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ABSTRACT

STABILITY ESTIMATES FOR ELECTROMAGNETIC SCATTERING
FROM OPEN CAVITY

By

Qiong Zheng

The electromagnetic scattering from an open large cavity embedded in an infinite plane is

of practical importance due to its significant industrial and military applications. Examples

of cavities include jet engine inlet ducts, exhaust nozzles and cavity-backed antennas [3, 4].

In many practical applications, one is interested in the cavity problem with either a large

wave number k or a large diameter a, in which case the solution has a highly oscillatory

nature [7]. While the original time-harmonic problem is modeled by Helmholtz equation in

the unbounded domain, the reformulated model through Fourier transform is essentially a

Helmholtz equation in the bounded domain with mixed nonlocal boundary condition. Deriv-

ing an explicit dependency between the wave energy and the wave number is mathematically

interesting and challenging. The stability estimate is also important as it defines relations

between the wave number and the discretization parameters in the error analysis [16]. For

the open cavity problem, while the stability analysis for the rectangular cavity was derived

recently [8] as described , the stability results for more general shapes of cavities are to be

explored. The objective of this thesis work is to partially answer this question by imposing

some geometric assumptions.

We first start from considering a class of cavity with a strong geometric constraint. The

energy stability is established by careful choices of the parameters, and test functions, which

take full advantage of geometric properties. The arguments are based on the appropriate

usage of the real and imaginary part of the weak formulation of the problem, the separation of



lower frequency and higher frequency part, and connections between frequency components

and spatial components. The energy in cavity is bounded by the energy of incoming field

with coefficient in terms of powers of wave number. Next, we investigate the case where a

weaker geometric constraint is imposed. A new auxiliary function with compact support near

the boundary of the cavity is carefully constructed to reformulate the problem. However, the

original homogeneous Helmholtz equation is changed to a non-homogeneous one, all previous

work in homogeneous equation must be suitably modified, and the estimate in terms of wave

number k is obtained from detailed analysis of this auxiliary function. The energy norm

is proved to be at most in the order of k
7
10 , which is the same in terms of the power

of wave number k as the case with strong geometric conditions but with other additional

terms. Furthermore, we studied the case where the cavity domain is of rectangular-like

shape, where new test function is introduced and new inequalities are established to derive

the energy estimate.
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Chapter 1

Introduction

1.1 Electromagnetic Scattering from Open Cavity

One of the important subjects studied in electromagnetics is Radar Cross Section (RCS),

which measures how detectable an object is with a radar. Accurate predictions of RCS of

complex objects are of great interest to the designers [4], for instance, a stealth aircraft is

expected to have low detectability such that it is less observable (or even invisible) while a

passenger airliner is designed to have a high RCS such that it is more visible. Furthermore,

it has been studied that the RCS of a B-1A bomber is two orders of magnitude less than

that of a B-52 [30, 21]. This is mainly achieved by two approaches: shaping the body of the

airplane and using radar absorbing material; meanwhile, the jet intake plays a significant

role among the remaining contributors to the total RCS of the airplane. The jet intake

is modeled as a cavity structure which has one open end and the other end such as the

blade could be modeled as the perfect electric conductor. Other examples of cavities include

exhaust nozzles and cavity-backed antennas [3, 4].

In many practical applications, one is interested in the cavity problem with either a

large wavenumber k or a large diameter a of the computational domain, which leads to

the large ka numbers [7]. It is challenging to solve for a large wavenumber or a large

diameter cavity problem due to the high oscillation of the solution. Over the past decade,

many computational approaches have been developed in the literatures to solve the open

1



cavity problems. If the cavity has an opening with length less than one wavelength, i.e,

the low frequency end, the integral equation formulation could be used for the computation.

However, if the aperture of the cavity has a length on the order of several wavelengths,

then high-frequency computational techniques are expected [24]. One of the approaches

proposed is waveguide modal analysis, which has been applied in early literatures [26, 21], and

still provides reference solutions to compare with results obtained from more approximate

methods. In waveguide analysis, the field inside the cavity is expressed in terms of the

known waveguide modes. The unknown modal coefficients are obtained through using the

reciprocity relationship and Kirchhoff’s approximation. Another popular approach is the

shooting and bouncing ray (SBR) method as introduced in [23]. This method involves

tracing a dense grid of geometrical optics rays originating from the incident wave into the

cavity through the front aperture. After multiple bounces in the interior walls of the cavity,

the rays eventually return to the opening of the cavity. A physical optics approximation is

used to calculate the scattered field from each exit ray, then the total scattered field results

from summing the scattered field due to individual rays. In [24], the two aforementioned

approaches are investigated for cavities with rectangular and circular cross sections. For

an aperture opening on the order of ten wavelengths, the computational results agree with

each other fairly well. At lower frequencies, the modal analysis results is accurate than

the SBR results ; however, the modal approach is limited only to cavities with uniform

cross sections whereas the SBR approach can be applied with much greater flexibility in

geometrical modeling. However, these methods are restricted to relatively shallow cavities,

due to the computational cost and the ray and beam distortion problems associated with deep

cavities, where a large number of internal reflections need to be considered. Another ray-

based method is the Generalized Ray Expansion (GRE) method [29]. The major difference
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between SBR and GRE methods, as mentioned in [11], lies in that the SBR method includes

only the incident geometrical optics field that enters the cavity, while the GRE method

intrinsically includes the fields diffracted into the cavity by the edges at the end of the

cavity aperture. Furthermore, for each incidence angle SBR method needs a new set of

rays to be tracked, while in the GRE method only one set of rays needs to be tracked

regardless of the incidence angles. Other computational approaches include the Iterative

Physical Optics (IPO)[28] method and the Progressive Physical Optics (PPO) method [27],

where in both methods the magnetic field integral equation (MFIE) is obtained for the

equivalent currents in the interior cavity walls, and solved by different algorithms. Moreover,

many hybrid methods have been proposed by combining one of the preceding aysmptotic

approaches and some other more accurate methods, such as the Method of Moments (MoM),

the Finite Element Method (FEM) or the Finite-Difference Time-Domain method (FDTD)

[10, 13, 20, 32, 33]. Anastassiu [5] presented a comprehensive review on the methods for the

related electromagnetic scattering problems. However, theoretical analysis is quite limited,

especially we hope to establish relations between the energy in cavity, high wave number

and incoming field.

While the original time-harmonic problem is modeled by Helmholtz equations in the

unbounded domain, the reformulated model through Fourier analysis in the upper half plane

is essentially a Helmholtz equation in the bounded domain with nonlocal boundary condition

on the aperture of the cavity. Deriving an explicit dependence between the wave energy

and the wave number is mathematically interesting and challenging. The stability estimate

is also important as it defines relations between the wave number and the discretization

parameters in the error analysis [16]. Also, using the stability of the continuous problem

with perturbation argument, the stability result of a numerical method can be obtained

3



[15]. It turns out for the stability analysis on Helmholtz equations, the bounds on k highly

depends on the geometry of the domain and the type of boundary conditions [15]. Ihlenburg

and Babuška [18] considered the one dimensional Helmholtz equation on D = (0, 1) with

Dirichlet and nonreflecting boundary condition:



u′′ + k2u = −f in D,

u(0) = 0,

u′(1)− iku(1) = 0.

They proved the stability estimate |u|1 ≤ Ck|f |−1 for the solution u in H1 norm. Moreover,

they generalized the stability result under higher regularity assumptions in [19]. For l > 1,

f(x) ∈ Hl−1(0, 1), then u ∈ Hl+1(0, 1) and the estimate |u|l+1 ≤ Ckl−1‖f‖l−1. Melenk

[25] studied the two dimensional problem with the Robin boundary condition:


−∆u− k2u = f in D,

∂nu+ iku = g on ∂D.

The geometric assumption is that the domain D is a bounded star-shaped domain with

smooth boundary or a bounded convex domain; then for any f ∈ L2(D), g ∈ H
1
2 (∂D),

|∇u|
L2(D)

+ |k||u|
L2(D)

≤ C(D)

[
|f |
L2(D)

+ |g|
L2(∂D)

]
,

where the constant C depends only on the domain. This was extended to the three-

dimensional case by Cummings and Feng [14]. When g = 0, a sharp estimate is estab-

lished as below, ‖u‖
Hj(D)

≤ Cj(k)‖f‖
L2(D)

, where Cj(k) = O(kj−1) + 1
k2 , j = 0, 1, 2
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for N ≥ 2 under the assumption that D is star-shaped when j = 0, 1, and D is con-

vex polygons or smooth domains when j = 2. Moreover, Melenk [15] showed that for any

f ∈ L2(D),g ∈ H
1
2 (∂D), assume D is a bounded Lipschitz domain, there exists a constant

C > 0 (independent of k) such that

|∇u|
L2(D)

+ |k||u|
L2(D)

≤ C(D)

[
k

5
2 |f |

L2(D)
+ k2|g|

L2(∂D)

]
.

Hetmaniuk [16] presented the stability analysis for two dimensional and three dimensional

mixed boundary problems:



−∆u− k2u = f in D,

u = 0 on Γd,

∂nu = 0 on Γn,

∂nu = (iβ − α)u+ g on Γr.

Based on the following geometric assumption: there exists a point x0 and a constant γ such

that



(x− x0) · n(x) ≤ 0 for ∀x ∈ Γd,

(x− x0) · n(x) = 0 for ∀x ∈ Γn,

(x− x0) · n(x) ≥ γ for ∀x ∈ Γr;

the stability estimate is given as

|∇u|
L2(D)

+ |k||u|
L2(D)

≤ C(D)

[
|f |
L2(D)

+ |g|
L2(∂D)

]
.
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A major difference between the open cavity scattering problem and the results men-

tioned above is the boundary condition, where the cavity problem in the bounded domain

formulation involves the nonlocal boundary condition as indicated in the following section.

More specifically, part of the boundary condition is associated with Fourier transform. The

first stability result for the cavity problem was derived recently [8] for rectangular cavity.

Because of this particular shape of the cavity, the solution u can be expressed as the Fourier

expansion. Two special norms, which behave like H
−1

2 and H
1
2 on Γ, are introduced for

the technical analysis. And the stability estimate under the rectangular cavity of depth y0

in the y direction, is given by

|∇u|
L2(D)

+ |k||u|
L2(D)

≤ C

[
k

15
4 y

7
2
0 (log k)

1
4 + k

13
4 y4

0

]
|g|
L2(Γ)

when f = 0, where Γ represents the aperture part of the cavity. In this thesis, we study the

stability estimates for open cavity embedded in an infinite ground plane in a more general

framework, where the shape of the cavity is under certain geometric constraints.

1.2 Mathematical Formulation

In this section, the formulation of the problem is reviewed and notations are introduced. Let

D be the cavity region, Γ denote the aperture boundary part of the cavity and Γ := [a, b]× {y2},

ΓC = (R\[a, b])× {y2} and S = ∂D\Γ. Assume X∗ = (x0, y0) represents a reference point

on the plane for the convenience of introducing geometric assumptions in the following chap-

ters.

For the TM (transverse magnetic) polarization, the cavity scattering problem in the
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Figure 1.1: Geometry of the problem. (For interpretation of the references to color in this
and all other figures, the reader is referred to the electronic version of this dissertation.)

unbounded domain could be reduced to the bounded domain (the cavity) problem through

a Fourier transform and radiation condition [3], which is briefly reviewed here. Let E and H

denote the total electric and magnetic fields, then the following time harmonic (E(X, t) =

e−iωtE(X)) Maxwell equations are satisfied:

∇× E − iωµH = 0,

∇×H + iωεE = 0,

where ω is wave frequency, µ is the magnetic permeability and ε is the electric permittivity.
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Denote (Ei,Hi), (Er,Hr),(Es,Hs) as the incident, reflective and scattering fields respec-

tively. In the TM polarization, the electric filed is E = (0, 0, u(x, y)). The total field contains

three components, that is, u = ui + ur + us. When ui = eiαx−iβ(y−y2) is a plane wave,

ur = −eiαx+iβ(y−y2), where α = k sin θ, β = k cos θ, θ is the incident angel with respect

to y axis, and the wave number k = ω
√
εµ. Moreover, us satisfies


∆us + k2us = 0 in D ∪ {y > y2},

us = −(ui + ur) on S ∪ ΓC,

with the radiation condition lim
r→∞

√
r(∂rus − ikus) = 0.

By taking the Fourier transform with respect to x, and defining

ûs(ξ, y) =
1√
2π

∫
R
u(x, y)e−ixξdx,

we have

(∂yy + (k2 − ξ2))ûs = 0 for y > y2. (1.1)

By solving Eq. (1.1) with the radiation condition and taking the inverse Fourier transform,

we obtain

us =
1√
2π

∫
R
e
i(y−y2)

√
k2−ξ2

ûs(ξ, y2)eiξxdξ.

8



Therefore, on R× {y2},

∂nus =
i√
2π

∫
R

√
k2 − ξ2ûs(ξ, y2)eiξxdξ.

To simplify notations, define an operator T on Γ as

T (ϕΓ) =
i√
2π

∫
R

√
k2 − ξ2ϕ̂Γe

iξxdξ

for any ϕ with ϕ ∈ H
1
2 (R), and

ϕΓ :=


ϕ on Γ,

0 on ΓC.

Note that ui + ur = 0 when y = y2, we have

∂nu = T (u) + g,

where g =
∂

∂n
(ui + ur)|Γ. Therefore, the original problem in the unbounded domain (the

cavity and the upper half plane, that is, D ∪ {y > y2}) can be reduced to the following

problem in the bounded domain:



∆u+ k2u = 0 in D,

u = 0 on S,

∂nu = T (u) + g on Γ.

(1.2)

Note that the reformulated model as shown in Equation (1.2) is essentially a Helmholtz

9



equation with mixed nonlocal boundary condition; in particular, part of the boundary con-

dition is associated with Fourier transform. There were many papers studying the equation

with boundary condition ∂nu = iku + g, which is a much simplified and local form, but

the problem is not physical. The problem with nonlocal boundary condition is much harder

mathematically, but it is more significant physically. There are very few results in this di-

rection. New methods have to be developed. Based on certain geometric assumptions of the

cavity domain, a few stability estimates are established in the following chapters.

The rest of the dissertation is arranged as follows. In Chapter 2, the stability estimate

for a class of cavity under a strong geometric constraint is established. In Chapter 3, we

derived the stability estimate for a class of cavity under a weaker geometric assumption. In

Chapter 4, we assume the cavity structure is of rectangular-like shape, where the geometric

assumptions introduced in Chapter 2 and 3 are not satisfied; the corresponding stability

estimate is obtained. In Chapter 5, a brief summary of the main contributions of the thesis

work is presented, followed by the discussion of future work.

10



Chapter 2

Stability Estimates under a Strong

Geometric Assumption

2.1 Main Theorem and Outlines of the Approach

Throughout this chapter, an open cavity that satisfies the following geometric assumption

is considered; that is, there is a point X∗ = (x0, y0) on the plane and positive constant p1

such that

(X −X∗) · n ≤ −p1 on S, (2.1)

where n is outnormal. We should remark that if S is given by y = h(x), x ∈ (a, b) and h is

C1, then Equation (??) is always satisfied. Without loss of generality, we assume X∗ = (0, 0)

in this chapter; also for simplicity, we assume that b − a = π. It should be remarked that

if X∗ = (0, 0), then y2 > y1 > 0, where y1 = min{y|(x, y) ∈ D} from condition (2.1), one

example is shown Figure 2.1.

A similar geometric constraint was presented by Hetmaniuk [16] to study a different mixed

boundary problem. In their case, p1 can be zero. We need a slightly stronger geometric

constraint for our arguments. If p1 = 0, some additional techniques will be developed as

indicated in the next chapter. This condition guarantees the positivity of one term which

11



(a): Triangular shaped (b): Curly shaped

Figure 2.1: A cavity structure satisfying geometric assumption in (2.1).

lies on the same side as the wave energy terms in an inequality which will be derived later.

Furthermore, we assume that the medium for the upper half plane {(x, y) | y ≥ y2} and the

cavity is homogeneous. The main result is Theorem 2.1.1 as stated below, which provides

an explicit dependence for the wave energy on the wave number k.

Theorem 2.1.1. Under the geometric assumption given in Equation (2.1), there exists a

positive constant C such that

‖∇u‖
L2(D)

+ |k|‖u‖
L2(D)

≤ C

[
k

7
10‖g‖

L2(Γ)
+

1√
k
‖gx‖L2(Γ)

]
. (2.2)

Essentially, our proof of the main theorem involves three major steps.

First, we consider the weak formulation of the problem, and adopt the test functions v

used in some of the earlier work [16, 17], which are v = u and v = X ·∇u, then the standard

computation yields the following identity,

‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

+

∫
|ξ|>k

√
ξ2 − k2|û|2dξ −

∫
S

(X · n)|∇u|2

= <
∫

Γ
gudx−

∫
Γ

(X · n)|∇u|2dx+ k2
∫

Γ
(X · n)|u|2dx+ 2<

∫
Γ
∂nu(X · ∇u)dx.

(2.3)
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Second, since the boundary condition on Γ is given in a simpler form in terms of the

Fourier transform, it is easier to evaluate the last three terms in Equation (2.3) in the

frequency domain. So the main focus of our second step is to convert those terms into the

frequency domain. After the conversion, the following inequality can be derived:

‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

+

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|û|2dξ −
∫
S

(X · n)|∇u|2

≤<
∫

Γ
gudx+ y2

∫
|ξ|≤k

2(k2 − ξ2)|û|2dξ + 2y2<
∫

Γ
T (u)g

+ 2<
∫
|ξ|≤k

[
−ξû ′(ξ)

]
i

√
k2 − ξ2û(ξ)dξ + 2<

∫
Γ
xuxgdx+ y2

∫
Γ
|g|2dx.

(2.4)

Third, terms on the right hand side of Equation (2.4) will be named by I1 through I6,

and we have to estimate each term from I1 to I5. The goal is to show that each term

is controlled by norms of g and the left hand side of Equation (2.4) multiplied by a small

coefficient. To illustrate the ideas and simplify notations, let

AL =

∫
|ξ|≤k

√
k2 − ξ2|û|2dξ, AH =

∫
|ξ|>k

√
ξ2 − k2|û|2dξ,

BH =

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|û|2dξ,

G =

∫
Γ
|g|2dx, J =

∫
S
|∇u|2dS.

For I1, Lemma 2.4.1 will show that AL ≤ δBH + C(δ)G, i.e., the lower frequency part of

u is dominated by L2 norm of g and higher frequency part of u. Consequently the bound

of ‖u||
L2(Γ)

is obtained, which in turn will yield the estimate for I5 after the integration

by parts. Since I2 involves only lower frequency part, Lemma 2.4.1 can be used to estimate

this term. For I3, a new test function will be constructed to derive that I3 ≤ δ Energy +

13



δJ +C(δ)‖g‖
H1. This step uses the fact that X ·n ≤ −p1 < 0, and the detailed arguments

are provided in Lemma 2.4.4. I4 is also difficult to estimate, it will use Lemma 2.4.1 and

cancelation between positive and negative part of an introduced function. This part requires

careful choice of parameters and gives the reason why k
7
10 appears in Theorem 2.1.1. It is

proved in Lemma 2.4.5.

2.2 Preliminary Lemmas for the Energy Identity

In this section, we start from the weak formulation of the problem, and utilize appropriate

test functions and separate the real and imaginary components. An equality involving the

energy terms is derived as shown in Equation (2.16).

Define

H
1/2
00 (Γ) = {ϕ ∈ H1/2(Γ) : ∃ϕ̃ ∈ H1/2(R) such that ϕ̃ = 0 on R\Γ and ϕ = ϕ̃|Γ},

where ϕ̃ is called an extension of ϕ to H1/2(R). The weak formulation of the scattering

problem shown in Equation (1.2) is as follows:

Find u ∈ H1
S(D) = {φ ∈ H1(D), φ = 0 on S, φ ∈ H1/2

00 (Γ)} such that

a(u, φ) = (g, φ) ∀φ ∈ H1
S(D),

where

a(u, φ) =

∫
D
∇u · ∇φ−

∫
D
k2uφ−

∫
Γ
T (u)φ. (2.5)

If in particular, by choosing φ = u, the following lemma is obtained.
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Lemma 2.2.1.

∫
|ξ|≤k

√
k2 − ξ2|û|2dξ = −=

∫
Γ
gudx, (2.6)

‖∇u‖2
L2(D)

− k2‖u‖2
L2(D)

+

∫
|ξ|>k

√
ξ2 − k2|û|2dξ = <

∫
Γ
gudx. (2.7)

Proof. Since T (u) =
i√
2π

∫
R

√
k2 − ξ2ûeiξxdξ, then T̂ (u) = i

√
k2 − ξ2û, and by Parse-

val’s Theorem,

∫
Γ
T (u)u =

∫
R

(T̂ (u)) ûdξ =

∫
R
i

√
k2 − ξ2|û|2dξ. (2.8)

Now choosing φ = u in Equation (2.5) and using the identity in (2.8) yield that

∫
D
|∇u|2 −

∫
D
k2|u|2 −

∫
|ξ|≤k

i

√
k2 − ξ2|û|2dξ +

∫
|ξ|>k

√
ξ2 − k2|û|2dξ =

∫
Γ
gu.

The identities (2.6) and (2.7) are obtained by taking the imaginary part and real part of the

equation above respectively. �

While the identity Equation (2.7) extracted from the real part will be combined with the

result in the next lemma to form the energy equality, the imaginary part Equation (2.6) will

be used later for the estimate on the L2 norm of u as shown in Lemma 2.4.1. Note that

the sign for
∫
D |u|

2 is −k2, not k2 for the energy of u. This is natural from the partial

differential equation. Next, we try to get a formula with a “right” sign for
∫
D |u|

2 by using

the test function X ·∇u, which was used in the literatures [16, 25] for the stability estimates,
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and in the well-known Pohozaev identity for nonlinear elliptic equations.

Lemma 2.2.2. For all u ∈ H1
S(D)

⋂
H

3
2+ε

(D), ε > 0, we have

−
∫
S

(X · n)|∇u|2 +

∫
Γ

(X · n)|∇u|2 + 2k2
∫
D
|u|2

= k2
∫
∂D

(X · n)|u|2 + 2<
∫
∂D

∂u

∂n
(X · ∇u). (2.9)

Proof. Note that for any test function v,

∫
D
∇u · ∇v −

∫
D
k2uv −

∫
∂D

∂u

∂n
v = 0. Choose

v = X · ∇u and plug into the above identity, it follows that

∫
D
∇u · ∇(X · ∇u)−

∫
D
k2u(X · ∇u)−

∫
∂D

∂u

∂n
(X · ∇u) = 0. (2.10)

Two technical identities are used here to convert Equation (2.10) to an equation associated

with the energy terms, that is,
∫
D |∇u|

2 and k2 ∫
D |u|

2.

2<
∫
D
∇u · ∇(X · ∇u) = −(d− 2)

∫
D
|∇u|2 +

∫
∂D

(X · n)|∇u|2. (2.11)

and 2<
∫
D
k2u(X · ∇u) = k2

∫
∂D

(X · n)|u|2 − dk2
∫
D
|u|2. (2.12)

where d = div(X) is the dimension. These two identities are the direct consequences from

Lemma 3.1 and 3.2 in [16], which also could be derived through the following standard

computation. We see that div(|∇u|2X) = div(X)|∇u|2 +∇(|∇u|2) ·X, and

∇(|∇u|2) ·X =
d∑
i=1

xi
∂

∂xi
(|∇u|2) =

d∑
i=1

xi2<(
d∑
j=1

uxjuxjxi) = 2<
d∑
j=1

uxj (
d∑
i=1

xiuxjxi)

=2<
d∑
j=1

uxj (
d∑
i=1

(xiuxi)xj − uxj ) = 2<∇u · ∇(X · ∇u)− 2|∇u|2.
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It follows that

div(|∇u|2X) = div(X)|∇u|2 + 2<∇u · ∇(X · ∇u)− 2|∇u|2,

2<∇u · ∇(X · ∇u) = −(d− 2)|∇u|2 + div(|∇u|2X). (2.13)

Integrate Equation (2.13) over D and use the divergence theorem, then Equation (2.11) can

be derived. Equation (2.12) can be obtained by the following direct computation.

div(|u|2X) = div(X)|u|2 +∇|u|2 ·X = div(X)|u|2 + 2<(u∇u) ·X,

2< u(X · ∇u) = div(|u|2X)− div(X)|u|2. (2.14)

Similarly, integrating Equation (2.14) over D and using the divergence theorem, we have

Equation (2.12). Then through multiplying Equation (2.10) by 2 and taking the real part,

applying Equation (2.11) and Equation (2.12), it follows that

∫
∂D

(X · n)|∇u|2 + dk2
∫
D
|u|2

= −(d− 2)

∫
D
|∇u|2 + k2

∫
∂D

(X · n)|u|2 + 2<
∫
∂D

∂u

∂n
(X · ∇u). (2.15)

Note that ∇u =
∂u

∂n
n on S, it implies that

2<
∫
S

∂u

∂n
(X · ∇u) = 2<

∫
S

∂u

∂n
(X · (∂u

∂n
n)) = 2

∫
S

(X · n)|∂u
∂n
|2 = 2

∫
S

(X · n)|∇u|2.

Therefore,

∫
S

(X · n)|∇u|2 − 2<
∫
S

∂u

∂n
(X · ∇u) = −

∫
S

(X · n)|∇u|2.
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Accordingly, Equation (2.15) can be written as Equation (2.9) by using the identity above

and the fact that u = 0 on S and d = 2, the lemma is proved. �

Add Equation (2.7) and Equation (2.9) together, the following expression for the energy

of u is obtained, which is named the energy identity.

‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

+

∫
|ξ|>k

√
ξ2 − k2|û|2dξ −

∫
S

(X · n)|∇u|2

=<
∫

Γ
gu−

∫
Γ

(X · n)|∇u|2 + k2
∫

Γ
(X · n)|u|2 + 2<

∫
Γ

∂u

∂n
(X · ∇u).

(2.16)

2.3 Conversion through Fourier Transform

Notice that in Equation (2.16), the last term on the Left Hand side, that is −
∫
s(X ·n)|∇u|2

will help us in the energy estimate, since it is positive under the geometric assumption

X · n ≤ −p1 < 0 on S. Note that ∇u on ∂D can not be controlled by energy directly,

it needs some further analysis. Since the operator T is simply a multiplication operator in

terms of Fourier transform, in this step, the main issue is how to convert the last three terms

in the right hand side of Equation (2.16) into the frequency domain. While the second and

third terms can be easily handled, the last term is not so trivial. So we first see how to

express the last term by Fourier transform, which is shown in the following lemma.

Lemma 2.3.1. In terms of Fourier transform, we have

2<
∫

Γ

∂u

∂n
(X · ∇u) = 2<

∫
|ξ|≤k

[
−ξû ′(ξ)

]
i

√
k2 − ξ2û(ξ)dξ

−
∫
|ξ|>k

k2√
ξ2 − k2

|û|2dξ + 2<
∫

Γ
xuxgdx+ 2y2

∫
Γ
|uy|2

(2.17)
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Proof. Note that on Γ, X · n = (x, y2) · (0, 1) = y2 and
∂u

∂n
= uy, it follows that

2<
∫

Γ

∂u

∂n
(X · ∇u) = 2<

∫
Γ
uy(xux + y2uy) = 2<

∫
Γ
xuxuy + 2y2

∫
Γ
|uy|2. (2.18)

Since uy =
∂u

∂n
= T (u) + g on Γ, then

2<
∫

Γ
xuxuy = 2<

∫
Γ
xux(T (u) + g) = 2<

∫
R
x̂uxT̂ (u) + 2<

∫
Γ
xuxg. (2.19)

Note that

x̂ux =

∫ b

a
xuxe

−iξxdx =

∫ b

a

d

dξ
(iuxe

−iξx)dx

=
d

dξ

{
iue−iξx |ba −i

∫ b

a
(−iξ)ue−iξxdx

}
=

d

dξ

{
−
∫ b

a
ξue−iξxdx

}

=
d

dξ
[−ξû(ξ)] .

Hence Equation (2.19) becomes

2<
∫

Γ
xuxuy = −2<

∫
R
d

dξ

[
ξû(ξ)

]
i

√
k2 − ξ2û(ξ)dξ + 2<

∫
Γ
xuxg. (2.20)

We rewrite the first term in the right hand side of Equation (2.20) in terms of |ξ| ≤ k and

|ξ| > k respectively. For the low frequency part,

− 2<
∫
|ξ|≤k

d

dξ

[
ξû(ξ)

]
i

√
k2 − ξ2û(ξ) dξ

=− 2<

{∫
|ξ|≤k

i

√
k2 − ξ2|û(ξ)|2dξ +

∫
|ξ|≤k

ξû ′(ξ)i
√
k2 − ξ2û(ξ)dξ

}

=− 2<
∫
|ξ|≤k

ξû ′(ξ)i
√
k2 − ξ2û(ξ).
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Similarly, for the high frequency part,

− 2<
∫
|ξ|>k

d

dξ

[
ξû(ξ)

]
i

√
k2 − ξ2û(ξ)dξ

=2<
∫
|ξ|>k

[
û(ξ) + ξû ′(ξ)

]√
ξ2 − k2û(ξ)dξ

=2

∫
|ξ|>k

√
ξ2 − k2|û(ξ)|2dξ + 2<

{∫
|ξ|>k

ξ

√
ξ2 − k2û ′(ξ)û(ξ)dξ

}

=2

∫
|ξ|>k

√
ξ2 − k2|û(ξ)|2dξ +

∫
|ξ|>k

ξ

√
ξ2 − k2 d

dξ
(|û(ξ)|2)dξ

=2

∫
|ξ|>k

√
ξ2 − k2|û(ξ)|2dξ −

∫
|ξ|>k

d

dξ
(ξ

√
ξ2 − k2)|û(ξ)|2dξ

=−
∫
|ξ|>k

k2√
ξ2 − k2

|û|2dξ.

Therefore, by applying the two equalities above, Equation (2.20) can be written as

2<
∫

Γ
xuxuy

=− 2<
∫
R
d

dξ
(ξû(ξ))i

√
k2 − ξ2û(ξ)dξ + 2<

∫
Γ
xuxg

=− 2<
∫
|ξ|≤k

ξû ′(ξ)i
√
k2 − ξ2û(ξ)−

∫
|ξ|>k

k2√
ξ2 − k2

|û|2dξ + 2<
∫

Γ
xuxg.

(2.21)

Combing results in Equation (2.18) and Equation (2.21), the lemma is proved. �

From Lemma 2.3.1, we can observe that the term 2<
∫

Γ

∂u

∂n
(X · ∇u) actually contains lots

of information, essentially the higher frequency components is helpful in the estimate. Now

by using the result in Lemma 2.3.1 and through the Fourier transform and some additional

calculation, the following lemma can be derived which is in terms of the last three terms in

the energy equality Equation (2.16).
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Lemma 2.3.2. For the last three terms of Equation (2.16), we have

−
∫

Γ
(X · n)|∇u|2 + k2

∫
∂D

(X · n)|u|2 + 2<
∫

Γ

∂u

∂n
(X · ∇u)

≤ 2y2

∫
|ξ|≤k

(k2 − ξ2)|û|2dξ + 2y2<
∫

Γ
g T (u) + 2<

∫
|ξ|≤k

[
−ξû ′(ξ)

]
i

√
k2 − ξ2û(ξ)dξ

+ 2<
∫

Γ
xuxgdx+ y2

∫
Γ
|g|2dx−

∫
|ξ|>k

k2√
ξ2 − k2

|û|2dξ. (2.22)

Proof. Since |uy|2 = |T (u) + g|2 = |T (u)|2 + |g|2 + 2Re [g T (u)] and X · n = y2, then

−
∫

Γ
(X · n)|∇u|2 + k2

∫
∂D

(X · n)|u|2 + 2<
∫

Γ

∂u

∂n
(X · ∇u)

= y2

∫
Γ

(−|ux|2 − |uy|2 + k2|u|2) + 2<
∫

Γ
xuxuy + 2y2

∫
Γ
|uy|2

= y2

∫
Γ

(−|ux|2 + |uy|2 + k2|u|2) + 2<
∫

Γ
xuxuy.

Using the fact that u and ux are compactly supported on Γ and
∫
Γ |uy|

2 ≤
∫
R |uy|

2, then

y2

∫
Γ

(−|ux|2 + |uy|2 + k2|u|2) + 2<
∫

Γ
xuxuy

≤ y2
∫
R

(−ξ2|û|2 + |i
√
k2 − ξ2û|2 + k2|û|2)dξ

+ 2y2<
∫

Γ
g T (u) + y2

∫
Γ
|g|2 + 2<

∫
Γ
xuxuy

= y2

∫
|ξ|≤k

2(k2 − ξ2)|û|2dξ + 2y2<
∫

Γ
g T (u) + y2

∫
Γ
|g|2 + 2<

∫
Γ
xuxuy.

Plugging Equation (2.21) into the inequality above, Lemma 2.3.2 is obtained. �

Combining Lemma 2.3.2 and Equation (2.16) yields the following inequality for the en-
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ergy.

‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

+

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|û|2dξ −
∫
S

(X · n)|∇u|2

≤<
∫

Γ
gu+ y2

∫
|ξ|≤k

2(k2 − ξ2)|û|2dξ + 2y2<
∫

Γ
T (u)g

+ 2<
∫
|ξ|≤k

[
−ξû ′(ξ)

]
i

√
k2 − ξ2û(ξ)dξ + 2<

∫
Γ
xuxgdx+ y2

∫
Γ
|g|2dx

(2.23)

So far, an inequality involving the energy terms and other additional terms is obtained,

and the term ∇u on Γ has been canceled out by using the lemmas shown in this section. In

the next section, we will estimate each term on the right hand side of Equation (2.23).

2.4 Detailed Estimates

To estimate each term on the right hand side of Equation (2.23) associated with u or û,

the inequalities for ‖u‖2
L2(Γ)

and
∫ √

k2 − ξ2|û|2dξ are needed, which is presented in

Lemma 2.4.1, this is obtained by using the technique of Lemma 3.5 in [8] and Lemma

2.2.1 . Recall that we denote AL =
∫
|ξ|≤k

√
k2 − ξ2|û|2dξ, AH =

∫
|ξ|>k

√
ξ2 − k2|û|2dξ,

BH =
∫
|ξ|>k(

√
ξ2 − k2 + k2√

ξ2−k2
)|û|2dξ, and G =

∫
Γ |g|

2 . In essence, AL, the lower

frequency part of u, is relatively small compared to BH , higher frequency part of u, the

term k2√
ξ2−k2

| in BH played an important role.

Lemma 2.4.1. There exists a positive constant C, such that

AL ≤
δ

k
BH +

1

δ
G, (2.24)
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for any δ > 0 such that Cδ ≤ k
1
2 . Furthermore,

‖u‖2
L2(Γ)

≤ 2

k
BH +

C2

k
G. (2.25)

Proof. To proof Equation (2.24), the function uα constructed in Lemma 3.5 in [8] is

introduced. Define uα = u(x)− u(x− 2π

k
[2k]), then, using the fact that the support of u is

of length at most π, supp u(x) ∩ supp u(x− 2π

k
[2k]) = ∅,

2‖u‖2
L2(Γ)

= ‖uα‖2
L2(R)

=

∫
R
|1− e

2π
k

[2k]ξi|2|û|2dξ.

For |ξ| ≤ k, there exists a positive constant C such that
√
k|1− e

2π
k

[2k]ξi|2 ≤ C

√
k2 − ξ2.

For |ξ| > k, k|1− e
2π
k

[2k]ξi|2 ≤ k · 4 ≤ 2(

√
ξ2 − k2 +

k2√
ξ2 − k2

). It follows that

|1− e
2π
k

[2k]ξi|2 ≤


C√
k

√
k2 − ξ2 for |ξ| ≤ k,

2

k
(

√
ξ2 − k2 +

k2√
ξ2 − k2

) for |ξ| > k.

Therefore, ‖u‖2
L2(Γ)

≤ C√
k
AL +

1

k
BH. (2.26)

From Equation (2.6) and the inequality above, we have

AL ≤ ‖g‖L2(Γ)
‖u‖

L2(Γ)
≤ δ

2
‖u‖2

L2(Γ)
+

1

2δ
‖g‖2

L2(Γ)

≤ δ

2
(
C√
k
AL +

1

k
BH ) +

1

2δ
‖g‖2

L2(Γ)
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If Cδ ≤
√
k, then

1

2
AL ≤ (1− Cδ

2
√
k

)AL ≤
δ

2k
BH +

1

2δ
‖g‖2

L2(Γ)
.

We finished the proof of Equation (2.24).

Plug Equation (2.24) into Equation (2.26), we have

‖u‖2
L2(Γ)

≤ C√
k

(
δ

k
BH +

1

δ
‖g‖2

L2(Γ)
) +

1

k
BH.

Choose Cδ =
√
k, then Equation (2.25) is obtained. �

This is an important lemma as it determines the power of k in the estimate, and pro-

vides means to relate two integrals

∫
Γ
|u|2 and

∫
|ξ|≤k

√
|ξ2 − k2||û|2 to the high frequency

part BH and L2 norm of g . Now we will estimate each term on the right hand side of

Equation (2.23). Note that some terms are easier to estimate, the most difficult ones are:

2y2<
∫

Γ
T (u)g and 2<

∫
|ξ|≤k

[
−ξû ′(ξ)

]
i

√
k2 − ξ2û(ξ)dξ. For the term 2y2<

∫
Γ
T (u)g,

the direct usage of Schwarz inequality does not work, as after converted to the frequency

domain, it would lead to either the integral of ξ2|û|2 which can not be controlled by the

energy or ξ2|ĝ|2 which may not be integrable as g may not be compactly supported on Γ.

Other technique are needed for the estimate as shown in Lemma 2.4.4.

Lemma 2.4.2. The first term in Equation (2.23) can be estimated as follows.

I1 = <
∫

Γ
gu ≤ ε1BH + d1G, (2.27)

where ε1 is any positive number, and d1 is given by d1 =
ε1C

2

2 + 1
2ε1k

.
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Proof. Using Schwarz inequality and Lemma 2.4.1, we have

I1 = <
∫

Γ
gu ≤ ‖g‖

L2(Γ)
‖u‖

L2(Γ)
≤
ε1k

2
‖u‖2

L2(Γ)
+

1

2ε1k
‖g‖2

L2(Γ)

≤
ε1k

2
(
2

k
BH +

C2

k
‖g‖2

L2(Γ)
) +

1

2ε1k
‖g‖2

L2(Γ)

then

I1 ≤ ε1BH + (
ε1C

2

2
+

1

2ε1k
)G = ε1BH + d1G.

�

Lemma 2.4.3. For the second term of Equation (2.23), we have

I2 = y2

∫
|ξ|≤k

2(k2 − ξ2)|û|2dξ ≤ ε2BH + d2kG, (2.28)

where ε2 is any positive number, and d2 =
4y2

2
ε2

.

Proof. Since |ξ| ≤ k, we have

√
k2 − ξ2 ≤ k, then

I2 = y2

∫
|ξ|≤k

2(k2 − ξ2)|û|2dξ ≤ y2 2k ·
∫
|ξ|≤k

√
k2 − ξ2|û|2dξ

≤ 2y2k(
δ

k
BH +

1

δ
G)

Choose δ =
ε2
2y2

, where ε2 is a small positive number, then Equation (2.28) is obtained. �

Next, we deal with I3, which is more involved to estimate this term.
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Lemma 2.4.4. For I3, we have the following estimate.

I3 = 2y2<
∫

Γ
T (u)g

≤ ε31

∫
D

(
|∇u|2 + k2|u|2

)
+ ε32

∫
S
|∂u
∂n
|2 + d3kG+

e3
k

∫
Γ
|gx|2, (2.29)

where ε31, ε32 are any positive numbers, d3 =
c̃

ε31

(
1

k3
+

1

k
+ 1

)
+

c̃

ε32
and e3 =

c̃

ε31
+

c̃

ε32k
,

c̃ is a positive constant depending on the domain D.

Proof. Note that

∫
Γ
T (u)g =

∫
R
T (u)gΓ =

∫
R
T̂ (u)(ξ)ĝΓ(ξ) =

∫
R
i

√
k2 − ξ2û(ξ)ĝΓ(ξ), so

the direct usage of the Hölder inequality does not work since ĝΓ(ξ) decays like 1
ξ

when ξ →∞

if gΓ does not vanish on the boundary of Γ. Here another test function η is constructed for

the estimate of I3.

To define η, first we extend g(x) on Γ to a function g̃(x) on the line y = y2 such that

‖g̃‖
H1(R)

≤ c̃‖g‖
H1(Γ)

and ‖g̃‖
L2(R)

≤ c̃‖g‖
L2(Γ)

. Moreover, let

h(y) :=


1 + k(y − y2) for y2 −

1

k
≤ y ≤ y2,

0 otherwise.

Then set η(x, y) = g̃(x)h(y), (x, y) ∈ D. For this particular choice of η, we have η = g on Γ

and |η(x, y)| ≤ |g̃(x)|.

Adopt η as the test function, then

∫
D
∇u · ∇η −

∫
D
k2uη −

∫
Γ

(T (u) + g)η =

∫
S

∂u

∂n
η,
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Note that η = g on Γ, this leads to

∫
Γ
T (u)g =

∫
D
∇u · ∇η −

∫
D
k2uη −

∫
S

∂u

∂n
η −

∫
Γ
|g|2. (2.30)

To estimate I3, it suffices to estimate each term on the right hand side of Equation (2.30).

We start from the estimate of

∫
D
∇u · ∇η. Since

∫
D
∇u · ∇η =

∫
D

(
uxg̃
′(x)h(y) + uyg̃(x)h′(y)

)
,

the two terms on the right hand side of the identity above are handled separately as follows.

Choosing a rectangular domain D1 = [A,B] × [y1, y2] such that D ⊂ D1, considering

h(y) in D1, we have
∫ y2
y1
|h(y)|2 ∼ O(1

k
) and

∫ y2
y1
|h(y)|2 ∼ O(k). Let χD denote the

characteristic function of D, then

∫
D
uxg̃
′(x)h(y) =

∫
D1

uxg̃
′(x)h(y)χDdydx

≤
∫ B

A
|g̃ ′(x)|

∫ y2

y1
|ux||h(y)|χDdydx

≤
∫ B

A
|g̃ ′(x)|

(∫ y2

y1
|uxχD|

2dy

)1
2
(∫ y2

y1
|h(y)|2dy

)1
2
dx

≤ 1√
k

∫ B

A
|g̃ ′(x)|(

∫ y2

y1
|uxχD|

2dy)
1
2dy

≤

[∫ B

A

∫ y2

y1
|uxχD|

2dydx

]1
2
[∫ B

A

(
1√
k
|g̃ ′(x)|

)2
dx

]1
2

≤
ε31
2

∫
D
|∇u|2 +

1

ε31

1

k

∫ B

A
|g̃ ′(x)|2dx.
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Therefore,

∫
D
uxg̃
′(x)h(y) ≤

ε31
2

∫
D
|∇u|2 +

c̃

ε31

1

k

(∫
Γ
|g ′(x)|2 +

∫
Γ
|g(x)|2

)
. (2.31)

Similarly,

∫
D
uyg̃(x)h′(y) =

∫
D1

uyg̃(x)h′(y)χDdydx

≤
∫ B

A
|g̃(x)|

∫ y2

y1
|uy||h′(y)|χDdydx

≤
∫ B

A
|g̃(x)|

(∫ y2

y1
|uyχD|

2dy)
1
2 (

∫ y2

y1
|h′(y)|2dy

)1
2
dx

≤
√
k

∫ B

A
|g̃(x)|(

∫ y2

y1
|uyχD|

2dy)
1
2dx

≤

[∫ B

A

∫ y2

y1
|uyχD|

2dydx

]1
2
[∫ B

A

(√
k|g̃(x)|

)2
dx

]1
2

≤
ε31
2

∫
D
|∇u|2 +

1

ε31
k

∫ B

A
|g̃(x)|2dx.

It follows that

∫
D
uyg̃(x)h′(y) ≤

ε31
2

∫
D
|∇u|2 +

c̃k

ε31

∫
Γ
|g(x)|2. (2.32)

Now we treat the second term on the right hand side of Equation (2.30). By the definition

of η,

∫
D
|η|2 ≤

∫
D

1

k
|g̃|2 ≤ c̃

k

∫
Γ
|g|2, where c̃ depends on the length in the y direction, i.e.,
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y2 − y1. It yields that

−
∫
D
k2uη ≤

∫
D

(
k2|u|2

)1
2
(∫

D
k2|η|2

)1
2

≤ ε31

∫
D
k2|u|2 +

1

ε31

∫
D
k2|η|2

≤ ε31

∫
D
k2|u|2 +

c̃

ε31

∫
Γ
k|g|2.

(2.33)

To treat the term −
∫
S
∂u
∂n

η, we use an estimate for

∫
S
|η|2, which is derived as follows.

By the divergence theorem, we have

∫
D
div(|η|2X) =

∫
∂D
|η|2(X · n),

this is equivalent to

2<
∫
D
η∇η ·X +

∫
D
|η|2div(X) =

∫
Γ
y2|η|

2 +

∫
S
|η|2(X · n).

It follows that

−
∫
S
|η|2(X · n) = −2<

∫
D
η∇η ·X −

∫
D
|η|2div(X) +

∫
Γ
y2|η

2|

≤ a4

[∫
D
k|η|2 +

∫
D

1

k
|∇η|2

]
+

∫
Γ
y2|g|

2

≤ a5

∫
Γ

(|g|2 +
1

k2
|gx|2).

Then use the fact that −(X · n) ≥ p1 > 0, one obtains

∫
S
|η|2 ≤ c̃

∫
Γ

(|g|2 +
1

k2
|gx|2).
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Hence

−
∫
S

∂u

∂n
η ≤

(∫
S
|∂u
∂n
|2
)1

2
(∫

S
|η|2

)1
2 ≤ ε32

∫
S
|∂u
∂n
|2 +

1

ε32

∫
S
|η|2

≤ ε32

∫
S
|∂u
∂n
|2 +

c̃

ε32

∫
Γ

(|g|2 +
1

k2
|gx|2).

(2.34)

Combining all the results in Equation (2.31), (2.32), (2.33) and (2.34), the estimate in the

lemma is arrived. �

Now we are going to handle I4, which yields the highest order of k in Theorem 2.1.1.

Lemma 2.4.5. For I4, we have the following estimate.

I4 = 2<
∫
|ξ|≤k

[
−ξû ′(ξ)

]
i

√
k2 − ξ2û(ξ)dξ ≤ ε4BH + d4k

7
5G, (2.35)

where ε4 is a small positive number, and d4 is chosen accordingly.

Remark: By direct usage of Schwarz inequality, and use the fact that û ′(ξ) = ̂(−ix)u(ξ),

we could arrive at an estimate of I4 ≤ ε4BH + Ck3G. But we may lose some information

since the relation between û ′(ξ) and u relies on the entire domain, while in fact only the

portion |ξ| ≤ k is needed. Here our idea is to start directly from the frequency domain func-

tion defined in the lower frequency region, and introduce the corresponding spatial function

by using inverse fourier transform, then through possible cancelation between positive and

negative parts of the introduced function, it results in a lower power estimate in terms of k.

Proof. First I4 is written as the sum of two integrals, i.e. I4 = I41 + I42 as shown below,

where I41 represents the integral for the region 0 ≤ ξ ≤ k and I42 represents the integral
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for the region −k ≤ ξ ≤ 0. Note that

I41 = 2<
∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 û(ξ)

[
−iξ

1
2 (k2 − ξ2)

1
4 û ′(ξ)

]
dξ

= 2<
∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 û(ξ)

[
iξ

1
2 (k2 − ξ2)

1
4 û (ξ)

]′
dξ.

Define f1(x) =

∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 û(ξ)eiξxdξ, then through integration by parts, it yields

that

∫ k

0

[
iξ

1
2 (k2 − ξ2)

1
4 û (ξ)

]′
eiξxdξ = −

∫ k

0
iξ

1
2 (k2 − ξ2)

1
4 û (ξ)ixeiξxdξ = xf1(x).

Thus by Parseval’s identity,

I41 = 2<
∫
R
f1(x)xf1(x)dx = 2

∫
R
x|f1(x)|2dx.

Furthermore, observe that

I42 = −2<
∫ 0

−k
iξ(k2 − ξ2)

1
2 û(ξ)û ′(ξ)dξ

= 2<
∫ k

0
iξ(k2 − ξ2)

1
2 û(−ξ)û ′(−ξ)dξ

= 2<
∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 û(−ξ)

[
iξ

1
2 (k2 − ξ2)

1
4 û (−ξ)

]′
dξ.

Define f2(x) =

∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 û(−ξ)eiξxdξ, then similar computation yields that

I42 = 2

∫
R
x|f2(x)|2dx.
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Therefore I4 = 2

∫
R
x|f1(x)|2dx+ 2

∫
R
x|f2(x)|2dx.

Moreover, by the definitions of f1(x) and f2(x), we have

∫
R
|f1(x)|2 =

∫ k

0
ξ(k2 − ξ2)

1
2 |û(ξ)|2dξ ≤ kAL,

∫
R
|f2(x)|2 ≤ kAL. (2.36)

Note that by using Equation (2.36), for any given positive constant M , it follows that

∫
|x|≤M

[
x|f1(x)|2 + x|f2(x)|2

]
≤MkAL ≤Mk(

δ

k
BH +

1

δ
G). (2.37)

Thus to estimate I4, it remains to estimate

∫
|x|>M

[
x|f1(x)|2 + x|f2(x)|2

]
and choose an

appropriate M .

By using the fact that u(x, y2) is supported on the interval [a, b], it is easy to write f1(x)

as follows,

f1(x) =

∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 û(ξ)eiξxdξ =

∫ k

0

∫ b

a
ξ

1
2 (k2 − ξ2)

1
4 eiξxu(s)e−iξsdsdξ. (2.38)

To simplify notations, define H(z) =

∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 eiξzdξ, then

f1(x) =

∫ b

a
u(s)H(x− s)ds.

Consequently |f1(x)|2 =

∫ b

a

∫ b

a
u(s)u(t)H(x− s)H(x− t)dsdt. And |f1(−x)|2 can be rep-
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resented by

|f1(−x)|2 =

∫ b

a

∫ b

a
u(s)u(t)H(−x− s)H(−x− t)dsdt

=

∫ b

a

∫ b

a
u(s)u(t) H(x+ s)H(x+ t)dsdt.

Then
∫
|x|>M x|f1(x)|2 can be rewritten as a triple integral involving H term where

cancelations take place.

∫
|x|>M

x|f(x)|2 =

∫
x>M

x
[
|f1(x)|2 − |f1(−x)|2

]
=

∫ b

a

∫ b

a
u(s)u(t)

∫
x>M

[
xH(x− s)H(x− t)− xH(x+ t)H(x+ s)

]
dxdsdt.

Define J1 =

∫
x>M

[
xH(x− s)H(x− t)− xH(x+ t)H(x+ s)

]
dx. By changing vari-

able for possible cancelation, it follows that

J1 =

∫ ∞
M−s

(x+ s)H(x)H(x+ s− t)dx−
∫ ∞
M+t

(x− t)H(x)H(x− t+ s)dx

=

∫ ∞
M−s

sH(x)H(x+ s− t)dx+

∫ ∞
M+t

tH(x)H(x+ s− t)dx

+

∫ M+t

M−s
xH(x)H(x+ s− t)dx.

Similar computations yield a representation of
∫
|x|>M x|f2(x)|2, that is,

∫
|x|>M

x|f2(x)|2 =

∫ b

a

∫ b

a
u(s)u(t)J2dsdt,
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where

J2 =−
∫ ∞
M+s

sH(x)H(x− s+ t)dx−
∫ ∞
M−t

tH(x)H(x− s+ t)dx

−
∫ M+s

M−t
xH(x)H(x− s+ t)dx.

Therefore the contribution to I4 due to |x| > M , that is,
∫
|x|>M

[
x|f2(x)|2 + x|f2(x)|2

]
,

can be expressed using the following integral form.

∫
|x|>M

[
x|f2(x)|2 + x|f2(x)|2

]
=

∫ b

a

∫ b

a
u(s)u(t)(J1 + J2)dsdt

=

∫ b

a

∫ b

a

[
u(s)u(t)− u(t)u(s)

]
J1dsdt = T1 + T2 + T3,

where T1, T2, T3 are denoted as

T1 =

∫ b

a

∫ b

a

[
u(s)u(t)− u(t)u(s)

] ∫ ∞
M−s

sH(x)H(x+ s− t)dxdsdt,

T2 =

∫ b

a

∫ b

a

[
u(s)u(t)− u(t)u(s)

] ∫ ∞
M+t

tH(x)H(x+ s− t)dxdsdt,

T3 =

∫ b

a

∫ b

a

[
u(s)u(t)− u(t)u(s)

] ∫ M+t

M−s
xH(x)H(x+ s− t)dxdsdt.

Observe that the common term in T1, T2 and T3 is H(x)H(x+ s− t), so next we see how

to express H(x)H(x+ s− t) in more details using the expression of H(x).

H(x) =

∫ k

0
ξ

1
2 (k2 − ξ2)

1
4 eiξxdξ = − 1

ix

∫ k

0

[
ξ

1
2 (k2 − ξ2)

1
4

]′
eiξxdξ

= − 1

ix

∫ k

0

k2 − 2ξ2

ξ
1
2 (k2 − ξ2)

3
4

eiξxdξ = − k

ix

∫ 1

0
F (η)eikηxdη,
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with F (η) =
1− 2η2

η
1
2 (1− η2)

3
4

.

Consider the integral ψ(w) =

∫ 1

0
F (η)eiwηdη, and write ψ(w) = ψ1(w) + ψ2(w), where

ψ1(w) =

∫ 1
2

0
F (η)eiwηdη and ψ2(w) =

∫ 1

1
2

F (η)eiwηdη. To estimate ψ1(w), note that on

the interval [0, 1
2],

1− 2η2

(1− η2)
3
4

= 1 + F1(η2), where F1(η2) is continuous on [0, 1
2], thus

ψ1(w) =

∫ 1
2

0
η
−1

2 (1 + F1(η2))eiwηdη =

∫ 1
2

0
η
−1

2 eiwηdη +

∫ 1
2

0
η
−1

2F1(η2)eiwηdη

=
1

w
1
2

∫ 1
2w

0

eiζ√
ζ
dζ +O

(
1

w

)
=

1

w
1
2

∫ ∞
0

eiζ√
ζ
dζ +O

(
1

w

)
.

It shows that

ψ1(w) =
C1

w
1
2

+O

(
1

w

)
.

Furthermore, ψ2(w) =

∫ 1

1
2

F (η)eiwηdη =

∫ 1
2

0
F (1− η)eiw(1−η)dη, and on the interval [0, 1

2],

write F (1− η) =
−1 + 4η − 2η2

η
3
4 (1− η)

1
2 (2− η)

3
4

= η
−3

4

(
−2
−3

4 + F2(η)

)
, where F2(η) is continu-

ous on [0, 1
2], thus

ψ2(w) = eiw

−2
−3

4

∫ 1
2

0
η
−3

4 e−iwηdη +

∫ 1
2

0
η
−3

4F2(η)e−iwηdη


=− 2

−3
4 eiw

1

w
1
4

∫ 1
2w

0

1

ζ
3
4

e−iζdζ +O

(
1

w

)
= −2

−3
4 eiw

1

w
1
4

∫ ∞
0

1

ζ
3
4

e−iζdζ +O

(
1

w

)

Therefore ψ2(w) =
C2e

iw

w
1
4

+O

(
1

w

)
. It follows that ψ(w) =

C2e
iw

w
1
4

+
C1

w
1
2

+O

(
1

w

)
, and
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the common term in T1, T2 and T3 can be written as

H(x)H(x+ s− t) =
k2

x(x+ s− t)
ψ(kx)ψ[k(x+ s− t)]

=
k2

x(x+ s− t)

C2e
ikx

(kx)
1
4

+
C1

(kx)
1
2

+O

(
1

kx

)C2e
−ik(x+s−t)

[k(x+ s− t)]
1
4

+
C1

[k(x+ s− t)]
1
2

+

O

(
1

k(x+ s− t)

)]

=
k2

x2

|C2|
2 e
−ik(s−t)

(kx)
1
2

+O

 1

k
1
2x

3
2

+O

 1

(kx)
3
4

 .
Accordingly, for |x| > M , we have

=xH(x)H(x+ s− t) =
k

3
2

M
3
2

|C2|
2i sin k(t− s) +O

 k
3
2

M
5
2

+O

 k
5
4

M
7
4

 .

Note that, the dominant term is k
3
2

M
3
2

|C2|2i sin k(t− s), correspondly, the dominant term in

T3, denoted by T3d, is given by

T3d = <i k
3
2

M
3
2

|C2|
2
∫ b

a

∫ b

a

[
u(s)u(t)− u(t)u(s)

]
(t+ s) sin k(t− s)dsdt

=
2k

3
2

M
3
2

<
∫ b

a

∫ b

a
s
[
u(s)u(t)− u(t)u(s)

]
eikte−iksdsdt

=
2k

3
2

M
3
2

<

[∫ b

a
su(s)e−iksds

∫ b

a
u(t)e−iktdt−

∫ b

a
su(s)eiksds

∫ b

a
u(t)eiktdt

]

=
2k

3
2

M
3
2

<
{
ŝu(k)û(k)− ŝu(−k)û(−k)

}
.
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Note that in T3d, ŝu(ξ) ≤ ‖u‖
L2(Γ)

, so it remains to consider û(k). Since

|û(ξ)− û(k)| =

∣∣∣∣∣
∫ b

a
u(x)[e−iξx − e−ikx]dx

∣∣∣∣∣
≤
∫ b

a

∣∣∣u(x)e−iξx
∣∣∣ ∣∣∣1− ei(ξ−k)x

∣∣∣ dx ≤ ‖u‖
L2(Γ)

|ξ − k|.

Thus 1
2 |û(k)|2 − |û(ξ)|2 ≤ |û(ξ)− û(k)|2 ≤ ‖u‖2

L2(Γ)
|ξ − k|2, it follows that

|û(ξ)|2 ≥ 1

2
|û(k)|2 − ‖u‖2

L2(Γ)
|ξ − k|2.

Integrate the above inequality from k − δ to k, then we have

AL ≥
∫ k

k−δ

√
k2 − ξ2|û(ξ)|2dξ

≥1

2
|û(k)|2

∫ k

k−δ

√
k2 − ξ2dξ − ‖u‖2

L2(Γ)

∫ k

k−δ
|ξ − k|2

√
k2 − ξ2dξ

≥1

2
|û(k)|2

√
kδ

3
2 − ‖u‖2

L2(Γ)

√
kδ

7
2 .

It provides an estimate for |û(k)|2, which is bounded by ‖u‖2
L2(Γ)

and AL,

|û(k)|2 ≤ δ2‖u‖2
L2(Γ)

+
1

√
kδ

3
2

AL.

Using this inequality, T3 can be bounded by

|T3| ≤
k

3
2

M
3
2

‖u‖
L2(Γ)

δ‖u‖
L2(Γ)

+
1

k
1
4 δ

3
4

A
1
2
L

 ≤ k
3
2

M
3
2

δ‖u‖2
L2(Γ)

+
k

3
2

M
3
2

1

k
1
2 δ

5
2

AL.
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In particular, choose M = k
1
5 and δ = εk

−1
5 , then T3 can be estimated by

|T3| ≤ εk‖u‖2
L2(Γ)

+
k

6
5

ε
5
2

AL ≤ εBH + Ck
7
5G.

Note that for T1, for the integral

∫ ∞
M−s

sH(x)H(x+ s− t)dx, the dominant term is

s
k

3
2

M
3
2

|C2|
2i sin k(t− s);

and in T2, for the integral

∫ ∞
M+t

tH(x)H(x+ s− t)dx, the dominant term is

t
k

3
2

M
3
2

|C2|
2i sin k(t− s).

Therefore, the dominant term for T1 + T2 is

<i k
3
2

M
3
2

|C2|
2
∫ b

a

∫ b

a

[
u(s)u(t)− u(t)u(s)

]
(t+ s) sin k(t− s)dsdt,

which is the same as T3d. Therefore, T1 and T2 can also be controlled by εBH + Ck
7
5G.

These estimates on T1, T2, and T3 and the chosen M provides the final estimate for I4,

|I4| =
∫
|x|≤M

[
x|f1(x)|2 + x|f2(x)|2

]
+ |T1|+ |T2|+ |T3|

≤ k
1
5k(

εk
−1

5

k
BH +

1

εk
−1

5

G) + εBH + Ck
7
5G

≤ ε4BH + d4k
7
5G.
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Finally, we deal with I5, which follows from the integration by parts and previous estimate

on ‖u‖
L2(Γ)

.

Lemma 2.4.6. For any positive constant ε5, we have

I5 = 2<
∫

Γ
xuxgdx ≤ ε5BH + d5G+ e5k

−1‖gx‖2
L2(Γ)

, (2.39)

where d5 =
ε5C

2

2
+

2M1
ε5k

, and e5 =
2M1
ε5

.

Proof. Using Lemma 2.4.1, we have, for any ε5 > 0,

I5 = 2<
∫

Γ
xuxgdx = −2<

∫
Γ
u(xg)xdx

≤ 2

(∫
Γ
|u|2dx

)1
2
(∫

Γ
|(xg)x|2dx

)1
2 ≤

ε5
2
k

∫
Γ
|u|2dx+

2

ε5
k−1

∫
Γ
|(xg)x|2dx

≤
ε5
2
k(

2

k
BH +

C2

k
G) +

4

ε5
k−1

∫
Γ
|g|2dx+

4

ε5
k−1

∫
Γ
|xgx|2dx

≤ ε5BH +
C2ε5

2
G+

4

ε5
k−1‖g‖2

L2(Γ)
+

4M1
ε5

k−1‖gx‖2
L2(Γ)

≤ ε5BH + d5G+ e5k
−1‖gx‖2

L2(Γ)
.

The lemma is proved. �

By using the estimates obtained in Lemma 2.4.2 through 2.4.6, we can prove Theorem

2.1.1 as described below.

Proof of Theorem 2.1.1: Equation (2.23) can be estimated by
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‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

+

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|û|2dξ −
∫
S

(X · n)|∇u|2

≤ εBH +m1G+m2‖gx‖
2
L2(Γ)

+ ε31

∫
D

(
|∇u|2 + k2|u|2

)
+ ε32

∫
S
|∇u|2, (2.40)

here ε = ε1+ε2+ε4+ε5, m1 = d1+d2k+d3k+d4k
7
5 +d5+y2 and m2 = (e3+e5)k−1. By

using the geometric assumption X · n ≤ −p1 < 0, we could choose ε32 such that ε32 < p1,

then by dropping the term associated with
∫
S |∇u|

2, Equation (2.40) becomes:

(1− ε31)(‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

) +

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|û|2dξ

≤ εBH +m1G+m2‖gx‖
2
L2(Γ)

. (2.41)

Note here ε, ε31 can be chosen sufficiently small, choose C such that m1 ≤ Ck
7
5 and

m2 ≤ Ck−1, then Equation (2.2) is obtained.

2.5 Further Remarks

For the case where the cavity domain is of rectangular shape with D = [0, π]× [0, π], consider

the solution u = sin(mx)sin(
√
k2 −m2y),m ∈ Z and m < k . If in particular, k2 −m2 =

j2, j ∈ Z, then u = 0 on the aperture of the cavity Γ where y = π, therefore T (u) = 0.

In this case, we have an explicit formula for g, that is, g = uy =
√
k2 −m2sin(mx). It

follows that ‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

= π2
4 (m2 + (k2 −m2) + k2) = π2

2 k2, meanwhile

‖g‖2
L2(Γ)

= π
2 (k2 − m2). It shows that when j = 1, i.e., k2 − m2 = 1, we would need

40



a coefficient of k2 such that ‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

≤ Ck2‖g‖2
L2(Γ)

. This particular

example shows that at least we would need k2 in the estimate. Our estimate yields the order

of k
7
5 , which may not be the optimal because of techniques we used. It would be interesting

to see whether the optimal order dependency on k is k for any g under the given geometric

assumption.
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Chapter 3

Stability Estimates under a Weak

Geometric Assumption

3.1 Main Theorem and Outlines of the Approach

In this chapter, the cavity structure satisfies the following geometric assumptions:

(1) the angel θ between Γ and D satisfies θ ≥ θ0 > 0;

(2) there is a point X∗ = (x0, y0) on the plane and positive constants p such that

(X −X∗) · n ≤ 0 on S. (3.1)

(3) the domain D admits cusps of power sharpness 1 < τ < 2. One example is shown

Figure 3.1. For domain with cusps satisfying the geometric assumption (3), the related trace

theorem is established in [1], which states that for u ∈ H1(D), ‖u‖
L2(∂D)

≤ C‖u‖
H1(D)

,

where the inclusion of H1(D) ⊂ Lr(D) for 2 ≤ r ≤ 2(α+1)
α−1 for domain with cusps [2] is

used for the proof. The main result is Theorem 3.1.1 as stated below.

Theorem 3.1.1. Under the geometric assumptions given in Equation (3.1), there exists a

constant C such that for k > k0,

‖∇u‖
L2(D)

+ |k|‖u‖
L2(D)

≤ C

{
k

7
10‖g‖

L2(Γ)
+

1√
k
‖gx‖L2(Γ)

+ k
6
5 [|g(0)|+ |g(π)|]

}
.
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(a) : (X −X∗) · n ≤ 0 (b): (X −X∗) · n ≤ −p1

Figure 3.1: Domains of different shapes

See Figure (3.1)(b) for example, note that in Figure (3.1)(a), there is no such X∗ which

satisfies the geometric condition in Equation (2.1). It should be pointed out that even

though Theorem 3.1.1 implies Theorem 2.1.1 in the case of g(0) = g(π) = 0. In general,

k
7
10 [|g(0)|+ |g(π)|] can not be controlled by k

6
5‖g‖

L2(Γ)
+ 1√

k
‖gx‖L2(Γ)

. This can be

seen when g(x) is smooth and is supported in a small subinterval of [0, π].

Remark 1: Note that in Chapter 2, the stronger geometric assumption is fully utilized in

the final estimate. Specifically, the following energy inequality was obtained:

‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

+

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|û|2dξ −
∫
S

(X · n)|∇u|2

≤<
∫

Γ
gudx+ y2

∫
|ξ|≤k

2(k2 − ξ2)|û|2dξ + 2y2<
∫

Γ
T (u) g

+ 2<
∫
|ξ|≤k

[
−ξû ′(ξ)

]
i

√
k2 − ξ2û(ξ)dξ + 2<

∫
Γ
xuxgdx+ y2

∫
Γ
|g|2dx.

(3.2)

The integral −
∫
S(X ·n)|∇u|2 on the left hand side played an important role to control the

term 2y2<
∫
Γ T (u)g is on the right hand side. Recall that in Lemma 2.4.4 , I is shown to
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be estimated as follows,

I ≤ ε31

∫
D

(
|∇u|2 + k2|u|2

)
+ ε32

∫
S
|∂u
∂n
|2 + d3k

2G+
e3
k

∫
Γ
|gx|2.

Under the strong geometric assumption, −X · n ≥ p1 > 0 on S, the term ε32
∫
S |

∂u
∂n
|2

can be absorbed as long as ε32 is chosen small enough. Now we have a weaker geometric

assumption on S, thus the previous proof can not be extended directly.

Remark 2: Another natural way to estimate I is to rewrite the integral using Fourier

transform. That is,

|I| ≤ C

∣∣∣∣∫
Γ
T (u) g

∣∣∣∣ = C

∣∣∣∣∫R T (u) g̃

∣∣∣∣
by extending g to be zero outside Γ. Hence

∣∣∣∣∫R T (u) g̃

∣∣∣∣ =

∣∣∣∣∫R T̂ (u) ̂̃gdξ∣∣∣∣ =

∣∣∣∣∫R i

√
k2 − ξ2û ̂̃g∣∣∣∣.

If Schwarz inequality is used, |I| ≤ C

(∫
R

√
|k2 − ξ2|û|2

)1
2
(√
|k2 − ξ2||̂̃g|)1

2
. Recall that

we only have control on

∫
R

√
|k2 − ξ2|û|2, we need the convergence of

∫
R

√
|k2 − ξ2||̂̃g|.

However this is not true if |g(0)2|+|g(π)2| 6= 0, since ̂̃g ∼ 1
|ξ| as |ξ| → ∞. If g(0) = g(π) = 0,

we will have convergence of

∫
R

√
|k2 − ξ2||̂̃g| when gx(x) ∈ L2(Γ). The new idea is to

introduce a new auxiliary function u∗ , and consider w = u+ u∗, we have



∆w + k2w = ∆u∗ + k2u∗ ≡ f in D,

w|S = 0 if u∗|S = 0,

wy|Γ = uy + u∗y = T (u) + g + u∗y = T (w)− T (u∗) + g + u∗y = T (w) + g1 on Γ,

(3.3)
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where g1 = g − Tu∗ + u∗y. Using this construction, we want g1(0) = g1(π) = 0.

To prove Theorem 3.1.1 under the weaker geometric assumption Equation (3.1), three

main steps are involved.

Step 1. Introduce an auxiliary function u∗ such that

1) Tu∗(0, y2) = g(0) and Tu∗(π, y2) = g(π),

2) u∗(0, y2) = u∗(π, y2) = 0, u∗y(0, y2) = u∗y(π, y2) = 0,

3) u∗ = 0 on S. The trick is to construct such u∗ so that the norms of f and u∗ are as

small as possible. But the construction is not trivial since Tu∗ is not a local operator. Once

u∗ is chosen, then w = u+ u∗ satisfies Equation (3.3).

Step 2. Note that this formulation has similar structure as that in Equation (1.2) with

two major differences: 1) the governing equation here is nonhomogeneous with a right hand

side source term f ; 2) in the nonlocal boundary condition, g1 vanishes on the boundary of

Γ while g itself may not. It will be shown that

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

≤ C1k
7
5‖g1‖

2
L2(Γ)

+
C2
k
‖g1x‖

2
L2(Γ)

+ C3k
2
5

∫
D
|f |2. (3.4)

The proof for the above inequality is presented in the last section since this part can be

viewed as a modification of results in Chapter 2, where most of the ideas are similar; however,

additional terms containing f are involved from the beginning of the proof, so each result

need to be restated. Furthermore, since here g1 vanishes on the boundary of Γ, an easier

estimate could be used to treat the term
∫
Γ T (w)g1.

Step 3. To provide a final estimate for the wave energy on u, it remains to show that

‖g1‖L2(Γ)
, ‖g1x‖L2(Γ)

and ‖f‖
L2(D)

terms are controlled by norms of g with suitable
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powers of k, which turned out to be

∫
D
|f |2 ≤ C

[
|g(0)|2 + |g(π)|2

]
,∫

Γ
|g1|

2 ≤ C
[
|g(0)|2 + |g(π)|2

]
+

∫
Γ
|g|2,∫

Γ
|g1x|

2 ≤ Ck2
[
|g(0)|2 + |g(π)|2

]
+

∫
Γ
|gx|2.

Furthermore, it could be shown that

‖∇u∗‖2
L2(D)

+ k2‖u∗‖2
L2(D)

≤ C

k2

[
|g(0)|2 + |g(π)|2

]
,

hence the final estimate could be established accordingly.

3.2 Some Basic Properties of the Auxiliary Function

In this section, we focus on the construction of the auxiliary function u∗, which essentially

is a linear combination of two compact supported functions. The aim is to construct a

function u∗ such that it satisfies 1) Tu∗(0, y2) = g(0) and Tu∗(π, y2) = g(π), 2) u∗(0, y2) =

u∗(π, y2) = 0, u∗y(0, y2) = u∗y(π, y2) = 0, and 3) u∗ = 0 on S. In this section, we introduce

two subdomains where u∗ is supported, and analyze some basic properties of u∗ .

3.2.1 The Construction of an Auxiliary Function

Define Ω1 and Ω2 as follows.

Ω1 = {(x, y) : x ∈ [0,
π

j
], y ∈ [y2 − α sin(jx), y2]},
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and

Ω2 = {(x, y) : x ∈ [π − π

j
, π], y ∈ [y2 − α sin(jx), y2]},

where α is a small constant that will be chosen later to optimize the order in k, which

turns out to be α =
β
k

, this is explained in Section 4.4, j = µk, µ is a small constant as

indicated in the discussion in Section 3.2, and µ is chosen such that j is an integer. See

Figure 3.2 for an illustration of Ω1 and Ω2. Once these two subdomains are defined, two

Figure 3.2: Cavity with subdomains where the auxiliary functions are supported

corresponding functions u∗1 and u∗2 are introduced accordingly, which are supported in Ω1

and Ω2 respectively. Thereafter u∗ is defined as a linear combination of the two functions
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in a way that Tu∗ cancels out the value of g on the boundary of Γ. Specifically, we write

u∗ = a1u
∗
1 + a2u

∗
2,

where

u∗1(x, y) =


[y − y2 + α sin(jx)]3 (x, y) ∈ Ω1,

0, otherwise.

and

u∗2(x, y) =


[y − y2 + α sin(jx)]3 (x, y) ∈ Ω2,

0, otherwise,

Furthermore, a1, a2 are constants chosen such that


a1Tu

∗
1(0, y2) + a2Tu

∗
2(0, y2) = g(0)

a1Tu
∗
1(π, y2) + a2Tu

∗
2(π, y2) = g(π)

(3.5)

Note that in particular, u∗1 = α3 sin3(jx) for x ∈ [0, πj ] and u∗2 = α3 sin3(jx) for x ∈

[π − π
j , π] on Γ, this fact is used in the next subsection to analyze properties on a1 and a2.
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3.2.2 The Existence and the Order of the Coefficients

To guarantee the existence of a1 and a2 in the auxiliary function, we show that the coefficient

matrix

M =

Tu
∗
1(0, y2) Tu∗2(0, y2)

Tu∗1(π, y2) Tu∗2(π, y2)

 (3.6)

is nonsingular. This could be proved by checking the leading order terms (in terms of

order in k) for each component in the coefficient matrix in Equation (3.6). Notice that

Tφ(x) = 1√
2π

∫
R i

√
k2 − ξ2φ̂(ξ)eiξxdξ, thus the Fourier transform of u∗1 and u∗2 are needed

for the further analysis on Tu∗1 and Tu∗2 . First, we derive the formula for û∗1 and û∗2.

Lemma 3.2.1. The fourier transform of u∗1 and u∗2 can be represented by



û∗1(ξ, y2) =
1√
2π

6α3j3

ξ2 − 9j2
e
−iξ πj + 1

ξ2 − j2

û∗2(ξ, y2) =
1√
2π

6α3j3

ξ2 − 9j2

(−1)j+1

[
e−iξπ + e

−iξ(π−πj )
]

ξ2 − j2

(3.7)

Proof. Since on Γ, y = y2, therefore u∗1(x, y) = α3 sin3(jx) for (x, y) ∈ [0, πj ] × {y = y2}.

We may assume α3 =
√

2π from linearity of Fourier transform. û∗1(ξ, y2) can be expressed
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as follows.

û∗1(ξ, y2) =

∫ π
j

0
sin3(jx)e−iξxdx =

1

iξ

∫ π
j

0
3 sin2(jx) cos(jx)je−iξxdx

=
1

(iξ)2

∫ π
j

0
[6 sin(jx) cos2(jx)j2 − 3 sin3(jx)j2]e−iξxdx

=
1

−ξ2

∫ π
j

0
[6 sin(jx)j2 − 9 sin3(jx)j2]e−iξxdx

=
1

−ξ2
[

∫ π
j

0
6 sin(jx)j2e−iξxdx− 9j2û∗1(ξ, y2)]

It shows that (−ξ2 + 9j2)û∗1(ξ, y2) = j2
∫ π
j

0
6 sin(jx)e−iξxdx. Denote Cj =

3j2

−ξ2+9j2
,

then û∗1(ξ, y2) can be written as

û∗1(ξ, y2) = Cj

∫ π
j

0

eijx − e−ijx

i
e−iξxdx = Cj

1

i

[
ei(j−ξ)x

(j − ξ)i
+
e−i(j+ξ)x

(j + ξ)i

] ∣∣∣∣πj
0

=Cj
1

i

(e
i(j−ξ)πj − 1)(j + ξ) + (e

−i(j+ξ)πj − 1)(j − ξ)
(j2 − ξ2)i

= 2Cj
e
−iξ πj + 1

ξ2 − j2
.

û∗2(ξ, y2) can be obtained by a suitable substitution.

û∗2(ξ, y2) =

∫ π

π−πj
sin3(jx)e−iξxdx =

∫ π
j

0
sin3[j(π − x1)]e−iξ(π−x1)dx1

=

∫ π
j

0
(−1)j+1 sin3(jx1)eiξx1dx1e

−iξπ = (−1)j+1e−iξπû∗1(−ξ, y2)

= 2Cj

(−1)j+1

[
e−iξπ + e

−iξ(π−πj )
]

ξ2 − j2
.

Lemma 3.2.1 is proved. �

By using the explicit expressions for û∗1(ξ, y2) and û∗2(ξ, y2), the following facts can be
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obtained.

Corollary 3.2.2. Using the connection between û∗1(ξ, y2) and û∗2(ξ, y2) as shown in Equation

(3.8), we have the following relations.


Tu∗2(0, y2) = (−1)j+1Tu∗1(π, y2),

Tu∗2(π, y2) = (−1)j+1Tu∗1(0, y2).

(3.8)

Proof. Since the following relate holds for û∗2(ξ, y2) and û∗1(−ξ, y2),

û∗2(ξ, y2) = (−1)j+1e−iξπû∗1(−ξ, y2), (3.9)

it follows that

1√
2π

∫
R
i

√
k2 − ξ2û∗2(ξ, y2)dξ = (−1)j+1 1√

2π

∫
R
i

√
k2 − ξ2e−iξπû∗1(−ξ, y2)dξ

= (−1)j+1 1√
2π

∫
R
i

√
k2 − ξ2eiξπû∗1(ξ, y2)dξ.

Thus the first identity in Equation (3.8) is proved, the second identity could be easily derived

after multiplying both sides of Equation (3.9) by eiξπ. �

From this corollary, in order to show that the coefficient matrix M in Equation (3.6) is

nonsingular, note its determinant

det(M) = (−1)j+1
{[
Tu∗1(0, y2)

]2 − [Tu∗1(π, y2)
]2},

thus the leading order for Tu∗1(0, y2) and Tu∗1(π, y2) in terms of power of k needs to be

determined.
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Lemma 3.2.3. Tu∗1(0, y2) and Tu∗1(π, y2) can be expressed by the integrals containing only

the higher frequency part.

Tu∗1(0, y2) = − 1

π

∫
ξ>k

√
ξ2 − k2 6α3j3

ξ2 − 9j2
e
iξ πj + 1

ξ2 − j2
dξ,

Tu∗1(π, y2) = − 1

π

∫
ξ>k

√
ξ2 − k2 6α3j3

ξ2 − 9j2
e
iξ(π−πj )

+ eiξπ

ξ2 − j2
dξ.

(3.10)

Proof. We first rewrite Tu∗1(0, y2) using residue theorem. It should be pointed out that

i

√
k2 − ξ2 is not a restriction of an analytic function to the real line. However, we can

express this as

i

√
k2 − ξ2 :=


A(ξ) for ξ < k,

A(ξ)− 2

√
ξ2 − k2 for ξ > k,

where A(z) = (z − k)
1
2 (z + k)

1
2 ,=z ≥ 0, z

1
2 = |z|

1
2 e
i argz

2 . A(z), 0 < argz < π, is an ana-

lytic function. Then

Tu∗1(0, y2) =
1√
2π

∫
R
i

√
k2 − ξ2û∗1(ξ, y2)dξ =

1√
2π

∫
R
i

√
k2 − ξ2û∗1(−ξ, y2)dξ

=
1√
2π

∫
R
A(ξ)û∗1(−ξ, y2)dξ − 2√

2π

∫
ξ>k

√
ξ2 − k2û∗1(−ξ, y2)dξ

= −
√

2

π

∫
ξ>k

√
ξ2 − k2û∗1(−ξ, y2)dξ,

since
1√
2π

∫
R
A(ξ)û∗1(−ξ, y2)dξ =

1√
2π

lim
R→∞

∫
∂B+

R

A(ξ)û∗1(−ξ, y2)dξ = 0 by residue the-
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orem. Similarly,

Tu∗1(π, y2) =
1√
2π

∫
R
i

√
k2 − ξ2û∗1(ξ, y2)eiξπdξ

=
1√
2π

∫
R
A(ξ)û∗1(ξ, y2)eiξπdξ − 2√

2π

∫
ξ>k

√
ξ2 − k2û∗1(ξ, y2)eiξπdξ

= −
√

2

π

∫
ξ>k

√
ξ2 − k2û∗1(ξ, y2)eiξπdξ.

Plug the expression of û∗1(ξ, y2) into the two identities above, the two equations in (3.10)

are obtained. �

Using these expressions, we can compute the leading orders of Tu∗1(0, y2) and Tu∗1(π, y2)

and therefore derive the bound for a1 and a2 in terms of k.

Lemma 3.2.4. For large wave number k, the matrix M is nonsingular. Furthermore,

|a1| ≤
C

α3k
(|g(0)|+ |g(π)|), |a2| ≤

C

α3k
(|g(0)|+ |g(π)|). (3.11)

Proof. To estimate the leading order of Tu∗1(0, y2), rewrite the integral as the sum of two

integrals, i.e.,

Tu∗1(0, y2) = − 6

π
α3j3

∫
ξ>k

√
ξ2 − k2

(ξ2 − 9j2)(ξ2 − j2)
(e
iξ πj + 1)dξ = − 6

π
α3j3(I1 + I2),

where

I1 =

∫
ξ>k

√
ξ2 − k2

(ξ2 − 9j2)(ξ2 − j2)
e
iξ πj dξ and I2 =

∫
ξ>k

√
ξ2 − k2

(ξ2 − 9j2)(ξ2 − j2)
dξ,

Assume that j is an integer such that j = µk and j < k
3 in the following context. Consider
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I1 first, denote f(ξ) =

√
ξ2−k2

(ξ2−9j2)(ξ2−j2)
, then

f
′
(ξ) =

ξ√
ξ2−k2

(ξ2 − 9j2)(ξ2 − j2)−
√
ξ2 − k2

[
2ξ(ξ2 − 9j2 + ξ2 − j2)

]
(ξ2 − 9j2)2(ξ2 − j2)2

=
ξ
[
−3ξ4 + (10j2 + 4k2)ξ2 + j2(9j2 − 20k2)

]
√
ξ2 − k2(ξ2 − 9j2)2(ξ2 − j2)2

.

Consider the term q(x) = −3x2 + (10j2 + 4k2)x+ j2(9j2− 20k2), x = ξ2 on the numerator.

Use the fact that j < k, then q(0) = j2(9j2 − 20k2) < 0, q(k2) = (k2 − j2)(k2 − 9j2) >

0, q(4k2) = −32k4 + 20k2j2 + 9j4 < 0. It shows that the two zeros x1, x2 of q(x) lie in

the following intervals: x1 ∈ (0, k2) and x2 ∈ (k2, 4k2). Consequently, there is a ξ0 ∈

(k, 2k), ξ0 =
√
x2, such that f

′
(ξ) > 0 for ξ ∈ (k, ξ0) and f

′
(ξ) < 0 for ξ ∈ (ξ0,∞).

This indicates that f(ξ) is a monotonic function in both the intervals (k, ξ0) (increasing)

and ((ξ0,∞) (decreasing), where ξ0 = µ0k, µ0 ∈ (1, 2). Furthermore, note that f(k) = 0,

f(ξ0) =

√
µ2

0−1

(µ2
0−9µ2)(µ2

0−µ
2)k3

, and f(ξ) → 0 as ξ → ∞, therefore, by the second mean

value theorem, there exists M1 ∈ (k, ξ0) and M2 ∈ (ξ0,∞), such that

|I1| =

∣∣∣∣∣f(ξ0)

∫ µ0k

M1
e
iξ πj dξ + f(ξ0)

∫ M2

µ0k
e
iξ πj dξ

∣∣∣∣∣
≤

√
µ2

0 − 1

(µ2
0 − 9µ2)(µ2

0 − µ
2)k3

2j

π
≤ 2µk

π

√
µ2

0 − 1

(1− 9µ2)(1− µ2)k3

≤ 4µ

π(1− 9µ2)(1− µ2)k2
.

Denote µ1 =
4µ

π(1−9µ2)(1−µ2)
, then |I1| ≤

µ1
k2 and µ1 is small for small µ. For I2, rewrite
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it as I2 = I21 + I22, where

I21 =

∫
ξ>k

√
ξ2 − 9j2

(ξ2 − 9j2)(ξ2 − j2)
dξ,

I22 =

∫
ξ>k

−k2 + 9j2

(

√
ξ2 − k2 +

√
ξ2 − 9j2)

1

(ξ2 − 9j2)(ξ2 − j2)
dξ.

We have |I21| ≥
∫
ξ>k

1

(ξ2)
1
2 ξ2

=

∫
ξ>k

1

ξ3
=

1

2k2
. Furthermore, since (

√
ξ2 − 9j2)2 ≥ (ξ−

3j)2 for ξ > k > 3j,

√
ξ2 − 9j2 ≥ ξ − 3j, consequently,

|I22| ≤ (k2 − 9j2)

∫
ξ>k

1

(ξ − 3j)5
dξ =

1− 9µ2

4(1− 3c)4
1

k2
.

Denote µ2 =
1−9µ2

4(1−3c)4
, then |I22| ≤

µ2
k2 and µ2is close to 1

4 when µ is small enough. From

the estimates for I11, I12, I21, I22, it follows that

|<(I1 + I2)| ≥ |I12| − |I21| − |I22| ≥ (
1

2
− 2µ1 − µ2)

1

k2
≥ 4µ

k2
,

and |=(I1)| ≤ 2µ

k2
, when µ is chosen small enough. It indicates that for small µ , the real

part dominates the imaginary part in the leading term in terms of order in k for Tu∗1(0, y2).

On the other hand, note that

|I1 + I2| ≤
∫
ξ>k

2

√
ξ2 − k2

(ξ2 − 9j2)(ξ2 − j2)
dξ ≤

∫
ξ>k

2

√
ξ2

(ξ2 − 9j2)2
dξ =

1

ξ2 − 9j2
≤ C

k2
.

55



It shows that the real part of |I1 + I2| ∼ O( 1
k2 ), which implies that

Tu∗1(0, y2) = − 6

π
α3j3(I1 + I2) ∼ O(α3k),

where the real part dominates.

Next, we treat Tu∗1(π, y2), where

Tu∗1(π, y2) = − 6

π
α3j3

∫
ξ>k

√
ξ2 − k2

(ξ2 − 9j2)(ξ2 − j2)
(e
iξ(π−πj )

+ eiξπ)dξ = − 6

π
α3j3J,

Again by the second mean value theorem for integrals,

|J | =

∣∣∣∣∣f(ξ0)

∫ µ0k

M1
(e
iξ(π−πj )

+ eiξπ)dξ + f(ξ0)

∫ M2

µ0k
(e
iξ(π−πj )

+ eiξπ)dξ

∣∣∣∣∣
≤

√
µ2

0 − 1

(µ2
0 − 9µ2)(µ2

0 − µ
2)k3

(
2

π − π
j

+
2

π
) ≤ 8

π(1− 9µ2)(1− µ2)k3
≤ 8

k3
,

when µ is small. This implies that Tu∗1(π, y2) = − 6

π
α3j3J ≤ Cα3. The arguments above

show that a1, a2 are the solutions to the following linear system

 α3k o(α3k)

(−1)j+1o(α3k) (−1)j+1α3k


 a1

a2

 =

 g(0)

g(π)

 . (3.12)

Consequently, the matrix M is nonsingular and the result in the lemma as shown in Equation

(3.11) holds. �

From the estimates of a1 and a2 in the lemma above, we can easily get the bound for

E(u∗). Moreover, the estimate of the energy terms involving w needs to be determined.

Remark: Note that w satisfies the nonhomogeneous equation in (3.3). To derive the
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dependency of the energy E(w) on k, most of the ideas are similar to the previous work;

however, additional terms containing f are involved from the beginning of the proof. Fur-

thermore, since here g1 vanishes on the boundary of Γ, a different estimate could be used

for the estimate of the term
∫
Γ T (u)g1 as stated in Lemma, that’s exactly the reason why

we could use a weaker geometric constraint which is stated in Equation (3.1) compared to

the previous work, which requires (X −X∗) · n ≤ −p1 < 0 on S. So each result need to be

restated and this part will be proved in the last section. It will be shown in the last section

that

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

≤ C

{
k

7
5‖g1‖

2
L2(Γ)

+
1

k
‖g1x‖

2
L2(Γ)

+ k
2
5

∫
D
|f |2

}
. (3.13)

3.3 Relations between New Source Terms and Original

Source Term g

To obtain the main stability result for u associated with g instead of the new source con-

tribution terms f , g1, the dependence of f , g1 and g1x on g are needed, which are derived

respectively in the following three lemmas.

Lemma 3.3.1. For the right hand side source term f in Equation (3.3), we have

∫
D
|f |2 ≤ C max(αk,

1

α3k3
)
[
|g(0)|2 + |g(π)|2

]
. (3.14)

If in particular choose α =
β
k

, then

∫
D
|f |2 ≤ C

[
|g(0)|2 + |g(π)|2

]
.
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Proof. Note that f is defined as

f = ∆u∗ + k2u∗ = a1(u∗1xx + u∗1yy + k2u∗1) + a2(u∗2xx + u∗2yy + k2u∗2).

From the definition of u∗1, we can see that u∗1, Du
∗
1, D

2u∗1 vanish outside outside Ω1. We

will treat u∗1 first, and u∗2 can be handled in a similar way. In Ω1,



u∗1 = [y − y2 + α sin(jx)]3,

u∗1x = 3αj[y − y2 + α sin(jx)]2 cos(jx),

u∗1xx = 6α2j2[y − y2 + α sin(jx)] cos2(jx)− 3αj2[y − y2 + α sin(jx)]2 sin(jx),

and


u∗1y = 3[y − y2 + α sin(jx)]2,

u∗1yy = 6[y − y2 + α sin(jx)].

Note that in Ω1, f = a1(u∗1xx + u∗1yy + k2u∗1), thus it follows that

∫
Ω1
|f |2 = |a1|

2
∫ π
j

0

∫ y2

y2−α sin(jx)

∣∣∣∣u∗1xx + u∗1yy + k2u∗1

∣∣∣∣2dydx. (3.15)

Next, the expressions of u∗1xx,u∗1yy,and u∗1 will be used to derive the estimate for
∫
Ω1
|f |2.
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For the first term in the expression of u∗1xx, we have

|a1|
2
∫ π
j

0

∫ y2

y2−α sin(jx)

∣∣∣∣6α2j2[y − y2 + α sin(jx)] cos2(jx)

∣∣∣∣2dydx
=|a1|

2
∫ π
j

0
12α4j4[α sin(jx)]3 cos2(jx)dx

≤
[
C

α3k

]2
(|g(0)|2 + |g(π)|2)

π

j
α7j4 ≤ Cαk(|g(0)|2 + |g(π)|2).

(3.16)

Similarly, for the second term in the expression of u∗1xx, it follows that

|a1|
2
∫ π
j

0

∫ y2

y2−α sin(jx)

∣∣∣∣3αj2[y − y2 + α sin(jx)]2 sin(jx)

∣∣∣∣2dydx
≤Cαk(|g(0)|2 + |g(π)|2).

(3.17)

Moreover, for u∗1yy,

|a1|
2
∫ π
j

0

∫ y2

y2−α sin(jx)

∣∣∣∣6[y − y2 + α sin(jx)]

∣∣∣∣2dydx = |a1|
2
∫ π
j

0
12 [α sin(jx)]3 dx

≤
[
C

α3k

]2
(|g(0)|2 + |g(π)|2)

π

j
α3 ≤ C

α3k3
(|g(0)|2 + |g(π)|2).

(3.18)

And for the term k2u∗1, the following estimate holds,

|a1|
2
∫ π
j

0

∫ y2

y2−α sin(jx)

∣∣∣∣k2[y − y2 + α sin(jx)]3
∣∣∣∣2dydx = |a1|

2
∫ π
j

0

1

7
[α sin(jx)]7 dx

≤
[
C

α3k

]2
(|g(0)|2 + |g(π)|2)

π

j
k4α7 ≤ Cαk(|g(0)|2 + |g(π)|2).

(3.19)

�

Next, the integral involving g1 is computed.
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Lemma 3.3.2. The relation between L2 norm of g1 and g can be expressed by

∫
Γ
|g1|

2 ≤ C
[
|g(0)|2 + |g(π)|2

]
+

∫
Γ
|g|2.

Proof. Recall that

g1 = g − Tu∗ + u∗y,

where Tu∗ = a1Tu
∗
1 + a2Tu

∗
2. For a1Tu

∗
1(x, y2), suitable contour integral and residue

theorem are used like the computation of Tu∗1(0, y2) and Tu∗1(π, y2) in Section 2. The

advantage of this is to convert the integral on R to ξ > k, which makes the estimate much

easier. Ifπj ≤ x < π,then

|a1Tu
∗
1(x, y2)| =

∣∣∣∣− 1

π
a1

∫
ξ>k

√
ξ2 − k2 6α3j3

ξ2 − 9j2
e
iξ(x−πj )

+ eiξx

ξ2 − j2
dξ

∣∣∣∣
≤

6α3j3|a1|
π

∫
ξ>k

√
ξ2 − k2

ξ2 − 9j2
2

ξ2 − j2
dξ

≤
6α3j3|a1|

π

∫
ξ>k

ξ

(ξ2 − 9j2)2
dξ

=
6α3j3|a1|

π

1

k2 − 9j2
≤ C(|g(0)|+ |g(π)|).

If 0 < x < π
j ,then

|a1Tu
∗
1(x, y2)| =

∣∣∣∣a1
2π

∫
R
i

√
k2 − ξ2 6α3j3

ξ2 − 9j2
e
−iξ(x−πj )

+ eiξx

ξ2 − j2
dξ

∣∣∣∣
=

∣∣∣∣−2a1
2π

∫
ξ>k

√
ξ2 − k2 6α3j3

ξ2 − 9j2
e
−iξ(x−πj )

+ eiξx

ξ2 − j2
dξ

∣∣∣∣
≤ C(|g(0)|+ |g(π)|).
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Similarly, |a2Tu
∗
2(x, y2)| ≤ C(|g(0)|+ |g(π)|). Therefore,

∫
Γ
|Tu∗|2 =

∫ π

0
|a1Tu

∗
1|

2 +

∫ π

0
|a2Tu

∗
2|

2 ≤ C
[
|g(0)|2 + |g(π)|2

]
.

Moreover, note that u∗y = a1u
∗
1y + a2u

∗
2y, then

∫
Γ
|u∗y|2 ≤ [

C

α3k
]2
π

j
(|g(0)|2 + |g(π)|2)α5 ≤ C

αk3
(|g(0)|2 + |g(π)|2).

Again if α =
β
k

, then the result in this lemma is obtained. �

Furthermore, we have the following estimate for the integral in terms of g1x.

Lemma 3.3.3. The L2 norm of g1x can be estimated by

∫
Γ
|g1x|

2 ≤ Ck2
[
|g(0)|2 + |g(π)|2

]
+

∫
Γ
|gx|2.

Proof. Note that g1x = gx − Tu∗x + u∗yx, where (Tu∗)x = a1(Tu∗1)x + a2(Tu∗2)x,

a1Tu
∗
1(x, y2)x =

1

2π
a1

∫
R
i

√
k2 − ξ2 6α3j3

ξ2 − 9j2
e
iξ(x−πj )

+ eiξx

ξ2 − j2
dξ


x

=
1

2π
a1

∫
R

(iξ)i

√
k2 − ξ2 6α3j3

ξ2 − 9j2
e
iξ(x−πj )

+ eiξx

ξ2 − j2
dξ.
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Then if πj ≤ x < π, using the residue theorem as before, then

|a1Tu
∗
1(x, y2)x| =

∣∣∣∣− a1
π

∫
ξ>k

(iξ)

√
ξ2 − k2 6α3j3

ξ2 − 9j2
e
iξ(x−πj )

+ eiξx

ξ2 − j2
dξ

∣∣∣∣
≤

24α3j3|a1|
π

∫
ξ>k

ξ2

ξ2(ξ − 3j)2
dξ

=
24α3j3|a1|
π(k − 3j)

≤ Ck(|g(0)|+ |g(π)|).

Follow the similar argument, if 0 < x < π
j , then |a1Tu

∗
1(x, y2)x| ≤ Ck(|g(0)|+ |g(π)|). Also,

|a2Tu
∗
2(x, y2)x| ≤ Ck(|g(0)|+ |g(π)|).

Thus Tu∗(x)x ≤ Ck(|g(0)|+ |g(π)|). It shows that

∫
Γ
|(Tu∗)x|2 =

∫ π

0
|a1(Tu∗1)x|2 +

∫ π

0
|a2(Tu∗2)x|2 ≤ Ck2

[
|g(0)|2 + |g(π)|2

]
.

Furthermore, we have u∗yx = a1u
∗
1yx + a2u

∗
2yx, where

|a1u
∗
1yx| =

∣∣∣∣6a1α cos(jx) sin(jx)j

∣∣∣∣ ≤ Cαk(|g(0)|+ |g(π)|),

|a2u
∗
2yx| =

∣∣∣∣6a2α cos(jx) sin(jx)j

∣∣∣∣ ≤ Cαk(|g(0)|+ |g(π)|).

Based on the above expressions,

∫
Γ
|u∗yx|2 ≤

C

j
α2k2(|g(0)|2 + |g(π)|2) ≤ Cα2k(|g(0)|2 + |g(π)|2).

Therefore, if α is chosen such that α =
β
k

, then the lemma is proved. �
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Remark: (1) the proof in Lemma (3.3.1) indicates that if α =
β
k

, then the lowest power

in k to control f is obtained. (2) the reason that u∗1 is chosen to be (α sin(jx))3 on Γ instead

of lower powers such as α sin(jx) or (α sin(jx))2 is that this guarantees the integrability of

(Tu∗)x.

Summarizing all the results proved in this section,

∫
D
|f |2 =

∫
Ω1
|f |2 +

∫
Ω2
|f |2 ≤ C

[
|g(0)|2 + |g(π)|2

]
,

∫
Γ
|g1|

2 ≤ C
[
|g(0)|2 + |g(π)|2

]
+

∫
Γ
|g|2,

∫
Γ
|g1x|

2 ≤ Ck2
[
|g(0)|2 + |g(π)|2

]
+

∫
Γ
|gx|2.

Combining these inequalities with Equation (3.13) yields that

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

≤ C

{
k

7
5

∫
Γ
|g|2 +

1

k

∫
Γ
|gx|2 + k

12
5
[
|g(0)|2 + |g(π)|2

]}
.

Note that w = u+ u∗, and similar as the computations in Lemma 3.3.1, we see that

‖∇u∗‖2
L2(D)

+ k2‖u∗‖2
L2(D)

≤ C

k2

[
|g(0)|2 + |g(π)|2

]
.

Hence, the final estimate could be established accordingly, that is,

‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

≤ C

{
k

7
5

∫
Γ
|g|2 +

1

k

∫
Γ
|gx|2 + k

12
5
[
|g(0)|2 + |g(π)|2

]}
.
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3.4 The Estimate for the Nonhomogeneous System

In this last section, we establish the stability estimate for the formulation in Equation (3.3),

or in general, we provide the stability estimate for the following problem



∆w + k2w = f in D,

w = 0 on S,

∂nw = T (w) + g1 on Γ.

(3.20)

where g1(a) = g1(b) = 0, Γ = [a, b] × {y = y2}, and T (w) = i√
2π

∫
R
√
k2 − ξ2ŵeiξxdξ,

then the following theorem holds for the nonhomogeneous case.

Theorem 3.4.1. Under the geometric assumptions given in Equation (3.1), there exists a

constant C such that

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

≤ C

{
k

7
5‖g1‖

2
L2(Γ)

+
1

k
‖g1x‖

2
L2(Γ)

+ k
2
5‖f‖2

L2(D)

}
.(3.21)

Remark: The estimate for the case where f = 0 and g may not necessarily vanish on the

boundary of Γ is established in the previous chapter where the stronger geometric assumption

is imposed on S. Since most of the ideas are similar to the previous chapter, the arguments

here emphasize on the portion when the nonhomogeneous terms are involved.

To simplify notation, we may again assume X∗ = (0, 0). Since in this chapter we use the

fact that on Γ x coordinate starts from 0 to π in the construction of u∗ which is related to

g1. So if we set X∗ = (0, 0), a translation of the coordinate system is applied here. That is

why we assumed that Γ = [a, b]× {y = y2}.

The proof of Theorem 3.4.1 involves three major parts.
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Part 1. The weak forms of the governing equation with two different test functions yield

the following identity,

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

+

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ −

∫
S

(X · n)|∇w|2

=<
(∫

Γ
g1w

)
+ <

(∫
D
fw

)
+ 2<

∫
D
f(X · ∇w)

−
∫

Γ
(X · n)|∇w|2 + k2

∫
Γ

(X · n)|w|2 + 2<
∫

Γ

∂w

∂n
(X · ∇w).

(3.22)

Part 2. Appropriate usage of some basic facts related to Fourier transform, the nonlocal

boundary condition in Equation (3.20) and the geometric assumption on S yield the following

inequality

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

+

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|ŵ|2dξ

≤<
(∫

Γ
g1w

)
+ <

(∫
D
fw

)
+ 2<

∫
D
f(X · ∇w) + 2y2

∫
|ξ|≤k

(k2 − ξ2)|ŵ|2dξ

+ 2y2<
∫

Γ
T (w)g1 − 2<

∫
|ξ|≤k

[
ξŵ
′
(ξ)

]
i

√
k2 − ξ2ŵ(ξ)dξ

+ 2<
∫

Γ
xwxg1dx+ y2

∫
Γ
|g1|

2dx.

(3.23)

Part 3. To fully use the higher frequency term on the left hand side in Equation (3.23), the

relations between the higher frequency term on the left and the lower frequency component

is needed, also the L2 norm of w is expected to be controlled by the higher frequency

component, these relations are derived in Lemma 3.4.5. Then by fully using the results in

Lemma 3.4.5 and other tools, we estimate each term in the right hand side of Equation

(3.23), which are named by I1 through I8.
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3.4.1 Wave Energy Formulation

Next, we start from Part 1, where the goal is to formulate the wave energy identity.

Lemma 3.4.2. For the lower frequency part of ŵ, the following identity holds

∫
|ξ|≤k

√
k2 − ξ2|ŵ|2dξ = −=

(∫
Γ
g1w +

∫
D
fw

)
. (3.24)

And for the higher frequency part of ŵ, it can be shown that

‖∇w‖2
L2(D)

− k2‖w‖2
L2(D)

+

∫
|ξ|>k

√
ξ2 − k2|û|2dξ = <

(∫
Γ
g1w +

∫
D
fw

)
. (3.25)

Proof. The weak form of the governing equation is given by the following equality

∫
D
∇w · ∇v −

∫
D
k2wv −

∫
∂D

∂nwv =

∫
D
fv (3.26)

for any v ∈ H1(D). Now choose v = w, then Equation (3.26) becomes

∫
D
|∇w|2 −

∫
D
k2|w|2 −

∫
Γ

(T (w) + g1)w =

∫
D
fw, (3.27)

where the boundary conditions w = 0 on S and ∂nw = T (w) + g1 on Γ are used. Since w

is supported on Γ, we can extend w such that w = 0 on ΓC , then
∫
Γ T (w)w =

∫
R T (w)w =∫

R T̂ (w) ŵ =
∫
R i

√
k2 − ξ2|ŵ|2dξ. Hence Equation (3.27) can be written as

∫
D
|∇w|2 −

∫
D
k2|w|2 −

∫
R
i

√
k2 − ξ2|ŵ|2dξ =

∫
Γ
g1w +

∫
D
fw. (3.28)
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Considering the fact that

−
∫
R
i

√
k2 − ξ2|ŵ|2dξ = −

∫
|ξ|≤k

i

√
k2 − ξ2|ŵ|2dξ +

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ,

and taking the imaginary part and real part of Equation (3.28) respectively, the results in

the lemma could be obtained consequently. �

Notice that from Equation (3.25) in Lemma 3.4.2, the terms associated with the com-

ponents in the wave energy, i.e. ‖∇w‖2
L2(D)

and −k2‖w‖2
L2(D)

are already there, unfor-

tunately, the second term −k2‖w‖2
L2(D)

carries a negative sign, while in the wave energy,

we need the positive one, so another identity is needed such that both terms are positive.

Therefore, another test function v = X · ∇w is introduced here, where X = (x, y), it yields

the following lemma.

Lemma 3.4.3. For ε > 0, we have

−
∫
S

(X · n)|∇w|2 + 2k2
∫
D
|w|2 +

∫
Γ

(X · n)|∇w|2 − k2
∫

Γ
(X · n)|w|2

= 2<
∫

Γ

∂w

∂n
(X · ∇w) + 2<

∫
D
f(X · ∇w). (3.29)

Proof. Plug this test function into Equation (3.26), it becomes

∫
D
∇w · ∇(X · ∇w)−

∫
D
k2w(X · ∇u)−

∫
∂D

∂w

∂n
(X · ∇w) =

∫
D
f(X · ∇w). (3.30)

For the above equality, using divergence theorem, it is easy to check that the first two
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terms on the left hand side can be written as

2<
∫
D
∇w · ∇(X · ∇w) =

∫
∂D

(X · n)|∇w|2, (3.31)

and

−2<
∫
D
k2w(X · ∇w) = −k2

∫
∂D

(X · n)|w|2 + 2k2
∫
D
|w|2. (3.32)

Then multiply Equation (3.30) by 2 and take its real part, and apply Equations.(3.31)

and (3.32), we could arrive at the following equality

∫
∂D

(X · n)|∇w|2 − k2
∫
∂D

(X · n)|w|2 + 2k2
∫
D
|w|2 − 2<

∫
∂D

∂w

∂n
(X · ∇w)

= 2<
∫
D
f(X · ∇w). (3.33)

Since ∂D contains two parts Γ and S with different boundary conditions, the two parts

will be considered separately. For S part, note that w = 0 on S, ∇w = ∂w
∂n

n , hence

∫
S

(X · n)|∇w|2 − k2
∫
S

(X · n)|w|2 − 2<
∫
S

∂w

∂n
(X · ∇w) = −

∫
S

(X · n)|∇w|2.

Therefore, Equation (3.33) becomes the equality shown in the lemma. �

Obviously the term 2k2 ∫
D |w|

2 in Equation (3.29) is helpful as this term provides positive

contribution to the wave energy, so add Equation (3.25) and Equation (3.29) together, the

identity involving the wave energy could be formulated as shown in Equation (3.22).

68



3.4.2 Analysis through Fourier Transform

On the left hand side of Equation (3.22), apart from the wave energy terms, the term∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ will be helpful to control the higher frequency part of ŵ, the term

−
∫
s(X · n)|∇w|2 is nonnegative under the geometric assumption X · n ≤ 0 on S, so it

could be dropped from the estimate. For the right hand side, the term
∫
Γ
∂w
∂n

(X · ∇w)

is more involved, since ∇w on Γ can not be controlled by the wave energy terms directly,

some further analysis is required. Since the operator T is simply a multiplication operator

in terms of Fourier transform. Using the boundary condition on Γ and some basic identity

from Fourier transform, the last 3 terms on the right hand side of Equation (3.22) can be

easily converted into the frequency domain. For the details of the proof, see Chapter 2.

Lemma 3.4.4. For the last three terms on the right hand side of Equation (3.22), it can be

shown that

−
∫

Γ
(X · n)|∇w|2 + k2

∫
Γ

(X · n)|w|2 + 2<
∫

Γ

∂w

∂n
(X · ∇w)

≤−
∫
|ξ|>k

k2√
ξ2 − k2

|ŵ|2dξ2y2
∫
|ξ|≤k

(k2 − ξ2)|ŵ|2dξ + 2y2<
∫

Γ
T (w)g1

− 2<
∫
|ξ|≤k

[
ξŵ
′
(ξ)

]
i

√
k2 − ξ2ŵ(ξ)dξ + 2<

∫
Γ
xwxg1dx+ y2

∫
Γ
|g1|

2dx.

(3.34)

From the result in Lemma 3.4.4, we can see that the original term 2<
∫
Γ
∂w
∂n

(X · ∇w)

actually contains lots of useful information. Especially, it produced a negative higher gre-

quency component term, −
∫
|ξ|>k

k2√
ξ2−k2

|ŵ|2dξ, this can be moved to the left hand side

and helps with the final estimate. Therefore, by dropping the term −
∫
s(X · n)|∇w|2 in

Equation (3.22) using the geometric assumption and also use the result in Lemma 3.4.4, the

result shown in Equation (3.23) is obtained.
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Now we can see that the term ∇w has been canceled out by using the result shown in

lemma 3.4.4; as a consequence, we obtain an energy inequality which contains lots of other

terms on the right hand side.

3.4.3 Auxiliary Lemmas and Final Estimates

Next the estimate for each term on the right hand side of Equation (3.23) is derived. This

is not straightforward as no direct connection is there for the higher frequency compo-

nent on the left hand side and the terms on the right. Therefore, the connection be-

tween them is established in Lemma 3.4.5. To simplify the notations, we denote AL =∫
|ξ|≤k

√
k2 − ξ2|ŵ|2dξ, and BH =

∫
|ξ|>k(

√
ξ2 − k2 + k2√

ξ2−k2
)|ŵ|2dξ . As stated in the

following lemma, AL, the lower frequency part of w, could be controlled by BH , which is

connected to the higher frequency part of w.

Lemma 3.4.5. There exists a positive constant C, such that

AL ≤
δ

k
BH +

1

δ
||g1||

2
L2(Γ)

+ 2 |
∫
D
fw |, (3.35)

where δ can be chosen such that Cδ ≤ k
1
2 . Furthermore,

‖w‖2
L2(Γ)

≤ 2

k
BH +

C2

k
‖g1‖

2
L2(Γ)

+
2C√
k
|
∫
D
fw | . (3.36)

.
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Proof. As shown in Lemma 2.4.1, there exists a constant C such that

‖w‖2
L2(Γ)

≤ C√
k
AL +

1

k
BH. (3.37)

In addition, by using the identity Equation (3.24) and the above inequality, we have

AL ≤ ‖g1‖L2(Γ)
‖w‖

L2(Γ)
+ |

∫
D
fw |≤ δ

2
‖w‖2

L2(Γ)
+

1

2δ
‖g1‖

2
L2(Γ)

+ |
∫
D
fw |

≤ δ

2
(
C√
k
AL +

1

k
BH ) +

1

2δ
‖g1‖

2
L2(Γ)

+ |
∫
D
fw |

If δ is chosen such that Cδ ≤
√
k, then the following inequality holds,

1

2
AL ≤ (1− Cδ

2
√
k

)AL ≤
δ

2k
BH +

1

2δ
‖g1‖

2
L2(Γ)

+ |
∫
D
fw | .

Equation (3.35) is obtained accordingly. Plugging Equation (3.35) into Equation (3.37), the

estimate for ‖w‖2
L2(Γ)

could be arrived as shown below.

‖w‖2
L2(Γ)

≤ C√
k

(
δ

k
BH +

1

δ
‖g‖2

L2(Γ)
+ 2 |

∫
D
fw |

)
+

1

k
BH.

Choose Cδ =
√
k, then Equation (3.36) holds. �

Lemma 3.4.5 is crucial in the sense that it provides a way to relate the integrals of |w|2

and
√
|ξ2 − k2||ŵ|2 to the high frequency part BH and also norms related to g1; it is also

important in determining the power of k in the estimate. Now we will estimate each term

on the right hand side of Equation (3.23), which are named I1 through I8. Here similar

techniques could be used as in the previous work for the terms I1, I3, I5 and I6, for other

new terms, i.e., I2 and I8, they could be controlled by norms related to f and the energy
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terms on the left, and for I4, considering the fact that g1 = 0 on the boundary of Γ, a different

way as shown in Lemma 3.4.9 can be used, which is relatively straightforward comparing to

the previous work and here the geometric assumption is not needed for the estimate. The

following lemmas, i.e., Lemma 3.4.6 through Lemma 3.4.12, provides the estimate for terms

on the right hand side of the energy inequality.

Lemma 3.4.6. The first term on the right hand side of Equation (3.23) can be estimated by

I1 = <
∫

Γ
g1w ≤

ε1√
k
BH +

d1√
k
‖g1‖

2
L2(Γ)

+ ε1

∫
D
k2|w|2 + e1

1

k2

∫
D
|f |2, (3.38)

where ε1 is any small positive number, and d1 =
ε1C

2

2
+

1

2ε1
and e1 =

ε1C
2

4
.

Proof. By applying the relation between ‖w‖2
L2(Γ)

and BH as shown in Lemma 3.4.5, it

follows that

I1 = <
∫

Γ
g1w ≤ ‖g1‖L2(Γ)

‖w‖
L2(Γ)

≤
ε1
√
k

2
‖w‖2

L2(Γ)
+

1

2ε1
√
k
‖g1‖

2
L2(Γ)

≤
ε1
√
k

2

(
2

k
BH +

C2

k
‖g1‖

2
L2(Γ)

+
2C√
k
|
∫
D
fw |

)
+

1

2ε1
√
k
‖g1‖

2
L2(Γ)

=
ε1√
k
BH +

d1√
k
‖g1‖

2
L2(Γ)

+ ε1C |
∫
D
fw |

≤
ε1√
k
BH +

d1√
k
‖g1‖

2
L2(Γ)

+ ε1

∫
D
k2|w|2 + e1

1

k2

∫
D
|f |2,

(3.39)

where the constants are independent of k. �

It is easy to obtain the estimate for the second term on the right hand side of Equation

(3.23) since a positive term k2|w|2 lies on the left hand side of the equation.
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Lemma 3.4.7. For I2, we have

I2 = <
∫
D
fw ≤ ε2

∫
D
k2|w|2 + e2

1

k2

∫
D
|f |2, (3.40)

where ε2 is any small positive number, and e2 =
1

4ε2
.

Similarly, a direct usage of Schwarz inequality would lead to the estimate of I3 as shown

below.

Lemma 3.4.8.

I3 = 2<
∫
D
f (X · ∇w) ≤ ε3

∫
D
|∇w|2 + e3

∫
D
|f |2, (3.41)

where ε3 is any small positive number, and e3 =
M3
4ε8

, M3 = maxx∈Γ{x
2}.

The estimate on I4 can be derived by using Lemma 3.4.5.

Lemma 3.4.9. I4 which contains only the lower frequency part can be estimated as follows.

I4 = 2y2

∫
|ξ|≤k

(k2 − ξ2)|ŵ|2dξ

≤ ε4BH + d4k‖g1‖
2
L2(Γ)

+ ε4

∫
D
k2|w|2 + e4

∫
D
|f |2,

(3.42)

where ε4 is a small positive number, d4 =
4y2

2
ε4

and e4 =
16y2

2
ε4

.
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Proof. Using the fact that for |ξ| ≤ k,

√
k2 − ξ2 < k , then

I4 = 2y2

∫
|ξ|≤k

(k2 − ξ2)|ŵ|2dξ ≤ 2y2kAL

≤ 2y2k

(
ε3

2y2k
BH +

2y2
ε4
‖g1‖

2
L2(Γ)

+ 2 |
∫
D
fw |

)
= ε4BH + d4k‖g1‖

2
L2(Γ)

+ 4y2k

∫
D
fw |

≤ ε4BH + d4k‖g1‖
2
L2(Γ)

+ ε4

∫
D
k2|w|2 + e4

∫
D
|f |2.

(3.43)

�

Lemma 3.4.10. It can be shown that I5 satisfies the following inequality

I5 = 2y2<
∫

Γ
T (w)g1

≤ ε5BH + d5‖g1‖
2
L2(Γ)

+ d̃5
1

k
‖g′1‖

2
L2(Γ)

+ ε5

∫
D
k2|w|2 +

e4
k

∫
D
|f |2, (3.44)

where ε5 is a small positive number, d5 =
ε5C

2

2 +
2y2

2
ε5

,d̃5 =
2y2

2
ε5

and e5 = C2
4ε5

+
2y2

2
ε5

.

Proof. Define g1Γ in the following way,

g1Γ :=


g1 on Γ,

0 on ΓC,
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then

I5 = 2y2<
∫
R
T (w)g1Γ = 2y2<

∫
R
T̂ (w)ĝ1Γ

= 2y2<
∫
R
i

√
k2 − ξ2ŵĝ1Γ ≤ 2y2

(∫
R
|ŵ|2dξ

)1
2
(∫

R
|k2 − ξ2||ĝ1Γ|

2dξ

)1
2

≤
ε5k

2
‖w‖2

L2(Γ)
+

2y2
2

ε5k

∫
R
|k2 − ξ2||ĝ1Γ|

2dξ

≤
ε5k

2

(
2

k
BH +

C2

k
‖g1‖

2
L2(Γ)

+
2C√
k
|
∫
D
fw |

)
+

2y2
2

ε5k

∫
R

(
k2|ĝ1Γ|

2dξ + ξ2||ĝ1Γ|
2
)
dξ

= ε5BH +
ε5C

2

2
‖g1‖

2
L2(Γ)

+ ε5C
√
k |
∫
D
fw | +

2y2
2

ε5
k‖g1‖

2
L2(Γ)

+
2y2

2
ε5k
‖g′1‖

2
L2(Γ)

≤ ε5BH +
ε5C

2

2
‖g1‖

2
L2(Γ)

+ ε5

∫
D
k2|w|2 +

e5
k

∫
D
|f |2 +

2y2
2

ε5
k‖g1‖

2
L2(Γ)

+
2y2

2
ε5k
‖g′1‖

2
L2(Γ)

≤ ε5BH + d5k‖g1‖
2
L2(Γ)

+ d̃5
1

k
‖g′1‖

2
L2(Γ)

+ ε5

∫
D
k2|w|2 +

e5
k

∫
D
|f |2.

�

Lemma 3.4.11. By using Lemma 3.4.5 and further analysis in the frequency domain, we

have

I6 = −2<
∫
|ξ|≤k

[
ξŵ
′
(ξ)

]
i

√
k2 − ξ2ŵ(ξ)dξ

≤ ε6BH + d6k
7
5‖g1‖

2
L2(Γ)

+ ε6

∫
D
k2|w|2 + e6k

2
5

∫
D
|f |2, (3.45)

where ε6 is any small positive number.
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Proof. Following the conclusion in Lemma 2.4.5, the following inequality holds.

I6 = εk‖w‖2
L2(Γ)

+ Ck
6
5AL

≤ εk

(
2

k
BH +

C2

k
‖g1‖

2
L2(Γ)

+
2C√
k
|
∫
D
fw |

)

+ Ck
6
5

(
ε

k
BH +

k

ε
‖g1‖

2
L2(Γ)

+ 2 |
∫
D
fw |

)
≤ ε6BH + d6k

7
5‖g1‖

2
L2(Γ)

+ ε6

∫
D
k2|w|2 + e6k

2
5

∫
D
|f |2.

�

Lemma 3.4.12. It is shown that I7 can be estimated by

I7 = 2<
∫

Γ
xwxgdx

≤ ε7BH + d7‖g1‖
2
L2(Γ)

+
d̃7
k
‖g1x‖

2
L2(Γ)

+ ε7

∫
D
k2|w|2 + e7

1

k

∫
D
|f |2,(3.46)

ε7 can be chosen as an arbitrary positive number, d7 =
ε7C

2

2 + 4
ε7

, d̃7 =
2M3
ε7

, and

e7 =
C2ε7

4

Proof. Using integration by parts and the connection between ‖w‖2
L2(Γ)

and BH in Lemma

3.4.5, it implies that

I7 = 2<
∫

Γ
xwxg1dx = −2<

∫
Γ
w(xg1)xdx

≤
ε7k

2

∫
Γ
|w|2dx+

2

ε7k

∫
Γ
|(xg1)x|2dx

≤
ε7k

2

(
2

k
BH +

C2

k
‖g1‖

2
L2(Γ)

+
2C√
k
|
∫
D
fw |

)
+

4

ε7k
‖g1‖

2
L2(Γ)

+
2M3
ε7k
‖g1x‖

2
L2(Γ)

≤ ε7BH + d7‖g1‖
2
L2(Γ)

+
d̃7
k
‖g1x‖

2
L2(Γ)

+ ε7

∫
D
k2|w|2 + e7

1

k

∫
D
|f |2.
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�

By using the estimates obtained in Lemma 3.4.6 through 3.4.12, we can see that Equation

(3.23) can be estimated by:

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

+

∫
|ξ|>k

(

√
ξ2 − k2 +

k2√
ξ2 − k2

)|ŵ|2dξ

≤εBH + dk
7
5‖g1‖

2
L2(Γ)

+ d̃
1

k
‖g1x‖

2
L2(Γ)

+ ε

(∫
D
k2|w|2 +

∫
D
|∇w|2

)
+ ek

2
5

∫
D
|f |2,

(3.47)

here ε, d, d̃ and e are chosen such that they are ≥ the sums of the corresponding components

in the estimates. Since ε can be chosen as small positive number, so the BH term on the

right hand side of Equation (3.47) can be absorbed by the BH term on the left, similarly,

the energy term on the right hand side can be absorbed by the energy term on the left hand

side. Therefore, it shows that there exists a constant C such that Theorem 3.4.1 holds.
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Chapter 4

Stability Estimates for

Rectangular-like Domains

4.1 Main Theorem and Sketches of Approach

There are other cavity domains which do not satisfies the aforementioned geometric assump-

tions in Chapter 2 and Chapter 3, such as rectangular-like domains (domains composed of

rectangles of different sizes), one example is shown in Fig. 4.1. The main result is stated in

the following theorem, where the outnormal vector n = (nx, ny).

Theorem 4.1.1. For the cavity of rectangular-like shapes with yny ≤ 0 on S, there exists a

constant C such that

‖∇u‖
L2(D)

+ |k|‖u‖
L2(D)

≤ C[k
7
4‖g‖

L2(Γ)
+ k

3
4‖gx‖L2(Γ)

+ k2(|g(0)|+ |g(π)|)]. (4.1)

To prove the theorem, the same u∗ as in Chapter 3 is introduced, which satisfies: 1)

Tu∗(0, y2) = g(0, y2) and Tu∗(π, y2) = g(π, y2), 2) u∗(0, y2) = u∗(π, y2) = 0, 3) u∗y(0, y2) =

u∗y(π, y2) = 0, and 4) u∗ = 0 on S. Then we set w = u + u∗, then w satisfies the following
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Figure 4.1: Rectangular-like domain

equations



∆w + k2w = f in D,

w = 0 on S,

∂nw = Tw + g1 on Γ,

(4.2)

where



f = ∆u∗ + k2u∗,

g1 = g − Tu∗ + u∗y,

g1(0) = g2(π) = 0.

(4.3)
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The major difference lies in that we need to derive an energy estimate for w in the context

of rectangular-like domains. Here two main procedures are involved to derive this energy

estimate. First, we start from the weak formulation of w and also using appropriate test

functions, the following inequality could be arrived, for any ε > 0,

∫
D
|wy|2 +

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ

≤Ck
3
2‖g1‖

2
L2(Γ)

+
C√
k
‖g1x‖

2
L2(Γ)

+ ε

∫
D
|w|2 +

C

ε
k2
∫
D
|f |2,

(4.4)

Note that this inequality only contains the estimate for wy, therefore, additional relations

involving other terms in the energy needs to be explored, that is,

∫
D
|w|2 ≤ C

∫
D
|wy|2. (4.5)

Combining these two inequalities and also the result in Lemma 4.2.4, the following energy

estimate for w is arrived:

k2‖w‖2
L2(D)

+ ‖∇w‖2
L2(D)

≤ C

[
k

7
2‖g1‖

2
L2(Γ)

+ k
3
2‖g1x‖

2
L2(Γ)

+ k4
∫
D
|f |2

]
. (4.6)

By using this energy estimate along with detailed analysis on u∗, the main result could be

obtained.

4.2 Preliminary Lemmas

Since we use the same u∗ as applied in Chapter 3, so here the details related to u∗ are

skipped for simplification and the resulting estimates related to u∗ will be restated briefly
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when needed as for the clarity of our further proof. The main effort is to establish a stability

estimate for the new function w by assuming the cavity region is of rectangular-like shape and

furthermore we assume yny ≤ 0. Here we start from the weak formulation of the problem

for w, and apply two different test functions to obtain an important inequality. The weak

form of the governing equation is given by the following equality

∫
D
∇w · ∇v −

∫
D
k2wv −

∫
∂D

∂nwv =

∫
D
fv. (4.7)

Similar as before, by choosing v = w in Equation (4.7), and taking the imaginary part

and real part respectively, one has

Lemma 4.2.1.

∫
|ξ|≤k

√
k2 − ξ2|ŵ|2dξ = −Im

(∫
Γ
g1w +

∫
D
fw

)
, (4.8)

‖∇w‖2
L2(D)

− k2‖w‖2
L2(D)

+

∫
|ξ|>k

√
ξ2 − k2|û|2dξ = <

(∫
Γ
g1w +

∫
D
fw

)
. (4.9)

Notice that in Equation (4.9), the terms associated with the components in the wave

energy, i.e. ‖∇w‖2
L2(D)

and −k2‖w‖2
L2(D)

are already there, unfortunately, the second

term −k2‖w‖2
L2(D)

carries a negative sign, while in the wave energy, we need the positive

one, so another identity is needed to cancel out the negative term. Therefore, another test

function v = ywy is introduced. Note that this is different from the test function used in

Chapter 2 and Chapter 3 since a different geometric assumption is imposed here.
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Pluging this test function into Equation (4.7) yields

∫
D
∇w · ∇ywy −

∫
D
k2wywy −

∫
∂D

∂w

∂n
ywy =

∫
D
fywy.

Multiply both sides of the above equation by 2 and take the real part, it becomes

2<
∫
D
∇w · ∇ywy − 2<

∫
D
k2wywy − 2

∫
Γ
y2|wy|

2 = 2<
∫
D
fywy + 2<

∫
S

∂w

∂n
ywy.(4.10)

By adding appropriate additional terms and using the divergence theorem, it follows that

2<
∫
D
∇w · ∇ywy = 2<

∫
D

[wxywxy + wyywyy] + 2|wy|2

=

∫
D
y(|∇w|2)y + 2|wy|2 =

∫
D

[y(|∇w|2)]y − |∇w|2 + 2|wy|2

=

∫
∂D

yny(|∇w|2)−
∫
D
|∇w|2 + 2

∫
D
|wy|2

=

∫
Γ
y2(|∇w|2) + <

∫
S

∂w

∂n
ywy −

∫
D
|∇w|2 + 2

∫
D
|wy|2.

(4.11)

Furthermore, the other term 2<
∫
D k2wywy can be written as

2<
∫
D
k2wywy =

∫
D
k2y(|w|2)y =

∫
D
k2(y|w|2)y − k2|w|2

=k2
∫

Γ
y2|w|

2 −
∫
D
k2|w|2.

(4.12)

Plug the results in Equations (4.11) and (4.12) into Equation (4.10), it leads to

2

∫
D
|wy|2 −

∫
D
|∇w|2 +

∫
D
k2|w|2

=−
∫

Γ
y2(|∇w|2) + k2

∫
Γ
y2|w|

2 + 2

∫
Γ
y2|wy|

2 + 2<
∫
D
fywy + <

∫
S

∂w

∂n
ywy.

(4.13)
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Note the geometric assumption yny ≤ 0 on S guarantees that
∫
S
∂w
∂n

ywy ≤ 0. Therefore

the following lemma could be obtained.

Lemma 4.2.2. For all w ∈ H1
S(D)

⋂
H

3
2+ε

(D), ε > 0 ,we have

2

∫
D
|wy|2 −

∫
D
|∇w|2 + k2

∫
D
|w|2

≤ −
∫

Γ
y2|∇w|

2 + k2
∫

Γ
y2|w|

2 + 2

∫
Γ
y2|wy|

2 + 2<
∫
D
fywy. (4.14)

Consequently, the negative term on the left hand side of the above equation could be

canceled out as shown in the following lemma.

Lemma 4.2.3. By adding Equation (4.9) and Equation (4.2.2) together, it yields that

2

∫
D
|wy|2 +

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ

≤<
(∫

Γ
g1w

)
+ <

(∫
D
fw

)
−
∫

Γ
y2|∇w|

2 + k2
∫

Γ
y2|w|

2

+ 2

∫
Γ
y2|wy|

2 + 2<
∫
D
fywy.

(4.15)

Note that for the third to fifth term on the right hand side of the above identity, a direct

computation yields the following result.

Lemma 4.2.4. As detailed in Lemma 2.3.2 in Chapter 2, one has

−
∫

Γ
y2|∇w|

2 + k2
∫

Γ
y2|w|

2 + 2

∫
Γ
y2|wy|

2

≤2y2

∫
|ξ|≤k

(k2 − ξ2)|ŵ|2dξ + 2y2<
∫

Γ
T (w)g1 + y2

∫
Γ
|g1|

2dx.

(4.16)

Use the result in Lemma 4.2.4 and apply it in Lemma 4.2.3, the following lemma holds.
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Lemma 4.2.5.

2

∫
D
|wy|2 +

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ

≤<
(∫

Γ
g1w

)
+ <

(∫
D
fw

)
+ 2y2

∫
|ξ|≤k

(k2 − ξ2)|ŵ|2dξ

+ 2y2<
∫

Γ
T (w)g1 + y2

∫
Γ
|g1|

2dx+ 2<
∫
D
fywy.

(4.17)

Observe that a higher frequency component lie on the left hand side of the above inequal-

ity, this could be used for the estimation on the right hand side, thus we need to build the

connections between the higher frequency component and lower frequency component. By

using the fact that w is supported on Γ and the result in Lemma 4.2.1 here, the connection

could be eatablished. To simplify the notations, denote AL =
∫
|ξ|≤k

√
k2 − ξ2|ŵ|2dξ, and

AH =
∫
|ξ|>k

√
k2 − ξ2|ŵ|2dξ . As stated in the following lemma, AL, the lower frequency

part of w, could be controlled by AH , which is connected to the higher frequency part of w.

Lemma 4.2.6. There exists positive constants C and d, such that

AL ≤
M√
k
AH +

1

M
||g1||

2
L2(Γ)

+ 2 |
∫
D
fw |, (4.18)

where M can be chosen such that M ≤ k
1
2
d

. Furthermore,

‖w‖2
L2(Γ)

≤ C√
k
AH +

C

k
‖g1‖

2
L2(Γ)

+
C√
k
|
∫
D
fw | . (4.19)

Remark. Note that the difference between this lemma and Lemma 3.4.5 lies in the power

of k, here the power associated with AH is 1√
k

while in 3.4.5 the power associated with BH

is 1
k

, since in BH additional higher order term exists. Here BH is not involved due to the
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fact that a different test function is used. This power dependency difference essentially leads

to the different power in the final estimate.

Proof. Here we could start from the idea of Lemma 3.5 in [8], that is, there exists a constant

d, such that

‖w‖2
L2(Γ)

≤ d√
k

(AL + AH ). (4.20)

In addition, by using the identity (4.8) and the above inequality, we have

AL ≤ ‖g1‖L2(Γ)
‖w‖

L2(Γ)
+ |

∫
D
fw |≤ M

2
‖w‖2

L2(Γ)
+

1

2M
‖g1‖

2
L2(Γ)

+ |
∫
D
fw |

≤ M

2

C√
k

(AL + AH ) +
1

2M
‖g1‖

2
L2(Γ)

+ |
∫
D
fw |

If M is chosen such that dM ≤
√
k, then the following inequality holds,

1

2
AL ≤ (1− dM

2
√
k

)AL ≤
M

2
√
k
AH +

1

2M
‖g‖2

L2(Γ)
+ |

∫
D
fw |

AL ≤ M√
k
AH +

1

M
‖g‖2

L2(Γ)
+ 2 |

∫
D
fw |

Considering the results obtained in Equation (4.20) and Equation (4.21) together, the esti-

mate for ‖w‖2
L2(Γ)

could be arrived as shown below.

‖w‖2
L2(Γ)

≤ d√
k

(
M√
k
AH +

1

M
‖g‖2

L2(Γ)
+ 2 |

∫
D
fw |

)
+

d√
k
AH. (4.21)
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Choose M =

√
k
d

, then

‖w‖2
L2(Γ)

≤ C√
k
AH +

C

k
‖g‖2

L2(Γ)
+

C√
k
|
∫
D
fw | . (4.22)

�

This is an important lemma as it relates the integrals of |w|2 and
√
|ξ2 − k2||ŵ|2 to the

high frequency part AH and also norms related to g1. Now we will estimate each term on

the right hand side of Equation (4.17), which are named I1 through I6. As most of the

details are similar to the previous chapter, the only difference is the power of k as stated in

the Remark, thus the details are skipped and only the estimates are given as below.

Lemma 4.2.7. Similar to the computations as shown in Chapter 3, one can show that for

ε > 0,

I1 = <
∫

Γ
g1w ≤

ε1√
k
AH +

C

ε1k
‖g1‖

2
L2(Γ)

+
ε

4

∫
D
|w|2 +

C

εk

∫
D
|f |2,

I2 = <
∫
D
fw ≤ ε

4

∫
D
|w|2 +

C

ε

∫
D
|f |2, (4.23)

I3 = 2y2

∫
|ξ|≤k

(k2 − ξ2)|ŵ|2dξ

≤ ε1AH +
C

ε1
k

3
2‖g1‖

2
L2(Γ)

+
ε

4

∫
D
|w|2 +

C

ε
k2
∫
D
|f |2, (4.24)

I4 = 2y2<
∫

Γ
T (w)g1

≤ ε1AH +
C

ε1
√
k

(‖g1‖
2
L2(Γ)

+ ‖g1x‖
2
L2(Γ)

) +
ε

4

∫
D
|w|2 +

C

ε

∫
D
|f |2, (4.25)

I6 = 2<
∫
D
fywy ≤ ε1

∫
D
|wy|2 +

C

ε1

∫
D
|f |2. (4.26)
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Combine all the estimates above, we have

(1− ε1)

∫
D
|wy|2 + (1− 3ε1)

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ

≤C
ε

[
k

3
2‖g1‖

2
L2(Γ)

+
1√
k
‖g1x‖

2
L2(Γ)

]
+ ε

∫
D
|w|2 +

C

ε
k2
∫
D
|f |2,

(4.27)

As long as ε1 is chosen as a positive number such that 1− 3ε1 ≤ 0 , then we have

∫
D
|wy|2 +

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ

≤Ck
3
2‖g1‖

2
L2(Γ)

+
C√
k
‖g1x‖

2
L2(Γ)

+ ε

∫
D
|w|2 +

C

ε
k2
∫
D
|f |2,

(4.28)

So far, on the left hand side of the inequality, notice that only partial energy term is there,

that is,
∫
D |wy|

2, and this inequality shows how
∫
D |wy|

2 is controlled by
∫
D |w|

2 and

other terms. To establish an energy estimate, the inequality of the reverse order, that is,

how
∫
D |w|

2 could be controlled by
∫
D |wy|

2 needs to be derived, which is the main goal of

the next section.

4.3 Relation between
∫
D |wy|

2 and
∫
D |w|

2

Using the divergence theorem, we see that

0 =

∫
∂D

(y − y2)|w|2ny =

∫
D

[(y − y2)|w|2]y =

∫
D
|w|2 + 2<(y − y2)wwy.

Then we can estimate
∫
D |w|

2 by Schwarz inequality,

∫
D
|w|2 = 2<

∫
D

(y2 − y)wwy ≤ ε

∫
D
|w|2 +

C

ε

∫
D
|wy|2.
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Therefore, choose any ε < 1, it shows that

∫
D
|w|2 ≤ C

∫
D
|wy|2. (4.29)

4.4 Final Estimates

Note that earlier we have the following result,

∫
D
|wy|2 +

∫
|ξ|>k

√
ξ2 − k2|ŵ|2dξ

≤C

[
k

3
2‖g1‖

2
L2(Γ)

+
1√
k
‖g1x‖

2
L2(Γ)

]
+ ε

∫
D
|w|2 +

C

ε

∫
D
k2|f |2.

(4.30)

Combine this with Equation (4.29) together, then

∫
D
k2|w|2 ≤ Ck2

∫
D
|wy|2

≤C

[
k

7
2‖g1‖

2
L2(Γ)

+ k
3
2‖g1x‖

2
L2(Γ)

]
+
C

ε
k4
∫
D
|f |2 + ε

∫
D
k2|w|2.

Note that again ε
∫
D k2|w|2 could be absorbed by the left hand side term, thus follows that

the term
∫
D k2|w|2 could be estimated by

∫
D
k2|w|2 ≤C

[
k

7
2‖g1‖

2
L2(Γ)

+ k
3
2‖g1x‖

2
L2(Γ)

+ k4
∫
D
|f |2

]
. (4.31)

Recall the second identity in Lemma 4.2.1,

‖∇w‖2
L2(D)

− k2‖w‖2
L2(D)

+

∫
|ξ|>k

√
ξ2 − k2|û|2dξ = <

(∫
Γ
g1w +

∫
D
fw

)
. (4.32)
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Use the above identity and Equation (4.31), we have

‖∇w‖2
L2(D)

≤ k2‖w‖2
L2(D)

−
∫
|ξ|>k

√
ξ2 − k2|û|2dξ + <

(∫
Γ
g1w +

∫
D
fw

)
≤k2‖w‖2

L2(D)
− AH + ε‖w‖2

L2(Γ)
+ C‖g1‖

2
L2(Γ)

+ ε‖w‖2
L2(D)

+ C‖f‖2
L2(D)

≤k2‖w‖2
L2(D)

− AH + ε(
C√
k
AH +

C

k
‖g‖2

L2(Γ)
+

C√
k
|
∫
D
fw |)

+ C‖g1‖
2
L2(Γ)

+ ε‖w‖2
L2(D)

+ C‖f‖2
L2(D)

≤C

[
k

7
2‖g1‖

2
L2(Γ)

+ k
3
2‖g1x‖

2
L2(Γ)

+ k4
∫
D
|f |2

]
.

(4.33)

Therefore, an estimate regarding to the wave energy of w is derived:

k2‖w‖2
L2(D)

+ ‖∇w‖2
L2(D)

≤ C

[
k

7
2‖g1‖

2
L2(Γ)

+ k
3
2‖g1x‖

2
L2(Γ)

+ k4
∫
D
|f |2

]
. (4.34)

Next, we will use this relation together with the result in Section 3 for further analysis. As

indicated in the previous subsection, an inequality related to the wave energy of w is derived,

which could be controlled by norms of f and g1. Recall that in the previous chapter, the

following three inequalities are obtained, for which we can use to show the final estimate.

∫
D
|f |2 =

∫
Ω1
|f |2 +

∫
Ω2
|f |2 ≤ C(|g(0)|2 + |g(π)|2),

∫
Γ
|g1|

2 ≤ C(|g(0)|2 + |g(π)|2) +

∫
Γ
|g|2,

∫
Γ
|g1x|

2 ≤ Ck2(|g(0)|2 + |g(π)|2) +

∫
Γ
|gx|2.
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By using these facts in Equation (4.34), it yields that

‖∇w‖2
L2(D)

+ k2‖w‖2
L2(D)

≤ C

[
k

7
2

∫
Γ
|g|2 + k

3
2

∫
Γ
|gx|2 + k4(|g(0)|2 + |g(π)|2)

]
.

Note that w = u+ u∗, and for u∗,

‖∇u∗‖2
L2(D)

+ k2‖u∗‖2
L2(D)

≤ C

k2
(|g(0)|2 + |g(π)|2),

thus, the final estimate could be established accordingly, that is,

‖∇u‖2
L2(D)

+ k2‖u‖2
L2(D)

≤ C

[
k

7
2

∫
Γ
|g|2 + k

3
2

∫
Γ
|gx|2 + k4(|g(0)|2 + |g(π)|2)

]
.
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Chapter 5

Conclusion and Some Open Questions

This work is a preliminary endeavor in studying the stability estimates of electromagnetic

scattering from open cavity. We focus on the study of TM case and assume the media is

homogeneous. Our main contribution is that explicit estimates are derived, on how the wave

energy in the cavity region depends on the wave number k and incoming fields. We have

provided the explicit relations in the context of different geometric features of the cavity

domain using different techniques. The stability estimates can provide guidance for the

numerical computations, as well as provide insights on the shape design of cavities.

On the other hand, the numerical results may give evidence on the dependency relations

and help to find the optimal power dependency in terms of wave number k, which is an inter-

esting topic to explore in the future. Also, the closely related problem would be the stability

estimate for TE(Transverse Electric) polarization case in the two dimensional setting, where

the bounded domain formulation is given by



∆u+ k2u = 0 in D,

∂nu = 0 on S,

u = T (∂nu) + g on Γ,

(5.1)

with T̂ (∂nu) =
i√

k2 − ξ2
∂̂nu. The major difference lies in two parts: one is the boundary

condition in particular the multiplication operator; another is that while in TM case u is
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supported on Γ, here uy is supported on Γ while u and ux may not be, a natural extension of

the proof for TM case would fail in TE case; thus additional techniques are expected to derive

the stability estimates. As long as the stability estimate for TE case could be obtained given

the geometric assumption as in TM case, then the two dimensional problem would be solved

under same geometric setting since the general case could always be decomposed into the

sum of TM and TE case. For three dimensional problem, the bounded domain formulation

is given by [4]



∇× E − iωµH = 0,

∇×H + iωεE = 0,

n× E = 0 on S,

− n× (n×H) = P (−n× (n× E)) + g on Γ.

(5.2)

where

−gi = −n× (n× (Ei − peik0q·x)) + P (−n× (n× (Ei − peik0q
∗·x)))

and

P (−n× (n× E))

=
1

(2π)2ωµ0

∫
R2
{[− 1√

k2
0 − ξ

2
1 − ξ

2
2

(ξ1ĝ1 + ξ2ĝ2)ξ2 −
√
k2
0 − ξ

2
1 − ξ

2
2 ĝ2],

1

k2
0 − ξ

2
1 − ξ

2
2

(ξ1ĝ1 + ξ2ĝ2)ξ1 −
√
k2
0 − ξ

2
1 − ξ

2
2 ĝ1], 0}eiξ·xdξ,

with gj(x1, x2) = Ej(x1, x2, 0), j = 1, 2, 3. Existence and uniqueness of the solutions for the
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model problem are established by a variational approach and the Hodge decomposition, the

stability estimates are not derived yet. Furthermore the electromagnetic scattering in layered

media, which is significantly important in many areas such as optics, geophysical probing,

communication, remote sensing[12, 31], etc. Another interesting problem is concerned with

the optimal design problem in inverse scattering, in aims to design the cavity shape and

material to reduce or enhance the radar cross section [22]. For inverse scattering, there are

some local stability result obtained for periodic structures and biperiodic structures [6, 9],

and Li [22] proved the local stability for one particular case of the cavity problem, where

the upper halfspace is filled with a lossless homogeneous medium above the flat ground

surface; while the interior of the cavity is assumed to be filled with a lossy homogeneous

medium accounting for the energy absorption; more stability results could be explored based

on different consideration of the medium. In a word, there are still many open questions

in terms of stability estimates in cavity problem, which are theoretically interesting and

challenging.
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