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ABSTRACT

STABILITY ESTIMATES FOR ELECTROMAGNETIC SCATTERING
FROM OPEN CAVITY

By

Qiong Zheng

The electromagnetic scattering from an open large cavity embedded in an infinite plane is
of practical importance due to its significant industrial and military applications. Examples
of cavities include jet engine inlet ducts, exhaust nozzles and cavity-backed antennas [3, 4].
In many practical applications, one is interested in the cavity problem with either a large
wave number k£ or a large diameter a, in which case the solution has a highly oscillatory
nature [7]. While the original time-harmonic problem is modeled by Helmholtz equation in
the unbounded domain, the reformulated model through Fourier transform is essentially a
Helmholtz equation in the bounded domain with mixed nonlocal boundary condition. Deriv-
ing an explicit dependency between the wave energy and the wave number is mathematically
interesting and challenging. The stability estimate is also important as it defines relations
between the wave number and the discretization parameters in the error analysis [16]. For
the open cavity problem, while the stability analysis for the rectangular cavity was derived
recently [8] as described , the stability results for more general shapes of cavities are to be
explored. The objective of this thesis work is to partially answer this question by imposing
some geometric assumptions.

We first start from considering a class of cavity with a strong geometric constraint. The
energy stability is established by careful choices of the parameters, and test functions, which
take full advantage of geometric properties. The arguments are based on the appropriate

usage of the real and imaginary part of the weak formulation of the problem, the separation of



lower frequency and higher frequency part, and connections between frequency components
and spatial components. The energy in cavity is bounded by the energy of incoming field
with coefficient in terms of powers of wave number. Next, we investigate the case where a
weaker geometric constraint is imposed. A new auxiliary function with compact support near
the boundary of the cavity is carefully constructed to reformulate the problem. However, the
original homogeneous Helmholtz equation is changed to a non-homogeneous one, all previous
work in homogeneous equation must be suitably modified, and the estimate in terms of wave
number £ is obtained from detailed analysis of this auxiliary function. The energy norm
is proved to be at most in the order of k_l%, which is the same in terms of the power
of wave number £ as the case with strong geometric conditions but with other additional
terms. Furthermore, we studied the case where the cavity domain is of rectangular-like

shape, where new test function is introduced and new inequalities are established to derive

the energy estimate.
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Chapter 1

Introduction

1.1 Electromagnetic Scattering from Open Cavity

One of the important subjects studied in electromagnetics is Radar Cross Section (RCS),
which measures how detectable an object is with a radar. Accurate predictions of RCS of
complex objects are of great interest to the designers [4], for instance, a stealth aircraft is
expected to have low detectability such that it is less observable (or even invisible) while a
passenger airliner is designed to have a high RCS such that it is more visible. Furthermore,
it has been studied that the RCS of a B-1A bomber is two orders of magnitude less than
that of a B-52 [30, 21]. This is mainly achieved by two approaches: shaping the body of the
airplane and using radar absorbing material; meanwhile, the jet intake plays a significant
role among the remaining contributors to the total RCS of the airplane. The jet intake
is modeled as a cavity structure which has one open end and the other end such as the
blade could be modeled as the perfect electric conductor. Other examples of cavities include
exhaust nozzles and cavity-backed antennas [3, 4].

In many practical applications, one is interested in the cavity problem with either a
large wavenumber k or a large diameter a of the computational domain, which leads to
the large ka numbers [7]. It is challenging to solve for a large wavenumber or a large
diameter cavity problem due to the high oscillation of the solution. Over the past decade,

many computational approaches have been developed in the literatures to solve the open



cavity problems. If the cavity has an opening with length less than one wavelength, i.e,
the low frequency end, the integral equation formulation could be used for the computation.
However, if the aperture of the cavity has a length on the order of several wavelengths,
then high-frequency computational techniques are expected [24]. Ome of the approaches
proposed is waveguide modal analysis, which has been applied in early literatures [26, 21], and
still provides reference solutions to compare with results obtained from more approximate
methods. In waveguide analysis, the field inside the cavity is expressed in terms of the
known waveguide modes. The unknown modal coefficients are obtained through using the
reciprocity relationship and Kirchhoff’s approximation. Another popular approach is the
shooting and bouncing ray (SBR) method as introduced in [23]. This method involves
tracing a dense grid of geometrical optics rays originating from the incident wave into the
cavity through the front aperture. After multiple bounces in the interior walls of the cavity,
the rays eventually return to the opening of the cavity. A physical optics approximation is
used to calculate the scattered field from each exit ray, then the total scattered field results
from summing the scattered field due to individual rays. In [24], the two aforementioned
approaches are investigated for cavities with rectangular and circular cross sections. For
an aperture opening on the order of ten wavelengths, the computational results agree with
each other fairly well. At lower frequencies, the modal analysis results is accurate than
the SBR results ; however, the modal approach is limited only to cavities with uniform
cross sections whereas the SBR approach can be applied with much greater flexibility in
geometrical modeling. However, these methods are restricted to relatively shallow cavities,
due to the computational cost and the ray and beam distortion problems associated with deep
cavities, where a large number of internal reflections need to be considered. Another ray-

based method is the Generalized Ray Expansion (GRE) method [29]. The major difference



between SBR and GRE methods, as mentioned in [11], lies in that the SBR method includes
only the incident geometrical optics field that enters the cavity, while the GRE method
intrinsically includes the fields diffracted into the cavity by the edges at the end of the
cavity aperture. Furthermore, for each incidence angle SBR method needs a new set of
rays to be tracked, while in the GRE method only one set of rays needs to be tracked
regardless of the incidence angles. Other computational approaches include the Iterative
Physical Optics (IPO)[28] method and the Progressive Physical Optics (PPO) method [27],
where in both methods the magnetic field integral equation (MFIE) is obtained for the
equivalent currents in the interior cavity walls, and solved by different algorithms. Moreover,
many hybrid methods have been proposed by combining one of the preceding aysmptotic
approaches and some other more accurate methods, such as the Method of Moments (MoM),
the Finite Element Method (FEM) or the Finite-Difference Time-Domain method (FDTD)
[10, 13, 20, 32, 33]. Anastassiu [5] presented a comprehensive review on the methods for the
related electromagnetic scattering problems. However, theoretical analysis is quite limited,
especially we hope to establish relations between the energy in cavity, high wave number
and incoming field.

While the original time-harmonic problem is modeled by Helmholtz equations in the
unbounded domain, the reformulated model through Fourier analysis in the upper half plane
is essentially a Helmholtz equation in the bounded domain with nonlocal boundary condition
on the aperture of the cavity. Deriving an explicit dependence between the wave energy
and the wave number is mathematically interesting and challenging. The stability estimate
is also important as it defines relations between the wave number and the discretization
parameters in the error analysis [16]. Also, using the stability of the continuous problem

with perturbation argument, the stability result of a numerical method can be obtained



[15]. Tt turns out for the stability analysis on Helmholtz equations, the bounds on & highly
depends on the geometry of the domain and the type of boundary conditions [15]. Thlenburg
and Babuska [18] considered the one dimensional Helmholtz equation on D = (0,1) with

Dirichlet and nonreflecting boundary condition:

(

u//+k2u:—f in D,

u' (1) — iku(1) = 0.

\

They proved the stability estimate |u|; < Ck|f|_q for the solution w in H 1 horm. Moreover,
they generalized the stability result under higher regularity assumptions in [19]. For [ > 1,
f(z) € Hl_l((), 1), then u € HZ+1(0, 1) and the estimate |u[; 1 < C’k:l_leHl_l. Melenk

[25] studied the two dimensional problem with the Robin boundary condition:

—Au—k2u:f in D,
Onu +itku =g on dD.
The geometric assumption is that the domain D is a bounded star-shaped domain with

1
smooth boundary or a bounded convex domain; then for any f € L2(D), g€ H2(0D),

|VU|L2(D)+“€||U|L2<D)SO(D> ‘f’LQ(D)+|g|L2(aD) )

where the constant C' depends only on the domain. This was extended to the three-
dimensional case by Cummings and Feng [14]. When g = 0, a sharp estimate is estab-

lished as below, HUHHJ(D) <C (k)HfHLQ(D), where Cj(k) = O(k/™7) + 120 0,1,2



for N > 2 under the assumption that D is star-shaped when j = 0,1, and D is con-

vex polygons or smooth domains when j = 2. Moreover, Melenk [15] showed that for any
1

fe L2(D),g € H2(0D), assume D is a bounded Lipschitz domain, there exists a constant

C' > 0 (independent of k) such that

5
|VU|L2(D)+|]€||U|L2(D)SC(D) k?|f|L2(D)+k2|g|L2(0D) ‘

Hetmaniuk [16] presented the stability analysis for two dimensional and three dimensional

mixed boundary problems:

—Au—kzu:f in D,
u=>0 on I'g,

anu =0 on Fn,

| Onu = (i —a)u+g on Iy

Based on the following geometric assumption: there exists a point x(j and a constant 7 such

that

(

(x —xg)-n(x) <0 forvx €Ty,

(x —x() n(x) =0 for Vx €Iy,

(x —xq) n(x) >v for ¥x € I'y;

\

the stability estimate is given as

‘Vule(D) + |kHu|L2(D) <C(D) |f|L2(D) + |g|L2(E9D) :



A major difference between the open cavity scattering problem and the results men-
tioned above is the boundary condition, where the cavity problem in the bounded domain
formulation involves the nonlocal boundary condition as indicated in the following section.
More specifically, part of the boundary condition is associated with Fourier transform. The
first stability result for the cavity problem was derived recently [8] for rectangular cavity.
Because of this particular shape of the cavity, the solution u can be expressed as the Fourier
expansion. Two special norms, which behave like H _% and H % on I'; are introduced for

the technical analysis. And the stability estimate under the rectangular cavity of depth y

in the y direction, is given by

15

7 1 13
|VU|L2(D) + |k||u|L2(D) S C k—[yoz(log k>z + k—‘fyél |9’L2(F)

when f = 0, where I' represents the aperture part of the cavity. In this thesis, we study the
stability estimates for open cavity embedded in an infinite ground plane in a more general

framework, where the shape of the cavity is under certain geometric constraints.

1.2 Mathematical Formulation

In this section, the formulation of the problem is reviewed and notations are introduced. Let
D be the cavity region, I denote the aperture boundary part of the cavity and I' := [a, b] x {y9},
r¢ - (R\[a,b]) x {y9} and S = OD\I'. Assume X™* = (z(),y() represents a reference point
on the plane for the convenience of introducing geometric assumptions in the following chap-
ters.

For the TM (transverse magnetic) polarization, the cavity scattering problem in the



Figure 1.1: Geometry of the problem. (For interpretation of the references to color in this
and all other figures, the reader is referred to the electronic version of this dissertation.)

unbounded domain could be reduced to the bounded domain (the cavity) problem through
a Fourier transform and radiation condition [3], which is briefly reviewed here. Let E and H
denote the total electric and magnetic fields, then the following time harmonic (E(X,t) =

e~ Wl g (X)) Maxwell equations are satisfied:

V x E —iwuH =0,

V x H +iwell = 0,

where w is wave frequency, p is the magnetic permeability and e is the electric permittivity.



Denote (E;, H;), (Er, Hy),(Es, Hs) as the incident, reflective and scattering fields respec-
tively. In the TM polarization, the electric filed is £ = (0,0, u(x,y)). The total field contains
three components, that is, u = u; + uyr + us. When u; = ez’ozx—zﬂ(y—yg) is a plane wave,
Up = _eiozx+iﬁ(y—y2), where o = ksin6, § = kcos#, 0 is the incident angel with respect

to y axis, and the wave number k = w,/eu. Moreover, ug satisfies

Aus + k2us =0 in DU{y >y},

us = —(u; +ur) on SU FC,

th th _ .. . . _o.
with the radiation condition im Vr(Orus —ikug) = 0

By taking the Fourier transform with respect to x, and defining

N 1 i
us(§,y) = \/—Q—W/Ru(ﬂiay)e ngdﬂ?,
we have
2 s
(Oyy + (k= = &7))us =0 for y > yo. (1.1)

By solving Eq. (1.1) with the radiation condition and taking the inverse Fourier transform,

we obtain

uszL/Rei(y_y2)\/k2_£2ﬁs(f,yg)emdi-

V2r



Therefore, on R x {yg},

O = /]R VR — €256,y )i e,

To simplify notations, define an operator 7" on I" as

T(‘PI’) _ \/;_W/R JE2 — §2ngei£xd§

1
for any ¢ with ¢ € H2(R), and

¢ onl,
YT =
0 omn FC.

Note that u; +uyr = 0 when y = y9, we have

onu =T(u) + g,

0
where g = —(u; + ur)|p. Therefore, the original problem in the unbounded domain (the

on

cavity and the upper half plane, that is, D U {y > y9}) can be reduced to the following

problem in the bounded domain:

(

Au—l—k‘Qu:O in D,

u=>0 on S,

Onu=T(u)+gonl.

Note that the reformulated model as shown in Equation (1.2) is essentially a Helmholtz



equation with mixed nonlocal boundary condition; in particular, part of the boundary con-
dition is associated with Fourier transform. There were many papers studying the equation
with boundary condition Opnu = iku + g, which is a much simplified and local form, but
the problem is not physical. The problem with nonlocal boundary condition is much harder
mathematically, but it is more significant physically. There are very few results in this di-
rection. New methods have to be developed. Based on certain geometric assumptions of the
cavity domain, a few stability estimates are established in the following chapters.

The rest of the dissertation is arranged as follows. In Chapter 2, the stability estimate
for a class of cavity under a strong geometric constraint is established. In Chapter 3, we
derived the stability estimate for a class of cavity under a weaker geometric assumption. In
Chapter 4, we assume the cavity structure is of rectangular-like shape, where the geometric
assumptions introduced in Chapter 2 and 3 are not satisfied; the corresponding stability
estimate is obtained. In Chapter 5, a brief summary of the main contributions of the thesis

work is presented, followed by the discussion of future work.

10



Chapter 2

Stability Estimates under a Strong

Geometric Assumption

2.1 Main Theorem and Outlines of the Approach

Throughout this chapter, an open cavity that satisfies the following geometric assumption
is considered; that is, there is a point X™ = (z(,yo) on the plane and positive constant pq

such that
(X-X*)n<-p; on S, (2.1)

where n is outnormal. We should remark that if S is given by y = h(z), = € (a,b) and h is
C 17 then Equation (?7?) is always satisfied. Without loss of generality, we assume X™* = (0, 0)
in this chapter; also for simplicity, we assume that b — a = w. It should be remarked that
if X* =(0,0), then y9 > y1 > 0, where y; = min{y|(z,y) € D} from condition (2.1), one
example is shown Figure 2.1.

A similar geometric constraint was presented by Hetmaniuk [16] to study a different mixed
boundary problem. In their case, py can be zero. We need a slightly stronger geometric
constraint for our arguments. If p; = 0, some additional techniques will be developed as

indicated in the next chapter. This condition guarantees the positivity of one term which

11



(a): Triangular shaped (b): Curly shaped

Figure 2.1: A cavity structure satisfying geometric assumption in (2.1).

lies on the same side as the wave energy terms in an inequality which will be derived later.
Furthermore, we assume that the medium for the upper half plane {(z,y) | ¥ > y9} and the
cavity is homogeneous. The main result is Theorem 2.1.1 as stated below, which provides

an explicit dependence for the wave energy on the wave number k.

Theorem 2.1.1. Under the geometric assumption given in Equation (2.1), there ezists a

positive constant C' such that

7
< C [K10]g] 5 (2.2

IVl 2y + 11l 2 o+ Tl |

Essentially, our proof of the main theorem involves three major steps.
First, we consider the weak formulation of the problem, and adopt the test functions v
used in some of the earlier work [16, 17], which are v = w and v = X - Vu, then the standard

computation yields the following identity,

|]Vu\|%2<D)+k2HuHiQ(D)+/‘§|>k \/52—k2|ﬁ|2d£—/S(X-n)|Vu]2

= %/Fgﬂd:c—/F(X-n)|Vu|2dx—|—k;2/F(X-n)|u|2dx+2§]%/rc’“)nu(X-Vﬂ)dx.

(2.3)

12



Second, since the boundary condition on I' is given in a simpler form in terms of the
Fourier transform, it is easier to evaluate the last three terms in Equation (2.3) in the
frequency domain. So the main focus of our second step is to convert those terms into the

frequency domain. After the conversion, the following inequality can be derived:

)[a2de /S<X-n>|w2

Va2, + el )+ W _2e
L2(D) L2(D) €| >k /—52 2

R [ qud k2 — 2024 R [ T(u)g (2.4)
< /Pgm+y2/|£’§k2< €2)ja2ds + 299 /F ()7

+oR /|€|<k [—55(5)] iV k2 — €2a()de + Q%Axﬂgggdx + o /r 19]2dz.

Third, terms on the right hand side of Equation (2.4) will be named by /7 through Ig,
and we have to estimate each term from Iy to I5. The goal is to show that each term
is controlled by norms of g and the left hand side of Equation (2.4) multiplied by a small

coefficient. To illustrate the ideas and simplify notations, let

/§|<k\/ 2, Ay = |§’>k\/52—k2\612d§,

(V€2 — k2 K
BH: £4 — k4 +
1£|>k 52_1{;2

G:/ 9|2 dz, J:/ IVu|2ds.
T S

For I7, Lemma 2.4.1 will show that A; < 0Bp + C(9)G, i.e., the lower frequency part of

)|al?de,

u is dominated by Lo norm of g and higher frequency part of u. Consequently the bound
of ||ul L2(n) is obtained, which in turn will yield the estimate for /5 after the integration
by parts. Since I involves only lower frequency part, Lemma 2.4.1 can be used to estimate

this term. For I3, a new test function will be constructed to derive that I3 < 6 Energy +

13



dJ +C(6) 1- This step uses the fact that X -n < —py < 0, and the detailed arguments

191l 77
are provided in Lemma 2.4.4. I, is also difficult to estimate, it will use Lemma 2.4.1 and
cancelation between positive and negative part of an introduced function. This part requires
7

careful choice of parameters and gives the reason why k10 appears in Theorem 2.1.1. It is

proved in Lemma 2.4.5.

2.2 Preliminary Lemmas for the Energy Identity

In this section, we start from the weak formulation of the problem, and utilize appropriate
test functions and separate the real and imaginary components. An equality involving the
energy terms is derived as shown in Equation (2.16).

Define

/2

b (@) ={po e HY2(D) : 35 € HY/2(R) such that § =0 on R\T and ¢ = 3|p},

where @ is called an extension of ¢ to H 1/ 2(R). The weak formulation of the scattering

problem shown in Equation (1.2) is as follows:

Find u € HL(D) = {6 € HL(D),6 = 0 on 5,6 € HY2(I)} such that

a(u, ¢) = (g,6) Vo € HY(D),

where

a(u, ¢) = /D Vu-Vé— /D k2ug — /F T(u). (2.5)

If in particular, by choosing ¢ = u, the following lemma is obtained.

14



Lemma 2.2.1.

/|£\§k VE2 — €2)a2de = —%/Fgud:p, (2.6)

2 2.9 5 2120 _ _
IValy ) = & ”““L2(D)+/‘§|>k‘/§ K2[al2de %/Fgudg;. @7)

Proof. Since T'(u) = \/r;_ /R \ k2 — §2ﬂei§xd§, then 7{(;) — i\/ k2 — €20, and by Parse-
I

val’s Theorem,

/FT(u)a:/R@/(E))idg:/Rm/k2—g2|a|2d§. (2.8)

Now choosing ¢ = u in Equation (2.5) and using the identity in (2.8) yield that

/D Va2 /D k2Juf2 — /|€|§ki\/k2 _ 2ja2de + /|£|>k Je2 = k2[0)2de = /Fgﬂ.

The identities (2.6) and (2.7) are obtained by taking the imaginary part and real part of the
equation above respectively. [

While the identity Equation (2.7) extracted from the real part will be combined with the
result in the next lemma to form the energy equality, the imaginary part Equation (2.6) will
be used later for the estimate on the Lo norm of u as shown in Lemma 2.4.1. Note that
the sign for [ D \u|2 is —k2, not k2 for the energy of uw. This is natural from the partial
differential equation. Next, we try to get a formula with a “right” sign for [ D |u|2 by using

the test function X - Vu, which was used in the literatures [16, 25] for the stability estimates,

15



and in the well-known Pohozaev identity for nonlinear elliptic equations.

3
Lemma 2.2.2. For all u € Hé(D) ﬂHg—H(D), e >0, we have

9 2, 0.2 2

_/S(X.n)wm -|-/F(X-n)|Vu| + 2k /D|u|
9 nu2 U .
_k/aD(X )|\+2§R/ 22(X - V). (2.9)

0
Proof. Note that for any test function v, / Vu - Vv — / k2uw — /(9 U5 — 0. Choose
D D

D On
v = X - Vu and plug into the above identity, it follows that

. -Vu) — 2u -Vu) — Ou U
/DVu V(X - Va) /Dk (X - Vo) /aDan(X V) = 0. (2.10)

Two technical identities are used here to convert Equation (2.10) to an equation associated

with the energy terms, that is, [ IVu|? and k2 Ip Ju|2.

2%/ Vu-V(X-Va) = —(d— 2/ V)2 + / (X -n)|Vul2. (2.11)
and 2%/0 K2u(X - Va) = k2 /(9D(X-n)|u|2—dk;2 /D|u|2. (2.12)

where d = div(X) is the dimension. These two identities are the direct consequences from
Lemma 3.1 and 3.2 in [16], which also could be derived through the following standard

computation. We see that div(|Vu\2X) = div(X)|Vu\2 + V(|Vu\2) - X, and

d d d d
2 _
V(|Vul?) - X = Z |Vu] Z x;2%( Z ux xz = 2R Z ux](z xzuﬂfsz)
1=1 1=1 7=1 7=1 1=1
d d )
—2R Zluxj(zl(xﬂxi)xj — Tz ;) = 2RVu - V(X - Vi) — 2|Vul~,
7= 1=

16



It follows that

div(|Vul2X) = div(X)|Vul? + 2RVu - V(X - Va) — 2|Vul?,

RV - V(X - V) = —(d — 2)|Vul® + div(|Vu2X). (2.13)

Integrate Equation (2.13) over D and use the divergence theorem, then Equation (2.11) can

be derived. Equation (2.12) can be obtained by the following direct computation.

div([u)2X) = div(X)|ul? + V|u|? - X = div(X)|u]? + 2R(uVT) - X

oR w(X - Va) = div(|u|2X) — div(X)|ul?. (2.14)

Similarly, integrating Equation (2.14) over D and using the divergence theorem, we have
Equation (2.12). Then through multiplying Equation (2.10) by 2 and taking the real part,

applying Equation (2.11) and Equation (2.12), it follows that

2 2 2
/aD(X~n)|Vu| + dk /D|u|
L A2 4 2 2 .
— 2)/D|V|+k/aD(X )H+23%/ Zx-va).  (2.15)

0
Note that Vu = a—un on S, it implies that
n

Ou Ou @n = ‘n %2— n)|Vu/|2.
2 [ TH V) =2 [ SR (i) 2/S<X )24, 2/S<X )V

Therefore,

-1 U2— Ou u 1 'Ll,2
J o wiva 2 [ S0 v = = [ (0w val?

17



Accordingly, Equation (2.15) can be written as Equation (2.9) by using the identity above
and the fact that « = 0 on S and d = 2, the lemma is proved. 0J
Add Equation (2.7) and Equation (2.9) together, the following expression for the energy

of u is obtained, which is named the energy identity.

2 21,112 2 _ 120312ds — : 2
VU2 ) + W2 )+ o VE K2R = [ (X mivd

:%/Fgﬂ—/F(X-n)|Vu|2+k2/F(X-n)|u|2+29‘E/Fg—z(X-Vﬂ).

(2.16)

2.3 Conversion through Fourier Transform

Notice that in Equation (2.16), the last term on the Left Hand side, that is — [ (X - n)|Vu]2
will help us in the energy estimate, since it is positive under the geometric assumption
X -n < —py < 0on S. Note that Vu on 9D can not be controlled by energy directly,
it needs some further analysis. Since the operator T' is simply a multiplication operator in
terms of Fourier transform, in this step, the main issue is how to convert the last three terms
in the right hand side of Equation (2.16) into the frequency domain. While the second and
third terms can be easily handled, the last term is not so trivial. So we first see how to

express the last term by Fourier transform, which is shown in the following lemma.

Lemma 2.3.1. In terms of Fourier transform, we have

2%/13_?1()('%) - 25}%/|€|§k [—55(5)] i k2 — €20(¢)de
/€>k\/%ﬂzd§+2%/rxﬂxgdm+2y2/rUy2

(2.17)
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0
Proof. Note that on I', X -n = (z,99) - (0,1) = y9 and a—u = uy, it follows that
n

ou 9
2 —(X -Vu)=2 U, Uy) = 2 U, 2 ) 2.18
S%/P an( V) §R/Puy(xux+y2uw S%/qunyJr yg/F\uy| (2.18)

9,
Since uy = 8_u =T(u)+ g on I, then
n

2§R/ TUguy = 25]?/ 2y (T (u) + g) = 23?/ zTupT(u +2§R/ TUxg. (2.19)

Note that
b . b .
a:/u}:/ xug;e_zfxdx:/ i(iu;ge_z&x)dx
a d§

. b b .
= dif {iue_z&j |2 —i/a (—1&)ue Z@cdx} = dif {_/a fue_z&jdx}

d
= & -sae.

Hence Equation (2.19) becomes

2R /F gy = —2R /R d% [gi(g)} iV k2 — €25(¢)de + 2R /r ¥hzg. (2.20)

We rewrite the first term in the right hand side of Equation (2.20) in terms of || < k and

|€| > k respectively. For the low frequency part,

o [ e (O i - e a
:_2%{/§|<k Vi - e |2§+/
__op /K'Sk@fm/ K2 — €2a(¢).

19
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Similarly, for the high frequency part,

o [ (O] e - e
s PCGERTGI NEREOT
9 /|£|>k VE2 - k2[a(e) 2de + 2% {/|

2—/{72/\_/ (Ed
§|>k:€ § u'(§u() 5}

=2 2 _ k2jae))d 2 _ 122 (5()2)a
Jio VEE - ROP A+ [ /€ -2 m(o) )i

4

o EEVE S K2)[a(e)[Pde

-9 2 _ 1215 2d _
/\w« €2 — k2[a(e) 2d

-/ e
 Jiglsk /52_k2u '

Therefore, by applying the two equalities above, Equation (2.20) can be written as

23?/ TUpU
r Y

d, = .. _ _
= — 2R N ﬁ(fu(f))m/k@ — £20(¢)de + 23%/F TUgg (2.21)

2
— 2R al(€)in k2 — 2a(¢) — M jaPde 1 2% [ g,
/’ﬂékfu ()i §7u(§) /\§|>k o kj2|U| £+ /F:wxg

Combing results in Equation (2.18) and Equation (2.21), the lemma is proved. O

From Lemma 2.3.1, we can observe that the term 2§ /F g—z(X - Vu) actually contains lots
of information, essentially the higher frequency components is helpful in the estimate. Now
by using the result in Lemma 2.3.1 and through the Fourier transform and some additional
calculation, the following lemma can be derived which is in terms of the last three terms in

the energy equality Equation (2.16).

20



Lemma 2.3.2. For the last three terms of Equation (2.16), we have

— ‘n u2 2 ‘n u2 @ -Vu
/F(X Va2 + k /8D(X Ml +2§R/{‘5H(X V)

2 2y 1~12 _ =7 . 2 9~
< o[ 02 =@l amn [T s [ [ O] /i -

)2 9
+2m/ vlzgds +y /|g|2d:)3—/ —|al3de. (2.22)
r 2 Jr €5k fe2 j2

Proof. Since |uy|? = [T (u) + g|* = |T(w)|? + |g|? + 2Re [§ T(u)] and X - n = yg, then

2 2 2 ou »

— X -n)|Vu +k/ X -n)lu +2%/_X.Vu

/r( )|Vl aD( )|ul Fan( )
=9 /F(—|Ux|2—|uyl2+k‘2|u|2)+2ﬂ% /F Ty + 29 /F g |2

=y2/(—|um|2—|— |Uy|2+k2|u|2)+2m/ Py,
r r
Using the fact that u and ug are compactly supported on I' and [p |uy\2 < Jr |uy\2, then

r r
<u [ (-2 + /42 - 20 + 2
— 2 _
+2y§R/QTu+y/g —I—2§R/xuu
2R | (w) +yo F|| Ty

2 2vim2 _ 2 _
= 2(k EN)ul7dé 4 2y §R/gTu —i—y/g +2§R/xuu.
92/|£|<k ( )|l 2 T (u) 2 ]|| T vy

Plugging Equation (2.21) into the inequality above, Lemma 2.3.2 is obtained. O

Combining Lemma 2.3.2 and Equation (2.16) yields the following inequality for the en-

21



ergy.

2
Tul2 12112 2 _ 1.2 M vaRae— [ x.
IV} ) + P gy + (Ve #2 4 e X
_ 2 2\ ~2 _ (2.23)
<k [ gy /| (2~ NPE + 20 | Ttwg

§R/|€|<k [—55(5)] iV k2 — €2a()de + 25}?/Fxﬂxgdm + o /r l9]2dz

So far, an inequality involving the energy terms and other additional terms is obtained,
and the term Vu on I' has been canceled out by using the lemmas shown in this section. In

the next section, we will estimate each term on the right hand side of Equation (2.23).

2.4 Detailed Estimates

To estimate each term on the right hand side of Equation (2.23) associated with u or 4,

o) and [ \/ k2 — §2|ﬁ|2d£ are needed, which is presented in

Lemma 2.4.1, this is obtained by using the technique of Lemma 3.5 in [8] and Lemma

the inequalities for HuH%Q

2.2.1 . Recall that we denote Ay = f|§|<k K2 — §2|ﬂ|2df, A = f|§|>k: €2 — k2|ﬁ|2d§,

2
By = f\§|>k(\/€2 — k24 %)W!Qdﬁ, and G = fI‘ |g|2 . In essence, Ay, the lower
£4—k

frequency part of u, is relatively small compared to By, higher frequency part of u, the

2
term k—] in By played an important role.
‘ /52—/€2

Lemma 2.4.1. There exists a positive constant C', such that

AL < %BH + %G, (2.24)
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1
for any & > 0 such that C§ < k2. Furthermore,

2
2
< By + %G (2.25)

2
[l

L2(T) ~

Proof. To proof Equation (2.24), the function ug constructed in Lemma 3.5 in [8] is

2
introduced. Define uq = u(z) — u(x — %[Qk]) then, using the fact that the support of w is

2
of length at most m, supp u(x) N supp u(x — %[2/{]) =
2 T2K|E 2.2
2 = 1-—
122y = ol 25y = [, 2l

27 [2K]¢i 2 /
For |¢| < k, there exists a positive constant C' such that VE|1 — e k 1© < O\ k2 — €2,

27T k2
[2]{7]@’2 <k-4<2 52 — k2 4 —————). It follows that

52_1{;2

For || > k, k|1 —

C k2 2 for |¢| < k,

2%[2/6]&'@ < vk 2
(\ €2 — k2 + ———) for |¢| > k.
§2 _ k2

N

C 1
Therefore, HUH%Q(F) < ﬁAL + EBH' (2.26)

From Equation (2.6) and the inequality above, we have

0 12 L2
< < =

60, C 1 1 2
< —-(—=A -B —

23



If C6 < Vk, then

1 co ) 1 2
—A < (1—-—x)A7 <—B — .
We finished the proof of Equation (2.24).
Plug Equation (2.24) into Equation (2.26), we have
9 (G 1, .2 1
< —(-B - —Byy.
Choose C3 = vk, then Equation (2.25) is obtained. O
This is an important lemma as it determines the power of k£ in the estimate, and pro-
vides means to relate two integrals / |u|2 and /‘ | \/ €2 - l{:2||ﬂ|2 to the high frequency
r ¢I<k
part By and L9 norm of g . Now we will estimate each term on the right hand side of
Equation (2.23). Note that some terms are easier to estimate, the most difficult ones are:
2y2§R/ T(u)g and 2§R/ [—55(5)] i/ k2 —£Qﬁ(§)d§. For the term 2y23‘%/ T(u)g,
r el<k r
the direct usage of Schwarz inequality does not work, as after converted to the frequency
domain, it would lead to either the integral of §2|i2|2 which can not be controlled by the

energy or 52|§|2 which may not be integrable as g may not be compactly supported on I'.

Other technique are needed for the estimate as shown in Lemma 2.4.4.

Lemma 2.4.2. The first term in Equation (2.23) can be estimated as follows.

I = %Agﬂ <e1 By +dq1G, (2.27)

5102

where €1 1s any positive number, and dq is given by d| = 5— + 1

251]{'
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Proof. Using Schwarz inequality and Lemma 2.4.1, we have

g1k, 2 1 2
1 =% < < — + —

2
€1k: 2 C 1 9

then

c? 1
1Y 4 )G =By +diG.

11§€13H+( 5 2e 1k

Lemma 2.4.3. For the second term of Equation (2.23), we have

Iy =1y /|§|<k 2(k? — €2)a|?d¢ < e9Bpy + dokG, (2.28)

4y%

€9

Proof. Since || < k, we have \/ k2 — €2 <k, then
b= [ 208 - e <2k [ i atas

1
5¢)

where €9 1s any positive number, and dy =

< 2y2k‘(§

k‘BH+

Choose § = %, where €9 is a small positive number, then Equation (2.28) is obtained. [

Next, we deal with I5, which is more involved to estimate this term.
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Lemma 2.4.4. For I3, we have the following estimate.

I3 = 2y23‘3/FT(U)§

ou e
<[ <|Vu|2+k2|u|2>+632A|%|2+d3kG+?3A|gm|2, (2.29)

here cq1. e 11 b d ¢ ( ! + ! + 1) + ¢ d ¢ + ¢
whnere s are an OStLIve num 67’8, = — — — — anaeq = —— _—,
310732 vr 37 e a3k €32 37 31 egok

¢ is a positive constant depending on the domain D.

Proof. Note that /r T(u)g = /R T(w)gp = /R T(u)(&)3p(€) = /R i\ k2 — 20(6)ap (), so

the direct usage of the Holder inequality does not work since gp(€) decays like % when £ — oo
if gp does not vanish on the boundary of I'. Here another test function 7 is constructed for
the estimate of I5.

To define n, first we extend g(z) on I' to a function g(z) on the line y = yo such that

HgHHl(R) < CHgHHl(F) and HgHLQ(R) < CHQHLQ(F)' Moreover, let

1
L+ k(y—y9) foryQ—ESySyz,
h(y) :=

0 otherwise.

Then set n(z,y) = g(x)h(y), (z,y) € D. For this particular choice of 7, we have n = g on I'

and |n(z,y)| < [g(z)].

Adopt 7 as the test function, then

[ vuevn= [ - [(@weon- [ S
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Note that n = g on I', this leads to

/FT(u)yz/Dvu-Vﬁ—/D k:2uﬁ—/88n /|g|2 (2.30)

To estimate I3, it suffices to estimate each term on the right hand side of Equation (2.30).

We start from the estimate of /D Vu - V1. Since

[ v V= [ (' @ht) + wian' )

the two terms on the right hand side of the identity above are handled separately as follows.
Choosing a rectangular domain Dy = [A, B] x [y1,y9] such that D C Dy, considering
h(y) in D1, we have fy2 |h(y | O(% and fy2 |h(y | ~ O(k). Let xp denote the

characteristic function of D, then
[ vad@ht) = [ @ty piys
D Dy

B~/ Y9

< [ 6@ [ fuallb)xpdyda
A Y1

1

1
< /A e ( /y 21'2 |uxxD|2dy) ’ ( /y yf |h<y>|2dy) * i
/ 7' () / luzx pl? dy)Qdy
1
/, ’ /y ?2 jupx pl2dyde | /AB (%@’w)?dx]

11 (B
<3 [ v [ )P
2 /D €31k JA

DO[—
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Therefore,

[ ' @nt < S [wu e p([le'@rR+ [a@?). o

Similarly,

Jp @ @) = [ e s

B Y9 ,
< / 5(2) / gl (9) X pdydz
A Y1

1
B Y9 9 L ory2 9 2
s/A \g(x)l(/yl lugxpl dy>7(/yl () dy) dz

B 1
< Vi [l /y 2 gy pPy) 2 da

1
1
/AB /y?iz |UyXD’2dydx /AB (\/E@(x)‘)Q dx] 2

1 B
<31 / Va2 + & / 5(0) 2da.
2 /D €31 JA

1
2
<

It follows that

~ / €31 ul? E_k )12
[ maonw < S [ w2 [gR 2:32)

Now we treat the second term on the right hand side of Equation (2.30). By the definition

] ~
of n, / |77|2 < / —|fq'|2 < E/ |g|2, where ¢ depends on the length in the y direction, i.e.,
D Dk kJT
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y9 — y1. 1t yields that

fys [ ()

1
<eq /D Pl + /D K2l (2.33)

c
§€31 /Dk2|u|2—|—53—1/11k‘|g|2

To treat the term — [g %ﬁ, we use an estimate for /S |7]|27 which is derived as follows.

By the divergence theorem, we have

o 2% n
/deum X) = /aD!n\ (X -n),

this is equivalent to

28%/‘V -X+/ QdivX:/y 2+/ 2(X . n).
TV DI??I (X) lenl Sln\( )

It follows that

9 _ 2 .. P
— X-n:—23?/ AV -X—/ div(X +/
/S|77|( ) R [ a0+ [ ol

2 1 2 2
<a k +/—V ]+/
4{/17 |n| Dkl ul F:t/2|g|

2 1 2
§a5/F<|g| +losl?).

~ 1
Then use the fact that —(X - n) > p; > 0, one obtains /S |77|2 < C/F(|g|2 + k—2|gx|2)

29



Hence

1 1
ou_ ou 9\ 2 2 ou 1
~Jogms (L) (L) < [15aR+ = [
S on S on S S on €32 /S (2.34)
ou 9 E/ 9 1 9
< 22y = + =5 lgz[?).
<ep [(152+ = [ o+ laef)

Combining all the results in Equation (2.31), (2.32), (2.33) and (2.34), the estimate in the
lemma is arrived. O

Now we are going to handle I4, which yields the highest order of k£ in Theorem 2.1.1.

Lemma 2.4.5. For I, we have the following estimate.

_ 7
Iy = 2R ek [—ga’(g)} in/ k2 — €20(6)de < ey By + dyk5G, (2.35)

where €4 1s a small positive number, and dy is chosen accordingly.

—

Remark: By direct usage of Schwarz inequality, and use the fact that /(&) = (—iz)u(€),
we could arrive at an estimate of Iy <eyBp + Ck3G. But we may lose some information
since the relation between @/(€) and u relies on the entire domain, while in fact only the
portion |£]| < k is needed. Here our idea is to start directly from the frequency domain func-
tion defined in the lower frequency region, and introduce the corresponding spatial function
by using inverse fourier transform, then through possible cancelation between positive and

negative parts of the introduced function, it results in a lower power estimate in terms of .

Proof. First I is written as the sum of two integrals, i.e. Iy = I41 + I49 as shown below,

where 147 represents the integral for the region 0 < ¢ < k and I49 represents the integral
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for the region —k < ¢ < 0. Note that

k1 1 1 1
Iy = 2% | £2(k? - €2)45(¢) [—z’f?(ﬁ—&?)@a’(ﬁ)] dé
E o1 1 1 1 /
=% | £2(k? - €2)4a(¢) [iﬁ?(kQ—@)Zﬂ({)l dé

Rl L o0 51 I kol oo o1 .
/0 [zf?(k ¢ >1a<£>] T e = /0 i€2 (k2 — €2)17 (€)ixeSTdg = 1 fy ().

Thus by Parseval’s identity,

Iy =2 [ p@f@de =2 [ o )R

Furthermore, observe that

ko1 1 1 !
= 2R | €207 - )T [zf?(k?—&?)%fa(—f) d
Bl o ol ita . .
Define fo( ):/O €2 (k* — ¢2)4u(—€)e'STd¢, then similar computation yields that

o =2 [ alfa(o)Pd.
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Therefore 1 :Q/R:L‘|f1(x)|2dx+2/R$|f2(m)|2d$-

Moreover, by the definitions of f1(z) and f9(x), we have

/le1 /5 23 jae) 2 < kA, /|f2 R<ka,  (236)

Note that by using Equation (2.36), for any given positive constant M, it follows that

2 2 d 1
/MSM [:E|f1(113)| + x| fo(x)] } < MEAL < Mk(; By + 0. (2.37)

Thus to estimate I, it remains to estimate / [x]fl (x)]Q + :U]fg(:v)]Q and choose an

|z[>

appropriate M.

By using the fact that u(x,y9) is supported on the interval [a, b, it is easy to write fq(z)

as follows,
E 1 :
- 2 £)eiteq 2 (k ZI €% (5)e ™S dsde. (2.38
A = [ 2w -l 5//5 Aei€Tu(s)e Easde. (2.39)
To simplify notations, define H(z / £2( 2 62 ;rezfz d¢, then
b
f1(z) = / u(s)H (x — s)ds.
a
Consequently |f1(z / / H(xz — s)H(x — t)dsdt. And |f1(—x)|2 can be rep-
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resented by

(- / / o — ) A= = Ddsdt
/ / H(z+ s)H(x + t)dsdt.

Then f’ |>M x| f1 (x)|2 can be rewritten as a triple integral involving H term where

cancelations take place.

/x’>Mw|f( = [ [P -ineof

/ / /90>M [xH(x —$)H(x —t) —zH(z + t)M] dxdsdt.

Define Jy = / [a:H(x —$)H(x —t) —xzH(x +t)H(z + s)] dzx. By changing vari-
x>M

able for possible cancelation, it follows that

J1 = /]\;O_S(x +s)H(x)H(x + s — t)de — /j\;o+t(ac —t)H(z)H(x — t + s)dx

= /M—s sH(z)H(x 4+ s — t)dr + /M+t tH(z)H(x + 5 — t)dx

M+t
+ / cH(x)H(x + s — t)du.
M—s

Similar computations yield a representation of f| 7|>M x| fQ(a:)|2, that is,

/|x|> 1l fo (o / / w(t) Jodsdt,
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where

Jo =— /M+s sH(x)H(z — s+ t)dx — /M—t tH(x)H(x — s+ t)dx
Mt H(x)H t)d
_/M—t zH(x)H(x — s+ t)dz.

Therefore the contribution to I4 due to |z| > M, that is, f‘be [$|f2 ($)|2 + x| fo ()]

can be expressed using the following integral form.

/ [ o) + 2l fo(a / / u(t)(J1 + Jo)dsdt

/ / ()@} Jydsdt =Ty + Ty + T,

where 77, Ty, T4 are denoted as

b b ___ 4 [0

T = /a /a u(s)u(t) — u(t)u(s) /M—s sH(x)H(z + s — t)dxdsdt,
b b __ 4 [o©

Ty = /a /a u(s)u(t) — u(t)u(s) /M+t tH(x)H(z + s — t)dzdsdt,
b by M+t

Ty = /a /a u(s)u(t) — u(t)u(s) /M—s zH(x)H(z + s — t)dzdsdt.

Observe that the common term in 77, T and T3 is H(x)H (x + s — t), so next we see how

to express H(z)H(xz + s — t) in more details using the expression of H (z).

k[ 1 11" .
/ (i Ze@fl“dﬁ——% /0 [£?<k2—£2>1] 'S dg
k2_252 R Bl 1k
== ¢ = F(m)e™" dn,
o s%w? ol wh
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2
12
with F(n) = ————

1 3
n2(1—n?)4
1 ‘
Consider the integral ¢(w) = / F(n)e"™dn, and write ¢ (w) = 91 (w) + 19 (w), where
0
1
1

P (w) = 2 F(n “m]dn and ¥y ( F(n andn To estimate v , note that on
1 0 2w 1 1\w

2

the interval [0, %], =1+F (772), where F(n ) is continuous on [0, %], thus

It shows that

1
1 . .
Furthermore, ¢ (w) = /l F(n)e"™Mdn = /? F(l- U)elw(l_mdn, and on the interval [0, %],
0
2

write FI(1 —n) =

_3 _3
=n 4 <_2 44 F2(77)> , where F5(n) is continu-

ous on [0, %], thus
. 3 5 3 53 p
Yo (w) =" | -2 71/0 n ze—zwndn+/() n AFy(n)e”"dy
1

1
3 . FW . 3 . o0 .
=— Z_Zezw% 2 ie_ZCalC +0 (l> = -2 Z[elwil/ —36_ZCdC +0 <l)
0 w /0 =2 w
w ¢

3
w4 CZ

Cze

C C 1
Therefore 19 (w) = +0 (l> It follows that ¢ (w) = 261 + —% +0 (—), and
w

wi  w? v

wi
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the common term in 77, TH and T3 can be written as

2
H(x)H )= — _
(@) A5 8) = sl R 5 1]
2 Co etk C 1 oo thk(v+s—t) o
___ K 2077 L Gl L o( L 9¢ n 1 N
r(r+s—1) 1 1 kx 1 1
(kx)d  (kx)2 kz+s—1t)4  [k(z+s—1)2
1
k(z+s—1)
12 Qe—ik(s—t) 1 1
=— |1C9] — 1 +0 <3 +0 —3 ||
(kx)2 k222 (kz)4
Accordingly, for |z| > M, we have
3 3 )
k2 2. . k2 k4
SeH(x)H(z+s—1t) = —3|CQ\ isink(t —s)+ O — +0 —
M?2 M2 M4
3
Note that, the dominant term is %|C’2|2i sin k(t — s), correspondly, the dominant term in
M2

T3, denoted by T34, is given by

T34 = §Rz ]02|2/ / (t)u(s)} (t + s)sink(t — s)dsdt

/ / u(t)u(s)} ekt o=tk gy

§
M?2
o5 b 1s . [0 . b , b
= —3§R / su(s)e " Sds/ u(t)e_lktdt—/ su(s)emsds/ u(t)e tdt
2 a a a a
5
- 2’“—33% {ga(k)ﬁ(k) - ﬁ(-k)@(-k)} .
M2
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Note that in T34, 5u(§) < ||u||L2(F)’ so it remains to consider u(k). Since

b ) .
a(e) — a(k)| = / u(a)e~ 68 — e~ ka) gy

< /ab ’u(x)e—i@"] (1 _ ei(f—k‘)fﬂ‘ dr < ull o 6 Kl

Thus 5 [a(k)% — [@(€)|? < [a(e) — a(k)?> < ||u||%2 € — k|2, it follows that

()

€ — k|,

=)

(B =l

Integrate the above inequality from k& — ¢ to k, then we have

k
ALz [ 2P
0 k k
S5l [ K= e a2y [l = k22 - €2

1, 9 ~3 9 7
> 2 — 2.
> [a(k)|“Vks HuHLQ(F)ﬁa

It provides an estimate for |ﬂ(k)]2, which is bounded by HUH%2 ) and Aj,
~ 1
AR < 8l o ) + —FAL-
L4(T) b}
Vkd2
Using this inequality, 75 can be bounded by
k 1 5 k 9 k 1
731 < Sl 2 [éulem ¥ 1—3AL] < giluly )+ g5 AL
M?2 k464 M2 M2 k262
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1 1
In particular, choose M = k5 and § = ek 5, then T3 can be estimated by

6
T3] < ekul? K24, < By + CH5G
€2
00 _
Note that for 77, for the integral / sH(x)H(x 4+ s — t)dx, the dominant term is
M—s
5
k
s—3|02|2i sink(t — s);
M?2
00 _
and in Ty, for the integral / tH(x)H(z + s — t)dx, the dominant term is
M+t
%
k
t—§|C’2|2i sin k(t — s).
M?2

Therefore, the dominant term for 77 + 75 is

3
%i;—?%WQ]Q /a ’ /a ’ [u(s)m— u(t)@] (t + s)sin k(t — s)dsdt,

7
which is the same as T5;. Therefore, T7 and Ty can also be controlled by eBp + Cko@.

These estimates on 17, Ty, and T3 and the chosen M provides the final estimate for Iy,

101 = [ [P 01120 ?] 173 1724175

1
ek 5 1 %
k‘ BH—FTG)—FEBH—FC/{,‘ G
ek ©
7

<eyBpg+ d4k‘5G.

1
< k5 k(
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U

Finally, we deal with I, which follows from the integration by parts and previous estimate

on HUHL2(F)

Lemma 2.4.6. For any positie constant €5, we have

I = 2§R/Fxﬂxgdx <esBy +d5G + e5k_1\|gx\|2L2(F), (2.39)
c2 oM 2M
whered5=85T+€—k1,ande5: 81.
5 5

Proof. Using Lemma 2.4.1, we have, for any €5 > 0,

I5 = 23?/F:zﬂxgdx = —2?)?/Fﬂ(xg)xdx

1 1
9 2 2
§2(/ \u!de)Q (/ ](:L’g)x\zda:>2 < 5—5k/ ul2dz + =k 1/ \(2g)z|2de
r r 2 Jr €5 r

2
€5, 2 ¢ 4 —1/ 2 4 —1/ 2
< 2k(=By + —G) + —k de + —k d
< S k(GGBa+ )+€5 ay T o [zgel"de
C%e5 , 4,1, AMy, 1y 42
<ecB G+ —k —k
—1y 2

<esBpg +d5G +egk ngHLQ(F)'

The lemma is proved. 0

By using the estimates obtained in Lemma 2.4.2 through 2.4.6, we can prove Theorem

2.1.1 as described below.

Proof of Theorem 2.1.1: Equation (2.23) can be estimated by
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2
2 2 12 2 12 K 12de — . 2
IV} )+ P20 0y + (Ve R i - [ ( -n)|v4l

‘/52_]@,2

2 2, 1212 2
< eB m m (v ) Vul|?, 2.40
< eBg+miG+ 2”91;||L2(F)+831/D \Vu|® + k% |ul +e32/s\ ul (2.40)

7
here e = e +e9+ey+e5, m| = dy+dok+dsk+d ko +d5+y9 and mo = (63—|—65)l€_1. By
using the geometric assumption X -n < —py < 0, we could choose €39 such that €39 < p1,

then by dropping the term associated with | g |Vu|2, Equation (2.40) becomes:

2
_ 2 20 112 2 19 k ~12
(1= sVl ) #2020 + [ (V= H24 el
< aBH+m1G+m2ngH%2(F). (2.41)
7

Note here e, £37 can be chosen sufficiently small, choose C' such that m; < Ck5 and

mg < Ck~—1, then Equation (2.2) is obtained.

2.5 Further Remarks

For the case where the cavity domain is of rectangular shape with D = [0, 7] x [0, 7], consider

the solution u = sin(ma)sin(v/ k2 —m2y),m € Z and m < k . If in particular, k2 —m? =

2

j%,j € Z, then u = 0 on the aperture of the cavity I' where y = m, therefore T'(u) = 0.

In this case, we have an explicit formula for g, that is, g = uy = k2 — m%z’n(mm). It

2 2
_ %(mQ (k2 _ m2) + k2) = 7"—/@2, meanwhile

follows that || Vul|2
ollows that || uHL2 9

211,112
) Tk HuHng)

Hg||%2(r) = %(k‘2 — m2). It shows that when j = 1, i.e., k2 — m? = 1, we would need
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a coefficient of k2 such that HVUH%2 + kQHuH%ﬂ < CkQHgH%Q . This particular

(D) (D) ()

example shows that at least we would need k2 in the estimate. Our estimate yields the order
7

of k5, which may not be the optimal because of techniques we used. It would be interesting

to see whether the optimal order dependency on k is k for any g under the given geometric

assumption.
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Chapter 3

Stability Estimates under a Weak

Geometric Assumption

3.1 Main Theorem and Outlines of the Approach

In this chapter, the cavity structure satisfies the following geometric assumptions:
(1) the angel 6 between I' and D satisfies § > 6 > 0;

(2) there is a point X* = (z(),yg) on the plane and positive constants p such that
(X -X*)n<0 on S (3.1)

(3) the domain D admits cusps of power sharpness 1 < 7 < 2. One example is shown

Figure 3.1. For domain with cusps satisfying the geometric assumption (3), the related trace

. . . : 1
theorem is established in [1], which states that for u € H* (D), HUHL2(8D) < CHUHI-Il(D)’
where the inclusion of H 1(D) C L"(D) for 2 <r < % for domain with cusps [2] is

used for the proof. The main result is Theorem 3.1.1 as stated below.

Theorem 3.1.1. Under the geometric assumptions given in Equation (3.1), there exists a

constant C' such that for k > kg,

7 6
Il ) + Il 2 ) < € {mngnLg(F) el 2y + 45 190)] + |g<w>|]} .
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FC

X* SXH

(a): (X =X*)-n<0 (b): (X —X*)-n<—pg
Figure 3.1: Domains of different shapes

See Figure (3.1)(b) for example, note that in Figure (3.1)(a), there is no such X™* which
satisfies the geometric condition in Equation (2.1). It should be pointed out that even
though Theorem 3.1.1 implies Theorem 2.1.1 in the case of ¢g(0) = g(7) = 0. In general,

7 6
k10 [|g(0)| + |g()|] can not be controlled by k3||g|]L2 This can be

1
+ .
(") \/EngHLQ(F)
seen when g(x) is smooth and is supported in a small subinterval of [0, 7].

Remark 1: Note that in Chapter 2, the stronger geometric assumption is fully utilized in

the final estimate. Specifically, the following energy inequality was obtained:

2 20,12 2 2
[Vul?y, )+ K2l (€2 k214

(D) (D) " /|§|>k

K
e~ [ (X n)| P
52 — k2 S

= 2 2\~2 _ (3.2)
<® [ gu a:+y2/|£’§k2<k e + 2R [ T(u)g

+ 2R /|€|<k [—55(5)] iV k2 — 2a()de + 2§R/Fxﬂxgdx + o /r 19]2dz.

The integral — [¢(X - n)|Vu\2 on the left hand side played an important role to control the

term 2yoR [p T'(u)g is on the right hand side. Recall that in Lemma 2.4.4 | I is shown to
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be estimated as follows,

ou e
I<es /D (Ival? + k2ju?) +532[9|8:|2+d3k2G+?3A|gx|2.

. . v ou |2
Under the strong geometric assumption, —X -n > p; > 0 on S, the term e39 fS |%|
can be absorbed as long as €39 is chosen small enough. Now we have a weaker geometric
assumption on S, thus the previous proof can not be extended directly.
Remark 2: Another natural way to estimate [ is to rewrite the integral using Fourier

transform. That is,

1] SC'/FT(u)g’ :c’/RT(u)E

by extending g to be zero outside I'. Hence

’/ T(u)g| = V f’(u\ﬁdf‘ - '/ ik — 23],
R R R

1 4k
If Schwarz inequality is used, |I| < C (/]R \/ k2 — 52]&\\2) 2 ( k2 — §2|]§]) 2. Recall that

we only have control on /R k2 — 52\ﬁ|2, we need the convergence of R k2 — 52]|§|

However this is not true if |g(0)2]—|—|g(7r)2| £ 0, since g ~ % as || — oo. If g(0) = g(m) = 0,

we will have convergence of / k2 — §2||§| when gz (z) € LQ(F). The new idea is to
R

introduce a new auxiliary function «* , and consider w = u + u*, we have

Aw + k2w = Au* —|—k2u* =f inD,

wlg=0 if u|g=0, (3.3)

\wy|FZUy+uZ:T(u)+g+uZ:T(w)—T(u*)—i—g—i—uz:T(w)—i—gl on I,
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where g1 =g — Tu™ + uz Using this construction, we want g1(0) = g1 (7) = 0.

To prove Theorem 3.1.1 under the weaker geometric assumption Equation (3.1), three
main steps are involved.

Step 1. Introduce an auxiliary function u* such that

1) Tu*(0,y9) = g(0) and Tu™(7,y9) = g(7),

2) u*(0,y9) = u*(m,y2) = 0, uy(0,y2) = ujj(m,y2) = 0,

3) u* = 0 on S. The trick is to construct such u™* so that the norms of f and u™ are as
small as possible. But the construction is not trivial since Tw™ is not a local operator. Once
u* is chosen, then w = u + u™ satisfies Equation (3.3).

Step 2. Note that this formulation has similar structure as that in Equation (1.2) with
two major differences: 1) the governing equation here is nonhomogeneous with a right hand

side source term f; 2) in the nonlocal boundary condition, g1 vanishes on the boundary of

I' while g itself may not. It will be shown that

7 C 2
2 21,12 15l 112 2 2 3/ 2

The proof for the above inequality is presented in the last section since this part can be
viewed as a modification of results in Chapter 2, where most of the ideas are similar; however,
additional terms containing f are involved from the beginning of the proof, so each result
need to be restated. Furthermore, since here g7 vanishes on the boundary of I', an easier
estimate could be used to treat the term [pT'(w)gq.

Step 3. To provide a final estimate for the wave energy on u, it remains to show that

Hg1HL2(F)’ Hglm”LQ(F) and HfHL2(D) terms are controlled by norms of g with suitable
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powers of k, which turned out to be

J 1 < ¢l +1omP]

Jal < ¢ s +lamP] + [ 192,

Lol < 0190 + o] + [ las

Furthermore, it could be shown that

IN

IN

*12 Q

2 12
+ kw7

1oy = 32 9O+ la(mP?]

hence the final estimate could be established accordingly.

3.2 Some Basic Properties of the Auxiliary Function

In this section, we focus on the construction of the auxiliary function u™, which essentially
is a linear combination of two compact supported functions. The aim is to construct a
function u* such that it satisfies 1) Tu™(0,y9) = ¢(0) and Tw* (7, y9) = g(n), 2) u*(0,y9) =
u*(m,y9) =0, ug((], y9) = uZ(W,yQ) =0, and 3) u™ =0 on S. In this section, we introduce

two subdomains where ©* is supported, and analyze some basic properties of u*

3.2.1 The Construction of an Auxiliary Function

Define 27 and 29 as follows.

Q) = {(x,9): z €0, §1,y € [yg — asin(jz), yal},
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and

Qg = {(z,y) 2 € [ — §,ﬂ,y € [yp — asin(jz), yo},

where « is a small constant that will be chosen later to optimize the order in k, which
turns out to be a = %, this is explained in Section 4.4, j = pk, p is a small constant as

indicated in the discussion in Section 3.2, and p is chosen such that j is an integer. See

Figure 3.2 for an illustration of €21 and {)9. Once these two subdomains are defined, two

" -
* ()
.
N .
. .
0

SXT O

Figure 3.2: Cavity with subdomains where the auxiliary functions are supported

corresponding functions u’{ and u§ are introduced accordingly, which are supported in )y

and Q9 respectively. Thereafter ™ is defined as a linear combination of the two functions
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in a way that Tu™ cancels out the value of ¢ on the boundary of I'. Specifically, we write

ut = aluT + a2u§,

where
. [y —yo +asin(jz)]®  (2,y) € 9y,
0, otherwise.
and
§ v —yo + OéSiIl(jl")]S (z,y) € Q9,

0, otherwise,

Furthermore, aq, a9 are constants chosen such that

alTu’{(O, yg) + aQTUE(O, yg) =9(0)

alTuT(w, y9) + CLQTU§(7T> y2) = g(m)

Note that in particular, uT = o sin3(jx) for x € 0, g] and u§ = o3 sin3(j:c) for = €

[ — %, m] on I, this fact is used in the next subsection to analyze properties on a1 and ay.
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3.2.2 The Existence and the Order of the Coefficients

To guarantee the existence of a1 and a9 in the auxiliary function, we show that the coefficient
matrix

Tul(0,9) Tud(0,y9)
1 ) 2 2\Ys y2
M= (3.6)

TUT(W,Z]Q) TU;(W,y2)

is nonsingular. This could be proved by checking the leading order terms (in terms of
order in k) for each component in the coefficient matrix in Equation (3.6). Notice that
To(x) = \/LQ_W Jriy k2 — £25(£)e’€% d¢, thus the Fourier transform of u} and uj are needed

—~ —

for the further analysis on Tui< and Tu§ . First, we derive the formula for ui‘ and u§

Lemma 3.2.1. The fourier transform of u’{ and u§ can be represented by

( 3.3 —i5
u/;(é* yo) = 1 6a”52 e J +1
1\ \/%52_97'2 52_]'2
9 _ ‘ (T 3.7
(—1)JtL | 4 ¢ o ])] .
_ 3.3
W€ ) = =
N §2 - j2

Proof. Since on I', y = y9, therefore u] (z,y) = % sin?’(jx) for (x,y) € 0, g] x{y =1y}

We may assume a3 = /27 from linearity of Fourier transform. u’{(f ,Y9) can be expressed
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as follows.

T T
uT(f,yQ) = /Oj sin?’(jx)e KT gy = %/O] 3sin2(jx) cos(jx)je 182 gy

T
1 i .
/j [6sin(jx) (3052(]'20)]'2 - 3Sin3(j;p)j2}e_zf$dx
0

(i€)*
1 - .
= —2/‘7 6 Sin(jx)j2 — 9sin3(jx)j2]e_25xdx
—£2J0
1 L 9 _i 0%
= gl [}/ 6sin(i e e~ 072 € )
2 02\ % 9 [T —ifx 352
It shows that (=&~ +9j5%)uj(§ y2) =J 0 6sin(jx)e dz. Denote C; = o2
then zﬁ({, y9) can be written as
- T ijx _ —ijr . 1 [ei(i—=E)x —i(j+&)x] | &
ui (€, y2) ZCj/] Leﬂ&dl’:(]‘j—. c 4 — ||/
0 i i| (18 G+ o
i(j—6)T —i(j+&)% —ig%
NG R SRRy B AT B B
=Cj7 2 _ 2y =2
i (j* —€2)i S
Q/L%(f ,y9) can be obtained by a suitable substitution.
— T : L .
W€ ) = / _sind(ja)e T dr = / T sin®j(m — 1)) Ty
7T—7 0
T . . : . N
= /0‘7 (=10 L sin3(jay) Pl daye ™8T = (—1)) TLe T8yt (¢ o)
_j _
(—1)JtL e 4 ¢ o ])]
=2C;
J 52 _ j2
Lemma 3.2.1 is proved. 0

By using the explicit expressions for u’f (&,y9) and u§ (&,y9), the following facts can be
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obtained.

Corollary 3.2.2. Using the connection between u’f (&,y9) and u§ (&,y9) as shown in Equation

(3.8), we have the following relations.

Tu(0,y9) = (=1 T 1Tut (m, yo),

(3.8)
Tul (. yp) = (~1)/ U} (0,4).
Proof. Since the following relate holds for Z/L% (&,y9) and 1/% (=&, v9),
u§(€,y2) = (~1F LT (¢, ), (3.9)

it follows that

m/v — €2u3(E yg)dg = (~1)) 1! 1/\/ — 267U (—€, yg)dg
]+1\/12_7T/ \/7522&*5@25

Thus the first identity in Equation (3.8) is proved, the second identity could be easily derived
after multiplying both sides of Equation (3.9) by eiET. O
From this corollary, in order to show that the coefficient matrix M in Equation (3.6) is

nonsingular, note its determinant

det(M) = (=)7L 705 0,99))% = [Tuf(r, 19)] ),

thus the leading order for Tu7(0,y9) and TuY(m,yp) in terms of power of k needs to be

determined.
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Lemma 3.2.3. TUT(O,yQ) and TUT(?T,yQ) can be expressed by the integrals containing only

the higher frequency part.

i

4
T (0, o) ——/ N Lae,
12 £k 52—93 52

_J

eZ o~ ]) 1T
_ - \/ €2 — k2
Tul ™, Y9) /5 " 52 — 9] 2 — d§.

(3.10)

J

Proof. We first rewrite Tu’i< (0,y9) using residue theorem. It should be pointed out that
iv/ k2 — 52 is not a restriction of an analytic function to the real line. However, we can

express this as

A(€) for & < k,

1 1 1 1
where A(z) = (2 —k)2(z+k)2,32> 0,22 = |z]2e 2 . A(2),0 < argz < m, is an ana-

lytic function. Then

Tu10y2 \/_/ i/ k2 — 52 (& y9)dé = \/—/ \/k’2 52 (=&, y9)d§
m/ (—€,yg)d /M\/ — K2 (€, yp)d

\f / K20 (=€, y) e,
&>k

/RA@)A( €. yo)de =

—

A(&)u’{(—é, y9)d§ = 0 by residue the-

since

1
Vor Nor R—>oo aB+
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orem. Similarly,

T (., ) ¢— = [ Vi = uf(€ m)etTie
- = [ A €T - — /M\/ — k203 (€, yo) ST de
Ry =

—

Plug the expression of u’{(ﬁ ,y9) into the two identities above, the two equations in (3.10)
are obtained. 0
Using these expressions, we can compute the leading orders of T" u’{((), y9) and Tu’i< (m,y9)

and therefore derive the bound for ay and a9 in terms of k.

Lemma 3.2.4. For large wave number k, the matrix M is nonsingular. Furthermore,

1] < 5 (90) + o)), la] < ~5-(1g(0)| + g(x)). (311

Proof. To estimate the leading order of T u’{(O, y9), rewrite the integral as the sum of two

integrals, i.e.,

™

T3 (0.39) = 2o [ Cok T s - S350+ 1)
u1(V,y9) = ——a7y : N + =——Q") +19),
1 2 ek (52 T 1 2

where

52 _ /{:2 ifﬂv §2 _ k2
1 = Jd d [ = d
! /§>k @_o@_p e /§>k CEUICET

Assume that j is an integer such that j = pk and j < % in the following context. Consider
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o € N Ve i (e o )
, -

(62 = 952)2(¢2 — j2)2
¢ [—3§4 + (1052 4+ 4k2)€2 + 52(952 - 20162)}

\VE2 — k2(62 — 952)2(£2 — 52)2

Consider the term g(z) = —322 + (10]'2 + 4k2)m —|—j2(9j2 - 20k2), z = £2 on the numerator.

Use the fact that j < k, then ¢(0) = j2(952 — 20k%) < 0,q(k?) = (k% — j2)(k% — 952) >
0,q(4k2) = —32k% + 206252 4+ 954 < 0. It shows that the two zeros x1,x9 of g(x) lie in
the following intervals: x1 € (0,k2) and 9 € (k2,4k2). Consequently, there is a {y €
(k,2k), &y = /T2, such that f/(f) > 0 for & € (k,&y) and f/(f) < 0 for £ € (§p,0).
This indicates that f(£) is a monotonic function in both the intervals (k,&q) (increasing)

and ((p,00) (decreasing), where §y = pgk, pg € (1,2). Furthermore, note that f(k) = 0,

M%—l

f(&) = :
(18 —9p2) (8 —p2) k3
value theorem, there exists My € (k,§p) and Mg € (£, 00), such that

and f(§) — 0 as £ — oo, therefore, by the second mean

pok ieT My e
1= ‘f(éo) /7 ST de + £(&) /M ;e’gf ¢
1 0

2 2
-1 2j _ 2uk o — 1

T (1= 9p2)(1 = p?)k3

<

IN

dp M1 : :
Denote pu1 = , then |I1| < =5 and pq is small for small u. For Iy, rewrite
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it as I9 = I91 + I99, where

§2—9j2
Iy — d
2! /€>k: @ oE "
—k? + 952 L
Iy9 = ) 5 dg.
22 /§>/€ (\/52—k2+\/§2—9j2) (52_932>(£2_32)
1 11
We have | Toq| > = — = —. Furth ,si 2_92)2 > (¢—
e 21|_/5>k (€2)3¢2 /£>k g g Mrhemere e (Y ZAT 2 (6

3j)2 for € > k > 3j, \/€2 — 952 > £ — 3§, consequently,

2 _ .2 1 _ -9 1
[T92] < (% —9j )/£>k (5_3]_)50% 1030112

_9,,2
Denote g = 4(11_930) , then |I99] < 'Z—% and pois close to lef when p is small enough. From

the estimates for 171,119,971, I99, it follows that

1 1 4p
(R(I1 + I9)| = [I19] = [H91] — [I92] > (5 — 241 — Mz)k— > ok

2
and |J(/7)] < k—g, when g is chosen small enough. It indicates that for small p , the real
part dominates the imaginary part in the leading term in terms of order in k& for TUT(O, Y9).

On the other hand, note that

2,/52_k2
|f1+f2|§/

< | e
ek (2 -952)(€2 - 52) 7 T Jesk (€2 - 95227 €2 - 942

%)



It shows that the real part of |I] + 9| ~ O(k%), which implies that

6 3.
TuT(O,yQ) = —;agj?’(ll + o) ~ O(agk),

where the real part dominates.

Next, we treat T Uf’f (m,y9), where

. _ 633 Y&k i€(m=5) | igmy .6 33
Tul(ﬁv?JQ)_ 7TO‘ J /§>/€ (52—9j2)(€2—j2)(6 +e’5")d¢ = 7Ta 77,

Again by the second mean value theorem for integrals,

Hok JEm=F) | i My ig(r—T) .
|J| = ‘f(fo) /Mf (6’55(% 7) +el€TVdg + (&) /MO;(G%(W o) 4 eifmge

u%—l 2 2 8
<

8
(1 — ) (g — 123 =5 T (1= 91— )k Tk

6
when g is small. This implies that Tuf(w, y9) = ——a3j3J < Ca3. The arguments above
T

show that aq, a9 are the solutions to the following linear system

a3k 0(a3k) o | g(0) (3.12)

(-1 Ho@@3k) (=17 Ha3k| | a9 g(m)

Consequently, the matrix M is nonsingular and the result in the lemma as shown in Equation

(3.11) holds. O
From the estimates of a1 and a9 in the lemma above, we can easily get the bound for

E(u™*). Moreover, the estimate of the energy terms involving w needs to be determined.

Remark: Note that w satisfies the nonhomogeneous equation in (3.3). To derive the
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dependency of the energy E(w) on k, most of the ideas are similar to the previous work;
however, additional terms containing f are involved from the beginning of the proof. Fur-
thermore, since here g7 vanishes on the boundary of I', a different estimate could be used
for the estimate of the term fF )91 as stated in Lemma, that’s exactly the reason why
we could use a weaker geometric constraint which is stated in Equation (3.1) compared to
the previous work, which requires (X — X™*) . n < —p1 <0on S. So each result need to be
restated and this part will be proved in the last section. It will be shown in the last section

that

19012 ) + K02, ) < O RSl 2y + MlonalZg g +45 [ 12} 313
L2(D) L2(D) ~ Wr2my 7 k"1elr2m) D o

3.3 Relations between New Source Terms and Original

Source Term g

To obtain the main stability result for u associated with ¢ instead of the new source con-
tribution terms f, g1, the dependence of f, g; and g1, on g are needed, which are derived

respectively in the following three lemmas.

Lemma 3.3.1. For the right hand side source term f in Equation (3.3), we have

[ 1512 < Cmaxtak.—) (1902 + l9() ] .14

If in particular choose o = g, then /D |f\2 <C [\g(())|2 + ]g(ﬂ)\2] :
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Proof. Note that f is defined as

2 2 2
f=Au" + k0" =ay(u],, + ufyy + k*uy) + ag(ud,.. + u§yy + k*u3).

From the definition of u’{, we can see that ui‘, Du’{, D2u’i< vanish outside outside €27. We

will treat uT first, and u§ can be handled in a similar way. In €2y,

(

u’{ =[y—yo+ asin(j:z)]?’,

UTCIT =3ajly —yo + cvsin(jx)]2 cos(jx),

\ u’{:m = 6a2j2[y — Y9 + asin(jz)] COSQ(j:E) - 3aj2[y —yg + asin(jx)]2 sin(jx),
and

ul, =3y —yo+ Ozsin(ja:)]2
1y 2 )

“Tyy = 6y — y9 + asin(jz)|.

Note that in Qy, f = al(“fxgg

[ [T ("
0 yo—asin(jx)

and u] will be used to derive the estimate for [q 1 |f \2.

+ u’fyy + k2u>f), thus it follows that

2
“T:m + ufyy + kQui< dydz. (3.15)

Next, the expressions of uT " x,ui‘ m
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For the first term in the expression of ui‘ s W€ have

\aﬂz/ /
yo—asin(jx)

:|a1|2/J 1204434[ozsm(jx)]30082(jx)dx (3.16)
0

2
2j2[y — y9 + asin(jz)] cos? (jz)| dydx

2
¢ 2 2
<|=| (9O +lg(m)2) 2 aTj* < Cak(|g(0)% + g(m)]?).
a3k J
Similarly, for the second term in the expression of ui‘ I follows that

2
|a1|//
yo—asin(jx)

<Cak(|g(0) + [g(m)%).

2
3aj2[y —y9 + asin(jx)]2 sin(jz)| dydx

(3.17)

Moreover, for uT Yy

\a1\2/ /
yo—asin(jx)

C T C
< [agk} (9(O) +lg(m)%)Z0® < —(lg(O) +1g(mI).

2
6ly — y9 + asin(jz)]

s
dydr = |a 2 [7 12[asin jx 3 dz
L 0
(3.18)

And for the term k2u>{, the following estimate holds,

s
Wi [ [”
1 o
0 Jyp—asin(jz)

2
< [5] U + o) 24T < Cak(lg(0)? + ().

2 us
1
kZ[y —yo + asin(jx)}‘g‘ dydr = |a1|2 /J = [ sin(jm)]7dx
0 (3.19)

Next, the integral involving g1 is computed.
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Lemma 3.3.2. The relation between Lo norm of g1 and g can be expressed by

|1 <0 [laP +l@R] + [ 1o

Proof. Recall that

where Tu™ = alTui< + azTu; For a1 T u’{(m,yz), suitable contour integral and residue
theorem are used like the computation of T° uik(O,yQ) and TUT(?T,yQ) in Section 2. The
advantage of this is to convert the integral on R to £ > k, which makes the estimate much

easier. If% < x < m,then

12 6a eZ o ]>+61§Id
s 52_9‘7 22 *

4y T, o) | = } Lo j

E>k

_6a 33|a1|/ V€2 — k2
¢k €2 - 952 52

6043‘73|0l1| 3
— L .
= /5>k (€2 —952)2 ¢

3
6a j°laq] 1

< + .
- 12 9j2 < C([g(0)] + [g(m)])

fo<x< 7]—?,then

—ié(z—T) :
J 1€x
i) = |5 [ i/i2 5252_%6 e

J
_ —2a1/ \/72 ¢ Sl j)+ezg$d€‘
£k ' 2 — 52

C(lg0) + lg(m)]).
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Similarly, |agTud(z, yo)| < C(|g(0)| + |g(m)]). Therefore,

T T
Jore?= [+ [Tl < c (g + )R]
* * *
Moreover, note that Uy = ajuy, + U, then

* C om C
J 15 < 52190 + lomPla® < 51901 + o(m)P).

Again if o = %, then the result in this lemma is obtained.

Furthermore, we have the following estimate for the integral in terms of g1,

Lemma 3.3.3. The Ly norm of g1, can be estimated by

[ lo12? < €82 (192 + o] + [ lax

Proof. Note that g1, = gz — Tuy + uzx, where (Tu™)z = al(TuT)x + aQ(Tui)x,

i&(

E(z—1)
6a e 774 et
a1Tuy(z, y9)z / i/ k2 2 ; 272 dg

J

T

- s
1 ]9 6353 615(35—7) NI
= %al /R(Zg)’t k’ 6252 _ 9j2 f,2 ) df.

J
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Then if 7J—T <z < 7, using the residue theorem as before, then

6a3 -3 eZ£(I ])+€2§x

. B ay )
|a1Tu1(a:,y2);p| = ‘ — _/§>k:(25) 52 k2£2 _ 9] 52 —j2 ds
2404333\a1\ 2
- . —
= /g>k ST
_ 24a3j3|a1|

wh—3)) = Ck(lg(0)] + lg(m)]).

Follow the similar argument, if 0 < x < , then |a1Tu1(:L' y9)z| < Ck(g(0)] + |g(m)]). Also,

lagTu (@, y2)x| < C(lg(0)] + lg(m)]).

Thus Tw*(z)z < Ck(|g(0)| + |g(7)]). It shows that

w2 [T o 2 7 ) 12 2 2 2
S = [l @)+ [ lapie? < cr2 [la)? + o) ).

Furthermore, we have sz = aluTyx + a2u§yx, where
laguf | = [6aga cos(jiz) sin(jz)j| < Cak(lg(0)] +|g(m)).

lagu | = [6agarcos(jz) sin(jz)j| < Cak(|g(0)] + [g(m))).

Based on the above expressions,

[ sl < a2 + o(m)?) < Ca?k(0)? + o))

Therefore, if « is chosen such that o = %, then the lemma is proved. 0
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Remark: (1) the proof in Lemma (3.3.1) indicates that if o = %, then the lowest power

in k to control f is obtained. (2) the reason that ui‘ is chosen to be (« sin(jas))3 on I instead

2

of lower powers such as asin(jz) or (asin(jz))* is that this guarantees the integrability of

Summarizing all the results proved in this section,

Jo 1P = o, P f, 1P < [ls0P + o],
[ <€ [la)? + o= /\9\2

112l < 2 [l90P + 19w P] + [ ool

Combining these inequalities with Equation (3.13) yields that

2 2 2 I 2 2 12 2 2
IVul2s ) + \|w\|L2(D)§C{k5/F!9! P lax + 55 (9P + o] -

Note that w = v + «*, and similar as the computations in Lemma 3.3.1, we see that

A

_c
L?(D) =2

20 %2
+ kw7

T2y < 33 [9OP +lo@)P].

Hence, the final estimate could be established accordingly, that is,

2 2 2 I 2 12 2 2
IVul gy + HuHLQ(D)SC{% J1P 1 [ laeP 55 o) + lo(e) }}.
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3.4 The Estimate for the Nonhomogeneous System

In this last section, we establish the stability estimate for the formulation in Equation (3.3),

or in general, we provide the stability estimate for the following problem

Aw+k2w:f in D,

w=0 on S, (3.20)

Onw =T(w)+g; onl.

where g (a) = g1(b) = 0, ' = [a,b] x {y = yo}, and T'(w) = \/g—ﬂfR k2 — 2wetsT dg,

then the following theorem holds for the nonhomogeneous case.

Theorem 3.4.1. Under the geometric assumptions given in Equation (3.1), there ezists a

constant C' such that

IVw|2q,  + k2 w2y, <C k%ug 125+ g2 +k‘%HfH2 (3.21)
L2(D) L2(D) ~ Wr2q) ™ p"¥lelp2m) L2(D) [

Remark: The estimate for the case where f = 0 and g may not necessarily vanish on the
boundary of I is established in the previous chapter where the stronger geometric assumption
is imposed on S. Since most of the ideas are similar to the previous chapter, the arguments
here emphasize on the portion when the nonhomogeneous terms are involved.

To simplify notation, we may again assume X* = (0,0). Since in this chapter we use the
fact that on I' o coordinate starts from 0 to 7 in the construction of u* which is related to
g1- So if we set X* = (0,0), a translation of the coordinate system is applied here. That is
why we assumed that I' = [a,b] x {y = y9}.

The proof of Theorem 3.4.1 involves three major parts.
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Part 1. The weak forms of the governing equation with two different test functions yield

the following identity,

2 21,0112 2 _ 121512de — : 2
IVl 3y + Pl ) + g VE = K210~ 08 mival

=R (/F glw) + R (/D fw) + 2R /D f(X - Vo) (3.22)

— ‘n w2 2 -nw2 8_w - Vw
J e mival 2 [ (el + 2 [ S V)

Part 2. Appropriate usage of some basic facts related to Fourier transform, the nonlocal

boundary condition in Equation (3.20) and the geometric assumption on S yield the following

inequality
IVwl2q, - +E2wl?y, . + / (V&2 — k2 + _B )| @[ de
L2(D) L2(D) " Jie|>k [e2 42

< (o) +n ([ m)+2m [ 00w+ Ji 07 - NP 5

+2y0R /F T(w)gy — 2R /| <k {fﬂf)} i k2 — E2w(&)d¢

+2%/waxg1dw+yzélg1l2dx'

Part 3. To fully use the higher frequency term on the left hand side in Equation (3.23), the
relations between the higher frequency term on the left and the lower frequency component
is needed, also the Lo norm of w is expected to be controlled by the higher frequency
component, these relations are derived in Lemma 3.4.5. Then by fully using the results in
Lemma 3.4.5 and other tools, we estimate each term in the right hand side of Equation

(3.23), which are named by /7 through Ig.
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3.4.1 Wave Energy Formulation

Next, we start from Part 1, where the goal is to formulate the wave energy identity.

Lemma 3.4.2. For the lower frequency part of W, the following identity holds

/’§|§k\/k2 ~alac= -3 (o [ o). 3:24)

And for the higher frequency part of W, it can be shown that
2 2112 9 92 e _ _
Vw — k% ||lw +/ &4 —k4lu df—iﬁ(/gwjt/ fw).(3.25
190125y = 2 )+ fo VE 1200 o+ [ )

Proof. The weak form of the governing equation is given by the following equality

/ V- Vo — / k2wo — / Onwv = / o (3.26)
D D oD D
for any v € Hl(D). Now choose v = w, then Equation (3.26) becomes
[ = [ 2l [ (@) +gw= [ (3.27)
D D r D

where the boundary conditions w = 0 on S and Onw = T'(w) + g7 on I' are used. Since w

is supported on I'; we can extend w such that w = 0 on FC, then [pT(w)w = [pT(w)w =

—

JrT(w) @ = fRi\/kQ — £2|@|2d¢. Hence Equation (3.27) can be written as

/D|Vw|2—/Dk2|w|2—/Ru/k?—§2|@|2d§:/rglm+/Dfm (3.28)
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Considering the fact that

—/Rz'\/k:2—§2|@|2d£=—/yglgki\/lﬁ—€2|@|2d€+/’£‘>k V&2 — k21,

and taking the imaginary part and real part of Equation (3.28) respectively, the results in
the lemma could be obtained consequently. 0

Notice that from Equation (3.25) in Lemma 3.4.2, the terms associated with the com-

onents in the wave energy, i.e. ||[Vw 2 and —k2||w|? are already there, unfor-
tunately, the second term —kQHwH%Z (D) carries a negative sign, while in the wave energy,

we need the positive one, so another identity is needed such that both terms are positive.
Therefore, another test function v = X - Vw is introduced here, where X = (z,y), it yields

the following lemma.

Lemma 3.4.3. For ¢ > 0, we have

- fecemiwe e 262 [ [ ocmive? -2 [ ol

9
_ 2@&/ U (x - vm) +2sre/ F(X - V). (3.29)

Proof. Plug this test function into Equation (3.26), it becomes

/DVw-V(X-VE)—/Dka(X-Vﬂ)—/8Dg7::(X V) / F(X - V@), (3.30)

For the above equality, using divergence theorem, it is easy to check that the first two
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terms on the left hand side can be written as
2%/ Vw- V(X - Vo) = / (X -n)|Vuwl|?, (3.31)
D oD

and

—23%/ Kw(X - V) :—k2/ (X-n)yw|2+2k;2/ |2, (3.32)
D oD D

Then multiply Equation (3.30) by 2 and take its real part, and apply Equations.(3.31)

and (3.32), we could arrive at the following equality

/ (X-n)\Vw|2—k;2/ (X-n)|w|2+2k:2/ |w|2—2§R/ My v
oD oD D oD On

~ o /D F(X - V). (3.33)

Since 0D contains two parts I' and S with different boundary conditions, the two parts

will be considered separately. For S part, note that w =0 on S, Vw = %ﬁn , hence

/S(X-n)Ww|2—k2/S(X-n)|w|2—Z%ZS'Z—Z(X-VE):—/S(X-n)Ww|2.

Therefore, Equation (3.33) becomes the equality shown in the lemma. O
Obviously the term 2k2 Ip |w|2 in Equation (3.29) is helpful as this term provides positive
contribution to the wave energy, so add Equation (3.25) and Equation (3.29) together, the

identity involving the wave energy could be formulated as shown in Equation (3.22).
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3.4.2 Analysis through Fourier Transform

On the left hand side of Equation (3.22), apart from the wave energy terms, the term

f|§|>k3 \/ 52 - k:2]@]2d§ will be helpful to control the higher frequency part of w, the term

— Jo(X - n)|Vw|2 is nonnegative under the geometric assumption X -n < 0 on S, so it
could be dropped from the estimate. For the right hand side, the term fF (X - Vu)
is more involved, since Vw on I' can not be controlled by the wave energy terms directly,
some further analysis is required. Since the operator T' is simply a multiplication operator
in terms of Fourier transform. Using the boundary condition on I' and some basic identity
from Fourier transform, the last 3 terms on the right hand side of Equation (3.22) can be

easily converted into the frequency domain. For the details of the proof, see Chapter 2.

Lemma 3.4.4. For the last three terms on the right hand side of Equation (3.22), it can be

shown that
/F(X n)|Vw|2+k2/F(X n)\w\2+2§re/ (X - Vo)

L2 ~2 2 21 ~2 o
s - ——lw|"d¢2 k= — s +2y9R [ T
< /|§|>k 52—k2|w| £y2/|§|§k( §)|w]*dg + 2yo /F (w)g7 (3.34)
—om [ e @) /12— @t + 20 [ wrords v [ I

€<k

From the result in Lemma 3.4.4, we can see that the original term 2R [p T(X V)

actually contains lots of useful information. Especially, it produced a negative higher gre-

2
quency component term, f| (kT
\/ § —k2

and helps with the final estimate. Therefore, by dropping the term — [ (X - n)]Vw\Q in

|w| d¢, this can be moved to the left hand side

Equation (3.22) using the geometric assumption and also use the result in Lemma 3.4.4, the

result shown in Equation (3.23) is obtained.
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Now we can see that the term Vw has been canceled out by using the result shown in
lemma 3.4.4; as a consequence, we obtain an energy inequality which contains lots of other

terms on the right hand side.

3.4.3 Auxiliary Lemmas and Final Estimates

Next the estimate for each term on the right hand side of Equation (3.23) is derived. This
is not straightforward as no direct connection is there for the higher frequency compo-
nent on the left hand side and the terms on the right. Therefore, the connection be-

tween them is established in Lemma 3.4.5. To simplify the notations, we denote Aj =

N 2 . .
f|§|§k V k2 — 52\w\2d§, and By = f|§|>k(\/ €2 - k2+\/%)]w]2df . As stated in the

&4—k
following lemma, Ay, the lower frequency part of w, could be controlled by By, which is

connected to the higher frequency part of w.

Lemma 3.4.5. There exists a positive constant C', such that

4] 1 9
Ap < TBp+ - 2 w .
L=y Bu 5ol ) + !/wal, (3.35)

1
where § can be chosen such that C6 < k2. Furthermore,

2
2 280+ a2 20 / =
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Proof. As shown in Lemma 2.4.1, there exists a constant C' such that

9 C 1
< —A; +—Byy. .
||w||L2(F)_\/E L+ Bu (3.37)

In addition, by using the identity Equation (3.24) and the above inequality, we have

09 1 2 _
< < — —
6, C 1 1 9
< YA 4By + — w
< (ALt H)+25||g1||L2(F)+\/wa\

If § is chosen such that C§ < v/k, then the following inequality holds,

1 Co ) 1 9
—A < (1-—4=)A; < —B — w | .
5AL < (1= 0AL < B+ sl o+ | [ fa ]
Equation (3.35) is obtained accordingly. Plugging Equation (3.35) into Equation (3.37), the

estimate for ||wa2 9 could be arrived as shown below.
LA(T)

2 < (0. L2 2/ 1)+ 1
Il gy < 5 (180 + §lol2ap 421 [ o1} + B,

Choose C6 = /k, then Equation (3.36) holds. O

Lemma 3.4.5 is crucial in the sense that it provides a way to relate the integrals of ]w|2
and 4/ |§2 — k:2||ﬁ?\2 to the high frequency part Bgy and also norms related to gq; it is also
important in determining the power of k in the estimate. Now we will estimate each term
on the right hand side of Equation (3.23), which are named I; through Ig. Here similar
techniques could be used as in the previous work for the terms Iy, I3, Iy and I, for other

new terms, i.e., Io and Ig, they could be controlled by norms related to f and the energy
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terms on the left, and for 14, considering the fact that g; = 0 on the boundary of I', a different
way as shown in Lemma 3.4.9 can be used, which is relatively straightforward comparing to
the previous work and here the geometric assumption is not needed for the estimate. The
following lemmas, i.e., Lemma 3.4.6 through Lemma 3.4.12, provides the estimate for terms

on the right hand side of the energy inequality.

Lemma 3.4.6. The first term on the right hand side of Equation (3.23) can be estimated by

€1 2012 1 2
I_§R/ w< —By + +€/kw +e—/ , 3.38
1 9 JiCH \/—H91H 2m) T |w] 1,2 le! (3.38)

where €1 1s any small positive number, and dy =

Proof. By applying the relation between HwH2

L2(r)

and By as shown in Lemma 3.4.5, it

follows that

61\/_

1 2

2B CQH 12, 2C|/ a2
TRl b 9 2e1v/E I L2(D)

w < ol o gyl oy <

(3.39)
Loy 7£||gl|| o +510|/ i |
<Lig+ b2y +er [ Pl +ers [ 12,
where the constants are independent of k. O

It is easy to obtain the estimate for the second term on the right hand side of Equation

(3.23) since a positive term k;2|w|2 lies on the left hand side of the equation.
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Lemma 3.4.7. For I9, we have

— 1 2
1 —§R/ fw<e /k2w2—|—e —/ f1°, 3.40

1
where €9 1s any small positive number, and ey = —.

€2
Similarly, a direct usage of Schwarz inequality would lead to the estimate of I5 as shown

below.

Lemma 3.4.8.

]3—2%/ f (X -Vw) <83/ |Vw|2+e3/ |f|2 (3.41)

where €3 1s any small positive number, and e3 = le\%, Mg = ma:z:xer{xQ}.
The estimate on I can be derived by using Lemma 3.4.5.

Lemma 3.4.9. 14 which contains only the lower frequency part can be estimated as follows.

Iy=2 k2 — e2Y%12d
1= 2 /| 1~ o o

9 20 12 9
SE4BH+d4kllg1llL2(F)+€4/D’f w] +64/D|f| :

4y3 1643
where €4 1s a small positive number, dy = — and ey = o
4 4
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Proof. Using the fact that for |¢] < k, y/k2 — €2 < k , then

Iy = 2 /|§|<k(k2 — 2)|@)%de < 2yokAf
3 2y2, 2 _
<9 B 9
< 2yok (2 B+~ ) ||91||L2(F)+ I/wa I) -
9 _
— e B +dyk Ayolk
eqBy +dy ||g1||L2(F>+ Yo /wal

9 20 12 9
S€4BH+d4kllg1llL2<F)+€4/Dk w| +€4/D|f| :

Lemma 3.4.10. It can be shown that Ir satisfies the following inequality

Iy = 2y2§f3/FT(w)g

2 =1 7.2 2102 + 2
< esBpy + sl 2y g + gl 2y + 25 [ BN+ 5 [ 112, s

2 2 2 2
. . erC 2y5 —  2y5 o2 23/2
where €5 1s a small positive number, dy = jT + ?’% =% and e5 = Ies + er
Proof. Define g in the following way,
g1 onl,
gr =
0 onTC
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then

Iy = 2929?/ w)gIT = 2y2§R/ w)g1T
= 2y2§R/Ri\/k2 —g%ﬁ < 2y (/ |@|2d§)
5 k
B )2, / 12— ¢2)|gip 2de
ek [ 2 02 - -
= 3 (kBHJF_HQlH ‘/ ) /R(kzlgmzdﬁ%?\\gmz) d¢
9
2y 2y
9 _ 5 9 20 112
i _k 92
9

2 2
e5C 2 2012 5/ 9 2 292 /02
< exB - k: ]{; 74

DO|—
DNO|—

22— 2
(/R\k 2llg77 df)

5502

- /2 20,12 2
Se5BH+d5ngl||§2(F)+d5gnglnL2<P)+E5 [ P+ / 712
0

Lemma 3.4.11. By using Lemma 3.4.5 and further analysis in the frequency domain, we

have

o= | [fﬂf)} i/ k2 — €2i(€)de

7 2
=4 2 20,12 = 2
S €6BH+d6k}5||gl||L2(F)+56/Dk’ |'LU| +66k‘5/l)|f|, (345)

where g¢ 1s any small positive number.
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Proof. Following the conclusion in Lemma 2.4.5, the following inequality holds.

6
I = ekllwl|?y, . + Ck5 AL

L#(T)
2 c? e
<ck (gBHJF ||91HL2 \/ fw>
6 /¢ k
5 (B + 2g1l2 2 w
+ Ok (58 + Sty 421 [ fo)

z 2 2,12 2 2
< B+ gk o 2y +26 [ Kl + ek [ 1P

Lemma 3.4.12. It is shown that I7 can be estimated by

I; = 2§R/wa$gdx

d 1
< 67BH+d7||g1II%2(P) +?7H91x”%2(F) +s7/D k2|w|2+e7E /D|f|2,(3.46)

g7 can be chosen as an arbitrary positive number, d7 = —7— + 5, d7 = 284]\?)1, and
0257
er=—1+

Proof. Using integration by parts and the connection between ||u)||2

L2(T)

and B g in Lemma

3.4.5, it implies that

I7 = 23%/F$@x91d$ = —ZR/FE(xgl)xdx

erk 2
< %/ |w|2dx+—/ (21| *dz
€7k c? 4 9 2Ms 2
< B 2 =3
< (k g+ ||gl||L2 N )+57k||gl||L2<F)+ g

1
< erBy +drllgnl o + ?HgmHLQ(F) +ey /D k2 wl? + o7 /D 12
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OJ
By using the estimates obtained in Lemma 3.4.6 through 3.4.12, we can see that Equation

(3.23) can be estimated by:

2
(V2 12+ ———)|ad

V€2 - k2 (3.47)

L2 71 2 2,12 2 = 2

2 2 2
[Vul?y, ) + k2wl

(D) (D) " /|§|>k:

here ¢, d, d and e are chosen such that they are > the sums of the corresponding components
in the estimates. Since € can be chosen as small positive number, so the By term on the
right hand side of Equation (3.47) can be absorbed by the By term on the left, similarly,
the energy term on the right hand side can be absorbed by the energy term on the left hand

side. Therefore, it shows that there exists a constant C' such that Theorem 3.4.1 holds.
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Chapter 4

Stability Estimates for

Rectangular-like Domains

4.1 Main Theorem and Sketches of Approach

There are other cavity domains which do not satisfies the aforementioned geometric assump-
tions in Chapter 2 and Chapter 3, such as rectangular-like domains (domains composed of
rectangles of different sizes), one example is shown in Fig. 4.1. The main result is stated in

the following theorem, where the outnormal vector n = (ng, ny).

Theorem 4.1.1. For the cavity of rectangular-like shapes with yny < 0 on S, there exists a

constant C' such that

7 3
IVl 2y + Il 2 ) < CUR ]2y + 3wl 2y + £2(9(0)] + la(m)D)- (41

To prove the theorem, the same u* as in Chapter 3 is introduced, which satisfies: 1)

TU*(O, y2) = .g(()u y2) and TU*<7T7 y2) - g(ﬂ-7y2)’ 2) U*(Oa y2) = U*(Tra y2) - Ou 3) u?;(o7 92) =

u?}(ﬂ,yQ) =0, and 4) u* = 0 on S. Then we set w = u + u™, then w satisfies the following
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Figure 4.1: Rectangular-like domain

equations
.
Aw+k2w:f in D,
w =70 on S,
\an:ijLgl on I,
where

;

f=Au* + k2u®,

glzg—Tu*+uZ,

| 91(0) = ga(m) = 0.
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The major difference lies in that we need to derive an energy estimate for w in the context
of rectangular-like domains. Here two main procedures are involved to derive this energy
estimate. First, we start from the weak formulation of w and also using appropriate test

functions, the following inequality could be arrived, for any ¢ > 0,

2 / 2 12172
wy|” + &4 — k4|w|“dg
Joplul+ [ el
3 C C
<Ck2|g1l 72 0y + 7 l91al 20y + 2 /D wf? + <k /D i

Note that this inequality only contains the estimate for wy, therefore, additional relations

involving other terms in the energy needs to be explored, that is,

[l e [ jug? (4.5)

Combining these two inequalities and also the result in Lemma 4.2.4, the following energy

estimate for w is arrived:

Ry, 19012y ) <€ (211125, + Kl 2+ 44 1P| @)
L(D) LY(D) LA(T) T2 T p

By using this energy estimate along with detailed analysis on v*, the main result could be

obtained.

4.2 Preliminary Lemmas

Since we use the same u* as applied in Chapter 3, so here the details related to u™* are

skipped for simplification and the resulting estimates related to ™ will be restated briefly
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when needed as for the clarity of our further proof. The main effort is to establish a stability
estimate for the new function w by assuming the cavity region is of rectangular-like shape and
furthermore we assume yny < 0. Here we start from the weak formulation of the problem
for w, and apply two different test functions to obtain an important inequality. The weak

form of the governing equation is given by the following equality

/D V-V — /D Kwn — /a L On = /D f. (4.7)

Similar as before, by choosing v = w in Equation (4.7), and taking the imaginary part

and real part respectively, one has

Lemma 4.2.1.

/|§|§k VE2 — 252de = —Im </F g1 + /D f@) : (4.8)

2 — 12 |w||? 2 121752¢ _ _ _
V0l )~ Pela [ VE R = ( fLome [ ). 49

Notice that in Equation (4.9), the terms associated with the components in the wave

energy, i.e. HVwH%Q and —k2||w|]%2 are already there, unfortunately, the second

(D) (D)

term —l{;2||w||%2 carries a negative sign, while in the wave energy, we need the positive

(D)
one, so another identity is needed to cancel out the negative term. Therefore, another test

function v = ywy is introduced. Note that this is different from the test function used in

Chapter 2 and Chapter 3 since a different geometric assumption is imposed here.
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Pluging this test function into Equation (4.7) yields

_ 9 ow___ _
Vuw - Vyw —/ k= wywy — —yw :/ fywy.
/D Y Ip V" Jopom™Y  Jp T

Multiply both sides of the above equation by 2 and take the real part, it becomes

ow
23?/ Vw - Vyw —28?/ k:waw —Q/y w 2:2%/ fyw —1—23?/ —7ywy(4.10
5 v 5 y =2 | velwy 7 & on 7 0yt-10)
By adding appropriate additional terms and using the divergence theorem, it follows that

= /Dy<|Vw|2>y + 2Jwy|? = /D[y<Ww|2>1y — [Vl + 2wy ?

2 2 2
= yny (|Vw —/ Vw +2/ w
/8D ?/(’ ) D‘ | D| y|

2 ow___ 2 2
= Vw —l—?)?/ —yw —/ Vw +2/ wy |~
/I’y2(| ) Sany Y D| | D| y‘

Furthermore, the other term 2% [ D kaywy can be written as

(4.11)

2?)?/ kzwyT:/ka wl? :/kaw2 — k2 |w|?
5 V=, (lw]*)y D(||)y |wi

2 [l = [ Kl
T D

Plug the results in Equations (4.11) and (4.12) into Equation (4.10), it leads to

2 [ fuyl [ el [ R
D D D

2 2 2 2 ow
=— | yo(|Vw|?)+k /y w —|—2/y w —|—2®%/ fyw —|—§R/ —ywy.
Juavul) 2 [ gl +2 [uoluyP+2m [ gy [ S

(4.12)

(4.13)
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Note the geometric assumption yny < 0 on S guarantees that / g g—i’l}ywy < 0. Therefore

the following lemma could be obtained.

3
Lemma 4.2.2. For all w € Hé(D) ﬂH2+€(D),e > 0 ,we have

2 [ fuyl = [ vl i [l
D D D

2 2 2 2 —
< — | y|Vw|®+Ek /y w +2/y w —|—2§R/ fywy,. 4.14
/1_‘ 2’ | r 2‘ | r 2‘ y| D Y ( )

Consequently, the negative term on the left hand side of the above equation could be

canceled out as shown in the following lemma.

Lemma 4.2.3. By adding Equation (4.9) and Equation (4.2.2) together, it yields that

2/;mm2+A§>kv9—%ﬁmP%
<R (/F glﬁ> + R </D f@) — /Fy2|Vw]2 + k2/1jy2|w|2 (4.15)

2 __
+2/y]w[ +2§R/ fywy.
Fzy D Y

Note that for the third to fifth term on the right hand side of the above identity, a direct

computation yields the following result.

Lemma 4.2.4. As detailed in Lemma 2.3.2 in Chapter 2, one has

2 2 2 2
_ www+k/ymww/ym|
/Fz b2 L velwy

(4.16)
k2 — ) |@)2de + 20oR | T(w)g7 + 24z
§2y2/‘£’<k( §)|w|7dE + 2y9 /F (w)g7 yz/Flg1| x

Use the result in Lemma 4.2.4 and apply it in Lemma 4.2.3, the following lemma holds.
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Lemma 4.2.5.

2 |wy|2+/|€|>k V€2 — k2)) e

<w([ow)+n( [ o)+ Ji o2 - i (417

I 2 _
+ 2y §R/ng +y / g dx+2§R/ fywy.
2 . (w)g1 + ¥2 F| 1l D Yy

Observe that a higher frequency component lie on the left hand side of the above inequal-
ity, this could be used for the estimation on the right hand side, thus we need to build the
connections between the higher frequency component and lower frequency component. By
using the fact that w is supported on I' and the result in Lemma 4.2.1 here, the connection
could be eatablished. To simplify the notations, denote A; = f|§|§k’ JE2 — €2|{5|2d§7 and
A = f|£|>k’ k2 — 62\@\2(15 . As stated in the following lemma, Ay, the lower frequency

part of w, could be controlled by Ay, which is connected to the higher frequency part of w.

Lemma 4.2.6. There exists positive constants C' and d, such that

M 1 2 / _
Ar < —Apg+ — +2 w |, 4.18
1< e An+ gillnla g +21 [ s (1.18)
1
where M can be chosen such that M < % Furthermore,
2 C C 9 C / a
w < —Ag+— + — w | . 4.19

Remark. Note that the difference between this lemma and Lemma 3.4.5 lies in the power
of k, here the power associated with Ay is ﬁ while in 3.4.5 the power associated with By

is %, since in By additional higher order term exists. Here By is not involved due to the
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fact that a different test function is used. This power dependency difference essentially leads

to the different power in the final estimate.

Proof. Here we could start from the idea of Lemma 3.5 in [8], that is, there exists a constant

d, such that
2
1ol 0y < —=(AL +AR). (4.20)
In addition, by using the identity (4.8) and the above inequality, we have

Ar,

IN

M 1
ol 2 py el 2y + | / fw 1 Mol + gapl911 Tyt | /wa|
M C
< Goelp A+ giplalla | [ )

If M is chosen such that dM < vk, then the following inequality holds,

1 dM 1 9 / o
—A < (1-— A A + + w
M
Ar < —A +— —|—2 / w
L N HgH || fw]

Considering the results obtained in Equation (4.20) and Equation (4.21) together, the esti-

mate for ||w||2 could be arrived as shown below.

L2(r)

Il gy < 5 (SgAn + ilolZagy +21 [ /o) + Zay. a2
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Choose M =

C
gy < Sedm+ FlolZa g + = | [ il (422

O

This is an important lemma as it relates the integrals of |w|2 and /]¢2 — /{;2||{E|2 to the

high frequency part A and also norms related to g1. Now we will estimate each term on

the right hand side of Equation (4.17), which are named Ij through Ig. As most of the

details are similar to the previous chapter, the only difference is the power of k as stated in

the Remark, thus the details are skipped and only the estimates are given as below.

Lemma 4.2.7. Simular to the computations as shown in Chapter 3, one can show that for

e >0,

/ < JHAR+ g kugluLQ( >+Z/ |w|2+€£k/D|f,2’
%/ i /|w|2 /D|f|2’ (4.23)

2 —~12
92/|§|§k(k €)@ de

c 3 ) £ 2, C 9 )

C5 2 ¢
51AH+51k ||g1||L2(P)+4/D|w| +—k /D|f| 7 (4.24)
2y23‘?/FT(w)ﬁ

C C 2
e1Am + g +llg / —/ fl7, (4.25
145 1\/—(H 1HL2( ) | 1xH [w]” + 2 D! 1, (4.25)
23%/ Ty < e / w 2+—/ 2. 4.26

ny y <e1 DI yl - le\ (4.26)
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Combine all the estimates above, we have

_ 2 _ 2 192152
(1-ep) /D\wm 1 (1-3ey) /|§|>k\/€ k2| 2de
2 €2 2
re [ i+ 22 [ 12

As long as €7 is chosen as a positive number such that 1 —3e7 <0, then we have

Jolul®+ J Ve Rl

3 C C
<Ck2 g1l 7 2 0y + 2912l 2 0y + 2 /D wf? + Zk? /D i

(4.27)

Cl.3, 2 1 2
<— |k2 —

(4.28)

So far, on the left hand side of the inequality, notice that only partial energy term is there,
that is, [ |wy|2, and this inequality shows how [ |wy|2 is controlled by [p lw|? and
other terms. To establish an energy estimate, the inequality of the reverse order, that is,
how [ lw|? could be controlled by Ip |wy|2 needs to be derived, which is the main goal of

the next section.

4.3 Relation between [, |w,|* and [, |w|*

Using the divergence theorem, we see that

0= [ w=ululry= [ fw-sluiPly = [ jwl?+ 200~ o)y

Then we can estimate [ ]w[2 by Schwarz inequality,

2 o 2, C 2
[l =2 [y =g <e [P S [y
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Therefore, choose any € < 1, it shows that

2 2
w §C’/ wy <. 4.29
/Dl | D| ?/| ( )

4.4 Final Estimates

Note that earlier we have the following result,

Jolu?+ [ Ve —i2ioras

<C

(4.30)

C
+g/ |w|2+—/ k2| f|2.
D € JD

Combine this with Equation (4.29) together, then

/ k2|w|2§6’k2/ oy |2
D D

9
k2]lg1 172

S 12 1 2

3 2
<C + 1291412,

C
+—k4/ |f|2+e/ k2 |w|?.
e Jp D

Note that again ¢ [, l€2|w|2 could be absorbed by the left hand side term, thus follows that

() ()

the term [p) k2]w]2 could be estimated by

/ K2 |w|? <C
D

7 3
F2 gl oy + 2 llg1al oy + K /D !f|2] . (4.31)

Recall the second identity in Lemma 4.2.1,

2 2, 9 5 22 _ _ _
Vol = ”w”L2(D)+/|5|>k‘/5 K2[a2de é)%(/rgler/wa). (4.32)
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Use the above identity and Equation (4.31), we have

2 210112 _ V2 — k21a2 w w
||wa|L2(D) <k ”wHL2(D) /|£|>k £ — k=[al df+§¥e(/rg1w+/wa>

<Kl — Ap+ <l + o||gl||22< . +5||w||22( Dy * CMI72 py
C
<K2ulZy ) = Ap+ (e + Lol + =1 [ o) (4.33)
2 2 2

<C k% 2 k‘% 2 k4 2

Therefore, an estimate regarding to the wave energy of w is derived:

2,1 12
k2Jwll

2 <
2y * IVl ) < €

z 3
L=(D) kQ”“”%%g +k2”91x”%2(r) + K /D|f|2]. (4.34)

Next, we will use this relation together with the result in Section 3 for further analysis. As
indicated in the previous subsection, an inequality related to the wave energy of w is derived,
which could be controlled by norms of f and g;. Recall that in the previous chapter, the

following three inequalities are obtained, for which we can use to show the final estimate.

2 _ 2 2 2 )12
Jo 1P = fy, P f, 1P < Cls0P + 1),

/Fmr?soug( )2 1 lg(n / 92,

J 112 < RO + Lo + [ o
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By using these facts in Equation (4.34), it yields that

7 3
2 2 2 2 2 4 2 2
Vw + k7 ||lw <C k?/ +k§/ + k 0)|“ + |g(m

Note that w = u + v*, and for u™*,

C
R o ) < 5 (19O + lg(m)[?),

V|12

(D)

thus, the final estimate could be established accordingly, that is,

7 3
IVullF o, + Kl o, ) < C |42 /F 9 + k2 /F|g$|2+k4<|g<o>|2+|g<7r>|2>

(D) (D)
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Chapter 5

Conclusion and Some Open Questions

This work is a preliminary endeavor in studying the stability estimates of electromagnetic
scattering from open cavity. We focus on the study of TM case and assume the media is
homogeneous. Our main contribution is that explicit estimates are derived, on how the wave
energy in the cavity region depends on the wave number £ and incoming fields. We have
provided the explicit relations in the context of different geometric features of the cavity
domain using different techniques. The stability estimates can provide guidance for the
numerical computations, as well as provide insights on the shape design of cavities.

On the other hand, the numerical results may give evidence on the dependency relations
and help to find the optimal power dependency in terms of wave number k, which is an inter-
esting topic to explore in the future. Also, the closely related problem would be the stability
estimate for TE(Transverse Electric) polarization case in the two dimensional setting, where

the bounded domain formulation is given by

.
Au—l—k:2u:0 in D,

Onpu =0 on S, (5.1)

u="T(Onu)+gonTl,

\

—

i _—
with T'(Onu) = —————=0nu. The major difference lies in two parts: one is the boundary
K2 — 52
condition in particular the multiplication operator; another is that while in TM case u is
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supported on I', here uy is supported on I' while v and uz may not be, a natural extension of
the proof for TM case would fail in TE case; thus additional techniques are expected to derive
the stability estimates. As long as the stability estimate for TE case could be obtained given
the geometric assumption as in TM case, then the two dimensional problem would be solved
under same geometric setting since the general case could always be decomposed into the
sum of TM and TE case. For three dimensional problem, the bounded domain formulation

is given by [4]

/

V x E—iwuH =0,
V x H+1iwek =0,
nxE=0 on S,

—nx(nxH) =P(-nx(nxE))+g onl.

\

where
_gi — —n x (n x (EZ _peikoq-ZE)) +P(-n x (n x (EZ _peikoq*-I)))

and

P(—n x (n x E))

1 1
= o Zom Je2tl™ (€191 + 902)& — \/ kG — € — €3],
(2m)2wpg /R2 \/m m

1
k%——fg(glgl T E202)1 mgﬂ 0} de,

&1

with g (x1,29) = Bl (x1,29,0),7 = 1,2, 3. Existence and uniqueness of the solutions for the
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model problem are established by a variational approach and the Hodge decomposition, the
stability estimates are not derived yet. Furthermore the electromagnetic scattering in layered
media, which is significantly important in many areas such as optics, geophysical probing,
communication, remote sensing[12, 31], etc. Another interesting problem is concerned with
the optimal design problem in inverse scattering, in aims to design the cavity shape and
material to reduce or enhance the radar cross section [22]. For inverse scattering, there are
some local stability result obtained for periodic structures and biperiodic structures [6, 9],
and Li [22] proved the local stability for one particular case of the cavity problem, where
the upper halfspace is filled with a lossless homogeneous medium above the flat ground
surface; while the interior of the cavity is assumed to be filled with a lossy homogeneous
medium accounting for the energy absorption; more stability results could be explored based
on different consideration of the medium. In a word, there are still many open questions
in terms of stability estimates in cavity problem, which are theoretically interesting and

challenging.
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