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ABSTRACT

THREE ESSAYS IN COMPLEX SAMPLES

by

Iraj Rahmani

The samples used in econometric studies are not always sets of randomly drawn observations

from the populations of interest. In many studies sampling has a complex design involving clus-

tering and stratification. In stratification, the population is divided into subpopulations or strata

based on exogenous or endogenous variables and then a random sample of unit observations or

clusters is drawn from each stratum. Clusters are contiguous groups of units existing within a

stratum. Reducing the cost of sampling or operational convenience might be reasons for applying

stratification and clustering. On the other hand, particular interest in a small subpopulation may

cause oversampling that justifies non-random sampling scheme.

This dissertation consists of three essays addressing estimation and inference in cross section

and panel data models with non-random samples. In general, ignoring sampling design could

produce inconsistent estimators and also inconsistent estimators for their standard errors. In the

first essay, a multi-stage sampling design including standard stratification and clustering stages at

first and variable probability sampling in the final stage is considered. The problem is studied under

M-estimators framework. Under a set of regularity conditions, the usual weighting estimators are

consistent and have asymptotic normal distributions. In cases that stratifications in the first or the

second or in the both stages are exogenous, dropping the corresponding weights are allowed; we

still have consistent estimators.

The second essay contributes to the subject of non-random sampling by studying efficiency

in panel data models when data set comes from stratified samples. The goal in this chapter is to

obtain more efficient estimators by considering correlation within panels in models with stratified

structure. We do not try to find the efficiency bound in this kind of models. Our attempt is to

increase efficiency in compare with pooled models that ignore correlations within panels. The



paper takes into account correlation within each panel and in each stratum under a GMM based

framework. Theoretical development and Monte Carlo study show that by considering correlation

within the panels in each stratum and adding them together with appropriate weights, finding

more efficient estimators is possible. Like generalized estimating equations (GEE), we are able to

consider the specific form for correlation for panels in each stratum. Monte Carlo results confirm

that the new GMM estimators that is called weighted and unweighted GLS are more efficient

than their competitors OLS and weighted OLS that simply overlook the correlation within the

panels. In case of endogenous stratification, weighted GLS and in case of exogenous stratification

unweighted GLS is doing better than the rest. For a specific sample size, this efficiency gain

depends on what form is chosen for correlation and how strong or weak it is. We applied results

to study determinants of inequality in the U.S. and estimation results show that efficiency gain in

compare with POLS or weighted POLS is substantial.

The subject of the third essay is model selection problem. In complex samples involving strat-

ification and clustering, the assumption that observations are distributed independently and identi-

cally is not held anymore and therefore the Vuong’s (1989) model selection tests are not applicable

directly. In order to generalize Vuong’s results to estimators other than MLE, we study the problem

under M- estimator framework that contains many estimators including but not limited to linear

and non-linear least squares, MLE, and QMLE. The theoretical results show that for two nonnested

competing models, the asymptotic property of the weighted tests statistics are not a function of the

competing estimators but observations and has normal distribution. An interesting finding is that

even in case of exogenous stratification, we cannot drop weights in the tests statistics since for

nonnested tests both competing models should be misspecified under the null. We also apply

results in two empirical studies.
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Chapter 1

ASYMPTOTIC INFERENCE OF M-ESTIMATOR FORM MULTI-STAGE SAMPLES

WITH VARIABLE PROBABILITY IN FINAL STAGE

1.1 Introduction

In economic analyses are often assumes that the observations come from simple random sampling.

It means that a set of independent and identically distributed (i.i.d.) observations is available.

However in reality many data sets used in economics and other branches of the social sciences

are come form stratified sampling schemes that produces nonrandom samples. When a data set

comes from nonrandom sampling schemes, i.i.d. assumption is not valid anymore and therefore

one might need to make inference about the econometric model more carefully.

The goal in this chapter is to examine asymptotic properties of M-estimators when the obser-

vations come from several levels of stratifications.

Three well known stratified sampling schemes are standard stratified sampling (SS sampling),

multinomial sampling, and variable probability sampling (VP sampling). In SS sampling, the pop-

ulation is divided into several subpopulation based on factors like income, race, gender, education,

area of residence, etc. Then a random sample is taken within each subpopulation or stratum in-

dependently. The result is a sample of independent but not identically distributed observations.

It should be emphasized that unlike simple random sampling, in SS sampling the proportions of

observations within strata do not reflect population proportions as they would if the sample were

selected randomly from the population.

Multinomial sampling scheme is similar to SS sampling. The difference is that in multinomial

sampling first a stratum is chosen randomly and then samples randomly from the stratum. Although

this kind of sampling is not common in practice but theoretically it is easier to deal with because it

produces i.i.d. observations.

In VP sampling which also is known as Bernoulli sampling in the literature, first an observation
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is drawn randomly from the population, then its stratum is determined by the researcher. After

determining its stratum, it will be kept in the sample with specific probability that is set by the

researcher also. If the observation is not chosen then it will be returned to the population and its

values are not recorded.

SS sampling scheme is often used when observations from each stratum are easily identified

before sampling. Variable probability sampling scheme is more suitable when stratum of an ob-

servation is known only after sampling. For example determining a family’s income bracket is

difficult before sampling and therefore VP sampling is used.

In general, stratification can be based on dependent variable or variables, explanatory variables

or both. Dividing the population of interest in terms of explanatory variables is called exogenous

stratification. Stratification is endogenous if we define subpopulations with respect to dependent

variables. Whether stratification is exogenous, or endogenous is determined only after defining an

econometric model. In other words, determining a specific model comes first and then discussions

about appropriate sampling schemes start.

Reviewing the literature shows that the subject have been studied by both statisticians and

econometricians. In summery, stratification based on exogenous variables does not produce serious

problems; one can ignore it and still obtains consistent estimates for parameters of the population.

In this line of research we can mention DuMouchel and Duncan (1983) that confirms the above

statement in a linear model for SS sampling. Manski and McFadden (1981) show it is true in

maximum likelihood estimation where data set comes form multinomial sampling. Wooldridge

(1999, 2001) shows same result is true for VP, and SS sampling when we consider the case in

framework of M-estimators.

In practice combination of these methods of sampling are commonly used also. For instance

the Panel Study of Income Dynamics (PSID) involves stratification and clustering. Bhattacharya

(2005) describes a multi-stage sampling in which SS sampling is used in first level to choose some

clusters in each stratum by simple random sampling, and then from each sampled cluster a few

observations are chosen again by simple random sampling. In this scheme clusters are defined as
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contiguous groups of units existing within a stratum. For example in rural areas villages can be

considered as clusters, and in urban areas, they are blocks or neighborhoods and in both examples

unit observations are households.

In his paper, Bhattacharya (2005) drives asymptotic properties of estimators when data set

comes from surveys whose designs involve stratification and clustering in GMM framework. In a

set up similar to Bhattachary’s multistage sampling, Wooldridge (2008) drives asymptotic variance

of estimators in linear models.

The goal in this chapter, as mentioned already, is to investigate asymptotic properties of estima-

tors when data set comes from multi-stage sampling. It is closely related to Bhattacharya (2005)

sampling scheme with one distinction. We add variable probability sampling in final stage and

then develop M-estimator framework for asymptotic inference to evaluate data from surveys with

multi level of stratification and clustering structure. The set up is general enough to contain linear

and non-linear models as well as maximum likelihood ones. This kind of sampling design is used

in many surveys in practice, particularly those that involve phone interviews.

As an example of big scale survey that has a structure very similar to the sampling scheme

considered in this study, we can name National Survey of Families and Households (NSFH) .The

NSFH is a complex survey sample that involved five sampling stages. In the first stage of this

national multistage sampling design, 100 primary sampling units were drawn from a list of all

countries in the nation that had been stratified into two groups. In first stratum, 18 self -representing

areas composed of the largest metropolitan areas that make up 36 % of the nation’s population and

second stratum contains the rest of the country. From the the first stratum, 36 primary sampling

units were drawn with certainty. The second stratum that make up 64 % of the nation was divided

into 32 strata, and two primary sampling units were drawn from each stratum using probability

proportional to size sampling.

In the second stage an average of 17 block groups or enumeration districts from each primary

sampling unit is randomly selected. Within each of these district, a list of 45 or more households

was selected. These households were given a short screening interview to allow oversampling of
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certain interested groups like African American, cohabiting couples etc. Members of these groups

in the cluster were selected with certainty, and others were selected at a lower rate. In the final

stage, an adult from each household was randomly chosen as the eligible respondent. At the end

from 45 or more households in each district or cluster 20 of them were included in the sample.

Substitutions were not allowed. in this study, the sample size was 13007 primary respondents. The

survey contains 1700 clusters, with an average of 7.6 respondents per cluster. In this study we have

many clusters with small size. For more detail see Johnson and Elliott (1998).

The rest of paper is organized as follows. The next section presents the population optimization

problem and basic framework. Sampling scheme and sample objective function are explained in

section 3. In section 4 consistency and asymptotic normality of weighted M-estimator under multi-

stage sampling is discussed. We introduce theories that summarize conditions needed to have

consistent weighted estimators with asymptotic normal distribution. Also in section 4 we study

estimating of asymptotic variances of M-estimators. In section 5, estimation under exogenous

stratification is discussed. Under exogenous stratification in our model where more than one level

of stratification exist, three cases are distinguishable. However we only consider the two first cases.

In section 5, four theorems are presented to cover consistency and asymptotic distribution of M-

estimators under exogenous stratification. In section 6, four examples are presented. In section 7,

two-step M-estimator is discussed. In section 8, the last section, the main findings of the paper are

reviewed.

1.2 The Population Optimization Problem

Our goal is to estimate a P×1 vector of parameter θ that minimize the population problem

min
θ∈Θ

E [q(W,θ)] (1.1)

where E[.] denotes the expectation with respect to the true distribution of W, and θ ∈Θ and Θ is the

parameter space that is a subset of Euclidean space RP. The objective function in the population

is denoted as q(W,θ) that is a function of W and θ . W is an M×1 random vector taking values
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in W , where W is a subset of RM. We assume that there exists a unique solution θ◦ ∈ Θ, that

minimize population problem (1.1).

In cases that q(.) is a correctly specified model, θ◦ is the true parameter that uniquely minimize

(1.1). However, in misspecified cases where q(.) is not a correct model, there is no true value of θ ,

i.e. θ◦. In these cases, it is standard to assume θ◦ is the unique solution to (1.1).

We are usually interested in explaining a K×1 random vector Y conditional on a L×1 vector

of explanatory variable X such as E(Y|X). Here K +L = M, and (X,Y) = W. Random vectors X

and Y belong to subsets X and Y respectively, where X ⊂ RK , Y ⊂ RL and union of X and

Y , denoted by X ∪Y is W . The framework is general enough to cover panel data models with

large cross section dimension and small time periods T .

1.3 The Sampling Scheme

The sample design is a combination of standard stratification, clustering and variable probability

sampling. First, according with SS sampling, the population is divided into S first stage strata

that are non-overlapping and exhaustive. In this stage, stratification can be based on a variable

or variables like the area of residence or race that allows us to divide the population easily. Each

stratum s contains a mass of Cs clusters. For example these clusters in rural areas are villages, and

in urban areas, they are blocks or neighborhoods. In next step Ns clusters with replacement are

drawn randomly from each stratum s. Since in this study we require some sort of large-sample

approximation, the assumption of with replacement is not important if the number of clusters

samples, Ns, is “large”. Each sampled cluster c from stratum s contains a finite population of

Msc households or units of observations. An observation (household) is selected by random from

sampled cluster c in stratum s. In next stage the selected household is classified according to

interested non-overlapping and exhaustive strata based on, for example, the level of income. The

household is retained into the sample with some probability that is set by the practitioner. As

it mentioned already, sampling in the second stage is called variable probability. The process is

repeated for K (a constant and small number) of unit observations for each sampled cluster c in
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stratum s and a sample of Ksc households is obtained where 1 6 Ksc 6 K.

In practice a fixed and large number of clusters Ns are sampled randomly within each stratum

s, and then within each sampled cluster, a small and fixed number of households are sampled

randomly.

We can summarize sampling design as follows

i The population is divided into S non-overlapping and exhaustive first stage strata based on

criteria like area of residence, race, age etc.

ii In stratum s, Cs clusters exist.

iii For each stratum s randomly draw Ns clusters with replcement.

iv Each sampled cluster cs from stratum s contains a finite population of Msc units (for example

households).

v A household is selected by random from sampled cluster cs in stratum s.

vi The household is classified according to interested non-overlapping and exhaustive strata

(for example income level).

vii The household is retained into the sample with some probability that depends on interested

stratum and is determined by the researcher.

viii The process is followed for K household in each sampled cluster cs in stratum s and a sample

of Ksc households is obtained.

Considering structure of most surveys in practice and the same as Bhattacharya (2005), two

assumptions are made to study the asymptotic inference of the model. First assumption is that the

number of clusters N goes to infinity with numbers of household staying fixed and finite within each

cluster. The second assumption is that the clusters are independent within a stratum but household

level variables are correlated within each cluster. Therefore for a given stratum s, clusters are

independently but not identically distributed.
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Under sample scheme, clusters are chosen by simple random sample within each stratum s

independently. In second step unit observations (households) are chosen by variable probability.

Therefore the sample optimization problem is

min
θ∈Θ

1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmq(Wscm,θ) (1.2)

Here N = N1+N2+ . . .+N j and vsc =
Cs(
Ns
N

) ·Msc
Ksc

. In the sample problem (1.2), r is an indicator

variable that takes value one if W is in stratum j and zero otherwise. z is also an indicator variable

that takes value one if W is kept in the sample and zero if not and therefore P(z = 1) = p. In order

to study asymptotic properties of M-estimator, we also assume that the ratio of sampled clusters in

each stratum s to total sampled clusters N or
Ns
N

is constant and therefore ∑
J
j=1 as = 1. We need

this assumption in order to limit the range of fluctuations of weights vsc.

If we re-index clusters from i = 1, · · · ,N, and define new indicator variable yis such that yis

equals one if cluster i is from stratum s or i ∈ s and zero otherwise, then the optimum problem is

min
θ∈Θ

1
N

N

∑
i=1

S

∑
s=1

J

∑
j=1

K

∑
m=1

yisvis p−1
j r jmz jmq(Wism,θ) (1.3)

The weighted M-estimator θ̂ w minimizes (1.2) over the parameter space Θ. vsc and p−1
j are

weights corresponding to first level (SS sampling), and second level of stratifications (VP sam-

pling) respectively. The inner summation in (1.2) is over all potential observations, which would

appear in a random sample. The sample objective function weights each sampled observation unit

(households for example) by product of the two weights corresponding to two level of stratifica-

tions i.e. vsc · p−1
j . Note that all sampled observations from a same sampled cluster get same

weights.
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1.4 Estimation under Multi-stage Sampling

1.4.1 Consistency

In order to study the consistency of the weighted M-estimator defined by equation (1.2) is assumed

that the parameter vector θ◦ uniquely solves the population problem (1.1)

min
θ∈Θ

E [q(W,θ)]

Moreover we need to show that uniform convergence in probability is hold. It is assumed that func-

tion q(·) satisfies some regularity conditions. We summarize these requirements for consistency of

the weighted M-estimator in following theorem.

Theorem 1.4.1. Let W∈W be a random vector where W ⊂RM, and Θ⊂RP, and q : W ×Θ→R

a real valued function. if

1. Θ is a compact set.

2. vsc · p−1
j > 0 for all clusters and strata s = 1, . . . ,S, j = 1, . . . ,J, c = 1, . . . ,N.

3. For each θ ∈Θ, q(W,θ) is Borel measurable on W .

4. For each w ∈W , q(w,θ) is continuous on Θ.

5. |q(w,θ)| ≤ b(w), where b is an arbitrary nonnegative function on W such that E [b(w)]<∞.

6. θ◦ uniquely solves the population problem.

Then uniform weak law of large numbers holds, and θ̂ w
P−→ θ◦ as N −→ ∞.

Proof. For each cluster i in stratum s define

g(Wm,θ) =
J

∑
j=1

K

∑
m=1

vp−1
j r jmz jmq(Wm,θ) (1.4)

In this function weight v is a random variable since the number of observations from the final stage

Kis is random. In fact v is a function of z jm, indicator variable that shows if the randomly drawn
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observation from final stage is kept in the sample or discarded. Therefore we can consider v · z jm

as an indicator variable

v · z jm =

 v if z jm = 1,

0 otherwise

And its probability distribution function is

f (v · z jm) =


p j if v · z jm = v,

1− p j if v · z jm = 0.

Therefore the expected value of (1.4) is

E [g(Wm,θ)] =
J

∑
j=1

K

∑
m=1

p−1
j E

[
vr jmz jmq(Wm,θ)

]
(1.5)

Since v · z jm is independent of r jm, the right hand of (1.21) is equal to

=
J

∑
j=1

K

∑
m=1

p−1
j E(vz jm)E

[
r jmq(Wm,θ)

]
=

J

∑
j=1

Ksc
∑

m=1
p−1

j p jvE
[
r jmq(Wm,θ)

]
which can be simplified to

= E

[
Ksc
∑

m=1

J

∑
j=1

vr jmq(Wm,θ)

]
= E

[
Ksc
∑

m=1
vq(Wm,θ)

]

Last equality holds because∑
J
j=1 r jm = 1. Therefore the expected value of (1.21) is equal to

Mis ·E [q(W,θ)] (1.6)

Mis is the population number of observation in cluster i and stratum s and hence it is constant and

it does not effect estimation and inference. By assumption (6) of the Theorem(1.3.1) θ◦ solves the

population problem (1.1) uniquely and so is the unique solution for (1.6). Next we need to show

that (1.4) satisfies the uniform law of large numbers for each stratum s. By assumption (3) of Theo-

rem(1.3.1), q(·) is a continuous function on Θ for each W ∈W , and therefore g(·) defined by (1.4)

has same property. g(·) is bounded also, because |g(W,θ)|= |∑J
j=1 ∑

K
m=1 p−1

j r jmz jmq(W,θ)| ≤

C · |q(W,θ)| ≤C ·b(W) by assumption (5) where C = max(p−1
1 , p−1

2 , . . . , p−1
J ). This complete the

proof.
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1.4.2 Asymptotic Normality of the Weighted M-Estimator

In order to show that the weighted M-estimator is asymptotically normally distributed, conditions

mentioned for consistency in Theorem (1.3.1) is not enough and additional assumptions are needed.

Theorem (1.3.2) lists these new assumptions that imply asymptotic normality of the weighted M-

estimator.

Theorem 1.4.2. In addition to the conditions of Theorem(1.3.1), if

7. θ◦ is in the interior of Θ or θ◦ ∈ int(Θ).

8. s(W,θ) the score of the objective function is continuously differentiable on int(Θ).

9. Each element of Hessian matrix, H(W,θ) is bounded in absolute value by a function b(W),

where E [b(W)]< ∞.

10. Aw = E
[
∇2

θ
q(W,θ)

]
is nonsingular.

11. E [s(W,θ◦)] = 0 and each element of s(W,θ) has finite second moment. Then

√
N
(
θ̂ w−θ◦

) d−→ Normal
(

0,A−1
w BwA−1

w

)
(1.7)

Here Bw is

Bw =
S

∑
s=1

E

[
J

∑
j=1

K

∑
m=1

v2 p−2
j r jmz jm∇θ q(W,θ◦)∇θ q(W,θ◦)′

]

+
S

∑
s=1

E

 J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

v2 p−1
j p−1

j′ r jmr j′tz jmz j′t∇θ q(W,θ◦)∇θ q(W,θ◦)′

 (1.8)

−
S

∑
s=1

E

[(
J

∑
j=1

K

∑
m=1

v · p−1
j r jmz jm∇θ q(W,θ◦)

)
·

(
J

∑
j=1

K

∑
m=1

v · p−1
j r jmz jm∇θ q(W,θ◦)

)′]

Proof. Score of objective function in each stratum s is

scs(θ) = ∇θ gcs(Wm,θ)
′ =

J

∑
j=1

K

∑
m=1

v · p−1
j r jmz jm∇θ q(Wmcs,θ)

′ (1.9)

10



Because clusters are independent sequence in each stratum s by assumption, we can apply the

central limit theorem for the sampled clusters within each stratum. Therefore

N−1/2
s

Ns
∑
s=1

[scs(θ◦)−E(ss(θ◦))]
d−→ Normal (0,Bs) (1.10)

In (1.10) E [ss(θ◦)] = E
[
∇θ g(W,θ◦)′|W ∈Ws

]
. Bs is the variance of score function in stratum s

and is equal to

Bs = var [scs(θ◦)] = var [∇θ gcs(Wm,θ◦)]

= var

[
J

∑
j=1

K

∑
m=1

vp−1
j r jmz jm∇θ q(Wmcs,θ◦)

]

=E

[
J

∑
j=1

K

∑
m=1

v2 p−2
j r jmz jm∇θ q(Wmcs,θ◦)∇θ q(Wmcs,θ◦)′

]
(1.11)

+E

 J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

v2 p−1
j p′−1

j r jmr j′tz jmz j′t∇θ q(Wmcs,θ◦)∇θ q(Wmcs,θ◦)′


−E

[(
J

∑
j=1

K

∑
m=1

vp−1
j r jmz jm∇θ q(Wmcs,θ◦)

)]
·E

[(
J

∑
j=1

K

∑
m=1

vp−1
j r jmz jm∇θ q(Wmcs,θ◦)

)′]
Variance of score function consists of three terms. The first term in (1.11) is simply the variance of

score if a simple random sample is in hand. In other words, the first part is correct variance if i.i.d

observations are available. Second and third terms in (1.11) are added due to the sample design.

The second term measures the cluster effect and accounts for correlation within clusters. This term

is positive in most cases and it is substantial if the degree of correlation between the observations

inside a single cluster is high and/or K the number of observations sampled from each cluster

increases. The third part captures the stratum effect. It is negative and therefore reduces the size

of variance.

We also obtain the following important equality by using(1.6) in Theorem(1.3.1)
S

∑
s=1

E [∇θ gcs(Wm,θ◦)] =
S

∑
s=1

E

[
J

∑
j=1

K

∑
m=1

vcs p−1
j r jmz jm∇θ q(Wcsm,θ◦)

]
≡ 0 (1.12)

Using (1.12) the score of the objective function, multiplied by
√

N can be written as

N−1/2
S

∑
s=1

Ns
∑
c=1

∇θ gcs(Wm,θ◦) = N−1/2
S

∑
s=1

[
Ns
∑
c=1

∇θ gcs(Wm,θ◦)−E [∇θ gcs(Wm,θ)]

]
(1.13)
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because the sampled clusters across strata and are also independent by assumption, then (1.13) has

asymptotic normal distribution with mean zero and variance equal to A−1
w BwA−1

w .

1.4.3 Estimating the Asymptotic Variance

Obtaining consistent estimation of the asymptotic variance of
√

N(θ̂ w−θ◦) is fairly straightfor-

ward. First, we need to have a consistent estimation of Hessian matrix Aw. It is second-order

partial derivative of (1.4) sum over all strata

Aw =
S

∑
s=1

E
[
∇

2
θ

gcs(Wm,θ◦)
]
=

J

∑
s=1

E

[
J

∑
j=1

K

∑
m=1

vp−1
j r jmz jm∇

2
θ

q(W,θ◦)

]
(1.14)

By lemma (4.3) in Newey and McFadden (1994) and under the assumptions of Theorem (1.3.2)

consistent estimator of Aw is

Âw = N−1
N

∑
i=1

S

∑
s=1

J

∑
j=1

K

∑
m=1

vis p−1
j yisr jmz jm∇

2
θ

q(wism, θ̂ w)

As Wooldridge (2010), we assume that the elements of ∇θ q(W,θ)∇θ q(W,θ)′ are bounded in

absolute value by a function with finite expectation in order to have consistent estimation of Bw.

Then, a consistent estimator of Bw is

B̂w =N−1
N

∑
i=1

S

∑
s=1

J

∑
j=1

K

∑
m=1

v2
is p−2

j yisr jmz jm∇θ q(θ̂ w)∇θ q(θ̂ w)
′

+N−1
N

∑
i=1

S

∑
s=1

J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

v2
is p−1

j p−1
j′ yisr jmr j′tz jmz j′t∇θ q(θ̂ w)∇θ q(θ̂ w)

′

−
S

∑
s=1

1
N

[
N

∑
i=1

J

∑
j=1

K

∑
m=1

vis p−1
j yisr jmz jm∇θ q(θ̂ w)

]
·

[
N

∑
i=1

J

∑
j=1

K

∑
m=1

vis p−1
j yisr jmz jm∇θ q(θ̂ w)

]′

Here ∇θ q(θ̂ w)≡ ∇θ q(wism, θ̂ w).

Therefore the estimate of asymptotic variance of θ̂ w is

Âvar(θ̂ w) = Â−1
w B̂wÂ−1

w /N (1.15)

The diagonal elements of (1.15) are the asymptotic variances of estimated parameters.
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1.5 Estimation under Exogenous stratification

Partitioning w as (x,y) and then dividing the population of interest purely based on x in a model

that is made to explain distribution of Y given x, E [Y|X = x] is called exogenous stratification. In

multi-stage sampling, exogenous stratification can be applied in any stages of sampling.

In the sampling scheme described in section 2, there are two levels of stratification. In first

level, standard sampling and in second level, variable probability sampling are used. Stratification

in each level can be endogenous or exogenous and therefore three possibilities can be distinguished

when at least we have one level of exogenous stratification. In case one both levels of stratification

are exogenous. In case two, the first level of stratification is exogenous but is endogenous in

second level. Alternatively in case three, first level of stratification is endogenous and second level

is exogenous. Since case three is very unlikely to be used in practice, we limit our studies to cases

one and two.

1.5.1 Consistency of the Unweighted M-Estimator

Assume W is partitioned as (X,Y), then in exogenous stratification population problem is

min
θ∈Θ

E [q(W,θ)|X] (1.16)

Our analysis of weighted estimator in previous section can be applied with or without exogenous

stratification. However weighting observations in exogenous case is not necessary anymore and an

unweighted estimator is also consistent.

1.5.1.1 Consistency of the Unweighted M-Estimator: Case One

As mentioned above, in case one both level of stratifications are exogenous. The unweighted

estimator solves the sample objective function

min
θ∈Θ

1
N

N

∑
i=1

S

∑
s=1

J

∑
j=1

K

∑
m=1

yisr jmz jmq(wism,θ) (1.17)
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Objective function (1.17) is same as (1.3) without the weights vis · p−1
j . The following theorem

states conditions for consistency of unweighted estimator.

Theorem 1.5.1. Assume that first five conditions in Theorem (1.3.1) hold. Add new two following

conditions

6. Stratification in first and second levels are based on exogenous variables x. It means that

stratification is a deterministic function of x in both levels.

7. For all x, θ◦ solves minθ∈ΘE [q(W,θ)|X], and θ◦ uniquely minimizes

J

∑
j=1

K

∑
m=1

p jE
[
r jmq(Wm,θ)

]
=

J

∑
j=1

K

∑
m=1

p jE
[
r jmE [q(Wm,θ)] |X

]
(1.18)

Then uniform weak law of large numbers holds and θ̂ u −→ θ◦ in probability as N→ ∞.

Proof. We need to show that θ is the unique solution to

E

[
J

∑
j=1

K

∑
m=1

r jmz jmq(Wm,θ)

]
(1.19)

By assumption (6) in Theorem (1.4.1), r jm is a function of x. Also z jm is independent of w and

consequently of x. Therefore

E
[
r jmz jmq(Wm,θ)|X

]
= r jmE(z jm|X)E [q(Wm,θ)|X] = r jm p jE [q(Wm,θ)|X] (1.20)

By assumption (7) in Theorem (1.4.1), r jm p jE [q(Wm,θ)|X] is minimized at θ◦, but perhaps not

uniquely. By iterated expectation we have E[q(Wm,θ)] = E [E[q(Wm,θ)|X]] and therefore θ◦ is

a solution to (1.19). Then the expectation of (1.19) is same as (1.18), and by assumption θ◦ is

unique solution to (1.18).

1.5.1.2 Consistency of Unweighted M-estimator: Case Two

When first level of stratification is exogenous while the second level is endogenous, a logical

analogy is that we can drop the weight associated to first level of stratification i.e. vis but need to

keep the weight associated to the second level of stratifican i.e. p−1
j in order to have consistent

estimator. Next theorem confirms the truth of this analogy under specific conditions.
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Theorem 1.5.2. Assume that first five conditions in Theorem (1.3.1) hold. Add new two following

conditions

6. Stratification in first level is a deterministic function of x.

7. θ◦ is the unique solution to E [q(W,θ)|x ∈ X] for all s.

Then uniform law of large numbers hold and θ̂ u
p−→ θ◦ as N→ ∞.

Proof. The expected value of cluster i in stratum s is

E

[
J

∑
j=1

K

∑
m=1

p−1
j r jmz jmq(Wm,θ)|x ∈ Xs

]
=

J

∑
j=1

K

∑
m=1

p−1
j E

[
r jmz jmq(Wm,θ)|x ∈ Xs

]
=

J

∑
j=1

K

∑
m=1

p−1
j E

[
z jm|x ∈ Xs

]
·E
[
r jmq(Wm,θ)|x ∈ Xs

]
=

J

∑
j=1

K

∑
m=1

E
[
r jmq(Wm,θ)|x ∈ Xs

]
=E

[
J

∑
j=1

K

∑
m=1

r jmq(Wm,θ)|x ∈ Xs

]
= E

[
Ksc
∑

m=1
q(Wm,θ)|x ∈ Xs

]

=
Ksc
∑

m=1
[q(Wm,θ)|x ∈ Xs] (1.21)

By assumption (7) in Theorem (1.4.2) θ◦ is unique solution for E [q(W,θ)|x ∈ Xs] and so is unique

solution for last equality in (1.21). We also need to show that the uniform law of large numbers

holds for each s which is similar to the argument as in Theorem (1.3.1).

1.5.2 Asymptotic Normality of the Unweighted M-Estimator

According to previous section, asymptotic normality results for the unweighted estimator when

stratification is based on x in both levels or just in first level are represented in frame of the follow-

ing two theorems.

Theorem 1.5.3. In addition to the condition of Theorem (1.4.1) if

8. θ◦ is in the interior of Θ or θ◦ ∈ int(Θ).

9. For all w ∈ W , ∇θ q(w, ·) the score of objective function is continuously differentiable on

int(Θ).
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10. Each element of Hessian matrix, H(W,θ) is bounded in absolute value by an arbitrary

function b(w), where E [b(w)]< ∞.

11. For all x, E [∇θ q(W,θ◦)|X = x] = 0, and all elements of ∇θ q(W,θ) has finite second mo-

ment.

12. Au = ∑
S
s=1E

[
∑

j
j=1 ∑

K
m=1 r jmz jm∇2

θ
q(Wm,θ◦)|X = x

]
is nonsingular.

Then

√
N(θ̂ u−θ◦)

d−→ Normal
(

0 , A−1
u BuA−1

u

)
(1.22)

where

Bu =
S

∑
s=1

E

[
J

∑
j=1

K

∑
m=1

p jr jm∇θ q(W,θ◦)∇θ q(W,θ◦)′|X = x

]

+
S

∑
s=1

E

 J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

p j p j′r jmr j′t∇θ q(W,θ◦)∇θ q(W,θ◦)′|X = x

 (1.23)

for all x.

Proof. In this case, stratifications in both levels are exogenous and the score of the objective func-

tion in each stratum s is s(Wm,θ) = ∇θ g(Wm,θ) = ∑
j
j=1 ∑

K
m=1 r jmz jm∇θ q(W,θ). Under as-

sumption (11) in Theorem (1.5.1), the expected value of the score is

E [s(Wm,θ◦)|x] = E

[
J

∑
j=1

K

∑
m=1

r jmz jm∇θ q(Wm,θ◦)|X = x

]
= 0 (1.24)

Then by applying central limit theorem for independent clusters within each stratum, asymptotic

distribution of the score in stratum s is

N−1/2
s

Ns
∑
i=1

[sis(Wm,θ◦)|X = x] d−→ Normal(0 , Bu
s ) (1.25)
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Bsu, represents the variance of the score function in stratum s under exogenous stratification. It is

equal to

Bu
s =var [s(Wm,θ◦)|X = x] = var [∇θ g(Wm,θ◦)|X = x]

=var

[
J

∑
j=1

K

∑
m=1

r jmz jm∇θ q(W,θ◦)|X = x

]

=E

[
J

∑
j=1

K

∑
m=1

r jmz jm∇θ q(W,θ◦)∇θ q(W,θ◦)′|X = x

]

+ E

 J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

r jmr j′tz jmz j′t∇θ q(W,θ◦)∇θ q(W,θ◦)′|X = x

 (1.26)

for all x. Independency of z’s from W and each other, and also indepdency of clusters between

strata leads us to ∑
S
s=1 Bu

s which is the score of the objective function Bu in (1.23) and this complete

the proof.

It is interesting to note that under assumption (11), Theorem (1.5.1) in exogenous stratification,

the effect of stratification is vanished as comparing (1.23) and (1.8) show this point.

The asymptotic results when stratification is exogenous just in first level is very similar to case

one. Next theorem summarizes main conditions and results.

Theorem 1.5.4. Same conditions as Theorem (1.5.1) last two ones that are replaced with following

11. E [s(W,θ◦)|x ∈ X] = 0, in other words we assume the score of the objective function under

exogenous in first stage is zero. Also we assume that elements of s(W,θ) have finite second

moment.

12. Aū = ∑
S
s=1E

[
∑

J
j=1 ∑

K
m=1 p−1

j r jmz jm∇2
θ

q(W,θ◦)|x ∈ X
]

is nonsingular.

Then

√
N(θ̂ ū−θ◦

d−→ Normal(0 , A−1
ū BūA−1

ū )

17



where

Bū =
S

∑
s=1

E

[
J

∑
j=1

K

∑
m=1

p−2
j r jmz jm∇θ q(W,θ◦)∇θ q(W,θ◦)′|X = x

]

+
S

∑
s=1

E

 J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

p−1
j p−1

j′ r jmr j′tz jmz j′t∇θ q(W,θ◦)∇θ q(W,θ◦)′|X = x


for all x.

Proof. It is similar to the Theorem (1.5.1). We just need to weight observations by p−1
j that

corresponding with VP sampling in second stage. Like previous case, stratification effect due to

SS sampling in first stage is zero.

1.6 Examples

This section contains some examples that illustrate theoretical results. It also covers some special

cases.

Example 1.

As the first example consider a simple liner model

y = xβ +u (1.27)

Here x is a 1×K vector of exogenous variables and β is the K×1 vector of parameters of interest.

Assuming noncorrelationo between exogenous x’s and error term u, E(x′u) = 0, the weighted

estimator provides consistent estimates of β .

The sample optimization problem is

min
θ∈Θ

1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jm(yscm−xscmβ )2 (1.28)

First order condition is

1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmx′scm(y−xscmβ̂ ) = 0
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or

1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmx′scmûscm = 0

where ûscm = yscm− xscmβ̂ . In this linear model and under multi-stage sampling scheme, a con-

sistent estimators of asymptotic variances of β̂ ’s are obtained by applying Theorem (1.3.2) where

consistent estimators of Aw, and Bw are

Âw =
1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmx′scmxscm

and

B̂w =
1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

v2
sc p−1

j r jmz jmx′scmxscm

+
1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

v2
sc p−1

j p−1
j′ r jmr j′tz jmz j′t ûscmûsctx′scmxsct

−
S

∑
s=1

1
N

[
Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmûscmx′scm

]
·

[
Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmûscmx′scm

]′
Example 2.

As the second example, consider binary models like logit or probit. In binary response models

of the form

P(y = 1|x) = G(xβ )≡ p(x)

where x is 1×K, β is K×1, we take the first element of x to be unity. Also we assume 0<G(xβ <

1 for all x and β . The log-likelihood for observation i is

li(β ) = yi log [G(xiβ )]+(1− yi) [1−G(xiβ )]

The weighted estimator in this case simply is the weighted maximum likelihood that gives obser-

vation i in cluster c in stratum s corresponding weight that is vsc · p−1
j .

In this example, consistent estimator of Aw and Bw according to Theorem (1.3.2) are

Âw =
1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmg2

scmx′scmxscm/ξ̂scm (1.29)
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and

B̂w =
1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

K

∑
m=1

v2
sc p−2

j r jmz jmgscmx′scmxscm

+
1
N

S

∑
s=1

Ns
∑
c=1

J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

v2
sc p−1

j p−1
j′ r jmr j′tz jmz j′tgscmgsctx′scmxsct

−
S

∑
s=1

1
N

[
Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmgscmx′scm

]
·

[
Ns
∑
c=1

J

∑
j=1

K

∑
m=1

vsc p−1
j r jmz jmgscmx′scm

]′

Here g(z) =
dG(z)

dz
and ξ̂scm = Ĝscm(1− Ĝscm).

Example 3.

Example 3 is a special case when p j is set equal 1. In other words, we eliminate last level of

stratification or VP sampling. In this case our results in section 3 change to:

Âw = N−1
N

∑
i=1

S

∑
s=1

K

∑
m=1

visyis∇
2
θ

q(wism, θ̂)

And estimation of Bw is

B̂w =N−1
N

∑
i=1

S

∑
s=1

K

∑
m=1

v2
isyis∇θ q(wism, θ̂)∇θ q(wism, θ̂)

′

+ N−1
N

∑
i=1

S

∑
s=1

K

∑
m=1

K

∑
t 6=m

v2
isyis∇θ q(wism, θ̂)∇θ q(wism, θ̂)

′

−
S

∑
s=1

1
N

(
N

∑
i=1

K

∑
m=1

visyis∇θ q(wism, θ̂)

)
·

(
N

∑
i=1

K

∑
m=1

visyis∇θ q(wism, θ̂)

)′
These results are similar to Bhattacharya’s (2005) ones. Also Wooldridge (2008) obtains same

results in case of linear model estimated by least squares.

Example 4.

Consider a case without first level of stratification and clusters that contains just one unit of

observation. Then our results will change to

Âw = N−1
N

∑
i=1

J

∑
j=1

p−1
j ri jzi j∇

2
θ

q(w, θ̂)
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And

B̂w = N−1
N

∑
i=1

J

∑
j=1

p−2
j ri jzi j∇θ q(wi, θ̂)∇θ q(wi, θ̂)

These are same results as Wooldridge (1999) in studying variable probability sampling case.

1.7 Two-Step M-Estimator

Consider a panel data model for a random draw i from the population

E(Yi|Xi = xi) = m(xi,θ◦) (1.30)

where yi is a T × 1 vector on the dependent variable and m(xi,θ) is a T × 1 of conditional mean

functions. Here we assume that explanatory variables are strictly exogenous. Stratification is nor-

mally done on variables on first period. A consistent, asymptotically normal estimator is obtained

by applying pooled weighted M-estimator discussed in previous sections. The estimator of asymp-

totic variance of θ̂ w is obtained from (1.15), where ∇θ q(wism, θ̂ w) is the P×T matrix. Arbitrary

serial correlation and heteroskedasticity are allowed in calculation of the estimator (1.15).

Under assumption (1.30), where conditional mean is correctly specified, can we do more in

context of stratified samples? This is the question that we will answer in the next chapter. In

general, under (1.30) we can use generalized least squares (GLS) methods to obtain more efficient

estimators of the parameters appearing in a set of conditional mean functions. To obtain more

efficient estimators we usually need θ̂ w from the first step.

Let Ω(xi,γ) be a model for the T ×T conditional variance matrix Var(Yi|Xi). If this model

is correctly specified, in general, we can obtain consistent estimator of the true parameters in the

variance matrix, γ◦. In most application, we obtain an estimation of γ from a first step, for example

by using residuals from an initial weighted M-estimator, discussed in this paper. Given, γ̂ , and

assuming that conditional variance matrix is nonsingular for all i, we can estimate θ◦ by solving

min
θ

N

∑
i=1

[yi−m(xi,θ)]
′ [Ω(xi, γ̂)]

−1 [yi−m(xi,θ)] . (1.31)
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Wooldridge (2010) calls the solution to (1.31) weighted multivariate nonlinear least squares (WMNLS)

estimator.

Interestingly, even if the chosen model for the conditional variance Ω(xi,γ) is misspesified,

WMNLS estimator might produce a more efficient estimator of θ◦ than an estimator that ignores

variances and covariances at least under (1.30). In most cases, a misspecified model of variance

matrix captures key features of the conditional second moments. This is the key insight in the

generalized estimating equation (GEE) literature, which is typically applied to panel data models.

In GEE literature, the conditional variance matrix Ω(xi,γ) is called working variance matrix, which

is allowed, and in many cases is known, to be misspecified. In next chapter we investigate the

problem of efficient estimator in panel data models where simple random sampling is not a correct

assumption in more detail.

1.8 Conclusion

Many data sets in economics studies and other branches of social sciences are not i.i.d observations

but come from multi-stage stratification and clustered surveys. These surveys usually produce data

that are not random. Then statistical inference could be faulty if we overlook sampling design.

In this chapter I examine statistical inference in multi-stage sampling designs in framework

of M-estimators. The results show that neglecting sampling scheme causes overestimating or un-

derestimating of the variances. Applying weighted M-estimator gives consistent and normally

distributed estimators regardless of stratification type; exogenous or endogenous. However under

exogenous stratification, unweighted estimators are consistent. The results show that variance of

the weighted estimator consists of three parts. Part one measures variance under “i.i.d” assump-

tion. Parts two and three take into account clustering and stratification effects. Clustering effects

are usually positive, while stratification effect is negative. These two rarely offset each other and

therefore overlooking these two parts is potentially problematic.

An interesting question that arise is the possibility of having more efficient estimator under

stratified samples. Under simple random sampling, and assuming that the conditional mean is
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correctly specified, we can apply generalized least squares methods to obtain efficiency gain. We

follow up this possibility in panel data models with stratified sampling schemes in next chapter.
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Chapter 2

ASYMPTOTIC EFFICIENCY IN THE PANEL DATA MODELS WITH STRATIFIED

SAMPLING

2.1 Introduction

Finding more efficient estimators helps researchers to increase the precision of their statistical

inferences. Efficiency usually comes at a price. It requires stronger assumptions needed for con-

sistency. Here we assume that explanatory variables are strictly exogenous. However in panel

data studies, this assumption is violated in models with lagged dependent variables and perhaps

in models without lagged dependent variables. Fixed effects (FE) and random effects (RE) are

two well known linear methods used in empirical studies that require strict exogeneity of the esti-

mators. In RE approach, the serial correlation in the composite error is exploited in a generalized

least squares (GLS) framework. In GLS procedure we also need to add assumptions on conditional

variance matrix of the error term.

The issue of efficiency in context of stratified sampling has been the subject of interest already.

Among others, Cosslett (1981a, 1081b, and 1993), and Imbens (1992) examines efficiency for

discrete choice models. Imbens and Lancaster (1996) develop a new estimator for this estimation

problem and show that it achieves the semi-parametric efficiency bound for this case. Recently Tri-

pathi (2011) develops efficient empirical likelihood-based inference for moment restriction models

when data are collected by stratified sampling schemes. In this chapter, we study efficiency in panel

data models with stratified data. The main idea is to utilize information within panels similar to

GLS method in order to gain efficiency. It should be emphasized that we are only approximate

the efficient estimator in the sample and try to obtain more efficient estimates compare with just

pooled estimators that ignore correlations within panels. In other words, our goal in this chapter is

not to find the efficiency bound.

The paper is organized as follows. The next section presents the model and conditional moment
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restriction that we need as an assumption to be held in the population. Section 3 introduces the

sampling scheme, sampling objective function and relevant probabilities. In section 4 we first

show that conditional moment restrictions is held in the sample. Then we discuss about efficient

estimators by referring to some well known works in the literature and how one should apply them

in the context of stratified samples. In the same section we drive a function that minimize the

asymptotic variance. In section 6 we do a Monte Carlo experiment with the normal linear case and

look at the results of applying new estimators in case of exogenous and endogenous stratification.

Section 7 shows application of the method on PSID data. In the last section the main finding of

the paper will be summarized and ends with some concluding remarks. All proofs and tables are

contained in Appendices.

2.2 The Moment Conditions

Let Wi be a M× 1 random vector taking values in W ⊂ RM, where RM is an M-dimensional

Euclidean space. Some feature of the distribution of W is function of a P×1 parameter vector θ

that is an element of the parameter space Θ where Θ⊂RP. Now consider the class of estimators

such that a zero conditional moment restriction in the population is satisfied:

E [r(W,θ◦) |W2] = 0 for all W2 ∈W2 (2.1)

Here r(W,θ) is a L× 1 vector of functions, θ◦ satisfies the conditional moment assumptions

and W2 ∈ RK is a sub-vector of W ∈ RM . For instance r(W,θ) can be a vector of residuals and

W2 a vector of instrumental variables. We need standard regularity conditions such as continuity

and differentiability of r(W,θ) on the interior of Θ.

2.3 Sampling Scheme

The analysis of asymptotic behaviors of an estimator becomes more complicated when the data

set comes from non-random sampling schemes like stratified samples. One important source of
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the complexity is the difference between the population distribution on the one hand and sample

distribution on the other hand. However, in simple random sampling these two distributions are

the same.

In multinomial sampling, stratum W j is a subset of W for j = 1, · · · ,J . Let Qs be the proba-

bility of a randomly drawn observation lying in W j i.e.

Q j = P
(
W ∈W j

)
(2.2)

And let S be the stratum indicator that shows from which stratum an observation was drawn. In a

multinomial scheme, first the stratum indicator si where si ∈ {1,2, · · · ,J} is chosen randomly with

probability H j. It means

H j = P(Si = j) (2.3)

In the second step, observation Wi is randomly drawn from the stratum which the indicator si = j.

This leads to the sample objective function

N

∑
i=1

J

∑
j=1

1 [Si = j]
Q j

H j
r(Vi,θ) (2.4)

Unlike random sampling where all the observations are equally weighted no matter which

subpopulation or stratum they belong, in multinomial sampling scheme observations depend on

their stratum have different weights. The objective function in ( 2.4) weights observation i by
Q j

H j
if it comes from stratum j. So if all observations are weighted equally or if Qs = Hs for all s then

there is no gain of stratified sampling over random sampling.

To emphasize the difference between distribution of observations in population and in the sam-

ple under stratified sampling scheme, random vectors in population and in the sample are repre-

sented with W and V respectively.
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2.4 Efficient estimation under moment restrictions

2.4.1 Moment restrictions in the sample

To study efficiency in panel data models when data set comes form stratified samples and under

conditional expectation assumption ( 2.1), one first needs to evaluate conditional expectation of the

sample objective function in equation (2.4). To this end, first for each observation i, define

q(S,V,θ) =
J

∑
j=1

1 [S = j]
Q j

H j
r(V,θ) (2.5)

q(·) is a function of random variable S, an indicator variable representing stratum of observation

i, and random vector V. This function also depends on the sampling weight of each observation

i,
Q j

H j
, that are assumed to be known. We want to show that the expected value of function q(·)

given V2 and evaluated in true parameter value θ◦ is zero.

E [q(S,V,θ◦) |V2] =
J

∑
j=1

E
{

1 [S = j]
Q j

H j
r(V,θo) |V2

}
= 0 (2.6)

Using definition of expected value and assuming that V is a continuous random vector, expected

value of (2.5) is

J

∑
j=1

∫
v∈W

1 [s = j]
Q j

H j
r(v,θ o) ·g(s,v|v2)dv (2.7)

Equation ( 2.7) shows that we need to find the conditional sampling density of S and V given V2,

or g(s,v|v2). Imbens and Lancaster (1996) show that this conditional density function is

g(s,v|v2) =

f (v|v2,θ)
Hs
Qs

J
∑

j=1

H j

Q j
R( j,v2,θ)

(2.8)

Equation ( 2.8) represent conditional sampling density of S and V given V2 in terms of con-

ditional density of V given V2 in the population, sampling weight
Hs
Qs

, and R(s,v2,θ). Here

R(s,v2,θ) is defined to be the probability that a random drawn observation is in stratum s given

V2. It is a known function of s,v2, and θ . Also it is important to note that since we assume the
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strata are not overlapping, the conditional sampling density of S and V given V2 is the same as the

conditional density of V given V2 i.e. g(s,v|v2) = g(v|v2). By substituting ( 2.8) in ( 2.7) we have

J

∑
j=1

∫
v∈W

1 [s = j]
Q j

H j
r(v,θ) ·

f (v|v2,θ)
H j

Q j
J
∑

j=1

H j

Q j
R( j,v2,θ)

dv

=
J

∑
j=1

∫
v∈W

1 [s = j]r(v,θ) · f (v|v2,θ)
J
∑

j=1
R( j,v2,θ)

dv (2.9)

Since W1,W2, · · · ,WJ are mutually disjoint and the union set of this disjoints subpopulations,⋃J
j=1 W j, covers whole population, saying that stratum of observation i is j or Si = j is equivalent

to say that observation i belongs to subpopulation j or
[
vi ∈W j

]
. So we can exchange 1 [s = j]

with 1
[
wi ∈W j

]
in expression ( 2.9) which gives us

=
J

∑
j=1

∫
v∈W

1
[
v ∈W j

]
r(v,θ) · f (v|v2,θ)

J
∑

j=1
R( j,v2,θ)

dv (2.10)

In expression ( 2.10), ∑
J
j=1 R( j,v2,θ) is constant and 1

[
v ∈W j

]
just defines the limits of integra-

tion and therefore (2.10) can be rewritten as

=
1

J
∑

j=1
R( j,v2,θ)

J

∑
j=1

∫
v∈W j

r(v,θ) · f (v|v2,θ)dv

=η

∫
v∈W

r(v,θ) · f (v|v2,θ)dv (2.11)

Here η =
1

J
∑

j=1
R( j,v2,θ)

is a constant and equation ( 2.11) by definition is the conditional expec-

tation of r(·) or ∫
v∈W

r(v,θ) · f (v|v2,θ)dv = E [r(V,θ) |V2] (2.12)

By assumption ( 2.1), equation (2.12) evaluated in true parameter value θ◦, is equal to zero. Hence

we show that although multinomial sampling changes the distribution of observations in the sample

but zero conditional mean assumption is still held. we summarize the above finding in the following

lemma.

28



Lemma 2.4.1. If zero conditional moment (2.1) evaluated in true parameter value θ◦ holds in the

population, then under multinomial stratification sampling scheme, its analog in the sample (2.6)

evaluated in θ◦ is zero also.

The result is valid under standard stratified and variable probability sampling schemes too.

Imbens and Lancaster (1996) show that these three common types of stratification can be analyzed

in a unified manner. They show that regardless of the actual sampling scheme efficient inference

should be identical for both standard stratified sampling and multinomial sampling. And variable

probability sampling model is just a re-parametrization of the multinomial sampling scheme and

therefore the inference should be identical for both models.

2.4.2 Efficient estimation

The result in previous section opens door to apply the well known results developed by Chamber-

lain (1987), and Newey and McFadden (1994) to find the smallest asymptotic variance under zero

conditional mean assumption ( 2.1). To find such a solution let

Ω(W2,θ◦) = E
[
r(W,θ◦)r(W,θ◦)

′ |W2
]
=Var [r(W,θ◦) |W2] (2.13)

be the T ×T conditional variance of r(W,θ◦) given W2, in the population, and define

G(W2,θ◦) = E [∇θ r(W,θ◦) |W2] (2.14)

be the T ×P conditional mean of gradient in the population. Then it can be shown that

Z∗ (W2,θ◦) = Ω(W2,θ◦)
−1 G(W2,θ◦) (2.15)

is the function that minimize the asymptotic variance. This function is T ×P and the efficient

method of moments estimator solves

E
[
Z∗ (W2,θ◦)

′ r(W,θ◦)
]
= 0 (2.16)
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Since stratification changes the distribution of observations in the sample we need first to evaluate

conditional variance of the sample objective function q(S,V,θ). In the first appendix, we show

that this variance is equal to

E
[
q(S,V,θ◦)q(S,V,θ◦)

′ |V2
]
=

J

∑
j=1

Q j

H j
E
[
r(V,θ◦)r(V,θ◦)

′ |V2,S = j
]

(2.17)

We can write the right hand side of equation ( 2.17) in terms of the conditional variance of

r(V,θ) in each stratum and so (2.17) can be rewritten as

var [q(S,V,θ◦) |V2] =
J

∑
j=1

Q j

H j
var [r(V,θ◦) |V2,S = j] (2.18)

+
J

∑
j=1

Q j

H j
E [r(V,θ◦) |V2,S = j]E [r(V,θ◦) |V2,S = j]′

Expression ( 2.18) show that sampling conditional variance of r(V,θ) is equal to the sum of

conditional weighted variances in strata plus the sum of conditional weighted squares of means in

strata. To see the effect of stratification, it is useful to compare it with random sample case, where

each observation in population has same weight or in other words Q j = H j for all j, and assume

conditional expected value in each stratum is equal to conditional expected value in the population

which is zero by assumption. Then equation ( 2.18) reduces to sum of conditional variances in

strata.

There are two interesting cases that need attention. First case is when strata are function of

exogenous variables V2. Then the stratification is exogenous. It causes the second term in right

hand side of ( 2.18) to be zero, because

E [r(V,θ◦) |V2,S = j] = E [r(V,θ◦) |V2] = 0

and equation ( 2.18) simplifies to

var [q(S,V,θ◦) |V2] =
J

∑
j=1

Q j

H j
{var [r(V,θ◦) |V2]}= Ω(V2)

J

∑
j=1

Q j

H j
(2.19)

and since ∑
J
j=1

Q j

H j
is constant, it does not affect the variance, and therefore conditional variance

of q(S,V,θ) is equal to conditional variance of r(V,θ) in the population.
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The second case occurs when despite changes of the variances between strata the structure of

correlation remains constant. As an example consider cases like AR(p) or MA(q). If variance-

covariance matrix remains same despite stratification then by Equation(2.17) the sample objective

function q(S,V,θ) has same variance as r(V,θ) in the population. Actually in the next section we

assume that the variance-covariance matrix does not change by stratification and then check the

simulation results for this case by assuming that the correlation follows AR(1) process.

We also need to check the score of the objective function. In the first appendix we also show

that the conditional expected value of the sample gradient vector is

E [∇θ q(S,V,θ) |V2] = E [∇θ r(V,θ) |V2] . (2.20)

The right hand of ( 2.20) is the conditional expected value of the population Jacobian matrix.

It leads us to optimal instruments matrix that is a T ×P matrix

Z∗ (V2)≡ {var [q(S,V,θ◦) |V2]}−1 E [∇θ q(S,V,θ◦) |V2] (2.21)

Therefore the efficient method of moments estimator GMM solves the sample moment condi-

tions

N

∑
i=1

Z∗ (V2)
′ q
(

θ̂

)
= 0 (2.22)

This is a T ×P matrix.

2.5 Examples

In this section some specific examples are covered that illustrate the theoretical results.

Example 1.

As the first example consider linear model

Yi = Xiθ +Ui (2.23)

where Y is a T × 1 vector of dependent variables, X is a T ×P matrix of control variables, θ

is a P× 1 vector of parameters and finally U is a T × 1 vector of error terms. In this example
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r(Xi,Yi,θ) = Ui = Yi−Xiθ . We assume strict exogeneity assumption

E(U|X) = 0 (2.24)

and add assumption that variance-covariance function in the population is function of control vari-

ables X

E
[
UU′|X

]
= Ω(X) (2.25)

Under multinomial sampling scheme we have

q(X,Y,S,θ) =
J

∑
j=1

1 [S = j]
Q j

H j
U (2.26)

and by equations( 2.12) and ( 2.17) conditional expected value and conditional variance of this

function are

E [q(X,Y,S,θ) |X] = 0 (2.27)

and

var [q(X,Y,S,θ) |X] =
J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]
(2.28)

respectively. From (2.28), it is clear that variance matrix is a function of X and strata. Also

conditional expected value of gradient vector in this simple linear model is x according to ( 2.20).

Therefore optimal choice of instrument according to ( 2.21) is{
J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]}−1

x (2.29)

And GMM solution that produces efficient estimators solves

N

∑
i=1

x′i

{
J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]}−1 J

∑
j=1

1 [S = j]
Q j

H j
Ui = 0 (2.30)

Computational version of ( 2.30) can be written as

J

∑
j=1

Q j

H j

N j

∑
i=1

x′i j

{
J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]}−1

ui j = 0 (2.31)
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Estimation of θ◦ are obtained by solving equation ( 2.31). These parameters estimations are

θ̂wGMM=

 J

∑
j=1

Q j

H j

N j

∑
i=1

x′i jΩ̂
−1(x, j)xi j

−1 J

∑
j=1

Q j

H j

N j

∑
i=1

x′i jΩ̂
−1(x, j)yi j

 (2.32)

that looks like a GLS estimator. In (2.32) N j is the sample size in stratum j and Ω̂−1(x, j) is an

estimation of variance matrix var [q(X,Y,S,θ) |X = x] =
J
∑

j=1

Q j
H j

E
[
UU′|X = x,S = j

]
. To have a

clear idea about equation (2.32), as an example, assume that variance matrix (2.28) is a function

of gender. In this case we need to obtain Ω̂−1( f emalei, j) and Ω̂−1(malei, j) for each stratum j;

j ∈ {1,2, . . . ,S}. In cases that conditional variance matrix is a function of continuous explanatory

variable xi j, one possible solution is to divide it into some interval and then estimate variance

matrix for each interval in each stratum j separately. Of course if we know the functional form of

relationship between the variance matrix and the explanatory variable xi in each stratum j, we can

improve the efficiency in our model by incorporating this knowledge in the estimation process. For

example if we are interested in relationship between saving and income in different states and a

theory provides an specific form for the variance matrix that relates changes in second moments of

saving to changes in income and other explanatory variables then we are in a situation like weighted

least squares that provides more efficient estimators relative to OLS. Note that in weighted least

square the reason for weighting observations is to solve heteroskedastisity problem while in models

with stratified or complex sampling design we need weights even in homoskedastic cases.

we can summarize the above procedure to find a GMM estimator in panel data models with

stratified structure in few simple steps as follows:

1. Obtain a consistant estimation of θ .

2. Obtain residuals ûi jt

3. Estimate Ω j(X) = E[UU′|X,S = j] for each stratum j. Call them Ω̂ j(X).

4. Form Ω̂(X,S) by adding weighted Ω̂ j(X).

5. By substitute Ω̂(X,S) in equation (2.32), we obtain θ̂ wGMM which we hope it is more efficent

than a pooled estimator.
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Obtaining a consistent estimator of θ should not be difficult. Any computer package that allows

users to estimate surveys panel data can be used to do the first step.

Example 2.

The second example considers a nonlinear model. Assume

E [Yt |Xt ] = m(Xt ,β◦) , t = 1, · · · ,T (2.33)

Here {(Xt ,Yt) : 1,2, · · · ,T} is the time series observations for a random draw from the cross section

population and assumption ( 2.33) simply means that parametric model for E [Yt |Xt ] has been

correctly specified. For example if Y is a count variable, a Poisson QMLE can be used. In this case

and in general for Y ≥ 0 and unbounded from above, the most common conditional mean function

is the exponential

m(Xt ,β ) = exp(Xtβ ) (2.34)

where Xt is 1×K and contains unity as its first element, and β is K×1. If we impose the Gener-

alized Linear Models (GLM) assumption then

var (Yt |Xt) = σ
2
◦m(Xt ,β◦) = σ

2
◦ exp(Xtβ ) , t = 1,2, · · · ,T (2.35)

In this model r(X,Y,β ) = Y− exp(Xβ ) = U and U is T × 1 vector with elements Ut = Yt −

exp(Xtβ ) for t = 1,2, · · · ,T . By multinomial stratified sampling and according to (4.1), sample

objective function is

q(X,Y,S,β ) =
J

∑
j=1

1 [S = j]
Q j

H j
U (2.36)

Its conditional expected value is zero as it shown in general case, and its conditional variance

is

var [q(X,Y,S,β ) |X] =
J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]
(2.37)
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by ( 2.17). Conditional expected value of gradient of sample objective function is

E
[
∇β q(X,Y,S,β ) |X

]
=



−X1 exp(X1β )

−X2 exp(X2β )

...

−XT exp(XT β )


T×K

= R(X) (2.38)

Then optimal choice of instruments is given by{
J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]}−1

R(X) (2.39)

And finally GMM estimators are obtained by solving

N

∑
i=1

R(X)′
{

J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]}−1 J

∑
j=1

1 [S = j]
Q j

H j
Ui = 0 (2.40)

Here, one way to approach is to model E
[
UU′|X,S = j

]
similar to the first example hoping

to obtain more efficient estimators. However, we can choose a hypothesized structure for the

within-panel correlation like generalized estimating equations (GEE) literature. The main idea

in GEE approach in panel data models is that under strict exogenity assumption (2.1), even a

misspecified model for the conditional variance (2.17) that nevertheless captures key features of the

conditional second moments might lead to a more efficient estimator of θ◦ than an estimator that

ignores variances and covariances. Identity matrix is the simplest form of the correlation within the

panels that assumes independency or in other words no correlation within panels. Exchangeable

correlation matrix is a simple extension to this structure. This matrix looks like

Λ(α) =



1 α · · · α

α 1
...

... . . . α

α α 1


(2.41)

Here parameter α is a scalar that shows common correlation among observations within the panels.

For an example consider a health study in which the panels are clinics and the observations

within the panels i.e. clinics are patients.
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If observations within the panels have a natural order it is more reasonable to assume the au-

toregressive structure for within the panels correlation. In health study case for instance, one can

consider that the panels represent patients who are measured over time. In this case an autoregres-

sive process can be a good model for dependency of a patient’s health conditions over time. In

section 5 we consider the autoregressive structure implied by the AR(1) for the correlation matrix

to study a linear model. There are several ways in which we might hypothesize the within-panel

correlation. To see more options and examples see Hardin and Hilbe (2003).

By assuming correlation matrix (2.41), and adding GLM assumption ( 2.35), the variance of

sample objective function reduces to

var [q(X,Y,S,β ) |X] = m(X)
1
2 Λ(α)m(X)

1
2

(
J

∑
j=1

Q j

H j
σ j

)
(2.42)

where m(X) is 

m(X1,β ) 0 · · · 0

0 m(X2,β )
...

... . . . 0

0 0 m(XT ,β )


(2.43)

and by dropping ∑
J
j=1

Q j

H j
σ j in ( 2.42) equation ( 2.40) changes to (2.44) in the sample

N

∑
i=1

R(x)′m(x)
−1
2 Λ(α)−1 m(x)

−1
2

J

∑
j=1

1 [S = j]
Q j

H j
ui = 0 (2.44)

Equation ( 2.44) can be represented as

J

∑
j=1

Q j

H j

N

∑
i=1

R(x)′m(x)
−1
2 Λ(α)−1 m(x)

−1
2 ui j = 0 (2.45)

2.6 The normal linear model: A Monte Carlo investigation

It would be insightful to have a Monte Carlo analysis of a number of examples of stratified sam-

pling in the normal linear model. We consider the simple following model
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Yi = Xiθ +Ui U|X = x∼ N
(

0,σ2
Ω

)
, and xit ∼ N (0,1) for i = 1, · · · ,N (2.46)

In this simple two-variable linear regression model Yi is a T ×1 vector of dependent variable,

Xi is a T × 2 matrix of explanatory variables where the first column is a constant term. Ui is a

T ×1 vector of error terms. The vector of parameters θ has two elements; intercept θ◦ and slope

θ1. We set zero and one as true values of the intercept and slope in population respectively. We

also assume that the only control variable in the model Xit has the normal standard distribution

and error term U has the normal distribution with mean zero and variance σ2Ω, where Ω has a

first order autoregression AR(1) structure with parameters ρ and σ2 = 1. Under these assumptions

variance-covariance matrix is

E
[
UiU′i|Xi

]
= E

[
UiU′i

]
= σ

2
Ω =



1 ρ · · · ρT−1

ρ 1
...

... . . . ρ

ρT−1 ρ 1


(2.47)

Three strata are considered

W1 = X ×(−∞,−0.25) and W2 = X ×(−0.25,1.5) and W3 = X ×(1.5,∞)

That are endogenous. We also consider three exogenous strata that are

W1 = (−∞,−0.25)×Y and W2 = (−0.25,1.5)×Y and W3 = (1.5,∞)×Y

In all cases the strata are defined by dividing the population into subpopulations in the first

period t = 1. W =(X ,Y ) is the population space where W ⊂R2. In this example population

weights Q1, Q2, and Q3 are known. These weights are obtained from normal distribution with

mean zero and variance two in endogenous case and standard normal distribution in exogenous

one. The Hs or sampling probabilities are equal to
Ns
N

for s ∈ {1,2,3}. Here Ns is the number of

observations from stratum s and N is the sum of the total number of observations in the sample.

We estimate parameters and their asymptotic variances by estimators developed in this pa-

per which we call them weighted GLS and un-weighted GLS and compare them with OLS and

weighted pooled OLS.
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In this exercise sample objective function is ( 2.26) in the first example and its variance is equal

to

var [q(X,Y,S,θ) |X] =
J

∑
j=1

Q j

H j
E
[
UU′|X,S = j

]
=

J

∑
j=1

Q j

H j

(
σ

2
1 Ω+σ

2
2Ω+σ

2
3Ω

)
=

(
3

∑
j=1

Q j

H j
σ

2
j

)
Ω (2.48)

The term
(

∑
3
j=1

Q j

H j
σ2

j

)
in ( 2.48) is a constant and has no effect in estimating the parameters

so we drop it for simplicity. Therefore, with these simplifications, var [q(X,Y,S,θ) |X] = Ω is the

variance matrix in the population which is not a function of control variables X. Of course, by

changing assumptions, we can obtain different estimations for the variance. In this example, we

consider the simplest case by assuming strong assumptions to make estimation easy to execute.

Weighted GLS estimation of θ◦ and θ1 are obtained by solving equation ( 2.30) in the first

example. These parameters estimations are

θ̂wGLS=

 J

∑
j=1

Q j

H j

N j

∑
i=1

x′i jΩ
−1xi j

−1 J

∑
j=1

Q j

H j

N j

∑
i=1

x′i jΩ
−1yi j

 (2.49)

that looks like GLS estimator. In (2.49) N j is the sample size in stratum j.

To have a good judgement of how much gain a practitioner obtains by using this estimator a

comparison between estimators developed in this paper and two other estimators is done by using

simulation. The comparison is between weighted GLS estimator equation ( 2.49) and unweighted

GLS estimator which is exactly same as ( 2.49) but drops the weights
Q j

H j
for all j′s, and weighted

pooled OLS that ignores the correlation over time for each cross section observation i

θ̂wOLS =

 J

∑
j=1

Q j

H j

N j

∑
i=1

x′i jxi j

−1 J

∑
j=1

Q j

H j

N j

∑
i=1

x′i jyi j

 (2.50)

And usual OLS assuming homoscedasticity. We also estimate feasible version of weighted and

unweighted GLS estimators and call them weighted and unweighted FGLS estimators respectively.

So in total six estimators are evaluated in the simulation.
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Also we look at the variance of these estimators to evaluate their efficiency. An appropriate

estimator of asymptotic variance of θ̂wGLS is

̂
Avar

(
θ̂wGLS

)
= Â−1

w B̂wÂ−1
w (2.51)

Where Âw = ∑
J
j=1

Q j

H j
∑

Nj
i=1 x′i jΩ

−1xi j and B̂w is more complicated

B̂w =
J

∑
j=1

Q2
j

H2
j

N j

∑
i=1

x′i jΩ
−1ûi jû′i jΩ

−1xi j

−
J

∑
j=1

Q2
j

H2
j

 1
N j

N j

∑
i=1

x′i jΩ
−1ûi j

 1
N j

N j

∑
i=1

x′i jΩ
−1ûi j

′ (2.52)

If weights are dropped from ( 2.51) we obtain the estimator of asymptotic variance of un-

weighted GLS;
̂

Avar
(

θ̂uwGLS

)
. And if the variance-covariance matrix Ω is dropped from ( 2.51)

we have estimator of asymptotic variance of weighted pooled OLS in hand.

As it mentioned already, in this exercise we consider variance-covariance matrix with AR(1)

structure in the population. As equation ( 2.48) shows if we assume ρ does not change by changing

the stratum then there is only one parameter that we need to estimate i.e. ρ . In practice it is possible

to estimate different ρ for different stratum too but for simplicity, in this example, we assume ρ

in each stratum is equal to the value of ρ in population. Therefore, it is a constant parameter

and not a function of strata. However, there is a point that we should keep in mind. we call our

estimators GLS (weighted or unweighted) whenever we use the value of ρ in population, since the

equation (2.52) is very similar to well known GLS estimators. However, this naming may cause

some confusion, since we do not know the true value of ρ in each stratum. We just “assume” that

they are equal to the value of ρ in the population of interest. Now, it should be clear why in tables

B.1 to B.16, the estimated parameters from GLS and FGLS are very close in most cases.

We consider four values for correlation parameter . It changes from no correlation ρ = 0 to

high degree of correlation ρ = .9. In between ρ = 0.1 and ρ = 0.5 are considered. It helps us to

see the effect of correlation magnitude on the efficiency gain in this simple exercise.
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Tables B.1 to B.4 and B.5 to B.8 in the second appendix summarize the results for cases T = 2,

and T = 5 respectively when stratification is exogenous. In these tables means and their stan-

dard errors, and mean squared errors for the intercept and slope for six estimators are reported.

When ρ = 0, POLS and unweighted GLS (uwGLS) are almost identical as we expected. Under

exogenous stratification it has been shown that ignoring stratification does not cause any problem.

See for example Manski and McFadden (1981), DuMouchel and Duncan (1983) and Wooldridge

(1999, 2001). This is clearly seen in the tables. In both T = 2, and T = 5 cases OLS that ignores

stratification and unweighted GLS and its feasible counterpart are superior to weighted POLS and

weighted GLS and their feasible versions; they are consistent and more efficient.

The interesting point, that is actually the main issue of this paper, appears when correlation

increases. Now as ρ increases un-weighted GLS and its feasible version which takes correlation

into account by considering it in estimation process, shows its efficiency over OLS and weighted

POLS that simply ignore correlation. This is especially correct about estimation of slope rather

than intercept that does not change very much except in a high degree of correlation.

As an illustration consider exogenous stratification and T = 2 and ρ = 0.9 in table B.4. In this

case the mean of the slope is almost the same in both POLS and un-weighted FGLS, but the latter

estimator mean squared error is .0151 compare to .0355 in the former. It shows about 57 percent

reduction that is substantial. In case T=5 the cutback is even more and it is about 62 percent that is

presented in table B.8.

When ρ decreases to 0.5, the improvement in efficiency is still considerable. In this case and

T = 2 in table B.3, mean of standard deviation for slope decreases from .0355 for OLS to .0302

for un-weighted FGLS. The mean of standard deviation diminishes about 18 percent when T is 5

(table B.7). Meanwhile the mean of standard deviation for intercept does not show any changes at

all when T = 2 but it shows a sign of improvement as T increases to 5 albeit not too much.

The simulation results show that in the case of exogenous stratification in a panel data model,

un-weighted GLS and its feasible counterpart that consider the structure of variance-covariance

matrix in estimation is better than OLS and weighted POLS that simply ignore correlations within
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each cross-section observation. Another interesting observation is that even weighted GLS in

the case of exogenous stratification is getting better in terms of reduction of bias and smaller

variances when the degree of correlation increases. It is definitely superior to weighted POLS and

its estimation of slope has much smaller variance comparing with POLS when ρ exceeds .5 (Tables

B3, B4, B7 and B8).

Also the results show that as correlation increases the difference between standard deviation

of mean-presented in parentheses- and mean of standard deviation of intercept increases for OLS

estimator that a sign that variance of OLS estimator is inconsistent and the inconsistency raises

along with . However the inconsistency for the variance of slope is much lesser and does not show

significant variation alongside the change in correlation between observations.

The main challenge is when stratification is based on the endogenous variable. In this case un-

weighted estimators are generally inconsistent. Tables B.9 to B.12 and B.13 to B.16 summarize the

results when stratification is based on the endogenous variable for cases T = 2 and T = 5 respec-

tively. As it is expected OLS and un-weighted GLS and its feasible un-weighted counterpart all

produce inconsistent estimations for both the slope and intercept. The interesting point is that this

inconsistency shrinks for slope but enlarges for intercept by increase in the correlation parameter

for both estimators. Moreover OLS gives inconsistent estimation of the variances too although it

is reduced by increase in ρ . It can be seen by comparing the standard deviation of mean presented

in parentheses and mean of standard deviations.

Results presented in the tables B.9 to B.16 show that in case of endogenous stratification

weighted estimators- weighted POLS, weighted GLS and weighted FGLS- are consistent and are

almost same in low values of correlation parameter ρ = 0 and ρ = 0.1. The difference between

these estimators are more remarkable when correlation parameter ρ starts growing. For example

in table B.11, when T = 2 and ρ = 0.5, while weighted POLS and GLS are both consistent estima-

tors for the slope, the latter has standard deviation of mean equal to .0365 comparing to the former

which is equal to .0414. In case of T = 5 this difference is even more considerable (look at table

B.15).
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Superiority of weighted GLS or its feasible equivalent to other estimators is unambiguously

clear if we increase ρ to 0.9. In this case and when T=2, mean of standard deviation of the slope is

.0186 which is less than half of the same value for its closest competitor i.e. weighted POLS that is

about .0408 (Table B.12). The difference between weighted GLS and the rest of the estimators is

even more dramatic when T=5. In Table B.16, we can compare the efficiency of weighted GLS and

weighted POLS. Here the mean of the standard deviation of the slope for weighted GLS is just 36

percent of the same value for weighted POLS (.0098 verses .0272). Of course this big advantage

of weighted GLS verses weighted POLS are just substantial for the estimation of the slope not the

intercept.

In another set of Monte Carlo experiments, we relaxed the assumption that the correlation

matrix is same for all strata and estimate the matrix for each stratum. The results are even better; we

have estimators with smaller variances although in most cases the variances of the old and the new

ones are very close. We also repeated the experiment by changing the covariance matrix structure

to the random effect model. The results show that weighted and unweighted GLS estimator are

efficient estimators in the endogenous and exogenous stratification respectively. In order to make

the appendices shorter we do not report the related tables and results.

Overall the simulations show the way to some tentative conclusions. First, finding more ef-

ficient estimators in panel data models with stratified sampling structure and under appropriate

assumptions is possible. Depending on whether the stratification is based on exogenous or en-

dogenous variable, the GMM estimators developed in this paper, i.e. unweighed or weighted GLS,

outperform OLS or weighted POLS which do not consider the correlations over time within each

panel i.

Second, this superiority is positively related to the level of correlation of a cross section obser-

vation through time. In low level of correlation there is no big advantage of using GMM over OLS

or weighted POLS. This is changed when correlation parameter is get bigger.

Also for the same sample size the efficiency gain depends on what the structure of correlation

is or what kind of structure is chosen in case of GEE models. The simulation results show that
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correlation matrix structure affect the amount of reduction in the variances of the estimators.

2.7 Determinants of Family income in the U.S: An Empirical Application

In this section we analyze the determinants of family income and sources that cause family incomes

varies across households. We estimate a simple linear model that considers total family income a

function of family characteristics like education of head of family, age of the head, gender of the

head, marital status of the head and so on. The model is estimated with different methods. These

methods are pooled OLS, weighted POLS, feasible GLS and weighted feasible GLS methods de-

veloped in this paper to compare the efficiency gain if there exist any.

The source of the data set used in this exercise is the 2003-2009 Panel study of Income Dy-

namics (PSID). The PSID is a complex longitudinal panel survey that have collected data from

the same families and their descendants in United States since 1968. Data has been collected on a

wide range of economic, social, demographic, psychological and health factors over the life course

and across generations. The sample size has grown from roughly 4,800 families in 1968, to about

7,400 by 2005, and to more than 8,690 families and 24,385 individuals as of 2009 (Heeringa, et

al., 2011) . As of 2009, the PSID has information on over 70,000 individuals collected over the

past four decades.

the core sample of individuals and their families in PSID is rooted in two distinct samples.

The Survey Research Center designed a nationally representative sample that known as the SRC

sample. The second sample known as the Survey of Economic Opportunity or SEO sample, drawn

mainly from lower income families. An oversample of low-income families was included to pro-

vide adequate sample size for investigating poverty related issues. Roughly 18,000 individuals

living in 4800 households were members of the original 1968 sample. In 1997, PSID Immigrant

Supplement added 511 immigrant families to the core sample to obtain more complete picture

from the population and to enhance representativeness.

Individuals in PSID fall in two categories; sample and non-sample persons. By definition a

sample person is someone who is either a resident of a PSID original sample family in 1968, or an
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offspring born to or adopted by a sample individual who is actively engage in the study at the time.

The definition of sample persons slightly relaxed in 1994 and allowed a child born to or adopted

by a sample person who was not participating in the study to be considered as a sample person.

According to Heeringa, et al. (2011a), from 24,385 individuals distributed in 8,690 families in

2009, 17,471 are PSID sample persons and 6,914 are non-sample spouses and family members.

Longitudinal weights are calculated at the beginning of a four year (two wave) cycle. The last

cycle began in 2007, and therefore the 2009 weights are just “carry-over” weights. Weights need to

adjust for attrition and also changes in family size that happens because of marriage, divorce, death,

and other additions of new members. The longitudinal family weight in PSID is the average of the

positive individual weights for sample person and zero value weights for non-sample persons in

the family. For example if a PSID sample person with an individual longitudinal weight of 100 has

spouse who is a PSID non-sample person with assigned weight equal to 0, then the family weight

for this two-person family is 50. For more detail on the construction of the PSID longitudinal

family and individual weights see Heeringa, et al. (2011a, b).

To study the relationship between income and family characteristics covariates, a simple linear

model is considered where dependent variable is total family income or t f inc, which is the sum

of taxable income of the family head and his wife and other members of the family last year plus

social security income of the head, his wife and other members of the family unit. This variable

can take negative values that indicate net losses occur as a result of business or farm activities. The

model is represented as

t f incit = Xitβ + vit (2.53)

where X is a vector of family characteristics. Here vit ≡ ci + uit , t = 1, . . . ,T are the composite

error, ci, i = 1, . . . ,N are unobserved heterogeneity, and idiosyncratic errors are uit . Parameters

of interest is represented by vector β . The vector X include the total family wealth (twealth), the

head’s age, age square (age2) and age cube (age3), health condition of the head, marital status,

education level, and employment status of the head, family size ( f size), persons less than 6 years of

age in the family (aychild6), the head’s father and mother education levels, race and gender of the
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head, and number of persons less than 18 years of age (nchild) in the family as well as year dummy

variables and intercept. The variable twealth is constructed as sum of seven asset types, net of debt

value plus value of home equity. We also added interaction terms between education level of the

head (edu_hs) and his age and between edu_hs and the head’s employment status, unemployed to

the model. Tables B.17 and B.18 provide variables description and summary statistics respectively.

The panel in this empirical study consists of 4 waves ( 7 years) starting 2003 and ending 2009.

The 2003 longitudinal family weights are used. After dropping all observations with missing

values and strata with just one panel, the final data set is a balanced panel, contains of 15,672

observations or 3,918 panels distributed between 33 strata.

To estimate family income equation (2.53), seven methods are used. These seven methods are

pooled OLS, and weighted pooled OLS that ignore the serial correlation problem, and feasible

versions of generalized least squares (GLS) that consider two forms for the serial correlation. The

first form is a first-order autoregression AR(1), and in the second form the random effect structure

is estimated for unconditional variance matrix of error term vit . the remaining three methods

are weighted FGLS discussed in this paper. Beside AR(1) and the random effects, we estimate

unrestricted variance matrix of error term i.e. Ω̂ = N−1
∑

N
i=1

ˆ̂vi ˆ̂v′i where the ˆ̂vi is a 4× 1 of the

pooled OLS residuals. We call these three methods wFGLS_ar1, wFGLS_re and wFGLS_un

respectively. We hope to obtain efficiency gain by using the latter estimators to estimate total

family income equation (2.53).

The estimation results are presented in Table B.19. Robust standard errors are listed in paren-

theses. In wFGLS_ar1, wFGLS_re and wFGLS_un standard errors are calculated using equations

(2.51) and (2.52). In Table B.19, λ̂ is a consistent estimation of λ , and λ is

λ = 1−{1/[1+T (σ2
c /σ

2
u )]}1/2 (2.54)

where σ2
c , and σ2

u are the variance of ci, and the variance of uit , respectively. If λ̂ is close to unity,

the random effects (RE) and fixed effects (FE) estimates tend to be close.

We just estimate one variance matrix for all strata, same as the Monte Carlo study case repre-

sented in last section. The results show that almost all coefficients have expected signs regardless

45



of the method of estimation. However, depending on which method we use for estimation, their

magnitudes widely differ in many cases. For example, in terms of absolute value, the coefficient

on edu_hs estimated by weighted pooled OLS is -31.082, and the same coefficient drops to just

-2.636 when the model is estimated by FGLS_re and rise to -9.913 in FGLS_ar1 case (columns 2,

3 and 5 in Table B.19). These substantial changes in the size of most coefficients are mainly due

to weighting. A simple comparison between unweighted FGLS methods in columns 3 and 5 with

their weighted counterparts in columns 4 and 6 in Table B.19, shows substantial effect of weight-

ing on size of the coefficients. For instance, consider again coefficient on edu_hs. It is about 10

times bigger if the family income equation is estimated by wFGLS_re rather than FGLS_re. Same

coefficient is almost 3 times bigger if wFGLS_ar1 is used for estimating the same model instead

of FGLS_ar1. As another example consider coefficient on health. The size of the coefficient falls

almost 50% when the model is estimated by FGLS instead of wFGLS.

The big effect of weighting on estimation should not view unusual. Since PSID purposely

oversample low income family and in our model income is the dependent variable, OLS using the

stratified sample does not consistently estimate the parameters of the total family income because

the stratification is endogenous. This is true for unweighted FGLS estimators i.e. FGLS_ar1 and

FGLS_re also. The pooled OLS standard errors are smaller than the weighted pooled OLS ones

as we expected. In chapter one we showed that by ignoring stratification, the pooled OLS tends to

underestimate standard errors. The standard errors are even smaller in the other two unweighted

FGLS estimators as it was expected. Therefore, despite smaller standard errors of the unweighted

estimators, the main competition is between the weighted pooled OLS on the one hand and the

weighted FGLS methods on the other hand that reflects in columns 2, 4, 6 and 7 in Table B.19.

The main idea in this chapter was to increase efficiency in panel data models with stratified data

by considering serial correlation in each panel. Under correct conditional mean specification, even

a wrong working correlation matrix that captures key features of the conditional second moments

might lead to a more efficient estimator. Comparison between the weighted pooled OLS and the

weighted FGLS estimators in Table B.19 shows that standard errors are smaller almost in all cases
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for latter estimators indeed. The only exceptions are coefficients on father and mother education

levels f edu_hs, medu_hs. Reduction in standard errors are considerable. For example, standard er-

ror on twealth reduces about 33 by using wFGLS to estimate the family income equation. Standard

errors of the rest of coefficients drops between 4% (coefficients on age and nchild), and about 35%

(coefficients on unemployed, and unem.edu_hs). Three consistent estimators i.e. wFGLS_ar1,

wFGLS_re, and wFGLS_un are very stable in estimating almost all coefficients, but it seems that

efficiency gain is higher in case of wFGLS_re, and wFGLS_un compare to wFGLS_ar1.

2.8 Conclusion

Efficiency in panel data models where data set comes from stratified sample schemes is investi-

gated in this paper. We start from some conditional moments in the population and then based on

works done by Chamberlain (1987) and Newey and McFadden (1994) propose a GMM estimator

that takes into account dependency structure within the panels. The result is an efficient GMM

estimator that is computationally simple to implement. By estimating covariance matrix for each

stratum or even estimating same covariance matrix for all strata we are able to improve efficiency.

Monte Carlo simulation results show that the new estimators that we called them weighted

and unweighted GLS (and FGLS) in general do better in compare with ordinary least square or

weighted and unweighted pooled OLS that simply overlook dependency in the data. In case of

endogenous stratification weighted GLS is the efficient estimator among all, and in case of ex-

ogenous stratification dropping weight and using unweighted GLS produce best performance as

we expect. Of course the gains of new estimators are smaller when we have weaker correlation

structure in the panel. Monte Carlo experiments show that the structure of correlation matrix has

affects on efficiency gain.

Also simulation results suggest that by increasing T , the importance and effects of endogenous

stratification is reduced. A convincing explanation is that by increasing T , the weight of first

period diminishes that makes the sample get closer to simple random sampling. Another interesting

finding is that by increasing the degree of correlation ρ , inconsistency declines that can attributed
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to decrease in degree of freedom movements of observations.

We apply the method to estimate a simple linear model using PSID data. Although PSID has

very complex structure including multi-stage stratification, by considering very simple form for

the working variance matrix the new estimators decrease standard errors on most coefficients in

the model.
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Chapter 3

MODEL SELECTION TESTS IN COMPLEX SAMPLES

3.1 Introduction

Using the Kullback-Leibler Information Criterion to measure the closeness of a model to the truth,

Vuong (1989) developed a classical approach to model selection. He proposes simple likelihood

ratio based statistics for testing the null hypothesis that the competing models are equally close

to the true data generating process against the alternative hypothesis that one model is closer. In

his approach both, one, or neither of the two competing models is misspecified. He assumes

that observations are independent and identically distribute (i.i.d.). All of his tests are based on

likelihood ratio principle, and consequently he drives asymptotic distribution of the likelihood

ratio statistics that covers both nested, overlapping and non-nested models.

While Vuong’s tests are based on i.i.d. assumption, in practice in most large surveys, such as

the Current Population Survey (CPS), the Panel survey of Income Dynamics (PSID) and National

Survey of Families and households (NSFH) that require stratified and clustered samples, simple

random sampling and therefore i.i.d. observations is not the right assumption. In other words, a

non-random sampling scheme like Standard Stratified (SS) sampling or Variable Probability (VP)

sampling, or complex survey design like CPS does not produce a set of independent, identically

distributed random variables. Clearly, the i.i.d. assumption is one of the limitation of the Vuong’s

model selection tests in case of complex samples. This assumption is restrictive when considering

time series data too. Rivers and Vuong (2002) along with Findley (1990, 1991) and Findley and

Wei (1993) relax this assumption for time series cases like ARMA models and some dynamic

regression models.

Also Vuong’s model selection tests cannot be used to differentiate between two econometric

models defined by moment conditions, or more generally, between two competing models that are

incompletely specified. The second limitation in applying the Vuong’s tests happens because they
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are based on the likelihood function. These tests require that competing models belong to some

parametric family of distributions and therefore they must be completely parametrized.

While maximum likelihood method is a widespread method of estimation in econometric stud-

ies, there are other common methods of estimations that are used by researchers. Techniques like

least absolute deviation, nonlinear least squared, generalized method of moments (GMM), or other

extremum estimators are used by researchers for different reasons. This is the third limitation of

Vuong’s tests.

This paper contributes to the subject by extending Vuong’s model selection tests for competing

models with stratified multistage cluster sampling. Many data sets used in microeconometrics re-

search are collected by surveys like CPS or PSID that have complex multi stage sampling structure

and violate the i.i.d. assumption needed in Vuong’s tests. Also, In order to generalize Vuong’s

results to cases other than MLE, we study the problem in M-estimators framework. Many econo-

metrics estimators are M-estimators including but not limited to linear and nonlinear regression,

conditional maximum likelihood including discrete response models.

The paper is organized as follows. In section 3.2, we define two nonnested competing mod-

els. In section 3.3, we consider basic framework under standard stratified sampling. We start with

standard stratified sampling because it is widely used in practice to divide the population of in-

terest into subpopulations or strata and it gives us a base to extend the results to more complex

sampling designs. Section 3.4 introduces tests statistics under SS and VP sampling and also multi

stage sampling scheme. Also in section 3.4, I show that the test statistics has normal distribution

asymptotically. In section 3.5, we extend the model selection test to panel data models with stan-

dard stratification design. An interesting problem is if we need to weight the test statistics when

stratification is exogenous. I discuss this point in section 3.6. Section 3.7, shows applications of

the tests in two empirical examples. Section 3.8 summarizes the results and conclude.
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3.2 The Nonnested Competing Models

Consider the population minimization problem

min
θ∈Θ

E [q(W,θ)] (3.1)

where scalar q(.) denotes an objective function depending on W and θ and W is an M×1 random

vector taking values in W ⊂RM . Data generating process depends on θ which is a P×1 parameter

vector and it belongs to parameter space Θ, and Θ is a subset of Euclidean space RP or in other

words Θ ⊂ RP . We assume that there is a unique value that minimize population problem (3.1)

on parameter space Θ at θ◦ called true parameter value that generates the data.

In many applications, the vector W is partitioned into W = (X,Y) where X and Y are respec-

tively K and L dimensional vectors with L+K = M. We are often interested in some aspect of the

conditional distribution of W given X, such as E(Y|X).

Now as Vuong (1989) consider two competing objective functions q1(W,θ 2) and q2(W,θ 2).

These two competing functions are nonnested in the sense that neither can be represented as a

special case of the other. It is important to have a clear idea about nonnested models. Vuong

considers two sets of conditional models Fθ = { f (y|x,θ);θ ∈Θ} and Gγ = {g(y|x,γ);γ ∈ Γ} and

then defines two models nonnested if and only if

Fθ ∩Gγ = /0 (3.2)

This definition is more suitable for MLE cases where we have full distribution assumptions about

the endogenous variables given the exogenous variables for the two competing models. For more

general cases as Wooldridge (2010) we consider the following definition

P [q1(W,θ∗1) 6= q2(W,θ∗2)]> 0 (3.3)

It means that the two function q1(.,θ
∗
1) and q2(.,θ

∗
2) evaluated at the psuedo-true values θ∗1 and θ∗2

must differ for a nontrivial set of outcomes on Wi if they are nonnested. By this definition nested

models are ruled out as well as other forms of degeneracies.
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As the first example assume we have a random variable Y and would like to model E(Y |X) as a

function of the explanatory variables X, a K×1 vector. W specify two competing models; a linear

qi1(θ 1) = (Yi−Xiθ 1)
2 and a nonlinear qi2(θ 2) = (Yi− exp(Xiθ 2))

2. These models are nonnested

if the mean of Yi given Xi depends on the nonconstant elements in Xi. Yet if the mean function is

independent of Xi, or in other words E(Yi|Xi) = E(Yi), then the two models are linear with same

constant means. In this case two models are nested and the limiting standard normal distribution

for Vuong’s type statistic breaks down.

3.3 Basic Framework under Standard Stratified Samples

The population problem is minθ∈ΘE [q(W,θ)] and we assume θ◦ uniquely solves the problem.

Let q1(W,θ∗1) and q2(W,θ∗2) be the two competing models where both may be misspecified. The

null hypothesis is

H0 : E [qi1(Wi,θ
∗
1)] = E [qi2(Wi,θ

∗
2)] (3.4)

Depending on what method we use to estimate these two competing models, the alternative hy-

pothesis is

HAq1
: E [qi1(Wi,θ

∗
1)]> E [qi2(Wi,θ

∗
2)] (3.5)

or

HAq2
: E [qi1(Wi,θ

∗
1)]< E [qi2(Wi,θ

∗
2)] (3.6)

For example if the competing estimators are QMLEs, then the alternative HAq1
means q1(.) is

better than q2(.) because its value of the likelihood function is bigger than the other.

To test the null (3.4) against alternative (3.5) or (3.6), in context of complex samples, suppose

the estimators θ̂ 1 and θ̂ 2 solve the sample objective function with complex design that involves

stratification and clustering. In this section we first consider sample objective function under stan-

dard stratified sampling scheme and then consider other types of sampling design. In standard
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stratified sampling the population of interest is divided into J nonempty, mutually exclusive, and

exhaustive strata and then a random sample of size N j is drawn from stratum j, where j = 1, . . . ,J.

Then for each j, we have random sample {Wi j : i = 1,2, . . . ,N j}. See Wooldridge (2001). There-

fore sample objective function is

J

∑
j=1

Q j

 1
N j

N j

∑
i=1

q(Wi j,θ)

 (3.7)

Equation (3.7) can be rephrased as

1
N

J

∑
j=1

Q j

H j

N j

∑
i=1

q(Wi j,θ) (3.8)

where Q j is the population frequencies or in other words the probability that a randomly drawn

observation from the population falls into stratum j and H j ≡
N j

N
is the fraction of observations in

stratum j. As (3.8) shows in standard stratified sampling observation i in stratum j is weighted by
Q j

H j
.

We also assume that θ̂ 1 and θ̂ 2 converge to θ∗1 and θ∗2 respectively. They are referred to as

pseudo true value and are not necessary equal to true value θ◦ and therefore the both models may

be misspecified.

In order to construct Vuong type test, we need following lemma that shows by assuming
√

N-

consistency of θ̂ g for θ g for g = 1,2 we can find a test statistic that its asymptotic distribution is

not affected by the two estimators θ̂ 1 and θ̂ 2.

Lemma 3.3.1. If θ̂ 1 and θ̂ 2 are
√

N-consistent estimators for θ∗1 and θ∗2 then

1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

qg(Wi j, θ̂ g) =
1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

qg(Wi j,θ
∗
g)+op(1) (3.9)

for g = 1,2.

Proof. Assuming that q(.) is a differentiable function in respect to θ g, from a Taylor expansion of

∑
J
i=1 q(Wi j, θ̂ g) and then dividing both side by N j we obtain
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1
N j

N j

∑
i=1

qg(Wi j, θ̂ g)≈
1

N j

N j

∑
i=1

qg(Wi j,θ
∗
g)+

1
N j

N j

∑
i=1

∇θ qg(Wi j,θ
∗
g)(θ̂ g−θ

∗
g) (3.10)

Multiplied by Q j and then sum over j, (3.10) can be written as

J

∑
j=1

Q j

N j

N j

∑
i=1

qg(Wi j, θ̂ g)≈
J

∑
j=1

Q j

N j

N j

∑
i=1

qg(Wi j,θ
∗
g)

+
{ J

∑
j=1

Q j

N j

N j

∑
i=1

∇θ qg(Wi j,θ
∗
g)
}
(θ̂ g−θ

∗
g) (3.11)

Finally if we times both side by
√

N we have

1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

qg(Wi j, θ̂ g)≈
1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

qg(Wi j,θ
∗
g)

+
{ J

∑
j=1

Q j

N j

N j

∑
i=1

∇θ qg(Wi j,θ
∗
g)
}
·
√

N(θ̂ g−θ
∗
g) (3.12)

In the second term in the right hand side of (3.12)

plim
J

∑
j=1

Q j

 1
N j

N j

∑
i=1

∇θ qg(Wi j,θ
∗
g)

=plim

{
1
N

J

∑
j=1

Q j

H j

N j

∑
i=1

∇θ qg(Wi j,θ
∗
g)

}

=E
[
∇θ qg(Wi j,θ

∗
g)
]
= 0 (3.13)

See Wooldridge (2010). Therefore

J

∑
j=1

Q j

 1
N j

N j

∑
i=1

∇θ qg(Wi j,θ
∗
g)

= op(1) (3.14)

and since by assumption θ̂ g is
√

N-consistent,
√

N(θ̂ g−θ∗g) = Op(1). Therefore the second term

product in (3.12) is op(1) and it can be written as

1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

qg(Wi j, θ̂ g)≈
1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

qg(Wi j,θ
∗
g)+op(1) (3.15)

This complete the proof.
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Note that the right hand side of equation (3.9) in Lemma 3.2.1 is just a function of random

vector Wi j. Now we are ready to set up tests statistics similar to Vunge’s tests with asymptotic

normal distribution under the null hypothesis that the two nonnested competing models are fit

equally well.

3.4 Tests Statistics

3.4.1 The Test Statistic under Standard Stratified Sampling

In this section we construct tests statistics that allow us to discriminate between two competing

models. Let qi j1(Wi j,θ 1)−qi j2(Wi j,θ 2)≡ ri j(Wi j,θ 1,θ 2). Then by Lemma 3.2.1 we have

1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

ri j(Wi j, θ̂ 1, θ̂ 2) =
1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

ri j(Wi j,θ
∗
1,θ
∗
2)+op(1) (3.16)

The following theorem shows that (3.16) under some conditions has asymptotic normal distri-

bution.

Theorem 3.4.1. For g ∈ {1,2} assume that

1. {Wi j : i = 1,2, . . . ,N j, j = 1, . . . ,J} follows the standard stratified sample scheme.

2. N j→ ∞ for each j.

3. Θg is a compact subset of RP.

4. The objective function E
[
qg(.,θ g)

]
has unique solution on Θg at θ∗g.

5. θ∗g is an interior point of Θg.

6. For each w ∈W , qg(w, .) is continuous on Θ.

7. qg(w, .) is twice continuously differentiable on Θ.

8. E
[
∇θ q(W,θ∗g)q(W,θ∗g)

′
]
< ∞ and E

[
∇θ q(W,θ∗g )

]
= 0

55



9. For all θ , |∂ 2qg(w,θ g)/∂θgk∂θgm| ≤ b(w), all k and m, where E[b(w)]< ∞.

then

1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

ri j(Wi j, θ̂ 1, θ̂ 2)−
√

N ·E [r(W,θ∗1,θ
∗
2)]

d−→ N(0,η2). (3.17)

where

η
2 =

J

∑
j=1

Q2
j

H j
var[r(W,θ∗1,θ

∗
2)|W ∈W j] (3.18)

Proof. The proof is essentially same as Theorem 3.3 in Vuong (1989) and Theorems 3.1, and 3.2

in Wooldridge (2001). The first assumption shows the diverge from i.i.d. observations assumption

in the Vuong model. For the asymptotic analysis, we need second assumption to be sure that the

number of observations N j in each stratum j goes to infinity. The regularity assumptions 2 to 6

are similar to those of Vuong (1989) and we need assumption 8, and 9 since we extend likelihood

function to more general one i.e. q(.) function. Also these same regularity assumptions ensures

that θ̂ g is consistent and has normal distribution asymptotically. See Wooldridge (2010).

Now we have test statistic necessary to choose between two competing models. The null

hypothesis is

H0 : E [qi1(Wi,θ
∗
1)] = E [qi2(Wi,θ

∗
2)] (3.19)

against

HA : E [qi1(Wi,θ
∗
1)]> E [qi2(Wi,θ

∗
2)] (3.20)

Under (3.19), E
[
r(W,θ∗1,θ

∗
2)
]
= 0 and (3.17) can be written as

1√
N

J

∑
j=1

Q j

H j

N j

∑
i=1

ri j(Wi j, θ̂ 1, θ̂ 2)
d−→ N(0,η2). (3.21)

A consistent estimator of η2 is

η̂
2 ≡

J

∑
j=1

Q2
j

H j

{ 1
N j

N j

∑
i=1

[
ri j(Wi j, θ̂ 1, θ̂ 2)− r̄ j(Wi j, θ̂ 1, θ̂ 2)

]2}

=
1
N

J

∑
j=1

Q2
j

H2
j

N j

∑
i=1

[
ri j(Wi j, θ̂ 1, θ̂ 2)− r̄ j(Wi j, θ̂ 1, θ̂ 2)

]2 (3.22)
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Here r̄ j(Wi j, θ̂ 1, θ̂ 2) =
1

N j
∑

Nj
i=1 ri j(Wi j, θ̂ 1, θ̂ 2). Therefore Voung type model selection statistic

is

1√
N

∑
J
j=1

Q j

H j
∑

Nj
i=1 ri j(Wi j, θ̂ 1, θ̂ 2){

∑
J
j=1

Q2
j

H j

{ 1
N j

∑
Nj
i=1
[
ri j(Wi j, θ̂ 1, θ̂ 2)− r̄ j(Wi j, θ̂ 1, θ̂ 2)

]2}}1/2
d−→ N(0,1) (3.23)

or

1√
N

∑
J
j=1

Q j

H j
∑

Nj
i=1 ri j(Wi j, θ̂ 1, θ̂ 2){

1
N

∑
J
j=1

Q2
j

H2
j

∑
N j
i=1
[
ri j(Wi j, θ̂ 1, θ̂ 2)− r̄ j(Wi j, θ̂ 1, θ̂ 2)

]2}1/2
d−→ N(0,1) (3.24)

3.4.2 The Test Statistic under Variable Probability Sampling

When observations in the strata are difficult to identify prior to sampling, or when collecting in-

formation on the variable determining stratification is cheap relative to the cost of collecting the

remaining information variable probability sampling is convenient. In variable probability sam-

pling or VP sampling in short, an observation is first drawn at random from the population. If the

observation fall into stratum j, it is kept with probability p j. For example if we need to define

stratification in terms of individual incomes, we might draw randomly a person from the popula-

tion, determine his income class, and then keep him in the sample with a probability that depend

on his income class and is set by the researcher.

In variable probability samples, under the null hypothesis that two competing models are

equally fit i.e. (3.19), the test statistic is

1√
N

∑
N
1=1 ∑

J
j=1 p−1

j ri j(Wi j, θ̂ 1, θ̂ 2){
1
N

∑
N
i=1 ∑

J
j=1 p−2

j
[
ri j(Wi j, θ̂ 1, θ̂ 2)

]2}1/2
d−→ N(0,1) (3.25)
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that is very similar with what we obtained for standard stratified samples under the null in last

section. We just need to replace weights
Q j

H j
with p j in (3.24). Here we need the sampling proba-

bilities p1, p2, . . . , p j be all strictly positive. The rest of the assumptions needed to hold this result

are same as Theorem 3.3.1. For more details see Wooldridge (1999).

3.4.3 Tests Statistics under Multi-Stage Sampling

Clustering and stratification are main features of survey data. For example National Survey of

Families and Households (NSFH), is a complex survey sample. It has multistage design that in-

volves clustering, stratification and variable probability sampling. Clusters are groups of families,

households or individuals positioned or occurring a relatively close association. For example in

a school, students in each class are form a cluster. In rural areas villages, and in urban areas,

neighborhoods are clusters.

The sampling design considered here is closely related to Bhattacharya (2005). In the first

stage, the population of interest is divided into S subpopulations or strata. They are exhaustive

and mutually exclusive. Within stratum s, there are Cs clusters. In the next step Ns clusters are

drawn randomly. Since the asymptotic analysis is based on number of clusters going to infinity, we

assume that in each stratum a large number of clusters is sampled. Units (for example households)

within each cluster allow for arbitrary correlations. Each sampled cluster c in stratum s contains

a finite population of Msc units (for example households) of observations. Finally, for each sam-

pled cluster c in stratum s, randomly sample Ksc households with replacement. Sample objective

function is

1
N

S

∑
s=1

Ns
∑
c=1

Ksc
∑

m=1
vscqg

(
Wscm,θ g

)
(3.26)

for g = 1,2. Here N = N1 + N2 + . . .+ NS is the total number of clusters sampled and vsc =

Cs(
Ns
N

)Msc
Ksc

is weight associated with observations m = 1, . . . ,Ksc within cluster c within stratum
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s. We assume
Ns
N

converges to as where as is fixed and 0 < as < 1. By this assumption, weights

vsc be constant.

By same reasoning as section 3.3 we can show that asymptotic distribution of the following

statistic is not affected by estimators θ̂ 1 and θ̂ 2.

1√
N

S

∑
s=1

Ns
∑
c=1

Ksc
∑

m=1
vsc · rscm

(
Wscm, θ̂ 1, θ̂ 2

)
(3.27)

Here rscm = qscm1
(
Wscm, θ̂ 1

)
− qscm2

(
Wscm, θ̂ 2

)
is the difference between the two objective

functions for each unit m, in cluster c, in stratum s. Also we can show under the null hypothesis

that both competing models equally fit well (3.27) has asymptotic normal distribution

1√
N

S

∑
s=1

Ns
∑
c=1

Ksc
∑

m=1
vsc · rscm

(
Wscm, θ̂ 1, θ̂ 2

) d−→ N(0,ξ 2) (3.28)

Because of correlation within clusters, the variance of (3.27), ξ 2 is more complicated than η2 in

3.4.1. A consistent estimator of ξ 2 is

ξ̂
2 =

S

∑
s=1

Ns
∑
c=1

Ksc
∑

m=1
v2

scr2
scm
(
θ̂ 1, θ̂ 2

)
+

S

∑
s=1

Ns
∑
c=1

Ksc
∑

m=1

Ksc
∑

m′ 6=m
v2

scrscm
(
θ̂ 1, θ̂ 2

)
rscm′

(
θ̂ 1, θ̂ 2

)
−

S

∑
s=1

1
Ns

(
Ns
∑
c=1

Ksc
∑

m=1
vscrscm

(
θ̂ 1, θ̂ 2

))2

(3.29)

The first term in (3.29) is a correct estimate of the variance under simple random sampling. Un-

der non-random sampling, it is not true anymore and we need to add the other two terms that are

estimations of clustering and stratification effects respectively. In general, in most cases, correla-

tion between unit observation (for example families) in each cluster is positive and therefore the

second term appears with a positive sign. On the other hand because of stratification, more ho-

mogenous observations are sampled in each stratum that decreases the variance and hence it enters

in the formula with negative sign. Therefore, ignoring clustering effect (the second term) causes

underestimating the true variance while overlooking stratification effect, we overestimate it.

Extending Bhattacharya’s (2005) model to more complex sampling designs, in chapter one, we

investigate a sampling design with variable probability sampling in the final stage. The framework
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resemble complex surveys like NSFH and other routine phone surveys in practice. In this case

an appropriate statistic for choosing between two competing models is very similar to (3.29) as

follows

ξ̂
2 = N−1

N

∑
i=1

S

∑
s=1

J

∑
j=1

K

∑
m=1

v2
is p−2

j yisτ jmτ j′tz jmz j′tr
2
is jm

(
θ̂ 1, θ̂ 2

)
+N−1

N

∑
i=1

S

∑
s=1

J

∑
j=1

J

∑
j′=1

K

∑
m=1

K

∑
t 6=m

v2
is p−1

j p−1
j′ yisτ jmτ j′tz jmz j′tris jm

(
θ̂ 1, θ̂ 2

)
ris jm′

(
θ̂ 1, θ̂ 2

)
−

S

∑
s=1

1
N

[
N

∑
i=1

J

∑
j=1

K

∑
m=1

vis p−1
j yisτ jmz jmris jm

(
θ̂ 1, θ̂ 2

)]

×

[
N

∑
i=1

J

∑
j=1

K

∑
m=1

vis p−1
j yisτ jmz jmris jm

(
θ̂ 1, θ̂ 2

)]
(3.30)

Here in (3.30), vis are weights exactly as (3.29) corresponding to first level of stratification. p j are

weights corresponding to variable probability sampling. Indicator variable τ jm takes value one if

observation W in the second level of stratification (variable probability sampling) is in stratum j

and zero otherwise. Indicator variable z jm corresponds to the second level of stratifiaction too. It

take value one if W is kept in the sample and zero otherwise and therefore P(z = 1) = p. yis is an

indicator variable also. It is equal to one if cluster i is in stratum s.

3.5 Model Selection Tests in Panel Data Models

Model selection tests in panel data models with complex sampling designs are similar to the tests

in the cross section cases. When D(yi1, . . . ,yiT |xi1, . . . ,xiT ) is fully specified, the Vuong’s ap-

proach is directly applicable using MLE. In less restrictive cases when we do not have a complete

densities- like partial or pooled MLEs or other M-estimators- we need to account for the time se-

ries dependence properly. Assume, for each t, qt1(Wt ,θ 1) and qt2(Wt ,θ 2) are competing models

of the conditional density in each time period. Here, the same null hypothesis, (3.19), still means

the models fit equally well but it is the weakest sense. The convergence result in equation (3.17)

still holds under the null. Under assumption (3.3), the models are nonnested and the variance η2 is

positive. In estimating η2, the serial dependence in {qit1(θ
∗
1)−qit2(θ

∗
2)} is a new extra term that
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must be added in calculations. Let r̂i jt = qi jt1(θ̂ 1)−qi jt2(θ̂ 2) denote the difference in estimated

functions for each t, and stratum j, and r̄ jt = N−1
j ∑

N j
i=1 r̂i jt . Then, in case of standard stratification,

a consistent estimate for η2 is

η̂
2 =

1
N

J

∑
j=1

Q2
j

H2
j

N j

∑
i=1

1′T Di jD′i j1T (3.31)

where 1T is the T ×1 vector of ones and Di j is a T ×1 vector defined as

r̂i j1− r̄ j1

r̂i j2− r̄ j2
...

r̂i jT − r̄ jT


(3.32)

Therefore model selection test in a panel data model with standard stratification design is

1√
N

∑
J
j=1

Q j

H j
∑

Nj
i=1 ∑

T
t=1 r̂i jt{ 1

N
∑

J
j=1

Q2
j

H2
j

∑
N j
i=1 1′T Ui j1T

}1/2
(3.33)

Here Ui j is an upper triangular matrix, obtained from Di jD′i j by changing values of entries below

its diagonal to zero1. Test statistic (3.33) has standard normal distribution. Note that in variance

estimator (3.31) the mean difference r̄ jt varies across t and j but is same across i. If we replace

hypothesis (3.19) with the stronger one, E
[
qit1(θ

∗
1)
]
= E

[
qit2(θ

∗
2)
]

for t = 1, . . . ,T , then we can

replace r̄ jt with the average of r̂i jt across i and t, r̄ j. Here the mean difference r̄ j is just a function

of strata.

3.6 Tests Statistics and Exogenous Stratification

It is known that when the population of interest is divided into subpopulations or strata by exoge-

nous variables unweighted estimators are consistent and even more efficient than weighted ones

and it does not cause any real problems. However model selection tests are a different matter.

1Since Di jD′i j is a symmetric matrix, Ui j could be a lower triangular matrix.
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Usually, we are interested in cases that a model for some feature of the distribution of Y given

X is correctly specified. Then in correctly specified model, θ◦ solves

min
θ∈Θ

E [q(W,θ)|X] (3.34)

for all x ∈ X . For example assume we are performing nonlinear least squares on a correctly

specified parametric model of E(Y |X), then in this case W = (Y,X). In other words our objective

function is

q(W,θ) = [Y −m(X,θ)]2 /2 (3.35)

and θ◦ is the true parameter vector such that

E(Y |X = x,θ◦) = m(x,θ◦) (3.36)

for all x. Then θ◦ solves minθ∈ΘE [q(Y,θ)|x] = E{[Y −m(X,θ)]2 /2|x} for all x. It means that

θ◦ minimizes E
[
q(Y,θ)|x ∈X j

]
for each j.

However when the underlying model is misspecified in the sense that θ◦, the soultion to (3.1)

does not solve (3.34) for each x, the unweighted estimator is not consistent for θ◦ while weighted

estimator is consistent for θ◦.

In model selection tests when the goal is to choose between two nonnested competing models,

the null hypothesis (3.19) will only hold if both models are misspesified. If one model were

correctly specified, then equality in (3.19) will change to strict inequality in favor of the correctly

specified model, assuming the objective functions are not same. For example suppose that in our

example above there are two competing models for E(Y |x), i.e. m1(x,θ 1) and m2(x,θ 2) that are

both misspecified. In this case θ∗g, g = 1,2 does not solve

min
θg∈Θg

E
[
qg(W,θ g)|X = x

]
(3.37)

for all x ∈ X , and therefore unweighted estimator is inconsistent for θ∗g. On the other hand

weighted estimator delivers consistent estimator for θ∗g. Since in the model selection test we need

consistent estimators for θ∗g for g = 1,2, we need weight observations appropriately even in case

of exogenous stratification.
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3.7 Empirical Examples

For illustration purpose, the date set nhanes2 provided by Stata is used to contrast two competing

models. The data set nhanes2 has complex sampling scheme including clustering and stratification.

We are interested in modeling the risk of heart attack as a function of variables like age, sex, race,

weight, and height 2. The dependent variable is heartatk that is a binary variable. It is equal to one

if the observation has experienced heart attack, and zero otherwise. Two competing models are

probit and Bernoulli with contemporary log-log link, estimated by GLM. By ignoring sampling

design, the quasi-log likelihood evaluated at relevant estimates for probit and Bernoulli models are

-555.028, and -556.665 respectively obtained from 4238 observations. The statistic η̂2 turns out to

be 6.433, and therefore unweighted Vuong’e test statistic is equal to 0.645. On the other hand, if we

consider sampling scheme the values obtained for quasi-log likelihood are -559.393 and -561.889

respectively and our estimation for weighted η2 is 11.599. Therefore weighted Vuong’s statistic

in (3.24) is .733. Both tests are in favor of the probit model, and although the weighted Vuong’s

test is bigger, using a standard normal test at 5% the difference is not statistically significant.

As a second example, consider the determinants of family income in the United States dis-

cussed in chapter 2, section 2.7 using panel data set obtained from PSID. We are interested in

choosing between two competing models wFGLS-ar1 (model 1) and wFGLS-re (model 2), where

in the first model a random effect structure is considered for dependency within panels while in the

second one we model this dependecy as AR(1). The null hypothesis is

H◦ : E[U2
1 ] = E[U2

2 ] (3.38)

against alternative

HA : E[U2
1 ]> E[U2

2 ] (3.39)

2The complete set of covariates considered in this example are: houssize, age, agesq, sex,
height, weight, iron, diabets, sizeplace, vitaminc, zinc, copper, f emale, black, race, orace,
region1, region2, region3, rural, highbp, highlead, and healthstat. for more information about
the data set see http://www.stata-press.com/data/r10/svy.html.
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The proper test statistic in this case is (3.33) and its value is about .93 which although is in

favor of second model (wFGLS-re), but we cannot reject null hypothesis in favor of alternative at

5% confidence interval.

3.8 Conclusion

In many applied econometric studies researchers are forced to choose between competing models

that seems equally well in fitting the data. Model selection tests are suitable tools to distinguish

“better” model or models. However Vounge (1989) model selection tests are not readily applica-

ble in cases that data sets come from complex sampling design. In this paper Vounge type tests

purpose for the cases that data is not a set of i.i.d. observations due to stratification and clustering.

The results show that the test statistics have normal distribution and have to be weighted. An in-

teresting finding is that even in case of exogenous stratification we cannot drop the weights since

for nonnested models by null assumption two competing models are misspecified. The tests are

applicable for panel data models with complex samples designs but we need to account for time

series dependence properly. One advantage of the model selection tests is that they can be obtained

easily in empirical studies.
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Appendix A

PROOFS

In first appendix we show that the conditional variance of sample objective function is (2.17).

Proof. Starting point is definition of variance.

var

{
J

∑
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1 [S = j]
Q j

H j
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}

= E
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since stratification is not overlapping we can substitute 1 [S = j] with 1
[
v ∈W j

]
. Therefore
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(A.2)

By dropping the constant term η in (A.2), we obtain equation (2.17). This complete the proof.
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To show that R◦ (V2) the conditional expectation of gradient in sample is same as gradient of

the objective function in population we start from definition:

R◦ (V2) =
J

∑
j=1

E
{

1 [S = j]
Q j

H j
∇θ r(V,θ◦) |V2

}

=
J

∑
j=1

∫
v∈W

1 [s = j]
Q j

H j
∇θ r(v,θ◦)g(s,v|v2)dv

=
1

J
∑

j=1

Hj
Q j

R( j,v2,θ)

E [∇θ r(V,θ◦) |V2]

=η ·E [∇θ r(V,θ◦) |V2] (A.3)
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Appendix B

TABLES1

Table B.1: Exogenous Stratification with ρ = 0.0, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 .9999 .9991 .9999 .9991 .9999 .9991

(.0353) (.0431) (.0353) (.0431) (.0354) (.0432)

s
β̂1

.0355 .0443 .0353 .0443 .0353 .0443

β̂◦ .0014 .0008 .0014 .0008 .0014 .0008

(.0426) (.0471) (.0426) (.0471) (.0426) (.0471)

s
β̂◦

.0422 .0473 .0420 .0473 .0420 .0473

ρ̂ = .0016(.0610) in feasible cases.

Table B.2: Exogenous Stratification with ρ = 0.1, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 .9991 1.0006 .9991 1.0004 .9989 1.0002

(.0354) (.0446) (.0352) (.0444) (.0354) (.0445)

s
β̂1

.0355 .0446 .0351 .0443 .0350 .0443

β̂◦ -.0006 .0011 -.0005 .0011 -.0005 .0011

(.0449) (.0492) (.0449) (.0492) (.0449) (.0492)

s
β̂◦

.0422 .0495 .0440 .0495 .0440 .0495

ρ̂ = .1021(.0597) in feasible cases.

1In tables B.1 to B.16 presented in this appendix, rows 2, and 4 are average values of estimated
β◦ and β1 obtained from 1000 simulated samples and the values in parenthesis are their standard
deviation. rows 3, and 5 represent average values of estimated standard deviations of the estimators
calculated by the formula discussed in chapter 2.
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Table B.3: Exogenous Stratification with ρ = 0.5, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 .9998 .9991 .9997 .9993 .9997 .9993

(.0349) (.0431) (.0304) (.0377) (.0305) (.0377)

s
β̂1

.0355 .0443 .0302 .0383 .0302 .0383

β̂◦ .0014 .0007 .0014 .0007 .0014 .0007

(.0513) (.0575) (.0513) (.0575) (.0513) (.0575)

s
β̂◦

.0422 .0578 .0509 .0578 .0509 .0578

ρ̂ = .5008(.0527) in feasible cases.

Table B.4: Exogenous Stratification with ρ = 0.9, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 .9999 .9995 .9997 .9997 .9997 .9997

(.0351) (.0442) (.0153) (.0193) (.0154) (.0193)

s
β̂1

.0355 .0442 .0151 .0192 .0151 .0193

β̂◦ .0010 .0003 .0010 .0003 .0010 .0003

(.0569) (.0641) (.0565) (.0641) (.0565) (.0641)

s
β̂◦

.0421 .0650 .0568 .0650 .0568 .0650

ρ̂ = .8997(.0267) in feasible cases.

Table B.5: Exogenous Stratification with ρ = 0.0, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0001 1.0003 1.0001 1.0003 1.0002 1.0003

(.0232) (.0257) (.0232) (.0257) (.0232) (.0257)

s
β̂1

.0244 .0271 .0242 .0262 .0242 .0262

β̂◦ .0010 .0016 .0010 .0016 .0009 .0016

(.0263) (.0277) (.0257) (.0277) (.0257) (.0277)

s
β̂◦

.0263 .0284 .0262 .0277 .0262 .0277

ρ̂ =−.0003(.0303) in feasible cases.
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Table B.6: Exogenous Stratification with ρ = 0.1, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0001 1.0003 1.0002 1.0003 1.0002 1.0003

(.0232) (.0257) (.0230) (.0256) (.0231) (.0256)

s
β̂1

.0244 .0271 .0240 .0260 .0240 .0260

β̂◦ .0010 .0017 .0010 .0017 .0010 .0017

(.0278) (.0300) (.0278) (.0300) (.0278) (.0300)

s
β̂◦

.0263 .0307 .0283 .0300 .0283 .0300

ρ̂ = .0995(.0301) in feasible cases.

Table B.7: Exogenous Stratification with ρ = 0.5, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0000 1.0001 1.0002 1.0000 1.0004 1.0003

(.0235) (.0260) (.0193) (.0213) (.0195) (.0211)

s
β̂1

.0244 .0271 .0197 .0213 .0197 .0212

β̂◦ .0014 .0023 .0011 .0019 -.0009 -.0002

(.0382) (.0411) (.0377) (.0407) (.0371) (.0403)

s
β̂◦

.0263 .0423 .0383 .0406 .0382 .0405

ρ̂ = .4995(.0258) in feasible cases.

Table B.8: Exogenous Stratification with ρ = 0.9, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 .9999 .9999 1.0000 .9999 1.0000 .9999

(.0234) (.0263) (.0089) (.0097) (.0089) (.0097)

s
β̂1

.0244 .0271 .0088 .0095 .0088 .0095

β̂◦ .0008 .0015 .0004 .0010 .0004 .0010

(.0532) (.0577) (.0524) (.0569) (.0524) (.0569)

s
β̂◦

.0263 .0586 .0531 .0564 .0531 .0564

ρ̂ = .8991(.0126) in feasible cases.
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Table B.9: Endogenous Stratification with ρ = 0.0, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0710 .9996 1.0710 .9996 1.0709 .9997

(.0381) (.0412) (.0381) (.0412) (.0381) (.0411)

s
β̂1

.0413 .0417 .0376 .0417 .0375 .0416

β̂◦ .1119 .0005 .1119 .0005 .1119 .0005

(.0373) (.0394) (.0373) (.0394) (.0373) (.0394)

s
β̂◦

.0430 .0394 .0375 .0394 .0375 .0394

ρ̂ =−.0012(.0562) in feasible cases.

Table B.10: Endogenous Stratification with ρ = 0.1, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0695 .9997 1.0701 .9996 1.0701 .9997

(.0382) (.0412) (.0379) (.0411) (.0379) (.0410)

s
β̂1

.0412 .0417 .0374 .0415 .0373 .0414

β̂◦ .1242 .0005 .1241 .0005 .1241 .0005

(.0386) (.0407) (.0386) (.0407) (.0386) (.0407)

s
β̂◦

.0429 .0409 .0388 .0409 .0388 .0409

ρ̂ = .0989(.0559) in feasible cases.

Table B.11: Endogenous Stratification with ρ = 0.5, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0643 1.0001 1.0527 .9992 1.0529 .9993

(.0389) (.0414) (.0334) (.0365) (.0335) (.0365)

s
β̂1

.0413 .0414 .0329 .0364 .0329 .0363

β̂◦ .1732 .0008 .1746 .0007 .1746 .0007

(.0428) (.0448) (.0426) (.0448) (.0426) (.0448)

s
β̂◦

.0431 .0453 .0428 .0453 .0428 .0453

ρ̂ = .4996(.0487) in feasible cases.
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Table B.12: Endogenous Stratification with ρ = 0.9, 1000 replications

T = 2

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0591 1.0007 1.0133 .9994 1.0133 .9994

(.0404) (.0419) (.0174) (.0193) (.0175) (.0193)

s
β̂1

.0419 .0408 .0170 .0186 .0170 .0186

β̂◦ .2223 .0010 .2278 .0008 .2278 .0008

(.0459) (.0478) (.0451) (.0478) (.0451) (.0478)

s
β̂◦

.0437 .0482 .0449 .0482 .0449 .0482

ρ̂ = .9006(.0251) in feasible cases.

Table B.13: Endogenous Stratification with ρ = 0.0, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0324 1.0001 1.0324 1.0001 1.0324 1.0001

(.0240) (.0261 (.0240) (.0261) (.0240) (.0261)

s
β̂1

.0260 .0277 .0240 .0269 .0248 .0269

β̂◦ .0469 -.0001 .0469 -.0001 .0469 -.0001

(.0245) (.0263) (.0245) (.0263) (.0246) (.0263)

s
β̂◦

.0265 .0272 .0249 .0266 .0249 .0266

ρ̂ =−.0003(.0280) in feasible cases.

Table B.14: Endogenous Stratification with ρ = 0.1, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0321 1.0000 1.0317 1.0001 1.0317 1.0001

(.0241) (.0263) (.0240) (.0260) (.0240) (.0260)

s
β̂1

.0260 .0277 .0246 .0267 .0246 .0267

β̂◦ .0523 -.0001 .0550 -.0001 .0550 -.0001

(.0265) (.0248) (.0263) (.0282) (.0264) (.0282)

s
β̂◦

.0265 .0294 .0268 .0285 .0268 .0285

ρ̂ = .0996(.0279) in feasible cases.

72



Table B.15: Endogenous Stratification with ρ = 0.5, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0300 .9997 1.0203 .9998 1.0203 .9998

(.0241) (.0264) (.0202) (.0217) (.0202) (.0217)

s
β̂1

.0261 .0276 .0202 .0219 .0202 .0218

β̂◦ .0921 -.0002 .1019 -.0005 .1019 -.0004

(.0357) (.0383) (.0341) (.0367) (.0341) (.0367)

s
β̂◦

.0266 .0394 .0347 .0370 .0347 .0370

ρ̂ = .4991(.0241) in feasible cases.

Table B.16: Endogenous Stratification with ρ = 0.9, 1000 replications

T = 5

Average POLS wPOLS uwGLS wGLS uwFGLS wFGLS

β̂1 1.0252 .9997 1.0036 .9997 1.0036 .9997

(.0245) (.0259) (.0093) (.0099) (.0093) (.0099)

s
β̂1

.0267 .0272 .0091 .0098 .0091 .0098

β̂◦ .1955 -.0011 .1980 -.0013 .1980 -.0013

(.0442) (.0476) (.0426) (.0460) (.0426) (.0460)

s
β̂◦

.0271 .0486 .0432 .0463 .0432 .0463

ρ̂ = .8993(.0121) in feasible cases.
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Table B.17: Variables Descriptions

age the actual age of Head

aychild6 1 if age of youngest person in the family is 6 or less

black 1 if Head is black

f emale 1 if Head is female

f size the actual number of persons in the family

f weight3 2003 core/immigrant family weight

edu_hs 1 if the highest level of Head’s education is completed high school

f edu_hs 1 if the highest level of Head’s father education is completed high school

medu_hs 1 if the highest level of Head’s mother education is completed high school

health 1 if health condition of Head is good, very good or excellent

married 1 if Head is married

nchild the actual number of persons currently in the family under 18 years of age

unemployed 1 if Head is unemployed

t f inc total family money income last year

twealth sum of values of seven asset types, net of debt value plus value of home equity
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Table B.18: Summary Statistics

(1) (2) (3) (4) (5)

VARIABLES N mean sd min max

age 15,672 47.45 14.97 16 99

aychild6 15,672 0.197 0.398 0 1

black 15,672 0.282 0.450 0 1

f emale 15,672 0.250 0.433 0 1

f size 15,672 2.638 1.414 1 10

f weight3 15,672 23.38 16.74 0 114.3

edu_hs 15,672 0.464 0.499 0 1

f edu_hs 15,672 0.692 0.462 0 1

medu_hs 15,672 0.702 0.457 0 1

health 15,672 0.854 0.353 0 1

married 15,672 0.566 0.496 0 1

nchild 15,672 0.787 1.128 0 8

unemployed 15,672 0.0501 0.218 0 1

t f inc 15,672 74.69 111.4 -99.26 6,317

twealth 15,672 310.0 1,201 -2,700 50,475
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