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ABSTRACT

ECOLOGICAL EFFECTS ON THE EVOLUTION OF COOPERATIVE
BEHAVIORS

By

Brian Dale Connelly

Cooperative behaviors abound in nature and can be observed across the spectrum of life, from

humans and primates to bacteria and other microorganisms. A deeper understanding of the forces

that shape cooperation can offer key insights into how groups of organisms form and co-exist, how

life transitioned to multicellularity, and account for the vast diversity present in ecosystems. This

knowledge lends itself to a number of applications, such as understanding animal behavior and

engineering cooperative multi-agent systems, and may further help provide a fundamental basis

for new industrial and medical treatments targeting communities of cooperating microorganisms.

Although these behaviors are common, how evolution selected for and maintained them re-

mains a difficult question for which several theories have been introduced. These theories, such

as inclusive fitness and group selection, generally focus on the fitness costs and benefits of the

behavior in question, and are often invoked to examine whether a trait with some predetermined

costs and benefits could be maintained as an evolutionarily-stable strategy. Populations, however,

do not exist and evolve in a vacuum. The environment in which they find themselves can play

a critical role in shaping the types of adaptations that organisms accumulate, since one behavior

may be highly beneficial in one environment, yet a hindrance in another. Ever-changing envi-

ronments further complicate this picture, as maintaining a repertoire of behaviors for surviving in

different environments is often costly. In addition to these environmental forces, the number and

composition of other organisms with which individuals interact impose additional constraints. The

combination of these factors results in significantly more complex dynamics.

Using computational models and microbial populations, this dissertation examines several

ways in which ecological factors can affect the evolution of cooperative behaviors. First, envi-



ronmental disturbance is examined, in which a cooperative act enables organisms and their sur-

rounding neighbors to survive a periodic kill event (population bottleneck) of varying severity.

Resource availability is then studied, where populations must determine how much resource to

allocate to cooperation. Finally, the effect that social structure, which define the patterns of inter-

actions among the individuals in a population, is investigated.
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Chapter 1

Introduction

Cooperative behaviors are abundant throughout nature. How these behaviors evolved and are main-

tained, however, has posed a longstanding problem in evolutionary biology. Insight into the evo-

lution and maintenance of cooperation can further our understanding of many features of natural

systems, such as the evolution of multicellularity [5], the division of labor [137], and biodiversity,

and may even play a critical role in the development of alternative, “anti-infective” treatments to

disease [10, 33].

The foundations of cooperation provide benefits that extend beyond the biological world and

into the digital realm. Multi-agent systems are becoming increasingly ubiquitous in our world,

from sensor networks to schools of robotic fish [119]. As agents acting on behalf of different enti-

ties interact with each other, it becomes essential for engineers of such systems to define operating

environments where cooperation is encouraged, and where greedy behaviors either serve no ben-

efit or are actively punished. This focus on cooperation has led to the success of the BitTorrent

peer-to-peer file sharing protocol [16], where priority is given to those clients that have contributed

more. Typically, cooperative behaviors impose some fitness costs on the actor, such as the diver-

sion of limiting resource away from growth [103, 121] or increased visibility to predators [39].

Under the traditional, “survival of the fittest” view of fitness, therefore, organisms displaying such

behaviors would not be selected for as often as those that did not incur these costs. Over time,

1



cooperators would be excluded from the population. Yet, cooperation is ubiquitous. How, then,

can the evolution of cooperation be explained?

When the focus of cooperative behaviors is shifted to the level of individual genes, however,

selection can favor cooperation. This was the perspective taken by Hamilton, who proposed an

expanded view of fitness [55, 56]. Under this “inclusive fitness” theory, which is more thoroughly

discussed in Section 2.1, the total fitness of an organism is the combination of that individual’s fit-

ness and the fitness of those with whom that organism shares common genes. Therefore, although

a cooperative behavior may be costly to the actor, the benefits that are conferred upon the recip-

ient may increase the likelihood for their shared genes to be propagated, which is, evolutionarily

speaking, advantageous to the actor. This notion of benefitting other copies of genes was wittily

captured by J.B.S. Haldane, who remarked, “I would lay down my life for two brothers or eight

cousins.” [85]

This expanded view of fitness allows selection for a particular behavior to be considered in

terms of its fitness costs, fitness benefits, and the relatedness between the actor and recipient [130].

These parameters are often readily captured in mathematical and computational models of co-

operation [2]. Although game theoretic models, further described in Section 2.4, are useful for

investigating the roles that various strategies play in a population’s ability to evolve and maintain

behaviors such as cooperation, they generally do so with a fixed set of costs and benefits. In nat-

ural systems, however, the fitness costs and benefits associated with a particular behavior can be

extremely difficult or even impossible to measure.

Thesis Statement: The evolution of cooperation depends greatly on a variety of ecological

factors, including environmental disturbance, resource abundance, and social structure. Variation

in any of these factors can alter evolutionary outcomes.

This dissertation describes three ecological factors that have a significant effect on the evo-

lution of cooperation: environmental disturbance, resource abundance, and social structure. As

shown throughout this dissertation, these environmental factors continually vary the costs and ben-
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efits associated with cooperative behaviors, which in turn affect fitness and ultimately whether or

not these behaviors can be maintained in populations. In contrast to previous studies into these

factors, the experiments presented in this dissertation focus on evolution in spatially-structured

populations, which, as described in the next chapter, create variations in space that can either help

or hinder cooperation.

Environmental disturbance is one way in which the environment can affect the evolution of

cooperation. Disturbances come in a number of forms and result in the loss of a significant portion

of the population. Previous studies have shown that cooperation is favored at intermediate levels

of disturbance, when cooperation enables a significant portion of the environment to survive these

disturbance events [7]. In Chapter 3, a biofilm model is introduced and used to examine distur-

bance in spatial populations. Membership in this cooperatively-formed biofilm allows organisms

to persist in their environment in the face of varying levels of disturbance.

The abundance of a required resource is another environmental property that has been shown

to play a key role in the formation of communities and the types of behaviors they display [121].

As discussed in Chapter 4, resource abundance also plays a critical role in the evolution of cooper-

ation. It is hypothesized that at low levels of resource, the relative costs of cooperative behaviors

will simply be too high, and selection will not favor such behaviors. As resource becomes more

abundant, though, the relative costs decrease and may reach a point where they are outweighed by

the benefits provided. In the studies presented in this chapter, the reciprocal use of both computa-

tional and microbial systems to study the evolution of cooperation in environments with different

levels of resource produced an alternate interpretation of this relationship. Specifically, popula-

tions rapidly transition from not supporting cooperation to supporting it above a critical level of

resource.

Finally, chapter 5 presents studies that illuminate the effects of the structure of social interac-

tions on a population’s ability to maintain diversity. Diverse populations can be seen as those that

can potentially support cooperative behaviors. First, this chapter shows that as interactions within

the population increase, oscillations in the fitness of strategies increase to a point where popula-
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tions quickly lose diversity. Such increases in interactions could be brought about by increases

in population sizes provided by cooperation, as discussed in Chapter 3. The diameter of these

interactions within a population, which represents how quickly a dominant strategy can spread, is

found to play a determining role in maintaining diversity.

Collectively, these studies enable a more complete understanding of the evolution of coopera-

tion. Most importantly, this body of work demonstrates that evolution does not occur in a vacuum.

Rather, its outcomes are shaped by ecological factors that provide selection with a continuously

moving target. These results signal that care should be taken to account for such factors when

studying the evolution of cooperation. Through the use of computational and microbial models,

this work also offers new interpretations of how two major ecological factors—population bot-

tlenecks and resource abundance—affect the evolution of cooperation. Additionally, this work

demonstrates that the structures of the networks of interactions within populations are just as im-

portant in determining evolutionary outcomes as more commonly used indicators such as popula-

tion size. Further, this work shows that the introduction of novelty through mutation, migration, or

even drift allows populations to more quickly adapt as selection alternates between favoring and

not favoring cooperation. When these fluctuations occur, novelty reduces the magnitude of fitness

changes, which in turn can prevent the loss of cooperation.

These investigations also demonstrate the contributions that computer science and computa-

tional models can make towards understanding fundamental properties of biology and science in

general. Perhaps nowhere is this more apparent than in the study of evolution, which can be diffi-

cult to study due to the long timescales on which it acts. Through the use of computational mod-

els, populations can easily be studied for thousands or millions of generations. Another benefit of

computational models is the level of experimental control that they provide. With computational

models, researchers have complete control over the individuals studied and the environments in

which they exist. Moreover, computational systems offer complete insight into each individual

and its behaviors, which is impossible in other experimental systems.

As with any endeavor, success depends on choosing the right tool for the job. Microbial, math-
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ematical, and computational systems, which are commonly used to study evolution and ecology,

each have inherent strengths and weaknesses. This work benefited tremendously from the recip-

rocal use of computational and microbial systems, which enabled one system to inform the other,

which produced new insights that were incorporated and further examined. Feedback loops such

as these can profoundly increase both the breadth and depth of research, and the consilience of

results gathered this way can greatly increase confidence [131].

We begin with an introduction of the concepts and techniques upon which this work is based,

followed by chapters describing each of the three main topics of this work: environmental distur-

bance, resource abundance, and social structure.
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Chapter 2

Background

This chapter introduces some of the key theory and techniques used throughout the remainder of

this document. Section 2.1 presents Hamilton’s rule and inclusive fitness theory, a gene-centric

view of the economics associated with a given behavior. The conditions laid forth by Hamilton’s

rule, which describes how evolution can favor costly cooperative behaviors, are the basis for the

design of each of the experiments detailed in the remaining chapters. One such cooperative behav-

ior that is modeled throughout this document is biofilm formation, which is introduced in Section

2.2. Section 2.3 discusses how spatial structure and localized interactions can play key roles in

determining whether or not cooperation can be favored. Game theory is described in Section 2.4.

Although game theoretic methods are not used for any of the experiments described in this doc-

ument, they are frequently used in related work, and their limitations provide inspiration for this

body of work. Cellular automaton models and the SEEDS platform for studying evolutionary and

ecological dynamics using these models are introduced in Sections 2.5 and 2.6. Finally, the Avida

digital evolution platform is presented in Section 2.7. Section 2.8 synthesizes these concepts and

shows how they motivate and enable the work presented in the following chapters.
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2.1 Inclusive Fitness and Hamilton’s Rule

How cooperative behaviors can evolve has long been considered a difficult problem in evolutionary

biology. The selection for costly behaviors instead of those that do not incur those costs puzzled

even Darwin, who wrote, “If it could be proved that any part of the structure of any one species

had been formed for the exclusive good of another species, it would annihilate my theory, for such

could not have been produced through natural selection.” [29]

Frequently, cooperative behaviors result in the production of public goods, which are common

resources available to all members of a group. Public goods comprise a wide variety of prod-

ucts, including siderophores, which offer increased access to iron for populations of Pseudomonas

aeruginosa, and exopolysaccharides, which allow populations of many species of microorganisms

to form biofilms, the benefits of which are further discussed in Chapter 3.

These public goods are subject to the Tragedy of the Commons. Garrett Hardin famously

described this phenomenon as a common pasture shared among farmers, where it was in each

farmer’s best interest to add as many cattle as possible. The tragedy arises, therefore, because the

costs of adding these cattle are incurred by all farmers, which quickly decrease the value of the

shared resource and lead to the demise of the pasture [60]. A great number of studies have focused

on how public goods cooperation can be robust in the presence of cheaters [111].

Although several theories, such as group selection [132, 136], have been presented to explain

how cooperative behaviors can evolve and resist invasion from cheaters, perhaps none has been

as well adopted as inclusive fitness and kin selection, which were introduced by W.D. Hamilton in

1964 [55, 56]. With his theory, Hamilton shifted the focus of selection from the individual to the

genes that are shared by the individual and its relatives. This “inclusive” fitness allows for behav-

iors to be favored as long as the fitness benefits provided by that behavior, when observed among

all individuals with the gene in question, outweigh the fitness costs of the act. This relationship,

often referred to as Hamilton’s rule, is shown in Equation 2.1.

C < r ∗B (2.1)
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In this inequality, C represents the reproductive cost incurred by the individual performing the

cooperative act, B represents the reproductive benefits awarded to the recipients, and r is the re-

latedness between the actor and recipient. Originally, Hamilton used Sewall Wright’s coefficient

of relatedness as a measure for r, which is defined as the probability that the alleles at a random

locus would be identical by descent [133]. Later invocations of this theory would instead use a

regression coefficient comparing the relatedness between two interacting organisms to the average

relatedness in the population, which more readily allows for selection of spite and other negative

interactions [54,106]. Behind the three terms of Hamilton’s rule lie a sizeable number of complex-

ities [44], and several extensions have been proposed that aim to more clearly identify the different

types of interactions present in populations, e.g. [108].

Although it is tempting and perhaps natural to consider the costs and benefits of cooperation

at the level of the individual, care should be taken to remember that Hamilton’s rule works from a

gene-centric perspective. That is, a behavior that costs an individual more than the benefit that the

individual receives will still be favored if that behavior benefits the genes in question more than its

costs.

Selection for cooperative behaviors, therefore, requires insights into the fitness costs and ben-

efits of the behaviors, as well as the relatedness among organisms in the populations. One way in

which high relatedness can be maintained among interacting individuals is through localized in-

teractions, a topic which is further discussed in Section 2.3. Alternately, a number of mechanisms

whereby organisms can interact preferentially with close relatives have been identified [118].

So what determines the fitness costs and benefits of a behavior? The work presented in this

dissertation maintains that environmental conditions play a major role in determining both the

costs of a behavior and the significance of the benefits that it provides. If so, selection poses an

ever-moving target for these behaviors, as environments can change dramatically though a myriad

of processes. By examining populations over longer time periods in these dynamic environments,

we can gain valuable insights into exactly how the costs and benefits of cooperative behaviors

change and drive selection.
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2.2 Microbial Biofilms

Biofilms are aggregates of microorganisms, typically bacteria or yeast, connected within a matrix

of extracellular polymeric substance (EPS), extracellular DNA, and additional proteins [25, 26].

Bacteria are now believed to spend the majority of their lives in biofilms, as opposed to the plank-

tonic, or free-swimming state [25]. In contrast to the traditional view of bacteria as isolated indi-

viduals, this new understanding has begun to shed light on the vast repertoire of intra- and inter-

species social behaviors exhibited in this biofilm lifestyle [129] as well as the complexities of these

colonies [31].

The production of EPS by cells is a cooperative behavior, and inclusion in the resulting biofilm

provides substantial benefits. Importantly, biofilms enable their constituents to maintain spatial

structuring, even in well-mixed environments [25, 110]. As discussed in the next section, spatial

structuring can be a major factor in the evolution of cooperation. Also, the “stickiness” of this ma-

trix allows organisms in biofilms to cohabitate in larger densities and adhere to surfaces, enabling

those organisms to resist being flushed out of their environment [53]. In addition, the structure

and adhesion provided by biofilms can offer greater access to resource [110]. In addition biofilms

play a major role in antibiotic resistance, and can render bacteria up to 1,000 times less likely to

be affected by antibiotics [116] or other antimicrobial agents [82].

Although biofilms provide constituents with a number of benefits, they often pose a number of

threats when they allow colonization of human tissue [53] and other surfaces. Perhaps the most

well-known biofilms are those that form dental plaque [83], which is associated with a number

of oral and general health concerns. Highly-resistant Pseudomonas aeruginosa biofilms chroni-

cally infect the lungs of cystic fibrosis patients, where they cause pneumonia and a host of other

problems [26]. Biofilms also frequently infect catheters and prosthetic devices, greatly diminish-

ing the efficacy of those devices [53]. A greater understanding of how cooperation enables the

creation and persistence of biofilms could offer new avenues for treatments of these and other

problems [4, 33, 112].

The experiments presented in Chapters 3 and 4 use a model of cooperation inspired by biofilm
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formation. In these models, cooperators produce a public good that better enables them to survive

in a harsh environment. This is akin to the production of EPS in the formation of biofilms, which

enables adherence to surfaces and resistance to being flushed out of the environment. Like their

natural counterparts, these “virtual biofilms” present an opportunity for exploitation by cheaters,

who take advantage of the benefits provided by the biofilm without contributing to its formation.

2.3 The Importance of Spatial Structure

Spatial structuring has frequently been shown to play a decisive role in the ability of a population

to evolve and maintain cooperation [72, 87, 122]. When spatial structuring exists, an organism’s

interactions are limited to others that are located nearby. If dispersal is limited, patches of relatives

form as offspring are placed into the surrounding environment. This pattern of growth makes an

organism more likely to interact with a close relative than mere chance would allow. Such localized

interactions also mean that the benefits of cooperation are more likely to affect relatives. Both of

these factors can increase the likelihood of satisfying Hamilton’s rule.

As interactions persist, one of the primary disadvantages that can arise as a result of localized

interactions, however, is an increase in competition among kin [75, 104]. This occurs when suc-

cessful cooperative groups grow large enough that the benefits, when divided among that group’s

constituents, become overly diluted. It is at this point when additional behaviors may become nec-

essary to maintain cooperation. One frequently-observed reaction to increases in kin competition

is dispersal, where some members of the group emigrate to new areas where competition among

kin is potentially lower [75, 104].

As organisms associate in space, they also alter their environment, both positively and nega-

tively, through niche construction [32, 76, 94]. Because of the resulting spatial variations in phe-

notypes and environmental conditions, selection will act differently from patch to patch. Queller

[107] has shown that when this is the case, Hamilton’s rule still holds true when considering the

relatedness within patches, instead of across the entire population.
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Spatial structuring is a core theme of this dissertation. The results presented in Chapter 3 extend

support for spatial structuring’s role in enabling cooperation, showing that localized, persistent in-

teractions result in larger and more robust populations of cooperators than when interactions occur

in well-mixed populations. Based on these results, spatial populations were studied in all subse-

quent computational models. Chapter 5 directly addresses the effect that different kinds of spatial

structuring have on the ability to maintain diversity and cooperative behaviors in populations, and

demonstrates that the overall structure of the interactions, particularly how the amount of time that

takes for a dominant strategy to spread in a population through interactions can determine whether

or not cooperation can persist.

2.4 Game Theoretic Models of Cooperation

Game theory [113] has frequently been applied to study cooperation and other collective behaviors

in populations [37]. Game theoretic models typically consist of a series of pairings between two

individuals selected from the population. These pairings can be randomly selected or chosen from

a local neighborhood, and each pairing may occur once or in an “iterated” fashion, where the

players play more than once in succession and may remember some portion of the strategies used

in previous rounds. Game theoretic models have provided insights into the dynamics of social

behaviors, such as the effects of spatial structures [92], dynamic social ties [102], and nonlinear

benefits and resources [47].

The results of these pairings on the players depends on the combination of strategies played,

which are traditionally defined in a payoff matrix before the onset of the experiment. Table 2.1

shows the format commonly used to display such payoff matrices, where rows represent the strate-

gies played by Player A, and columns represent the strategies played by Player B. The cells where

they intersect represent the payoff that Player A and Player B would receive, respectively, if they

played those strategies when paired. Here R represents the reward for mutual cooperation, T

represents the temptation to defect when the opponent cooperates, S is the sucker’s payoff when
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cooperation is played while the opponent defects, and P is the punishment for mutual defection.

Table 2.1: Structure of a Payoff Matrix

Cooperate Defect
Cooperate R,R S,T

Defect T,S P,P

Game theoretic models are typically differentiated by the relationship between the values in

these payoff matrices. One of the most well-known models used is Prisoner’s Dilemma (PD) [2],

in which T > R > P > S. Snowdrift, also known as Hawk-Dove [114] or chicken, is another game

theoretic model frequently used to study the spread and maintenance of cooperative behaviors in

populations [38]. Importantly, the relative payoffs for Snowdrift differ from those used in PD in

that T > R > S > P. Because of this, these models are understood to have different dynamics in

the evolution of cooperation [62].

Game theoretic models have produced a number of key insights into cooperative behaviors [93],

even though the values commonly used in payoff matrices impose two critical limitations. First, fit-

ness costs and benefits can be difficult to measure in natural systems, so determining biologically-

accurate values to be used in payoff matrices may pose an insurmountable challenge. Secondly, the

payoff matrices typically contain fixed, a priori values and predefined relationships between those

values. This creates a relatively closed environment, and any behaviors or population compositions

will evolve to match this specific environment, and will not necessarily apply in others. Further,

these populations cannot affect their environment through their behaviors. Although factors such

as density dependence and initial conditions allow populations to explore different trajectories in

game theoretic models, the lack of environmental variation may alter selection in such a way that

the dynamics of the experiments do not match those present in natural populations. Because of

this, models such as cellular automata and Avida, presented in the following sections, may be

more appropriate for studying the evolution of cooperation, particularly in dynamic environments.
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2.5 Cellular Automata

Cellular automata are another model frequently used to study the evolution of cooperative and other

behaviors in spatial environments is the cellular automaton (CA) [28, 71, 125]. In these models,

individuals reside in the cells of a finite-sized lattice, and their interactions are limited to their

neighboring cells. Typically, neighborhood sizes of 4 (Von Neumann) or 8 (Moore) cells are used;

however, the specific topology of the world can follow other forms. When the strategies being

observed are density dependent, the size of an individuals’ neighborhood can have a significant

effect on the behaviors exhibited by those individuals, as will demonstrated in Chapter 5.

In a cellular automaton, at each unit of time, often called an epoch, cells are updated based on

the interactions they have with neighboring cells. These updates may cause an individual residing

in that cell to die or to adopt the strategy of a neighboring cell. The specific update rules are

determined by the question being asked. For example, an individual that uses quorum sensing as

part of its strategy may be more likely to die (or less likely to reproduce) at a given update, which

would represent the additional costs of this behavior. Updates can be synchronous, where the order

of cells updated follows some defined pattern, and all updates are based on the state of the cells at

that time. Alternatively, the population can be updated asynchronously, where cells are updated in

random order, and the state of a cell at time t may depend on the state of a neighbor at either time

t or t +1.

Since cellular automaton models often have a finite number of cells in which individuals can

reside, space becomes a limiting resource [121]. Indeed, in such models, space often serves as the

only resource for which individuals contend. Those individuals that outcompete their neighbors

are rewarded with more cells, allowing their strategy to reach greater densities. Once a particular

strategy has successfully excluded all other strategies and occupies all cells, no other strategies will

be observed unless those strategies can re-emerge through mutation or migration. These topics of

spatial limitation and the re-emergence of strategies in CA models will be discussed in detail in

Chapters 3 and 5.

One of the primary shortcomings of cellular automata is that the set of behaviors an individual
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can display are often predefined. Although mutations may alter an individual’s investment in a

particular behavior, novel behaviors are not likely to be seen. Further, the mapping between an

individual’s genotype and phenotype is likely to be direct, so an individual’s behavior is not likely

to change in response to the state of its neighborhood, the environment, or stochastic processes,

unless they are programmed to do so in some predetermined way.

Despite these shortcomings, this technique can offer tremendous insight into the evolution of

behaviors and their stability in spatial worlds. By observing the abundances of different strategies

over time, the evolutionary trajectories and stabilities of those strategies can be estimated. This

makes them ideal for the work presented in Chapters 3 and 5, where the relationship is examined

between the social structure of a population and whether or not that population can maintain diverse

strategies. The SEEDS platform, upon which these models are built, is described in the next

section.

2.6 The SEEDS Platform

SEEDS is a software platform designed to facilitate the creation and use of cellular automaton

models to conduct experiments targeting questions in ecology and evolutionary biology. Although

initially developed to study the role that social structure plays in the maintenance of diversity,

which will be presented in Chapter 5, it has since been used to explore a variety of topics, such

as the use and maintenance of horizontal gene transfer [22], the evolution of cooperation in prob-

abilistic game theoretic models, and speciation and sexual dimorphism resulting from divergent

selection in limited resource environments. Additionally, SEEDS was used to create one of the

models of bacterial growth and cooperative biofilm formation described in Chapter 3.

Model populations in SEEDS consist of a set of cells connected by an arbitrary graph. Each

cell represents an individual, and edges connecting cells in the graph represent potential interac-

tions between those cells. The use of arbitrary graphs allows experiments to capture population

structures ranging from well-mixed populations to single, structured populations to metapopula-
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tions consisting of many subpopulations either existing in isolation or connected by migration.

Further, the structure of these populations can change over time as populations grow and affect

their environment.

SEEDS provides a number of building blocks for these populations, which users combine to

best represent the problem at hand. Typically, the user creates a new cell type, which defines the

properties and behaviors of each individual. For example, each cell could represent a state, such

as alive or dead, as in Conway’s Game of Life [46] and other traditional CAs. Alternately, each

cell could encapsulate an artificial neural network, such as those evolved using NEAT [115]. In the

models described in Chapters 3 and 5, cells were created that modeled cooperative biofilm produc-

tion and the production of antibiotics by bacteria, respectively. By adding additional complexity,

a cell could even represent a computer program and have virtual hardware associated with it, as in

the Avida system [95], which is presented in the next section. Appendix A provides a thorough

description of the SEEDS platform, including its design, use, and extension.

2.7 The Avida Digital Evolution Platform

Avida [95] is a relatively-complex cellular automaton system that has been used to study a wide

variety of complex ecological and evolutionary systems, such as adaptive radiation [14], the evo-

lution of complex features [80], systems of communication [73], and cooperative navigation [20].

Compared to many CA systems, Avida enables relatively open-ended evolution. Avida was used

for the experiments presented in Chapters 3 and 4. Because Avida is a highly-configurable system,

this section describes Avida as it was used in the models presented in this dissertation.

Experiments in Avida focus on populations of self-replicating digital organisms, each of which

resides independently in a cell on a lattice. As depicted in Figure 2.1, each organism, or Avidian,

in this system consists of a circular list of assembly-like instructions (its “genome”), which are

executed sequentially on virtual hardware allocated to that organism. This virtual hardware com-

prises three 32-bit registers, two stacks, and a CPU, which has four heads that control the execution
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flow of the organism’s genome and aids in self-replication. The 26-instruction instruction set avail-

able to organisms is Turing complete, so organisms can feasibly perform any possible calculation.

Through the use of jumps and other instructions, organisms may alter their behaviors throughout

their lifetimes, which is an enormous benefit offered by this system. More explicitly, one genotype

may produce several phenotypes.

Stacks
AALAAG

Registers
A B C

h-alloc
h-search
nop-C
nop-A
mov-head
IO
IO
nop-C
nand
IO
h-search
h-copy
nop-C
h-divide
mov-head
nop-B

CPU

Figure 2.1: In Avida, each individual organism (top) in a population (below) consists of a genome
(left), which is run on virtual hardware associated with that organism. For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic version of
this dissertation.

An organism replicates by first allocating additional space in its genome in which to create a

copy of itself. It then copies instructions line by line from its genome into this new area. As an

organism copies its genome, point mutations cause instructions to be modified with a configured

probability. As the organism divides, mutations may also cause instructions to be added or removed

from the genome. Once this process has completed, the genome is cleaved, and the new organism is

placed into a randomly-chosen neighbor cell, replacing any existing organism residing in that cell.

Because a parent is adjacent to its offspring in this model, dispersal is limited, and spatial structure

is maintained. As an alternative, well-mixed populations can be studied in which offspring are

placed into random cells in the environment.
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Organisms compete for space in this environment by completing logic tasks [80], which confer

a merit bonus to the organism’s offspring. An organism with more merit receives more virtual CPU

cycles, enabling it to execute its genome faster and thus spread more quickly in the environment.

During each update, Avida’s unit of time, an organism executes an average of 30 instructions.

Those with higher merit execute proportionally more instructions per update, and those with lower

merit execute proportionally fewer instructions.

In order to complete a task, an organism must first execute the IO instruction, which places

randomly-generated numbers into its registers. The organism is then required to execute the in-

structions necessary to complete the task, place the result in the correct output register, and issue

an additional IO instruction. A full list of the tasks available by default and their rewards is given

in Table 2.2. These tasks may have varying metabolic costs, or the number of instructions required

for their completion, as is shown in Figure 2.2.

Table 2.2: Logic tasks that can be completed by organisms and the merit rewards they confer

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A,B ¬(A∧B) 2
AND A,B A∧B 4
OR NOT A,B A∨¬B,¬A∨B 4
OR A,B A∨B 8
AND NOT A,B A∧¬B,¬A∧B 8
NOR A,B ¬(A∨B) 16
XOR A,B (A∧¬B)∨ (¬A∧B) 16
EQU A,B (A∧B)∨ (¬A∧¬B) 32

Although the finite amount of space serves as an important limiting resource in Avida, addi-

tional resources can also be defined. These resources can flow into and out of the environment, as

well as decay at configured rates. Further, resources can be required for the completion of tasks,

as is done in Chapter 4, or be created as a byproduct of tasks.

Typically, populations are seeded with a single organism capable only of replication. Any addi-

tional behaviors are therefore evolved through mutations introduced during the replication process.

Usually, several populations are evolved in parallel, but with different seeds to the pseudorandom
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Table 1. default

NOT OR NOT EQU

IO IO IO

1

Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus
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genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
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genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus
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genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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Figure 2: Sample genome segments of organisms.
(a) BLAH (b) OR NOT (c) EQU

resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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Figure 2: Sample genome segments of organisms.
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the

Figure 2: Sample genome segments of organisms.
(a) NAND (b) OR NOT (c) something (d) EQU

resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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Figure 2: Sample genome segments of organisms.
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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Figure 2: Sample genome segments of organisms.
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the
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Table 1: Logic tasks that could be completed by or-
ganisms. Upon completion, an organism was given
the corresponding merit reward. The completion of
OR NOT was not rewarded, but resulted in the pro-
duction of beneficial public good at the organism’s
cell.

Task Input Output Merit Bonus

NOT A ¬A 2
NAND A, B ¬(A ∧ B) 2
AND A, B A ∧ B 4
OR A, B A ∨ B 8

AND NOT A, B A ∧ ¬B, ¬A ∧ B 8
NOR A, B ¬(A ∨ B) 16
XOR A, B (A ∧ ¬B) ∨ (¬A ∧ B) 16
EQU A, B (A ∧ B) ∨ (¬A ∧ ¬B) 32

OR NOT A, B A ∨ ¬B, ¬A ∨ B 0

genome faster and to spread in the environment. These re-
wards were given at most once per task completed. In order
to complete a task, an organism first had to execute the IO

instruction, which placed randomly-generated numbers into
its registers. The organism was then required to execute the
instructions necessary to complete the task, place the result
in the correct output register, and issue an additional IO in-
struction. A full list of the tasks available and their rewards
is listed in Table 1.

In addition, an organism required a sufficient amount of a
resource to complete each task. This resource flowed evenly
into each cell in the environment and dissolved at a rate
of 1% per update (Avida’s unit of time, further explained
later). In this study, the inflow rates were varied, ranging
from extremely limiting (equilibrium of 1 unit per cell) to ef-
fectively unlimited (equilibrium of 100 units per cell), where
organisms were unable to complete tasks quickly enough to
deplete the resource. For this work, each task consumed 1
unit of this resource. It should be noted, however, that tasks
had varying metabolic costs, or the number of instructions
required for their completion. TODO ref

An organism replicated by first allocating additional space
in their genome to create a copy of itself. It then copied in-
structions from its genome into this new area line by line.
Once this process completed, the genome was cleaved, and
the new organism was placed into a neighboring cell. As an
organism copied its genome, instructions were modified with
a probability of 0.0075, and as the organism divided, instruc-
tions were added or deleted with a probability of 0.05. Pop-
ulations were seeded with a single organism capable only of
replication. Any additional behaviors were evolved through
mutations introduced during the replication process.

2.1 Virtual Biofilms
We adopted the concept of a virtual biofilm from similar

work [6] as the model for our experiments. As in nature,
an organism’s membership in a virtual biofilm provided it
with some benefit that it could not easily obtain in a free
or planktonic state. In our digital environment, being in a
biofilm allowed organisms to survive a periodic “kill” event
similar to grazing by higher organisms in nature.

To create a virtual biofilm, organisms completed the OR

NOT task, which resulted in one unit of a public good being
placed into the environment at their cell. This cooperative
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Figure 2: Sample genome segments of organisms.
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the

Figure 2: Sample genome segments of organisms.
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resource can be likened to EPS, enzymes, or other beneficial
products commonly observed in biofilms. Unlike the other
available tasks, OR NOT did not confer a merit reward (see
Table 1), however the product that it produced could enable
that organism or its kin to avoid being killed, as discussed
shortly. We therefore define cooperators as organisms who
performed this task at some point during their lifetime, while
cheaters focused solely on rewarded tasks.

A kill event periodically selected a focal cell at random,
and each cell in a neighborhood comprising cells within a 5-
cell radius (121 cells in total, or 1.21% of the environment)
was examined. If the mean level of public good in these cells
was below a threshold of 3 units, all organisms residing in
that region were killed. This public good both decayed at
1% and diffused into neighboring cells at 1% per update. In
this environment, cheaters could exploit both the diffusion
of public good from neighboring cooperator cells as well as
the kill event’s consideration of the mean public good level
within a neighborhood to benefit from the production by
neighbors while refraining from producing the public good.

Starting from a single seed organism, populations evolved
in environments with different resource abundances for 50,000
updates. These abundances corresponded to equilibrium cell
levels of 1, 2, 4, 8, 10, 20, 40, 60, 80, and 100 units per cell.
During each update, each organism executed 30 instructions
on average. Those organisms with higher merit executed
proportionally more instructions per update than those with
less. Between approximately 6,000 and 8,000 generations
were observed in each of these runs. For each configuration,
30 independent populations were evolved. Each of these
runs started with a different random seed, allowing each to
explore different evolutionary paths. The kill event was ex-
ecuted every update starting with update 1,000, which then
gave organisms a 1.21% chance of residing within a selected
region.

3. RESULTS
As observed in studies of bacterial populations [3], the

Figure 2.2: Sample genome segments required to complete several tasks. (a) The NAND task can be
completed with 5 instructions, while (b) OR NOT requires 6. More difficult tasks such as (c) XOR
and (d) EQU require at least 15 and 19 instructions, respectively.

number generator, which allows these populations to explore different evolutionary paths.

In the following chapters, a virtual biofilm model is developed using Avida. Through this

model, cooperation is studied as it relates to environmental disturbance and resource availability. In

these studies, Avida’s open-ended nature allows organisms to evolve a wide variety of competitive-

and cooperative phenotypes.

2.8 Toward Understanding Ecological Effects on the Evolution

of Cooperation

The previous sections have introduced the topics that underlie the work described in the remaining

chapters. First, Chapter 3 develops and uses models of cooperative biofilm formation to show

that the level of disturbance present in an environment affects the evolution of cooperation in
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both positive and negative ways. In these models, which were created using Avida and SEEDS,

cooperators are able to survive disturbance through the production of biofilms.

This virtual biofilm model is further used in conjunction with microbial populations in Chapter

4, where the availability of a required resource is shown to have a strong effect on evolutionary

outcomes. In populations of both Vibrio cholerae and digital organisms, cooperation is shown to

be favored once resource abundance crosses a critical threshold, thus satisfying Hamilton’s rule.

Finally, Chapter 5 demonstrates the strong effect that spatial structuring has on the ability for

populations to maintain diversity and cooperative toxin production. Here, the use of different graph

structures in the SEEDS platform enabled experiments to study populations with a variety of social

and spatial relationships. In situations where spatial structure was unable to allow diversity to be

maintained, the introduction of novelty through either mutation or migration is shown to promote

diversity.
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Chapter 3

Environmental Disturbance

Environmental disturbance has long been known to affect the composition of communities living

in a particular environment. Disturbance can come from a number of sources, including the flow

of liquid through an environment, grazing by higher organisms, and even antibiotic treatment. The

Intermediate Disturbance Hypothesis (IDH) [18, 50] postulates that the potential for diversity in a

population is maximized when intermediate levels of disturbance are present in the environment.

Such an environment can potentially allow the coexistence of species that invest solely in growth

and those that compete through costly behaviors.

Cooperation is one way in which a species can invest in its competitive ability, and such behav-

iors can be greatly affected by the amount of disturbance present in the environment. The effect

of the environment on cooperation has previously been studied in the laboratory using populations

of Pseudomonas fluorescens, where cooperation was indeed found to peak at intermediate levels

of disturbance [7]. At low disturbance, the benefits of cooperation, increases in survival provided

by biofilm formation in this case, provided insufficient fitness benefit to outweigh the cost. Simi-

larly, in high-disturbance environments, membership in a biofilm simply could not provide enough

protection, and the benefits once again did not outweigh the costs. However, at intermediate dis-

turbance, the adhesion provided by the biofilm benefited populations enough to outweigh the costs

of production, and thus cooperation was maintained.
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The work presented in this chapter examines how environmental disturbance affects coopera-

tion in spatially-structured populations. Specifically, this work investigates the conditions under

which cooperation can emerge, how prevalent cooperation is within populations, and how the level

of disturbance affects both the amount of cooperation and the composition of the population.

Section 3.1 describes how Avida was extended to create a computational model of bacterial

biofilms, while Section 3.2 examines populations in these environments. Studies of how popu-

lations of cooperators react when disturbance is increased are discussed in Section 3.3, and how

these model populations react when disturbance is lost and later re-introduced is presented in Sec-

tion 3.4. Finally, Section 3.5 examines how population bottlenecks, which are large disturbance

events, affect the evolution of cooperation. The results of these experiments demonstrate that dis-

turbance from the environment can be a driving force in the social lives of natural organisms.

3.1 Virtual Biofilm Model

One area in which cooperative behaviors are critical is in the formation and maintenance of biofilms

[89], introduced in Section 2.2, which are aggregates of microorganisms connected within a matrix

of extracellular polymeric substance (EPS) [26]. Among many other benefits, biofilms adhere

to surfaces, enabling their constituent organisms to resist being flushed out of the environment.

Biofilms also promote spatial structuring, a critical component of cooperation discussed in Section

2.3, even in well-mixed environments [110].

This self-produced EPS is a public good in this system, which creates the potential for organ-

isms to take advantage of its benefits without producing it themselves. These cheaters would then

have a selective advantage over cooperators. The presence of such cheaters has been observed to

significantly weaken biofilms [110].

To model the ecological and evolutionary forces faced by populations of bacterial biofilms,

the Avida digital evolution platform was extended so that organisms could evolve to form virtual

biofilms [20]. As in nature, an organism’s membership in a virtual biofilm provided it with some
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benefit that could not easily be obtained in a free or planktonic state. In this environment, inclusion

in a biofilm allowed organisms to survive a periodic “kill” event.

To create a virtual biofilm, organisms completed the OR NOT task, which resulted in one unit

of a public good being placed into the environment at their cell. This cooperative resource can

be likened to EPS, enzymes, or other public goods commonly observed in microbial populations.

Unlike the other available tasks, OR NOT did not confer a merit reward; however, the public good

that it produced could enable that organism and its neighbors to survive a disturbance, as discussed

below. Cooperators in this model are therefore defined as organisms who performed this task at

some point during their lifetimes, while cheaters focused solely on tasks that garnered individual

fitness rewards.

To introduce disturbance, a kill event periodically selected a focal cell at random, and

examined each cell in a neighborhood comprising all cells within a configured distance

from that focal cell. If the average level of public good in that neighborhood was be-

low a configured threshold, organisms residing in those cells were killed. This kill event,

KillWithinRadiusMeanBelowResourceThreshold, and several variants have been included in

Avida distribution.

The public good both decayed and diffused into neighboring cells at each update. In this

environment, cheaters could exploit the diffusion of public good from neighboring cooperator cells

while refraining from producing the public good themselves. Further, the decay of this resource

ensured that the cooperative act would need to persist in order to maintain protection from the kill

event. To allow for populations to first reach a sufficient density, the kill event began at update

1,000 and occurred during each subsequent update.

Because each logic task in Avida can potentially serve as either a building block or a hindrance

to completing another task, as previously observed [80], populations were first evolved in an en-

vironment without the periodic kill event in order to determine how many OR NOT tasks would be

completed (and consequently how much public good would be produced) when this behavior was

neither rewarded nor improved an organism’s chances of survival. These populations produced a
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mean per-cell resource level of 0.37 units. By using a significantly higher threshold in the virtual

biofilm experiments, such as the threshold of 3.0 as used in the experiments described in this sec-

tion, it can be inferred that the success of organisms at staving off periodic killing was not simply

a byproduct of completing rewarded tasks.

The costs of cooperation in this model are related to the metabolic effort required to complete

the cooperative task enough times to provide resistance to the kill event instead of focusing on

the rewarded tasks. Because of the diffusion of public good, these costs could be incurred by-

or distributed among neighboring organisms. The benefits of cooperation are increased survival

of the kill event when sufficient public good has been produced. Quantifying these costs and

benefits, therefore, depends on the composition of cooperators in an organism’s neighborhood, the

efficiency with which the cooperative task is completed, the decay and diffusion of the public good,

as well as the frequency and size of the kill event. Because of these forces, the costs and benefits

of cooperation vary over time and space. Although no resources are required to complete tasks in

this model, space in this world is limited, which creates a pressure to grow quickly to outcompete

neighboring cells. This, in turn, creates selective pressure to complete rewarded tasks and to stay

alive and reproduce. Whether or not the cooperative phenotype is favored can depend greatly

on how selection acts in that environment. The following sections describe a set of experiments

where the strength of disturbance in this model was controlled event to examine how environmental

disturbance affects the evolution of cooperation.

3.2 Spatial Effects

First, the role that spatial structuring plays in the evolution of cooperation is demonstrated using

this virtual biofilm model. Table 3.1 lists the parameter values for experiments described in this

section. Populations were evolved for 100,000 updates, or approximately 17,680 generations in

either spatially-structured or well-mixed environments. In spatially-structured populations, off-

spring were placed into neighboring cells. In well-mixed populations, these offspring were instead
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placed into a randomly-chosen cell in the environment.

Table 3.1: Virtual Biofilm Model Parameters for Spatial Effects Experiments

Property Value

Population Size 10,000
Replicate Populations 50
Updates 100,000 (17,680.47 ± SEM 521.91 generations)
Kill Event Start Update 1,000 updates
Kill Event Frequency 1 update
Kill Event Radius 5
Kill Event Focal Cells Per Update 1
Kill Event Public Good Threshold 3 units
Public Good Diffusion Rate 0.01
Public Good Decay Rate 0.01
Copy Mutation Probability 0.0075
Insertion Mutation Probability 0.05
Deletion Mutation Probability 0.05

The abundance of cooperators and cheaters in spatial populations are shown in Figure 3.1. At

the end of these experiments, an average of approximately 48% of occupied cells were cooperators

(public good producers). Cooperators are defined as those individuals which had completed the

public-good-producing task. Cheaters, which focused solely on the completion of one or more

rewarded task, and not producing the resource, accounted for 52%. As shown in Figure 3.3, coop-

erators and cheaters formed patches in these populations. These patches helped cooperators target

the benefits of public good production towards relatives as well as avoid invasion by cheaters. Al-

though only about half of the living organisms in the populations produced public good, it was

sufficient to prevent 67% of selected organisms from being killed, as shown in Figure 3.2.

The level of resource in each cell was also measured as the experiments progressed. One might

predict this level to converge to the threshold amount of 3 units; however, modest stability was

reached at a per-cell average of approximately 6.6 units, as shown in Figure 3.4. This surplus

can be viewed as cooperative: Cooperators produced enough public good to enable themselves to

survive and to help their neighbors survive as well. This asymmetry follows the Tragedy of the

Commune [38], where levels of investment in public goods may not be uniform.
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Figure 3.1: Distribution of behaviors within spatially-structured populations (n=44). In these ex-
periments, the benefits provided by cooperation allowed cooperators to reach the same densities as
cheaters. Shaded regions indicate ±1 standard error.

Figure 3.2: Fraction of selected organisms killed in spatially-structured populations (n=44).
Shaded region indicates ±1 standard error.
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Figure 3.3: Snapshot of one replicate spatially-structured population containing patches of coop-
erators (blue), cheaters (grey), and empty cells (white)

Figure 3.4: Average per-cell public good levels in spatially-structured populations (n=44). Al-
though these populations produced levels that were considerably above the kill threshold of 3
units, they represent an average over space. Public good levels in areas near patches of cooperators
were higher than this, while areas near patches of cheaters were lower than this. Shaded region
indicates ±1 standard error.
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In well-mixed populations, individuals are far less likely to remain near relatives. As Figures

3.5a and 3.6 show, although cooperators were able to evolve in this environment, they were far less

abundant in the populations. Because of this, these populations were considerably more susceptible

to disturbance. Figure 3.5b shows that on average approximately 77% of those cells examined by

the kill event were killed. Because cooperators were unable to reach a substantial abundance in

most populations, the average per-cell level of public good among well-mixed populations was

1.02 units, as shown in Figure 3.7. Interestingly, however, cooperators were able to maintain

a large proportion of the population in 12 of the 48 replicate populations. In these instances,

the public good allowed cooperators to survive the kill event and reproduce, replacing randomly-

chosen cheater cells.

As shown in Figure 3.8, spatial populations are much more likely to allow for the evolution of

cooperation. This is because the cooperative production of public good is often far more costly

than the benefits it provides, because these benefits are more likely to affect cheaters more than

cooperators. Based on these results, spatially-structured populations are used for the remainder of

the experiments discussed in this dissertation.

In these experiments, the level of disturbance imposed by the kill event was intermediate. Co-

operation was able to persist in spatially-structured populations, because the production of public

good better enabled cooperators to grow and survive in these environments, even in the presence

of cheaters. As the levels of disturbance increase, however, these benefits might not be enough to

overcome this adversity, and selfish growth may once again be a favorable strategy if it allows in-

dividuals to grow at a rate that outpaces the damages inflicted by the kill event. In the next section,

the effect of increased disturbance is addressed.

3.3 Increasing Disturbance

To determine how the level of disturbance affected the evolution of cooperation, kill events with

radii between 6 and 13 cells were tested. Because the strength of the kill event was controlled
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(a)

(b)

Figure 3.5: Cooperators and cheaters in well-mixed environments: (a) Proportions of cooperators
and cheaters among 40 populations (b) Fraction of selected organisms killed within a 5-cell radius.
Shaded regions indicate ±1 standard error.
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Figure 3.6: Snapshot of one replicate well-mixed population containing patches of cooperators
(blue), cheaters (grey), and empty cells (white). Here, cooperators exist, but only as individuals
surrounded by cheaters. Because of this, these small patches of cooperators are unable to produce
enough public good to allow themselves to survive the kill event.

Figure 3.7: Average per-cell public good levels in well-mixed populations (n=49). Shaded region
indicates ±1 standard error.
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Figure 3.8: Proportions of cooperators in spatially-structured and well-mixed populations. In
spatially-structured populations, 33 of 43 populations which persisted for 100,000 updates main-
tained at least 10% cooperators. Among well-mixed populations, only 12 of 48 maintained 10%
cooperators.
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by changing its radius, linear increases in radius led to geometric increases in the number of cells

affected by the kill event. For example, a radius of 5 results in 121 cells being examined by the kill

event, while a radius of 10 produces an area containing 441 cells, which is over 3.5 times larger.

All environments with kill radii above 5 cells proved to be too adverse in these experiments,

however, and populations evolved in these environments were unable to persist. In these experi-

ments, the kill event decimated populations before they were able to evolve a level of public good

production necessary to survive. Here, even focusing solely could not compensate for the increased

level of disturbance.

However, one way in which organisms could survive in these environments would be to mi-

grate from other, more hospitable, environments, where they were able to evolve some level of

cooperation. In these instances, organisms would simply need to adjust their cooperative effort to

match the new environment instead of evolving it de novo.

As an approximation for populations migrating from one environment to a more adverse en-

vironment, populations were evolved in environments in which the radius of the kill event was

incrementally expanded from 5 cells to 8, more than doubling the number of organisms at risk.

The key parameters for these experiments are listed in Table 3.2.

Table 3.2: Virtual Biofilm Model Parameters for Increasing Disturbance Experiments

Property Value

Population Size 10,000
Replicate Populations 50
Updates 100,000 (16,738.70 ± SEM 746.78 generations)
Kill Event Start Update 1,000 updates
Kill Event Frequency 1 update
Kill Event Radius 5 (121 cells)–8 (289 cells)
Kill Event Focal Cells Per Update 1
Kill Event Public Good Threshold 3 units

These populations adapted to the changing environments and produced enough resource to

survive the increasing disturbance. Figure 3.9a shows the composition of cooperators and cheaters

in these populations. In response to the increasing disturbance in the environment, cooperators
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emerged as the dominant strategy at the end of these experiments, accounting for approximately

67% of the population. These cooperators produced an average level level of 10.61 units of public

good per cell, enabling 98% of organisms, including cheaters, to avoid being killed, as shown in

Figure 3.9b. For those populations that were driven to extinction by the kill event, Figure 3.10

shows the radius of the kill event corresponding to the time at which extinction occurred.

It is likely that these surpluses in public good played a key role in survival as adversity was in-

creased through niche construction [94]. By creating surpluses in public good that spread through-

out the environment, cooperators were able to alter their environment through niche construction,

making it less adverse for future generations. This ensured that the number of their descendants

that survive as disturbance increased was sufficient to avoid extinction. Such trans-generational

cooperation has been shown by Lehmann [78] to reduce the effects of competition among kin in

spatially-structured populations, and thereby aid in maintaining cooperation.

These results demonstrate that, through incremental changes in cooperative effort and niche

construction, cooperation can be robust to increases in disturbance and more extreme environ-

ments. Decreases in disturbance poses different challenges to the evolution of cooperation, poten-

tially to a point where the meager benefits provided by cooperation do not justify their costs. The

next section examines whether cooperation can re-evolve in environments after cooperators have

long been purged from environments where cooperation was not beneficial.

3.4 Temporary Loss of Disturbance

Since the 1950s, the problem of antibiotic resistance has grown to become a major public health

concern. The widespread use of antibiotics has led to an ever-decreasing window of time between

the introduction of an antibiotic and the development of resistance to that antibiotic [15]. Although

perhaps impractical, one naı̈ve potential strategy for tackling this problem would be to simply

remove a particular class of antibiotics from use. Presumably, over time, infecting strains would

purge the mechanisms related to resistance to that particular antibiotic from their genomes as they
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(a)

(b)

Figure 3.9: Persistence of cooperators in increasingly-adverse environments. (a) Cooperators were
able to evolve and account for approximately 60% of cells in the population (n=50) (b) In these
populations, public good production allowed approximately 85% of organisms to avoid being
killed by the kill event. By producing ample amounts of public good, cooperators were able to
ensure the survival of populations as disturbance increased. Shaded regions indicate ±1 standard
error.
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Figure 3.10: Number of populations driven to extinction for each level of disturbance when distur-
bance was periodically increased. Of the 50 populations studied, 26 survived for the duration of
the experiment.

became non-beneficial. Over time, evolution could lead these strains further away to a point where,

if that antibiotic were re-introduced, strains would not be able to re-adapt quickly enough to avoid

being eradicated.

To examine how populations of cooperators would react to the absence and return of adversity,

populations were evolved in an environment where the kill event was suspended during updates

40,000 through 60,000, or for roughly 3,500 generations. In these experiments, spatial structuring

was maintained by placing offspring into neighboring cells, and the kill event used a 5-cell radius

with a 3-unit threshold. The key parameters used for these experiments are listed in Table 3.3.

Figures 3.11a and 3.11b show the strategies maintained by populations and the fraction of

organisms killed, respectively. During the respite, mean cellular resource levels of public good

fell below the kill threshold through decay, leaving organisms vulnerable. Upon the return of the

kill event, populations adapted, and cooperative public good production re-evolved in 2 of the 46

populations that experienced this respite. In this Avida-based model, it is likely that cooperation

was able to quickly re-emerge through the fixation of a small number of mutations in lineages
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Table 3.3: Virtual Biofilm Model Parameters for Loss-of-Disturbance Experiments

Property Value

Population Size 10,000
Replicate Populations 50
Updates 100,000 (17,484.25 ± SEM 517.27 generations)
Kill Event Start Update 1,000 updates
Kill Event Frequency 1 update
Kill Event Inactivity Updates 40,000–60,000
Kill Event Radius 5
Kill Event Focal Cells 1
Kill Event Public Good Threshold 3 units

performing a similar logic task that allowed the cooperative task to be completed.

This model demonstrates that when selection for those traits resumes, populations can quickly

re-evolve cooperative, resistant behaviors that have been long absent in order to occupy that niche,

which could have significant implications for future treatments of bacterial infections. For instance,

even when an “anti-infective” treatment of interrupting the behaviors of bacteria is used instead of

killing the bacteria, selection may still act strongly to select for resistance to these treatments

if it allows these resistant strains to occupy a niche [33]. The specific response to these types of

treatments is not currently known; however, models like the one presented here may offer important

insights into how selection operates under such treatments.

3.5 Population Bottlenecks

Population bottlenecks are a form of disturbance in which the size of a population is drastically

reduced. In nature, bottlenecks are created by both environmental change and interactions among

species, and may occur over both short- and long timescales. As an example, the Hawaiian Bob-

tail Squid (Euprymna scolopes) lives in a symbiotic relationship with the marine bacterium Vib-

rio fischeri, whose bioluminescence allows the squid to avoid detection through counterillumina-

tion [124]. Each morning, the V. fischeri residing in the squid’s light-emitting organ experience

a bottleneck, whereby over 95% of the population is expelled into the sea [77]. This reduces the
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(a)

(b)

Figure 3.11: The evolution and maintenance of cooperation when the kill event was suspended
between updates 40,000 and 60,000 (n=44): (a) During this respite, cheaters gained in abundance at
the expense of cooperators, which were no longer favored. (b) Although the number of organisms
killed increased after disturbance was re-introduced, the increase in cooperators quickly allowed
populations to persist through the production of public good in all but two populations. Shaded
regions indicate ±1 standard error.
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cost of the symbiotic relationship for the squid, which does not benefit from bioluminescence dur-

ing the day. This bottleneck may also enable the population of V. fischeri to stave off invasion by

cheaters, which would compete for the benefits provided by the symbiotic relationship.

Frequent bottlenecks, such as those experienced daily by populations of V. fischeri, have been

shown to promote the evolution of cooperation. By propagating different volumes from cultures of

biofilm-forming Pseudomonas fluorescens at fixed intervals, Brockhurst demonstrated that smaller

volumes, and therefore larger bottlenecks, produced greater proportions of biofilm-forming coop-

erators [6]. These experiments concluded that bottlenecks had benefited cooperators by increasing

relatedness among passaged cells, particularly cooperators. It should be noted that in these pop-

ulations of Pseudomonas fluorescens, the biofilm-forming cooperator phenotype is ecologically

dominant, so it was able to grow to reach greater densities than cheaters, which only begin to gain

in abundance once they can exploit the biofilm produced by cooperators. Due to the bottleneck

imposed during propagation, the number of cheater cells was reduced, which, in turn, lessened

competition, and allowed cooperators to flourish.

Similarly, Griffin et al. [49] demonstrated that when populations of Pseudomonas aeruginosa

were passaged through a global competition phase containing cells drawn from all subpopulations,

cooperators were more abundant in the resulting populations than when was done independently

within each subpopulation [49]. In their experiments, which were designed to study how the scale

of competition [44] affects the evolution of cooperation, bottlenecks that included global compe-

tition allowed cooperative siderophore production to be favored. This is because the competition

phase required cooperation in order to better compete during this phase. When competition was

localized to each replicate population, lower levels of cooperation resulted, because cooperation

no longer significantly increased the probability of propagation.

Both of the studies described above used well-mixed populations. To determine the effects that

population bottlenecks have on the evolution of cooperation in spatial populations, experiments

were conducted using a computational model in which populations were periodically subjected

to bottleneck events. Contrary to previous findings, the results of experiments using this model
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demonstrate that bottlenecks can either help or hinder the evolution of cooperation, depending on

the spatial distribution of cells and a number of other factors.

3.5.1 Spatial Population Growth and Bottleneck Model

For these experiments, a model similar to the virtual biofilm model presented in Section 3.1 was

constructed using the SEEDS platform. In this cellular-automaton model, each cell in the popu-

lation was either empty or contained either a cooperator or a cheater. These three cell types are

interchangeably referred to as strategies or phenotypes. Upon initialization, approximately 1% of

cells were randomly assigned to be either a cheater or cooperator, and the remaining cells were

made empty. This yielded approximately 9,900 empty cells, 50 cooperator cells, and 50 cheater

cells for each 10,000-cell bounded lattice population.

During each time step, the cells in the population were updated asynchronously. When a

cheater cell was updated, it reproduced with probability 0.1. Reproduction is discussed further be-

low. When a cooperator cell was updated, it reproduced with probability 0.095. This 5% decrease

in fecundity was attributed to the cost of producing a public good. When updated, cooperators

produced 0.9 units of this public good, which was placed into the environment at that cooperator

cell’s location. This public good decayed at a rate of 0.01 and diffused at a rate of 0.01.

During each time step, a kill event selected a cell at random from the environment, examined

the level of public good in that cell and all cells within a 5-cell radius, and killed any cooperator or

cheater residing in those cells if the average level of public good was below 3 units. When a cell

was killed, it became empty.

Space served as a strict limiting resource. Unlike many other computational models, reproduc-

tion could only occur into neighboring empty cells. If no neighboring cells were available during

reproduction, no offspring was produced. Otherwise, the neighboring empty cell adopted the phe-

notype of its parent. To allow for continuous growth and evolution, populations were diluted to 1%

every 200 time steps. During this bottleneck process, each cell was killed indiscriminately with

probability 0.99. The public good was also diluted by reducing its level by 99% uniformly over
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space. The period of time between dilutions is referred to below as a growth cycle. Fifty replicate

populations were evolved in this environment for 10,000 time steps. Table 3.4 lists the properties

and their values used in these experiments.

Table 3.4: Growth and Bottleneck Model Parameters

Property Value

Population Size 10,000
Replicate Populations 50
Time Steps 10,000
Cheater Fecundity 0.1
Cooperator Fecundity 0.095
Population Dilution 1%
Resource Dilution 1%
Public Good Contribution 0.9 units per time step
Public Good Decay Rate 1% per time step
Public Good Diffusion Rate 1% per time step
Growth Cycle Duration 200 time steps

Because cells could not overwrite other cells, this model offered a clear picture of growth,

which enabled the fitnesses of cooperators and cheaters to be estimated. After Lenski et al. [79],

the average rate of increase, or Malthusian parameter m, for cooperators and cheaters during one

200-time-step growth cycle is shown in Equation 3.1, where Ns( f ) represents the cell count of

strategy s at time step f , the end of the growth cycle, and Ns(i) represents the cell count of strategy

s at time step i, the beginning of the growth cycle.

ms = ln[Ns( f )/Ns(i)]/200 (3.1)

The fitness W of the cooperator phenotype relative to the cheater phenotype during each growth

cycle was estimated by comparing these rates of increase, as shown in Equation 3.2, where c

and c̄ represent the cooperator and cheater strategies, respectively. Values above 1 indicated that

cooperators were favored, while values below 1 indicated that cheaters were favored. It is important

to note that because of the spatial structuring of populations, these fitness estimates reflect the

fitness of cooperation averaged over space.
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Wi = mc/mc̄ =
ln[Nc( f )/Nc(i)]
ln[Nc̄( f )/Nc̄(i)]

(3.2)

3.5.2 Growth and Cooperation in Response to Bottlenecks

The cooperative phenotype was maintained in 19 of the 50 replicate populations evolved in this

environment. As demonstrated in Figure 3.12, all populations showed a great deal of positive

assortment due to the spatial growth process, forming large clusters of cooperators and cheaters.

These large clusters benefited cooperators in two ways. First, cooperator cells within these clusters

produced large amounts of the public good, as shown in Figure 3.12b, which allowed them to

survive the kill event. Second, because cells passing through the bottleneck were not perturbed, a

large distance separated cooperator cells that had been located the interior of these large clusters

from cheaters. This separation allowed patches of cooperators to grow without competition from

cheaters at the beginning of each cycle.

(a) (b)

Figure 3.12: State of the population and public good prior to dilution in one example population.
(a) Spatial distribution of cooperator (blue), cheater (grey), and empty (white) cells. (b) Distribu-
tion of public good in the environment. High levels of public good can be seen near patches of
cooperators, while low levels of public good exposed cheaters to the kill event.
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As depicted in Figure 3.13, growth in this model resembled that of bacterial populations. At

the beginning of each growth cycle, populations grew exponentially, filling the available space

in the environment. Once this space resource depleted, growth slowed, and a stationary phase

began, where populations maintained that density until the subsequent bottleneck was introduced.

Because death was not captured in this model, aside from the kill event, these populations did not

experience a death phase.

As shown in Figure 3.14, populations reached significantly greater densities when cooperators

persisted (9,120.26 ± SEM 95.98) than when only cheaters survived (8,491.58 ± SEM 12.75)

(p < 0.0001; Welch Two Sample t-test). This result is common among cooperative behaviors,

as cheaters generally follow a high-growth strategy, while cooperation allows for high yield (e.g.

[103]).

These experiments demonstrated that cooperation can be maintained and allow populations to

reach significantly larger sizes in this environment. However, a greater understanding of the differ-

ence in fitnesses between the cooperator and cheater phenotypes in spatially-structured populations

is required to understand why 19 replicate populations maintained cooperation and 31 did not—

even though these experiments offered the same amount of space, started from approximately the

same numbers of cooperators and cheaters, and modeled cooperation using the same costs. The

next section addresses these difference in fitness over time and space.

3.5.3 The Ever-Changing Targets of Selection

The fitness of both strategies depended on a myriad of factors in these experiments. Among them

were the differences in growth rate between cooperators and cheaters, the amount of public good

present in an area, the composition of neighboring cells, the probability of being selected by the kill

event, and the availability of empty neighboring cells. Because many of these factors changed con-

tinually, so did fitness. These factors also varied across space, so selection could favor cooperation

in one region of the environment while strongly opposing it in another.

The relative fitness of cooperation was calculated for each growth cycle following Equation
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(a)

(b)

Figure 3.13: Growth of cooperators (blue), cheaters (grey), and the population as a whole (dashed)
during one growth cycle for one representative population: (a) Although cooperators had a greater
initial abundance, the faster growth rates of cheaters allowed them to reach a larger density. (b)
Faster growth rates did not always lead to greater abundances. Here, the growth of cheaters was
limited by the kill event, which occasionally allowed cooperators to reach greater abundances.
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Figure 3.14: Final population sizes in populations that maintained cooperation (n=19) and those
that did not (n=31). Through the production of public good, which enabled cells to avoid the kill
event, populations achieved significantly larger densities when cooperation was maintained.
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3.2. In terms of bottlenecking, when the relative fitness of cooperators was greater than 1, the

proportion of cooperators able to pass through the population bottleneck was expected to increase.

As discussed in the next section, the proportion of cooperators that pass through the bottleneck is

a strong determinant of whether or not cooperation persists.

As shown in Figure 3.15, the fitness of cooperators relative to cheaters varied throughout the

duration of an experiment. In most populations, selection cycled between favoring cooperators

and cheaters. When cooperators were favored, they produced an abundance of public good, which

cheaters subsequently exploited. However, as cheaters increased in abundance, they became more

susceptible to the kill event, which freed space in which cooperators could grow. Because of the

spatial variations that existed among populations, the relative fitness of cooperation followed a

unique trajectory for each population. Because of this, cooperation was able to persist in some

populations, while being driven to extinction in others. Figure 3.16 shows the changes in abun-

dance of cooperators and cheaters in two populations throughout an experiment, demonstrating

each of these outcomes.

Figure 3.15: Relative fitness of cooperation over time in one replicate population in which cooper-
ation was maintained. Values greater than 1 indicate conditions when cooperation was favored.

Figure 3.15 is a clear demonstration of what motivates this dissertation: By continually af-
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(a)

(b)

Figure 3.16: Abundances of cooperators (blue), cheaters (grey), and empty cells (white) over the
duration of an experiment. (a) In this population, the benefits of cooperation are not able to com-
pensate for the costs, and cooperators are eventually excluded. (a) Due to different distributions of
cells in space, this population was able to maintain cooperators and grow to larger densities.
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fecting the benefits that cooperative behaviors provide, as well as the associated costs, ecological

factors, such as those presented here and in the following chapters, can have a significant impact on

the evolution of cooperation, ultimately determining whether or not cooperation can be maintained

in that environment. Because of this, models of cooperation that represent the fitness effects of

cooperation, such as its costs and benefits, as fixed values cannot accurately capture the evolution-

ary dynamics of cooperative behaviors. It is only by understanding how ecological factors affect

cooperation can we effectively begin to disentangle the origins, the evolution, and the maintenance

of cooperation.

Figure 3.15 also demonstrates that there are many instances when not cooperating is benefi-

cial. In systems where this occurs, facultative cooperators, who choose to cooperate only when

it is likely to be beneficial, would have a selective advantage over obligate cooperators, such as

those modeled in these experiments. Previous studies have shown that even simple mechanisms,

such as expressing cooperative behaviors stochastically through phenotypic noise, can allow coop-

eration to be maintained [1]. Even sources of novelty, such as mutation, migration and drift, the

effects of which are examined in Section 5.7, can help to maintain cooperation in these environ-

ments. Several more complex mechanisms that enable facultative cooperation have been identified

in microorganisms [118]. One such mechanism is quorum sensing, which enables cooperators to

cooperate only when their density is great enough to provide sufficient benefit [28, 35, 57]. Alter-

nately, microorganisms display a variety of mechanisms for preferentially cooperating with close

relatives, such as greenbeards [109], poison-antidote systems (e.g. [12] and see Chapter 5), and

positive assortment [100].

This section discussed the complex variations of fitness occurring in spatial populations. The

use of bottlenecks in this growth model enabled the relative fitness of cooperation to be estimated at

the population level, demonstrating how cooperation can be both favored and selected against when

ecological factors are at play. However, the effect that the bottleneck itself had on the evolution of

cooperation was not examined. Previous investigations using well-mixed populations have shown

that bottlenecks promote the evolution of cooperation either by reducing competition from cheaters
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[6] or maintaining positive selection for the cooperative benefit [49]. As the previous two sections

have demonstrated, the variations in conditions within populations that spatial structuring produces

can create dynamics that differ significantly from well-mixed populations. The following section

examines the role that population bottlenecks play in the evolution of cooperation in spatially-

structured populations. The results of these experiments provide first insights into a process which

may be equally- or even more important in maintaining cooperation in spatial populations.

3.5.4 Bottlenecks and Sampling

Because the organisms chosen to pass through the bottleneck are selected indiscriminately, the

bottleneck is essentially a random sampling process [58]. Therefore, in order to maintain presence

in this environment, it is imperative that each strategy reach a population density large enough to

be well represented after the bottleneck.

In this iterated sampling process,even if growth rates were identical, a strategy that is under-

represented at the beginning of a growth cycle is likely to make up an even smaller proportion

of the population at the end of the cycle, due to exponential growth. As this process proceeds,

its effect becomes more pronounced, and, after several cycles, that underrepresented strategy may

reach such low abundances that it does not pass through the bottleneck, at which point it becomes

extinct. Low abundances can also create founder effects, where the resulting populations are not

representative of the populations from which they came, [84].

The effects of this process are shown in Figure 3.17, where the proportion of the dominant strat-

egy increases continually, while the underrepresented strategy is driven to extinction. Although

bottlenecks more often allowed cheaters to exclude cooperators, this process enabled cooperators

to exclude cheaters in one of the fifty replicate populations, as shown in Figure 3.17b.

This problem of sampling becomes even more pronounced when the underrepresented strategy

also has a slower growth rate, which is the case for cooperators in this model. For these strategies,

some method is required that enables that strategy to remain present in the subset of cells chosen to

carry on to the next cycle. Figure 3.18 shows that in one population, the slower-growing cooperator
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(a)

(b)

Figure 3.17: Proportions of cooperators (blue) and cheaters (grey) among the cells passing through
the bottleneck over time. Often, whichever strategy became dominant first maintained that domi-
nance for the duration of the experiment, whether cheaters (a) or cooperators (b).
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cells increased in proportion when public good production enabled them to persist while the kill

event simultaneously removed a significant portion of cheaters.

Figure 3.18: Proportions of cooperators (blue) and cheaters (grey) among the cells passing through
the bottleneck over time in one population, where the benefits of cooperation allowed cooperators
to recover after several invasions by cheaters.

These results demonstrate that indiscriminate population bottlenecks act as a non-biased ran-

dom sampling process, which can either promote cooperation or work to quickly purge it from the

population. The outcomes of this bottlenecking process, therefore, depend entirely on the ability

of the cooperative phenotype, or any phenotype for that matter, to maintain a competitive abun-

dance in the population, which, in turn, depends on each of the components that affect fitness, as

discussed in Section 3.5.3. Because of the exponential growth phase that occurs after sampling,

population bottlenecks simply act to magnify the differences in abundance between strategies.

This conclusion is more general than that proposed in a previous study, which demonstrated that

larger bottlenecks consistently produced populations with greater proportions of cooperators [6].

This difference is likely due to differences in model systems. In this previous work, cooperators

were ecologically dominant, and cheaters only began to have an effect once there was a substantial

biofilm that could be exploited. Because cooperators represented the majority in this system,
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the bottleneck benefited them by halting the invasion by cheaters before they could reach larger

densities.

In contrast, cheaters and cooperators in the model presented here began on even footing. In

combination with their faster rate of growth, this made it much easier for cheaters to grow to

larger densities than cooperators. When this occurred, cooperators were usually driven to extinc-

tion. However, when the production of good enabled cooperators to maintain adequate population

sizes, while cheaters were constrained by the kill event, cooperators could persist and even exclude

cheaters, as was shown in Figures 3.18 and 3.17b, respectively.

From this understanding, it is clear that the frequency at which the bottleneck occurred can have

a great impact on outcomes. As shown in Figure 3.13, populations typically reached stationary

phase during each growth cycle after approximately 100 time steps. Cooperators benefited from

a bottleneck frequency of 200 time steps, therefore, when the kill event decreased the density of

cheater cells during this stationary phase. Cooperators further benefited if the kill event affected

adjacent patches of cheater cells, which allowed cooperators to occupy some of the resulting space.

The next section addresses how the frequency of bottlenecks affects the ability of the cooperator

phenotype to reach competitive densities and ultimately persist in environments with different

bottleneck frequencies.

3.5.5 Bottleneck Frequency

To observe the affect of bottleneck frequency on the maintenance of the cooperator phenotype,

experiments were conducted using bottleneck frequencies ranging from 50 time steps to 1,000.

The hypothesis was that when dilutions were more frequent, not allowing cooperators to benefit

as much during stationary phase, cooperation would persist in fewer populations. However, when

stationary phase was extended, the benefits of cooperation would become more pronounced, and

cooperators would be maintained in more populations. For each bottleneck frequency, 50 replicate

populations were evolved.

As shown in Figure 3.19, the results of these experiments support the hypothesis that less
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frequent bottlenecks allow cooperators to persist in these environments. When the bottleneck

occurred every 50 time steps, populations were not able to reach sufficient densities to survive and

maintain either strategy.

Figure 3.19: Proportion of populations maintaining cooperation with different bottleneck frequen-
cies

In control experiments where dilution was amortized, killing each cell with probability

0.01/200 = 0.00005 per time step (data not shown), populations were also not able to survive.

This further demonstrates the importance of growth that occurs between population bottlenecks.

3.6 Discussion

Environmental disturbance effects all forms of life in one way or another. This section has pre-

sented a number of experiments that provided new insights into how disturbance affects the evolu-

tion of cooperation using a model inspired by bacterial biofilms.

First, the results presented in Section 3.2 showed that the spatial structuring of organisms can

significantly affect the evolution of cooperation. Because of this, spatially-structured populations

were used for all of the experiments presented in this dissertation.
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Section 3.3 examined how populations responded to increasing levels of disturbance. The

results of these experiments showed that populations were not able to survive when evolved in

very diverse environments. However, positive niche construction through the production of surplus

public good allowed populations to persist in environments where disturbance was incrementally

increased.

When disturbance was lost, Section 3.4 showed that cheaters quickly eliminated cooperators

from the population, as cooperation was no longer beneficial. However, once disturbance resumed,

cooperators were able to quickly evolve and stay in the population, even after 3,500 generations.

These results demonstrate that if the environment provides a niche that cooperators can occupy,

cooperation can exist stably.

Finally, Section 3.5 examined how bottlenecks, disturbance events in which a significant por-

tion of the population is killed, affect the evolution of cooperation in spatial populations. Although

a previous study had shown that bottlenecks act to promote cooperation by reducing competition

from cheaters [6], results from a growth-based model with periodic bottlenecks instead showed

a more general effect of bottlenecks—that bottlenecks simply act to amplify the differences in

abundance between two or more strategies. Whether or not bottlenecks aid cooperation depends

solely on the ability of the cooperator strain to maintain abundances equal to or greater in size than

cheaters. Although, bottlenecks were demonstrated to promote cooperation when they occurred at

a rate that allowed cooperators to reach larger densities due to the benefits provided by public good

production.
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Chapter 4

Resource Abundance

The availability of a required resource plays a considerable role in determining evolutionary out-

comes [121]. Presumably, as resource becomes more abundant, the relative costs of its allocation

towards cooperation decrease, allowing organisms to perform cooperative acts in addition to their

self-preserving and competitive activities. When that resource becomes more scarce, however, or-

ganisms may be forced to focus solely on their own interests. Previous experiments with microbial

populations have shown this relationship [8], as well as a link between resource availability and

diversification [52].

The work presented in this chapter focuses on this relationship between resource abundance

and cooperation through the production of a public good. Here, prior microbial studies [8] moti-

vated further investigation using digital models [20], which in turn prompted additional microbial

experiments.

Section 4.1 details studies examining the relationship between resource abundance and coop-

eration using the virtual biofilm model. The results of these studies, which differed from previous

studies, prompted further microbial studies, which are described in Sections 4.2 and 4.3.
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4.1 Virtual Biofilm Experiments

4.1.1 Resource Availability in Virtual Biofilms

To examine the role that the abundance of a required resource plays on the evolution of coopera-

tion, the virtual biofilm model introduced in Section 3.1 was used [19]. Although the fixed amount

of space always serves as an important limiting resource in Avida, an additional required resource

was defined. Unlike the experiments described in Chapter 3, the completion of both the coop-

erative and rewarded tasks required a sufficient amount of this resource in order to be executed.

Completion of each task consumed 1 unit of this resource. Populations were evolved in environ-

ments with different levels of resource, which continually flowed into each cell in the environment

at rates that yielded predetermined equilibrium levels. Resource was lost through a 1% diffusion

rate into neighboring cells and through decay, which also occurred at a rate of 1% per update.

Individuals were unable to directly sense the level of resource in their environment or the presence

of neighboring individuals.

As in Chapter 3, the kill event began at update 1,000 and examined the mean level of public

good in all cells within a distance of 5 cells from a randomly-chosen focal cell. If the average level

of public good among these cells was below 3, all organisms residing in that region were killed.

Organisms in regions with an above-threshold level were spared, regardless of whether they were

cooperators.

In each of 27 different resource environments, which ranged from equilibrium levels of 2 units

of resource per cell to 90, thirty replicate populations consisting of up to 10,000 organisms were

evolved for 100,000 updates, or an average of 17,600 generations, starting from a single ances-

tor. Each population started with a different seed for the pseudorandom number generator, which

altered the outcomes of stochastic processes and allowed each population to follow different tra-

jectories. The key parameters for these experiments are listed in Table 4.1.

The kill event drove a portion of these populations to extinction in all resource environments.

This occurred early in the experiments, when these populations had not grown to sufficient den-
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Table 4.1: Virtual Biofilm Model Parameters for Resource-Based Experiments

Property Value

Population Size 10,000
Replicate Populations 20
Updates 100,000 (17,602.51 ± SEM 129.93 generations)
Kill Event Start Update 1,000 updates
Kill Event Frequency 1 update
Kill Event Radius 5 (spatial), 0 (non-spatial)
Kill Event Focal Cells Per Update 1
Kill Event Public Good Threshold 3 units
Public Good Diffusion Rate 0.01
Public Good Decay Rate 0.01
Copy Mutation Probability 0.0075
Insertion Mutation Probability 0.05
Deletion Mutation Probability 0.05
Equilibrium Resource Levels (per cell) 2–90 units
Resource Consumed per Task 1 unit

sities or had not yet evolved the production of public good. No relationship was found between

resource abundance and the proportion of these populations that became extinct. Data for these

populations are not included in the following results.

4.1.2 Results

As is shown in Figure 4.1, these digital populations showed a rapid transition from non-cooperation

to cooperation at a critical level of resource. In this system, the transition occurred in environ-

ments with equilibrium levels of approximately 20 units per cell. Those populations evolved in

resource-poor environments showed a uniformly low amount of cooperation, while those evolved

in resource-rich environments cooperated at a uniform level that was significantly higher. Neither

of these groups, however, was significantly different than populations at the intermediate level of

20 units per cell.

Although these data support the results of a previous by Brockhurst, et al. [8], the interpreta-

tions that they offer differ significantly. This previous study concluded that cooperation increased

steadily as resource became more abundant [8]. From the perspective of inclusive fitness and
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Figure 4.1: Proportion of cooperators in virtual biofilm populations evolved in environments with
different resource abundances. Cooperators are defined as those whose phenotypes included the
public-good-producing task, and cheaters were those who did not. Shaded region indicates ±1
standard error.

Hamilton’s rule (see Section 2.1), however, such a rapid transition to cooperation makes sense.

Hamilton’s rule is an inequality that states that a cooperative act can increase in abundance when

its associated costs are less than the benefits that it provides multiplied by the relatedness of the

individuals involved. Accordingly, it was at that critical point of resource availability in these envi-

ronments where cooperative benefits began to outweigh the costs, and the inequality was satisfied.

After this transition, the proportion of cooperators in populations stabilized at a level common

among all resource-rich environments.

These cooperators, which comprised roughly 40–55% of the populations in resource-rich en-

vironments, produced enough public good to allow between 70–80% of the cells targeted to stave

off the kill event, as shown in Figure 4.2. This success at surviving the disturbance presented

by the kill event was achieved by the production of public good, which remained above the kill

threshold in resource-rich environments, as shown in Figure 4.3. Although the average level of

public good in these environments was similar across populations, its variation among cells was
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quite large. Figure 4.4 shows one example of this, where some cells contained up to 30 times more

public good than the threshold of the kill event. The inclusion of these cells greatly helps raise the

average, and thus can enable even patches of cheaters to survive disturbance.

Figure 4.2: Proportion of examined cells killed by the kill event after evolution for 100,000 updates
in different resource environments. Shaded region indicates ±1 standard error.

This variation in public good can be attributed to the spatial structuring of populations. Figure

4.5 shows one representative population in a resource-rich environment. Within these populations,

clusters of cooperators formed under the protection from disturbance provided by the production

of public good. These clusters of cooperators, however, were continually invaded by neighboring

cheaters, which were also protected by the public good, but grew faster. These groups of cheaters

would increase in size until the decay of public good made them susceptible to the kill event.

Once cheaters in that region had been killed through this disturbance, cooperators could re-invade

because of the reduced competition from cheaters. This cycle is shown in Figure 4.6 for a region

of cells in one representative population.

Not only did this surpluses of public good allow some cheaters to avoid being killed, it also

enabled populations to reach greater sizes, as seen in Figure 4.7. This figure also shows the re-

sults of control experiments, where the cooperative task produced no public good, the presence of
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Figure 4.3: Per-cell public good levels after evolution for 100,000 updates in different resource
environments. Shaded region indicates ±1 standard error.

Figure 4.4: Distribution of public good among cells in a typical high-resource environment. A
small number of cells have public resource levels much higher than others. The inclusion of such
cells in any target area is likely to prevent the kill event from succeeding.
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Figure 4.5: Snapshot of a population in the virtual biofilm environment. Here, cheaters (grey)
invaded patches of cooperators (blue) until the level of public good in that region had diminished,
leaving those cheaters susceptible to the kill event. Empty cells (white) were ideal for cooperators
to colonize, as they did not face competition from cheaters in these areas.

Figure 4.6: Oscillating abundances of cooperators (blue), cheaters (grey), and empty cells (white)
present within a selected 5×5-cell region in one sample population in a high-level resource envi-
ronment.
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cooperators lowered the overall fitness of populations in resource-rich environments, resulting in

population sizes that were smaller than in resource-poor environments.

Figure 4.7: Population sizes in the virtual biofilm after 100,000 updates. In resource-rich envi-
ronments, cooperation enabled populations to maintain significantly larger population sizes. In
environments where cooperation did not produce public good, population sizes decreased in these
resource-rich environments. Shaded regions indicate ±1 standard error.

Although cooperators provided these substantial benefits, Figure 4.8 indicates that the coop-

erative task was only a minor part of the repertoire of behaviors seen in rich environments. As

evidenced by the plateau seen in Figure 4.1, cooperation persisted at a minimum level, allowing

populations to persist, reach larger densities, and complete greater numbers of growth-oriented

tasks.

4.2 Biofilm Formation in Vibrio cholerae

The previous results offered a new interpretation of into the relationship between resource avail-

ability and cooperative behaviors. To further explore these findings and to determine whether the

results produced by the virtual biofilm model would accurately capture the dynamics of living
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Figure 4.8: Number of logic tasks completed in the last 100 updates by populations evolved for
100,000 updates in different resource environments. Shaded regions indicate ±1 standard error.

systems, corresponding experiments were performed using populations of biofilm-forming Vibrio

cholerae.

By placing combinations of these strains in various resource environments, the amount of co-

operation in the populations can be inferred from the amount of biofilm produced. In low resource

environments, the cheater strain would be expected to outcompete the cooperators, in which case

the amount of biofilm produced would be low. However, when resource becomes more abundant,

cooperators should be better able to persist, and the amount of biofilm produced should be higher.

4.2.1 Materials and Methods

Two strains of Vibrio cholerae derived from the wild-type El Tor biotype strain C6706str2 [120,

126] were used to represent cheaters and cooperators. The CW2036 (∆hapR,∆vpsL) strain did not

produce biofilm, while the ∆hapR strain produced biofilm constitutively. Cultures of both strains

were started by placing cells from frozen stock in 2mL 1× LB and incubating overnight with

vigorous (220 rpm) shaking at 35◦C
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Growth Media—Cultures were grown in Lysogeny Broth (LB) (Acumedia Product #7279)

[86, 98]. To provide different resource environments, LB concentrations of 0.25×, 0.5×, 0.75×,

1×, 1.25×, 1.5×, 1.75×, and 2× were created by serially diluting a 2× LB stock with a 2× NaCl

solution (20 g L−1), thereby ensuring an equivalent salt concentration at each resource level.

Growth of Biofilms—Wells on a high-throughput Minimum Biofilm Eradication Concentra-

tion (MBEC) AssayTMsystem [13] plate containing 145µL of media were inoculated with 5µL of

bacterial cells comprised of 5:0, 4:1, 1:1, 1:4, and 0:5 ratios of cells from the cheater and cooperator

strains. Growth occurred at 37◦C on a Fisher Scientific fixed-speed nutating mixer (22-363-152),

which provided gentle rocking. Populations were grown for 6 hours.

Measuring Biofilm Growth—After growth, plates were washed with 150µL phosphate

buffered saline (PBS) (pH 7.4), fixed in 150µL 95% EtOH, and stained with 150µL of 0.41%

crystal violet solution (w/v in 12% ethanol). Following 3 more washes with 150µL PBS, the crys-

tal violet was diluted in 300µL 95% EtOH. The absorbance of the diluted crystal violet was then

measured at 595nm using a Molecular Devices SpectraMax M5 plate reader.

Population Compositions—In Vibrio cholera, biofilm formers display drastically different

colony morphologies than do non-formers. Depicted in Figure 4.9, rugose colonies (a), which are

smaller in size and wrinkly in appearance, are biofilm formers, and smooth colonies (b), which

are larger and appear more translucent, are non-formers. These morphotypes are determined by a

complex hierarchy of regulators [138].

To measure the proportions of cooperators and cheaters present in biofilms, therefore, the rela-

tive abundance of these two colony morphotypes was counted. These biofilms were first removed

from the plates by sonication for 45 minutes using a Branson Bransonic c©2510 at 40kHz and

placed into a new plate containing 150µL of 1× LB. Afterwards, these solutions were serially

diluted in 1× LB to a concentration of 10−6, plated on LB agar 15gL−1, and grown at 37◦C.

The number of rugose (biofilm formers) and smooth (weak biofilm formers) colony forming units

were counted after 24 hours. These observed proportions indicated the relative fitness between

the rugose cooperative strain and smooth cheaters in the environments in which they were grown.
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(a) (b)

Figure 4.9: Vibrio cholerae colony morphotypes: (a) The rugose colony morphology is associ-
ated with biofilm formers, and was seen in increasing abundances in the evolved strains. Rugose
colonies are considerably smaller than smooth ones (images are to scale), are more opaque, and
appear “wrinkly.” (b) The smooth colony morphology is associated with biofilm non-formers and
was the sole morphotype displayed by the wild type strain. Smooth colonies are relatively large,
smooth, and translucent.

As described in Section 3.5.1, increases in the proportion of cooperators indicate that cooperative

biofilm formation is favored in that environment, while decreases in this proportion indicate that

cooperation was overly costly.

4.2.2 Results

Figure 4.10 shows the resulting biofilm production of the mixed populations, while Figure 4.11

highlights biofilm growth in a wider variety of resource environments when populations were be-

gun using a 1:1 mix of cooperators and cheaters. These results show a trend similar to that observed

in the digital populations: a rapid transition occurs between low biofilm production in resource-

poor environemtns and high biofilm production in resource-rich environments. This transition

occurred at resource concentrations between 1.5× and 1.75× LB.

Figure 4.12 shows the relative proportions of biofilm formers and non-formers within these

biofilms as determined by visually counting the number of colony-forming units of the cheater-

and cooperator strains. Although a clear relationship between the number of cheaters present in

a biofilm and resource abundance cannot be drawn from these data, it can still be observed that

cheaters often comprise a significant portion of the biofilm. These “free riders” have previously
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Figure 4.10: Biofilm growth from different starting population compositions (coopera-
tors:cheaters) in different resource environments. When cooperators composed at least 50% of
the starting population, biofilm formation increased significantly in resource-rich environments.
Error bars indicate ±1 standard error.
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Figure 4.11: Optical density of biofilms grown in different resource environments starting from a
1:1 combination of strains. Shaded region indicates ±1 standard error.
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been shown to weaken biofilms over time as they exploit the EPS produced by others [110].

Figure 4.12: Proportion of cheaters present in biofilms after growth in different resource concen-
trations. Ratios indicate the initial proportions of cheaters:cooperators in the populations.

4.3 Experimental Evolution of Biofilm Formation in Vibrio

cholerae

The experiments described in Section 4.2 showed that cooperation did indeed increase along with

increases in resource. However, whether or not a critical transition point at which populations

began to favor cooperation similar to that seen in the virtual biofilm environment was not clear

from the resulting data.

One explanation for this lack of a clearly-defined transition is that populations simply had not

had sufficient time to adapt to this experimental environment. Indeed, the 6 hours, or approximately

2–3 generations, did not offer populations sufficient time for beneficial mutations to arise and have

substantial impact on the overall behavior of the population. Although increases in biofilm were

seen in all LB concentrations, these increases may not have been stable in lower- and intermediate
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concentrations, which would cause each population would adjust over time to better match the

environment.

The experimental evolution study presented in this section was conducted to address these po-

tential shortcomings. Populations of Vibrio cholerae were grown in similar environments for more

than 45 generations in order to more closely approach the levels of cooperative biofilm production

appropriate for environments with different abundances of resource.

4.3.1 Materials and Methods

Populations of Vibrio cholerae strain that could not engage in quorum sensing were grown and

evolved in different concentrations of LB, as described in Section 4.2.1. Because this strain cannot

engage in quorum sensing, which mediates biofilm formation in V. cholerae [57, 126], it forms

weak biofilms.

Experimental Evolution of Biofilm Formation—Cultures were started by placing cells from

frozen stock in 2mL 1× LB and incubating overnight with vigorous (220 rpm) shaking at 35◦C.

For each LB concentration, five replicate populations were created by vortexing a 1:100 dilution

of these cultures in the appropriate media. 150µL of these dilutions were used to inoculate wells

in an MBECTMassay plate. These populations were grown for 24 hours at 35◦C on a Fisher

Scientific fixed-speed nutating mixer (22-363-152), which provided gentle rocking. After 24 hours,

cells in the biofilm were removed from the plates by sonication for 45 minutes using a Branson

Bransonic c©2510 at 40kHz and placed into a new plate containing 150µL of 1× LB. This product

was then diluted using the appropriate media to a concentration of 10−2, vortexed, and 150µL was

used to inoculate a new MBECTMplate. The remainder was frozen at −80◦C. This process was

repeated for 7 days, or approximately 45.5 generations.

4.3.2 Results

As Figure 4.13 shows, these populations evolved substantial increases in biofilm formation when

evolved in resource-rich environments. However, this increase in cooperation did not occur gradu-
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Figure 4.13: Biofilm formation of wild type ancestor strain and 7-day evolved strains. Due to selec-
tion for biofilm during passaging, evolved populations in all environments produced more biofilm
than the wild type. However, populations evolved in resource-rich environments produced signif-
icantly more biofilm than those evolved in resource-poor environments. Shaded regions indicate
±1 standard error.
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ally, as has previously been observed [8], but rather as a rapid transition about some critical level of

resource, as shown in Figure 4.13. This critical level occurred between 0.5× and 0.75× LB. Below

this level, populations produced uniformly weak biofilms, while above this threshold, uniformly

robust biofilms were produced. Although daily passaging selected for biofilm production in all

resource environments, the increase seen in resource-rich environments was significantly greater

than in resource-poor environments.

Figure 4.14: Fraction of cooperative (rugose) colony forming units among populations evolved in
different concentrations of LB. Shaded region indicates ±1 standard error.

As shown in Figure 4.14, this increase in biofilm formation resulted from increases in the abun-

dance of biofilm-forming rugose colonies within these populations. When plated, constituent cells

from the biofilms formed rugose colonies more frequently when evolved in richer environments

than in poorer environments. This trend occurred for populations evolved in media up to 1.5× con-

centration. Beyond this, non-forming rugose colonies began to account for increasing proportions

of colonies. This is likely due to increases in “free riders” who take advantage of the large amount

of biofilm produced in these populations. Despite this increasing presence of non-formers, the

amount of biofilm produced by populations in rich environments was not significantly decreased.

68



4.4 Discussion

The results of these experiments demonstrate that resource abundance can have a significant effect

on the evolution and maintenance of cooperative behaviors such as biofilm formation. In both

microbial- and digital- populations, a uniform level of cooperation was favored above some critical

level of resource. Below this level, populations focused solely on individual growth.

From the perspective of inclusive fitness and Hamilton’s rule, described in Section 2.1, such

a rapid transition makes sense; it was at that critical point of resource availability in our models

where the cooperative benefits began to outweigh the costs, and the inequality was satisfied.

With this stabilization in cooperative output, both models offered evidence that the formation

of biofilm through public goods cooperation yielded diminishing returns [43]. More specifically,

once a biofilm had formed, the production of any additional EPS did not provide any significant

increase in benefit, namely the ability for more cells to be passaged in the microbial model or for

more cells to avoid being killed in virtual biofilms. At this point, cooperation became costly, and

non-formers were favored. This demonstrates how the fitness of a cooperative strategy can vary

depending on environmental conditions.
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Chapter 5

Social Structure

As discussed in Chapter 2, maintaining spatial relationships within populations can significantly

affect the evolution of cooperation. With spatial structuring, the benefits of cooperation are more

likely to affect kin, which are generally located nearby. However, as the density of a population

increases, perhaps due to the production of biofilm, as discussed in Chapters 3 and 4, competition

among kin may increase to a point where cooperation is no longer beneficial.

Although these effects of spatial structuring have frequently been demonstrated, few studies

have addressed how variations in the number and distribution of social interactions affect evolu-

tionary dynamics.

The work presented in this chapter examines how the social structure, or the number of neigh-

bors with which an organism interacts, affects a population’s ability to maintain diversity. A diverse

population is one in which multiple strategies can coexist while competing for the same limiting

resource [121], such as cooperators and cheaters in the context of this dissertation. Additionally,

such populations are more likely to allow for a rare mutation, such as a cooperative act, to persist

long enough to reach a significant frequency. It has previously been demonstrated that diverse

populations of cooperators are less likely to be exploited by invading cheaters [9].

Bacterial allelopathy is a natural phenomenon that has previously been modeled to study the

effects of spatial structure and cooperation [27,67,72]. Localized interactions have been shown to
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contribute significantly to coexistence of multiple strains in this system. In these systems, bacteria

produce bacteriocins, which are toxins that cause surrounding cells that do not express resistance

to lyse. In the process, the toxin producer is killed. This act, however, makes the newly-freed space

and resources available to neighboring cells (ideally, the kin of the producer). Toxin production

is genetically-linked to resistance, so producer strains are also resistant to the toxin they produce.

It is possible, however, to evolve resistance independent of production. Because such resistant

strains do not pay the cost associated with production, they are able to grow faster than producer

strains, while still maintaining their immunity. These strains, however, grow more slowly than a

susceptible strain that neither produces toxin nor is resistant. Therefore, in the absence of toxin, a

resistant strain will be outcompeted by a susceptible strain. This combination of three strategies is

considered a non-transitive system in which each strain dominates one strain, but is dominated by

the third. These dynamics are captured in the classic rock-paper-scissors (RPS) game, where rock

crushes scissors, scissors cuts paper, and paper covers rock.

A major contribution of the work presented here is a new model for representing spatial inter-

actions that more closely match those seen in natural populations. Traditionally, spatial models of

this system have used cellular automata on lattices containing a fixed number of vertices, or cells,

distributed uniformly in space [40, 71]. Within these lattices, each cell is connected to its eight

nearest neighbors. To prevent boundary effects, periodic boundaries are commonly used, which

form a toroidal grid by creating edges between cells on the periphery of the graph. This results

in regular graphs in which each cell has the same number of neighbors, and the distance between

any cell and its farthest neighbor is the same for all cells. This regularity indicates that any cell in

the grid interacts with exactly as many other cells as any other cell. Further, this distance property

indicates that no matter where a dominant strategy begins, it must interact with the same minimum

number of cells in order to spread throughout the population.

In this chapter, the role of social structure in the maintenance of diversity is examined by

studying a model of this non-transitive system on graphs with differing vertex degrees, and hence

different patterns of social interactions. The terms spatial- and social structure are used inter-
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changeably, as an organism’s potential social interactions are limited to its neighbors in space. The

objective is to observe the dynamics of populations on the continuum of connectivity between the

regular graphs used in lattice models and well-mixed populations in order to determine at what

point diversity is not maintained.

These observations are made using three models. First, lattices are used in Section 5.3, and

the number of interactions is increased by expanding the radius of interactions surrounding each

cell. This model yields high-level insights into the social structures in which diversity can be

maintained. To achieve a more fine-grained control over a cell’s interactions, a method for creating

graphs of varying expected vertex degrees from a set of points in Cartesian space is utilized in

Section 5.4. Diversity is also examined on small world graphs in Section 5.5, where interactions are

primarily localized, with the exception of a small number of long-range interactions. Additionally,

the importance of population size and the resulting graph connectivity are shown in Section 5.6 to

play a critical role in determining whether or not diversity can be maintained. Finally, Section 5.7

demonstrates the stabilizing effect that novelty can have in populations where spatial and temporal

variations in fitness exist, such as those targeted in this dissertation.

The spread of a two-strategy system on graphs with differing properties was previously stud-

ied by Ohtsuki et al. [96], who formulated a simple rule for the maintenance of diversity. This

rule, shown in Equation 5.1, was described by the authors to be equivalent to Hamilton’s rule, as

connectivity (k) can be seen as an approximation for the inverse of relatedness.

b/c > k (5.1)

The work presented in this chapter differs in that a three-strategy, non-transitive system is

used, and the benefits of a particular strategy are not fixed, but rather depend on the composition

of each cell’s neighborhood. More similar to this work, Károlyi et al. [69] studied increases in

social interactions through imperfect mixing of the spatial structure on a lattice. The primary

difference is that their work used some measure of mixing, while the work presented here maintains

persistent neighborhoods while varying the number of potential interactions. Finally, Buckley

72



and Bullock [11] used an information theoretic approach to investigate how space contributes to

the complexity of a system. Although the focus of their work was different, they showed that

complexity can play a large role in a population’s ability to maintain diversity.

5.1 Cellular Automaton Model

A graph-based cellular automaton model was developed using the SEEDS platform in order to

study the effects of social structure on diversity [23]. This model consisted of cells that were con-

nected to each other by undirected edges, making both cells neighbors of each other. Interactions

in this system were limited to a cell and each of its neighbors. In all experiments described, pop-

ulations consisted of 90,000 cells. Each cell was either empty or exhibited one of three possible

strategies:

1. Susceptible cells produced no toxin, nor were they resistant to toxin production by neighbor-

ing cells. Because susceptible cells did not pay a cost to maintain either of behaviors, their

growth was faster than other strategies.

2. Producer cells produced a toxin that could kill neighboring susceptible cells. Additionally,

since resistance is a trait that is genetically linked with production in natural bacteriocin

systems, producer cells were also resistant to toxin produced by other producer cells.

3. Resistant cells can be viewed as producers that cheat. They reaped the benefits provided by

adjacent producer cells without themselves paying the costs of toxin production. As such,

they exhibited faster growth than producer cells, but slower growth than susceptible cells,

due to the added cost of maintaining resistance.

4. Empty cells had no effect on their neighbors. When chosen, an empty cell adopted the

strategy of a randomly-selected neighbor.

In this chapter, these cell types are referred to as “strategies”; however, they can also be viewed

as species, strains, or subspecies. At the beginning of each experiment, cells were randomly as-
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signed to be either empty or to exhibit one of these strategies. In this system, the loss of one

strategy will break the non-transitive relationship between the strategies, which quickly leads to

the loss of a second strategy. As an example in the rock-paper-scissors game, if no paper remained,

rock would quickly outcompete scissors, as rock would no longer face competition. Alternatively,

if scissors were lost, paper would dominate rock.

Importantly, the growth of each strain was controlled by its rate of mortality. All strategies

shared an intrinsic death rate, and the costs associated with resistance and toxin production mani-

fested themselves as increases in death rate. This means that at any given time, a producer cell was

more likely to die than a resistant cell, and a resistant cell was more likely to die than a susceptible

cell. When a cell died, it became empty. For a cell to change from one strategy to another, it had

to first die, and then later adopt a neighboring strategy.

Populations were run for 10,000 time steps, or epochs. At each epoch, 90,000 cells were

chosen at random, and their states were updated asynchronously according to the rules described

below. Following the configuration adopted by Kerr [71], the probabilities of a resistant or producer

cell dying during one of these updates were 0.312 and 0.333, respectively. Because the fate of a

susceptible cell was tied to the presence of neighboring producer cells, its chance of death, ∆S,

was modeled according to Equation 5.2, where ∆0
S is the intrinsic death rate for susceptible cells

(0.250 in this work), τ is the toxicity of producers (0.65), and fp is the fraction of producers in the

cell’s neighborhood. All key parameters for this experiment are listed in Table 5.1.

Table 5.1: Bacteriocin Model Parameters

Property Value

Population Size 90,000
Replicate Populations 20
Epochs 10,000
Intrinsic Susceptible Mortality (∆0

S) 0.250
Resistant Mortality (∆R) 0.312
Producer Mortality (∆P) 0.333
Producer Toxicity (τ) 0.65
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∆S = ∆
0
S + τ fp (5.2)

Studies examining the maintenance of cooperative behaviors commonly compare the fitness

costs of a strategy with the benefits it provides (e.g., [2,96]). In the model presented here, the costs

can be viewed as the increase in mortality seen by resistant and producer cells. In this sense, the

cost of each strategy is fixed and continually incurred. However, due to the spatial nature of this

and most other biological systems, the benefits depend on the current distribution of strategies in

a cell’s neighborhood, and will therefore follow a trajectory similar to that shown in Figure 3.15.

For example, toxin production may be highly beneficial when surrounded by susceptible cells, but

has no benefit when all neighbors are producers. Likewise, resistance is beneficial in the presence

of producer cells, but not in the presence of susceptible or resistant cells.

The following sections describe experiments conducted using this model on different types of

graphs, focusing on the number of interactions an organism has and its effect on a population’s

ability to maintain diversity. First, the metrics used to compare these different types of graphs

are explained. For each of the treatments described thereafter, 20 replicate populations were stud-

ied. Each population started with a different random seed, which led to differences in the overall

structure of the graphs used in the Cartesian and small world treatments, the initial distributions

of strategies, the stochastic processes of cell death, and the selection of random replacements for

empty cells. These differences allowed populations to follow different trajectories.

5.2 Graph Metrics

Because connectivity can vary dramatically among graphs, some properties needed to be controlled

in order to maintain similarity and allow comparison among the individual experiments. Although

many metrics exist that describe the connectivity of a graph, the clustering coefficient and diameter,

both of which are described below, were selected to allow for comparison among the graphs used

in this work. These metrics were measured using the NetworkX package [51].
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The local clustering coefficient of a particular cell measures the connectivity of that cell in

its particular network [128]. Specifically, the clustering coefficient Ci is defined in Equation 5.3,

where i is the cell (vertex) in question, ki is the number of neighbors of i, Ni is the set of i’s

neighbors, and E is the set of edges in the graph.

Ci =
2|{e jk}|
ki(ki−1)

: v j,vk ∈ Ni,e jk ∈ E (5.3)

A local clustering coefficient of 0 indicates that none of a cell’s neighbors are connected to

each other, while a clustering coefficient of 1 indicates that all of a neighbor’s cells are connected

to one another. The clustering coefficient of a graph is defined as the average of the local clustering

coefficients of its cells. This property is relevant in this system, as an area with a higher clustering

coefficient allows for indirect interactions, such as “the enemy of my enemy is my friend.”

Finally, the diameter of a graph is defined as the longest shortest path between any two cells.

The diameter therefore provides an indication of how long it would take for a dominant strategy

to spread to all cells in the graph. As demonstrated in Section 5.6, a graph’s diameter can have

significant effects on the dynamics of populations.

5.3 Lattice Model

To examine the effects of increasing social interactions in populations, a lattice model was adopted

similar to that used in previous studies (e.g., [27,67,71]). In this model, 90,000 cells were arranged

in a 300×300 grid, with each cell interacting with its 8 surrounding neighbors. Periodic boundary

conditions were used, producing 8-regular graphs.

As a simple method for expanding a cell’s neighborhood, the radius of interactions was in-

creased. That is, with radius 1, a cell was connected to its 8 surrounding neighbors. With radius 2,

a cell’s neighbors were the 24 cells within a 2-hop radius. This process continued with increasing

radii until diversity was no longer maintained in the populations.

As the radius of interaction was increased, diversity quickly diminished. As the sample popula-
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tions in Figure 5.1 show, populations were able to maintain all three strategies when the radius was

1 or 2. At radius 3, several populations were unable to maintain all three strategies, while none

maintained diversity at radius 4. As is common in this type of system, in cases where all three

strategies coexisted, the strategies persisted in patches, as is shown in Figure 5.2, which moved

throughout the environment.

(a) radius = 1 (b) radius = 2

(c) radius = 3 (d) radius = 4

Figure 5.1: Strategy counts over time for various neighborhood sizes from representative sample
populations. All three strategies remain in all populations when neighborhood radius is 1 (a) or 2
(b). At radius 3 (c), diversity was maintained in 13/20 populations, one of which is shown, while
diversity did not persist in any populations at radius 4 (d).

Table 5.2 illustrates the effect of increasing the radius of interactions on the structure of the

resulting graphs. The sharp decrease in diameter allows a faster-growing strategy to spread more
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Figure 5.2: Spatial patterns observed in typical populations. When diversity is present, strategies
exist in clusters. Sensitive cells are colored blue, resistant are green, producer cells are red, and
empty cells are white.

quickly, outcompeting competitors regardless of their capabilities. This effect is exemplified in

Figure 5.1d, where the sensitive strategy is seen to quickly eliminate the other strategies.

Table 5.2: Properties of Lattice Graphs Studied

Neighbors Diameter Clustering Coefficient

8 (r=1) 150 0.429
24 (r=2) 75 0.522
48 (r=3) 50 0.543
80 (r=4) 38 0.551

Although these experiments offered insights into the role that the number of interactions has

on diversity, the geometric increases in neighborhood size makes it difficult to observe behaviors

at a fine level of detail. Figure 5.3 shows the fraction of populations which collapsed to a single

strategy as neighborhood size was increased. Because of this coarse-grained sample, obtaining a

significant fit for these data points is difficult using this model.
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Figure 5.3: Fraction of 20 replicate populations that collapsed to a single strategy for increasing
neighborhood sizes.

5.4 Cartesian Space Model

Lattice models are well suited for studying spatial effects, but the geometric growth of neighbor-

hood size limits more fine-grained investigation, and is not necessarily representative of natural

systems. In order to investigate the effects of more gradual increases in neighborhood size, the

next set of experiments moved from lattices to randomly-generated graphs that still accounted for

the spatial relationships among cells.

To build these graphs, 90,000 points were randomly placed in a unit Cartesian plane. Each

point in this plane represented a cell in the world, and its neighbors consisted of the other points

that fell within a circle of specified radius. Since a unit plane was used, the area of the circle

was proportional to the expected number of points that it encompassed. That is, the area of a

particular circle divided by the area of the plane represented the proportion of points which should,

on average, fall within that circle. This construction technique was similar to a previous method

that examined how embedding space on random graphs affected various graph properties [3].

The radius that yielded an expected neighborhood size is calculated using Equation 5.4, where

79



a is the area of a circle, 1 in the left-hand denominator represents the area of a unit plane, K is

the expected average number of points within the circle (plus one for the cell the circle is centered

on), and |V | is the number of cells in the world, where |V |−1 is the number of potential neighbors

for a particular cell. Since a is the area of a circle with radius r, the radius that will, on average,

encompass K cells can be solved according to Equation 5.5.

a
1
=

K
|V |−1

(5.4)

r =

√
K

π(|V |−1)
(5.5)
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Figure 5.4: Unit Cartesian plane partitioned into bins. Circles show the area where neighbors may
fall, and the shaded region is the Moore neighborhood of the central bin.

This treatment also used periodic boundaries, which can be achieved by allowing this circle

to wrap around the edges of the plane. To reduce the running time for distance calculations, the

plane was partitioned using a grid of two-dimensional bins, where each bin contained points that

fell within a square area with side length r. Since the bins were r∗ r sized, any point that may have

fallen in a circle of radius r around a single point could not be outside of the immediate eight bin
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neighbors. Figure 5.4 shows the bin structure overlaying the unit plane and several of the extreme

circles with radius r, illustrating the fact that all neighboring points must fall within the Moore

neighborhood of the bin. This method dramatically reduced the number of points considered as

potential neighbors. Additionally, since edges were undirected and the neighbor relation was recip-

rocal, once the neighbors of a point had been found, that point no longer needed to be considered.

This property allowed graph construction to proceed bin by bin, eliminating all points contained

within the bin from further consideration after that bin had been examined.

Figure 5.5: Distributions of average neighborhood sizes from 20 replicate graphs with expected
neighborhoods from 10 to 70 cells in increments of 10

Figure 5.5 shows the average distribution of neighborhood sizes in sample graphs when varying

the expected number of neighbors from 10 to 70. The mean number of neighbors for each treat-

ment was equal to the expected neighborhood size calculated. This method provided fine-grained

control over neighborhood size, while maintaining spatial interactions similar to those of lattices.
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Random graphs created in this way are arguably more representative of biological systems than

lattice models, since some variation is expected in the number of interactions among organisms in

the population, even with explicit spatial structuring.

This Cartesian method was used to generate random graphs on which to run the cellular au-

tomaton model. The properties of the resulting graphs are listed in Table 5.3. It should be noted

that several of the graphs generated with expected neighbor size of 10 were disconnected, as one

might expect in a natural population with limited interactions.

Table 5.3: Properties of Cartesian Graphs Studied

Expected Neighbors Diameter Clustering Coefficient

10* 45.5 0.585
20 83.25 0.587
30 57.25 0.588
40 51.5 0.589
50 59.0 0.588
60 53.0 0.586
70 49.0 0.587
80 45.0 0.587
90 38.0 0.591

The strategy count plots for this topology are similar to those shown in Figure 5.1, and thus

are not included. Instead, simplex phase planes were used to examine the dynamics observed in

the populations. A simplex phase plane depicts the proportion of strategies that were present in

the population at a given time and the trajectory the population took over all. The three corners

of the triangle represent the three strategies: producer (P), sensitive (S), resistant (R). The relative

distance from each corner depicts the proportion of the population the strategies comprise. Thus,

a point in the center of the simplex would have equal frequency of each strategy, and a point at the

P corner of the triangle would represent a population completely composed of producers.

Figure 5.6 depicts four simplex phase planes for different neighborhood sizes roughly corre-

sponding to those examined using lattices. The oscillatory dynamics observed in Figure 5.1 are

also present in this topology, and are distinguishable by the circular path within the phase plane in

Figure 5.6a. Similarly, the large swings in cell counts with increased neighborhood sizes form the
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larger circular paths depicted in Figure 5.6b and 5.6c.

Several populations maintained diversity despite having larger neighborhood sizes (such as that

shown in Figure 5.6c) exhibited drastic transient dynamics, where the population of one or more

strategies came dangerously close to being eliminated. It is these initial transient dynamics that

stochastically led populations to collapse as the mean neighborhood size increases. That is, in

those runs that persist through these periods of transient dynamics, the population ends up in a

safer region of phase space, one that is less susceptible to stochastic extinction. Of course, as the

neighborhood size continues to increase, so does the magnitude of oscillations, and eventually all

populations will collapse to a single strategy as the others are driven to extinction, as illustrated in

5.6d.

These transient dynamics were due to initial conditions, in which each cell strategy (including

empty cells) was uniformly distributed throughout the world. As depicted in Figure 5.2, clusters

of strategies emerged, and it was during the transition between the initial and fully-clustered states

that populations often collapsed. Essentially, populations were started in a random state with

respect to clusters of strategies. While this approach biases the population towards larger cycles at

least initially, it means estimates generated for the collapse of diversity are conservative.

Although the previous figures show the similarities that the dynamics of populations modeled

on these graphs had with those on lattices, the Cartesian method allowed this system to be studied

in much greater detail. Figure 5.7 plots the proportions of collapsed populations for a range of

neighborhood sizes, with the range that produced intermediate loss of diversity serving as a middle

point. These data display a rapid transition from populations that can maintain diversity to those

that cannot as the number of interactions an organism had was increased. The logistic curve of best

fit for these data is highly significant, with an F statistic of 247.62 (p� 0.001) and an adjusted

R2 of 0.985.
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(a) 10 neighbors (b) 30 neighbors

(c) 50 neighbors (d) 80 neighbors

Figure 5.6: Simplex phase planes for representative Cartesian topology runs with increasing num-
ber of neighbors. The initial distribution of strategies is indicated with a dot. Here, the increases in
the magnitude of oscillations are shown as neighborhood size increases. (a)-(b) When neighbor-
hood sizes are small, populations are able to maintain diversity. (c)-(d) However, as connectivity
increases, oscillations in strategy abundances can quickly lead to the loss of diversity.
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Figure 5.7: Fraction of populations (out of 20) that collapsed to a single strategy across different
expected neighborhood sizes - F value 247.62 (p� 0.001), adjusted R2 0.985

5.5 Small World Networks

Finally, the maintenance of diversity was studied in this system when the interactions among or-

ganisms were modeled as small world networks, which consist primarily of localized interactions

with some long-range interactions [128]. These interactions often result in graphs where the num-

ber of interactions separating any two cells is surprisingly small. This property is familiar to those

who have played the “Six Degrees of Kevin Bacon” game, where players are able to connect any

person to actor Kevin Bacon through at most six social interactions [17]. Although these networks

likely do not capture the highly-localized interactions of microbial populations, they have been

observed to capture several natural phenomena, such as the gene expression networks [123], and

may offer some insight into the maintenance of diversity in the presence of gene flow through these

long-range interactions.

To construct these graphs, 90,000 cells were arranged on a ring, and each cell was connected

85



to its nearest 8 neighbors. For each cell, additional interactions were created by probabilistically

adding an edge to a randomly-chosen cell. At probability 0, these graphs were regular and had a

diameter equal to the number of cells divided by the neighborhood size. At probability 1, the result-

ing graphs become random, mimicking interactions in well-mixed populations. For this work, the

effect that long-range interactions have on maintaining the diversity of this system are examined.

As shown in Figure 5.8, even a small probability of such interactions had a dramatic effect on

the system. Diversity quickly waned when the probability of adding these interactions was between

1% and 2%, which resulted in an additional 900 and 1800 pairs of interactions, respectively, on

average. These additional interactions decreased the diameter of the resulting graphs from 11,250

to an average of 54.5 when the probability was 1% and 32.3 when the probability was 2%. The

clustering coefficients for these configurations were uniformly 0.631 and 0.620, respectively. The

difference in dynamics between systems at 1% and 2% edge creation possibility is shown in Figure

5.9.

Figure 5.8: Fraction of populations (out of 20) that collapsed to a single strategy in small world
networks with increasing probabilities for additional random interactions

Considering the small diameters typical of small world graphs, it is perhaps not surprising

that diversity is quickly lost when long-range interactions are added. In the absence of these
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(a) p = 0.01

(b) p = 0.02

Figure 5.9: Strategy counts over time in representative small world networks. (a) At 1% probability
of creating a random edge, diversity is maintained. (b) At 2%, diversity is lost.
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long-range interactions, the diameter of these graphs was 11,250. Adding additional edges with

probabilities between 1% and 2% quickly shrank the diameters in these environments, which made

the formation of isolated clusters of strategies difficult. Nonetheless, these experiments provide a

dramatic insight into how small increases in interactions can hinder diversity.

5.6 Population Size

Each of the experiments described in the previous sections demonstrated that the likelihood that

diversity could be maintained decreased along with decreases in the diameter of the network of

interactions. In these experiments, decreasing diameters were a result of changing the local neigh-

borhoods of interactions.

To directly address the relationship between diameter and the maintenance of diversity, pop-

ulations of various sizes were studied using the Cartesian space model discussed in Section 5.4,

with an expected neighborhood size of 10 cells. For this experiment, 20 replicate populations with

sizes between 1,000 and 20,000 were used. Each topology used for these replicate populations

was generated randomly according to the process described in Section 5.4, which was repeated

until a connected graph had been created. In populations of 90,000 cells, this topology enabled the

maintenance of the three strategies for the duration of the 10,000-epoch experiments in each of 20

replicate populations, as shown in Figure 5.7.

Figure 5.10 shows the proportion of replicate populations that converged to a single strategy

for each of the population sizes studied, and Figure 5.11 depicts the corresponding diameters of

their interaction networks. These diameters increased linearly with increasing population size, and

allowed the majority of populations with at least 8,000 cells to maintain all three strategies. All

populations of size 16,000 cells or larger maintained diversity.

These results further demonstrate that the connectedness of populations greatly affects their

ability to resist invasion. This occurs when the benefits of any one strategy, cooperative or not,

do not allow that strategy to affect all cells in the population before an alternate strategy becomes
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favored.

Figure 5.10: Fraction of populations that converged to a single strategy for various population
sizes. As populations increased in size, they were more able to maintain all three strategies. Error
bars indicate ±1 standard error.

5.7 Novelty and the Maintenance of Diversity

Typically in simple cellular automaton models, such as those used in this chapter, once a strategy

becomes extinct, it remains absent from the population. In the case of the non-transitive bacteriocin

model used in this chapter, the loss of one strategy results in the loss of a second strategy. As seen

throughout this dissertation, however, when the environment changes, either through biotic factors,

such as the density of one strategy or niche construction, or through resource abundance or other

abiotic factors, selection can change which behaviors are favored.

Therefore, even in populations that have otherwise converged to a single strategy, a source of

novelty may allow diversity to be maintained by re-introducing an alternate strategy that would

be favored in the new environment. One way in which novelty has been introduced in cellular

automaton models is through migration, either at some fixed rate [105] or between connected sub-

populations in metapopulation models [90]. Migration, or gene flow, is known to increase diversity
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Figure 5.11: Diameters of population topologies for various population sizes. With a constant
expected neighborhood size, larger populations have larger diameters, which slows the rate at
which a dominant strategy can spread throughout the population. Error bars indicate ±1 standard
error.

within populations and decrease diversity among different connected populations [24,59], and can

lead to significant changes in population dynamics [61]. A second potential source of novelty are

mutations, which cause a cell’s strategy to differ from that of its parent [88, 105].

To explore the stabilizing effect that sources of novelty can have on diversity, the dynamics of

populations using the model of bacteriocigenic bacteria introduced in Section 5.1 were studied in

the absence of novelty, with mutations, with migration, and with both sources of novelty. Based on

the results presented in Section 5.6, a population size of 5,000 cells was chosen so that populations

would be unlikely to maintain diversity in the absence of novelty. For each treatment, described

below, 30 replicate populations were used.

Migration events caused a cell to be replaced by a cell of randomly-selected strategy (includ-

ing empty). For each cell in the population, migration events occurred with probability 0.001 at

each epoch. Mutation events occurred when a cell reproduced into a neighboring empty cell. Nor-

mally, the offspring inherited the strategy of its parent. When a mutation occurred, however, the

offspring’s strategy was selected randomly (including empty, which represented a lethal mutation).
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These mutation events occurred during replication with probability 0.01.

Figure 5.12: Fraction of populations that maintained diversity for various population sizes. Without
the ability to re-acquire strategies, only 7 of 30 populations were able to maintain diversity. With
sources of novelty, however, all populations were able to maintain all strategies.

As shown in Figure 5.12, when there were no sources of novelty, only 7 of 30 replicate popula-

tions were able to maintain diversity. Figure 5.13 shows the distribution of strategies in two sample

populations. However, all three strategies were maintained in populations in which mutations and

migrations allowed novel strategies to be introduced.

As was the case in previous experiments, the magnitude of oscillations between strategies

was often indicative of a population’s ability to maintain diversity. Figure 5.14 illustrates these

oscillations under the treatments examined. Without novelty, populations showed large oscillations

in the abundances of each strategy. In 77% of populations, these oscillations led to the loss of

diversity, as shown for one such population in Figure 5.14a. With the introduction of novelty,

however, these oscillations were greatly dampened, which allowed all populations to quickly adapt

to changing conditions and maintain all three strategies. In almost all cases, the abundance of each

strategy was greater than what can be accounted for by mutation or migration alone. This indicates

that novelty allowed strategies to be introduced that had a selective advantage. In the environments
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(a)

(b)

Figure 5.13: Strategy abundances in populations with no sources of novelty. Shaded regions repre-
sent the relative abundances of sensitive (blue), resistant (green), producer (red), and empty (white)
cells. (a) The majority of populations collapsed to one strategy after large oscillations caused one
strategy to be eliminated. In this example, producer cells eliminates sensitive cells, but were then
outcompeted by resistant cells. (b) Some populations were able to narrowly avoid this fate. In this
instance, sensitive cells were nearly excluded near epoch 3,800, yet were able to regain presence.
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(a) No Novelty (collapse) (b) No Novelty (maintain)

(c) Mutation (d) Migration

Figure 5.14: Oscillations in strategy abundances. (a) In populations with no novelty, large oscil-
lations often caused the loss of diversity. (b) Those that did maintain diversity experienced large
oscillations, but narrowly avoided the loss of strategies. (c) With mutations enabled, oscillations
were greatly dampened. (d) Immigration of strategies also helped dampen oscillations and enable
populations to maintain diversity.
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studied, populations in which both sources of novelty were present showed the same dynamics as

those that had only mutation or migration. In other environments, however, having both sources of

novelty could have a more pronounced effect.

The results presented in this section demonstrate that novelty, introduced either through mu-

tation or migration, can help to stabilize diversity and allow populations to more quickly adapt

to changing environments. Because of this key role that novelty plays in evolution, it should be

included in all models that aim to accurately capture the evolutionary and ecological dynamics of

behaviors within populations.

5.8 Discussion

This chapter has demonstrated the effect that social structure, which characterizes the interactions

among organisms in a population, has on the maintenance of diversity. This is often important

for the evolution of cooperation, as a population that can maintain cooperation is one in which

cooperators can resist exclusion by cheaters.

The effect that an individual’s neighborhood was examined using a several different graph

structures. The results of these experiments showed increases in the number of interactions that

each individual in the population has quickly led to the loss of diversity. This loss of diversity

was attributed to the diameter of the population’s interactions, which represents the number of

interactions that would be required for a dominant strategy to reach all individuals in the popula-

tion. When this diameter was decreased, oscillations in fitness between different strategies, such

as those shown in Section 3.15, were able to bring about the loss of diversity. This strong link

between the structure of the interaction network and diversity was also demonstrated using popu-

lations of different size. The results of both of these experiments demonstrate that for cooperation

to be maintained, populations must be large enough to accommodate the changes in abundance of

cooperators and cheaters brought about by variation in fitness.

When populations were not able to maintain diversity, the experiments in Section 5.7, showed
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that the introduction of novelty through mutation and migration were able to dampen the oscilla-

tions in fitness and allow diversity to be maintained. This occurred, because the introduction of

novelty allowed populations to more quickly react to the changing targets of selection. For exam-

ple, when a patch of resistant cells had formed after excluding the other cell types, selection would

promote the invasion of the sensitive type, because it grows faster and is not susceptible to being

killed by toxin in that patch.
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Chapter 6

Conclusions

Theodosius Dobzhansky famously remarked that “nothing in biology makes sense except in the

light of evolution” [36], signifying that we cannot fully understand the complexities of life without

a grasp of the processes that brought them about. As has been demonstrated throughout this disser-

tation, however, evolution does not act alone as the sole driving force within spatially-structured

populations. A vast array of ecological factors significantly affect evolutionary outcomes.

Chapter 3 demonstrated clearly that the fitness of cooperation can vary over time and space,

depending on the complex interactions between ecological and evolutionary factors. Populations

can only maintain cooperative behaviors when the combination of these factors permits cooperators

to maintain abundances that enable them to stave off invasion from cheaters, which exploit the

benefits of cooperation without contributing to it themselves. As these experiments confirmed,

spatial structuring within populations can significantly aid in the evolution of cooperation. These

three results form the basis for all of the work described in this dissertation.

Chapter 3 presented a number of experiments examining how environmental disturbance can

bestow a selective advantage on cooperators. Positive niche construction through the production of

surplus public good enabled cooperators and cheaters to survive in environments with increasing

levels of disturbance. When cooperators were not able to first condition their environment, these

severe levels of disturbance drove populations to extinction.
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When disturbance was removed, cooperation no longer provided a benefit, and it was quickly

purged from populations. However, once disturbance resumed, populations rapidly re-evolved

cooperation and the protection that it provided. This result demonstrates that costly cooperation

can readily evolve when it provides a sufficient fitness benefit. These results also indicate that

battling cooperative behaviors such as antibiotic resistance may be substantially more difficult than

simply suspending the use of one type of treatment, and may instead require long-term changes

that continually repress selection for resistance.

Population bottlenecks, an extreme form of disturbance in which a large portion of the popula-

tion is killed, have previously been reported to promote cooperation by reducing competition from

cheaters [6]. Section 3.5, however, demonstrates that bottlenecks more generally act to amplify

the differences in abundance between two or more strategies. Whether or not bottlenecks aid co-

operation depends solely on the ability of the cooperator strain to maintain abundances equal to or

greater in size than cheaters.

Natural populations are always limited by the availability of at least one resource [121]. Chap-

ter 4 presented new insights into how the abundance of resource affects the evolution of cooperation

garnered from experimental evolution studies and computational models targeting the cooperative

formation of biofilms.

Although the data resulting from these experiments agree with those of a previous study [8],

they offer a substantially different interpretation of the relationship between resource abundance

and cooperation. Whereas previous work concluded that cooperation increased linearly as resource

became more abundant, the experiments in Chapter 4 demonstrated the existence of a critical

resource level, which corresponds to the point at which Hamilton’s rule is satisfied, and cooperation

is favored. Below this level, the relative costs of cooperation outweigh the benefits that it provides,

and cooperation is not favored. Above this level, however, cooperation is beneficial, and will

persist in the population. Interestingly, cooperation quickly plateaued after this transition point,

indicating that cooperation was maintained at the lowest level that provided substantial benefit.

Further investments in cooperation did not produce adequate increases in benefit.
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After only approximately 45 generations, populations of V. cholerae that had evolved in

resource-rich environments exhibited dramatic increases in cooperative biofilm production, while

those populations that evolved in less rich environments did not. These results further demonstrate

that even when all other conditions are equal, ecological factors, in this case resource abundance,

can significantly alter evolutionary trajectories.

These experiments also demonstrated the power of investigating problems in ecology and evo-

lution through the reciprocal use of computational models and bacterial populations. This multi-

model approach enabled cooperative biofilm formation to be understood at a level that might not

have been possible using just one system.

A common thread that connected all experiments presented in this dissertation was the spatial

structuring of individuals within the population. Both Section 3.2 and numerous previous studies

(e.g., [40,72,75]) have demonstrated that when interactions are localized, and individuals are more

likely to interact with close relatives, diversity is more likely to be maintained. In the context of

cooperation, a diverse population is one that can maintain both cheaters and cooperators. Under-

standing how the interactions among organisms affects diversity is critical to building a more com-

plete picture of the forces that shape ecosystems. As such, this knowledge can inform conservation

efforts and help us to understand the ramifications of living in an increasingly connected world.

Diversity is also of critical importance in evolutionary computation, where premature convergence

on one strategy often results in sub-optimal solutions [81]. While a number of diversity-preserving

solutions have been proposed to combat this problem, e.g., [65], a deeper understanding of how the

interactions that occur between candidate solutions in a population could greatly aid in maintain-

ing diversity and finding more optimal solutions, through different selection strategies or crossover

operations.

Using a model that represented interactions using arbitrary graphs, the experiments described

in Chapter 5 investigated how the structuring of these groups affects the maintenance of diversity

at a level of detail not possible with traditional lattice-based models. After investigating a variety

of graph structures, the most informative indicator of a population’s ability to maintain diversity

98



was found to be the diameter of its interactions, which represents the number of interactions that

would be required for a dominant strategy to reach all individuals in the population. As Figure

3.15 showed in Chapter 3, fitness varies continuously over space and time, which can result in

oscillations in the abundances of strategies. If the magnitude of these oscillations for a dominant

strategy matches the diameter of interactions in the population, other strategies are excluded, and

diversity is lost. Importantly, this loss of diversity occurs regardless of population size. Although

the effects of population size have been the focus of much work, particularly in areas related to

conservation biology (e.g., [134, 135]), this result offers a different perspective on how population

size affects diversity.

Figure 3.15 also showed that when conditions change, and a behavior is once again favored by

selection, that behavior can become more prevalent as long as it exists in the population. When

diversity is lost, however, behaviors are purged from the population. No matter how favorable

that behavior might be, it will not be able to proliferate unless it is re-introduced. Chapter 5

indicated that the continual introduction of novelty through mutation and migration allowed even

small populations to main diversity. As this dissertation has shown, changing conditions cause

fitness to change and selection to alternate between favoring and not favoring a behavior. Through

migration and mutation, however, populations are able to react more quickly to such changes.

This dampens the magnitude of oscillations in the abundance of strategies, and enables even small

populations to maintain diversity.

Collectively, these studies have demonstrated that ecological effects, such as environmental

disturbance, resource abundance, and social can have significant impacts on the evolution of co-

operation. These ecological effects were shown to create variations in fitness over both time and

space, providing selection with a continuously-moving target. By surviving through these varia-

tions in fitness, cooperation can evolve.
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Chapter 7

Future Research Directions

The findings presented in this dissertation raise many other interesting avenues for continued re-

search. This chapter outlines a few of them.

7.1 Prudent Cooperation through Quorum Sensing

This dissertation showed that selection for cooperation varies in response to both evolutionary and

ecological processes. This creates a selective advantage for facultative cooperators, which choose

to cooperate only when it is likely to be beneficial, over obligate cooperators like those modeled in

this work. Although facultative cooperation can be achieved in an number of ways, such as through

phenotypic noise [1], perhaps none are as prevalent in nature as quorum sensing (QS) [45]. Quorum

sensing presents a large variety of questions that can have far-reaching impacts.

In 1970, Nealson, Platt, and Hastings [91] observed that prokaryotes could change their behav-

iors through the up- or downregulation of genes based on the concentration of signaling molecules

in the surrounding environment. These signaling molecules, termed autoinducers (AIs), are contin-

uously emitted by participating individuals. At low concentrations, AIs diffuse rapidly throughout

the environment and elicit no response. However, the level of AI increases as the population grows.

Once this level exceeds a threshold, receptors detect these signals and trigger changes in behav-

ior. This includes activating the mechanisms that produce these AIs, resulting in an exponential
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increase in the concentration of signal.

This quorum sensing process is now known to be an integral part of the lifestyles of bacteria

and other microorganisms. Cooperative behaviors such as those that aid in nutrient uptake [117],

provide protection against foreign invaders [12], and allow surface attachment [30] are among the

wide variety of behaviors known to be controlled by QS. This list also includes biofilm forma-

tion [57, 126], which inspired the computational and microbial models used in this work. The

integration of QS into these models to facilitate facultative cooperation could offer substantial new

insights into both the evolution of cooperation and quorum sensing.

Quorum sensing is itself a form of cooperation, where individuals pay some cost to produce

signals that benefit others by providing information about the conditions in the surrounding envi-

ronment. This creates the potential for QS cheaters to exploit the signaling of others. Armed with

the knowledge that QS is susceptible to exploitation, there has recently been great interest in the

medical community to develop “anti-infective” treatments, which seek to disrupt the cooperative

behaviors exhibited in infections through either the introduction of cheater mutants that do not

send or receive signals, or by manipulating the signal itself [33, 34, 112]. It is hypothesized that

treatments such as these exert less pressure to develop resistance than traditional antibiotic treat-

ments, which target and kill infecting cells. By studying these types of techniques using models

like those presented in this dissertation [4], a greater understanding of how populations respond to

such treatments in a variety of environments can be gained and applied towards the development

of effective treatments.

Microbes such as bacteria often live in complex, multi-species communities. Evolution may

therefore favor signals that can only be interpreted by close relatives or the use of multiple signaling

strategies. Although both inter- and intraspecific QS systems have been identified [70, 127], little

is known about how diversification might arise in signal, receptor, and binding specificity, or how

closely signal must match receptor in order to receive a signal. Recent computational models have

shown that diversification is feasible when QS mediates a cooperative act, and that cheaters pave

the way for the switch [42]; however, this two-signal, two-receptor system could neither address
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the specific types of changes more likely to occur, nor whether changes in specificity would affect

outcomes. The use of models that allow for a wide range of signals, receptors, and sensitivities

could pave the way for a greater understanding of how diversity evolves in signaling.

7.2 Evolution’s Effects on Ecology

Recently, Dobzhansky’s famous quote was reappropriated by Grant and Grant, who wrote “Noth-

ing in evolutionary biology makes sense except in the light of ecology” [48]. This, of course, only

implies that ecology affects evolutionary biology. The more complete view, in which ecology is

understood to affect evolutionary biology, and evolutionary biology is understood to affect ecology

is beginning to gather support. With this perspective of a population’s eco-evolutionary dynamics,

where “Nothing in evolution or ecology makes sense except in the light of the other” [99], the

behaviors of a population alter their environment, which in turn alters selection in that population.

The experiments described in this dissertation were designed to study the effects that ecology

had on the evolution of cooperation. In each of the models used, however, ecology was also af-

fected by evolution. As an example, the production of public goods, either in the form of biofilms

or colicins, served as a form of niche construction [94], which made the environment more hos-

pitable for cooperators. In natural populations, this more hospitable environment might increase

the carrying capacity of the population or increase the potential number of interactions of each

individual. Such effects were not explicitly studied; however, they could have dramatic impacts on

the environment and on the evolution of cooperation. One potential study in this area could focus

on how these niche-constructive behaviors can actually be cooperation’s undoing.

7.3 Key Graph Properties and Dynamic Interaction Networks

Chapter 5 focused on how the network of interactions created by populations influenced their abil-

ity to maintain cooperation and diversity, finding the diameter to be a strong indicator. Otherwise,

little is known about how the structure of these interaction networks affects evolution. This is a
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major limitation, as lattice models, which are traditionally used in computational models, are not

likely to accurately represent the interactions of natural organisms.

Aside from the fact that the use of graph structures for these purposes is in its infancy, the

reason for this open area is likely because of the complexities inherent in graph structures. These

complexities make examinations into the effects that changes to single parameters have difficult,

because these changes often produce a cascade of other effects. For example, the experiments pre-

sented in Section 5.6 targeted the effects of population size. Changes in population size, however,

produced changes in diameter, which was shown to be a key metric. Being able to alter popula-

tion size without changing the diameter of the resulting network is an extremely difficult task, and

even if it were accomplished, it is very likely that the resulting graph would differ in some other,

potentially unknown, property.

Because of this, there is a considerable need for experiments informed by graph theory that

identify the important properties of graphs that affect evolutionary outcomes and characterize their

effects. Secondly, interactions within natural populations constantly change in response to growth,

motility, death, and a variety of other factors. Therefore, the development of models that allow

for such changes could permit studies of diversification, speciation, and communication in more

realistic populations.
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Appendix A

The SEEDS Platform for Evolutionary and

Ecological Simulations

Evolutionary computation (EC) focuses on populations of individuals that are subjected to evo-

lutionary processes such as mutation, selection, and inheritance [41]. Through the evolutionary

process, individuals become better suited to their environments, which are defined by the user.

Individuals can represent anything from candidate solutions to an optimization problem, such as

equations fitting a dataset, to natural organisms that interact with each other and their environment.

In any instance, evolution can be seen as a guided search process.

Digital evolution and other forms of evolutionary computation have been successfully used to

address a number of fundamental questions in biology. (e.g., [72,80]). In these areas, EC provides

benefits that are not easily obtained, or simply impossible, when studying natural systems. Among

these is the ability to study populations over thousands or even millions of generations, which

is not feasible in most natural species. A second major benefit offered by EC is the complete

transparency it provides to researchers, allowing them to observe each individual in the popula-

tion, as well as its behaviors, interactions, and even its complete genetic encoding. These features

offer researchers unique insights into the evolutionary trajectories of behaviors over evolutionary

timescales, including how those behaviors evolve, whether they can be maintained, and the abun-
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dances at which they exist in populations. Because of these benefits, there is great interest within

the biological sciences to use EC techniques to generate and test hypotheses, supplement research

using natural systems, and study phenomena that simply cannot be addressed otherwise.

Evolutionary computation has also been successfully used in engineering during the design

and optimization processes (e.g, [63, 64]). In many instances, EC has produced novel and human-

competitive results [74], cementing its status as a valuable tool throughout engineering.

Although several EC platforms are available, their widespread use is often limited by a number

of factors. One of these is a sharp learning curve, which often presents a formidable barrier to those

would-be users from biological fields who may lack significant computer programming experience.

A second factor is the inflexibility of many platforms, which makes alterations or additions in

functionality cumbersome. Because of these and other shortcomings, users often either create

their own EC system, re-implementing standard functionality such as populations and selection, or

avoid using EC altogether.

The SEEDS platform is intended to address these problems by providing a foundation upon

which researchers can conduct experiments using a wide variety of techniques and models [21].

Because meeting the needs of all researchers would be an impossible task, SEEDS is designed

as a modular system, where researchers can easily modify or extend its capabilities without also

having to implement fundamentals. Through its well-defined interfaces and implementation in the

Python programming language, users of all levels of programming experience are able to both use

and extend SEEDS. Additionally, SEEDS places an emphasis on repeatability and data sharing,

allowing users to easily recreate experiments and share their models.

To date, SEEDS has been used to explore a wide variety of topics related to evolution and

ecology. SEEDS was initially developed in order to study the role spatial structure plays in main-

taining diversity [23]. Additional studies have used SEEDS to explore the use and maintenance

of horizontal gene transfer horizontal gene transfer [22], the evolution of public goods coopera-

tion, the evolution of cooperation in probabilistic game theoretic models, and speciation and sexual

dimorphism resulting from divergent selection in limited resource environments.
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The SEEDS distribution includes several prebuilt components that enable experiments to be

run immediately after installation. Among these is a model of the Rock-Paper-Scissors (RPS)

game—RPSCell. Although this common game may seem trivial, it allows users of all ages and

backgrounds to both experience and interact with many aspects that affect population dynamics.

Such hands-on experimentation can be a powerful tool for learning fundamental processes in evo-

lution and ecology. We will refer to the RPS example throughout the remainder this paper.

This chapter introduces the SEEDS platform as follows. Section A.1 presents the design of

SEEDS and its organization. Section A.2 discusses how experiments are configured and per-

formed. The plugin system and how it can be used to extend the functionality of SEEDS to match

the research questions at hand is described in Section A.3. Finally, the significant additions planned

for near-term inclusion are outlined in Section A.4.

A.1 SEEDS’s Design

In recent years, the Python programming language has experienced an enormous growth in its use

in scientific computing. Part of this growth can be attributed to the fact that, in contrast to many sci-

entific computing environments, Python is a general purpose programming language with a great

deal of flexibility [101]. A second reason for Python’s success is its broad user community, which

has produced several powerful and easily-approachable packages for manipulating, analyzing, and

displaying scientific datasets, such as NumPy [97], SciPy [68], and Matplotlib [66]. These and

many other packages are easily obtained through Python’s various package management utilities

or Python distributions targeted specifically for use in science. Python’s ubiquity is another major

benefit, with versions available for most operating systems. Finally, Python is open source soft-

ware, which means it does not impose a financial barrier to adoption. Although Python often does

not always match lower-level languages such as C, C++, and Java in performance, especially in

numerically-intense tasks, its ease of development and maintenance often more than make up for

differences in performance on modern computing resources.
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Figure A.1 shows the class diagram for SEEDS. A SEEDS Experiment consists of a Population

of Cells. The possible phenotypes of a Cell are limited only by its implementation, which allows

Cells to capture a wide variety of behaviors and genetic representations. The interactions among

Cells are defined by the underlying Topology, an arbitrary graph structure which orients Cells

in space. Cells also have access to Resources, which are distributed throughout space using a

separate Topology. Finally, Actions allow the user to modify the environment, interact with cells,

and produce output data, during the Experiment. Each of these is a Plugin, and users can easily

modify and extend SEEDS through the creation of custom Plugins. In the following sections, we

describe each of these classes in more detail.

A.1.1 Experiment

Experiment

Population Config Plugin 
Manager Resource

Action Plugin

Topology 
PluginCell Plugin Resource 

Plugin

<<abstract>>
Cell

<<abstract>>
ResourceCell

<<abstract>>
Plugin

<<abstract>>
Action

<<abstract>>
Topology

Figure A.1: SEEDS Class Diagram

The Experiment object controls all aspects of an experiment. This includes managing the
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configuration, the population, and any available resources. During initialization, the Experiment

object loads the specified configuration file and uses this information to create a population of

individuals, environmental resources, and any actions which are scheduled to be performed, such

as writing data or interacting with the population or resources, each of which is described below.

During each unit of time, or epoch, the Experiment object updates the state of the population and

resources, and executes any scheduled actions. Upon initialization, each Experiment is given a

globally-unique identifier (GUID), allowing experiment data to be easily catalogued.

A.1.2 Population

A population consists of a collection of individuals that reside on nodes in a graph structure. The

graph defines the potential interactions of individuals. If the nodes in which two individuals re-

side are connected with by edge, those individuals have the potential to interact with each other,

depending on the implementation of their Cell type. The use of arbitrary graphs to define the in-

teractions within a population is one of the most powerful features of SEEDS. Experiments focus

on one Population object; however, the interactions within that Population can be defined such that

multiple independent subpopulations exist.

When a population is updated, a preconfigured number of individuals are chosen randomly

with replacement, and the state of these individuals is updated based on the rules defined by the

corresponding Cell instance. By default, the number of individuals updated is equal to the size of

the population, so each individual is expected to be updated during each epoch, on average.

A.1.3 Cell

In SEEDS, the Cell object is used to represent each individual, and is therefore often the primary

focus of an Experiment. All Cells must define three methods: init (a constructor), update,

and teardown. The constructor initializes all properties associated with that object, perhaps read-

ing values from the configuration file. The update method is intended to update the state of that

organism, and is executed during each epoch of the experiment, on average. The update method
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may cause the Cell to reproduce, to consume some resource, to produce some resource, to interact

with a neighboring Cell, to die, or to change state in response to any other event pertinent to the

simulation. During each epoch, a subset of Cells from the population is chosen randomly and up-

dated using this method. Finally, the teardown method is called whenever a Cell is removed from

the population. This method is intended to handle any cleanup tasks necessary, such as the closing

of files or the freeing of references. These methods are defined in the Cell base class. Any Cell

object must be a subclass of this class, which also provides methods for retrieving and managing

the neighbor list of each cell in the population.

A SEEDS cell is agnostic with respect to any particular evolutionary algorithm. What defines

an individual is decided by the user: its representation, its behaviors and capabilities, its interac-

tions, and ultimately its fitness. By creating a Cell subclass, users can implement a Cell class to suit

their particular needs. For example, each cell could represent a state, such as alive or dead, as in

Conway’s Game of Life [46]. Alternately, each cell could encapsulate an artificial neural network,

such as those evolved using NEAT [115]. A cell could even represent a program and have virtual

hardware associated with it, as in the Avida system [95].

Continuing with the example, RPSCell is a cellular automaton model. Each Cell in the Popula-

tion plays either the Rock, Paper, or Scissors strategy. When a Rock cell encounters a Paper cell, it

becomes a Paper cell, because Paper covers Rock. However, if that Rock cell encountered a paper

cell, it would remain a Rock, because Rock is not beaten by Scissors.

A.1.4 Topology

The interactions of individuals within a population are defined by their Topology. In many forms

of evolutionary computation, the interactions among individuals are defined by a lattice, where

an individual residing in a node can interact with any of its 4 or 8 neighbors. To allow for more

flexibility, SEEDS models interactions using arbitrary graphs. As with lattices, each individual oc-

cupies a node in the graph, and edges between two nodes represent a potential interaction between

those corresponding individuals. The distribution of these edges, however, need not be regular as
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in a lattice, but can instead define more complex interaction networks. This includes disconnected

graphs, where certain subsets of the population do not interact with others.

Graphs are created and maintained using NetworkX [51], which provides a vast library of graph

generators and allows for the creation of custom graph structures. Additionally, NetworkX offers

functions that calculate many common graph metrics, which aid in understanding and comparing

graphs.

Several topologies are included with the SEEDS distribution. As one example, the Carte-

sianTopology topology is created by randomly placing nodes in a unit Cartesian plane and adding

edges between nodes that are within a distance yielding an expected number of neighbors per

node [23]. The CartesianTopology allows neighborhood sizes to grow linearly, instead of the geo-

metric increase seen in lattice models as radius is increased.

Topologies are created by subclassing the Topology class, which provides a number of methods

for maintaining the structure of the graph. Each topology must implement the init constructor

method, which creates the appropriate graph, and the teardown method, which performs any

necessary tasks before a topology is deleted. Topologies that support changes in structure during an

experiment can additionally implement the add node, remove node, add edge, and remove edge

methods, which handle the necessary changes to the graph.

A.1.5 Config

The Config object manages the configuration for an Experiment. By wrapping Python’s Config-

Parser module, the Config object organizes the configuration into sections, one for each Experi-

ment, Population, Cell, Resource, Topology, and Action. Each configuration section contains a

set of parameter-value pairs, which define the value for a property in the respective object. These

values can represent parameters for the object or define how that object behaves.

Typically, an Experiment will create a configuration from an input file. Cells such as RPSCell,

for example, can then query the Config object to receive values to be used from the RPSCell sec-

tion. RPSCell includes the distance dependent parameter, which takes a boolean value specifying
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whether or not closer neighboring Cells are more likely to interact than others. When querying the

Config object, default values can also be specified for use when that parameter is unspecified in

the configuration file.

The portion of an example configuration file that deals with RPSCell is shown in Listing A.1.

This configuration will be expanded upon in Section A.2.3.

[ RPSCell ]
d i s t a n c e d e p e n d e n t = True

Listing A.1: Segment of a configuration file that defines the behavior of RPSCells in a Population.
Here, cells will be more likely to interact with nearby cells.

The Config object can also export an Experiment’s current configuration. The resulting config-

uration file includes all parameters defined in the original configuration file, as well as all default

values used and the seed for the random number generator. This greatly aids in reproducing exper-

iments.

A.1.6 Resource

Individuals can interact with each other and their environment through the consumption and pro-

duction of resources. As shown in Figure A.2, each Resource specifies its own topology, which

allows the distribution for each resource to be controlled. Each node in a resource contains a

ResourceCell object, which defines the resource at that point in space. For example, SEEDS’s

NormalResource ResourceCell defines a resource as a level, an inflow, a decay, and a diffusion.

The level defines the amount of resource currently present in that cell. Inflow defines the rate at

which new resource enters that cell. Decay and diffusion result in resource being lost from the en-

vironment at a configured rate and resource flowing into neighboring ResourceCells at a configured

rate, respectively.

The SEEDS distribution also contains the SineResource and SquareResource types, which vary

the level of resource in a given cell according to a sine and square function, respectively. By

subclassing the ResourceCell class, new resource types can easily be defined.

New resources must implement three common methods. The init constructor method,
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(a)
(b)

(c)
(d)

Figure A.2: Population and resource topologies. Each exists in the same unit Cartesian space;
however, they partition that space differently. (a) The population topology is independent from the
three resource topologies (b-d). The resource in (b) partitions the resource as a 6×6 lattice, while
the resource in (c) is global, and resource in (d) partitions the resource topology as a 3×3 lattice.

which is executed when a ResourceCell is created, initializes the object and sets the initial level as

configured. The update method adjusts the level of the resource according to the inflow, decay, and

diffusion properties of that ResourceCell. Finally, the teardown method allows the ResourceCell

to clean up its state before being deleted.

When a cell interacts with a resource, its coordinates in unit Cartesian space are projected onto

the resource’s topology. This interaction will then affect the level of the ResourceCell nearest to

that coordinate. Therefore, the extent to which individuals share a particular resource pool depends

on the partitioning of that resource’s ResourceCells. A topology with fewer nodes will likely

experience more overall competition for resource than a topology with more nodes. Although

Resources use the same topology classes as populations, they are currently limited to lattices. This

restriction will be lifted in a future release.
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A.1.7 Action

Actions define events that occur at specified times during an experiment. These actions perform

tasks related to all areas of the experiment, from the population and its individuals to resources.

Actions are also the primary way in which output data are produced. Some examples of actions

included with SEEDS are listed in Table A.1.

Table A.1: Sample Actions Included with SEEDS

Action Description

PrintExperimentInformation Print detailed information about the experiment and the
software environment

PrintCellTypeCount Print the abundances of each cell type in the population
SetResourceAvailability Toggle the availability of a resource
StopOnConvergence Stop the experiment when the number of different types of

cells in the population falls below a threshold

As an example, the PrintCellTypeCount action creates a comma-separated values (csv) file

containing the number of each cell type present in the population at that time. These data can

be used for further analysis after the experiment, or plotted, as demonstrated in Figure A.3. The

PrintCellLocations action writes a csv file containing the location of each cell in the population,

which can be used to visualize the distribution of strategies in space, as shown in Figure A.4.

All actions inherit from the Action class. Like most other SEEDS classes, actions must im-

plement init , update, and teardown methods, which are executed when instances of that

action are created, updated, and deleted, respectively. Each action also specifies an epoch start,

epoch end, and frequency, which define when the action begins occurring, when it stops, and how

frequently it occurs within that window of time, respectively. Plots similar to those shown in Fig-

ures A.3 and A.4 can be produced through the creation of Actions that plot population data during

or after an Experiment. Several Actions that create plots are included in the contrib directory

in the SEEDS distribution, including the PlotCellTypeStack and DrawPopulation actions used to

create Figures A.3 and A.4, respectively.
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Figure A.3: Abundances of Rock (red), Paper (green), and Scissors (blue) cells over time in a
population containing 1,000 RPSCell cells

Figure A.4: Snapshot of a population of 1,000 Rock (red), Paper (green), and Scissors (blue) cells
during an experiment using the CartesianTopology. In this example, each cell interacts with its 10
nearest neighbors, on average.
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A.1.8 Plugin

In SEEDS, each custom Cell, Topology, ResourceCell, and Action is also an instance of the Plugin

class. These Plugins, described in detail in Section A.3, allow the functionality of SEEDS to

be extended without recompilation or modification the SEEDS installation. Plugins also contain

version information and other metadata, which allow for experiments to be replicated exactly.

A.1.9 Plugin Manager

The PluginManager object receives and handles requests for Cell-, Topology-, Resource-, and

Action- Plugins. The plugin manager scans the Plugins available in the directories specified by

the configuration. If the plugin (and version) specified is available, an object of that type will be

returned. Otherwise, an exception is raised.

A.2 Using SEEDS

This section describes how SEEDS is typically used. First, Section A.2.1 discusses how SEEDS

can be obtained and installed. Section A.2.2 details how experiments can be performed. Finally,

Section A.2.3 introduces the SEEDS configuration file, which can be used to define a single exper-

iment or family of experiments.

A.2.1 Obtaining and Installing

SEEDS is open-source software, released under the Apache License 2.01, and is publicly available

via a number of channels. The most straightforward way to install SEEDS is using the pip or

easy install tools. Alternately, all versions of SEEDS are available on the SEEDS development

page2, which also contains documentation, issue tracking, and development history. SEEDS can

be installed from source using the standard Python Distribution Utilities.

1. http://www.apache.org/licenses/LICENSE-2.0
2. https://github.com/briandconnelly/seeds
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SEEDS is designed to have minimal dependencies. A working installation will require Python

2.6.5 or greater (including 3.2) and NetworkX [51]. Although not required, SciPy [68], NumPy

[97], and Matplotlib [66] are also recommended, due to their frequent use in third-party plugins

for analysis and plotting.

A.2.2 Running an Experiment

The most common way to conduct experiments is using the runseeds.py script. This script

is installed with SEEDS, and includes a number of command-line options for configuring and

running experiments.

Typically, a user will create a directory in which the experiment will be managed. That direc-

tory contains a configuration file, further described below, and an optional subdirectory containing

any plugins to be used.

Experiments can also be run from within a Python interpreter or another script. Doing so

simply requires creating an Experiment object and iterating over that object. A simple example of

this is shown in Listing A.2. This flexibility allows experiments to easily be run in a number of

ways, from command line tools and graphical user interfaces to web-based apps.

import s e e d s as S
e x p e r i m e n t = S . Expe r imen t ( ’ examples / Rock−Paper−S c i s s o r s / s e e d s . c f g

’ )

f o r epoch in e x p e r i m e n t :
p r i n t ( ’ Epoch {e} done ’ . f o r m a t ( e=epoch ) )

Listing A.2: Python code to create a SEEDS experiment, load the configuration file for the Rock-
Paper-Scissors experiment, and perform the experiment, printing the status of the experiment at
each epoch.

A.2.3 Configuration

Configuration files define all aspects of an experiment, from the duration of the experiment, the

Cell type and Topology to use, which resources are defined, which actions to run, and where to
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place resulting data.

As shown in Listing A.3, a configuration file places each configurable item in its own section,

indicated by brackets. In this example, the experiment, as defined in the Experiment section, will

run for 1,000 epochs. It will use the PrintCellTypeCount, PrintCellLocations, and StopOnConver-

gence actions, each of which is configured below. It will find any third-party plugins in the plugins

and customcells directories. Finally, any data written during this experiment will be placed in the

data directory.

The population, defined in the Population section, will use the RPSCell cell type connected

using the CartesianTopology topology. Here, the :large label appended to the topology indicates

that the experiment will use the configuration specified in the CartesianTopology:large section,

as opposed to the CartesianTopology:small section, which is also defined. This labeling allows

a single configuration file to define multiple settings for each item, which simplifies managing the

configuration of ensembles of experiments.

When this experiment is run, the data directory will be created. Any actions that produce

data will write to this directory, such as PrintCellTypeCount, which writes a comma-separated-

values (csv) file containing the abundance of each type of cell for a cellular automaton model, and

PrintCellLocations, which prints a csv file listing the location of each cell.

Configuration files, including all default values and random number generator seeds necessary

to replicate an experiment, are automatically created by SEEDS when run using the runseeds.py

script with the --genconfig flag.
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[ Experiment ]
epochs = 1000
a c t i o n s = P r i n t C e l l T y p e C o u n t , P r i n t C e l l L o c a t i o n s , StopOnConvergence
p l u g i n d i r s = p l u g i n s , c u s t o m c e l l s
d a t a d i r = d a t a

[ Popula t ion ]
c e l l = RPSCell
t o p o l o g y = C a r t e s i a n T o p o l o g y : l a r g e

[ RPSCell ]
d i s t a n c e d e p e n d e n t = F a l s e

[ Cartes ianTopology : smal l ]
s i z e = 2500
p e r i o d i c = True
e x p e c t e d n e i g h b o r s = 10
r e m o v e d i s c o n n e c t e d = F a l s e

[ Cartes ianTopology : l a r g e ]
s i z e = 250000
p e r i o d i c = True
e x p e c t e d n e i g h b o r s = 10
r e m o v e d i s c o n n e c t e d = F a l s e

[ PrintCel lTypeCount ]
s t a r t e p o c h = 100
f r e q u e n c y = 1

[ P r i n t C e l l L o c a t i o n s ]
f r e q u e n c y = 100

[ StopOnConvergence ]
t h r e s h o l d = 3

Listing A.3: Example configuration for the Rock-Paper-Scissors experiment in which each cell
plays either the Rock, Paper, or Scissors strategy against a randomly-chosen neighbor. This
configuration file is available in the SEEDS distribution under examples/Rock-Paper-Scissors.
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A.3 Extending SEEDS

Although the SEEDS distribution includes a large number of Cells, Topologies, Actions, and Re-

sources, it can be extended to address many other types of questions involving interactions within

and among populations. Specifically, SEEDS has been designed to provide maximum customiza-

tion and extensibility through a plugin system.

Plugins allow users to specify the behaviors, the environments, and the resources that best

describe their model’s needs through the creation of new Cells, Topologies, Resource Cells and

Actions. By using plugins, users do not need to delve into SEEDS internals, modify the SEEDS

installation, or wait for future releases in order to gain new capabilities. Instead, plugins are created

locally and can be integrated into experiments immediately.

Plugins are created by subclassing the Plugin class. All plugin classes must define a number

of properties that describe the plugin and allow experiments to specify specific versions to be

used. These properties are listed in Table A.2. Additionally, plugins must implement the init ,

update, and teardown methods, which initialize the plugin, update its state, and perform any

necessary cleanup activities, respectively.

Table A.2: Properties Defined by Each Plugin

Property Description

name The name of the plugin
description A detailed description of the plugin
version A tuple containing the major and minor version of this plugin
author The plugin author
credits Additional credits
type An integer specifying the type of the plugin (e.g., Cell, Topology, etc.)
requirements A list of required plugins and their version numbers

All of SEEDS’s built-in Cells, Topologies, Resource Cells, and Actions are implemented as

plugins located in a system-wide plugin directory. These plugins can be modified or extended by

creating local versions of them, allowing users to alter how they use SEEDS without affecting

other users of the same SEEDS installation. The SEEDS distribution contains templates to aid in
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the development of plugins of all types. A number of user-contributed plugins that are likely to be

of use to a wider audience are included in the contrib directory of the SEEDS distribution.

The running Rock-Paper-Scissors is an example of a cellular automaton model. SEEDS Cells,

however, can represent other types of models as well. In this example, we will construct a sim-

ple genetic algorithm model in which populations of individuals evolve to produce a target string.

Here, the “genome” of each individual is an array of characters. At the beginning of the experi-

ment, these genomes are initialized randomly using the 26-character Latin alphabet and the space

character. The implementation of this cell is shown in Listing A.4. For brevity, comments and

error checking are not included.

When a cell is updated, two random neighbors are chosen as parents with probability pro-

portional to their fitness using roulette-wheel selection. A random, two-point crossover is then

performed using their genomes, and mutations are applied site-by-site on the recombined genome.

This design approximates a tournament selection with tournament size equal to the number of

neighbors that each cell has.

A.4 Future Directions

SEEDS is feature-rich, and has been used in several previous and ongoing research projects

(e.g., [22, 23]). Nevertheless, a number of additions are planned that will increase the scale of

experiments, foster repeatability of experiments, allow for easier distribution of plugins and con-

figurations, offer new avenues for storing and interacting with resulting data sets, and make SEEDS

a more approachable platform for use in education. This section details the significant enhance-

ments planned for the near future.

A.4.1 Experiments at Larger Scales

One potential shortcoming of experiments conducted using computational models such as SEEDS

is their relatively-small population sizes. Typically, computational model populations consist of
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c l a s s S e n t e n c e C e l l ( Ce l l , P l u g i n ) :
a l p h a b e t = s t r i n g . a s c i i l o w e r c a s e + s t r i n g . a s c i i u p p e r c a s e +

’ ’
t y p e s = [ ’ S e n t e n c e ’ ]

def i n i t ( s e l f , expe r imen t , p o p u l a t i o n , node , t y p e =None ,
name=” S e n t e n c e C e l l ” , l a b e l =None ) :

s u p e r ( S e n t e n c e C e l l , s e l f ) . i n i t ( expe r imen t , p o p u l a t i o n ,
node=node , t y p e =0 , name=name ,

l a b e l = l a b e l )
s e l f . t a r g e t = s e l f . e x p e r i m e n t . c o n f i g . g e t ( s e l f .

c o n f i g s e c t i o n , ’ t a r g e t ’ )
s e l f . g e n o m e l e n g t h = l e n ( s e l f . t a r g e t )
s e l f . m u t a t i o n = s e l f . e x p e r i m e n t . c o n f i g . g e t f l o a t ( s e l f .

c o n f i g s e c t i o n ,
’ m u t a t i o n ’ , d e f a u l t =0)

s e l f . genome = random . sample ( s e l f . a l p h a b e t , s e l f .
g e n o m e l e n g t h )

s e l f . c a l c u l a t e f i t n e s s ( )

def u p d a t e ( s e l f ) :
n e i g h b o r f i t n e s s e s = [ n . f i t n e s s f o r n in s e l f . n e i g h b o r s ]

p a r e n t s = r o u l e t t e s e l e c t ( i t e m s = s e l f . n e i g h b o r s ,
f i t n e s s e s = n e i g h b o r f i t n e s s e s , k =2)

cp1 = random . r a n d i n t ( 0 , s e l f . genome leng th −1)
cp2 = random . r a n d i n t ( 0 , s e l f . genome leng th −1)

s e l f . genome [ : cp1 ] = p a r e n t s [ 0 ] . genome [ : cp1 ]
s e l f . genome [ cp1 : cp2 ] = p a r e n t s [ 1 ] . genome [ cp1 : cp2 ]
s e l f . genome [ cp2 : ] = p a r e n t s [ 0 ] . genome [ cp2 : ]

f o r i in r a n g e ( s e l f . g e n o m e l e n g t h ) :
i f random . random ( ) < s e l f . m u t a t i o n :

s e l f . genome [ i ] = random . c h o i c e ( s e l f . a l p h a b e t )

s e l f . c a l c u l a t e f i t n e s s ( )

def c a l c u l a t e f i t n e s s ( s e l f ) :
””” F i t n e s s i s 2 ˆ ( number o f match ing c h a r a c t e r s ) ”””
s e l f . f i t n e s s = 1
f o r i in r a n g e ( s e l f . g e n o m e l e n g t h ) :

i f s e l f . genome [ i ] == s e l f . t a r g e t [ i ] :
s e l f . f i t n e s s ∗= 2

Listing A.4: SEEDS Cell implementing a genetic algorithm to evolve to match a target string.
This cell’s two parameters, target and mutation, can be defined in the SentenceCell section of a
configuration file.
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tens- to hundreds of thousands of individuals, which pales in comparison to microbial popula-

tions, which can be several orders of magnitude larger. Such smaller population sizes can affect

evolutionary processes, and thereby alter the dynamics, ultimately leading populations to follow a

entirely different trajectory.

A goal for future SEEDS development is to increase population sizes in order to more accu-

rately model the dynamics of larger populations. Towards this objective, experiments have recently

been performed with 1 million cells. Through improvements in design, increases in cyberinfras-

tructure, and the use of distributed processing, this scale can potentially be increased by an order

of magnitude.

A.4.2 Unit Testing Framework

One of the primary goals for SEEDS is to maintain a dependable platform that is backed by solid

software engineering practices. Among these are unit tests, which are currently being integrated

at all levels, from the core modules to plugins. By enabling the platform to be tested from ex-

periment to experiment and version to version, we hope to maintain high levels of reliability and

reproducibility.

A.4.3 Self-Contained Experiments

SEEDS’s flexible plugin system allows users to easily extend its functionality; however, this fea-

ture might also make sharing experiments that use many custom plugins and configurations more

difficult. In order to facilitate sharing among users, a container format is being developed, which

will permit users to include all files associated with a given experiment in a single file.

These container files will use a compressed, self-contained archive containing a manifest file

describing the contents of the archive, one or more configuration files used to recreate an experi-

ment, and all custom plugins used. The SEEDS distribution will include utilities for creating and

editing these archives, as well as extracting individual elements from them.
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A.4.4 Flexible File IO

Although the comma-separated values (csv) files created by actions that write data are fairly stan-

dard and readable by a wide variety of software packages, greater flexibility in the output formats

produced by SEEDS and its actions can offer further opportunities for interacting with experiment

data sets. Although additional actions can easily be created that produce data in a different format,

such duplication in effort is unnecessary. For example, by allowing users to write to a relational

database, multiple sets of experiment data could be easily merged, queried, and analyzed, without

the need to first transform or import the data.

Instead, SEEDS will integrate a modular layer for reading and writing data that allows plugins

to be created for different data formats. Actions would then use the methods provided by this layer

to read and write data, which would, in turn, use the data format specified by the user. This data

layer will allow users to easily incorporate experiments into their own workflow.

A.4.5 Graphical User Interface

Although SEEDS can be used to conduct research in a number of fields, it is also intended as a

hands-on learning tool for use in the classroom. Through educational modules containing well-

defined experiments, necessary configurations and plugins, as well as additional background infor-

mation and prompts for exploration, SEEDS has the capability to be a powerful tool for students

of all ages to observe and affect fundamental properties of evolution and ecology.

Currently, experiments can only be performed from the command line using the included

runseeds.py script or through a Python interpreter. In order to reach a wider audience, an easy-

to-use graphical user interface (GUI) will be developed to allow users to interact with experiments

in a more intuitive way. Ideally, such a GUI would be built upon SEEDS’s foundation of configura-

bility and extensibility, allowing interfaces to nimbly accommodate features introduced in plugins.

Although this extension will be a major undertaking, SEEDS’s modularity promises to enable the

development of first-class interfaces of all kinds.
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[101] F. Pérez, B. E. Granger, and J. D. Hunter. Python: An ecosystem for scientific computing.
Computing in Science and Engineering, 13:13–21, 2011.

[102] E. Pestelacci and M. Tomassini. Hawks and doves in an artificial dynamically structured
society. In Artificial Life XI: Proceedings of the Eleventh International Conference on the
Simulation and Synthesis of Living Systems, pages 466–473, 2008.

[103] T. Pfeiffer, S. Schuster, and S. Bonhoeffer. Cooperation and competition in the evolution of
ATP-producing pathways. Science, 292(5516):504–507, 2001.

[104] T. G. Platt and J. D. Bever. Kin competition and the evolution of cooperation. Trends in
Ecology & Evolution, 24(7):370–377, 2009.

[105] F. Prado and B. Kerr. The evolution of restraint in bacterial biofilms under nontransitive
competition. Evolution, 62(3):538–548, 2008.

[106] G. Price et al. Selection and covariance. Nature, 227:520–521, 1970.

[107] D. Queller. Genetic relatedness in viscous populations. Evolutionary Ecology, 8(1):70–73,
1994.

[108] D. Queller. Expanded social fitness and Hamilton’s rule for kin, kith, and kind. Proceedings
of the National Academy of Sciences, 108(Supplement 2):10792–10799, 2011.

[109] D. Queller, E. Ponte, S. Bozzaro, and J. Strassmann. Single-gene greenbeard effects in the
social amoeba dictyostelium discoideum. Science, 299(5603):105–106, 2003.

[110] P. B. Rainey and K. Rainey. Evolution of cooperation and conflict in experimental bacterial
populations. Nature, 425:72–74, 2003.

[111] D. Rankin, K. Bargum, and H. Kokko. The tragedy of the commons in evolutionary biology.
Trends in Ecology & Evolution, 22(12):643–651, 2007.

132



[112] K. P. Rumbaugh, S. P. Diggle, C. M. Watters, A. Ross-Gillespie, A. S. Griffin, and S. A.
West. Quorum sensing and the social evolution of bacterial virulence. Current Biology,
19(4):341–345, 2009.

[113] J. Smith. Evolution and the Theory of Games. Cambridge University Press, 1982.

[114] J. Smith and G. Price. The logic of animal conflict. Nature, 246(5427):15–18, 1973.

[115] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10(2):99–127, 2002.

[116] P. S. Stewart and J. W. Costerton. Antibiotic resistance of bacteria in biofilms. The Lancet,
358(9276):135–138, 2001.

[117] A. Stintzi, K. Evans, J. Meyer, and K. Poole. Quorum-sensing and siderophore biosynthesis
in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis.
FEMS Microbiology Letters, 166(2):341–345, 1998.

[118] J. E. Strassmann, O. M. Gilbert, and D. C. Queller. Kin discrimination and cooperation in
microbes. Annual Review of Microbiology, 65:349–367, 2011.

[119] X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus, and
X. Zhou. An autonomous robotic fish for mobile sensing. In 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5424–5429. IEEE, 2007.

[120] K. Thelin and R. Taylor. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin,
is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infection
and immunity, 64(7):2853–2856, 1996.

[121] D. Tilman. Resource competition and community structure. Princeton University Press,
1982.

[122] D. Tilman and P. Kareiva, editors. Spatial ecology: the role of space in population dynamics
and interspecific interactions. Princeton University Press, 1997.

[123] V. Van Noort, B. Snel, and M. Huynen. The yeast coexpression network has a small-world,
scale-free architecture and can be explained by a simple model. EMBO reports, 5(3):280–
284, 2004.

[124] K. Visick and M. McFall-Ngai. An exclusive contract: specificity in the Vibrio fischeri-
Euprymna scolopes partnership. Journal of Bacteriology, 182(7):1779–1787, 2000.

[125] J. Von Neumann. Theory of self-reproducing automata. University of Illinois Press, 1966.

[126] C. Waters, W. Lu, J. Rabinowitz, and B. Bassler. Quorum sensing controls biofilm formation
in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT.
Journal of bacteriology, 190(7):2527–2536, 2008.

[127] C. M. Waters and B. L. Bassler. Quorum sensing: cell-to-cell communication in bacteria.
Annual Review of Cell and Developmental Biology, 21:319–346, 2005.

133



[128] D. Watts and S. Strogatz. Collective dynamics of “small-world” networks. Nature,
393(6684):440–442, 1998.

[129] S. West, S. Diggle, A. Buckling, A. Gardner, and A. Griffin. The social lives of microbes.
Annu. Rev. Ecol. Evol. Syst., 38:53–77, 2007.

[130] S. A. West, A. S. Griffin, and A. Gardner. Social semantics: altruism, cooperation, mutual-
ism, strong reciprocity and group selection. Journal of Evolutionary Biology, 20:415–432,
2007.

[131] W. Whewell. The philosophy of the inductive sciences: founded upon their history. Frank
Cass and Company, 1840.

[132] D. Wilson. Social semantics: toward a genuine pluralism in the study of social behaviour.
Journal of Evolutionary Biology, 21(1):368–373, 2008.

[133] S. Wright. Coefficients of inbreeding and relationship. American Naturalist, 56(645):330–
338, 1922.

[134] S. Wright. Evolution in mendelian populations. Genetics, 16(2):97–159, 1931.

[135] S. Wright. Size of population and breeding structure in relation to evolution. Science,
87(2263):430–2264, 1938.

[136] V. Wynne-Edwards. Evolution through group selection. Blackwell Scientific Publications,
1986.

[137] J. B. Xavier, E. Martinez-Garcia, and K. R. Foster. Social evolution of spatial patterns in
bacterial biofilms: When conflict drives disorder. The American Naturalist, 174(1):1–12,
2009.

[138] F. Yildiz, X. Liu, A. Heydorn, and G. Schoolnik. Molecular analysis of rugosity in a Vibrio
cholerae o1 El Tor phase variant. Molecular microbiology, 53(2):497–515, 2004.

134


