.10          P10 2.122 (0.329) 0.437 (0.007) .035 (0.006) 10/10 

        With Suppressor 

Model 4 6.953 (0.142) 2.480 (0.050) .114 (.003) 10/10 

Model 4.1          P1 6.856 (0.290) 2.456 (0.051) .112 (.007) 10/10 

Model 4.2          P2 6.679 (0.476) 2.408 (0.053) .110 (.010) 10/10 

Model 4.3          P3 6.408 (0.647) 2.334 (0.055) .105 (.012) 10/10 

Model 4.4          P4 6.024 (0.800) 2.226 (0.056) .099 (.015) 10/10 

Model 4.5          P5 5.539 (0.917) 2.082 (0.054) .091 (.016) 9/10 

Model 4.6          P6 4.947 (0.985) 1.893 (0.050) .081 (.017) 9/10 

Model 4.7          P7 4.396 (0.991) 1.701 (0.044) .072 (.017) 9/10 

Model 4.8          P8 4.396 (0.991) 1.428 (0.035) .061 (.016) 9/10 

Model 4.9          P9 2.954 (0.750) 1.051 (0.022) .049 (.013) 9/10 

Model 4.10          P10 2.300 (0.428) 0.563 (0.008) .038 (.008) 10/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of p 

< .05 out of 10.  

Model 3: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽′1+𝑖𝑉𝑖 + 𝜀. 

Model 3.1 – 3.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽′1+𝑖𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀.  

Model 4: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝛽′2+𝑖𝑉𝑖 + 𝜀. 

Model 4.1 – 4.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝛽′2+𝑖𝑉𝑖 + 𝛽8𝑃𝑗 + 𝜀.  
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PS Methods  

Before estimating the treatment effects by using PS methods, the predicted PS’s are 

estimated by including different sets of variables in the logistic regression models. Table 

5 reports the correlations between the predicted PS’s and simulated variable Y, Z, and X. 

The correlations between PS_C and Y, Z, and X are all small, .010, .069, and .041, 

respectively, where PS_C is estimated by including only covariates Vi in the model. For 

PS_CX, which is estimated by including suppressor X and Vi, its correlation with Y is 

still small, -.057, but the correlations with Z and X are quite large, .633 and .988, 

respectively. The correlations of PS_CP1 to PS_CP10 with Y are slightly stronger from 

PS_ CP1 (.001) to PS_ CP7 (-.030) and are slightly weaker from PS_ CP8 (-.030) to PS_ 

CP10 (-.015); however, the values are all small to zero. The correlations of PS_CPj with Z 

and X are quite consistent with different levels of P’s involved. The correlations of 

PS_CXP1 to PS_CXP10 with Y become slightly weaker from PS_ CXP1 (-.057) to PS_ 

CXP8 (-.006) and slightly stronger from PS_ CXP9 (.006) to PS_ CXP10 (.016). The 

values are all close to zero, too. The correlations of PS_ CXPj with Z and X are also quite 

consistent with different levels of P’s involved. 
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Table 5 

Correlation Table for Simulated Variables and Propensity Scores – Classical 

Suppression Example 

 Simulated Variables 

 Outcome(Y) 

Mean (SD) 

Treatment(Z) 

Mean (SD) 

Suppressor(X) 

Mean (SD) 

Propensity Scores    

Model 5 PS_C .010 (.021) .069 (.023) .041 (.021) 

Model 5.1 PS_CP1 .001 (.042) .073 (.025) .044 (.024) 

Model 5.2 PS_CP2 -.006 (.070) .073 (.025) .045 (.025) 

Model 5.3 PS_CP3 -.012 (.097) .073 (.025) .045 (.027) 

Model 5.4 PS_CP4 -.018 (.122) .073 (.025) .046 (.028) 

Model 5.5 PS_CP5 -.024 (.141) .072 (.025) .046 (.029) 

Model 5.6 PS_CP6 -.028 (.154) .072 (.025) .046 (.030) 

Model 5.7 PS_CP7 -.030 (.157) .071 (.025) .046 (.030) 

Model 5.8 PS_CP8 -.030 (.150) .071 (.024) .045 (.029) 

Model 5.9 PS_CP9 -.026 (.123) .070 (.024) .045 (.027) 

Model 5.10 PS_CP10 -.015 (.071) .070 (.024) .043 (.024) 

Model 6 PS_CX -.057 (.005) .633 (.004) .988 (.002) 

Model 6.1 PS_CXP1 -.055 (.007) .634 (.004) .987 (.002) 

Model 6.2 PS_CXP2 -.053 (.009) .634 (.004) .987 (.002) 

Model 6.3 PS_CXP3 -.048 (.011) .634 (.004) .987 (.002) 

Model 6.4 PS_CXP4 -.042 (.013) .634 (.004) .987 (.003) 

Model 6.5 PS_CXP5 -.035 (.015) .634 (.004) .986 (.003) 

Model 6.6 PS_CXP6 -.026 (.016) .635 (.004) .986 (.003) 

Model 6.7 PS_CXP7 -.017 (.016) .635 (.003) .986 (.003) 

Model 6.8 PS_CXP8 -.006 (.015) .635 (.003) .985 (.003) 

Model 6.9 PS_CXP9 .006 (.012) .636 (.003) .985 (.003) 

Model 6.10 PS_CXP10 .016 (.006) .636 (.004) .984 (.003) 

Note: The values are calculated by 10 simulated datasets. 

Model 5: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽′

𝑖
𝑉𝑖 + 𝜀. 

Model 5.1 – 5.10: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽′𝑖𝑉𝑖 + 𝛽6𝑃𝑗 + 𝜀.                 

Model 6: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽1𝑋 + 𝛽′1+𝑖𝑉𝑖 + 𝜀. 

Model 6.1 – 6.10: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽1𝑋 + 𝛽′1+𝑖𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀. 
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PS as a covariate. The estimates of the treatment effect by using the PS as a 

covariate method are in Table 6. Comparing Table 4 and Table 6, the estimated treatment 

effects are quite similar from the corresponding models whether using regression method 

or the PS as a covariate method. However, the estimates of standard error differ for the 

two methods. By comparing Model 7 and Model 8, the standardized treatment effect 

increases from .032 to .115 by controlling the PS estimated by suppressor X and 

covariates Vi. The result indicates that the suppressor also influences the estimation of the 

treatment effect and increases the predictive validity of the treatment indicator 

significantly by using the PS as a covariate method. Considering Model 7.1 to         

Model 7.10, the estimated treatment effects remain consistently with each other. For 

Model 7.10 with the strongest covariate P10, the estimated standardized treatment effect 

is still .035, which is the same as the approximately true treatment effect in Model 3.10. 

Model 8.1 to Model 8.10 indicate a decrease in the estimated treatment effects. This 

finding also provides evidence that the influence of the suppressor on the treatment 

indicator becomes smaller with a stronger P applied. In Model 8.10, the estimated 

treatment effect is .038, which is quite close to that in Model 7.10, the approximately true 

treatment effect. 

In Model 7.1 to Model 7.10 and Model 8.1 to Model 8.10, by controlling the PS’s 

with the stronger P’s involved, the estimates of the standard error do not become smaller 

as they do by directly controlling the stronger P’s in the regression models. As a result, 

unlike in the regression models, controlling the PS’s with stronger P’s involved cannot 

improve precision of the estimates of the treatment effect. In the regression model, the 

standard error of the treatment effect of Z is defined as following: 
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𝑆𝐸𝑧 = √
1−𝑅2

(1−𝑅𝑧
2)(𝑁−𝐾−1)

×
𝑆𝑦

𝑆𝑧
, where R2 

is the R2 of the regression model 

with all predictors on Y, 𝑅𝑧
2

 is the R2 of the regression model with all predictors except Z 

on Z, 𝑆𝑦 is the standard deviation of Y, 𝑆𝑧 is the standard deviation of Z, N is the total 

sample size, and K is the number of predictors. As mentioned in Chapter 3, R2 is the sum 

of the products of the absolute standardized coefficient and the correlation with Y for all 

predictors (𝑅2 = ∑ |𝛽𝑘| × 𝑟𝑦𝑐𝑘

𝑘
𝑘=1 , where C is all the predictors in the model). 

With smaller standardized coefficients, the value of R2 tends to be smaller. When R2 

becomes smaller, the standard errors of predictors become larger. Table 7 compares the 

coefficients of different levels of P’s in regression models with those in the PS as a 

covariate models. It provides evidence of why the standard errors of estimates do not 

become smaller when the stronger P’s are involved in the PS as a covariate models as 

they do in regression models. In Table 7, the stronger the covariates P’s, the larger the 

absolute standardized coefficients of P’s for the regression models, with or without the 

suppressor. However, in the PS as a covariate models, for the PS’s with the stronger P’s 

involved, the absolute standardized coefficients of the PS_CPj are extremely small and 

just slightly increase and then decrease. The absolute standardized coefficients of the 

PS_CXPj are also small and just slightly decrease from PS_CXP1 to PS_CXP10 in the PS 

models. The changes correspond to the estimates of standard error in Model 7.1 to   

Model 7.10 and Model 8.1 to Model 8.10. With the smaller absolute standardized 

coefficients of the PS’s, the estimated standard errors of the treatment effect are large. 
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These results indicate that using the PS with a stronger P involved as a covariate in the 

regression model cannot improve the predicted line, and cannot decrease the mean 

squared error as directly as adding a stronger P as a covariate. As the results indicate, the 

estimates of the standard error are large with the stronger P’s involved in the PS as a 

covariate method. 
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Table 6 

The Estimated Treatment Effects of Propensity Score as a Covariate Models – Classical 

Suppression Example 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

P<.05 

Propensity Score as a Covariate 

        Without Suppressor 

Model 7      1.976 (0.097) 1.938 (0.042) .032 (.002) 0/10 

Model 7.1          P1 2.039 (0.177) 1.938 (0.042) .033 (.003) 0/10 

Model 7.2          P2 2.087 (0.312) 1.935 (0.042) .034 (.006) 0/10 

Model 7.3          P3 2.131 (0.442) 1.931 (0.042) .035 (.008) 0/10 

Model 7.4          P4 2.173 (0.561) 1.926 (0.041) .036 (.020) 0/10 

Model 7.5          P5 2.207 (0.657) 1.921 (0.041) .036 (.011) 0/10 

Model 7.6          P6 2.232 (0.718) 1.917 (0.042) .037 (.012) 0/10 

Model 7.7          P7 2.242 (0.732) 1.916 (0.042) .037 (.012) 0/10 

Model 7.8          P8 2.235 (0.695) 1.918 (0.042) .037 (.012) 0/10 

Model 7.9          P9 2.199 (0.569) 1.924 (0.042) .036 (.010) 0/10 

Model 7.10          P10 2.123 (0.329) 1.934 (0.042) .035 (.006) 0/10 

        With Suppressor 

Model 8 7.035 (0.351) 2.486 (0.052) .115 (.005) 10/10 

Model 8.1          P1 6.940 (0.423) 2.487 (0.054) .114 (.008) 10/10 

Model 8.2          P2 6.760 (0.559) 2.488 (0.056) .111 (.011) 10/10 

Model 8.3          P3 6.485 (0.703) 2.490 (0.057) .106 (.013) 10/10 

Model 8.4          P4 6.097 (0.838) 2.492 (0.057) .100 (.015) 9/10 

Model 8.5          P5 5.606 (0.943) 2.494 (0.058) .092 (.017) 8/10 

Model 8.6          P6 5.008 (1.003) 2.497 (0.058) .082 (.018) 6/10 

Model 8.7          P7 4.451 (1.005) 2.499 (0.057) .073 (.018) 2/10 

Model 8.8          P8 3.758 (0.940) 2.501 (0.057) .062 (.016) 1/10 

Model 8.9          P9 2.987 (0.760) 2.503 (0.056) .049 (.013) 0/10 

Model 8.10          P10 2.316 (0.435) 2.505 (0.054) .038 (.008) 0/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of 

p < .05 out of 10. 

Model 7: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶 + 𝜀. 

Model 7.1 – 7.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑃𝑗 + 𝜀. 

Model 8: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋 + 𝜀. 

Model 8.1 – 8.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋𝑃𝑗 + 𝜀. 
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Table 7 

Coefficients of P’s in Regression Models and Coefficients of Propensity Scores in PS as a 

Covariate Models – Classical Suppression Example 

 Regression  PS as a covariate 

 β 

Mean (SD) 

SE 

Mean (SD)  

β 

Mean (SD) 

SE 

Mean (SD) 

Without Suppressor 

Model   Model   

3.1     P1 .139 (.043) 1.349 (0.031) 7.1       PS_CP1 -.001 (.043) 29.725 (11.270) 

3.2     P2 .241 (.041) 1.296 (0.035) 7.2       PS_CP2 -.008 (.071) 29.728 (11.272) 

3.3     P3 .341 (.038) 1.216 (0.039) 7.3       PS_CP3 -.015 (.098) 29.740 (11.276) 

3.4     P4 .444 (.033) 1.105 (0.041) 7.4       PS_CP4 -.021 (.123) 29.768 (11.282) 

3.5     P5 .546 (.028) 0.966 (0.040) 7.5       PS_CP5 -.026 (.143) 29.827 (11.292) 

3.6     P6 .659 (.021) 0.797 (0.035) 7.6       PS_CP6 -.031 (.156) 29.934 (11.304) 

3.7     P7 .730 (.016) 0.642 (0.029) 7.7       PS_CP7 -.033 (.159) 30.069 (11.313) 

3.8     P8 .820 (.010) 0.452 (0.019) 7.8       PS_CP8 -.033 (.151) 30.289 (11.321) 

3.9     P9 .907 (.005) 0.244 (0.009) 7.9       PS_CP9 -.028 (.124) 30.599 (11.320) 

3.10   P10 .974 (.001) 0.070 (0.002) 7.10     PS_CP10 -.017 (.072) 30.921 (11.303) 

With Suppressor 

4.1     P1 .137 (.043) 1.343 (0.032) 8.1     PS_CXP1 -.127 (.012) 3.907 (0.092) 

4.2     P2 .238 (.041) 1.291 (0.036) 8.2     PS_CXP2 -.123 (.016) 3.908 (0.093) 

4.3     P3 .337 (.037) 1.213 (0.039) 8.3     PS_CXP3 -.116 (.020) 3.910 (0.094) 

4.4     P4 .440 (.033) 1.103 (0.041) 8.4     PS_CXP4 -.106 (.023) 3.912 (0.094) 

4.5     P5 .542 (.027) 0.965 (0.040) 8.5     PS_CXP5 -.093 (.026) 3.915 (0.094) 

4.6     P6 .645 (.021) 0.798 (0.035) 8.6     PS_CXP6 -.078 (.027) 3.917 (0.094) 

4.7     P7 .727 (.016) 0.643 (0.028) 8.7     PS_CXP7 -.063 (.027) 3.920 (0.094) 

4.8     P8 .817 (.011) 0.453 (0.019) 8.8     PS_CXP8 -.045 (.025) 3.922 (0.093) 

4.9     P9 .905 (.005) 0.245 (0.009) 8.9     PS_CXP9 -.025 (.020) 3.923 (0.092) 

4.10   P10 .974 (.002) 0.070 (0.002) 8.10   PS_CXP10 -.008 (.011) 3.924 (0.091) 

Note: The values are calculated by 10 simulated data sets.  

Model 3.1 – 3.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀. 𝛽7 is reported. 

Model 4.1 – 4.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝜷′𝟐+𝒊𝑉𝑖 + 𝛽8𝑃𝑗 + 𝜀. 𝛽8 is reported.  

Model 7.1 – 7.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑃𝑗 + 𝜀. 𝛽2 is reported. 

Model 8.1 – 8.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋𝑃𝑗 + 𝜀. 𝛽2 is reported. 
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PS weighting. Table 8.1 and Table 8.2 report the average estimated treatment effects 

(ATE) without and with trimming at the 95
th

 percentile of weights respectively by using 

PS weighting models. Different weights are generated from the corresponding PS’s.  

Table 9.1 and Table 9.2 report the average estimated treatment effects for the treated 

(ATT) without and with trimming at the 95
th

 percentile of weights respectively instead. In 

the PS weighting method, the suppressor can also influence the estimation of the 

treatment indicator and increase the predictive validity of the treatment indicator 

significantly. The impact of the suppressor is found in the estimations for both ATE or 

ATT models regardless of whether weight trimming is applied or not. Without the 

suppressor in the processes of estimating the treatment effect, the estimates of ATE and 

ATT are almost the same as well as the estimates of standard error whether weight 

trimming is applied or not as shown in Table 8.1, Table 8.2, Table 9.1, and Table 9.2. It 

implies that the distribution of outcomes for individuals in the control group is similar to 

that for all individuals. Also, the estimates are all similar to the corresponding models by 

using the PS as a covariate method.  

With the suppressor in the process of estimating treatment effect, the estimates of 

ATE tend to be smaller than those of ATT, especially when weight trimming is applied. 

Moreover, by applying weight trimming, the estimates of ATE and ATT are both smaller 

without any covariate P or with the weaker ones comparing to those without weight 

trimming applied. However, the estimates of ATE become larger with the strong P’s such 

as P8, P9, and P10 than those without weight trimming. For example, the standardized 

ATE with PS_CX is .136 without weight trimming and .094 with weight trimming, 
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respectively, but that value with PS_CXP10 is .026 without weight trimming and .052 

with weight trimming, respectively. It provides evidence that weight trimming can 

eliminate the impact of the suppressor more when the unconfoundedness assumption is 

less likely to be fulfilled. However, when the unconfoundedness assumption is 

approximately fulfilled by applying the strong-enough covariates P’s, the models with 

weight trimming do not eliminate the impact of the suppressor better than the models 

without weight trimming. This is because when unconfoundedness is not achieved, the 

unbiased estimation is not assumed. Applying weight trimming can diminish those 

individuals with extreme values who may easily affect the estimation. When 

unconfoundedness is fulfilled, removing any individual in the sample implies losing 

essential information to estimate the unbiased estimation.  

Since the regression and the PS as a covariate models estimate the ATE’s as well, the 

estimates in Table 8.1 and Table 8.2 can be compared to those in Table 4 and Table 6. 

When weight trimming is not applied and the unconfoundedness assumption is 

approximately fulfilled by applying P10, the estimate of ATE is .026 with the suppressor 

involved and the value is slightly smaller than the corresponding values of .038 in the 

regression and the PS as a covariate models. When weight trimming is applied, the 

estimate of ATE is .052 in the PS weighting model which is slightly higher than the 

values in the regression and the PS as a covariate models.  

By comparing the corresponding standard errors of the estimates in the PS weighting 

models to those in the regression models, with the stronger covariates P’s involved, the 

standard errors of the estimates do not decrease in the PS weighting models as they do in 

the regression models. This finding is consistent with the results in the PS as a covariate 
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models. By applying PS weighting, the only predictor in the regression model is the 

treatment indicator. Unless the absolute standardized coefficient increases, the model 

cannot improve the predicted line and decrease the mean squared error. As a result, the 

estimate of standard error cannot be smaller in the PS weighting model with a stronger 

covariate P applied. Moreover, for all PS weighting models with the suppressor involved, 

the standard deviations of the estimated treatment effects in 10 data sets are larger than 

those in regression and the PS as a covariate models. This implies that the estimates 

which might vary in different data sets would determine different inferences of the 

treatment effect. 
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Table 8.1 

The Estimated Average Treatment Effects (ATE) of Propensity Score Weighting – Classical 

Suppression Example 

 Without Trimming 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 1.971 (0.165) 2.048 (0.052) .030 (.003) 0/10 

PS_CP1 2.073 (0.283) 2.048 (0.052) .032 (.005) 0/10 

PS_CP2 2.145 (0.479) 2.048 (0.052) .033 (.008) 0/10 

PS_CP3 2.213 (0.672) 2.048 (0.052) .034 (.011) 0/10 

PS_CP4 2.276 (0.850) 2.048 (0.052) .035 (.014) 0/10 

PS_CP5 2.329 (0.992) 2.048 (0.052) .036 (.016) 0/10 

PS_CP6 2.366 (1.083) 2.048 (0.053) .037 (.017) 0/10 

PS_CP7 2.379 (1.103) 2.048 (0.053) .037 (.017) 0/10 

PS_CP8 2.369 (1.046) 2.048 (0.053) .037 (.017) 0/10 

PS_CP9 2.313 (0.856) 2.048 (0.053) .036 (.014) 0/10 

PS_CP10 2.194 (0.496) 2.048 (0.053) .034 (.008) 0/10 

 With Suppressor 

PS_CX 8.848 (2.298) 2.046 (0.057) .136 (.036) 9/10 

PS_CXP1 8.759 (2.438) 2.044 (0.055) .135 (.038) 9/10 

PS_CXP2 8.500 (2.624) 2.044 (0.055) .131 (.041) 9/10 

PS_CXP3 8.096 (2.816) 2.045 (0.054) .125 (.044) 9/10 

PS_CXP4 7.518 (3.006) 2.046 (0.054) .116 (.047) 9/10 

PS_CXP5 7.781 (3.174) 2.048 (0.053) .105 (.049) 9/10 

PS_CXP6 5.874 (3.296) 2.049 (0.053) .091 (.051) 8/10 

PS_CXP7 5.022 (3.348) 2.050 (0.052) .078 (.051) 7/10 

PS_CXP8 3.953 (3.336) 2.052 (0.052) .061 (.051) 5/10 

PS_CXP9 2.748 (3.217) 2.054 (0.051) .043 (.049) 5/10 

PS_CXP10 1.680 (2.988) 2.055 (0.051) .026 (.045) 3/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p < .05 out 

of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 
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Table 8.2 

The Estimated Average Treatment Effects (ATE) of Propensity Score Weighting – Classical 

Suppression Example 

 With Trimming at 95
th 

Percentile 

 

B SE(B) β 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 2.104 (0.439) 2.060 (0.049) .033 (.007) 0/10 

PS_CP1 2.256 (0.450) 2.058 (0.047) .036 (.007) 0/10 

PS_CP2 2.274 (0.438) 2.056 (0.048) .036 (.006) 0/10 

PS_CP3 2.291 (0.485) 2.055 (0.048) .036 (.007) 0/10 

PS_CP4 2.291 (0.468) 2.055 (0.050) .036 (.007) 0/10 

PS_CP5 2.365 (0.496) 2.056 (0.049) .037 (.008) 0/10 

PS_CP6 2.383 (0.540) 2.055 (0.047) .038 (.008) 0/10 

PS_CP7 2.390 (0.493) 2.054 (0.048) .038 (.008) 0/10 

PS_CP8 2.340 (0.464) 2.056 (0.048) .037 (.007) 0/10 

PS_CP9 2.238 (0.575) 2.058 (0.050) .035 (.009) 0/10 

PS_CP10 2.212 (0.568) 2.059 (0.050) .035 (.009) 0/10 

 With Suppressor 

PS_CX 6.441 (2.193) 2.187 (0.085) .094 (.030) 9/10 

PS_CXP1 6.300 (2.298) 2.195 (0.075) .092 (.032) 8/10 

PS_CXP2 6.187 (2.146) 2.196 (0.075) .091 (.030) 7/10 

PS_CXP3 5.984 (2.071) 2.199 (0.076) .088 (.030) 7/10 

PS_CXP4 6.078 (2.354) 2.200 (0.084) .089 (.034) 7/10 

PS_CXP5 5.898 (2.336) 2.199 (0.085) .087 (.035) 7/10 

PS_CXP6 5.671 (2.031) 2.201 (0.085) .083 (.030) 6/10 

PS_CXP7 5.205 (2.076) 2.200 (0.082) .077 (.031) 5/10 

PS_CXP8 4.625 (1.971) 2.200 (0.081) .068 (.029) 6/10 

PS_CXP9 3.972 (1.996) 2.202 (0.081) .058 (.029) 5/10 

PS_CXP10 3.557 (1.881) 2.200 (0.079) .052 (.028) 4/10 

Note: Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of p < .05 

out of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 
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Table 9.1 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score 

Weighting – Classical Suppression Example 

 Without Trimming 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 1.999 (0.162) 1.934 (0.043) .033 (.003) 0/10 

PS_CP1 2.075 (0.240) 1.934 (0.043) .034 (.004) 0/10 

PS_CP2 2.125 (0.353) 1.934 (0.043) .035 (.006) 0/10 

PS_CP3 2.171 (0.473) 1.933 (0.043) .036 (.008) 0/10 

PS_CP4 2.214 (0.586) 1.933 (0.043) .036 (.010) 0/10 

PS_CP5 2.250 (0.678) 1.933 (0.043) .037 (.012) 0/10 

PS_CP6 2.275 (0.736) 1.933 (0.043) .037 (.012) 0/10 

PS_CP7 2.283 (0.748) 1.933 (0.044) .037 (.013) 0/10 

PS_CP8 2.275 (0.709) 1.933 (0.044) .037 (.012) 0/10 

PS_CP9 2.235 (0.584) 1.934 (0.044) .037 (.010) 0/10 

PS_CP10 2.153 (0.350) 1.934 (0.043) .035 (.006) 0/10 

 With Suppressor 

PS_CX 6.727 (2.657) 1.926 (0.063) .110 (.044) 9/10 

PS_CXP1 6.666 (2.749) 1.924 (0.063) .110 (.046) 9/10 

PS_CXP2 6.477 (2.872) 1.924 (0.063) .106 (.048) 9/10 

PS_CXP3 6.192 (2.993) 1.925 (0.063) .102 (.050) 9/10 

PS_CXP4 5.791 (3.111) 1.926 (0.063) .095 (.051) 8/10 

PS_CXP5 5.285 (3.211) 1.928 (0.063) .087 (.053) 7/10 

PS_CXP6 4.667 (3.282) 1.929 (0.062) .077 (.054) 5/10 

PS_CXP7 4.091 (3.306) 1.931 (0.061) .068 (.054) 5/10 

PS_CXP8 3.371 (3.286) 1.932 (0.060) .056 (.053) 4/10 

PS_CXP9 2.567 (3.189) 1.934 (0.059) .043 (.052) 3/10 

PS_CXP10 1.865 (3.004) 1.935 (0.058) .031 (.048) 2/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p < .05 out 

of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 
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Table 9.2 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score 

Weighting – Classical Suppression Example 

 With Trimming at 95
th 

Percentile 

 

B SE(B) β 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 1.982 (.340) 1.989 (.048) .032 (.006) 0/10 

PS_CP1 1.935 (.408) 1.989 (.043) .032 (.006) 0/10 

PS_CP2 1.959 (.464) 1.990 (.043) .032 (.007) 0/10 

PS_CP3 1.945 (.513) 1.990 (.043) .032 (.008) 0/10 

PS_CP4 1.947 (.517) 1.988 (.044) .032 (.008) 0/10 

PS_CP5 1.945 (.521) 1.988 (.044) .032 (.008) 0/10 

PS_CP6 1.897 (.621) 1.988 (.044) .031 (.010) 0/10 

PS_CP7 1.947 (.597) 1.988 (.044) .032 (.009) 0/10 

PS_CP8 1.996 (.565) 1.988 (.044) .033 (.009) 0/10 

PS_CP9 1.998 (.642) 1.987 (.045) .033 (.010) 0/10 

PS_CP10 2.011 (.461) 1.987 (.045) .033 (.007) 0/10 

 With Suppressor 

PS_CX 3.623 (2.446) 2.199 (.061) .053 (.036) 5/10 

PS_CXP1 3.546 (2.296) 2.201 (.062) .052 (.034) 5/10 

PS_CXP2 3.377 (2.185) 2.200 (.063) .050 (.032) 5/10 

PS_CXP3 3.448 (2.365) 2.202 (.064) .051 (.035) 4/10 

PS_CXP4 3.241 (2.258) 2.202 (.065) .048 (.033) 3/10 

PS_CXP5 3.210 (2.382) 2.203 (.066) .047 (.035) 4/10 

PS_CXP6 2.876 (2.320) 2.204 (.066) .042 (.034) 2/10 

PS_CXP7 2.877 (2.196) 2.204 (.066) .042 (.033) 1/10 

PS_CXP8 2.693 (2.191) 2.205 (.067) .040 (.032) 1/10 

PS_CXP9 2.291 (2.108) 2.205 (.064) .034 (.031) 1/10 

PS_CXP10 2.142 (1.939) 2.204 (.066) .032 (.029) 1/10 

Note: Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of p < .05 

out of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 

   



60 

 

PS matching. Two types of matching methods, nearest neighbor matching and 

nearest neighbor matching within a caliper 𝜀 =  .25𝜎𝑃𝑆 , are used and the estimates 

are shown in Table 10.1 and Table 10.2, respectively. As the finding in the PS weighting 

methods, the standard deviations of the estimated treatment effects are large in PS 

matching models. It indicates that at different simulated data sets the estimates vary. As a 

result, different inferences of the treatment effect may be generated. In Table 10.1, the 

estimated treatment effect increases from 2.185 by matching with PS_C to 6.509 by 

matching with PS_CX. This implies that the suppressor influences the estimation of the 

treatment indicator and increases the predictive validity of the treatment indicator, 

although only the estimates in 4 out of 10 simulated data sets are statistically significant 

due to the relatively large values of standard error.  

Unlike previous methods where the estimated treatment effects are relatively 

consistent without the suppressor involved in the models, the corresponding estimates by 

using PS matching vary without a specific pattern when different levels of P’s are applied 

in the models. For example, the estimated treatment effect is 1.440 by matching with 

PS_CP4, increases to 3.238 by matching with PS_CP5, decreases to 1.636 by matching 

with PS_CP7, and then increases again to 2.443 by matching with PS_CP8.  

As what had been found in previous methods, the stronger the covariates P’s in PS 

matching models, the smaller the estimated treatment effects. This provides evidence that 

PS matching can also reduce the impact of the suppressor to the extent that other methods 

did. When the unconfoundedness assumption is approximately fulfilled with the covariate 

P10 applied, the estimated treatment effect is 1.035, which is relatively smaller than those 
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by using PS weighting where the value is 1.865 without weight trimming and is 2.142 

with weight trimming.  

Table 10.1 and Table 10.2 report that the standard errors of the estimated treatment 

effects are much larger comparing to all the corresponding estimates in other methods, 

especially when the covariates P’s are involved. Moreover, when matching the 

individuals by using the PS’s with the stronger covariates P’s involved, the estimates of 

standard error do not decrease as they do in the regression models. These findings 

indicate that by using the PS matching method, the estimated standard errors are not 

reduced by applying the stronger covariates P’s and the least precise estimates of the 

treatment effect are conducted by using the PS matching method.   

Examining Table 10.1 and Table 10.2, the estimates are really similar, regardless of 

using the nearest neighbor matching method or nearest neighbor matching within a 

caliper method. For the model with the suppressor involved, estimates are even the same. 

This result provides evidence that the difference of the individuals’ PS’s within a pair are 

smaller than the defined calipers for most pairs or all pairs. The biggest number of pairs 

removed in the analyses is four out of 500. The largest caliper applied in the analyses 

is .014 and the smallest one is .003 with the mean .008. Even for the largest caliper, it is 

small enough to assume that the individuals’ PS’s within the matched pairs are similar.  
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Table 10.1 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score Matching 

– Classical Suppression Example 

 Nearest Neighbor Matching 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

Significance 

P<.05 

Model 10 

Propensity Scores Used Without Suppressor 

PS_C 2.185 (2.582) 1.331 (.112) 0/10 

PS_CP1 2.441 (1.361) 2.549 (.058) 0/10 

PS_CP2 2.174 (2.138) 2.585 (.049) 1/10 

PS_CP3 1.600 (1.123) 2.543 (.049) 0/10 

PS_CP4 1.440 (2.239) 2.538 (.087) 0/10 

PS_CP5 3.238 (1.256) 2.562 (.079) 1/10 

PS_CP6 2.028 (1.498) 2.584 (.096) 0/10 

PS_CP7 1.636 (1.568) 2.569 (.088) 0/10 

PS_CP8 2.443 (2.106) 2.546 (.065) 2/10 

PS_CP9 2.614 (1.878) 2.556 (.075) 1/10 

PS_CP10 1.575 (1.595) 2.566 (.057) 0/10 

 With Suppressor 

PS_CX 6.509 (4.554) 3.271 (.274) 4/10 

PS_CXP1 6.453 (3.065) 4.636 (.413) 3/10 

PS_CXP2 6.213 (3.768) 4.670 (.437) 2/10 

PS_CXP3 6.748 (3.011) 4.683 (.391) 1/10 

PS_CXP4 6.541 (3.799) 4.725 (.377) 2/10 

PS_CXP5 5.774 (3.954) 4.765 (.310) 1/10 

PS_CXP6 5.257 (3.719) 4.640 (.336) 2/10 

PS_CXP7 2.800 (6.044) 4.655 (.341) 2/10 

PS_CXP8 2.643 (5.111) 4.638 (.351) 1/10 

PS_CXP9 1.363 (4.796) 4.640 (.370) 0/10 

PS_CXP10 1.035 (4.003) 4.622 (.404) 0/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p < .05 out 

of 10. 

Model 10: 𝜏𝑡̂ =
1

𝑛𝑡
∑ {𝑌𝑘|𝑍 = 1 − 𝑌𝑘̂|𝑍 = 0}𝑛𝑡

𝑘=1 . 
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Table 10.2 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score Matching 

– Classical Suppression Example 

 Nearest Neighbor Matching within a Caliper 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

Significance 

P<.05 

Model 10 

Propensity Scores Used Without Suppressor 

PS_C 2.186 (2.585) 1.355 (.112) 0/10 

PS_CP1 2.432 (1.353) 2.549 (.058) 0/10 

PS_CP2 2.163 (2.067) 2.586 (.049) 1/10 

PS_CP3 1.600 (1.082) 2.544 (.048) 0/10 

PS_CP4 1.435 (2.188) 2.540 (.087) 0/10 

PS_CP5 3.240 (1.286) 2.562 (.077) 1/10 

PS_CP6 2.044 (1.570) 2.584 (.095) 0/10 

PS_CP7 1.640 (1.589) 2.570 (.087) 0/10 

PS_CP8 2.449 (2.101) 2.548 (.064) 2/10 

PS_CP9 2.611 (1.870) 2.556 (.074) 1/10 

PS_CP10 1.581 (1.604) 2.568 (.057) 0/10 

 With Suppressor 

PS_CX 6.509 (4.554) 3.271 (.274) 4/10 

PS_CXP1 6.453 (3.065) 4.636 (.413) 3/10 

PS_CXP2 6.213 (3.768) 4.670 (.437) 2/10 

PS_CXP3 6.748 (3.011) 4.683 (.391) 1/10 

PS_CXP4 6.541 (3.799) 4.725 (.377) 2/10 

PS_CXP5 5.774 (3.954) 4.765 (.310) 1/10 

PS_CXP6 5.257 (3.719) 4.640 (.336) 2/10 

PS_CXP7 2.800 (6.044) 4.655 (.341) 2/10 

PS_CXP8 2.643 (5.111) 4.638 (.351) 1/10 

PS_CXP9 1.363 (4.796) 4.640 (.370) 0/10 

PS_CXP10 1.035 (4.003) 4.622 (.404) 0/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p < .05 out 

of 10. 

Model 10: 𝜏𝑡̂ =
1

𝑛𝑡
∑ {𝑌𝑘|𝑍 = 1 − 𝑌𝑘̂|𝑍 = 0}𝑛𝑡

𝑘=1 . 
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Impact of a confounding variable. Frank (2000) derived an index for quantifying 

the impact of a confounding variable on the inference of a predictor’s coefficient in a 

regression model. The impact is defined as the product of two correlations, where one is 

the correlation of a confounding variable and the dependent variable, and the other is the 

correlation of that confounding variable and the predictor. For a confounding variable 

with a larger impact, the inference of the predictor is more likely to be influenced by 

adding that confounding variable in the regression model. Here, the index is used to 

compute the impacts of suppressor X, covariate Pj, and PS variables on the treatment 

indicator. Table 11 shows that X and the PS_CX have the largest impacts, which are  

both -.036. This indicates that by adding the suppressor or the PS generated by the 

suppressor in the regression models, the estimation of the treatment effect is more likely 

to be affected. Although the impacts of them are small, they still have significant impacts 

on the estimations of the treatment indicator based upon the results in previous models.  

Moreover, the degrees of the impacts of the PS_CXPj decrease from PS_CXP1 to 

PS_CXP8 and then increase from PS_CXP8 to PS_CXP10. The changes are due to the 

variations of the correlations between PS_CXPj and Y. However, considering the 

correlation coefficients between PS_CXPj and Y, the values keep increasing from 

negative to positive from PS_CXP1 (-.055) to PS_CXP10 (.016), although the differences 

are small. As we know, the PS is the estimated probability of an individual being at the 

treatment group. The results indicate that while conditional on the suppressor and the 

stronger covariates P’s, an individual with a higher probability in the treatment group 
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tends to have a higher outcome value. As a result, when the stronger covariates P’s are 

used to estimate the PS’s, the predicted lines of the correlations between the PS’s and the 

outcome are pulled up from negative to positive. Moreover, the impacts of PS_CPj are all 

close to zero. In Table 11, the correlation coefficients between PS_CPj and Y decrease 

from PS_CP1 to PS_CP8 first, and then increase from PS_CP8 to PS_CP10. Because the 

correlation coefficients are extremely small, the values of them may be easily influenced 

by the individuals with the extremer values of PS_CPj and Y.
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Table 11 

Impact of Suppressor, P’s, and the Propensity Scores on Treatment Indicator– Classical 

Suppression Example 

 Correlation with Y Correlation with Z Impact 

 X -.058 .628 -.036 

 P1 
.139 -.008 -.001 

 P2 .241 -.008 -.002 

 P3 .340 -.008 -.003 

 P4 .443 -.008 -.004 

 P5 .546 -.007 -.004 

 P6 .648 -.007 -.005 

 P7 .730 -.006 -.004 

 P8 .819 -.005 -.004 

 P9 .906 -.004 -.004 

 P10 .973 -.002 -.002 

 PS_C .010  .069 .001 

 PS_CP1 .001 .073 < .001 

 PS_CP2 -.006 .073 < -.001 

 PS_CP3 -.012 .073 -.001 

 PS_CP4 -.018 .073 -.001 

 PS_CP5 -.024 .072 -.002 

 PS_CP6 -.028 .072 -.002 

 PS_CP7 -.030 .071 -.002 

 PS_CP8 -.030 .071 -.002 

 PS_CP9 -.026 .070 -.002 

 PS_CP10 -.015 .070 -.001 

 PS_CX -.057 .633 -.036 

 PS_CXP1 -.055 .634 -.035 

 PS_CXP2 -.053 .634 -.034 

 PS_CXP3 -.048 .634 -.030 

 PS_CXP4 -.042 .634 -.027 

 PS_CXP5 -.035 .634 -.022 

 PS_CXP6 -.026 .635 -.017 

 PS_CXP7 -.017 .635 -.011 

 PS_CXP8 -.006 .635 -.004 

 PS_CXP9 .006 .636 .004 

 PS_CXP10 .016 .636 .010 

Note: The values are the means calculated by 10 simulated datasets. Impact is the 

product of correlations with Y and Z. 
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Chapter 5 

EXAMPLE of RECIPROCAL SUPRESSION 

 

Data 

 For the example of reciprocal suppression, 10 simulated data sets with outcome Y, 

treatment indicator Z, suppressor X, and covariates Vi are also generated with 1,000 

subjects for each. In each data set, the number of subjects in the treatment group (Z = 1) 

and in the control group (Z = 0) is equal to 500. In the example of reciprocal suppression, 

the correlation 𝑟𝑦𝑧 is not zero, and the correlations 𝑟𝑦𝑥 and 𝑟𝑧𝑥 are statistically 

significant. The value of R2 in Model 2 which regresses Z and X on Y is larger than the 

sum of 𝑟𝑦𝑧
2

 and 𝑟𝑦𝑥
2

. Moreover, the coefficient of Z in Model 2 is significant and has an 

opposite sign comparing to 𝑟𝑦𝑧. 

 

 Testing validity of simulation data sets. The correlations 𝑟𝑦𝑧, 𝑟𝑦𝑥, and 𝑟𝑧𝑥 and 

the values of R2 from Model 1 and 2 are reported in Table 12 for each simulated data set. 

Based on the results for each simulated data, the correlation 𝑟𝑦𝑧 is not zero, both 𝑟𝑦𝑧 and 

𝑟𝑦𝑥 are positively significant, and the value of R2 in Model 2 is larger than the sum of 

𝑟𝑦𝑧
2

 and 𝑟𝑦𝑥
2

. The estimated treatment effect is all positively significant in Model 1, and 

the estimated treatment effect becomes negatively significant with the added X in    

Model 2 for each data set. These results imply that X increases the predictive validity of 

Z. The sign of the correlation between Z and Y is opposite to the estimated coefficient of 
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Z. All data sets satisfy the conditions established for reciprocal suppression. 

 

Table 12 

Reciprocal Suppression Data Results 

    Model 1 Model 2 

 𝑟𝑦𝑧 𝑟𝑦𝑥 𝑟𝑧𝑥 B1 R2 B1 R2 

Simulated Data 1 .215*** .534*** .751*** 2.009*** .046 -3.996*** .365 

Simulated Data 2 .214*** .534*** .750*** 2.009*** .046 -3.996*** .365 

Simulated Data 3 .214*** .534*** .750*** 2.009*** .046 -3.996*** .365 

Simulated Data 4 .215*** .534*** .751*** 2.008*** .046 -3.996*** .365 

Simulated Data 5 .214*** .534*** .749*** 2.009*** .046 -3.996*** .365 

Simulated Data 6 .214*** .534*** .750*** 2.009*** .046 -3.996*** .365 

Simulated Data 7 .214*** .534*** .749*** 2.009*** .046 -3.996*** .365 

Simulated Data 8 .214*** .534*** .750*** 2.009*** .046 -3.996*** .365 

Simulated Data 9 .215*** .534*** .750*** 2.008*** .046 -3.996*** .365 

Simulated Data 10 .214*** .534*** .749*** 2.009*** .046 -3.996*** .365 

Note: B1 is the coefficient for treatment indicator Z. Model 1is 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀 and 

Model 2 is 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝜀. *p < .05. ** p < .01. *** p < .001. 

 

 

Table 13 reports the means and the standard deviations (SD) of correlations for Y, Z, and 

X from 10 data sets where 𝑟𝑦𝑧 is .214, 𝑟𝑦𝑥 is .534, and 𝑟𝑧𝑥 is .750. The standard 

deviations are quite small with the values less than or equal to .001, showing that all 

simulated data sets satisfy the given constraints precisely. 

 

Table 13 

Correlation Table for Simulated Variables – Reciprocal Suppression Example 

 

Outcome(Y) 

Mean (SD) 

Treatment(Z) 

Mean (SD) 

Suppressor(X) 

Mean (SD) 

Outcome(Y) --   

Treatment(Z) .214 (<.001) --  

Suppressor(X) .534 (<.001) .750 (.001) -- 

Note: The values are calculated by 10 simulated data sets. 
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Covariates P’s are also generated by using the non-linear function 𝑃 = 𝑅 + 𝐶 ×

sin (𝑅). Table 14 indicates that the correlations between P’s and Y increase monotonically 

from P1 (.148) to P10 (.950) at an approximate rate of .10. The correlations between P’s 

and Z are negative and closer to zero from P1 (-.027) to P10 (-.006). The correlations 

between P’s and X are positive and slightly increase from P1 (.034) to P10 (.367) at an 

approximate rate of .040. The covariate Pj has a stronger effect on Y when its correlation 

with Y is larger. Since the covariates P’s are generated from the unexplained residuals, 

with a stronger Pj in the model, the unconfoundedness assumption is more likely to be 

fulfilled. In this example, the correlation between P10 and Y is .950, which is extremely 

high. As a result, by controlling P10 in the regression model, the unconfoundedness 

assumption can be approximately fulfilled. 

 

 

 

 

 

 

 

 

 



70 

 

 

 

Regression Models 

Table 15 reports the estimates of the treatment indicator by using regression models. 

In Model 3, the standardized treatment effect is .213, and the value decreases 

dramatically to -.426 with the added suppressor in Model 4. The estimates are both 

statistically significant in these two models. The result provides evidence that the 

suppressor has a strong impact on the estimation of the treatment effect which influences 

the estimate from positively significant to negatively significant. This finding also 

implies that the models with or without the suppressor would generate different 

inferences of the treatment effect where the treatment promotes the individuals’ outcome 

values in one model but reduces those values in another significantly.  

Considering Model 3.1 to Model 3.10, the estimated treatment effects are quite 

Table 14 

Correlation Table for Simulated Variables and P’s – Reciprocal Suppression Example 

 Simulated Variables 

 Outcome(Y) 

Mean (SD) 

Treatment(Z) 

Mean (SD) 

Suppressor(X) 

Mean (SD) 

P’s    

 P1 .148 (.032) -.027 (.046) .034 (.039) 

 P2 .244 (.030) -.027 (.045) .072 (.038) 

 P3 .355 (.027) -.026 (.043) .117 (.037) 

 P4 .441 (.024) -.025 (.041) .151 (.035) 

 P5 .535 (.020) -.023 (.039) .190 (.033) 

 P6 .617 (.017) -.021 (.036) .223 (.031) 

 P7 .718 (.012) -.019 (.031) .265 (.027) 

 P8 .830 (.007) -.015 (.024) .313 (.021) 

 P9 .910 (.004) -.010 (.017) .348 (.015) 

 P10 .950 (.002) -.006 (.010) .367 (.009) 

Note: The values are calculated by 10 simulated data sets. 
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consistent no matter which levels of P’s are controlled. However, for the models 

controlling the stronger covariates P’s, the estimates of standard error become smaller. 

This result is also found in the example of classical suppression. In Model 3.10, 

controlling the strongest covariate P10 implies that the unconfoundedness assumption is 

approximately fulfilled. The estimated treatment effect of .220 in Model 3.10 can be 

considered as the approximately true treatment effect. This value is quite close to the 

estimated treatment effect of .213 in Model 3. The estimated treatment effect with the 

added suppressor in Model 4 is -.426 which differs from the approximately true treatment 

effect significantly. 

By comparing the results from Model 4.1 to Model 4.10, the estimated treatment 

effects change from negative to positive and the estimates of the standard error become 

smaller when the stronger covariates P’s are included in the models. The estimated 

standardized treatment effect is -.413 with the estimated standard error 0.356 in Model 

4.1 and the corresponding estimates are .169 and 0.109 in Model 4.10, respectively. The 

results indicate that the influence of the suppressor on the treatment indicator becomes 

smaller with a stronger covariate Pj. When the strongest covariate P10 is controlled in the 

model, the estimated treatment effect is approaching the approximately true treatment 

effect. These finding imply that the impact of the suppressor can be eliminated by 

controlling a strong-enough covariate Pj. Meanwhile, the estimates of standard error are 

smaller with the stronger covariates P’s applied. This indicates that by controlling the 

stronger covariates P’s, the precision of estimating the treatment effect can be promoted. 

These findings are consistent with those in the example of classical suppression. 
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Table 15 

The Estimated Treatment Effects of Regression Models – Reciprocal Suppression 

Example 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

p < .05 

Regression 

        Without Suppressor 

Model 3      1.999 (0.030) 0.291 (0.001) .213 (.003) 10/10 

Model 3.1          P1 2.040 (0.096) 0.287 (0.002) .218 (.010) 10/10 

Model 3.2          P2 2.063 (0.132) 0.281 (0.003) .220 (.014) 10/10 

Model 3.3          P3 2.087 (0.169) 0.270 (0.003) .223 (.018) 10/10 

Model 3.4          P4 2.103 (0.193) 0.259 (0.004) .224 (.020) 10/10 

Model 3.5          P5 2.117 (0.212) 0.242 (0.004) .226 (.022) 10/10 

Model 3.6          P6 2.125 (0.221) 0.224 (0.004) .227 (.024) 10/10 

Model 3.7          P7 2.128 (0.220) 0.196 (0.004) .227 (.023) 10/10 

Model 3.8          P8 2.117 (0.193) 0.151 (0.003) .226 (.021) 10/10 

Model 3.9          P9 2.091 (0.144) 0.104 (0.002) .223 (.015) 10/10 

Model 3.10          P10 2.063 (0.094) 0.065 (0.001) .220 (.010) 10/10 

        With Suppressor 

Model 4 -3.996 (0.026) 0.358 (0.002) -.426 (.003) 10/10 

Model 4.1          P1 -3.870 (0.087) 0.356 (0.002) -.413 (.009) 10/10 

Model 4.2          P2 -3.691 (0.122) 0.353 (0.003) -.394 (.013) 10/10 

Model 4.3          P3 -3.378 (0.155) 0.346 (0.004) -.360 (.017) 10/10 

Model 4.4          P4 -3.042 (0.176) 0.337 (0.005) -.324 (.019) 10/10 

Model 4.5          P5 -2.572 (0.191) 0.325 (0.005) -.274 (.020) 10/10 

Model 4.6          P6 -2.056 (0.196) 0.310 (0.006) -.219 (.021) 10/10 

Model 4.7          P7 -1.264 (0.189) 0.283 (0.006) -.135 (.020) 10/10 

Model 4.8          P8 -0.095 (0.162) 0.233 (0.005) -.010 (.017) 0/10 

Model 4.9          P9 0.961 (0.124) 0.169 (0.003) .103 (.013) 10/10 

Model 4.10          P10 1.589 (0.085) 0.109 (0.002) .169 (.009) 10/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of 

p < .05 out of 10.  

Model 3: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽′1+𝑖𝑉𝑖 + 𝜀. 

Model 3.1 – 3.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽′1+𝑖𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀.  

Model 4: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝛽′2+𝑖𝑉𝑖 + 𝜀. 

Model 4.1 – 4.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝛽′2+𝑖𝑉𝑖 + 𝛽8𝑃𝑗 + 𝜀. 
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PS Methods 

Before estimating the treatment effects by using PS methods, the predicted PS’s are 

estimated by including different combinations of variables in logistic regression models. 

Table 16 reports the correlations between the PS’s and simulated variables Y, Z, and X. 

The correlations between PS_C and Y, Z, and X are all small, .032, .069, and .059, 

respectively, where PS_C is estimated by including only covariates Vi in the model. For 

PS_CX, which is estimated by including suppressor X and covariates Vi, its correlation 

with Y is .509, and the correlations with Z and X are quite large, .762 and .977, 

respectively. For the predicated PS’s by using covariates Vi and different levels of P’s, 

PS_CP1 to PS_CP10, the correlations with Y are all negative. The values become stronger 

from PS_CP1 (-.016) to PS_CP7 (-.154) and then become weaker from PS_CP8 (-.150) to 

PS_CP10 (-.079). The correlations of PS_CP1 to PS_CP10 with Z are all positive and 

slightly decrease from PS_CP1 (.086) to PS_CP10 (.070). Their correlations with X vary a 

little from model to model, but the values are all close to zero so that the differences are 

ignorable. For the predicated PS’s by using suppressor X, covariates Vi, and different 

levels of P’s, PS_CXP1 to PS_CXP10, their correlations with Y are all positive and 

decrease from PS_CXP1 (.509) to PS_CXP10 (.197). The correlations between PS_CXP1 

to PS_CXP10 and Z are all quite large and slightly increase from PS_CXP1 (.762) to 

PS_CXP10 (.851).  Their correlations with X are also large but slightly decrease from 



74 

 

PS_CXP1 (.977) to PS_CXP10 (.880).  

 

 PS as a covariate. The estimates of the treatment effect by using the PS as a 

covariate method are reported in Table 17. Comparing Table 15 and Table 17, the 

estimated treatment effects are quite similar by using the PS as a covariate method to the 

corresponding estimates by using regression method. However, the estimates of standard 

error differ for two methods. By comparing Model 7 and Model 8, the standardized 

treatment effect changes from .213 to -.416 while using the PS with the added suppressor 

in the PS model. This result provides evidence that the suppressor has a strong influence 

on the estimation of the treatment indicator and the estimated treatment effect is affected 

by the suppressor from positively significant to negatively significant. This also implies 

that the models use the PS’s with or without the suppressor involved, generating different 

inferences of the treatment effect.  

Considering Model 7.1 to Model 7.10, the estimates of the treatment effect still are 

quite consistent with each other. For Model 7.10 with the strongest covariate P10 

involved, the estimate of the treatment effect is .220 which is the same as the value, the 

approximately true treatment effect, in Model 3.10. From Model 8.1 to Model 8.10, the 

estimated treatment effects increase from negative (-.402) to positive (.170) while the 

stronger covariate P’s are applied. In Model 8.10, the estimated treatment effect of .170 is 

close enough to the estimates in Model 3.10 and in Model 7.10, the approximately true 

treatment effect of .220. These results imply that the influence of the suppressor on the 

treatment indicator can also be eliminated with a strong-enough covariate Pj involved by 
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using the PS as a covariate method. 

As what is addressed in the example of classical suppression, the estimates of the 

standard error do not become smaller by using the PS’s with stronger P’s involved as the 

covariates in Model 7.1 to Model 7.10 and Model 8.1 to Model 8.10 as they do in the 

regression models. In the example of reciprocal suppression, by using the regression 

method, the estimated standard errors decrease by controlling the stronger covariates P’s. 

In Model 7.1 to Model 7.10, the estimated standard errors keep almost the same no matter 

the PS’s estimated by which levels of P’s. In Model 8.1 to Model 8.10, with the PS’s 

estimated by the suppressor, the standard errors even increase when the stronger 

covariates P’s are involved in the models.  

As what was explained in Chapter 4, when the regression model with smaller 

standardized coefficients, the value of R2 tends to be smaller. As a result, when the value 

of R2 becomes smaller, the standard errors of predictors in the model become larger. In 

Table 18, the stronger the covariates P’s, the dramatically larger the absolute standardized 

coefficients of P’s for regression models, with or without controlling the suppressor. 

However, in the PS as a covariate models, the absolute standardized coefficients of the 

PS_CPj are relatively small where the values slightly increase and then decrease. By 

applying the PS’s with the suppressor and different levels of P’s involved, the absolute 

standardized coefficients of the PS_CXPj become smaller from .806 (PS_CXP1) to .052 

(PS_CXP10). These changes correspond to the estimates of standard error in Model 7.1 to 

Model 7.10 and Model 8.1 to Model 8.10. The smaller the absolute standardized 

coefficients of the PS, the larger the standard errors of the estimated treatment effects. 
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These results provide evidence that using the PS with a stronger Pj involved as a 

covariate in the regression model cannot improve the predicted line and cannot increase 

the R2 as directly adding a stronger Pj as a covariate. As a result, the estimates of standard 

error do not become smaller by using the PS with a stronger Pj as a covariate. 
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Table 16 

Correlation Table for Simulated Variables and Propensity Scores – Reciprocal Suppression 

Example 

 Simulated Variables 

 Outcome(Y) 

Mean (SD) 

Treatment(Z) 

Mean (SD) 

Suppressor(X) 

Mean (SD) 

Propensity Scores    

Model 5 PS_C .032 (.045) .069 (.023) .059 (.032) 

Model 5.1 PS_CP1 -.016 (.110) .086 (.024) .055 (.050) 

Model 5.2 PS_CP2 -.045 (.154) .085 (.024) .043 (.066) 

Model 5.3 PS_CP3 -.078 (.201) .084 (.024) .029 (.085) 

Model 5.4 PS_CP4 -.101 (.235) .083 (.024) .019 (.098) 

Model 5.5 PS_CP5 -.124 (.266) .081 (.023) .023 (.109) 

Model 5.6 PS_CP6 -.141 (.287) .080 (.023) .001 (.120) 

Model 5.7 PS_CP7 -.154 (.300) .078 (.023) -.006 (.126) 

Model 5.8 PS_CP8 -.150 (.283) .074 (.023) -.008 (.120) 

Model 5.9 PS_CP9 -.120 (.225) .072 (.023) .001 (.100) 

Model 5.10 PS_CP10 -.079 (.153) .070 (.023) .016 (.074) 

Model 6 PS_CX .509 (.003) .762 (.002) .977 (.002) 

Model 6.1 PS_CXP1 .499 (.010) .765 (.003) .973 (.004) 

Model 6.2 PS_CXP2 .484 (.013) .768 (.004) .969 (.005) 

Model 6.3 PS_CXP3 .459 (.015) .774 (.005) .962 (.006) 

Model 6.4 PS_CXP4 .434 (.016) .780 (.006) .954 (.006) 

Model 6.5 PS_CXP5 .401 (.016) .788 (.006) .945 (.007) 

Model 6.6 PS_CXP6 .367 (.015) .798 (.007) .935 (.006) 

Model 6.7 PS_CXP7 .321 (.012) .811 (.007) .921 (.006) 

Model 6.8 PS_CXP8 .263 (.009) .829 (.006) .902 (.005) 

Model 6.9 PS_CXP9 .219 (.006) .843 (.005) .888 (.004) 

Model 6.10 PS_CXP10 .197 (.004) .851 (.004) .880 (.003) 

Note: The values are calculated by 10 simulated datasets. 

Model 5: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽′

𝑖
𝑉𝑖 + 𝜀. 

Model 5.1 – 5.10: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽′𝑖𝑉𝑖 + 𝛽6𝑃𝑗 + 𝜀.                 

Model 6: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽1𝑋 + 𝛽′1+𝑖𝑉𝑖 + 𝜀. 

Model 6.1 – 6.10: log (
𝑃(𝑍=1)

1−𝑃(𝑍=1)
) = 𝛽0 + 𝛽1𝑋 + 𝛽′1+𝑖𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀. 
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Table 17 

The Estimated Treatment Effects of Propensity Score as a Covariate Models– Reciprocal 

Suppression Example 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

P<.05 

Propensity Score as a Covariate 

        Without Suppressor 

Model 7      1.999 (0.030) 0.291 (0.001) .213 (.003) 10/10 

Model 7.1          P1 2.040 (0.096) 0.289 (0.002) .218 (.010) 10/10 

Model 7.2          P2 2.063 (0.132) 0.287 (0.004) .220 (.014) 10/10 

Model 7.3          P3 2.087 (0.168) 0.284 (0.006) .223 (.018) 10/10 

Model 7.4          P4 2.103 (0.192) 0.281 (0.008) .224 (.020) 10/10 

Model 7.5          P5 2.117 (0.212) 0.278 (0.011) .226 (.022) 10/10 

Model 7.6          P6 2.125 (0.221) 0.275 (0.013) .227 (.024) 10/10 

Model 7.7          P7 2.128 (0.220) 0.273 (0.015) .227 (.023) 10/10 

Model 7.8          P8 2.117 (0.194) 0.275 (0.014) .226 (.021) 10/10 

Model 7.9          P9 2.091 (0.144) 0.281 (0.009) .223 (.015) 10/10 

Model 7.10          P10 2.062 (0.094) 0.286 (0.005) .220 (.010) 10/10 

        With Suppressor 

Model 8 -3.896 (0.085) 0.375 (0.002) -.416 (.009) 10/10 

Model 8.1          P1 -3.772 (0.145) 0.381 (0.006) -.402 (.015) 10/10 

Model 8.2          P2 -3.599 (0.171) 0.389 (0.008) -.384 (.018) 10/10 

Model 8.3          P3 -3.298 (0.193) 0.403 (0.009) -.352 (.021) 10/10 

Model 8.4          P4 -2.975 (0.205) 0.417 (0.010) -.317 (.022) 10/10 

Model 8.5          P5 -2.524 (0.209) 0.435 (0.010) -.269 (.022) 10/10 

Model 8.6          P6 -2.024 (0.207) 0.453 (0.011) -.216 (.022) 10/10 

Model 8.7          P7 -1.251 (0.198) 0.479 (0.011) -.133 (.021) 9/10 

Model 8.8          P8 -0.097 (0.179) 0.512 (0.010) -.010 (.019) 0/10 

Model 8.9          P9 0.959 (0.148) 0.538 (0.009) .102 (.016) 2/10 

Model 8.10          P10 1.590 (0.104) 0.552 (0.008) .170 (.011) 10/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of p 

< .05 out of 10. 

Model 7: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶 + 𝜀. 

Model 7.1 – 7.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑃𝑗 + 𝜀. 

Model 8: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋 + 𝜀. 

Model 8.1 – 8.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋𝑃𝑗 + 𝜀. 
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Table 18 

Coefficients of P’s in Regression Models and Coefficients of Propensity Scores in PS as a 

Covariate Models – Reciprocal Suppression Example 

 Regression  PS as a covariate 

 β 

Mean (SD) 

SE 

Mean (SD)  

β 

Mean (SD) 

SE 

Mean (SD) 

Without Suppressor 

Model   Model   

3.1      P1 .154 (.032) 0.201 (0.003) 7.1       PS_CP1 -.035 (.112) 3.655 (1.139) 

3.2      P2 .250 (.030) 0.192 (0.003) 7.2       PS_CP2 -.064 (.155) 3.656 (1.140) 

3.3      P3 .360 (.027) 0.178 (0.004) 7.3       PS_CP3 -.096 (.203) 3.661 (1.141) 

3.4      P4 .447 (.024) 0.163 (0.004) 7.4       PS_CP4 -.120 (.237) 3.672 (1.144) 

3.5      P5 .540 (.020) 0.143 (0.004) 7.5       PS_CP5 -.143 (.268) 3.695 (1.153) 

3.6      P6 .622 (.016) 0.122 (0.003) 7.6       PS_CP6 -.159 (.289) 3.734 (1.167) 

3.7      P7 .722 (.011) 0.094 (0.003) 7.7       PS_CP7 -.171 (.301) 3.821 (1.202) 

3.8      P8 .834 (.006) 0.056 (0.002) 7.8       PS_CP8 -.167 (.283) 4.022 (1.295) 

3.9      P9 .912 (.003) 0.026 (0.001) 7.9       PS_CP9 -.136 (.224) 4.288 (1.441) 

3.10    P10 .952 (.001) 0.010 (0.001) 7.10     PS_CP10 -.094 (.152) 4.492 (1.567) 

With Suppressor 

4.1      P1 .108 (.026) 0.165 (0.002) 8.1       PS_CXP1 .806 (.021) 0.495 (0.006) 

4.2      P2 .175 (.026) 0.160 (0.003) 8.2       PS_CXP2 .779 (.025) 0.503 (0.008) 

4.3      P3 .256 (.024) 0.152 (0.003) 8.3       PS_CXP3 .731 (.029) 0.517 (0.009) 

4.4      P4 .323 (.023) 0.142 (0.003) 8.4       PS_CXP4 .682 (.031) 0.531 (0.009) 

4.5      P5 .403 (.020) 0.129 (0.004) 8.5       PS_CXP5 .613 (.031) 0.548 (0.010) 

4.6      P6 .481 (.018) 0.115 (0.003) 8.6       PS_CXP6 .539 (.031) 0.565 (0.010) 

4.7      P7 .588 (.014) 0.093 (0.003) 8.7       PS_CXP7 .429 (.029) 0.588 (0.010) 

4.8      P8 .733 (.008) 0.060 (0.002) 8.8       PS_CXP8 .271 (.025) 0.616 (0.010) 

4.9      P9 .856 (.004) 0.030 (0.001) 8.9       PS_CXP9 .133 (.019) 0.637 (0.009) 

4.10    P10 .927 (.003) 0.012 (0.001) 8.10     PS_CXP10 .052 (.013) 0.648 (0.008) 

Note: The values are calculated by 10 simulated data sets.  

Model 3.1 – 3.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜷′𝟏+𝒊𝑉𝑖 + 𝛽7𝑃𝑗 + 𝜀. 𝛽7 is reported. 

Model 4.1 – 4.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑋 + 𝜷′𝟐+𝒊𝑉𝑖 + 𝛽8𝑃𝑗 + 𝜀. 𝛽8 is reported.  

Model 7.1 – 7.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑃𝑗 + 𝜀. 𝛽2 is reported. 

Model 8.1 – 8.10: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝛽2𝑃𝑆_𝐶𝑋𝑃𝑗 + 𝜀. 𝛽2 is reported. 
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PS weighting. Table 19.1 and Table 19.2 report the average estimated treatment 

effects (ATE) without and with trimming at the 95
th

 percentile of weights respectively by 

using different types of weights. The weights are generated from the corresponding PS’s.  

Table 20.1 and Table 20.2 report the average estimated treatment effects for the treated 

(ATT) without and with trimming at the 95
th

 percentile of weights respectively as well. In 

the PS weighting method, the suppressor can also influence the estimation of the 

treatment indicator and can affect the estimated treatment effect from positive to negative. 

The impact of the suppressor is found no matter the estimations for both ATE or ATT 

models, regardless of whether weight trimming is applied or not. The estimates are all 

similar to the corresponding models by using the PS as a covariate method also. As to 

what I found in the example of classical suppression, without the suppressor in the 

processes of estimating treatment effect, estimates of ATE and ATT are almost the same 

as well as the estimates of standard error, regardless of whether weight trimming is 

applied or not. It provides evidence that the distribution of outcomes for individuals in 

the control group is similar to that for all individuals.  

With the suppressor in the processes of estimating treatment effect, the impact of the 

suppressor on the treatment indicator tends to be smaller in ATT than in ATE. For 

example, the estimate of standardized treatment effect with PS_CX in ATT is -.338 which 

is closer to the approximately true treatment effect of .220 than the estimate in ATE, 

which is -.471. Especially when weight trimming is applied, the estimate in ATT of .007 

is no longer negative where the corresponding estimate in ATE is -.129. This implies that 

weight trimming can eliminate the impact of the suppressor more when there is no 
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strong-enough covariate Pj involved in the model. As mentioned in Chapter 4, by 

applying weight trimming, the individuals with the extreme values that cause the biased 

estimation can be removed. However, when the unconfoundedness assumption is 

fulfilled, removing any value in the sample may cause the loss of essential information to 

achieve the unbiased estimation. For example, by using the weights generated from 

PS_CXP10, the estimated ATE of .237 without trimming is closer to the approximately 

true treatment effect of .220 than the estimated ATE of .135 with trimming.  

To the extent in all other models, with the stronger covariates P’s involved, the 

impact of the suppressor is also more likely to be eliminated in the PS weighting method. 

For example, the estimated ATE’s without weight trimming change from -.454 with 

PS_CXP1 involved to .237 with PS_CXP10 involved. The estimate with the strongest P10 

involved is close to the approximately true treatment effect, .220.  

By comparing the standard deviations of the estimated treatment effects to those in 

regression and the PS as a covariate models, the standard deviations are larger by using 

PS weighting models. This finding implies that by using PS weighting, the results of each 

simulated data set are various so that different inferences of the treatment effect are 

conducted, especially when the suppressor is involved. In Table 19.1, to take the model 

using the weights generated from PS_CXP8 for example, two of the estimated treatment 

effects are negatively significant but three of them are positively significant out of 10 

simulated data sets. 

Consistent with previous findings, the estimated standard errors do not decrease in 

the PS weighting models when the stronger covariates P’s are involved, but they do 
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decrease in the regression models. By using the PS weighting method, the only predictor 

is the treatment indicator in the regression model. Unless the absolute standardized 

coefficient of the treatment indicator increases, the model cannot improve the predicted 

line and then increase the value of R2. As a result, the estimates of standard error cannot 

be smaller when the stronger covariates P’s are applied in PS weighting models. 
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Table 19.1 

The Estimated Average Treatment Effects (ATE) of Propensity Score Weighting – 

Reciprocal Suppression Example 

 Without Trimming 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 1.992 (0.040) 0.308 (0.003) .201 (.005) 10/10 

PS_CP1 2.055 (0.142) 0.308 (0.003) .207 (.014) 10/10 

PS_CP2 2.089 (0.195) 0.307 (0.003) .210 (.019) 10/10 

PS_CP3 2.124 (0.250) 0.307 (0.003) .212 (.025) 10/10 

PS_CP4 2.148 (0.285) 0.307 (0.003) .216 (.028) 10/10 

PS_CP5 2.169 (0.314) 0.307 (0.003) .218 (.031) 10/10 

PS_CP6 2.181 (0.328) 0.307 (0.003) .219 (.032) 10/10 

PS_CP7 2.186 (0.326) 0.307 (0.003) .219 (.032) 10/10 

PS_CP8 2.169 (0.286) 0.308 (0.003) .218 (.028) 10/10 

PS_CP9 2.130 (0.212) 0.308 (0.003) .214 (.021) 10/10 

PS_CP10 2.089 (0.138) 0.308 (0.003) .210 (.014) 10/10 

 With Suppressor 

PS_CX -5.764 (0.559) 0.342 (0.022) -.471 (.038) 10/10 

PS_CXP1 -5.437 (0.598) 0.337 (0.014) -.454 (.042) 10/10 

PS_CXP2 -5.121 (0.622) 0.346 (0.012) -.436 (.042) 10/10 

PS_CXP3 -4.617 (0.655) 0.330 (0.013) -.404 (.044) 10/10 

PS_CXP4 -4.102 (0.681) 0.326 (0.014) -.368 (.047) 10/10 

PS_CXP5 -3.403 (0.709) 0.322 (0.015) -.315 (.052) 10/10 

PS_CXP6 -2.649 (0.738) 0.318 (0.017) -.252 (.059) 10/10 

PS_CXP7 -1.506 (0.787) 0.313 (0.021) -.146 (.073) 9/10 

PS_CXP8 0.154 (0.861) 0.309 (0.031) .020 (.093) 
2/10(-); 

3/10(+) 

PS_CXP9 1.610 (1.047) 0.308 (0.041) .165 (.108) 9/10 

PS_CXP10 2.397 (1.251) 0.308 (0.044) .237 (.111) 10/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p 

< .05 out of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 
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Table 19.2 

The Estimated Average Treatment Effects (ATE) of Propensity Score Weighting – Reciprocal 

Suppression Example 

 With Trimming at 95
th 

Percentile 

 

B SE(B) β 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 2.003 (0.082) 0.309 (0.003) .206 (.008) 10/10 

PS_CP1 2.018 (0.101) 0.309 (0.003) .207 (.009) 10/10 

PS_CP2 2.012 (0.116) 0.308 (0.003) .207 (.011) 10/10 

PS_CP3 2.019 (0.124) 0.308 (0.003) .208 (.012) 10/10 

PS_CP4 2.025 (0.129) 0.308 (0.002) .209 (.012) 10/10 

PS_CP5 2.013 (0.115) 0.307 (0.003) .208 (.011) 10/10 

PS_CP6 2.014 (0.110) 0.307 (0.003) .208 (.011) 10/10 

PS_CP7 2.011 (0.094) 0.307 (0.003) .208 (.010) 10/10 

PS_CP8 2.010 (0.090) 0.307 (0.003) .208 (.008) 10/10 

PS_CP9 1.992 (0.099) 0.307 (0.003) .206 (.009) 10/10 

PS_CP10 2.006 (0.089) 0.308 (0.003) .207 (.008) 10/10 

 With Suppressor 

PS_CX -1.368 (0.247) 0.342 (0.011) -.129 (.023) 10/10 

PS_CXP1 -1.363 (0.370) 0.344 (0.009) -.128 (.035) 10/10 

PS_CXP2 -1.212 (0.369) 0.350 (0.010) -.112 (.033) 9/10 

PS_CXP3 -0.950 (0.431) 0.355 (0.010) -.086 (.039) 8/10 

PS_CXP4 -0.778 (0.343) 0.365 (0.012) -.069 (.031) 5/10 

PS_CXP5 -0.360 (0.342) 0.370 (0.012) -.032 (.030) 2/10 

PS_CXP6 0.141 (0.345) 0.378 (0.014) -.013 (.030) 0/10 

PS_CXP7 0.335 (0.416) 0.389 (0.010) .028 (.035) 1/10 

PS_CXP8 0.977 (0.353) 0.405 (0.010) .078 (.028) 7/10 

PS_CXP9 1.557 (0.315) 0.428 (0.015) .117 (.022) 10/10 

PS_CXP10 1.835 (0.348) 0.438 (0.015) .135 (.026) 10/10 

Note: Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of p < .05 

out of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 



85 

 

Table 20.1 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score 

Weighting – Reciprocal Suppression Example 

 Without Trimming 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

β 

Mean (SD) 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 1.997 (0.022) 0.290 (0.001) .213 (.003) 10/10 

PS_CP1 2.038 (0.094) 0.289 (0.001) .218 (.010) 10/10 

PS_CP2 2.060 (0.129) 0.289 (0.001) .220 (.013) 10/10 

PS_CP3 2.084 (0.164) 0.289 (0.001) .222 (.017) 10/10 

PS_CP4 2.101 (0.187) 0.289 (0.001) .224 (.019) 10/10 

PS_CP5 2.114 (0.205) 0.289 (0.001) .225 (.021) 10/10 

PS_CP6 2.123 (0.214) 0.289 (0.001) .226 (.022) 10/10 

PS_CP7 2.126 (0.212) 0.289 (0.001) .226 (.022) 10/10 

PS_CP8 2.115 (0.185) 0.289 (0.001) .225 (.019) 10/10 

PS_CP9 2.089 (0.136) 0.289 (0.001) .223 (.014) 10/10 

PS_CP10 2.061 (0.087) 0.289 (0.001) .220 (.009) 10/10 

 With Suppressor 

PS_CX -3.248 (0.620) 0.285 (0.013) -.338 (.052) 10/10 

PS_CXP1 -3.059 (0.640) 0.284 (0.011) -.321 (.055) 10/10 

PS_CXP2 -2.857 (0.635) 0.284 (0.011) -.302 (.056) 10/10 

PS_CXP3 -2.529 (0.634) 0.284 (0.010) -.269 (.058) 10/10 

PS_CXP4 -2.188 (0.641) 0.284 (0.010) -.234 (.061) 10/10 

PS_CXP5 -1.720 (0.661) 0.285 (0.010) -.186 (.066) 10/10 

PS_CXP6 -1.205 (0.698) 0.286 (0.010) -.130 (.073) 8/10 

PS_CXP7 -0.409 (0.775) 0.288 (0.011) -.043 (.084) 5/10 

PS_CXP8 0.781 (0.866) 0.291 (0.019) .086 (.097) 3/10 

PS_CXP9 1.864 (0.975) 0.294 (0.032) .196 (.103) 9/10 

PS_CXP10 2.461 (1.148) 0.295 (0.037) .252 (.108) 9/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p < .05 out 

of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 
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Table 20.2 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score 

Weighting – Reciprocal Suppression Example 

 With Trimming at 95
th 

Percentile 

 

B SE(B) β 

Significance 

P<.05 

Model 9  

Propensity Scores Used Without Suppressor 

PS_C 2.036 (0.077) 0.298 (0.001) .217 (.008) 10/10 

PS_CP1 2.002 (0.073) 0.298 (0.002) .213 (.007) 10/10 

PS_CP2 2.001 (0.095) 0.298 (0.002) .213 (.010) 10/10 

PS_CP3 1.985 (0.111) 0.298 (0.002) .212 (.011) 10/10 

PS_CP4 1.989 (0.107) 0.298 (0.002) .212 (.011) 10/10 

PS_CP5 1.982 (0.126) 0.297 (0.002) .212 (.012) 10/10 

PS_CP6 1.959 (0.148) 0.296 (0.003) .210 (.015) 10/10 

PS_CP7 1.954 (0.163) 0.296 (0.003) .210 (.016) 10/10 

PS_CP8 1.944 (0.177) 0.296 (0.003) .209 (.018) 10/10 

PS_CP9 1.961 (0.158) 0.297 (0.002) .210 (.016) 10/10 

PS_CP10 1.999 (0.110) 0.297 (0.002) .213 (.011) 10/10 

 With Suppressor 

PS_CX 0.086 (0.257) 0.390 (0.012) .007 (.022) 0/10 

PS_CXP1 0.188 (0.209) 0.393 (0.012) .016 (.018) 0/10 

PS_CXP2 0.256 (0.217) 0.397 (0.012) .021 (.018) 0/10 

PS_CXP3 0.407 (0.152) 0.404 (0.012) .033 (.012) 0/10 

PS_CXP4 0.539 (0.303) 0.411 (0.013) .042 (.024) 2/10 

PS_CXP5 0.733 (0.250) 0.423 (0.013) .056 (.020) 2/10 

PS_CXP6 0.907 (0.336) 0.437 (0.014) .067 (.025) 6/10 

PS_CXP7 1.077 (0.327) 0.458 (0.013) .076 (.023) 6/10 

PS_CXP8 1.538 (0.369) 0.493 (0.015) .101 (.024) 9/10 

PS_CXP9 1.831 (0.512) 0.519 (0.013) .113 (.031) 9/10 

PS_CXP10 2.159 (0.525) 0.539 (0.016) .128 (.030) 9/10 

Note: Note: The values are calculated by 10 simulated data sets. Significance column reports 

the number of simulated data sets which have significant treatment effect at the level of p < .05 

out of 10. 

Model 9: 𝑌 = 𝛽0 + 𝛽1𝑍 + 𝜀. 
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PS matching. Two types of matching methods, nearest neighbor matching and 

nearest neighbor matching within a caliper 𝜀 =  .25𝜎𝑃𝑆 , are used and the estimates 

are shown in Table 21.1 and Table 21.2, respectively. As to what was found in PS 

weighting methods, the standard deviations of the estimated treatment effects are larger. 

This implies that from different simulated data sets, the estimates are various. As a result, 

different inferences of the treatment effect may be generated, especially for those 

estimates with the suppressor involved in the models. 

 In Table 21.1, the estimated treatment effect increases from 2.065 by matching with 

PS_C to -4.246 by matching with PS_CX. This result indicates that the suppressor has the 

impact on the estimation of the treatment effect and changes the predictive direction of 

the treatment indicator on the outcome significantly. Moreover, the impact of the 

suppressor on the treatment indicator can also be eliminated in the PS matching method 

when the stronger covariates P’s are applied to estimate the PS’s. For example, the 

estimated ATT changes from -3.348 by matching individuals with PS_CXP1 to 2.746 by 

matching individuals with PS_CXP10. When the unconfoundedness assumption is 

approximately fulfilled by matching the individuals with the suppressor and the strongest 

covariate P10 involved, the estimate of ATT of 2.746 is slightly larger than 2.461 without 

weight trimming and 2.159 with weight trimming in PS weighting models.  

Table 21.1 and Table 21.2 also provide evidence that with the suppressor involved, 

the estimated standard errors are much larger compared to the corresponding estimates in 

all other methods. The estimates of standard error become larger especially when the 

stronger Pj is involved. This implies that the PS matching method conducts the least 
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precise estimates of the treatment effect compared to all other methods.   

Comparable to what I found in the example of classical suppression, the estimates 

are really similar by using the nearest neighbor matching method and the nearest 

neighbor matching within a caliper method. The estimates are even the same when the 

suppressor is involved in the PS models. This provides evidence that the differences of 

the individual’s PS’s within each pair are smaller than the defined calipers. The biggest 

number of pairs removed from the analyses is nine out of 500. The largest caliper is .016 

and the smallest one is .005 in the analyses with the mean .010. The values of calipers are 

slightly larger than those in the example of classical suppression. However, they are also 

small enough to assume the individuals’ PS’s for the matched pairs are similar. 
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Table 21.1 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score Matching 

– Reciprocal Suppression Example 

 Nearest Neighbor Matching 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

Significance 

P<.05 

Model 10 

Propensity Scores Used Without Suppressor 

PS_C 2.065 (0.292) 0.385 (0.010) 10/10 

PS_CP1 2.201 (0.307)  0.388 (0.010) 10/10 

PS_CP2 2.072 (0.319) 0.385 (0.016) 10/10 

PS_CP3 2.102 (0.329) 0.386 (0.015) 10/10 

PS_CP4 2.059 (0.288) 0.389 (0.010) 10/10 

PS_CP5 2.076 (0.374) 0.383 (0.006) 10/10 

PS_CP6 2.186 (0.326) 0.381 (0.009) 10/10 

PS_CP7 2.280 (0.378) 0.384 (0.012) 10/10 

PS_CP8 2.182 (0.278) 0.386 (0.014) 10/10 

PS_CP9 2.049 (0.402) 0.381 (0.010) 10/10 

PS_CP10 2.033 (0.385) 0.390 (0.011) 10/10 

 With Suppressor 

PS_CX -4.246 (1.393) 1.257 (0.270) 10/10 

PS_CXP1 -3.349 (1.253) 1.311 (0.215) 7/10 

PS_CXP2 -3.278 (1.242) 1.342 (0.260) 7/10 

PS_CXP3 -3.122 (.898) 1.419 (0.287) 5/10 

PS_CXP4 -2.894 (1.184) 1.520 (0.321) 3/10 

PS_CXP5 -1.728 (1.578) 1.595 (0.349) 1/10 

PS_CXP6 -1.342 (1.425) 1.740 (0.358) 1/10 

PS_CXP7 -0.582 (1.520) 1.875 (0.373) 0/10 

PS_CXP8 0.587 (1.687) 2.040 (0.390) 0/10 

PS_CXP9 1.422 (1.557) 2.174 (0.413) 1/10 

PS_CXP10 2.746 (1.960) 2.353 (0.471) 2/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p < .05 out 

of 10. 

Model 10: 𝜏𝑡̂ =
1

𝑛𝑡
∑ {𝑌𝑘|𝑍 = 1 − 𝑌𝑘̂|𝑍 = 0}𝑛𝑡

𝑘=1 . 



90 

 

Table 21.2 

The Estimated Average Treatment Effects on the Treated (ATT) of Propensity Score Matching 

– Reciprocal Suppression Example 

 Nearest Neighbor Matching within a Caliper 

 B 

Mean (SD) 

SE(B) 

Mean (SD) 

Significance 

P<.05 

Model 10 

Propensity Scores Used Without Suppressor 

PS_C 2.065 (0.297) 0.385 (0.010) 10/10 

PS_CP1 2.198 (0.308) 0.388 (0.010) 10/10 

PS_CP2 2.072 (0.319) 0.385 (0.015) 10/10 

PS_CP3 2.101 (0.330) 0.386 (0.014) 10/10 

PS_CP4 2.059 (0.288) 0.389 (0.010) 10/10 

PS_CP5 2.075 (0.378) 0.383 (0.006) 10/10 

PS_CP6 2.185 (0.327) 0.381 (0.009) 10/10 

PS_CP7 2.279 (0.378) 0.384 (0.012) 10/10 

PS_CP8 2.180 (0.280) 0.385 (0.014) 10/10 

PS_CP9 2.045 (0.411) 0.381 (0.010) 10/10 

PS_CP10 2.027 (0.382) 0.390 (0.011) 10/10 

 With Suppressor 

PS_CX -4.246 (1.393) 1.257 (0.270) 10/10 

PS_CXP1 -3.349 (1.253) 1.311 (0.215) 7/10 

PS_CXP2 -3.278 (1.242) 1.342 (0.260) 7/10 

PS_CXP3 -3.122 (0.898) 1.419 (0.287) 5/10 

PS_CXP4 -2.894 (1.184) 1.520 (0.321) 3/10 

PS_CXP5 -1.728 (1.578) 1.595 (0.349) 1/10 

PS_CXP6 -1.342 (1.425) 1.740 (0.358) 1/10 

PS_CXP7 -0.582 (1.520) 1.875 (0.373) 0/10 

PS_CXP8 0.587 (1.687) 2.040 (0.390) 0/10 

PS_CXP9 1.422 (1.557) 2.174 (0.413) 1/10 

PS_CXP10 2.746 (1.960) 2.353 (0.471) 2/10 

Note: The values are calculated by 10 simulated data sets. Significance column reports the 

number of simulated data sets which have significant treatment effect at the level of p < .05 out 

of 10. 

Model 10: 𝜏𝑡̂ =
1

𝑛𝑡
∑ {𝑌𝑘|𝑍 = 1 − 𝑌𝑘̂|𝑍 = 0}𝑛𝑡

𝑘=1 . 
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Impact of a confounding variable. Table 22 reports that the impacts of 

suppressor X, covariate Pj, and PS variables on the estimation of treatment indicator Z. 

For the variable with a larger impact, the estimation of the treatment indicator is more 

likely to be influenced by adding it as a confounding variable in the regression model. In 

Table 22, X and PS_CX have the largest impacts on the treatment indicator, .401 

and .388, respectively. The result implies that with the suppressor itself or the PS with the 

suppressor involved, the estimation of the treatment indicator can easily be affected 

because of their large impacts. For the PS_CXPj, with a stronger covariate Pj, the impact 

becomes smaller from PS_CXP1 (.382) to PS_CXP10 (.168). This is because the 

correlations of PS_CXPj with outcome Y decrease when the stronger covariates P’s are 

used to estimate the PS’s. It implies that an individual with a higher probability in the 

treatment group tends to have a smaller outcome value. As a result, the impacts of 

PS_CXPj decrease from PS_CXP1 to PS_CXP10. Although the correlation coefficients 

between PS_CPj and Y are first decreasing from PS_CP1 to PS_CP8 and then increasing 

from PS_CP8 to PS_CP10, the changes are small to zero. As a result, the correlation 

coefficients are easily influenced by the individuals with the extremer values of PS_CPj 

and Y. The results provide evidence that with the suppressor and weaker covariates P’s in 

the PS models, the PS’s have the stronger impacts on the estimations of the treatment 

indicator.
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Table 22 

Impact of Suppressor, P’s, and Propensity Scores on Treatment Indicator – Reciprocal 

Suppression Example 

 Correlation with Y Correlation with Z Impact 

 X .534 .750 .401 

 P1 
.148 -.027 -.004 

 P2 .244 -.027 -.007 

 P3 .355 -.026 -.009 

 P4 .441 -.025 -.011 

 P5 .535 -.023 -.012 

 P6 .617 -.021 -.013 

 P7 .718 -.019 -.014 

 P8 .830 -.015 -.012 

 P9 .910 -.010 -.009 

 P10 .950 -.006 -.006 

 PS_C .032  .069  .002 

 PS_CP1 -.016  .086  -.001 

 PS_CP2 -.045  .085  -.004 

 PS_CP3 -.078  .084  -.007 

 PS_CP4 -.101  .083  -.008 

 PS_CP5 -.124  .081  -.010 

 PS_CP6 -.141  .080  -.011 

 PS_CP7 -.154  .078  -.012 

 PS_CP8 -.150  .074  -.011 

 PS_CP9 -.120  .072  -.009 

 PS_CP10 -.079  .070  -.006 

 PS_CX .509  .762  .388 

 PS_CXP1 
.499 .765 .382 

 PS_CXP2 .484 .768 .372 

 PS_CXP3 .459 .774 .355 

 PS_CXP4 .434 .780 .339 

 PS_CXP5 .401 .788 .316 

 PS_CXP6 
.367 .798 .293 

 PS_CXP7 .321 .811 .260 

 PS_CXP8 .263 .829 .218 

 PS_CXP9 .219 .843 .185 

 PS_CXP10 .197 .851 .168 

Note: The values are the means calculated by 10 simulated datasets. Impact is the product of 

correlations with Y and Z. 
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Chapter 6 

CONCLUSION AND DISCUSSION 

                                                      

Summary of Findings 

The primary goal of this study is to provide a basic understanding of how a 

suppressor variable suppressing on the treatment indicator affects the estimations of 

causal effect as one of the covariates in regression models and PS methods including PS 

as a covariate, PS weighting, and PS matching models. Two types of suppressions are 

studied: classical suppression and reciprocal suppression. Classical suppression has the 

strictest definition of suppression and reciprocal suppression has the most general one. 

Examples of classical and reciprocal suppressions are presented by 10 simulated data sets 

for each. For both examples, the impacts of the suppressors are extremely strong based on 

the simulated data sets. As a result, the estimations are easily affected by adding the 

suppressors in the models. An additional condition of adding a covariate, Pj, explaining 

the variance of outcome, is also tested to see how the estimates of the treatment effects 

vary in the models. Ten covariates P’s are generated to explain different amounts of the 

variance of the outcome from small to large, conditional on the treatment indicator. The 

simulated data sets are successfully conducted by the evolution algorithm technique for 

both examples of classical and reciprocal suppressions with the relative constraints. 

Figure 5 and Figure 8 illustrate the line graphs of the estimates of the unstandardized 

treatment effect for examples of classical and reciprocal suppressions respectively with 

different combinations of covariates:  

 random covariates (C), 
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 random covariates and different level of P’s (CP1 – CP10), 

 random covariates and suppressor (CX) and 

 random covariates, suppressor, and different level of P’s (CXP1 – CXP10). 

Those estimates of the treatment effect are estimated by 8 different types of models in 

this study including: regression, PS as a covariate, PS weighting for ATE, PS weighting 

for ATE with weight trimming, PS weighting for ATT, PS weighting for ATT with weight 

trimming, PS matching for ATT, and PS matching for ATT within a caliper. Figure 6 and 

9 illustrate the relative line graphs of the estimated standard errors of the estimated 

treatment effects by the models. Figure 7 and 10 illustrate the relative line graphs of the  

t-ratios of the estimated treatment effects by the models.  

Both examples of classical and reciprocal suppressions provide evidence that the 

suppressors increase the predictive power of the treatment effects and influence the 

estimations of the treatment effect, in regression or PS methods, without controlling any 

covariate Pj. However, the impacts of the suppressors vary in different types of models. 

The results can be found by comparing the values of the estimated treatment effects in the 

combinations of covariates C and CX in Figures 5 and 8. The estimate increases in the 

example of classical suppression and decreases in the example of reciprocal suppressions 

substantially. The impacts of the suppressors influence the estimated values the most by 

using PS weighting for ATE models where the changes of the estimates are largest after 

adding the suppressors involved in the model. The changes of the estimates are least 

when using PS weighting for ATT with trimming models in both examples. According to 

the findings, PS weighting for ATT with trimming is a better model to apply to eliminate 

the impact of the suppressor, whether used for classical suppression or a reciprocal one 
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when there is no covariate P or only weak covariates P’s involved in the models. When 

the strong-enough covariates P’s, eliminating the impacts of suppressors substantially by 

themselves are applied, the estimated treatment effects from the models of PS weighting 

for ATT with trimming tend not to be closer to the approximately true treatment effect 

than those from the models without trimming. That is because without 

unconfoundedness, the unbiased estimation cannot be assumed. The individuals with the 

extreme values tend to affect the biased estimation can easily be removed by applying 

weight trimming. However, when the unconfoundedness assumption is fulfilled, 

removing any individual in the sample may cause the loss of essential information to 

achieve the unbiased estimation. This result can also be found in the models of PS 

weighting for ATE with trimming.    

The estimations without the suppressor involved (C and CP1 – CP10) are quite 

consistent in all types of models in the example of reciprocal suppression. In the example 

of classical suppression, the estimated treatment effects are consistent in all models 

except those in PS matching models. Previous studies demonstrate that including a 

variable that is strongly related to the treatment indicator, but unrelated to outcomes (such 

as a classical suppressor or an instrument variable), can decrease the efficiency of the 

estimated causal effect in PS methods (Perkins et al., 2000; Rubin, 1997; Wooldridge, 

2005). This study provides evidence that the PS matching method is most responsible for 

decreasing efficiency.  

Moreover, with the stronger covariates P’s involved, the impact of the suppressor 

becomes smaller in all models by comparing the estimates from CXP1 to CXP10 for both 

examples. However, the changes of the estimates with the stronger covariates P’s applied 
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by using PS matching methods are not as smooth as those by using other methods. In this 

study, I assume the unconfoundedness assumption can be approximately fulfilled when 

the estimate is conditional on the strongest covariate, P10. Results indicate that the 

estimates with P10 involved in the models are almost the same for all models in the 

example of reciprocal suppression. The example of classical suppression conducts a 

similar finding except the estimate in PS weighting for ATE with weight trimming is 

slightly larger and the estimate in PS matching models is slightly smaller under 

unconfoundedness. When the unconfoundedness assumption is fulfilled, the estimates 

should be close to the true treatment effect. Steiner, Cook, and Shadish (2011) 

demonstrated that the unreliability of measurement can degrade the ability of the PS’s to 

reduce the bias used in the simulation. Increasing the reliability of the covariate 

promoting bias reduction can reduce bias of the estimation. This finding implies that with 

the unreliable variables in the PS model, the unconfoundedness assumption would tend to 

be violated so that the unbiased estimation could not be conducted. They also found that 

if the covariates have no effect on reducing bias, no matter how reliable the 

measurements are, including those covariates would not reduce selection bias. This study 

provides evidence that if a covariate such as a suppressor has no effect on reducing bias, 

including that covariate would generate a biased estimation in both regression and PS 

models. However, including a good covariate promoting bias reduction, such as the 

variable of pre-test scores, can eliminate the bias produced by the other covariate such as 

a suppressor. In Figure 5 and Figure 8, the slopes become larger, apparently from CXP5 

to CXP10 for most models. This finding implies that the bias caused by the suppressors 
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can be removed significantly by including the strong-enough covariate such as P5 or the 

stronger ones in most models, even when the impacts of the suppressors are extremely 

large on the estimations of the treatment effects in these two examples. 

 It can be observed by Figure 6 and Figure 9 that the estimates of standard error only 

decline by using regression models when the stronger covariates P’s are applied. 

However, the estimates of standard error are quite consistent in the example of classical 

suppression and slightly increase in the example of reciprocal suppression by using all 

other models. This finding implies that regression can increase the efficiency of the 

estimations precisely when the unconfoundedness assumption is more likely to be 

fulfilled. That is because the predicted line can be improved by directly adding the 

strong-enough covariates so that the mean square error tends to be smaller. As a result, 

for the corresponding models, the inference of causal effect is more likely to be 

significant by using regression methods than by using PS methods. Moreover, according 

to the result, the estimated standard errors by using PS matching models are much larger 

than those by using all other models. Figure 7 and Figure 10 demonstrate that the largest 

t-ratios of the treatment effect are from the regression models, where the most significant 

inferences can be generated when the stronger covariates P’s are applied. Meanwhile, the 

smallest t-ratios are from the PS matching models because of the large estimated standard 

errors. As a result, the least significant inferences are generated from the PS matching 

models in both examples.   
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Figure 5. Line Graphs of Estimated Treatment Effects in Example of Classical Suppression. 
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Figure 6. Line Graphs of Estimated Standard Errors in Example of Classical Suppression. 
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Figure 7. Line Graphs of T-ratios of the Treatment Effect in Example of Classical Suppression. 
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Figure 8. Line Graph of Estimated Treatment Effect in Example of Reciprocal Suppression. 
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Figure 9. Line Graph of Estimated Standard Errors in Example of Reciprocal Suppression. 
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Figure 10. Line Graphs of T-ratios of the Treatment Effect in Example of Reciprocal Suppression.
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Implication 

Although model comparisons can provide adequate knowledge about how the 

suppressors and how the covariates P’s affect the estimations of causal effects in 

regression and PS methods, the most important thing in this study is trying to generate a 

guideline of how to approach a more accurate estimate of causal effect when a suppressor 

variable is involved in the estimating process. 

 In this study, the covariates P’s, which are unconditional on the suppressor, are 

used to approximate the unconfoundedness assumption. Another assumption made before 

generating the covariates P’s is that the true treatment effect is not conditional on any 

other variables including the suppressor in the models. As a result, the covariates P’s are 

generated from the residuals of a simple linear regression of the treatment indicator on 

outcome only. In this case, the estimate is not accurate for the treatment effect while 

including the suppressor variable in the model. The reason to make this assumption is 

because if the true treatment effect is conditional on the suppressor, intuitively, the 

suppressor needs to be controlled in the model as a confounding variable to achieve the 

unbiased estimation.  

Based on the findings, the PS matching method conducts the worst estimation of the 

treatment effect because of its low efficiency, especially when a classical suppressor is 

used to estimate the PS’s. Even a reciprocal suppressor can conduct an extremely large 

standard error of the estimated treatment effect in the PS matching method. Based on the 

strategy for selecting variables for the PS model, as long as the variable is correlated to 

the dependent variable, it has to be included in the PS model (Augurzky & Schmidt, 

2001; Caliendo & Kopeinig, 2008; Heckman et al., 1998; Lechner, 2002; Ravallion, 
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2001). There is no question about excluding classical suppressors in the PS model by 

following this strategy, but not for reciprocal suppressors. That is because reciprocal 

suppressors are correlated to both the outcome and the treatment indicator significantly so 

that they have to be selected into the PS model by following this strategy. However, this 

study provides the example that selecting the reciprocal suppressor in the PS model 

produces bias on the estimation when there is no good enough covariate such as pre-test 

scores in the model. As a result, unless the unconfoundedness assumption can be fulfilled 

with sufficient evidence, using this strategy can also generate a biased estimate of causal 

effect. Moreover, although some of the estimated treatment effects are similar among the 

corresponding models, the PS matching method conducts less efficient estimates. As a 

result, using the PS matching method may generate a different inference of causal effect 

from other methods.   

This study also found that the impact of the suppressor can be eliminated under 

unconfoundedness. As a result, the bias produced by the suppressors can be removed. 

There is no doubt unconfoundedness is difficult to achieve in empirical studies without a 

randomized design. One reason PS methods are becoming more and more popular is 

because researchers believe that by including as many as possible covariates, the 

unconfoundedness assumption can be fulfilled. However, this study provides examples 

showing that not all the covariates can reduce the bias of the estimation of the treatment 

effect in PS methods, but some may increase the bias such as suppressor variables. Also, 

the quality of covariates is much more important than the quantity of them to remove bias. 

In some cases, a good covariate, such as pre-test scores, can lead to an accurate estimate 

of the treatment effect. People should keep in mind that the good PS’s indicate that 
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individuals with the same PS behave similarly under the same conditions; however, the 

good PS’s do not have to conduct the best statistical significance. The classical and 

reciprocal suppressors in this study give examples illustrating that the PS’s with the 

suppressors involved can increase the statistical significance of the estimated treatment 

effects, but the estimated treatment effects can be biased. The strategy of selecting 

variables in PS models should not only depend on statistical results, but also on rationales 

and relative theories. In planning a quasi-experimental design, empirical information 

from previous studies and existing theories need to be considered carefully to define 

which covariates have to be measured to generate an unbiased estimation. Most of time, a 

good covariate is most crucial to be accessed.  

Moreover, when the unconfoundedness assumption is violated, this study 

demonstrates that the model of PS weighting for estimating ATT with weight trimming at 

the 95
th

 percentile eliminates the most impacts of the suppressors on the treatment effect, 

for both examples of classical and reciprocal suppressions, compared to all other models. 

This implies that when the quality of the PS is uncertain, researchers can apply this 

method to approach the estimate closer to the true treatment effect by removing the 

individuals who may easily affect the estimation. When the unconfoundedness 

assumption is fulfilled, this study finds out that a multiple regression model controlling 

for all covariates comes out to be the best model with the smallest standard error of 

estimated treatment effect. This implies that if a set of covariates were obtained in a good 

quality, a simple model could perform better than a complex one.   
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Limitations 

 In this study, only specific examples of classical and reciprocal suppressions are 

provided. The examples here cannot be used to generalize to all the phenomena of 

classical and reciprocal suppressions. Also, I define that the true treatment effects are 

estimated without controlling suppressor variables in this study. It is possible that some 

covariates not only can cause suppressions, but can also reduce the bias in other 

frameworks. As a result, people should control suppressor variables to obtain unbiased 

estimates. It is also possible that some suppressor variables have small impacts on the 

estimation of the treatment indicators or suppress other covariates so that controlling 

those suppressor variables in the models does not affect estimation. However, this study 

does not illustrate those phenomena of suppression.  

In both examples, the suppressors have extremely large impacts on the estimation 

of treatment indicators. As the results show, the impacts can only be eliminated by the 

really strong covariates. It is necessary to verify that when the suppressors produce bias 

in different degrees, how strong the covariates should be can eliminate their impacts on 

the treatment effects. Also, with various degrees of suppressors, whether the diverse 

methods perform differently can also be tested. 

 Because there are many distinct PS matching methods such as mahalanobis metric 

matching and optimal matching, although the PS matching with the nearest neighbor and 

nearest neighbor within a caliper do not conduct precise estimates in this study, by 

applying different matching methods, the results may differ. From Hansen (2007), 

applying optimal matching matched where matched adjustment requires analyst to 

articulate a distance between desirable and undesirable potential matches, and then to 
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match individuals in treatment and control groups by that. This method favors the more 

desirable pairs which can substantially improve the power and robustness of causal 

inference. Whether this method can also improve the power and robustness of causal 

inference when suppressor variables are involved should be tested in further studies. 

It is also important to use empirical data to verify the findings here and to see how 

suppressor variables affect the inference in a real study. Moreover, by using the data from 

a longitudinal design, researchers can have an empirical example of how the covariate 

eliminates the impact of the suppressors, especially for the suppressors which may lead 

the biased estimates.
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Appendix A 

Simulation Program 
 

import sys 

import numpy 

from numpy import matrix 

from numpy import ones 

from numpy import linalg 

#“Classical Suppression Code” 
target_corr = numpy.matrix([[1, 0.6, 0.7],[0.6, 1, 0.2],[0.7, 0.2, 1]]) 

target_L    = numpy.linalg.cholesky (target_corr) 

target_d1  = -4 

target_d2  = 2 

target_d1b = 2 

#“Reciprocal Suppression Code” 
target_corr = numpy.matrix([[1,-0.05,0.6],[0.6,1,0.03],[-0.05,0.03,1]]) 

target_L    = numpy.linalg.cholesky (target_corr) 

target_d1  = 7 

target_d2  = 2 

target_d1b = 2 

 

mutate_scale = 5.0 

flip_prob = 0.08 

surv_prob = 0.95  

scale_exp = 0.999639589 

dimension  = 1000(sys.argv[1]) 

generation = 90000(sys.argv[2]) 

population = 500 

 

_mut_X = True   

_mut_Y = True   

_eval_corr = True  

_eval_lsqr = True  

class DNA:     

    def __init__ (self, n): 

        self.dim = n 

        self.X = numpy.random.rand(n) * 100.0  

        self.Y = numpy.random.rand(n) * 100.0  

        self.Z = numpy.zeros (n) 

 for i in range(0,n/2):    

     self.Z[i] = 0 

 for i in range(n/2,n):    

     self.Z[i] = 1 

        self.fitness = self.evaluate() 

    def clone (self): 

        copy = DNA (self.dim) 

        copy.X = self.X.copy() 

        copy.Y = self.Y.copy() 

        copy.Z = self.Z.copy() 

        copy.fitness = self.fitness 
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        return copy 

    def evaluate (self): 

   err = 0.0 

   if _eval_corr: 

          corr = numpy.corrcoef([self.X, self.Y, self.Z]) 

          corr_diff = target_corr - corr 

          corr_err  = numpy.linalg.norm (corr_diff, ord='fro') 

          err += pow (corr_err, 2) 

   if _eval_lsqr: 

        M  = matrix([ones(self.dim), self.Z, self.X]) 

          MM = matrix([ones(self.dim), self.Z]) 

          (d,  res, rank, s) = linalg.lstsq (M.transpose(), self.Y) 

          (dd, res, rank, s) = linalg.lstsq (MM.transpose(), 

self.Y)   

          err += pow (abs(d[1] - target_d1), 2) 

          err += pow (abs(dd[1] - target_d1b), 2) 

          return pow (err, 0.5) 

    def mutate (self): 

  if _mut_X:          

self.X += numpy.random.normal (loc=0.0, scale=mutate_scale, 

size=self.dim)  

       numpy.clip (self.X, 0.0, 100.0, out=self.X)    

if _mut_Y:          

self.Y += numpy.random.normal (loc=0.0, scale=mutate_scale, 

size=self.dim)  

       numpy.clip (self.Y, 0.0, 100.0, out=self.Y)    

       self.fitness = self.evaluate() 

def evolve (pop, gen): 

    pop_size = len (pop) 

    last_fitness = None          

    for g in range(0,gen): 

   nextgen = [] 

      for p in pop: 

     nextgen.append (p) 

     c = p.clone() 

     c.mutate() 

     nextgen.append(c) 

   nextgen.sort (key = lambda x: x.fitness)  

   pop[:] = []      

   for k in range(0,len(nextgen)): 

       prob  = pow (surv_prob, k)   

       if len(pop) < pop_size: 

      if numpy.random.rand() < prob: 

         pop.append (nextgen[k]) 

   while len(pop) < pop_size: 

          pop.append (nextgen[0]) 

    global mutate_scale 

    if 0 == (g % 8): 

       best = pop[0]    

       if last_fitness is not None: 

         if last_fitness - best.fitness < 0.0005 * 

last_fitness: 
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        mutate_scale *= 0.5 

        mutate_scale = max (mutate_scale, 0.001) 

 sys.stderr.write ('mutate scale: ' + str(mutate_scale) 

+ '\n') 

        sys.stderr.flush() 

       last_fitness = best.fitness 

 sys.stderr.write ("generation  

 sys.stderr.flush() 

pop = [] 

for k in range(0,population): 

    pop.append (DNA(dimension)) 

try: 

    while (generation > 0): 

   evolve (pop, generation) 

   best = pop[0] 

   print "fitness:  ", best.fitness 

   print "correlation coef.: " 

   print numpy.corrcoef([best.X,best.Y,best.Z]) 

   M = matrix([ones(best.dim), best.Z, best.X]) 

   (d, res, rank, s) = linalg.lstsq (M.transpose(), best.Y) 

   print "Linear least square:  ", d 

   M = matrix([ones(best.dim), best.Z]) 

   (d, res, rank, s) = linalg.lstsq (M.transpose(), best.Y) 

   print "Linear least square (shorter):  ", d 

   cmd = raw_input('Command: ') 

   if (cmd == 'exit'): 

       break 

   else: 

       exec cmd 

except KeyboardInterrupt: 

    print "interrupted" 

    pass 

best = pop[0] 

if False: 

    print "X = ", numpy.array_repr(best.X) 

    print "Y = ", numpy.array_repr(best.Y) 

    print "Z = ", numpy.array_repr(best.Z) 

    print "fitness:  ", best.fitness 

    print "correlation coef.: " 

    print numpy.corrcoef([best.X,best.Y,best.Z]) 

    M = matrix([ones(best.dim), best.Z, best.X]) 

    (d, res, rank, s) = linalg.lstsq (M.transpose(), best.Y) 

    print "Linear least square:  ", d 

    M = matrix([ones(best.dim), best.Z]) 

    (d, res, rank, s) = linalg.lstsq (M.transpose(), best.Y) 

    print "Linear least square (shorter):  ", d 

else: 

    f = open ('output','w+') 

    for x, y, z in zip(best.X,best.Y,best.Z): 

   f.write ( ', '.join( [str(x), str(y), str(z)] ) + '\n') 

    f.close() 
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Appendix B 

A Glossary of Literacy Terms 

 

Bias.  

Bias is the systematic deviation of results or inferences from the population parameter of interest. 

Any trend in the data collection, analysis, interpretation, or review of data can lead to 

conclusions that are systematically different from the population parameter of interest.  

 

Causal Effect. 

A causal effect is the difference between what did happen from a treatment and what would 

have happen if the treatment did not exist. A more general definition of a causal effect, the 

difference between the outcomes in the treatment group and in the control group, is provided 

when unit homogeneity assumption is achieved. For observational studies, a weaker assumption, 

unconfoundedness, approximating the unit homogeneity assumption, can be applied to estimate 

the causal effects by comparing the difference of outcomes between treatment and control 

groups.  

 

Causal Inference. 

A causal inference is made by using the estimated causal effect from the sample to generate a 

conclusion for the population through statistical analysis procedure. A causal inference must 

meet the basic requirements for all causal relationships: that cause preceded effect, that cause 

was related to the effect, and that there is no plausible alternative explanation for the effect other 

than the causal.  

 

Covariate. 

In statistics, a covariate is a variable that is possibly predictive of the outcome variable. A 

covariate may be of direct interest or it may be a confounding or interacting variable. In this 

study, covariates are the secondary variables that may affect the estimates of the independent 

variable of primary interest, the treatment indicator, on the outcome variable. 

 

 

http://en.wikipedia.org/wiki/Confounding
http://en.wikipedia.org/wiki/Interaction_(statistics)
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Efficiency/Efficient. 

In statistics, efficiency is defined by Fisher as the minimum possible variance for an estimate 

divided by its actual variance. An estimate is regarded as more “efficient” than another if it has a 

smaller variance which is also influenced by the sample size. Essentially, a more efficient 

estimate needs fewer samples than a less efficient one to achieve statistical significance in the 

statistical models. When the consistency assumption of ordinary least squares estimation is 

violated or bias appears, less efficient estimates tend to be conducted. 

 

Endogenous Variable.  

A variable is endogenous when is correlated with the unobservable random error of the 

regression model which is assumed to have mean zero and is uncorrelated with all the 

independent variables to obtain consistent ordinary least squares estimates. It usually appears 

because of the issues of an omitted variable or measurement error. 

 

Fitness (Simulation) 

In this study, fitness is an index to see how close the simulated parameters are to the defined 

constraints. The value of fitness is calculated by the sum of the squared of differences of 

simulated values and corresponding constraints.  

 

Omitted Variable. 

An omitted variable appears in a regression model when it is supposed to be controlled but is 

unavailable, usually because of data unavailability. When the issue of omitted variable appears, 

the assumption of consistency of ordinary least squares estimation is violated.   

 

Unbiased Estimate. 

When the expected value of the parameter from the statistical model is not different from the true 

value of it, the estimate is unbiased. The true value of the parameter is always unknown. To 

obtain an unbiased estimate, the statistical assumptions have to be achieved.  
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